Sample records for source rock distribution

  1. Geochemical characteristics and reservoir continuity of Silurian Acacus in Ghadames Basin, Southern Tunisia

    NASA Astrophysics Data System (ADS)

    Mahmoudi, S.; Mohamed, A. Belhaj; Saidi, M.; Rezgui, F.

    2017-11-01

    The present work is dealing with the study of lateral and vertical continuity of the multi-layers Acacus reservoir (Ghadames Basin-Southern Tunisia) using the distribution of hydrocarbon fraction. For this purpose, oil-oil and source rock-oil correlations as well as the composition of the light fractions and a number of saturate and aromatic biomarkers parameters, including C35/C34 hopanes and DBT/P, have been investigated. Based on the ratios of light fraction and their fingerprints, the Acacus reservoir from Well1 and Well2 have found to be laterally non-connected although the hydrocarbons they contain have the same source rock. Moreover, the two oil samples from two different Acacus reservoir layers crossed by Well3-A3 and A9, display a similar hydrocarbons distribution, suggesting vertical reservoir continuity. On the other hand, the biomarker distributions of the oils samples and source rocks assess a Silurian ;Hot shale; that is the source rock feeding the Acacus reservoir. The biomarker distribution is characterized by high tricyclic terpanes contents compared to hopanes for the Silurian source rock and the two crude oils. This result is also confirmed by the dendrogram that precludes the Devonian source rocks as a source rock in the study area.

  2. North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge

    USGS Publications Warehouse

    Peters, K.E.; Magoon, L.B.; Bird, K.J.; Valin, Z.C.; Keller, M.A.

    2006-01-01

    Four key marine petroleum source rock units were identified, characterized, and mapped in the subsurface to better understand the origin and distribution of petroleum on the North Slope of Alaska. These marine source rocks, from oldest to youngest, include four intervals: (1) Middle-Upper Triassic Shublik Formation, (2) basal condensed section in the Jurassic-Lower Cretaceous Kingak Shale, (3) Cretaceous pebble shale unit, and (4) Cretaceous Hue Shale. Well logs for more than 60 wells and total organic carbon (TOC) and Rock-Eval pyrolysis analyses for 1183 samples in 125 well penetrations of the source rocks were used to map the present-day thickness of each source rock and the quantity (TOC), quality (hydrogen index), and thermal maturity (Tmax) of the organic matter. Based on assumptions related to carbon mass balance and regional distributions of TOC, the present-day source rock quantity and quality maps were used to determine the extent of fractional conversion of the kerogen to petroleum and to map the original TOC (TOCo) and the original hydrogen index (HIo) prior to thermal maturation. The quantity and quality of oil-prone organic matter in Shublik Formation source rock generally exceeded that of the other units prior to thermal maturation (commonly TOCo > 4 wt.% and HIo > 600 mg hydrocarbon/g TOC), although all are likely sources for at least some petroleum on the North Slope. We used Rock-Eval and hydrous pyrolysis methods to calculate expulsion factors and petroleum charge for each of the four source rocks in the study area. Without attempting to identify the correct methods, we conclude that calculations based on Rock-Eval pyrolysis overestimate expulsion factors and petroleum charge because low pressure and rapid removal of thermally cracked products by the carrier gas retards cross-linking and pyrobitumen formation that is otherwise favored by natural burial maturation. Expulsion factors and petroleum charge based on hydrous pyrolysis may also be high compared to nature for a similar reason. Copyright ?? 2006. The American Association of Petroleum Geologists. All rights reserved.

  3. The cretaceous source rocks in the Zagros Foothills of Iran: An example of a large size intracratonic basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordenave, M.L.; Huc, A.Y.

    1993-02-01

    The Zagros orogenic belt of Iran is one of the world most prolific petroleum producing area. However, most of the oil production is originated from a relatively small area, the 60,000 km[sup 2] wide Dezful Embayment which contains approximately 12% of the proven oil global reserves. The distribution of the oil and gas fields results from the area extent of six identified source rock layers, their thermal history and reservoir, cap rock and trap availability. In this paper, the emphasis is three of the layers of Cretaceous sources rocks. The Garau facies was deposited during the Neocomian to Albian intervalmore » over Lurestan, Northeast Khuzestan and extends over the extreme northeast part of Fars, the Kazhdumi source rock which deposited over the Dezful Embayment, and eventually the Senonian Gurpi Formation which has marginal source rock characteristics in limited areas of Khuzestan and Northern Fars. The deposition environment of these source rock layers corresponds to semipermanent depressions, included in an overall shallow water intracratonic basin communicating with the South Tethys Ocean. These depressions became anoxic when climatic oceanographical and geological conditions were adequate, i.e., humid climate, high stand water, influxes of fine grained clastics and the existence of sills separating the depression from the open sea. Distribution maps of these source rock layers resulting from extensive field work and well control are also given. The maturation history of source rocks is reconstructed from a set of isopachs. It was found that the main contributor to the oil reserves is the Kazhdumi source rock which is associated with excellent calcareous reservoirs.« less

  4. Evaluation of kinetic uncertainty in numerical models of petroleum generation

    USGS Publications Warehouse

    Peters, K.E.; Walters, C.C.; Mankiewicz, P.J.

    2006-01-01

    Oil-prone marine petroleum source rocks contain type I or type II kerogen having Rock-Eval pyrolysis hydrogen indices greater than 600 or 300-600 mg hydrocarbon/g total organic carbon (HI, mg HC/g TOC), respectively. Samples from 29 marine source rocks worldwide that contain mainly type II kerogen (HI = 230-786 mg HC/g TOC) were subjected to open-system programmed pyrolysis to determine the activation energy distributions for petroleum generation. Assuming a burial heating rate of 1??C/m.y. for each measured activation energy distribution, the calculated average temperature for 50% fractional conversion of the kerogen in the samples to petroleum is approximately 136 ?? 7??C, but the range spans about 30??C (???121-151??C). Fifty-two outcrop samples of thermally immature Jurassic Oxford Clay Formation were collected from five locations in the United Kingdom to determine the variations of kinetic response for one source rock unit. The samples contain mainly type I or type II kerogens (HI = 230-774 mg HC/g TOC). At a heating rate of 1??C/m.y., the calculated temperatures for 50% fractional conversion of the Oxford Clay kerogens to petroleum differ by as much as 23??C (127-150??C). The data indicate that kerogen type, as defined by hydrogen index, is not systematically linked to kinetic response, and that default kinetics for the thermal decomposition of type I or type II kerogen can introduce unacceptable errors into numerical simulations. Furthermore, custom kinetics based on one or a few samples may be inadequate to account for variations in organofacies within a source rock. We propose three methods to evaluate the uncertainty contributed by kerogen kinetics to numerical simulations: (1) use the average kinetic distribution for multiple samples of source rock and the standard deviation for each activation energy in that distribution; (2) use source rock kinetics determined at several locations to describe different parts of the study area; and (3) use a weighted-average method that combines kinetics for samples from different locations in the source rock unit by giving the activation energy distribution for each sample a weight proportional to its Rock-Eval pyrolysis S2 yield (hydrocarbons generated by pyrolytic degradation of organic matter). Copyright ?? 2006. The American Association of Petroleum Geologists. All rights reserved.

  5. Marine and nonmarine gas-bearing rocks in Upper Cretaceous Blackhawk and Neslen Formations, eastern Uinta Basin, Utah: sedimentology, diagenesis, and source rock potential

    USGS Publications Warehouse

    Pitman, Janet K.; Franczyk, K.J.; Anders, D.E.

    1987-01-01

    Thermogenic gas was generated from interbedded humic-rich source rocks. The geometry and distribution of hydrocarbon source and reservoir rocks are controlled by depositional environment. The rate of hydrocarbon generation decreased from the late Miocene to the present, owing to widespread cooling that occurred in response to regional uplift and erosion associated with the development of the Colorado Plateau. -from Authors

  6. Distribution and geological sources of selenium in environmental materials in Taoyuan County, Hunan Province, China.

    PubMed

    Ni, Runxiang; Luo, Kunli; Tian, Xinglei; Yan, Songgui; Zhong, Jitai; Liu, Maoqiu

    2016-06-01

    The selenium (Se) distribution and geological sources in Taoyuan County, China, were determined by using hydride generation atomic fluorescence spectrometry on rock, soil, and food crop samples collected from various geological regions within the county. The results show Se contents of 0.02-223.85, 0.18-7.05, and 0.006-5.374 mg/kg in the rock, soil, and food crops in Taoyuan County, respectively. The region showing the highest Se content is western Taoyuan County amid the Lower Cambrian and Ediacaran black rock series outcrop, which has banding distributed west to east. A relatively high-Se environment is found in the central and southern areas of Taoyuan County, where Quaternary Limnetic sedimentary facies and Neoproterozoic metamorphic volcanic rocks outcrop, respectively. A relatively low-Se environment includes the central and northern areas of Taoyuan County, where Middle and Upper Cambrian and Ordovician carbonate rocks and Cretaceous sandstones and conglomerates outcrop. These results indicate that Se distribution in Taoyuan County varies markedly and is controlled by the Se content of the bedrock. The Se-enriched Lower Cambrian and Ediacaran black rock series is the primary source of the seleniferous environment observed in Taoyuan County. Potential seleniferous environments are likely to be found near outcrops of the Lower Cambrian and Ediacaran black rock series in southern China.

  7. Neoproterozoic rift basins and their control on the development of hydrocarbon source rocks in the Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Zhu, Guang-You; Ren, Rong; Chen, Fei-Ran; Li, Ting-Ting; Chen, Yong-Quan

    2017-12-01

    The Proterozoic is demonstrated to be an important period for global petroleum systems. Few exploration breakthroughs, however, have been obtained on the system in the Tarim Basin, NW China. Outcrop, drilling, and seismic data are integrated in this paper to focus on the Neoproterozoic rift basins and related hydrocarbon source rocks in the Tarim Basin. The basin consists of Cryogenian to Ediacaran rifts showing a distribution of N-S differentiation. Compared to the Cryogenian basins, those of the Ediacaran are characterized by deposits in small thickness and wide distribution. Thus, the rifts have a typical dual structure, namely the Cryogenian rifting and Ediacaran depression phases that reveal distinct structural and sedimentary characteristics. The Cryogenian rifting basins are dominated by a series of grabens or half grabens, which have a wedge-shaped rapid filling structure. The basins evolved into Ediacaran depression when the rifting and magmatic activities diminished, and extensive overlapping sedimentation occurred. The distributions of the source rocks are controlled by the Neoproterozoic rifts as follows. The present outcrops lie mostly at the margins of the Cryogenian rifting basins where the rapid deposition dominates and the argillaceous rocks have low total organic carbon (TOC) contents; however, the source rocks with high TOC contents should develop in the center of the basins. The Ediacaran source rocks formed in deep water environment of the stable depressions evolving from the previous rifting basins, and are thus more widespread in the Tarim Basin. The confirmation of the Cryogenian to Ediacaran source rocks would open up a new field for the deep hydrocarbon exploration in the Tarim Basin.

  8. Overview of the potential and identified petroleum source rocks of the Appalachian basin, eastern United States: Chapter G.13 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Coleman, James L.; Ryder, Robert T.; Milici, Robert C.; Brown, Stephen; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin is the oldest and longest producing commercially viable petroleum-producing basin in the United States. Source rocks for reservoirs within the basin are located throughout the entire stratigraphic succession and extend geographically over much of the foreland basin and fold-and-thrust belt that make up the Appalachian basin. Major source rock intervals occur in Ordovician, Devonian, and Pennsylvanian strata with minor source rock intervals present in Cambrian, Silurian, and Mississippian strata.

  9. Sulfur species in source rock bitumen before and after hydrous pyrolysis determined by X-ray absorption near-edge structure

    USGS Publications Warehouse

    Bolin, Trudy B.; Birdwell, Justin E.; Lewan, Michael; Hill, Ronald J.; Grayson, Michael B.; Mitra-Kirtley, Sudipa; Bake, Kyle D.; Craddock, Paul R.; Abdallah, Wael; Pomerantz, Andrew E.

    2016-01-01

    The sulfur speciation of source rock bitumen (chloroform-extractable organic matter in sedimentary rocks) was examined using sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy for a suite of 11 source rocks from around the world. Sulfur speciation was determined for both the native bitumen in thermally immature rocks and the bitumen produced by thermal maturation of kerogen via hydrous pyrolysis (360 °C for 72 h) and retained within the rock matrix. In this study, the immature bitumens had higher sulfur concentrations than those extracted from samples after hydrous pyrolysis. In addition, dramatic and systematic evolution of the bitumen sulfur moiety distributions following artificial thermal maturation was observed consistently for all samples. Specifically, sulfoxide sulfur (sulfur double bonded to oxygen) is abundant in all immature bitumen samples but decreases substantially following hydrous pyrolysis. The loss in sulfoxide sulfur is associated with a relative increase in the fraction of thiophene sulfur (sulfur bonded to aromatic carbon) to the extent that thiophene is the dominant sulfur form in all post-pyrolysis bitumen samples. This suggests that sulfur moiety distributions might be used for estimating thermal maturity in source rocks based on the character of the extractable organic matter.

  10. Reservoir and Source Rock Identification Based on Geologycal, Geophysics and Petrophysics Analysis Study Case: South Sumatra Basin

    NASA Astrophysics Data System (ADS)

    Anggit Maulana, Hiska; Haris, Abdul

    2018-05-01

    Reservoir and source rock Identification has been performed to deliniate the reservoir distribution of Talangakar Formation South Sumatra Basin. This study is based on integrated geophysical, geological and petrophysical data. The aims of study to determine the characteristics of the reservoir and source rock, to differentiate reservoir and source rock in same Talangakar formation, to find out the distribution of net pay reservoir and source rock layers. The method of geophysical included seismic data interpretation using time and depth structures map, post-stack inversion, interval velocity, geological interpretations included the analysis of structures and faults, and petrophysical processing is interpret data log wells that penetrating Talangakar formation containing hydrocarbons (oil and gas). Based on seismic interpretation perform subsurface mapping on Layer A and Layer I to determine the development of structures in the Regional Research. Based on the geological interpretation, trapping in the form of regional research is anticline structure on southwest-northeast trending and bounded by normal faults on the southwest-southeast regional research structure. Based on petrophysical analysis, the main reservoir in the field of research, is a layer 1,375 m of depth and a thickness 2 to 8.3 meters.

  11. Organic geochemistry and petrology of oil source rocks, Carpathian Overthrust region, southeastern Poland - Implications for petroleum generation

    USGS Publications Warehouse

    Kruge, M.A.; Mastalerz, Maria; Solecki, A.; Stankiewicz, B.A.

    1996-01-01

    The organic mailer rich Oligocene Menilite black shales and mudstones are widely distributed in the Carpathian Overthrust region of southeastern Poland and have excellent hydrocarbon generation potential, according to TOC, Rock-Eval, and petrographic data. Extractable organic matter was characterized by an equable distribution of steranes by carbon number, by varying amounts of 28,30-dinor-hopane, 18??(H)-oleanane and by a distinctive group of C24 ring-A degraded triterpanes. The Menilite samples ranged in maturity from pre-generative to mid-oil window levels, with the most mature in the southeastern portion of the study area. Carpathian petroleum samples from Campanian Oligocene sandstone reservoirs were similar in biomarker composition to the Menilite rock extracts. Similarities in aliphatic and aromatic hydrocarbon distributions between petroleum asphaltene and source rock pyrolyzates provided further evidence genetically linking Menilite kerogens with Carpathian oils.

  12. Assessment of undiscovered hydrocarbon resources of sub-Saharan Africa

    USGS Publications Warehouse

    Brownfield, Michael E.

    2016-01-01

    The assessment was geology-based and used the total petroleum system (TPS) concept. The geologic elements of a TPS are hydrocarbon source rocks (source rock maturation and hydrocarbon generation and migration), reservoir rocks (quality and distribution), and traps where hydrocarbon accumulates. Using these geologic criteria, 16 conventional total petroleum systems and 18 assessment units in the 13 provinces were defined. The undiscovered, technically recoverable oil and gas resources were assessed for all assessment units.

  13. Distribution, richness, quality, and thermal maturity of source rock units on the North Slope of Alaska

    USGS Publications Warehouse

    Peters, K.E.; Bird, K.J.; Keller, M.A.; Lillis, P.G.; Magoon, L.B.

    2003-01-01

    Four source rock units on the North Slope were identified, characterized, and mapped to better understand the origin of petroleum in the area: Hue-gamma ray zone (Hue-GRZ), pebble shale unit, Kingak Shale, and Shublik Formation. Rock-Eval pyrolysis, total organic carbon analysis, and well logs were used to map the present-day thickness, organic quantity (TOC), quality (hydrogen index, HI), and thermal maturity (Tmax) of each unit. To map these units, we screened all available geochemical data for wells in the study area and assumed that the top and bottom of the oil window occur at Tmax of ~440° and 470°C, respectively. Based on several assumptions related to carbon mass balance and regional distributions of TOC, the present-day source rock quantity and quality maps were used to determine the extent of fractional conversion of the kerogen to petroleum and to map the original organic richness prior to thermal maturation.

  14. Rock-Bound Arsenic Influences Ground Water and Sediment Chemistry Throughout New England

    USGS Publications Warehouse

    Robinson, Gilpin R.; Ayotte, Joseph D.

    2007-01-01

    The information in this report was presented at the Northeastern Region Geological Society of America meeting held March 11-14, 2007, in Durham, New Hampshire. In the New England crystalline bedrock aquifer, concentrations of arsenic that exceed the drinking water standard of 10 ?g/L occur most frequently in ground water from wells sited in specific metamorphic and igneous rock units. Geochemical investigations indicate that these geologic units typically have moderately elevated whole-rock concentrations of arsenic compared to other rocks in the region. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with specific bedrock units where average whole-rock concentrations of arsenic exceed 1.1 mg/kg and where geologic and geochemical factors produce high pH ground water. Arsenic concentrations in stream sediments collected from small drainages reflect the regional distribution of this natural arsenic source and have a strong correlation with both rock chemistry and the distribution of bedrock units with elevated arsenic chemistry. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with the distribution of stream sediments where concentrations of arsenic exceed 6 mg/kg. Stream sediment chemistry also has a weak correlation with the distribution of agricultural lands where arsenical pesticides were used on apple, blueberry, and potato crops. Elevated arsenic concentrations in bedrock wells, however, do not correlate with agricultural areas where arsenical pesticides were used. These results indicate that both stream sediment chemistry and the solubility and mobility of arsenic in ground water in bedrock are influenced by host-rock arsenic concentrations. Stream sediment chemistry and the distribution of geologic units have been found to be useful parameters to predict the areas of greatest concern for elevated arsenic in ground water and to estimate the likely levels of human exposure to elevated arsenic in drinking water in New England. However, the extreme local variability of arsenic concentrations in ground water from these rock sources indicate that arsenic concentrations in ground water are affected by other factors in addition to arsenic concentrations in rock.

  15. Stratigraphic variations in the biomarker distribution of the Moreno Formation: Their correlation with San Joaquin basin oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bac, M.G.; Schulein, B.J.

    1990-05-01

    Variability in the biomarker compositions of petroleums is typically employed in the recognition and distinction of contributions from different source rocks. We demonstrate that the fluctuations in the biomarker distributions of different intervals within a single source rock sequence appear to account for specific compositional differences in a suite of oils from the San Joaquin basin California. Rock-Eval pyrolysis studies of a 100-m-thick immature, laminated, marine shale sequence within the Upper Cretaceous lo lower Paleocene portion of the Moreno Formation reveals TOC (total organic carbon) contents consistently around 2% and moderate hydrogen indices (i.e., 175-300 mg HC/g org. C) characteristicsmore » suggestive of a uniform depositional sequence with source rock potential. Analyses of the extractable aliphatic hydrocarbons of cored samples taken at approximately 10-m intervals from the sequence reveal significant variability in biomarker distributions. Such differences are exemplified by the triterpenoids (as seen in m/z 191 chromatograms from GC-MS and GC-MS/MS analyses) where the dominant component fluctuates from a 17{alpha}(h),21{beta}(H)-30-norhopane to 28,30-l8{alpha}(H)-bisnorhopane to 20S and 20R danunar-13(17)-enes. Some components are dominant in one interval, but are not detected in others, suggesting discrete stratigraphic variations in the biomarker characteristics of the Moreno. Similar discrepancies in biomarker distributions are evident in the aliphatic hydrocarbons of the suite of oils. The three petroleums reservoired in the San Carlos sandstone member of the Lodo Formation which directly overlies the Moreno, reflect biomarker contributions from a Moreno source, including compound distributions, and the occurrence of both alkanes (e.g., 28.30-bisnorhopane) and alkenes (e.g.. danunarenes and diasterenes).« less

  16. Relationship of oil seep in Kudat Peninsula with surrounding rocks based on geochemical analysis

    NASA Astrophysics Data System (ADS)

    Izzati Azman, Nurul; Nur Fathiyah Jamaludin, Siti

    2017-10-01

    This study aims to investigate the relation of oil seepage at Sikuati area with the structural and petroleum system of Kudat Peninsula. The abundance of highly carbonaceous rocks with presence of lamination in the Sikuati Member outcrop at Kudat Peninsula may give an idea on the presence of oil seepage in this area. A detailed geochemical analysis of source rock sample and oil seepage from Sikuati area was carried out for their characterization and correlation. Hydrocarbon propectivity of Sikuati Member source rock is poor to good with Total Organic Carbon (TOC) value of 0.11% to 1.48%. and also categorized as immature to early mature oil window with Vitrinite Reflectance (VRo) value of 0.43% to 0.50 %Ro. Based on biomarker distribution, from Gas Chromatography (GC) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis, source rock sample shows Pr/Ph, CPI and WI of 2.22 to 2.68, 2.17 to 2.19 and 2.46 to 2.74 respectively indicates the source rock is immature and coming from terrestrial environment. The source rock might be rich in carbonaceous material organic matter resulting from planktonic/bacterial activity which occurs at fluvial to fluvio-deltaic environment. Overall, the source rock from outcrop level of Kudat Peninsula is moderately prolific in term of prospectivity and maturity. However, as go far deeper beneath the surface, we can expect more activity of mature source rock that generate and expulse hydrocarbon from the subsurface then migrating through deep-seated fault beneath the Sikuati area.

  17. Hydrocarbon Reservoir Identification in Volcanic Zone by using Magnetotelluric and Geochemistry Information

    NASA Astrophysics Data System (ADS)

    Firda, S. I.; Permadi, A. N.; Supriyanto; Suwardi, B. N.

    2018-03-01

    The resistivity of Magnetotelluric (MT) data show the resistivity mapping in the volcanic reservoir zone and the geochemistry information for confirm the reservoir and source rock formation. In this research, we used 132 data points divided with two line at exploration area. We used several steps to make the resistivity mapping. There are time series correction, crosspower correction, then inversion of Magnetotelluric (MT) data. Line-2 and line-3 show anomaly geological condition with Gabon fault. The geology structure from the resistivity mapping show the fault and the geological formation with the geological rock data mapping distribution. The geochemistry information show the maturity of source rock formation. According to core sample analysis information, we get the visual porosity for reservoir rock formation in several geological structure. Based on that, we make the geological modelling where the potential reservoir and the source rock around our interest area.

  18. Detrital rutile geochemistry and thermometry from the Dabie orogen: Implications for source-sediment links in a UHPM terrane

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Xiao, Yilin; Wörner, G.; Kronz, A.; Simon, K.; Hou, Zhenhui

    2014-08-01

    This study explores the potential of detrital rutile geochemistry and thermometry as a provenance tracer in rocks from the Central Dabie ultrahigh-pressure metamorphic (UHPM) zone in east-central China that formed during Triassic continental collision. Trace element data of 176 detrital rutile grains selected from local river sediments and 91 rutile grains from distinct bedrocks in the Shuanghe and Bixiling areas, obtained by both electron microprobe (EMP) and in situ LA-ICP-MS analyses, suggest that geochemical compositions and thermometry of detrital rutiles are comparable to those from their potential source rocks. After certification of the Cr-Nb discrimination method for the Central Dabie UHPM zone, we show that 29% of the detrital rutiles in the Shuanghe area were derived from metamafic sources whereas in the Bixiling area that it is up to 76%. Furthermore, the proportion of distinct types of detrital rutiles combined with modal abundances of rutile in metapelites and metamafic bedrocks can be used to estimate the proportion of different source lithologies. Based on this method the proportion of mafic source rocks was estimated to ∼10% at Shuanghe and >60% at Bixiling, respectively, which is consistent with the proportions of eclogite (the major rutile-bearing metamafic rock) distribution in the field. Therefore, the investigation of detrital rutiles is a potential way to evaluate the proportion of metamafic rocks and even to prospect for metamafic bodies in UHPM terranes. Zr-in-rutile temperatures were calculated at different pressures and compared with temperatures derived from rock-in rutiles and garnet-clinopyroxene Fe-Mg thermometers. Temperatures calculated for detrital rutiles range from 606 °C to 707 °C and 566 °C to 752 °C in Shuanghe and Bixiling, respectively, at P = 3 GPa with an average temperatures of ca. 630 °C for both areas. These temperature averages and ranges are similar to those calculated for rutiles from surrounding source rocks. Combined with comparable Zr distribution characteristics between detrital and source rock rutiles, demonstrating a close source-sediment link for rutiles from clastic and rock in UHPM terranes. Thus rutiles can be accurate tracers of source rock lithologies in sedimentary provenance studies even at a small regional scale. In Bixiling, Nb/Ta ratios of metamafic and metapelitic detrital rutiles fall between 11.0 to 27.3 and 7.7 to 20.5, respectively. In contrast, in Shuanghe, these ratios are highly variable, ranging from 10.9 to 71.0 and 7.6 to 87.1, respectively. When ignoring four outlier compositions with extremely high Nb/Ta in Shuanghe, a distinct clustering of Nb/Ta ratios in rutiles is shown: metapelitic detrital rutiles have Nb/Ta of 7-40 vs. metamafic detrital rutiles with Nb/Ta = 11-25. The Nb/Ta characteristics in detrital rutiles from both areas may reflect the degree of fluid-rock interaction during metamorphism and/or different source lithologies. Therefore, the trace element compositions in detrital rutiles can accurately trace the lithology, proportion and fluid-rock interaction of different source rocks.

  19. An overview on source rocks and the petroleum system of the central Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Böcker, Johannes; Littke, Ralf; Forster, Astrid

    2017-03-01

    The petroleum system of the Upper Rhine Graben (URG) comprises multiple reservoir rocks and four major oil families, which are represented by four distinct source rock intervals. Based on geochemical analyses of new oil samples and as a review of chemical parameter of former oil fields, numerous new oil-source rock correlations were obtained. The asymmetric graben resulted in complex migration pathways with several mixed oils as well as migration from source rocks into significantly older stratigraphic units. Oldest oils originated from Liassic black shales with the Posidonia Shale as main source rock (oil family C). Bituminous shales of the Arietenkalk-Fm. (Lias α) show also significant source rock potential representing the second major source rock interval of the Liassic sequence. Within the Tertiary sequence several source rock intervals occur. Early Tertiary coaly shales generated high wax oils that accumulated in several Tertiary as well as Mesozoic reservoirs (oil family B). The Rupelian Fish Shale acted as important source rock, especially in the northern URG (oil family D). Furthermore, early mature oils from the evaporitic-salinar Corbicula- and Lower Hydrobienschichten occur especially in the area of the Heidelberg-Mannheim-Graben (oil family A). An overview on potential source rocks in the URG is presented including the first detailed geochemical source rock characterization of Middle Eocene sediments (equivalents to the Bouxwiller-Fm.). At the base of this formation a partly very prominent sapropelic coal layer or coaly shale occurs. TOC values of 20-32 % (cuttings) and Hydrogen Index (HI) values up to 640-760 mg HC/g TOC indicate an extraordinary high source rock potential, but a highly variable lateral distribution in terms of thickness and source rock facies is also supposed. First bulk kinetic data of the sapropelic Middle Eocene coal and a coaly layer of the `Lymnäenmergel' are presented and indicate oil-prone organic matter characterized by low activation energies. These sediments are considered as most important source rocks of numerous high wax oils (oil family B) in addition to the coaly source rocks from the (Lower) Pechelbronn-Schichten (Late Eocene). Migration pathways are significantly influenced by the early graben evolution. A major erosion period occurred during the latest Cretaceous. The uplift center was located in the northern URG area, resulting in SSE dipping Mesozoic strata in the central URG. During Middle Eocene times a second uplift center in the Eifel area resulted in SW-NE-directed shore lines in the central URG and contemporaneous south-southeastern depocenters during marine transgression from the south. This structural setting resulted in a major NNW-NW-directed and topography-driven migration pattern for expelled Liassic oil in the fractured Mesozoic subcrop below sealing Dogger α clays and basal Tertiary marls.

  20. Hydrocarbon potential evaluation of the source rocks from the Abu Gabra Formation in the Sufyan Sag, Muglad Basin, Sudan

    NASA Astrophysics Data System (ADS)

    Qiao, Jinqi; Liu, Luofu; An, Fuli; Xiao, Fei; Wang, Ying; Wu, Kangjun; Zhao, Yuanyuan

    2016-06-01

    The Sufyan Sag is one of the low-exploration areas in the Muglad Basin (Sudan), and hydrocarbon potential evaluation of source rocks is the basis for its further exploration. The Abu Gabra Formation consisting of three members (AG3, AG2 and AG1 from bottom to top) was thought to be the main source rock formation, but detailed studies on its petroleum geology and geochemical characteristics are still insufficient. Through systematic analysis on distribution, organic matter abundance, organic matter type, organic matter maturity and characteristics of hydrocarbon generation and expulsion of the source rocks from the Abu Gabra Formation, the main source rock members were determined and the petroleum resource extent was estimated in the study area. The results show that dark mudstones are the thickest in the AG2 member while the thinnest in the AG1 member, and the thickness of the AG3 dark mudstone is not small either. The AG3 member have developed good-excellent source rock mainly with Type I kerogen. In the Southern Sub-sag, the AG3 source rock began to generate hydrocarbons in the middle period of Bentiu. In the early period of Darfur, it reached the hydrocarbon generation and expulsion peak. It is in late mature stage currently. The AG2 member developed good-excellent source rock mainly with Types II1 and I kerogen, and has lower organic matter abundance than the AG3 member. In the Southern Sub-sag, the AG2 source rock began to generate hydrocarbons in the late period of Bentiu. In the late period of Darfur, it reached the peak of hydrocarbon generation and its expulsion. It is in middle mature stage currently. The AG1 member developed fair-good source rock mainly with Types II and III kerogen. Throughout the geological evolution history, the AG1 source rock has no effective hydrocarbon generation or expulsion processes. Combined with basin modeling results, we have concluded that the AG3 and AG2 members are the main source rock layers and the Southern Sub-sag is the main source kitchen in the study area. The AG3 and AG2 source rocks have supplied 58.1% and 41.9% of the total hydrocarbon generation, respectively, and 54.9% and 45.1% of the total hydrocarbon expulsion, respectively. Their hydrocarbon expulsion efficiency ratios are 71.0% and 62.3%, respectively. The Southern Sub-sag has supplied more than 90% of the total amounts of hydrocarbon generation and its expulsion.

  1. Evaluation of Rock Surface Characterization by Means of Temperature Distribution

    NASA Astrophysics Data System (ADS)

    Seker, D. Z.; Incekara, A. H.; Acar, A.; Kaya, S.; Bayram, B.; Sivri, N.

    2017-12-01

    Rocks have many different types which are formed over many years. Close range photogrammetry is a techniques widely used and preferred rather than other conventional methods. In this method, the photographs overlapping each other are the basic data source of the point cloud data which is the main data source for 3D model that provides analysts automation possibility. Due to irregular and complex structures of rocks, representation of their surfaces with a large number points is more effective. Color differences caused by weathering on the rock surfaces or naturally occurring make it possible to produce enough number of point clouds from the photographs. Objects such as small trees, shrubs and weeds on and around the surface also contribute to this. These differences and properties are important for efficient operation of pixel matching algorithms to generate adequate point cloud from photographs. In this study, possibilities of using temperature distribution for interpretation of roughness of rock surface which is one of the parameters representing the surface, was investigated. For the study, a small rock which is in size of 3 m x 1 m, located at ITU Ayazaga Campus was selected as study object. Two different methods were used. The first one is production of producing choropleth map by interpolation using temperature values of control points marked on object which were also used in 3D model. 3D object model was created with the help of terrestrial photographs and 12 control points marked on the object and coordinated. Temperature value of control points were measured by using infrared thermometer and used as basic data source in order to create choropleth map with interpolation. Temperature values range from 32 to 37.2 degrees. In the second method, 3D object model was produced by means of terrestrial thermal photographs. Fort this purpose, several terrestrial photographs were taken by thermal camera and 3D object model showing temperature distribution was created. The temperature distributions in both applications are almost identical in position. The areas on the rock surface that roughness values are higher than the surroundings can be clearly identified. When the temperature distributions produced by both methods are evaluated, it is observed that as the roughness on the surface increases, the temperature increases.

  2. 3D pore-type digital rock modeling of natural gas hydrate for permafrost and numerical simulation of electrical properties

    NASA Astrophysics Data System (ADS)

    Dong, Huaimin; Sun, Jianmeng; Lin, Zhenzhou; Fang, Hui; Li, Yafen; Cui, Likai; Yan, Weichao

    2018-02-01

    Natural gas hydrate is being considered as an alternative energy source for sustainable development and has become a focus of research throughout the world. In this paper, based on CT scanning images of hydrate reservoir rocks, combined with the microscopic distribution of hydrate, a diffusion limited aggregation (DLA) model was used to construct 3D hydrate digital rocks of different distribution types, and the finite-element method was used to simulate their electrical characteristics in order to study the influence of different hydrate distribution types, hydrate saturation and formation of water salinity on electrical properties. The results show that the hydrate digital rocks constructed using the DLA model can be used to characterize the microscopic distribution of different types of hydrates. Under the same conditions, the resistivity of the adhesive hydrate digital rock is higher than the cemented and scattered type digital rocks, and the resistivity of the scattered hydrate digital rock is the smallest among the three types. Besides, the difference in the resistivity of the different types of hydrate digital rocks increases with an increase in hydrate saturation, especially when the saturation is larger than 55%, and the rate of increase of each of the hydrate types is quite different. Similarly, the resistivity of the three hydrate types decreases with an increase in the formation of water salinity. The single distribution hydrate digital rock constructed, combined with the law of microscopic distribution and influence of saturation on the electrical properties, can effectively improve the accuracy of logging identification of hydrate reservoirs and is of great significance for the estimation of hydrate reserves.

  3. Factors controlling the regional distribution of vanadium in ground water

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2010-01-01

    Although the ingestion of vanadium (V) in drinking water may have possible adverse health effects, there have been relatively few studies of V in groundwater. Given the importance of groundwater as a source of drinking water in many areas of the world, this study examines the potential sources and geochemical processes that control the distribution of V in groundwater on a regional scale. Potential sources of V to groundwater include dissolution of V rich rocks, and waste streams from industrial processes. Geochemical processes such as adsorption/desorption, precipitation/dissolution, and chemical transformations control V concentrations in groundwater. Based on thermodynamic data and laboratory studies, V concentrations are expected to be highest in samples collected from oxic and alkaline groundwater. However, the extent to which thermodynamic data and laboratory results apply to the actual distribution of V in groundwater is not well understood. More than 8400 groundwater samples collected in California were used in this study. Of these samples, high (> or = 50 μg/L) and moderate (25 to 49 μg/L) V concentrations were most frequently detected in regions where both source rock and favorable geochemical conditions occurred. The distribution of V concentrations in groundwater samples suggests that significant sources of V are mafic and andesitic rock. Anthropogenic activities do not appear to be a significant contributor of V to groundwater in this study. High V concentrations in groundwater samples analyzed in this study were almost always associated with oxic and alkaline groundwater conditions, which is consistent with predictions based on thermodynamic data.

  4. Petroleum geochemistry of oil and gas from Barbados: Implications for distribution of Cretaceous source rocks and regional petroleum prospectivity

    USGS Publications Warehouse

    Hill, R.J.; Schenk, C.J.

    2005-01-01

    Petroleum produced from the Barbados accretionary prism (at Woodbourne Field on Barbados) is interpreted as generated from Cretaceous marine shale deposited under normal salinity and dysoxic conditions rather than from a Tertiary source rock as previously proposed. Barbados oils correlate with some oils from eastern Venezuela and Trinidad that are positively correlated to extracts from Upper Cretaceous La Luna-like source rocks. Three distinct groups of Barbados oils are recognized based on thermal maturity, suggesting petroleum generation occurred at multiple levels within the Barbados accretionary prism. Biodegradation is the most significant process affecting Barbados oils resulting in increased sulfur content and decreased API gravity. Barbados gases are interpreted as thermogenic, having been co-generated with oil, and show mixing with biogenic gas is limited. Gas biodegradation occurred in two samples collected from shallow reservoirs at the Woodbourne Field. The presence of Cretaceous source rocks within the Barbados accretionary prism suggests that greater petroleum potential exists regionally, and perhaps further southeast along the passive margin of South America. Likewise, confirmation of a Cretaceous source rock indicates petroleum potential exists within the Barbados accretionary prism in reservoirs that are deeper than those from Woodbourne Field.

  5. Evidence for Cambrian petroleum source rocks in the Rome trough of West Virginia and Kentucky, Appalachian basin: Chapter G.8 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Harris, David C.; Gerome, Paul; Hainsworth, Timothy J.; Burruss, Robert A.; Lillis, Paul G.; Jarvie, Daniel M.; Pawlewicz, Mark J.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The bitumen extract from the Rogersville Shale compares very closely with oils or condensates from Cambrian reservoirs in the Carson Associates No. 1 Kazee well, Homer gas field, Elliott County, Ky.; the Inland No. 529 White well, Boyd County, Ky.; and the Miller No. 1 well, Wolfe County, Ky. These favorable oil-source rock correlations suggest a new petroleum system in the Appalachian basin that is characterized by a Conasauga Group source rock and Rome Formation and Conasauga Group reservoirs. This petroleum system probably extends along the Rome trough from eastern Kentucky to at least central West Virginia.

  6. Three ancient Montana fluvial systems: Pennsylvanian Tyler, Lower Cretaceous Muddy, and Upper Cretaceous Eagle - their reservoir and source rock distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, B.

    The importance of using Holocene geology as a model in mapping reservoir and source rock distribution is demonstrated in three Montana river-related systems: alluvial valley, barrier bar, and distributary channel-prodelta. The Pennsylvanian Tyler Formation was deposited by a westward-flowing meandering-stream system controlled by an east-west-trending rift valley, and surrounded by backswamp deposits. It is underlain by its probable hydrocarbon source, the marine Mississippian Heath shale and limestone, and overlain locally by the lagoonal Pennsylvanian Bear Gulch Limestone. To date, about 90 million bbl of recoverable oil have been found in Tyler sands. The oil-producing Lower Cretaceous Muddy sandstones in themore » northern Powder River basin are considered to be barrier bars, encased in organic-rich shales, which are most probably the source rock. The Upper Cretaceous Eagle Sandstone in north-central Montana is a distributary channel system, similar to that of the modern Mississippi, which dumped highly carbonaceous materials into an organic-rich delta system. The Eagle now contains possibly enormous amounts of biogenic methane. By using Galveston Island and the modern Mississippi delta as models, in conjunction with employing electric log shapes and porosity logs, it is possible to map ancient fluvial patterns in the study areas. One can then predict the location of possible hydrocarbon accumulations in porous and permeable sand bodies, along with their encasing hydrocarbon source rocks.« less

  7. Depositional environment and distribution of Late Cretaceous [open quotes]source rocks[close quotes] from Costa Rica to West Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlich, R.N.; Sofer, Z.; Pratt, L.M.

    1993-02-01

    Late Cretaceous [open quotes]source rocks[close quotes] from Costa Rica, western and eastern Venezuela, and Trinidad were studied using organic and inorganic geochemistry, biostratigraphy, and sedimentology in order to determine their depositional environments. Bulk mineralogy and major element geochemistry for 304 samples were combined with Rock Eval data and extract biomaker analysis to infer the types and distributions of the various Late Cretaceous productivity systems represented in the dataset. When data from this study are combined with published and proprietary data from offshore West Africa, Guyana/Suriname, and the central Caribbean, they show that these Late Cretaceous units can be correlated bymore » their biogeochemical characteristics to establish their temporal and spatial relationships. Paleogeographic maps constructed for the early to late Cenomanian, Turonian, Coniacian to middle Santonian, and late Santonian to latest Campanian show that upwelling and excessive fluvial runoff were probably the dominant sources of nutrient supply to the coastal productivity systems. The late Santonian to Maastrichtian rocks examined in this study indicate that organic material was poorly preserved after deposition, even though biologic productivity remained constant or changed only slightly. A rapid influx of oxygenated bottom water may have occurred following the opening of a deep water connection between the North and South Atlantic oceans, and/or separation of India from Africa and the establishment of an Antarctic oceanic connection. This study suggests that the most important factors that controlled source rock quality in northern South America were productivity, preservation, degree of clastic dilution, and subsurface diagenesis.« less

  8. Three-dimensional distribution of igneous rocks near the Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska: constraints from regional-scale aeromagnetic data

    USGS Publications Warehouse

    Anderson, Eric D.; Zhou, Wei; Li, Yaoguo; Hitzman, Murray W.; Monecke, Thomas; Lang, James R.; Kelley, Karen D.

    2014-01-01

    Aeromagnetic data helped us to understand the 3D distribution of plutonic rocks near the Pebble porphyry copper deposit in southwestern Alaska, USA. Magnetic susceptibility measurements showed that rocks in the Pebble district are more magnetic than rocks of comparable compositions in the Pike Creek–Stuyahok Hills volcano-plutonic complex. The reduced-to-pole transformation of the aeromagnetic data demonstrated that the older rocks in the Pebble district produce strong magnetic anomaly highs. The tilt derivative transformation highlighted northeast-trending lineaments attributed to Tertiary volcanic rocks. Multiscale edge detection delineated near-surface magnetic sources that are mostly outward dipping and coalesce at depth in the Pebble district. The total horizontal gradient of the 10-km upward-continued magnetic data showed an oval, deep magnetic contact along which porphyry deposits occur. Forward and inverse magnetic modeling showed that the magnetic rocks in the Pebble district extend to depths greater than 9 km. Magnetic inversion was constrained by a near-surface, 3D geologic model that is attributed with measured magnetic susceptibilities from various rock types in the region. The inversion results indicated that several near-surface magnetic sources with moderate susceptibilities converge with depth into magnetic bodies with higher susceptibilities. This deep magnetic source appeared to rise toward the surface in several areas. An isosurface value of 0.02 SI was used to depict the magnetic contact between outcropping granodiorite and nonmagnetic sedimentary host rocks. The contact was shown to be outward dipping. At depths around 5 km, nearly the entire model exceeded the isosurface value indicating the limits of nonmagnetic host material. The inversion results showed the presence of a relatively deep, northeast-trending magnetic low that parallels lineaments mapped by the tilt derivative. This deep low represents a strand of the Lake Clark fault.

  9. Development of a Protocol and a Screening Tool for Selection of DNAPL Source Area Remediation

    DTIC Science & Technology

    2012-02-01

    the different remedial time frames used in the modeling case studies. • Matrix Diffusion: Modeling results demonstrated that in fractured rock ...being used for the ISCO, EISB and SEAR fractured rock numerical simulations at the field scale. Figure 2-4 presents the distribution of intrinsic...sedimentary limestone, sandstone, and shale, igneous basalts and granites, and metamorphous rock . For the modeling sites, three general geologies are

  10. Age and origin of the Merrimack terrane, southeastern New England: A detrital zircon U-Pb geochronology study

    NASA Astrophysics Data System (ADS)

    Sorota, Kristin

    Metasedimentary rocks of the Merrimack terrane (MT) originated as a thick cover sequence on Ganderia consisting of sandstones, calcareous sandstones, pelitic rocks and turbidites. In order to investigate the age, provenance and stratigraphic order of these rocks and correlations with adjoining terranes, detrital zircon suites from 7 formations across the MT along a NNE-trending transect from east-central Massachusetts to SE New Hampshire were analyzed by U-Pb LA-ICP-MS methods on 90-140 grains per sample. The youngest detrital zircons in the western units, the Worcester, Oakdale and Paxton Formations, are ca. 438 Ma while those in the Kittery, Eliot and Berwick Formations in the northeast are ca. 426 Ma. The Tower Hill Formation previously interpreted to form the easternmost unit of the MT in MA, has a distinctly different zircon distribution with its youngest zircon population in the Cambrian. All samples except for the Tower Hill Formation have detrital zircon age distributions with significant peaks in the mid-to late Ordovician, similar abundances of early Paleozoic and late Neoproterozoic zircons, significant input from ˜1.0 to ˜1.8 Ga sources and limited Archean grains. The similarities in zircon provenance suggest that all units across the terrane, except for the Tower Hill Formation, belong to a single sequence of rocks, with similar sources and with the units in the NE possibly being somewhat younger than those in east-central Massachusetts. The continuous zircon age distributions observed throughout the Mesoproterozoic and late Paleoproterozoic are consistent with an Amazonian source. All samples, except the Tower Hill Formation, show sedimentary input from both Ganderian and Laurentian sources and suggest that Laurentian input increases as the maximum depositional age decreases.

  11. Late Mesozoic-Cenozoic intraplate magmatism in Central Asia and its relation with mantle diapirism: Evidence from the South Khangai volcanic region, Mongolia

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, Vladimir V.; Kudryashova, Ekaterina A.; Kozlovsky, Alexander M.; Lebedev, Vladimir A.; Savatenkov, Valery M.

    2015-11-01

    The South Khangai volcanic region (SKVR) comprises fields of Late Mesozoic-Cenozoic volcanic rocks scattered over southern and central Mongolia. Evolution of the region from the Late Jurassic to the Late Cenozoic includes 13 successive igneous episodes that are more or less evenly distributed in time. Major patterns in the distribution of different-aged volcanic complexes were controlled by a systematic temporal migration of volcanic centers over the region. The total length of their trajectory exceeds 1600 km. Principle characteristics of local magmatism are determined. The composition of igneous rocks varies from basanites to rhyolites (predominantly, high-K rocks), with geochemistry close to that of OIB. The rock composition, however, underwent transformations in the Mesozoic-Cenozoic. Rejuvenation of mafic rocks is accompanied by decrease in the contents of HREE and increase of Nb and Ta. According to isotope data, the SKVR magmatic melts were derived from three isotope sources that differed in the Sr, Nd, and Pb isotopic compositions and successively alternated in time. In the Early Cretaceous, the predominant source composition was controlled by interaction of the EMII- and PREMA-type mantle materials. The PREMA-type mantle material dominated quantitatively in the Late Cretaceous and initial Early Cenozoic. From the latest Early Cenozoic to Late Cenozoic, the magma source also contained the EMI-type material along with the PREMA-type. The structural fabric, rock composition, major evolutionary pattern, and inner structure of SKVR generally comply with the criteria used to distinguish the mantle plume-related regions. Analogous features can be seen in other regions of recent volcanism in Central Asia (South Baikal, Udokan, Vitim, and Tok Stanovik). The structural autonomy of these regions suggests that distribution of the Late Mesozoic-Cenozoic volcanism in Central Asia was controlled by a group of relatively small hot finger-type mantle plumes associated with the common hot mantle field of Central Asia.

  12. The Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin, NE China: Organic-rich source rock evaluation with geophysical logs from Borehole SK-2

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zou, C.

    2017-12-01

    The Cretaceous strata have been recognized as an important target of oil or gas exploration in the Songliao Basin, northeast China. The second borehole (SK-2) of the Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin (CCSD-SK) is the first one to drill through the Cretaceous continental strata in the frame of ICDP. It was designed not only to solve multiple scientific problems (including the Cretaceous paleoenvironment and paleoclimate, as well as deep resources exploration of the Songliao Basin), but also to expect to achieve new breakthroughs in oil and gas exploration. Based on the project, various geophysical log data (including gamma, sonic, resistivity, density etc.) and core samples have been collected from Borehole SK-2. We do research on organic-rich source rocks estimation using various geophysical log data. Firstly, we comprehensively analyzed organic-rich source rocks' geophysical log response characteristics. Then, source rock's identification methods were constructed to identify organic-rich source rocks with geophysical logs. The main identification methods include cross-plot, multiple overlap and Decision Tree method. Finally, the technique and the CARBOLOG method were applied to evaluate total organic carbon (TOC) content from geophysical logs which provide continuous vertical profile estimations (Passey, 1990; Carpentier et al., 1991). The results show that source rocks are widely distributed in Borehole SK-2, over a large depth strata (985 5700m), including Nenjiang, Qingshankou, Denglouku, Yingcheng, Shahezi Formations. The organic-rich source rocks with higher TOC content occur in the Qingshankou (1647 1650m), Denglouku (2534 2887m) and Shahezi (3367 5697m) Formations. The highest TOC content in these formations can reach 10.31%, 6.58%, 12.79% respectively. The bed thickness of organic-rich source rocks in the these formations are totally up to 7.88m, 74.34m, 276.60m respectively. These organic-rich rocks in the Qingshankou, Denglouku and Shahezi Formations can be considered as excellent source rocks in the Songliao Basin, which are beneficial for oil or gas accumulation. This work was supported by the CCSD-SK of China Geological Survey (No. 12120113017600) and the National Natural Science Foundation Project (grant No.41274185).

  13. Mapping lacustrine syn-rift reservoir distribution using spectral attributes: A case study of the Pematang Brownshale Central Sumatra Basin

    NASA Astrophysics Data System (ADS)

    Haris, A.; Yustiawan, R.; Riyanto, A.; Ramadian, R.

    2017-07-01

    Pematang Brownshale is the lake sediment, which is proven as the main source rock in Malacca Strait Area. So far Brownshale is only considered as source rock, but the well data show intercalated sand layers encountered within the Pematang Brownshale, where several downhole tests proved this series as a potential hydrocarbon reservoir. Pematang formation is a syn-rift sequent deposited in Malacca Strait following the opening of central Sumatra basin during a late cretaceous to early Oligocene, which is proven as potential source rock and reservoir. The aim of the study is to identify the distribution of sandstone reservoir in Pematang Brownshale using spectral attributes. These works were carried out by integrating log data analysis and frequency maps extracted from spectral attributes Continuous Wavelet Transform (CWT). All these data are used to delineate reservoir distribution in Pematang Brownshale. Based on CWT analysis the anomalies are only visible on the frequency of I5 and I0 Hz maps, which are categorized as low frequencies. Low-frequency shadow anomaly is commonly used as an indication of the presence of hydrocarbons. The distribution of these anomalies is covering an area of approximately 3840.66 acres or equal to I554.25 sq. km, where the low-frequency pattern is interpreted as a deltaic lacustrine feature. By considering the Pematang Brown Shale of Malacca Strait area as a potential reservoir, it would open new play to another basin that has similar characteristics.

  14. Sedimentary records of the Yangtze Block (South China) and their correlation with equivalent Neoproterozoic sequences on adjacent continents

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhou, Mei-Fu

    2012-07-01

    The Neoproterozoic Danzhou Group, composed of siliciclastic sedimentary rocks interbedded with minor carbonate and volcanic rocks in the southeastern Yangtze Block, South China, is thought to be related to the breakup of Rodinia. Detrital zircon ages constrain the deposition of the Danzhou Group at ~ 770 Ma and ~ 730 Ma. The Danzhou Group contains dominant Neoproterozoic detrital zircon grains (~ 740-900 Ma) with two major age groups at ~ 740-790 Ma and ~ 810-830 Ma, suggesting the detritus was largely sourced from the widely distributed Neoproterozoic igneous plutons within the Yangtze Block. The sedimentary rocks from the lower Danzhou Group, including sandstones, siltstone and pelitic rocks, have UCC-like chemical signatures, representing mixed products of primary sources. The upper Danzhou Group received more recycled materials because the rocks have relatively higher Zr/Sc ratios, Hf contents and a greater influx of Pre-Neoproterozoic zircons. All of the rocks have high La/Sc, low Sc/Th and Co/Th ratios, consistent with sources dominantly composed of granitic to dioritic end-members from the western and northwestern Yangtze Block. Chemical compositions do not support significant contributions of mafic components. Most Neoproterozoic zircons have positive ɛHf(t) (0-17) indicative of sediments derived mainly from the western and northwestern Yangtze Block. The uni-modal Neoproterozoic zircons and felsic igneous source rocks for the Danzhou Group suggest that the Yangtze Block was an independent continent in the peripheral part of Rodinia.

  15. Modified method for estimating petroleum source-rock potential using wireline logs, with application to the Kingak Shale, Alaska North Slope

    USGS Publications Warehouse

    Rouse, William A.; Houseknecht, David W.

    2016-02-11

    In 2012, the U.S. Geological Survey completed an assessment of undiscovered, technically recoverable oil and gas resources in three source rocks of the Alaska North Slope, including the lower part of the Jurassic to Lower Cretaceous Kingak Shale. In order to identify organic shale potential in the absence of a robust geochemical dataset from the lower Kingak Shale, we introduce two quantitative parameters, $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$, estimated from wireline logs from exploration wells and based in part on the commonly used delta-log resistivity ($\\Delta \\text{ }log\\text{ }R$) technique. Calculation of $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ is intended to produce objective parameters that may be proportional to the quality and volume, respectively, of potential source rocks penetrated by a well and can be used as mapping parameters to convey the spatial distribution of source-rock potential. Both the $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ mapping parameters show increased source-rock potential from north to south across the North Slope, with the largest values at the toe of clinoforms in the lower Kingak Shale. Because thermal maturity is not considered in the calculation of $\\Delta DT_\\bar{x}$ or $\\Delta DT_z$, total organic carbon values for individual wells cannot be calculated on the basis of $\\Delta DT_\\bar{x}$ or $\\Delta DT_z$ alone. Therefore, the $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ mapping parameters should be viewed as first-step reconnaissance tools for identifying source-rock potential.

  16. Families of miocene monterey crude oil, seep, and tarball samples, coastal California

    USGS Publications Warehouse

    Peters, K.E.; Hostettler, F.D.; Lorenson, T.D.; Rosenbauer, R.J.

    2008-01-01

    Biomarker and stable carbon isotope ratios were used to infer the age, lithology, organic matter input, and depositional environment of the source rocks for 388 samples of produced crude oil, seep oil, and tarballs to better assess their origins and distributions in coastal California. These samples were used to construct a chemometric (multivariate statistical) decision tree to classify 288 additional samples. The results identify three tribes of 13C-rich oil samples inferred to originate from thermally mature equivalents of the clayey-siliceous, carbonaceous marl and lower calcareous-siliceous members of the Monterey Formation at Naples Beach near Santa Barbara. An attempt to correlate these families to rock extracts from these members in the nearby COST (continental offshore stratigraphic test) (OCS-Cal 78-164) well failed, at least in part because the rocks are thermally immature. Geochemical similarities among the oil tribes and their widespread distribution support the prograding margin model or the banktop-slope-basin model instead of the ridge-and-basin model for the deposition of the Monterey Formation. Tribe 1 contains four oil families having geochemical traits of clay-rich marine shale source rock deposited under suboxic conditions with substantial higher plant input. Tribe 2 contains four oil families with traits intermediate between tribes 1 and 3, except for abundant 28,30-bisnorhopane, indicating suboxic to anoxic marine marl source rock with hemipelagic input. Tribe 3 contains five oil families with traits of distal marine carbonate source rock deposited under anoxic conditions with pelagic but little or no higher plant input. Tribes 1 and 2 occur mainly south of Point Conception in paleogeographic settings where deep burial of the Monterey source rock favored petroleum generation from all three members or their equivalents. In this area, oil from the clayey-siliceous and carbonaceous marl members (tribes 1 and 2) may overwhelm that from the lower calcareous-siliceous member (tribe 3) because the latter is thinner and less oil-prone than the overlying members. Tribe 3 occurs mainly north of Point Conception where shallow burial caused preferential generation from the underlying lower calcareous-siliceous member or another unit with similar characteristics. In a test of the decision tree, 10 tarball samples collected from beaches in Monterey and San Mateo counties in early 2007 were found to originate from natural seeps representing different organofacies of Monterey Formation source rock instead from one anthropogenic pollution event. The seeps apparently became more active because of increased storm activity. Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.

  17. Hydrogeologic and geospatial data for the assesment of focused recharge to the Carbonate-Rock Aquifer in Genesee County, New York

    USGS Publications Warehouse

    Reddy, James E.; Kappel, William M.

    2010-01-01

    Existing hydrogeologic and geospatial data useful for the assessment of focused recharge to the carbonate-rock aquifer in the central part of Genesee County, NY, were compiled from numerous local, State, and Federal agency sources. Data sources utilized in this pilot study include available geospatial datasets from Federal and State agencies, interviews with local highway departments and the Genesee County Soil and Water Conservation District, and an initial assessment of karst features through the analysis of ortho-photographs, with minimal field verification. The compiled information is presented in a series of county-wide and quadrangle maps. The county-wide maps present generalized hydrogeologic conditions including distribution of geologic units, major faults, and karst features, and bedrock-surface and water-table configurations. Ten sets of quadrangle maps of the area that overlies the carbonate-rock aquifer present more detailed and additional information including distribution of bedrock outcrops, thin and (or) permeable soils, and karst features such as sinkholes and swallets. Water-resource managers can utilize the information summarized in this report as a guide to their assessment of focused recharge to, and the potential for surface contaminants to reach the carbonate-rock aquifer.

  18. Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis

    NASA Astrophysics Data System (ADS)

    Loye, A.; Jaboyedoff, M.; Pedrazzini, A.

    2009-10-01

    The availability of high resolution Digital Elevation Models (DEM) at a regional scale enables the analysis of topography with high levels of detail. Hence, a DEM-based geomorphometric approach becomes more accurate for detecting potential rockfall sources. Potential rockfall source areas are identified according to the slope angle distribution deduced from high resolution DEM crossed with other information extracted from geological and topographic maps in GIS format. The slope angle distribution can be decomposed in several Gaussian distributions that can be considered as characteristic of morphological units: rock cliffs, steep slopes, footslopes and plains. A terrain is considered as potential rockfall sources when their slope angles lie over an angle threshold, which is defined where the Gaussian distribution of the morphological unit "Rock cliffs" become dominant over the one of "Steep slopes". In addition to this analysis, the cliff outcrops indicated by the topographic maps were added. They contain however "flat areas", so that only the slope angles values above the mode of the Gaussian distribution of the morphological unit "Steep slopes" were considered. An application of this method is presented over the entire Canton of Vaud (3200 km2), Switzerland. The results were compared with rockfall sources observed on the field and orthophotos analysis in order to validate the method. Finally, the influence of the cell size of the DEM is inspected by applying the methodology over six different DEM resolutions.

  19. Terrestrial tight oil reservoir characteristics and Graded Resource Assessment in China

    NASA Astrophysics Data System (ADS)

    Wang, Shejiao; Wu, Xiaozhi; Guo, Giulin

    2016-04-01

    The success of shale/tight plays and the advanced exploitation technology applied in North America have triggered interest in exploring and exploiting tight oil in China. Due to the increased support of exploration and exploitation,great progress has been made in Erdos basin, Songliao basin, Junggar basin, Santanghu basin, Bohai Bay basin, Qaidam Basin, and Sichuan basin currently. China's first tight oil field has been found in Erdos basin in 2015, called xinanbian oil field, with over one hundred million tons oil reserves and one million tons of production scale. Several hundred million tons of tight oil reserve has been found in other basins, showing a great potential in China. Tight oil in China mainly developed in terrestrial sedimentary environment. According to the relations of source rock and reservoir, the source-reservoir combination of tight oil can be divided into three types, which are bottom generating and top storing tight oil,self- generating and self-storing tight oil,top generating and bottom storing tight oil. The self- generating and self-storing tight oil is the main type discovered at present. This type of tight oil has following characteristics:(1) The formation and distribution of tight oil are controlled by high quality source rocks. Terrestrial tight oil source rocks in China are mainly formed in the deep to half deep lacustrine facies. The lithology includes dark mudstone, shale, argillaceous limestone and dolomite. These source rocks with thickness between 20m-150m, kerogen type mostly I-II, and peak oil generation thermal maturity(Ro 0.6-1.4%), have great hydrocarbon generating potential. Most discovered tight oil is distributed in the area of TOC greater than 2 %.( 2) the reservoir with strong heterogeneity is very tight. In these low porosity and permeability reservoir,the resources distribution is controlled by the physical property. Tight sandstone, carbonate and hybrid sedimentary rocks are three main tight reservoir types in China. The porosity is 2-14%(average 5-10%)and the permeability is less than 1mD. The laboratory test and exploration practice confirmed that the oil content was positively related to physical property. The higher the porosity, the better the oil content will have. (3) Source rock and reservoir are superimposed. From the contact relationship of source rock and reservoir, the reservoir developed in the source rock has the advantage of capturing oil and gas, so the oil saturation can be as high as 70-80%. (4) The increased pressure caused by hydrocarbon generation and the connected fracture are the key factors for tight oil accumulation. The Fuyu tight oil formed underling source rock in Songliao Basin is a good example. The fracture system is the key factor for tight oil accumulation. Considering the strong heterogeneity of terrestrial tight oil reservoir in china, we create hierarchical resource abundance analogy, EUR analogy, cell element volumetric methods to evaluate tight oil resource potential. In order to find exploration "sweet spots", establishing tight oil resource classification evaluation standards are key steps to objectively evaluate tight oil resource distribution. The resource classification evaluation standards are established by the relationship analysis between reservoir properties and oil properties, and the correlation analysis between production, resource abundance, and reservoir thickness. The first-grade tight oil resource, which is recently available and can easily be developed, has following main parameters: the porosity is greater than 8%, thickness is over 10m, resource abundance is above 150,000 tons / km2, and pressure coefficient is greater than 1.3; The second-grade tight oil resource is currently unavailable, but with advanced technology can expected to be developed. The main parameters are as following: the porosity is 5% -8%, thickness is less than 5-10m, resource abundance is 50000-150000 tons / km2, the pressure coefficient is 1.0 to 1.3; The third-grade resource has poor quality, need long-term to be effective explored, has following main parameters: porosity is less than 5%, the thickness is less than 5m, resource abundance is less than 50,000 tons / km2, the pressure coefficient is less than 1.0. Using created resource evaluation methods, the tight oil resources has been calculated in china. The first-grade recoverable resource of tight oil is about 610 million tons. The second-grade recoverable resource is 450 million tons. And the third-grade recoverable resource is 400 million tons. The first-grade and second-grade recoverable resources are mainly distributed in the Ordos basin, Bohai Bay basin, Songliao basin, Junggar basin, and Qaidam Basin. The third-grade resources are mainly distributed in Sichuan and Santanghu basin.

  20. Mineral Fractionation during Sediment Comminution and Transport in Fluvio-Deltaic and Lacustrine Rocks of the Bradbury Group, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Siebach, K. L.; Baker, M. B.; Grotzinger, J. P.; McLennan, S. M.; Gellert, R.; Thompson, L. M.; Hurowitz, J.

    2017-12-01

    Mineral distribution patterns in sediments of the Bradbury group in Gale crater, interpreted from observations by the Mars Science Laboratory rover Curiosity, show the importance of transport mechanics in source-to-sink processes on Mars. The Bradbury group is comprised of basalt-derived mudstones to conglomerates exposed along the modern floor of Gale crater and analyzed along a 9-km traverse of the Curiosity rover. Over 110 bulk chemistry analyses of the rocks were acquired, along with two XRD mineralogical analyses of the mudstone. These rocks are uniquely suited for analysis of source-to-sink processes because they exhibit a wide range of compositions, but (based on multiple chemical weathering proxies) they appear to have experienced negligible cation-loss during weathering and erosion. Chemical variations between analyses correlate with sediment grain sizes, with coarser-grained rocks enriched in plagioclase components SiO2, Al2O3, and Na2O, and finer-grained rocks enriched in components of mafic minerals, consistent with grain-size sorting of mineral fractions during sediment transport. Further geochemical and mineralogical modeling supports the importance of mineral fractionation: even though the limited XRD data suggests that some fraction (if not all) of the rocks contain clays and an amorphous component, models show that 90% of the compositions measured are consistent with sorting of primary igneous minerals from a plagioclase-phyric subalkaline basalt (i.e., no corrections for cation-loss are required). The distribution of K2O, modeled as a potassium feldspar component, is an exception to the major-element trends because it does not correlate with grain size, but has an elevation-dependent signal likely correlated with the introduction of a second source material. However, the dominant compositional trends within the Bradbury group sedimentary rocks are correlated with grain size and consistent with mineral fractionation of minimally-weathered plagioclase-phyric basalts; the plagioclase phenocrysts settle into coarser deposits and the finer deposits are dominated by mafic minerals.

  1. Change of Conditions of the Formation of the Karelian Province of the Baltic Shield Continental Crust during Transition from Meso- to Neoarchean: Geochemical Study Results

    NASA Astrophysics Data System (ADS)

    Chekulaev, V. P.; Arestova, N. A.; Egorova, Yu. S.; Kucherovskii, G. A.

    2018-05-01

    The compositions of the tonalite-trondhjemite-granodiorite (TTG) assemblage and volcanic rocks of the Archaean greenstone belts from different domains of the Karelian province of the Baltic Shield are compared. Neoarchean medium felsic volcanic rocks and TTG of the Central Karelian domain drastically differ from analogous Mesoarchean rocks of the neighboring Vodlozero and West Karelian domains in higher Rb, Sr, P, La, and Ce contents and, correspondingly, values of Sr/Y, La/Yb, and La/Sm, and also in a different REE content distribution owing to different rock sources of these domains. This fact is confirmed by differences in the composition and the nature of the REE distribution in the basic and ultrabasic volcanic rocks making up the greenstone belts of these domains. It is established that the average compositions of Mesoarchean TTG rocks and volcanic rocks of the Karelian province differ markedly from those of plagiogranitoids and volcanic rocks of the recent geotectonic environments in high Mg (mg#) and Sr contents. Neoarchean volcanic rocks of Karelia differ from recent island-arc volcanic rocks, but are similar in composition to recent volcanic rocks of the continental arcs. On the basis of the cumulative evidence, the Karelian province of the Baltic Shield was subject to dramatic changes in the crust formation conditions at the beginning of the Neoarchean at the turn of about 2.75-2.78 Ga. These changes led to formation of volcano-sedimentary and plutonic rock complexes, different in composition from Mesoarchean rocks, and specific complexes of intrusive sanukitoids and granites. Changes and variations in the rock composition were related to the mixing of plume sources with continental crust and/or lithospheric mantle material, likely as a result of the combined effect of plumes and plate tectonics. This process resulted in formation of a younger large fragment of the Archean crust such as the Central Karelian domain which factually connected more ancient fragments of the crust and likely contributed to development of the Neoarchean Kenorland Supercontinent.

  2. The thermal maturation degree of organic matter from source rocks revealed by wells logs including examples from Murzuk Basin, Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negoita, V.; Gheorghe, A.

    1995-08-01

    The customary technique used to know the organic matter quantity per rock volume it as well as the organic matter maturation stage is based on geochemical analyses accomplished on a preselected number of samples and cuttings drawn from boreholes during the drilling period. But the same objectives can be approached without any extra cost using the continuous measurements of well logs recorded in each well from the ground surface to the total depth. During the diagenetic stage, the identification of potential source rocks out of which no hydrocarbon have been generated may be carried out using a well logging suitemore » including Gamma Ray Spectrometry, the Compensated Neutron/Litho Density combination and a Dual Induction/Sonic Log. During the catagenetic stage the onset of oil generation brings some important changes in the organic matter structure as well as in the fluid distribution throughout the pore space of source rocks. The replacement of electric conductive water by electric non-conductive hydrocarbons, together with water and oil being expelled from source rocks represent a process of different intensities dependent of time/temperature geohistory and kerogen type. The different generation and expulsion scenarios of hydrocarbons taking place during the catagenetic and metagenetic stages of source rocks are very well revealed by Induction and Laterolog investigations. Several crossplots relating vitrinite reflectance, total organic carbon and log-derived physical parameters are illustrated and discussed. The field applications are coming from Murzuk Basin, where Rompetrol of Libya is operating.« less

  3. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan

    NASA Astrophysics Data System (ADS)

    Li, Renwei; Wan, Yusheng; Cheng, Zhenyu; Zhou, Jianxiong; Li, Shuangying; Jin, Fuquan; Meng, Qingren; Li, Zhong; Jiang, Maosheng

    2005-03-01

    The provenance of the Jurassic sediments in the Hefei Basin is constrained by compositions of the detrital K-white micas and garnets, and SHRIMP dating of the detrital zircons, which can help to understand the evolution and to reconstruct the paleogeographic distribution of HP-UHP rocks in the Jurassic Dabie Shan. (1) For the oldest Mesozoic sediments at the bottom of the Fanghushan Formation ( J1), the predominance of the early Paleozoic and Luliang (1700-1900 Ma) zircons indicates a major source from the North China Block. However, Neoproterozoic zircons as the major component in other Jurassic sediments indicate that the source rocks were mainly derived from the exhumed Yangtze Block in the Dabie Shan. (2) The co-occurrence of high-Si phengites and Triassic zircons provides stratigraphic evidence that the first exposure of the UHP rocks at the Earth's surface in the Dabie Shan occurred in the Early Jurassic during deposition of the Fanghushan Formation. (3) From the east to the west of the Hefei Basin, there is a spatial variation in the compositions for detrital micas and garnets, and in the U-Pb ages of detrital zircons. Evidently, HP-UHP rocks were widely distributed at outcrop in the eastern Dabie Shan. In contrast, they were less important in the western Dabie Shan during the Jurassic.

  4. Correlating Near-Source Rock Damage from Single-Hole Explosions to Seismic Waves (Postprint)

    DTIC Science & Technology

    2012-05-07

    Technical Paper APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. AIR FORCE RESEARCH LABORATORY Space Vehicles Directorate...Space Vehicles Directorate 3550 Aberdeen Ave SE 3550 Aberdeen Ave SE 11. SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776...function of pressure, • Fluid permeability as a function of pressure, • Electrical resistivity as a function of pressure, and • Rock strength. The

  5. Vulnerabilities to Rock-Slope Failure Impacts from Christchurch, NZ Case History Analysis

    NASA Astrophysics Data System (ADS)

    Grant, A.; Wartman, J.; Massey, C. I.; Olsen, M. J.; Motley, M. R.; Hanson, D.; Henderson, J.

    2015-12-01

    Rock-slope failures during the 2010/11 Canterbury (Christchurch), New Zealand Earthquake Sequence resulted in 5 fatalities and caused an estimated US$400 million of damage to buildings and infrastructure. Reducing losses from rock-slope failures requires consideration of both hazard (i.e. likelihood of occurrence) and risk (i.e. likelihood of losses given an occurrence). Risk assessment thus requires information on the vulnerability of structures to rock or boulder impacts. Here we present 32 case histories of structures impacted by boulders triggered during the 2010/11 Canterbury earthquake sequence, in the Port Hills region of Christchurch, New Zealand. The consequences of rock fall impacts on structures, taken as penetration distance into structures, are shown to follow a power-law distribution with impact energy. Detailed mapping of rock fall sources and paths from field mapping, aerial lidar digital elevation model (DEM) data, and high-resolution aerial imagery produced 32 well-constrained runout paths of boulders that impacted structures. Impact velocities used for structural analysis were developed using lumped mass 2-D rock fall runout models using 1-m resolution lidar elevation data. Model inputs were based on calibrated surface parameters from mapped runout paths of 198 additional boulder runouts. Terrestrial lidar scans and structure from motion (SfM) imagery generated 3-D point cloud data used to measure structural damage and impacting boulders. Combining velocity distributions from 2-D analysis and high-precision boulder dimensions, kinetic energy distributions were calculated for all impacts. Calculated impact energy versus penetration distance for all cases suggests a power-law relationship between damage and impact energy. These case histories and resulting fragility curve should serve as a foundation for future risk analysis of rock fall hazards by linking vulnerability data to the predicted energy distributions from the hazard analysis.

  6. The influence of geology and land use on arsenic in stream sediments and ground waters in New England, USA

    USGS Publications Warehouse

    Robinson, G.R.; Ayotte, J.D.

    2006-01-01

    Population statistics for As concentrations in rocks, sediments and ground water differ by geology and land use features in the New England region, USA. Significant sources of As in the surficial environment include both natural weathering of rocks and anthropogenic sources such as arsenical pesticides that were commonly applied to apple, blueberry and potato crops during the first half of the 20th century in the region. The variation of As in bedrock ground water wells has a strong positive correlation with geologic features at the geologic province, lithology group, and bedrock map unit levels. The variation of As in bedrock ground water wells also has a positive correlation with elevated stream sediment and rock As chemistry. Elevated As concentrations in bedrock wells do not correlate with past agricultural areas that used arsenical pesticides on crops. Stream sediments, which integrate both natural and anthropogenic sources, have a strong positive correlation of As concentrations with rock chemistry, geologic provinces and ground water chemistry, and a weaker positive correlation with past agricultural land use. Although correlation is not sufficient to demonstrate cause-and-effect, the statistics favor rock-based As as the dominant regional source of the element in stream sediments and ground water in New England. The distribution of bedrock geology features at the geologic province, lithology group and map unit level closely correlate with areas of elevated As in ground water, stream sediments, and rocks. ?? 2006 Elsevier Ltd. All rights reserved.

  7. Source and Extent of Volcanic Ashes at the Permian-Triassic Boundary in South China and Its implications

    NASA Astrophysics Data System (ADS)

    Wang, M.; Zhong, Y. T.; Hou, Y. L.; He, B.

    2017-12-01

    Highly correlated with the Permian-Triassic Boundary (PTB) Mass Extinction in stratigraphic section, volcanic ashes around the P-T Boundary in South China have been suggested to be a likely cause of the PTB Mass Extinction. So the nature, source and extent of these volcanic ashes have great significance in figuring out the cause of the PTB Mass Extinction. In this study, we attempt to constrain the source and extent of the PTB volcanic ashes in South China by studying pyroclastic sedimentary rocks and the spatial distribution of tuffs and ashes in South China. The detrital zircons of tuffaceous sandstones from Penglaitan section yield an age spectrum peaked at 252Ma, with ɛHf(t) values varying from -20 to -5 ,and have Nb/Hf, Th/Nb and Hf/Th ratios similar to those from arc/orogenic-related settings. Coarse tuffaceous sandstones imply that their source is in limited distance. Those pyroclastic sedimentary rocks in Penglaitan are well correlated with the PTB volcanic ashes in Meishan GSSP section in stratigraphy. In the spatial distribution, pyroclastic sedimentary rocks and tuffs distribute only in southwest of South China, while finer volcanic ashes are mainly in the northern part. This spatial distribution suggests the source of tuffs and ashes was to the south or southwest of South China. Former studies especially that of Permian-Triassic magmatism in Hainan Island have supported the existence of a continental arc related to the subduction and closure of Palaeo-Tethys on the southwestern margin of South China during Permian to early Triassic. It is suggested that the PTB ashes possibly derived from this Paleo-Tethys continental arc. The fact that volcanic ashes haven't been reported or found in PTB stratum in North China or Northwest China implies a limited extent of the volcanism, which thus is too small to cause the PTB mass extinction.

  8. Marine petroleum source rocks and reservoir rocks of the Miocene Monterey Formation, California, U.S.A

    USGS Publications Warehouse

    Isaacs, C.M.

    1988-01-01

    The Miocene Monterey Formation of California, a biogenous deposit derived mainly from diatom debris, is important both as a petroleum source and petroleum reservoir. As a source, the formation is thought to have generated much of the petroleum in California coastal basins, which are among the most prolific oil provinces in the United States. Oil generated from the Monterey tends to be sulfur-rich and heavy (<20° API), and has chemical characteristics that more closely resemble immature source extracts than "normal" oil. Thermal-maturity indicators in Monterey kerogens appear to behave anomalously, and several lines of evidence indicate that the oil is generated at lower than expected levels of organic metamorphism. As a reservoir, the Monterey is important due both to conventional production from permeable sandstone beds and to fracture production from fine-grained rocks with low matrix permeability. Fractured reservoirs are difficult to identify, and conventional well-log analysis has not proven to be very useful in exploring for and evaluating these reservoirs. Lithologically similar rocks are broadly distributed throughout the Circum-Pacific region, but their petroleum potential is unlikely to be realized without recognition of the distinctive source and reservoir characteristics of diatomaceous strata and their diagenetic equivalents.

  9. Modeling the Rock Glacier Cycle

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock glacier, leaving in its wake a thinning ice-cored moraine. Rock glaciers have much longer response times to climate change than their pure ice cousins.

  10. Geochemical study of crude oils from the Xifeng oilfield of the Ordos basin, China

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Wang, C. Y.; Zheng, C. Y.; Wu, B. X.; Zheng, G. D.

    2008-01-01

    The Xifeng oilfield is the largest newly-discovered oilfield in the Ordos basin. In order to determine the possible source, crude oils collected systematically from the oilfield and an adjacent oilfield have been examined isotopically and molecularly. The predominance of long-chain n-alkanes, high abundance of C 29 sterane, lower ratios of C 25/C 26 tricyclic terpane and C 25 tricyclic terpane/C 24 tetracyclic terpane and high C 24 tetracyclic terpane/(C 24 tetracyclic terpane + C 26 tricyclic terpanes ratio in the studied oils suggest generation from a source with mixed terrigenous and algal-bacterial organic matter. The presence of diterpenoid hydrocarbon with abietane skeletons is characteristic of the main contribution of higher land plants to the oils. The biomarker distributions in the oils show that they were formed under a weakly reducing freshwater environment. Molecular maturity parameters indicate that the crude oils are mature. The oil-source rock correlation and oil migration investigation suggest that the oils in the Xifeng oilfield originated from the source rocks of the Yanchang formation deposited in a shallow to deep freshwater lacustrine environment, especially Chang-7 source rocks. The data from the distribution of pyrrolic nitrogen compounds indicate that the charging direction of the Chang-8 crude oils is mainly from the Zhuang 12 well northeast of the oilfield toward the southwest. This direction of oil migration is consistent with that indicated by regional geological data.

  11. World Map Showing Surface and Subsurface Distribution, and Lithologic Character of Middle and Late Neoproterozoic Rocks

    USGS Publications Warehouse

    Stewart, John H.

    2007-01-01

    INTRODUCTION The map was prepared to outline the basic information on where Neoproterozoic rocks are present in the World, and of the lithologic character of these rocks. The information provides a better understanding of major Neoproterozoic tectonic subdivisions useful in paleogeographic and plate tectonic reconstructions. The time frame of the map is within the middle and late Neoproterozoic from approximately 870 to 540 Ma and is after widespread Mesoproterozoic Grenville-age collisional events that are considered to have formed the hypothetical supercontinent of Rodinia. Much of the time represented by the map is interpreted to be during the fragmentation of Rodinia. The recognition of Neoproterozoic rocks is commonly difficult because of limited isotopic or paloeontological dating. Thus, some rocks shown on the map could be older or younger than the age indicated. However, at the scale of the map the the problem may be minor. Enough information seems to be available to indicate the general age of the rocks. Many of the successions contain diamictite deposits considered to be glaciogenic and dated as middle or late Neoproterozoic. These deposits thus show a rough correlation of middle and late Neoproterozoic rocks of the world. The map is a Richardson map projection, except for Antarctica which is a polar projection. The map was prepared from about 650 references, shown in the text linked below under 'Sources of Information', used to outline distribution patterns, determine rock types, and provide information on the regional and local geologic framework of the rocks. The focus of the references is on the geologic information needed to prepare the map. Other information, such as plate tectonic reconstructions or paleomagnetic studies is generally not included. The 'Sources of Information' lists references alphabetically for each of 14 regions. In brackets is a code for each area. These codes provide help in locating the specific regions in the references.

  12. Lower Cody Shale (Niobrara equivalent) in the Bighorn Basin, Wyoming and Montana: thickness, distribution, and source rock potential

    USGS Publications Warehouse

    Finn, Thomas M.

    2014-01-01

    The lower shaly member of the Cody Shale in the Bighorn Basin, Wyoming and Montana is Coniacian to Santonian in age and is equivalent to the upper part of the Carlile Shale and basal part of the Niobrara Formation in the Powder River Basin to the east. The lower Cody ranges in thickness from 700 to 1,200 feet and underlies much of the central part of the basin. It is composed of gray to black shale, calcareous shale, bentonite, and minor amounts of siltstone and sandstone. Sixty-six samples, collected from well cuttings, from the lower Cody Shale were analyzed using Rock-Eval and total organic carbon analysis to determine the source rock potential. Total organic carbon content averages 2.28 weight percent for the Carlile equivalent interval and reaches a maximum of nearly 5 weight percent. The Niobrara equivalent interval averages about 1.5 weight percent and reaches a maximum of over 3 weight percent, indicating that both intervals are good to excellent source rocks. S2 values from pyrolysis analysis also indicate that both intervals have a good to excellent source rock potential. Plots of hydrogen index versus oxygen index, hydrogen index versus Tmax, and S2/S3 ratios indicate that organic matter contains both Type II and Type III kerogen capable of generating oil and gas. Maps showing the distribution of kerogen types and organic richness for the lower shaly member of the Cody Shale show that it is more organic-rich and more oil-prone in the eastern and southeastern parts of the basin. Thermal maturity based on vitrinite reflectance (Ro) ranges from 0.60–0.80 percent Ro around the margins of the basin, increasing to greater than 2.0 percent Ro in the deepest part of the basin, indicates that the lower Cody is mature to overmature with respect to hydrocarbon generation.

  13. Three-dimensional geophysical mapping of rock alteration and water content at Mount Adams, Washington: Implications for lahar hazards

    USGS Publications Warehouse

    Finn, C.A.; Deszcz-Pan, M.; Anderson, E.D.; John, D.A.

    2007-01-01

    Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes and the distribution and intensity of subsurface alteration are largely unknown on any active volcano. At Mount Adams, some Holocene debris flows contain abundant hydrothermal minerals derived from collapse of the altered, edifice. Intense hydrothermal alteration significantly reduces the resistivity and magnetization of volcanic rock, and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Electromagnetic and magnetic data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock in the central core of Mount Adams north of the summit. We identify steep cliffs at the western edge of this zone as the likely source for future large debris flows. In addition, the electromagnetic data identified water in the brecciated core of the upper 100-200 m of the volcano. Water helps alter the rocks, reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore knowing the distribution of water is also important for hazard assessments. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock and shallow pore water aiding evaluation of the debris avalanche hazard.

  14. New insight on petroleum system modeling of Ghadames basin, Libya

    NASA Astrophysics Data System (ADS)

    Bora, Deepender; Dubey, Siddharth

    2015-12-01

    Underdown and Redfern (2008) performed a detailed petroleum system modeling of the Ghadames basin along an E-W section. However, hydrocarbon generation, migration and accumulation changes significantly across the basin due to complex geological history. Therefore, a single section can't be considered representative for the whole basin. This study aims at bridging this gap by performing petroleum system modeling along a N-S section and provides new insights on source rock maturation, generation and migration of the hydrocarbons using 2D basin modeling. This study in conjunction with earlier work provides a 3D context of petroleum system modeling in the Ghadames basin. Hydrocarbon generation from the lower Silurian Tanezzuft formation and the Upper Devonian Aouinet Ouenine started during the late Carboniferous. However, high subsidence rate during middle to late Cretaceous and elevated heat flow in Cenozoic had maximum impact on source rock transformation and hydrocarbon generation whereas large-scale uplift and erosion during Alpine orogeny has significant impact on migration and accumulation. Visible migration observed along faults, which reactivated during Austrian unconformity. Peak hydrocarbon expulsion reached during Oligocene for both the Tanezzuft and the Aouinet Ouenine source rocks. Based on modeling results, capillary entry pressure driven downward expulsion of hydrocarbons from the lower Silurian Tanezzuft formation to the underlying Bir Tlacsin formation observed during middle Cretaceous. Kinetic modeling has helped to model hydrocarbon composition and distribution of generated hydrocarbons from both the source rocks. Application of source to reservoir tracking technology suggest some accumulations at shallow stratigraphic level has received hydrocarbons from both the Tanezzuft and Aouinet Ouenine source rocks, implying charge mixing. Five petroleum systems identified based on source to reservoir correlation technology in Petromod*. This Study builds upon the original work of Underdown and Redfern, 2008 and offers new insights and interpretation of the data.

  15. Black shale source rocks and oil generation in the Cambrian and Ordovician of the central Appalachian Basin, USA

    USGS Publications Warehouse

    Ryder, R.T.; Burruss, R.C.; Hatch, J.R.

    1998-01-01

    Nearly 600 million bbl of oil (MMBO) and 1 to 1.5 trillion ft3 (tcf) of gas have been produced from Cambrian and Ordovician reservoirs (carbonate and sandstone) in the Ohio part of the Appalachian basin and on adjoining arches in Ohio, Indiana, and Ontario, Canada. Most of the oil and gas is concentrated in the giant Lima-Indiana field on the Findlay and Kankakee arches and in small fields distributed along the Knox unconformity. Based on new geochemical analyses of oils, potential source rocks, bitumen extracts, and previously published geochemical data, we conclude that the oils in both groups of fields originated from Middle and Upper Ordovician blcak shale (Utica and Antes shales) in the Appalachian basin. Moroever, we suggest that approximately 300 MMBO and many trillions of cubic feet of gas in the Lower Silurian Clinton sands of eastern Ohio originated in the same source rocks. Oils from the Cambrian and Ordovician reservoirs have similar saturated hydrocarbon compositions, biomarker distributions, and carbon isotope signatures. Regional variations in the oils are attributed to differences in thermal maturation rather than to differences in source. Total organic carbon content, genetic potential, regional extent, and bitument extract geochemistry identify the balck shale of the Utica and Antes shales as the most plausible source of the oils. Other Cambrian and Ordovician shale and carbonate units, such as the Wells Creek formation, which rests on the Knox unconformity, and the Rome Formation and Conasauga Group in the Rome trough, are considered to be only local petroleum sources. Tmax, CAI, and pyrolysis yields from drill-hole cuttings and core indicate that the Utica Shale in eastern and central Ohio is mature with respect to oil generation. Burial, thermal, and hydrocarbon-generation history models suggest that much of the oil was generated from the Utica-Antes source in the late Paleozoic during the Alleghanian orogeny. A pervasive fracture network controlled by basement tectonics aided in the distribution of oil from the source to the trap. This fracture network permitted oil to move laterally and stratigraphically downsection through eastward-dipping, impermeable carbonate sequences to carrier zones such as the Middle Ordovician Knox unconformity, and to reservoirs such as porous dolomite in the Middle Ordovician Trenton Limestone in the Lima-Indiana field. Some of the oil and gas from the Utica-Antes source escaped vertically through a partially fractured, leaky Upper Ordovician shale seal into widespread Lower Silurian sandstone reservoirs.Nearly 600 million bbl of oil (MMBO) and 1 to 1.5 trillion ft3 (tcf) of gas have been produced from Cambrian and Ordovician reservoirs (carbonate and sandstone) in the Ohio part of the Appalachian basin and on adjoining arches in Ohio, Indiana, and Ontario, Canada. Most of the oil and gas is concentrated in the giant Lima-Indiana field on the Findlay and Kankakee arches and in small fields distributed along the Knox unconformity. Based on new geochemical analyses of oils, potential source rocks, bitumen extracts, and previously published geochemical data, we conclude that the oils in both groups of fields originated from Middle and Upper Ordovician black shale (Utica and Antes shales) in the Appalachian basin. Moreover, we suggest that approximately 300 MMBO and many trillions of cubic feet of gas in the Lower Silurian Clinton sands of eastern Ohio originated in these same source rocks.

  16. Mafic mantle sources indicated by the olivine-spinifex basalt-ferropicrite lavas in the accreted Permian oceanic LIP fragments and Miocene low-Ni basalt and adakite lavas in central Japan

    NASA Astrophysics Data System (ADS)

    Ishiwatari, A.; Ichiyama, Y.; Yamazaki, R.; Katsuragi, T.; Tsuchihashi, H.

    2008-12-01

    Melting of mafic (eclogitic) rocks in the peridotite mantle diapir may be important to generate a large quantity of magma in a short period of time as required for the LIP basaltic magmatism (e.g. Takahashi et al. 1998; EPSL, 162, 63-). Ferropicritic rocks also occur in some LIPs, and Ichiyama et al. (2006; Lithos, 89, 47-) propose a non-peridotitic, Ti- and Fe-rich eclogitic source (recycled oceanic ferrogabbro?) entrained in the peridotitic LIP mantle plume for the origin of ferropicritic rocks, that occur with olivine-spinifex basalt (Ichiyama et al., 2007; Island Arc, 16, 493-) in a Permian LIP fragment that was captured in the Jurassic Tamba accretionary complex in central Japan. Although Ti-poor ferrokomatiitic magma might form through high- degree melting of a primitive chondritic mantle (25wt% MgO and 25wt% Fe+FeO), Ti- and HFSE-rich ferropicritic and meimechitic magmas can not form in this way. On the other hand, Miocene volcanic rocks distributed along the Japan Sea coast of central Japan also represent a product of large-scale arc magmatism that happened coeval to the spreading of the Japan Sea floor. The chemical and isotopic signatures of the magmas are consistent with the secular change of tectonic setting from continental arc (22- 20 Ma) to island arc (15-11 Ma) (Shuto et al. 2006; Lithos, 86, 1-). Some adakites have already been found from these Miocene volcanic rocks by Shuto"fs group, and mafic rock melting in either subducting slab or lower arc crust has been proposed. We have recently found a wide distribution of low-Ni basalt from Fukui City. The low-Ni basalt contains olivine phenocrysts which are one order of magnitude poorer in Ni (less than 0.02 wt% NiO at Fo87) than those in normal basalt (more than 0.2 wt% NiO at Fo87). The rock is also poor in bulk-rock Ni, rich in K and Ti, and may have formed from an olivine-free pyroxenitic source. Close association of adakite and low-Ni basalt with normal tholeiitic basalt, calc-alkaline andesite-dacite-rhyolite, high-Mg andesite and rare picritic basalt suggests melting of a heterogeneous mantle wedge that was abundantly endorsed with eclogitic and pyroxenitic rocks. Melting pressure greatly differs between the ferropicrite case (5 GPa or more) and the low-Ni basalt-adakite case (2 GPa or less), causing large chemical differences. However, common occurrences of non-peridotite-origin magmas in the LIP and island arc suggest pervasive and voluminous distribution of the mafic materials in the peridotitic mantle and their important role in magma genesis at various tectonic settings.

  17. Application of Monte Carlo Methods to Perform Uncertainty and Sensitivity Analysis on Inverse Water-Rock Reactions with NETPATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGraw, David; Hershey, Ronald L.

    Methods were developed to quantify uncertainty and sensitivity for NETPATH inverse water-rock reaction models and to calculate dissolved inorganic carbon, carbon-14 groundwater travel times. The NETPATH models calculate upgradient groundwater mixing fractions that produce the downgradient target water chemistry along with amounts of mineral phases that are either precipitated or dissolved. Carbon-14 groundwater travel times are calculated based on the upgradient source-water fractions, carbonate mineral phase changes, and isotopic fractionation. Custom scripts and statistical code were developed for this study to facilitate modifying input parameters, running the NETPATH simulations, extracting relevant output, postprocessing the results, and producing graphs and summaries.more » The scripts read userspecified values for each constituent’s coefficient of variation, distribution, sensitivity parameter, maximum dissolution or precipitation amounts, and number of Monte Carlo simulations. Monte Carlo methods for analysis of parametric uncertainty assign a distribution to each uncertain variable, sample from those distributions, and evaluate the ensemble output. The uncertainty in input affected the variability of outputs, namely source-water mixing, phase dissolution and precipitation amounts, and carbon-14 travel time. Although NETPATH may provide models that satisfy the constraints, it is up to the geochemist to determine whether the results are geochemically reasonable. Two example water-rock reaction models from previous geochemical reports were considered in this study. Sensitivity analysis was also conducted to evaluate the change in output caused by a small change in input, one constituent at a time. Results were standardized to allow for sensitivity comparisons across all inputs, which results in a representative value for each scenario. The approach yielded insight into the uncertainty in water-rock reactions and travel times. For example, there was little variation in source-water fraction between the deterministic and Monte Carlo approaches, and therefore, little variation in travel times between approaches. Sensitivity analysis proved very useful for identifying the most important input constraints (dissolved-ion concentrations), which can reveal the variables that have the most influence on source-water fractions and carbon-14 travel times. Once these variables are determined, more focused effort can be applied to determining the proper distribution for each constraint. Second, Monte Carlo results for water-rock reaction modeling showed discrete and nonunique results. The NETPATH models provide the solutions that satisfy the constraints of upgradient and downgradient water chemistry. There can exist multiple, discrete solutions for any scenario and these discrete solutions cause grouping of results. As a result, the variability in output may not easily be represented by a single distribution or a mean and variance and care should be taken in the interpretation and reporting of results.« less

  18. Geological-hydrogeochemical characteristics of a “silver spring” water source (the Lozovy ridge)

    NASA Astrophysics Data System (ADS)

    Ivanova, I. S.; Bragin, I. V.; Chelnokov, G. A.; Bushkareva, K. Yu; Shvagrukova, E. V.

    2016-03-01

    Geological and hydrogeological characteristics of the Lozovy ridge (Southern Primorye) are studied, as far as karst phenomena are widely distributed within its boundaries. Water-bearing rocks of the karst water source “Silver Spring” (“Serebryany Klyuch”), which is located near the bottom of the “Bear’s fang” (“Medvezhiy klyk”) cave, are investigated. It is found that karst rocks are presented by calcite (CaCO3), and an accessory mineral is barite (BaSO4). It is determined that among the trace elements forming the composition of carbonate water-bearing rocks the maximum concentrations are typical for Sr, Ba, Fe, Al, Za, Mn, Cu, and Ni. Also, the chemical composition of the waters taken from the “Silver Spring” water source is studied. These waters are fresh, hydrocarbonate, calcium, and weakly alkaline. Among the elements of the spring, such elements as Sr, Ba, Fe, Al, Zn, Mn, Cu, and Ni have the maximum concentration. The other elements have concentrations less than 1 µg/l.

  19. Ground-based hyperspectral imaging and terrestrial laser scanning for fracture characterization in the Mississippian Boone Formation

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Khan, Shuhab D.; Sarmiento, Sergio; Lakshmikantha, M. R.; Zhou, Huawei

    2017-12-01

    Petroleum geoscientists have been using cores and well logs to study source rocks and reservoirs, however, the inherent discontinuous nature of these data cannot account for horizontal heterogeneities. Modern exploitation requires better understanding of important source rocks and reservoirs at outcrop scale. Remote sensing of outcrops is becoming a first order tool for reservoir analog studies including horizontal heterogeneities. This work used ground-based hyperspectral imaging, terrestrial laser scanning (TLS), and high-resolution photography to study a roadcut of the Boone Formation at Bella Vista, northwest Arkansas, and developed an outcrop model for reservoir analog analyses. The petroliferous Boone Formation consists of fossiliferous limestones interbedded with chert of early Mississippian age. We used remote sensing techniques to identify rock types and to collect 3D geometrical data. Mixture tuned matched filtering classification of hyperspectral data show that the outcrop is mostly limestones with interbedded chert nodules. 1315 fractures were classified according to their strata-bounding relationships, among these, larger fractures are dominantly striking in ENE - WSW directions. Fracture extraction data show that chert holds more fractures than limestones, and both vertical and horizontal heterogeneities exist in chert nodule distribution. Utilizing ground-based remote sensing, we have assembled a virtual outcrop model to extract mineral composition as well as fracture data from the model. We inferred anisotropy in vertical fracture permeability based on the dominancy of fracture orientations, the preferential distribution of fractures and distribution of chert nodules. These data are beneficial in reservoir analogs to study rock mechanics and fluid flow, and to improve well performances.

  20. Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina

    USGS Publications Warehouse

    Reid, Jeffrey C.; Milici, Robert C.

    2008-01-01

    This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data (%Ro) indicate levels of thermal maturity suitable for generation of hydrocarbons. The genetic potential of the source rocks in these Triassic basins is moderate to high and many source rock sections have at least some potential for hydrocarbon generation. Some data for the Cumnock Formation indicate a considerably higher source rock potential than the basin average, with S1 + S2 data in the mid-20 mg HC/g sample range, and some hydrocarbons have been generated. This implies that the genetic potential for all of these strata may have been higher prior to the igneous activity. However, the intergranular porosity and permeability of the Triassic strata are low, which makes fractured reservoirs more attractive as drilling targets. In some places, gravity and magnetic surveys that are used to locate buried intrusive rock may identify local thermal sources that have facilitated gas generation. Alternatively, awareness of the distribution of large intrusive igneous bodies at depth may direct exploration into other areas, where thermal maturation is less than the limits of hydrocarbon destruction. Areas prospective for natural gas also contain large surficial clay resources and any gas discovered could be used as fuel for local industries that produce clay products (principally brick), as well as fuel for other local industries.

  1. Distribution and Aggregate Thickness of Salt Deposits of the United States

    EPA Pesticide Factsheets

    The map shows the distribution and aggregate thickness of salt deposits of the United States. This information is from contour map sheets, scanned and processed for use in a global mineral resource assessment, produced by the U.S. Geological Survey. It is used here to provide a geospatial context to the distribution of rock-salt deposits in the US. It is useful in illustrating sources of chlorides.

  2. Fractal Nature of Porosity in Volcanic Tight Reservoirs of the Santanghu Basin and its Relationship to Pore Formation Processes

    NASA Astrophysics Data System (ADS)

    Wang, Weiming; Wang, Zhixuan; Chen, Xuan; Long, Fei; Lu, Shuangfang; Liu, Guohong; Tian, Weichao; Su, Yue

    In this paper, in a case study of Santanghu Basin in China, the morphological characteristics and size distribution of nanoscale pores in the volcanic rocks of the Haerjiawu Formation were investigated using the results of low temperature nitrogen adsorption experiments. This research showed that within the target layer, a large number of nanoscale, eroded pores showed an “ink bottle” morphology with narrow pore mouths and wide bodies. The fractal dimension of pores increases gradually with increasing depth. Moreover, as fractal dimension increases, BET-specific surface area gradually increases, average pore diameter decreases and total pore volume gradually increases. The deeper burial of the Haerjiawu volcanic rocks in the Santanghu Basin leads to more intense erosion by organic acids derived from the basin’s source rocks. Furthermore, the internal surface roughness of these corrosion pores results in poor connectivity. As stated above, the corrosion process is directly related to the organic acids generated by the source rock of the interbedded volcanic rocks. The deeper the reservoir, the more the organic acids being released from the source rock. However, due to the fact that the Haerjiawu volcanic rocks are tight reservoirs and have complicated pore-throat systems, while organic acids dissolve unstable minerals such as feldspars which improve the effective reservoir space; the dissolution of feldspars results in the formation of new minerals, which cannot be expelled from the tight reservoirs. They are instead precipitated in the fine pore throats, thereby reducing pore connectivity, while enhancing reservoir micro-preservation conditions.

  3. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Zhang, Wenzheng; Wu, Kai; Li, Shanpeng; Peng, Ping'an; Qin, Yan

    2010-09-01

    The oil source rocks of the Chang 7 member of the Yanchang Formation in the Erdos Basin were deposited during maximum lake extension during the Late Triassic and show a remarkable positive uranium anomaly, with an average uranium content as high as 51.1 μg/g. Uranium is enriched together with organic matter and elements such as Fe, S, Cu, V and Mo in the rocks. The detailed biological markers determined in the Chang 7 member indicate that the lake water column was oxidizing during deposition of the Chang 7 member. However, redox indicators for sediments such as S 2- content, V/Sc and V/(V + Ni) ratios demonstrate that it was a typical anoxic diagenetic setting. The contrasted redox conditions between the water column and the sediment with a very high content of organic matter provided favorable physical and chemical conditions for syngenetic uranium enrichment in the oil source rocks of the Chang 7 member. Possible uranium sources may be the extensive U-rich volcanic ash that resulted from contemporaneous volcanic eruption and uranium material transported by hydrothermal conduits into the basin. The uranium from terrestrial clastics was unlike because uranium concentration was not higher in the margin area of basin where the terrestrial material input was high. As indicated by correlative analysis, the oil source rocks of the Chang 7 member show high gamma-ray values for radioactive well log data that reflect a positive uranium anomaly and are characterized by high resistance, low electric potential and low density. As a result, well log data can be used to identify positive uranium anomalies and spatial distribution of the oil source rocks in the Erdos Basin. The estimation of the total uranium reserves in the Chang 7 member attain 0.8 × 10 8 t.

  4. Improved characterization, monitoring and instability assessment of high rock faces by integrating TLS and GB-InSAR

    NASA Astrophysics Data System (ADS)

    Bianchetti, Matteo; Agliardi, Federico; Villa, Alberto; Battista Crosta, Giovanni; Rivolta, Carlo

    2015-04-01

    Rockfall risk analysis require quantifying rockfall onset susceptibility and magnitude scenarios at source areas, and the expected rockfall trajectories and related dynamic quantities. Analysis efforts usually focus on the rockfall runout component, whereas rock mass characterization and block size distribution quantification, monitoring and analysis of unstable rock volumes are usually performed using simplified approaches, due to technological and site-specific issues. Nevertheless, proper quantification of rock slope stability and rockfall magnitude scenarios is key when dealing with high rock walls, where widespread rockfall sources and high variability of release mechanisms and block volumes can result in excessive modelling uncertainties and poorly constrained mitigation measures. We explored the potential of integrating field, remote sensing, structural analysis and stability modelling techniques to improve hazard assessment at the Gallivaggio sanctuary site, a XVI century heritage located along the State Road 36 in the Spluga Valley (Italian Central Alps). The site is impended by a subvertical cliff up to 600 m high, made of granitic orthogneiss of the Truzzo granitic complex (Tambo Nappe, upper Pennidic domain). The rock mass is cut by NNW and NW-trending slope-scale structural lineaments and by 5-6 fracture sets with variable spatial distribution, spacing and persistence, which bound blocks up to tens of cubic meters and control the 3D slope morphology. The area is characterised by widespread rock slope instability from rockfalls to massive failures. Although a 180 m long embankment was built to protect the site from rockfalls, concerns remain about potential large unstable rock volumes or flyrocks projected by the widely observed impact fragmentation of stiff rock blocks. Thus, the authority in charge started a series of periodical GB-InSAR monitoring surveys using LiSALabTM technology (12 surveys in 2011-2014), which outlined the occurrence of unstable spots spread over the cliff, with cm-scale cumulative displacements in the observation period. To support the interpretation and analysis of these data, we carried out multitemporal TLS surveys (5 sessions between September 2012 and October 2014) using a Riegl VZ-1000 long-range laser scanner. We performed rock mass structural analyses on dense TLS point clouds using two different approaches: 1) manual discontinuity orientation and intensity measurement from digital outcrops; 2) automatic feature extraction and intensity evaluation through the development of an original Matlab tool, suited for multi-scale applications and optimized for parallel computing. Results were validated using field discontinuity measurements and compared to evaluate advantages and limitations of different approaches, and allowed: 1) outlining the precise location, geometry and kinematics of unstable blocks and block clusters corresponding to radar moving spots; 2) performing stability analyses; 3) quantifying rockwall changes over the observation period. Our analysis provided a robust spatial characterization of rockfall sources, block size distribution and onset susceptibility as input for 3D runout modelling and quantitative risk analysis.

  5. Towards the challenging REE exploration in Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, Iwan

    2018-02-01

    Rare earth elements (REE) are the seventeen elements, including fifteen from 57La to 71Lu, in addition to 21Sc and 39Y. In rock-forming minerals, rare earth elements typically occur in compounds as trivalent cations in carbonates, oxides, phosphates, and silicates. The REE occur in a wide range of rock types: igneous, sedimentary and metamorphic rocks. REE are one of the critical metals in the world. Their occurrences are important to supply the world needs on high technology materials. Indonesia has a lot of potential sources of REE that are mainly from residual tin mining processes in Bangka islands, which are associated with radioactive minerals e.g. monazite and xenotime. However, the REE from monazite and xenotime are difficult to extract and contain high radioactivity. Granitoids are widely distributed in Sumatra, Sulawesi, Kalimantan and Papua. They also have a very thick weathering crusts. Important REE-bearing minerals are allanite and titanite. Their low susceptibilities during weathering result an economically potential REE concentration. I-/A- type granitoids and their weathered crusts are important REE sources in Indonesia. Unfortunately, their distribution and genesis have not been deeply studied. Future REE explorations challenge are mainly of the granitoids their weathered crusts. Geochemical and mineralogical characterization of type of granitoids and their weathered crusts, the hydrothermally altered rocks, and clear REE regulation will help discover REE deposits in Indonesia.

  6. The Chuar Petroleum System, Arizona and Utah

    USGS Publications Warehouse

    Lillis, Paul G.

    2016-01-01

    The Neoproterozoic Chuar Group consists of marine mudstone, sandstone and dolomitic strata divided into the Galeros and Kwagunt Formations, and is exposed only in the eastern Grand Canyon, Arizona. Research by the U.S. Geological Survey (USGS) in the late 1980s identified strata within the group to be possible petroleum source rocks, and in particular the Walcott Member of the Kwagunt Formation. Industry interest in a Chuar oil play led to several exploratory wells drilled in the 1990s in southern Utah and northern Arizona to test the overlying Cambrian Tapeats Sandstone reservoir, and confirm the existence of the Chuar in subcrop. USGS geochemical analyses of Tapeats oil shows in two wells have been tentatively correlated to Chuar bitumen extracts. Distribution of the Chuar in the subsurface is poorly constrained with only five well penetrations, but recently published gravity/aeromagnetic interpretations provide further insight into the Chuar subcrop distribution. The Chuar petroleum system was reexamined as part of the USGS Paradox Basin resource assessment in 2011. A map was constructed to delineate the Chuar petroleum system that encompasses the projected Chuar source rock distribution and all oil shows in the Tapeats Sandstone, assuming that the Chuar is the most likely source for such oil shows. Two hypothetical plays were recognized but not assessed: (1) a conventional play with a Chuar source and Tapeats reservoir, and (2) an unconventional play with a Chuar source and reservoir. The conventional play has been discouraging because most surface structures have been tested by drilling with minimal petroleum shows, and there is some evidence that petroleum may have been flushed by CO2 from Tertiary volcanism. The unconventional play is untested and remains promising even though the subcrop distribution of source facies within the Chuar Group is largely unknown.

  7. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    USGS Publications Warehouse

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the presence of possible source rocks in many of the other stratigraphic units, in particular, the Fredericksburg, should give further impetus to exploring for other productive horizons.

  8. 1-D/3-D geologic model of the Western Canada Sedimentary Basin

    USGS Publications Warehouse

    Higley, D.K.; Henry, M.; Roberts, L.N.R.; Steinshouer, D.W.

    2005-01-01

    The 3-D geologic model of the Western Canada Sedimentary Basin comprises 18 stacked intervals from the base of the Devonian Woodbend Group and age equivalent formations to ground surface; it includes an estimated thickness of eroded sediments based on 1-D burial history reconstructions for 33 wells across the study area. Each interval for the construction of the 3-D model was chosen on the basis of whether it is primarily composed of petroleum system elements of reservoir, hydrocarbon source, seal, overburden, or underburden strata, as well as the quality and areal distribution of well and other data. Preliminary results of the modeling support the following interpretations. Long-distance migration of hydrocarbons east of the Rocky Mountains is indicated by oil and gas accumulations in areas within which source rocks are thermally immature for oil and (or) gas. Petroleum systems in the basin are segmented by the northeast-trending Sweetgrass Arch; hydrocarbons west of the arch were from source rocks lying near or beneath the Rocky Mountains, whereas oil and gas east of the arch were sourced from the Williston Basin. Hydrocarbon generation and migration are primarily due to increased burial associated with the Laramide Orogeny. Hydrocarbon sources and migration were also influenced by the Lower Cretaceous sub-Mannville unconformity. In the Peace River Arch area of northern Alberta, Jurassic and older formations exhibit high-angle truncations against the unconformity. Potential Paleozoic though Mesozoic hydrocarbon source rocks are in contact with overlying Mannville Group reservoir facies. In contrast, in Saskatchewan and southern Alberta the contacts are parallel to sub-parallel, with the result that hydrocarbon source rocks are separated from the Mannville Group by seal-forming strata within the Jurassic. Vertical and lateral movement of hydrocarbons along the faults in the Rocky Mountains deformed belt probably also resulted in mixing of oil and gas from numerous source rocks in Alberta.

  9. Comparison of the petroleum systems of East Venezuela in their tectonostratigraphic context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stronach, N.J.; Kerr, H.M.; Scotchmer, J.

    1996-08-01

    The Maturin and Guarico subbasins of East Venezuela record the transition from Cretaceous passive margin to Tertiary foreland basin with local post-orogenic transtensional basins. Petroleum is reservoired in several units ranging from Albian (El Cantil Formation) to Pliocene (Las Piedras Formation) age. Source rocks are principally in the Upper Cretaceous (Querecual Formation), and Miocene (Carapita Formation) in the Maturin subbasin and in the Upper Cretaceous (Tigre Formation) and Oligocene (Roblecito and La Pascua Formations) in the Guarico subbasin. An extensive well database has been used to address the distribution and provenance of hydrocarbons in the context of a tectonostratigraphic modelmore » for the evolution of the East Venezuela basin. Nine major plays have been described, comprising thirteen petroleum systems. The principal factors influencing the components of individual petroleum systems are as follows: (1) structural controls on Upper Cretaceous source rock distribution, relating to block faulting on the proto-Caribbean passive margin; (2) paleoenvironmental controls on source rock development within the Oligocene-Miocene foreland basin; and (3) timing of subsidence and maturation within the Oligocene-Upper Miocene foreland basin and the configuration of the associated fold and thrust belt, influencing long range and local migration routes (4) local development of Pliocene post-orogenic transtensional basins, influencing hydrocarbon generation, migration and remigration north of the Pirital High.« less

  10. Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy.

    PubMed

    Fedi, M; Cella, F; D'Antonio, M; Florio, G; Paoletti, V; Morra, V

    2018-05-29

    We analyze a wide gravity low in the Campania Active Volcanic Area and interpret it by a large and deep source distribution of partially molten, low-density material from about 8 to 30 km depth. Given the complex spatial-temporal distribution of explosive volcanism in the area, we model the gravity data consistently with several volcanological and petrological constraints. We propose two possible models: one accounts for the coexistence, within the lower/intermediate crust, of large amounts of melts and cumulates besides country rocks. It implies a layered distribution of densities and, thus, a variation with depth of percentages of silicate liquids, cumulates and country rocks. The other reflects a fractal density distribution, based on the scaling exponent estimated from the gravity data. According to this model, the gravity low would be related to a distribution of melt pockets within solid rocks. Both density distributions account for the available volcanological and seismic constraints and can be considered as end-members of possible models compatible with gravity data. Such results agree with the general views about the roots of large areas of ignimbritic volcanism worldwide. Given the prolonged history of magmatism in the Campania area since Pliocene times, we interpret the detected low-density body as a developing batholith.

  11. Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss Alps

    NASA Astrophysics Data System (ADS)

    Michoud, C.; Derron, M.-H.; Horton, P.; Jaboyedoff, M.; Baillifard, F.-J.; Loye, A.; Nicolet, P.; Pedrazzini, A.; Queyrel, A.

    2012-03-01

    Unlike fragmental rockfall runout assessments, there are only few robust methods to quantify rock-mass-failure susceptibilities at regional scale. A detailed slope angle analysis of recent Digital Elevation Models (DEM) can be used to detect potential rockfall source areas, thanks to the Slope Angle Distribution procedure. However, this method does not provide any information on block-release frequencies inside identified areas. The present paper adds to the Slope Angle Distribution of cliffs unit its normalized cumulative distribution function. This improvement is assimilated to a quantitative weighting of slope angles, introducing rock-mass-failure susceptibilities inside rockfall source areas previously detected. Then rockfall runout assessment is performed using the GIS- and process-based software Flow-R, providing relative frequencies for runout. Thus, taking into consideration both susceptibility results, this approach can be used to establish, after calibration, hazard and risk maps at regional scale. As an example, a risk analysis of vehicle traffic exposed to rockfalls is performed along the main roads of the Swiss alpine valley of Bagnes.

  12. Statiscal analysis of an earthquake-induced landslide distribution - The 1989 Loma Prieta, California event

    USGS Publications Warehouse

    Keefer, D.K.

    2000-01-01

    The 1989 Loma Prieta, California earthquake (moment magnitude, M=6.9) generated landslides throughout an area of about 15,000 km2 in central California. Most of these landslides occurred in an area of about 2000 km2 in the mountainous terrain around the epicenter, where they were mapped during field investigations immediately following the earthquake. The distribution of these landslides is investigated statistically, using regression and one-way analysisof variance (ANOVA) techniques to determine how the occurrence of landslides correlates with distance from the earthquake source, slope steepness, and rock type. The landslide concentration (defined as the number of landslide sources per unit area) has a strong inverse correlation with distance from the earthquake source and a strong positive correlation with slope steepness. The landslide concentration differs substantially among the various geologic units in the area. The differences correlate to some degree with differences in lithology and degree of induration, but this correlation is less clear, suggesting a more complex relationship between landslide occurrence and rock properties. ?? 2000 Elsevier Science B.V. All rights reserved.

  13. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  14. Maturation history modeling of Sufyan Depression, northwest Muglad Basin, Sudan

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Luofu; An, Fuli; Wang, Hongmei; Pang, Xiongqi

    2016-08-01

    The Sufyan Depression is located in the northwest of Muglad Basin and is considered as a favorable exploration area by both previous studies and present oil shows. In this study, 16 wells are used or referred, the burial history model was built with new seismic, logging and well data, and the thermal maturity (Ro, %) of proved AG source rocks was predicted based on heat flow calculation and EASY %Ro modeling. The results show that the present heat flow range is 36 mW/m2∼50 mW/m2 (average 39 mW/m2) in 13 wells and 15 mW/m2∼55 mW/m2 in the whole depression. Accordingly, the geothermal gradient is 20 °C/km∼26 °C/km and 12 °C/km∼30 °C/km, respectively. The paleo-heat flow has three peaks, namely AG-3 period, lower Bentiu period and Early Paleogene, with the value decreases from the first to the last, which is corresponding to the tectonic evolution history. Corresponding to the heat flow distribution feature, the AG source rocks become mature earlier and have higher present marurity in the south area. For AG-2_down and AG-3_up source rocks that are proved to be good-excellent, most of them are mature with Ro as 0.5%-1.1%. But they can only generate plentiful oil and gas to charge reservoirs in the middle and south areas where their Ro is within 0.7%-1.1%, which is consistent with the present oil shows. Besides, the oil shows from AG-2_down reservoir in the middle area of the Sufyan Depression are believed to be contributed by the underlying AG-3_up source rock or the source rocks in the south area.

  15. In search of a Silurian total petroleum system in the Appalachian basin of New York, Ohio, Pennsylvania, and West Virginia: Chapter G.11 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Swezey, Christopher S.; Trippi, Michael H.; Lentz, Erika E.; Avary, K. Lee; Harper, John A.; Kappel, William M.; Rea, Ronald G.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Although the TOC analyses in this study indicate that good to very good source rocks are present in the Salina Group and Wills Creek Formation of southwestern Pennsylvania and northern West Virginia, data are insufficient to propose a new Silurian total petroleum system in the Appalachian basin. However, the analytical results of this investigation are encouraging enough to undertake more systematic studies of the source rock potential of the Salina Group, Wills Creek Formation, and perhaps the Tonoloway Formation (Limestone) and McKenzie Limestone (or Member).

  16. Quantitative petrographic analysis of Desmoinesian sandstones from Oklahoma

    USGS Publications Warehouse

    Dyman, Thaddeus S.

    1989-01-01

    Desmoinesian sandstones from the northern Oklahoma platform and the Anadarko, Arkoma, and Ardmore basins record a complex interaction between mid-Pennsylvanian source-area tectonism and cyclic sedimentation patterns associated with numerous transgressions and regressions. Framework-grain summaries for 50 thin sections from sandstones of the Krebs, Cabaniss, and Marmaton Groups and their surface and subsurface equivalents were subjected to multivariate statistical analyses to establish regional compositional trends for provenance analysis. R-mode cluster and correspondence analyses were used to determine the contributing effect (total variance) of key framework grains. Fragments of monocrystalline and polycrystalline quartz; potassium and plagioclase feldspar; chert; and metamorphic, limestone, and mudstone-sandstone rock fragments contribute most to the variation in the grain population. Q-mode cluster and correspondence analyses were used to identify four petrofacies and establish the range of compositional variation in Desmoinesian sandstones. Petrofacies I is rich in monocrystalline quartz (78-98%); mica and rock fragments are rare. Petrofacies II is also rich in monocrystalline quartz (60-84%) and averages 12% total rock fragments. Petrofacies III and IV are compositionally heterogeneous and contain variable percentages of monocrystalline and polycrystalline quartz, potassium feldspar, mica, chert, and metamorphic and sedimentary rock fragments. Quantitative analyses indicate that Desmoinesian sandstones were derived from sedimentary, igneous, and metamorphic source areas. Sandstones of petrofacies I and II occur mostly in the lower Desmoinesian and are widely distributed, although they are most abundant in eastern and central Oklahoma; sandstones of petrofacies III and IV are widely distributed and occur primarily in the middle and upper Desmoinesian. The range of compositional variation and the distribution of petrofacies are related to paleotectonics and basin development, sediment recycling, and varying depositional environments.

  17. Eastern Madre de Dios Devonian generated large volumes of oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, K.E.; Wagner, J.B.; Carpenter, D.G.

    This is the second part of an article giving details of a Mobil Corp. regional geological, geophysical, and geochemical study of the Madre de Dios basin. The assessment covered the distribution, richness, depositional environment, and thermal maturity of Devonian source rocks.

  18. Sources and drains: Major controls of hydrothermal fluid flow in the Kokanee Range, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Beaudoin, Georges; Therrien, René

    1999-10-01

    Vein fields are fractured domains of the lithosphere that have been infiltrated by hydrothermal fluids, which deposited minerals in response to changing physico-chemical conditions. Because oxygen is a major component of the infiltrating fluid and the surrounding rock matrix, the oxygen isotope composition of minerals found in veins is used to decipher ancient fluid flow within the lithosphere. We use a numerical model to simulate oxygen isotope transport in the Kokanee Range silver-lead-zinc vein field. The model considers advective, dispersive, and reactive transport in a three-dimensional porous rock matrix intersected by high-permeability planes representing fracture zones. Here we show that it is the geometrical configuration of the sources and of the drains of hydrothermal fluids, combined with the fracture pattern, that exerts the main control on the oxygen isotope distribution. Other factors that affect, to a lesser extent, the values and positions of oxygen isopleths are the fluids and rock-matrix isotopic compositions, the isotopic fractionation, the reaction rate constant, and hydraulic conductivities of the rock matrix and fracture zones.

  19. Source identification of soil mercury in the Spanish islands.

    PubMed

    Rodríguez Martín, José Antonio; Carbonell, Gregoria; Nanos, Nikos; Gutiérrez, Carmen

    2013-02-01

    This study spatially analysed the relation between mercury (Hg) content in soil and Hg in rock fragment for the purpose of assessing natural soil Hg contribution compared with Hg from human inputs. We present the Hg content of 318 soil and rock fragment samples from 11 islands distributed into two Spanish archipelagos (the volcanic Canary Islands [Canaries] and the Mediterranean Balearic [Balearic] islands). Assumedly both are located far enough away from continental Hg sources to be able to minimise the effects of diffuse pollution. Physical and chemical soil properties were also specified for the samples. Hg contents were significantly greater in the Balearic limestone soils (61 μg kg(-1)) than in the volcanic soils of the Canaries (33 μg kg(-1)). Hg levels were also greater in topsoil than in rocky fragments, especially on the Balearics. The soil-to-rock ratios varied between 1 and 30. Interestingly, the highest topsoil-to-rock Hg ratio (>16 ×) was found in the vicinity of a coal-fired power plant in Majorca, whereas no similar areas in the Canary archipelago were identified.

  20. Characterization of rotary-percussion drilling as a seismic-while-drilling source

    NASA Astrophysics Data System (ADS)

    Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.

    2018-04-01

    This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.

  1. Geologic sources of asbestos in Seattle's tolt reservoir

    USGS Publications Warehouse

    Reid, M.E.; Craven, G.

    1996-01-01

    Water from Seattle's South Fork Tolt Reservoir contains chrysotile and amphibole asbestos fibers, derived from natural sources. Using optical petrographic techniques, X-ray diffraction, and scanning electron microscopy, we identified the geologic source of these asbestiform minerals within the watershed. No asbestos was found in the bedrock underlying the watershed, while both chrysotile and amphibole fibers were found in sediments transported by Puget-lobe glacial processes. These materials, widely distributed throughout the lower watershed, would be difficult to separate from the reservoir sediments. The probable source of this asbestos is in pods of ultramafic rock occurring north of the watershed. Because asbestos is contained in widespread Pugetlobe glacial materials, it may be naturally distributed in other watersheds in the Puget Sound area.

  2. Re-Os systematics of komatiites and komatiitic basalts at Dundonald Beach, Ontario, Canada: Evidence for a complex alteration history and implications of a late-Archean chondritic mantle source

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Amitava; Sproule, Rebecca A.; Walker, Richard J.; Lesher, C. Michael

    2005-11-01

    Osmium isotopic compositions, and Re and Os concentrations have been examined in one komatiite unit and two komatiitic basalt units at Dundonald Beach, part of the 2.7 Ga Kidd-Munro volcanic assemblage in the Abitibi greenstone belt, Ontario, Canada. The komatiitic rocks in this locality record at least three episodes of alteration of Re-Os elemental and isotope systematics. First, an average of 40% and as much as 75% Re may have been lost due to shallow degassing during eruption and/or hydrothermal leaching during or immediately after emplacement. Second, the Re-Os isotope systematics of whole rock samples with 187Re/ 188Os ratios >1 were reset at ˜2.5 Ga, possibly due to a regional metamorphic event. Third, there is evidence for relatively recent gain and loss of Re in some rocks. Despite the open-system behavior, some aspects of the Re-Os systematics of these rocks can be deciphered. The bulk distribution coefficient for Os (D Ossolid/liquid) for the Dundonald rocks is ˜3 ± 1 and is well within the estimated D values obtained for komatiites from the nearby Alexo area and stratigraphically-equivalent komatiites from Munro Township. This suggests that Os was moderately compatible during crystal-liquid fractionation of the magmas parental to the Kidd-Munro komatiitic rocks. Whole-rock samples and chromite separates with low 187Re/ 188Os ratios (<1) yield a precise chondritic average initial 187Os/ 188Os ratio of 0.1083 ± 0.0006 (γ Os = 0.0 ± 0.6) for their well-constrained ˜2715 Ma crystallization age. The chondritic initial Os isotopic composition of the mantle source for the Dundonald rocks is consistent with that determined for komatiites in the Alexo area and in Munro Township, suggesting that the mantle source region for the Kidd-Munro volcanic assemblage had evolved with a long-term chondritic Re/Os before eruption. The chondritic initial Os isotopic composition of the Kidd-Munro komatiites is indistinguishable from that of the projected contemporaneous convective upper mantle. The uniform chondritic Os isotopic composition of the Kidd-Munro komatiites contrasts with the typical large-scale Os isotopic heterogeneity in the mantle sources for ca. 89 Ma komatiites from the Gorgona Island, arc-related rocks and present-day ocean island basalts. This suggests that the Kidd-Munro komatiites sampled a late-Archean mantle source region that was significantly more homogeneous with respect to Re/Os relative to most modern mantle-derived rocks.

  3. Petroleum systems of the San Joaquin Basin Province, California -- geochemical characteristics of oil types: Chapter 9 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Lillis, Paul G.; Magoon, Leslie B.

    2007-01-01

    New analyses of 120 oil samples combined with 139 previously published oil analyses were used to characterize and map the distribution of oil types in the San Joaquin Basin, California. The results show that there are at least four oil types designated MM, ET, EK, and CM. Most of the oil from the basin has low to moderate sulfur content (less than 1 weight percent sulfur), although a few unaltered MM oils have as much as 1.2 weight percent sulfur. Reevaluation of source rock data from the literature indicate that the EK oil type is derived from the Eocene Kreyenhagen Formation, and the MM oil type is derived, in part, from the Miocene to Pliocene Monterey Formation and its equivalent units. The ET oil type is tentatively correlated to the Eocene Tumey formation of Atwill (1935). Previous studies suggest that the CM oil type is derived from the Late Cretaceous to Paleocene Moreno Formation. Maps of the distribution of the oil types show that the MM oil type is restricted to the southern third of the San Joaquin Basin Province. The composition of MM oils along the southern and eastern margins of the basin reflects the increased contribution of terrigenous organic matter to the marine basin near the Miocene paleoshoreline. EK oils are widely distributed along the western half of the basin, and ET oils are present in the central and west-central areas of the basin. The CM oil type has only been found in the Coalinga area in southwestern Fresno County. The oil type maps provide the basis for petroleum system maps that incorporate source rock distribution and burial history, migration pathways, and geologic relationships between hydrocarbon source and reservoir rocks. These petroleum system maps were used for the 2003 U.S. Geological Survey resource assessment of the San Joaquin Basin Province.

  4. Total Petroleum Systems of the North Carpathian Province of Poland, Ukraine, Czech Republic, and Austria

    USGS Publications Warehouse

    Pawlewicz, Mark

    2006-01-01

    Three total petroleum systems were identified in the North Carpathian Province (4047) that includes parts of Poland, Ukraine, Austria, and the Czech Republic. They are the Isotopically Light Gas Total Petroleum System, the Mesozoic-Paleogene Composite Total Petroleum System, and the Paleozoic Composite Total Petroleum System. The Foreland Basin Assessment Unit of the Isotopically Light Gas Total Petroleum System is wholly contained within the shallow sedimentary rocks of Neogene molasse in the Carpathian foredeep. The biogenic gas is generated locally as the result of bacterial activity on dispersed organic matter. Migration is also believed to be local, and gas is believed to be trapped in shallow stratigraphic traps. The Mesozoic-Paleogene Composite Total Petroleum System, which includes the Deformed Belt Assessment Unit, is structurally complex, and source rocks, reservoirs, and seals are juxtaposed in such a way that a single stratigraphic section is insufficient to describe the geology. The Menilite Shale, an organic-rich rock widespread throughout the Carpathian region, is the main hydrocarbon source rock. Other Jurassic to Cretaceous formations also contribute to oil and gas in the overthrust zone in Poland and Ukraine but in smaller amounts, because those formations are more localized than the Menilite Shale. The Paleozoic Composite Total Petroleum System is defined on the basis of the suspected source rock for two oil or gas fields in western Poland. The Paleozoic Reservoirs Assessment Unit encompasses Devonian organic-rich shale believed to be a source of deep gas within the total petroleum system. East of this field is a Paleozoic oil accumulation whose source is uncertain; however, it possesses geochemical similarities to oil generated by Upper Carboniferous coals. The undiscovered resources in the North Carpathian Province are, at the mean, 4.61 trillion cubic feet of gas and 359 million barrels of oil. Many favorable parts of the province have been extensively explored for oil and gas. The lateral and vertical variability of the structure, the distribution and complex geologic nature of source rocks, and the depths of potential exploration targets, as well as the high degree of exploration, all indicate that future discoveries in this province are likely to be numerous but in small fields.

  5. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantham, P.J.; Wakefield, L.L.

    1988-01-01

    The analysis of the sterane data of a large set of crude oils (414) derived from marine carbonate (27) and siliciclastic source rocks (14) where influences of terrestrial or lacustrine derived organic matter can reasonably be excluded, shows that there are increases in the relative content of C/sub 28/ steranes and decreases in the relative content of C/sub 29/ steranes through geological time. There are no consistent variations in the relative content of C/sub 27/ steranes through time. With one major exception (a Proterozoic oil from Oman), Paleozoic and older crude oils are thus generally characterized by strong predominances ofmore » C/sub 29/ steranes and low relative concentrations of C/sub 28/ steranes. Significantly higher proportions of C/sub 28/ steranes and lower proportions of C/sub 29/ steranes occur in oils derived from Jurassic and Upper Cretaceous source rocks. These changes through time do not appear to reflect the chemical evolution of the sterols of one particular variety of marine organism: the increase in C/sub 28/ steranes may be related to the increased diversification of phytoplantonic assemblages in the Jurassic and Cretaceous. Possible sources of the C/sub 28/ sterols necessary for the observed changes in crude oil steranes includes diatoms, coccolithophores and dinoflagellates. Although the technique does not give an accurate means of determining the age of the source rock of a crude oil it is possible to distinguish younger crudes derived from the Upper Cretaceous and Tertiary from Palaeozoic and older crudes.« less

  6. Paleozoic intrusive rocks from the Dunhuang tectonic belt, NW China: Constraints on the tectonic evolution of the southernmost Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Sun, Yong; Diwu, Chunrong; Zhu, Tao; Ao, Wenhao; Zhang, Hong; Yan, Jianghao

    2017-05-01

    The Dunhuang tectonic belt (DTB) is of great importance for understanding the tectonic evolution of the southernmost Central Asian Orogenic Belt (CAOB). In this study, the temporal-spatial distribution, petrogenesis and tectonic setting of the Paleozoic representative intrusive rocks from the DTB were systematically investigated to discuss crustal evolution history and tectonic regime of the DTB during Paleozoic. Our results reveal that the Paleozoic magmatism within the DTB can be broadly divided into two distinct episodes of early Paleozoic and late Paleozoic. The early Paleozoic intrusive rocks, represented by a suite metaluminous-slight peraluminous and medium- to high-K calc-alkaline I-type granitoids crystallized at Silurian (ca. 430-410 Ma), are predominantly distributed along the northern part of the DTB. They were probably produced with mineral assemblage of eclogite or garnet + amphibole + rutile in the residue, and were derived from magma mixing source of depleted mantle materials with various proportions of Archean-Mesoproterozoic continental crust. The late Paleozoic intrusive rocks can be further subdivided into two stages of late Devonian stage (ca. 370-360 Ma) and middle Carboniferous stage (ca. 335-315 Ma). The former stage is predominated by metaluminous to slight peraluminous and low-K tholeiite to high-K calc-alkaline I-type granitic rocks distributed in the central part of the DTB. They were also generated with mineral assemblage of amphibolite- to eclogite-facies in the residue, and originated from magma source of depleted mantle materials mixed with different degrees of old continental crust. The later stage is represented by adakite and alkali-rich granite exposed in the southern part of the DTB. The alkali-rich granites studied in this paper were possibly produced with mineral assemblage of granulite-facies in the residue and were generated by partial melting of thickened lower continental crust. Zircon Hf isotopes and field distribution of those Paleozoic intrusive rocks reveal that both the Silurian and the late Devonian magmatic activities predominantly represent crustal growth processes in the DTB, accompanied by different degrees of reworking of pre-existing continental crust. However, the middle Carboniferous (ca. 335-315 Ma) magmatic activity reflects a crustal reworking process. The Silurian and late Devonian intrusive rocks were most likely formed in the arc-related subduction zones, whereas, the middle Carboniferous intrusive rocks were possibly formed in a transitional tectonic setting from compression to extension, representing the final stage of Paleozoic orogeny in the DTB. These Paleozoic magmatic rocks further suggest that the DTB has reactivated from a stable block to an orogen and undergone two episodes (the early Paleozoic and the late Paleozoic) of orogeny during Paleozoic. It represents a Paleozoic accretionary orogen of the southernmost margin of the CAOB between the Tarim Craton and North China Craton, and tectonically extends northward to the Beishan orogen and westward to the eastern South Tianshan Belt.

  7. Large Deformation Characteristics and Reinforcement Measures for a Rock Pillar in the Houziyan Underground Powerhouse

    NASA Astrophysics Data System (ADS)

    Xiao, Xin-hong; Xiao, Pei-wei; Dai, Feng; Li, Hai-bo; Zhang, Xue-bin; Zhou, Jia-wen

    2018-02-01

    The underground powerhouse of the Houziyan Hydropower Station is under the conditions of high geo-stress and a low strength/stress ratio, which leads to significant rock deformation and failures, especially for rock pillars due to bidirectional unloading during the excavation process. Damages occurred in thinner rock pillars after excavation due to unloading and stress concentration, which will reduce the surrounding rock integrity and threaten the safety of the underground powerhouse. By using field investigations and multi-source monitoring data, the deformation and failure characteristics of a rock pillar are analyzed from the tempo-spatial distribution features. These results indicate that significant deformation occurred in the rock pillar when the powerhouse was excavated to the fourth layer, and the maximum displacement reached 107.57 mm, which occurred on the main transformer chamber upstream sidewall at an elevation of 1721.20 m. The rock deformation surrounding the rock pillar is closely related to the excavation process and has significant time-related characteristics. To control large deformation of the rock pillar, thru-anchor cables were used to reinforce the rock pillar to ensure the stability of the powerhouse. The rock deformation surrounding the rock pillar decreases gradually and forms a convergent trend after reinforcement measures are installed based on the analysis of the temporal characteristics and the rock pillar deformation rate.

  8. Geothermal regime and Jurassic source rock maturity of the Junggar basin, northwest China

    NASA Astrophysics Data System (ADS)

    Nansheng, Qiu; Zhihuan, Zhang; Ershe, Xu

    2008-01-01

    We analyze the thermal gradient distribution of the Junggar basin based on oil-test and well-logging temperature data. The basin-wide average thermal gradient in the depth interval of 0-4000 m is 22.6 °C/km, which is lower than other sedimentary basins in China. We report 21 measured terrestrial heat flow values based on detailed thermal conductivity data and systematical steady-state temperature data. These values vary from 27.0 to 54.1 mW/m 2 with a mean of 41.8 ± 7.8 mW/m 2. The Junggar basin appears to be a cool basin in terms of its thermal regime. The heat flow distribution within the basin shows the following characteristics. (1) The heat flow decreases from the Luliang Uplift to the Southern Depression; (2) relatively high heat flow values over 50 mW/m 2 are confined to the northern part of the Eastern Uplift and the adjacent parts of the Eastern Luliang Uplift and Central Depression; (3) The lowest heat flow of smaller than 35 mW/m 2 occurs in the southern parts of the basin. This low thermal regime of the Junggar basin is consistent with the geodynamic setting, the extrusion of plates around the basin, the considerably thick crust, the dense lithospheric mantle, the relatively stable continental basement of the basin, low heat generation and underground water flow of the basin. The heat flow of this basin is of great significance to oil exploration and hydrocarbon resource assessment, because it bears directly on issues of petroleum source-rock maturation. Almost all oil fields are limited to the areas of higher heat flows. The relatively low heat flow values in the Junggar basin will deepen the maturity threshold, making the deep-seated widespread Permian and Jurassic source rocks in the Junggar basin favorable for oil and gas generation. In addition, the maturity evolution of the Lower Jurassic Badaowan Group (J 1b) and Middle Jurassic Xishanyao Group (J 2x) were calculated based on the thermal data and burial depth. The maturity of the Jurassic source rocks of the Central Depression and Southern Depression increases with depth. The source rocks only reached an early maturity with a R0 of 0.5-0.7% in the Wulungu Depression, the Luliang Uplift and the Western Uplift, whereas they did not enter the maturity window ( R0 < 0.5%) in the Eastern Uplift of the basin. This maturity evolution will provide information of source kitchen for the Jurassic exploration.

  9. Geologic Assessment of Undiscovered, Technically Recoverable Coalbed-Gas Resources in Cretaceous and Tertiary Rocks, North Slope and Adjacent State Waters, Alaska

    USGS Publications Warehouse

    Roberts, Stephen B.

    2008-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geology-based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States, focusing on the distribution, quantity, and availability of oil and natural gas resources. The USGS has completed an assessment of the undiscovered, technically recoverable coalbed-gas resources in Cretaceous and Tertiary rocks underlying the North Slope and adjacent State waters of Alaska (USGS Northern Alaska Province 5001). The province is a priority Energy Policy and Conservation Act (EPCA) province for the National Assessment because of its potential for oil and gas resources. The assessment of this province is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (stratigraphy, sedimentology, petrophysical properties), and hydrocarbon traps (trap formation and timing). In the Northern Alaska Province, the USGS used this geologic framework to define one composite coalbed gas total petroleum system and three coalbed gas assessment units within the petroleum system, and quantitatively estimated the undiscovered coalbed-gas resources within each assessment unit.

  10. Generalized surficial geologic map of the Fort Irwin area, San Bernadino: Chapter B in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Miller, David M.; Menges, Christopher M.; Lidke, David J.; Buesch, David C.

    2014-01-01

    The geology and landscape of the Fort Irwin area, typical of many parts of the Mojave Desert, consist of rugged mountains separated by broad alluviated valleys that form the main coarse-resolution features of the geologic map. Crystalline and sedimentary rocks, Mesozoic and older in age, form most of the mountains with lesser accumulations of Miocene sedimentary and volcanic rocks. In detail, the area exhibits a fairly complex distribution of surficial deposits resulting from diverse rock sources and geomorphology that has been driven by topographic changes caused by recent and active faulting. Depositional environments span those typical of the Mojave Desert: alluvial fans on broad piedmonts, major intermittent streams along valley floors, eolian sand dunes and sheets, and playas in closed valleys that lack through-going washes. Erosional environments include rocky mountains, smooth gently sloping pediments, and badlands in readily eroded sediment. All parts of the landscape, from regional distribution of mountains, valleys, and faults to details of degree of soil development in surface materials, are portrayed by the surficial geologic map. Many of these attributes govern infiltration and recharge, and the surface distribution of permeable rock units such as Miocene sedimentary and volcanic rocks provides a basis for evaluating potential groundwater storage. Quaternary faults are widespread in the Fort Irwin area and include sinistral, east-striking faults that characterize the central swath of the area and the contrasting dextral, northwest-striking faults that border the east and west margins. Bedrock distribution and thickness of valley-fill deposits are controlled by modern and past faulting, and faults on the map help to identify targets for groundwater exploration.

  11. Temperature and composition of carbonate cements record early structural control on cementation in a nascent deformation band fault zone: Moab Fault, Utah, USA

    NASA Astrophysics Data System (ADS)

    Hodson, Keith R.; Crider, Juliet G.; Huntington, Katharine W.

    2016-10-01

    Fluid-driven cementation and diagenesis within fault zones can influence host rock permeability and rheology, affecting subsequent fluid migration and rock strength. However, there are few constraints on the feedbacks between diagenetic conditions and structural deformation. We investigate the cementation history of a fault-intersection zone on the Moab Fault, a well-studied fault system within the exhumed reservoir rocks of the Paradox Basin, Utah, USA. The fault zone hosts brittle structures recording different stages of deformation, including joints and two types of deformation bands. Using stable isotopes of carbon and oxygen, clumped isotope thermometry, and cathodoluminescence, we identify distinct source fluid compositions for the carbonate cements within the fault damage zone. Each source fluid is associated with different carbonate precipitation temperatures, luminescence characteristics, and styles of structural deformation. Luminescent carbonates appear to be derived from meteoric waters mixing with an organic-rich or magmatic carbon source. These cements have warm precipitation temperatures and are closely associated with jointing, capitalizing on increases in permeability associated with fracturing during faulting and subsequent exhumation. Earlier-formed non-luminescent carbonates have source fluid compositions similar to marine waters, low precipitation temperatures, and are closely associated with deformation bands. The deformation bands formed at shallow depths very early in the burial history, preconditioning the rock for fracturing and associated increases in permeability. Carbonate clumped isotope temperatures allow us to associate structural and diagenetic features with burial history, revealing that structural controls on fluid distribution are established early in the evolution of the host rock and fault zone, before the onset of major displacement.

  12. Pimienta-Tamabra(!) - A giant supercharged petroleum system in the southern Gulf of Mexico, onshore and offshore Mexico

    USGS Publications Warehouse

    Magoon, L.B.; Hudson, T.L.; Cook, H.E.

    2001-01-01

    Pimienta-Tamabra(!) is a giant supercharged petroleum system in the southern Gulf of Mexico with cumulative production and total reserves of 66.3 billion barrels of oil and 103.7 tcf of natural gas, or 83.6 billion barrels of oil equivalent (BOE). The effectiveness of this system results largely from the widespread distribution of good to excellent thermally mature, Upper Jurassic source rock underlying numerous stratigraphic and structural traps that contain excellent carbonate reservoirs. Expulsion of oil and gas as a supercritical fluid from Upper Jurassic source rock occurred when the thickness of overburden rock exceeded 5 km. This burial event started in the Eocene, culminated in the Miocene, and continues to a lesser extent today. The expelled hydrocarbons started migrating laterally and then upward as a gas-saturated 35-40??API oil with less than 1 wt.% sulfur and a gas-to-oil ratio (GOR) of 500-1000 ft3/BO. The generation-accumulation efficiency is about 6%.

  13. World class Devonian potential seen in eastern Madre de Dios basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, K.E.; Wagner, J.B.; Carpenter, D.G.

    The Madre de Dios basin in northern Bolivia contains thick, laterally extensive, organic-rich Upper Devonian source rocks that reached the oil-generative stage of thermal maturity after trap and seal formation. Despite these facts, less than one dozen exploration wells have been drilled in the Madre de Dios basin, and no significant reserves have been discovered. Mobil geoscientists conducted a regional geological, geophysical, and geochemical study of the Madre de Dios basin. The work reported here was designed to assess the distribution, richness, depositional environment, and thermal maturity of Devonian source rocks. It is supported by data from over 3,000 mmore » of continuous slimhole core in two of the five Mobil wells in the basin. Source potential also exists in Cretaceous, Mississippian, and Permian intervals. The results of this study have important implications for future exploration in Bolivia and Peru.« less

  14. Stratigraphy of the Morrison and related formations, Colorado Plateau region, a preliminary report

    USGS Publications Warehouse

    Craig, Lawrence C.; ,

    1955-01-01

    Three subdivisions of the Jurassic rocks of the Colorado Plateau region are: the Glen Canyon group, mainly eolian and fluvial sedimentary rocks; the San Rafael group, marine and marginal marine sedimentary rocks; and the Morrison formation, fluvial and lacustrine sedimentary rocks. In central and eastern Colorado the Morrison formation has not been differ- entiated into members. In eastern Utah, northeastern Arizona, northwestern New Mexico, and in part of western Colorado, the Morrison may be divided into a lower part and an upper part; each part has two members which are di1Ierentiated on a lithologic basis. Where differentiated, the lower part of the Morrison consists either of the Salt Wash member or the Recapture member or both; these are equivalent in age and inter tongue and intergrade over a broad area in the vicinity of the Four Corners area of New Mexico, Colorado, Arizona, and Utah. The Salt Wash member is present in eastern Utah and parts of western Colorado, north- eastern Arizona, and northwestern New Mexico. It was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams diverging to the north and east from an apex in south-central Utah. The major source area of the Salt Wash was to the southwest of south-central Utah, probably in west-central Arizona and southeastern California. The member was derived mainly from sedimentary rocks. The Salt Wash deposits grade from predomi- nantly coarse texture at the apex of the 'fan' to predominantly flne texture at the margin of the 'fan'. The Salt Wash member has been arbitrarily divided into four facies: a con- glomera tic sandstone facies, a sandstone and mudstone facies, a claystone and lenticular sandstone facies, and a claystone and limestone facies. The Recapture member of the Morrison formation is present in northeastern Arizona, northwestern New Mexico, and small areas of southeastern Utah and southwestern Colorado near the Four Corners. It was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams. The Recap- ture deposits grade from predominantly coarse texture sedimentary rocks to predominantly fine texture and have been arbitrarily divided into three facies: a conglomeratic sandstone facies, a sandstone facies, and a claystone and sandstone facies. The distribution of the facies indicates that the major source area of the Recapture was south of Gallup, N. Mex., probably in west-central New Mexico. The Recapture was derived from an area of intrusive and extrusive igneous rocks, metamorphic rocks, and sedimentary rocks. The upper part of the Morrison formation consists of the Westwater Canyon member and the Brushy Basin member. The Westwater Canyon member forms the lower portion of the upper part of the Morrison in northeastern Arizona, northwestern New Mexico, and places in southeastern Utah and southwestern Colorade near the Four Corners, and it intertongues and intergrades northward into the Brushy Basin member. The Westwater Canyon member was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams. The Westwater deposits grade from predominantly coarse-textured sedimentary rocks to somewhat finer textured sedimentary rocks, and have been arbitrarily divided into two facies: a conglomeratic sandstone facies and a sandstone facies. The distribution of the facies indicates that the major source area of the Westwater was south of Gallup, N. Mex., probably in west-central New Mexico. The Westwater was derived from an area of intrusive and extrusive igneous rocks, metamorphic rocks, and sedimentary rocks. The similarity of the distribution and composition of the Westwater to the Recapture indicates that the Westwater represents essentially a continuation of deposition on the Recapture 'fan'; the Westwater contains, however, considerably coarser materials. Whereas the S

  15. Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.; Haldemann, A. F. C.; Forsberg-Taylor, N. K.; DiMaggio, E. N.; Schroeder, R. D.; Jakosky, B. M.; Mellon, M. T.; Matijevic, J. R.

    2003-10-01

    The cumulative fractional area covered by rocks versus diameter measured at the Pathfinder site was predicted by a rock distribution model that follows simple exponential functions that approach the total measured rock abundance (19%), with a steep decrease in rocks with increasing diameter. The distribution of rocks >1.5 m diameter visible in rare boulder fields also follows this steep decrease with increasing diameter. The effective thermal inertia of rock populations calculated from a simple empirical model of the effective inertia of rocks versus diameter shows that most natural rock populations have cumulative effective thermal inertias of 1700-2100 J m-2 s-0.5 K-1 and are consistent with the model rock distributions applied to total rock abundance estimates. The Mars Exploration Rover (MER) airbags have been successfully tested against extreme rock distributions with a higher percentage of potentially hazardous triangular buried rocks than observed at the Pathfinder and Viking landing sites. The probability of the lander impacting a >1 m diameter rock in the first 2 bounces is <3% and <5% for the Meridiani and Gusev landing sites, respectively, and is <0.14% and <0.03% for rocks >1.5 m and >2 m diameter, respectively. Finally, the model rock size-frequency distributions indicate that rocks >0.1 m and >0.3 m in diameter, large enough to place contact sensor instruments against and abrade, respectively, should be plentiful within a single sol's drive at the Meridiani and Gusev landing sites.

  16. Extreme Rock Distributions on Mars and Implications for Landing Safety

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.

    2001-01-01

    Prior to the landing of Mars Pathfinder, the size-frequency distribution of rocks from the two Viking landing sites and Earth analog surfaces was used to derive a size-frequency model, for nomimal rock distributions on Mars. This work, coupled with extensive testing of the Pathfinder airbag landing system, allowed an estimate of what total rock abundances derived from thermal differencing techniques could be considered safe for landing. Predictions based on this model proved largely correct at predicting the size-frequency distribution of rocks at the Mars Pathfinder site and the fraction of potentially hazardous rocks. In this abstract, extreme rock distributions observed in Mars Orbiter Camera (MOC) images are compared with those observed at the three landing sites and model distributions as an additional constraint on potentially hazardous surfaces on Mars.

  17. Map showing potential sources of gravel and crushed-rock aggregate in the greater Denver area, Front Range urban corridor, Colorado

    USGS Publications Warehouse

    Trimble, D.E.; Fitch, H.R.

    1974-01-01

    Gravel and (or) crushed-rock aggregates are essential commodities for urban development, but supplies in many places are exhausted or otherwise eliminated by urban growth. Gravel resources may be exhausted by exploitation, covered by urban spread, or eliminated from production by zoning. this conflict between a growing need and a progressively reduced supply can be forestalled by informed land-use planning. Fundamental to intelligent decisions on land use is knowledge of the physical character, distribution, and quantity of the gravel resources of an area, and of the alternative resource of rock suitable for crushing. This map has been prepared to supply data basic to land-use planning in the Front Range Urban Corridor.

  18. Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan - A Rock-Eval survey

    NASA Astrophysics Data System (ADS)

    Baudin, François; Stetten, Elsa; Schnyder, Johann; Charlier, Karine; Martinez, Philippe; Dennielou, Bernard; Droz, Laurence

    2017-08-01

    The Congo River, the second largest river in the world, is a major source of organic matter for the deep Atlantic Ocean because of the connection of its estuary to the deep offshore area by a submarine canyon which feeds a vast deep-sea fan. The lobe zone of this deep-sea fan is the final receptacle of the sedimentary inputs presently channelled by the canyon and covers an area of 2500 km². The quantity and the source of organic matter preserved in recent turbiditic sediments from the distal lobe of the Congo deep-sea fan were assessed using Rock-Eval pyrolysis analyses. Six sites, located at approximately 5000 m water-depth, were investigated. The mud-rich sediments of the distal lobe contain high amounts of organic matter ( 3.5 to 4% Corg), the origin of which is a mixture of terrestrial higher-plant debris, soil organic matter and deeply oxidized phytoplanktonic material. Although the respective contribution of terrestrial and marine sources of organic matter cannot be precisely quantified using Rock-Eval analyses, the terrestrial fraction is dominant according to similar hydrogen and oxygen indices of both suspended and bedload sediments from the Congo River and that deposited in the lobe complex. The Rock-Eval signature supports the 70% to 80% of the terrestrial fraction previously estimated using C/N and δ13Corg data. In the background sediment, the organic matter distribution is homogeneous at different scales, from a single turbiditic event to the entire lobe, and changes in accumulation rates only have a limited effect on the quantity and quality of the preserved organic matter. Peculiar areas with chemosynthetic bivalves and/or bacterial mats, explored using ROV Victor 6000, show a Rock-Eval signature similar to background sediment. This high organic carbon content associated to high sedimentation rates (> 2 to 20 mm.yr-1) in the Congo distal lobe complex implies a high burial rate for organic carbon. Consequently, the Congo deep-sea fan represents an enormous sink of terrestrial organic matter when compared to other turbiditic systems over the world.

  19. Airborne Magnetic and Electromagnetic Data map Rock Alteration and Water Content at Mount Adams, Mount Baker and Mount Rainier, Washington: Implications for Lahar Hazards and Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Finn, C. A.; Deszcz-Pan, M.; Horton, R.; Breit, G.; John, D.

    2007-12-01

    High resolution helicopter-borne magnetic and electromagnetic (EM) data flown over the rugged, ice-covered, highly magnetic and mostly resistive volcanoes of Mount Rainier, Mount Adams and Mount Baker, along with rock property measurements, reveal the distribution of alteration, water and hydrothermal fluids that are essential to evaluating volcanic landslide hazards and understanding hydrothermal systems. Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Intense hydrothermal alteration significantly reduces the magnetization and resistivity of volcanic rock resulting in clear recognition of altered rock by helicopter magnetic and EM measurements. Magnetic and EM data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region, in the central core of Mount Adams north of the summit, and in much of the central cone of Mount Baker. We identify the Sunset Amphitheater region and steep cliffs at the western edge of the central altered zone at Mount Adams as likely sources for future debris flows. In addition, the EM data identified water-saturated rocks in the upper 100-200 m of the three volcanoes. The water-saturated zone could extend deeper, but is beyond the detection limits of the EM data. Water in hydrothermal fluids reacts with the volcanic rock to produce clay minerals. The formation of clay minerals and presence of free water reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore, knowing the distribution of water is also important for hazard assessments. Finally, modeling requires extremely low resistivities (< 20 ohm-m) that laboratory electrical resistivity measurements indicate are most easily explained by sulfuric acid solutions permeating altered rocks. The acid is the result of oxidation of magmatic H2S to sulfuric acid and highlights the continued alteration of volcanoes during periods of relative quiescence. Our results demonstrate that high resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock and shallow pore water and hydrothermal fluids within active stratovolcanoes.

  20. Petrophysical Rock Typing of Unconventional Shale Plays: A Case Study for the Niobrara Formation of the Denver-Julesburg (DJ) Basin

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, A.; Prasad, M.

    2015-12-01

    The hydrocarbon-rich mudstone rock layers of the Niobrara Formation were deposited in the shallow marine environment and have evolved as overmature oil- or gas-prone source and reservoir rocks. The hydrocarbon production from its low-porosity, nano-darcy permeability and interbedded chalk-marl reservoir intervals is very challenging. The post-diagenetic processes have altered the mineralogy and pore structure of its sourcing and producing rock units. A rock typing analysis in this play can help understand the reservoir heterogeneity significantly. In this study, a petrophysical rock typing workflow is presented for the Niobrara Formation by integrating experimental rock properties with geologic lithofacies classification, well log data and core study.Various Niobrara lithofacies are classified by evaluating geologic depositional history, sequence stratigraphy, mineralogy, pore structure, organic content, core texture, acoustic properties, and well log data. The experimental rock measurements are conducted on the core samples recovered from a vertical well from the Wattenberg Field of the Denver-Julesburg (DJ) Basin. Selected lithofacies are used to identify distinct petrofacies through the empirical analysis of the experimental data-set. The grouped petrofacies are observed to have unique mineralogical properties, pore characteristics, and organic contents and are labelled as discrete Niobrara rock types in the study area.Micro-textural image analysis (FESEM) is performed to qualitatively examine the pore size distribution, pore types and mineral composition in the matrix to confirm the classified rock units. The principal component analysis and the cluster analysis are carried out to establish the certainty of the selected rock types. Finally, the net-to-pay thicknesses of these rock units are compared with the cumulative production data from the field to further validate the chosen rock types.For unconventional shale plays, the rock typing information can be used to locate hydrocarbon sweetspots, facilitate the placement of the horizontal section of the wells along the sweetspots, and can augment engineers' abilities on suitable well placement considerations. It can also help enhancing the effectiveness of the hydraulic fracture stimulation and completion operation.

  1. Trace element evaluation of a suite of rocks from Reunion Island, Indian Ocean

    USGS Publications Warehouse

    Zielinski, R.A.

    1975-01-01

    Reunion Island consists of an olivine-basalt shield capped by a series of flows and intrusives ranging from hawaiite through trachyte. Eleven rocks representing the total compositional sequence have been analyzed for U, Th and REE. Eight of the rocks (group 1) have positive-slope, parallel, chondrite-normalized REE fractionation patterns. Using a computer model, the major element compositions of group 1 whole rocks and observed phenocrysts were used to predict the crystallization histories of increasingly residual liquids, and allowed semi-quantitative verification of origin by fractional crystallization of the olivine-basalt parent magma. Results were combined with mineral-liquid distribution coefficient data to predict trace element abundances, and existing data on Cr, Ni, Sr and Ba were also successfully incorporated in the model. The remaining three rocks (group 2) have nonuniform positive-slope REE fractionation patterns not parallel to group 1 patterns. Rare earth fractionation in a syenite is explained by partial melting of a source rich in clinopyroxene and/or hornblende. The other two rocks of group 2 are explained as hybrids resulting from mixing of syenite and magmas of group 1. ?? 1975.

  2. Source-rock geochemistry of the San Joaquin Basin Province, California: Chapter 11 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Peters, Kenneth E.; Magoon, Leslie B.; Valin, Zenon C.; Lillis, Paul G.

    2007-01-01

    Source-rock thickness and organic richness are important input parameters required for numerical modeling of the geohistory of petroleum systems. Present-day depth and thickness maps for the upper Miocene Monterey Formation, Eocene Tumey formation of Atwill (1935), Eocene Kreyenhagen Formation, and Cretaceous-Paleocene Moreno Formation source rocks in the San Joaquin Basin were determined using formation tops data from 266 wells. Rock-Eval pyrolysis and total organic carbon data (Rock-Eval/TOC) were collected for 1,505 rock samples from these source rocks in 70 wells. Averages of these data for each well penetration were used to construct contour plots of original total organic carbon (TOCo) and original hydrogen index (HIo) in the source rock prior to thermal maturation resulting from burial. Sufficient data were available to construct plots of TOCo and HIo for all source-rock units except the Tumey formation of Atwill (1935). Thick, organic-rich, oil-prone shales of the upper Miocene Monterey Formation occur in the Tejon depocenter in the southern part of the basin with somewhat less favorable occurrence in the Southern Buttonwillow depocenter to the north. Shales of the upper Miocene Monterey Formation generated most of the petroleum in the San Joaquin Basin. Thick, organic-rich, oil-prone Kreyenhagen Formation source rock occurs in the Buttonwillow depocenters, but it is thin or absent in the Tejon depocenter. Moreno Formation source rock is absent from the Tejon and Southern Buttonwillow depocenters, but thick, organic-rich, oil-prone Moreno Formation source rock occurs northwest of the Northern Buttonwillow depocenter adjacent to the southern edge of Coalinga field.

  3. Oil gravity distribution in the diatomite at South Belridge Field, Kern County, CA: Implications for oil sourcing and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, D.W.; Sande, J.J.; Doe, P.H.

    1995-04-01

    Understanding oil gravity distribution in the Belridge Diatomite has led to economic infill development and specific enhanced recovery methods for targeted oil properties. To date more than 100 wells have provided samples used to determining vertical and areal distribution of oil gravity in the field. Detailed geochemical analyses were also conducted on many of the oil samples to establish different oil types, relative maturities, and to identify transformed oils. The geochemical analysis also helped identify source rock expulsion temperatures and depositional environments. The data suggests that the Belridge diatomite has been charged by a single hydrocarbon source rock type andmore » was generated over a relatively wide range of temperatures. Map and statistical data support two distinct oil segregation processes occurring post expulsion. Normal gravity segregation within depositional cycles of diatomite have caused lightest oils to migrate to the crests of individual cycle structures. Some data suggests a loss of the light end oils in the uppermost cycles to the Tulare Formation above, or through early biodegradation. Structural rotation post early oil expulsion has also left older, heavier oils concentrated on the east flank of the structure. With the addition of other samples from the south central San Joaquin area, we have been able to tie the Belridge diatomite hydrocarbon charge into a regional framework. We have also enhanced our ability to predict oil gravity and well primary recovery by unraveling some key components of the diatomite oil source and migration history.« less

  4. Geology, hydrology, and ground-water quality at the Byron Superfund site near Byron, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Yeskis, Douglas J.; Bolen, William J.; Rauman, James R.; Prinos, Scott T.

    1997-01-01

    A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency to define the geohydrology and contaminant distribution at a Superfund site near Byron, Illinois. Geologic units of interest beneath the site are the St. Peter Sandstone; the shale, dolomite and sandstone of the Glenwood Formation; the dolomite of the Platteville and Galena Groups; and sands, gravels, tills and loess of Quaternary age. The hydrologic units of interest are the unconsolidated aquifer, Galena-Platteville aquifer, Harmony Hill Shale semiconfining unit, and the St. Peter aquifer. Ground-water flow generally is from the upland areas northwest and southwest toward the Rock River. Water levels indicate the potential for downward ground-water flow in most of the area except near the Rock River. The Galena-Platteville aquifer can be subdivided into four zones characterized by differing water-table altitudes, hydraulic gradients, and vertical and horizontal permeabilities. Geophysical, hydraulic, and aquifer-test data indicate that lithology, stratigraphy, and tectonic structures affect the distribution of primary and secondary porosity of dolomite in the Galena and Platteville Groups, which affects the permeability distribution in the Galena-Platteville aquifer. The distribution of cyanide, chlorinated aliphatic hydrocarbons, and aromatic hydrocarbons in ground water indicates that these contaminants are derived from multiple sources in the study area. Contaminants in the northern part of this area migrate northwest to the Rock River. Contaminants in the central and southern parts of this area appear to migrate to the southwest in the general direction of the Rock River.

  5. Geochemical character and origin of oils in Ordovician reservoir rock, Illinois and Indiana, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guthrie, J.M.; Pratt, L.M.

    1995-11-01

    Twenty-three oils produced from reservoirs within the Ordovician Galena Group (Trenton equivalent) and one oil from the Mississippian Ste. Genevieve Limestone in the Illinois and Indiana portions of the Illinois basin are characterized. Two end-member oil groups (1) and (2) and one intermediate group (1A) are identified using conventional carbon isotopic analysis of whole and fractionated oils, gas chromatography (GC) of saturated hydrocarbon fractions, isotope-ratio-monitoring gas chromatography/mass spectrometry (irm-GC/MS) of n-alkanes ranging from C{sub 15} to C{sub 25}, and gas chromatography/mass spectrometry (GC/MS) of the aromatic hydrocarbon fractions. Group 1 is characterized by high odd-carbon predominance in mid-chain n-alkanes (C{submore » 15}-C{sub 19}), low abundance Of C{sub 20+}, n-alkanes, and an absence of pristane and phytane. Group IA is characterized by slightly lower odd-carbon predominance of mid-chain n-alkanes, greater abundance of C{sub 20+} n-alkanes compared to group 1, and no pristane and phytane. Conventional correlations of oil to source rock based on carbon isotopic-type curves and hopane (m/z 191) and sterane (m/z 217) distributions are of limited use in distinguishing Ordovician-reservoired oil groups and determining their origin. Oil to source rock correlations using the distribution and carbon isotopic composition of n-alkanes and the m/z 133 chromatograms of n-alkylarenes show that groups 1 and 1A originated from strata of the Upper Ordovician Galena Group. Group 2 either originated solely from the Upper Ordovician Maquoketa Group or from a mixture of oils generated from the Maquoketa Group and the Galena Group. The Mississippian-reservoired oil most likely originated from the Devonian New Albany Group. The use of GC, irm-GC/MS, and GC/MS illustrates the value of integrated molecular and isotopic approaches for correlating oil groups with source rocks.« less

  6. The effect of complex fault rupture on the distribution of landslides triggered by the 12 January 2010, Haiti earthquake

    USGS Publications Warehouse

    Harp, Edwin L.; Jibson, Randall W.; Dart, Richard L.; Margottini, Claudio; Canuti, Paolo; Sassa, Kyoji

    2013-01-01

    The MW 7.0, 12 January 2010, Haiti earthquake triggered more than 7,000 landslides in the mountainous terrain south of Port-au-Prince over an area that extends approximately 50 km to the east and west from the epicenter and to the southern coast. Most of the triggered landslides were rock and soil slides from 25°–65° slopes within heavily fractured limestone and deeply weathered basalt and basaltic breccia. Landslide volumes ranged from tens of cubic meters to several thousand cubic meters. Rock slides in limestone typically were 2–5 m thick; slides within soils and weathered basalt typically were less than 1 m thick. Twenty to thirty larger landslides having volumes greater than 10,000 m3 were triggered by the earthquake; these included block slides and rotational slumps in limestone bedrock. Only a few landslides larger than 5,000 m3 occurred in the weathered basalt. The distribution of landslides is asymmetric with respect to the fault source and epicenter. Relatively few landslides were triggered north of the fault source on the hanging wall. The densest landslide concentrations lie south of the fault source and the Enriquillo-Plantain-Garden fault zone on the footwall. Numerous landslides also occurred along the south coast west of Jacmél. This asymmetric distribution of landsliding with respect to the fault source is unusual given the modeled displacement of the fault source as mainly thrust motion to the south on a plane dipping to the north at approximately 55°; landslide concentrations in other documented thrust earthquakes generally have been greatest on the hanging wall. This apparent inconsistency of the landslide distribution with respect to the fault model remains poorly understood given the lack of any strong-motion instruments within Haiti during the earthquake.

  7. Determining the Accuracy of Paleomagnetic Remanence and High-Resolution Chronostratigraphy for Sedimentary Rocks using Rock Magnetics

    NASA Astrophysics Data System (ADS)

    Kodama, K. P.

    2017-12-01

    The talk will consider two broad topics in rock magnetism and paleomagnetism: the accuracy of paleomagnetic remanence and the use of rock magnetics to measure geologic time in sedimentary sequences. The accuracy of the inclination recorded by sedimentary rocks is crucial to paleogeographic reconstructions. Laboratory compaction experiments show that inclination shallows on the order of 10˚-15˚. Corrections to the inclination can be made using the effects of compaction on the directional distribution of secular variation recorded by sediments or the anisotropy of the magnetic grains carrying the ancient remanence. A summary of all the compaction correction studies as of 2012 shows that 85% of sedimentary rocks studied have enjoyed some amount of inclination shallowing. Future work should also consider the effect of grain-scale strain on paleomagnetic remanence. High resolution chronostratigraphy can be assigned to a sedimentary sequence using rock magnetics to detect astronomically-forced climate cycles. The power of the technique is relatively quick, non-destructive measurements, the objective identification of the cycles compared to facies interpretations, and the sensitivity of rock magnetics to subtle changes in sedimentary source. An example of this technique comes from using rock magnetics to identify astronomically-forced climate cycles in three globally distributed occurrences of the Shuram carbon isotope excursion. The Shuram excursion may record the oxidation of the world ocean in the Ediacaran, just before the Cambrian explosion of metazoans. Using rock magnetic cyclostratigraphy, the excursion is shown to have the same duration (8-9 Myr) in southern California, south China and south Australia. Magnetostratigraphy of the rocks carrying the excursion in California and Australia shows a reversed to normal geomagnetic field polarity transition at the excursion's nadir, thus supporting the synchroneity of the excursion globally. Both results point to a primary depositional origin for the excursion, and strengthens the argument for oxidation of the world ocean in the Ediacaran. Future work must learn how global climate is encoded by rock magnetics, but our work to date suggests that variations in continental run-off are detected by rock magnetics.

  8. Occurrence and Distribution of Organic Wastewater Compounds in Rock Creek Park, Washington, D.C., 2007-08

    USGS Publications Warehouse

    Phelan, Daniel J.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia boundary. Polycyclic aromatic hydrocarbons were the dominant organic compounds found in the stormwater samples at the Joyce Road station. Polycyclic aromatic hydrocarbons were consistently found in higher concentrations either in sediment or in whole-water samples than in the dissolved samples collected during base-flow conditions at the 23 synoptic sites, or in the Joyce Road station stormwater samples.

  9. Sr-Nd-Pb isotope systematics of the Permian volcanic rocks in the northern margin of the Alxa Block (the Shalazhashan Belt) and comparisons with the nearby regions: Implications for a Permian rift setting?

    NASA Astrophysics Data System (ADS)

    Shi, Guanzhong; Wang, Hua; Liu, Entao; Huang, Chuanyan; Zhao, Jianxin; Song, Guangzeng; Liang, Chao

    2018-04-01

    The petrogenesis of the Permian magmatic rocks in the Shalazhashan Belt is helpful for us to understand the tectonic evolution of the Central Asian Orogenic Belt (CAOB) in the northern margin of the Alxa Block. The Permian volcanic rocks in the Shalazhashan Belt include basalts, trachyandesites and trachydacites. Our study shows that two basalt samples have negative εNd(t) values (-5.4 to -1.5) and higher radiogenic Pb values, which are relevant to the ancient subcontinental lithospheric mantle. One basalt sample has positive εNd(t) value (+10) representing mafic juvenile crust and is derived from depleted asthenosphere. The trachyandesites are dated at 284 ± 3 Ma with εNd(t) = +2.7 to +8.0; ISr = 0.7052 to 0.7057, and they are generated by different degrees of mixing between mafic magmas and crustal melts. The trachydacites have high εNd(t) values and slightly higher ISr contents, suggesting the derivation from juvenile sources with crustal contamination. The isotopic comparisons of the Permian magmatic rocks of the Shalazhashan Belt, the Nuru-Langshan Belt (representing the northern margin of the Alxa Block), the Solonker Belt (Mandula area) and the northern margin of the North China Craton (Bayan Obo area) indicate that the radiogenic isotopic compositions have an increasingly evolved trend from the south (the northern margins of the Alxa Block and the North China Craton) to the north (the Shalazhashan Belt and the Solonker Belt). Three end-member components are involved to generate the Permian magmatic rocks: the ancient subcontinental lithospheric mantle, the mafic juvenile crust or newly underplated mafic rocks that were originated from depleted asthenosphere, and the ancient crust. The rocks correlative with the mafic juvenile crust or newly underplated mafic rocks are predominantly distributed along the Shalazhashan Belt and the Solonker Belt, and the rocks derived from ancient, enriched subcontinental lithospheric mantle are mainly distributed along the northern margins of the Alxa Block and the North China Craton. The magmatic rock types, isotopic features and their temporal, spatial distributions suggest an extensional regime probably related to rifting.

  10. Petrology and physical conditions of metamorphism of calcsilicate rocks from low- to high-grade transition area, Dharmapuri District, Tamil Nadu

    NASA Technical Reports Server (NTRS)

    Narayana, B. L.; Natarajan, R.; Govil, P. K.

    1988-01-01

    Calc-silicate rocks comprising quartz, plagioclase, diopside, sphene, scapolite, grossularite-andradite and wollastonite occur as lensoid enclaves within the greasy migmatitic and charnockitic gneisses of the Archaean amphibolite- to granulite-facies transition zone in Dharmapuri district, Tamil Nadu. The calc-silicate rocks are characterized by the absence of K-feldspar and primary calcite, presence of large modal quartz and plagioclase and formation of secondary garnet and zoisite rims around scapolite and wollastonite. The mineral distributions suggest compositional layering. The chemical composition and mineralogy of the calc-silicate rocks indicate that they were derived from impure silica-rich calcareous sediments whose composition is similar to that of pelite-limestone mixtures. From the mineral assemblages the temperature, pressure and fluid composition during metamorphism were estimated. The observed mineral reaction sequences require a range of X sub CO2 values demonstrating that an initially CO2-rich metamorphic fluid evolved with time towards considerably more H2O-rich compositions. These variations in fluid composition suggest that there were sources of water-rich fluids external to the calc-silicate rocks and that mixing of these fluids with those of calc-silicate rocks was important in controlling fluid composition in calc-silicate rocks and some adjacent rock types as well.

  11. Landslides and rock fall processes in the proglacial area of the Gepatsch glacier, Tyrol, Austria - Quantitative assessment of controlling factors and process rates

    NASA Astrophysics Data System (ADS)

    Vehling, Lucas; Rohn, Joachim; Moser, Michael

    2013-04-01

    Due to the rapid deglaciation since 1850, lithological structures and topoclimatic factors, mass movements like rock fall, landslides and complex processes are important contributing factors to sediment transport and modification of the earth's surface in the steep, high mountain catchment of the Gepatsch reservoir. Contemporary geotechnical processes, mass movement deposits, their source areas, and controlling factors like material properties and relief parameters are mapped in the field, on Orthofotos and on digital elevation models. The results are presented in an Arc-Gis based geotechnical map. All mapped mass movements are stored in an Arc-Gis geodatabase and can be queried regarding properties, volume and controlling factors, so that statistical analyses can be conducted. The assessment of rock wall retreat rates is carried out by three different methods in multiple locations, which differ in altitude, exposition, lithology and deglaciation time: Firstly, rock fall processes and rates are investigated in detail on five rock fall collector nets with an overall size of 750 m2. Rock fall particles are gathered, weighed and grain size distribution is detected by sieving and measuring the diameter of the particles to distinct between rock fall processes and magnitudes. Rock wall erosion processes like joint formation and expansions are measured with high temporal resolution by electrical crack meters, together with rock- and air temperature. Secondly, in cooperation with the other working groups in the PROSA project, rock fall volumes are determined with multitemporal terrestrial laserscanning from several locations. Lately, already triggered rock falls are accounted by mapping the volume of the deposit and calculating of the bedrock source area. The deposition time span is fixed by consideration of the late Holocene lateral moraines and analysing historical aerial photographs, so that longer term rock wall retreat rates can be calculated. In order to limit homogenous bedrock sections for calculating specific rock wall retreat rates and to extrapolate the local determinated rock wall retreat rates to larger scale, bedrock areas will be divided into units of similar morphodynamic intensities which will be therefore classified by a rock mass strength (RMS) system. The RMS-System contains lithological and topoclimatic factors but also takes the measured rock wall retreat rates into account.

  12. Characterization of Martian Rock Shape for MER Airbag Drop Tests

    NASA Astrophysics Data System (ADS)

    Dimaggio, E. N.; Schroeder, R.; Castle, N.; Golombek, M.

    2002-12-01

    Rock distributions for the final platforms used in airbag drop tests are currently being designed for the Mars Exploration Rovers (MER) scheduled to launch in 2003. Like Mars Pathfinder (MPF), launched in 1996, MER will use a series of airbags to cushion its landing on the surface of Mars. Previous MER airbag drop tests have shown that sharp, angular (triangular) rocks >20 cm high may be hazardous. To aid in defining the rock distributions for the final airbag tests, images from the Viking Landers 1 and 2 and MPF were used to identify rocks that are >20 cm high, and characterize them as triangular, square or round. Approximately 33% of all rocks analyzed are triangular. Of the rocks analyzed that are ~20-60 cm high, ~14% are triangular. Most of these triangular rocks are small, ~20-30 cm high. Rock distributions of previous airbag platforms were similarly classified and show a greater percentage of triangular and square rocks that are ~20-60 cm high than at the landing sites. The burial of a rock (perched, partially buried or buried) was also considered because perched rocks may pose less of a threat to the airbags than those buried because perched rocks can be dislodged and roll during impact. Approximately 19% of all rocks analyzed, and ~19% of rocks that are ~20-60 cm high, are triangular and partially buried or buried. These data suggest that the platform rock distributions appropriately represented the risks to the airbags associated with triangular rocks. A similar percentage of >20 cm high triangular rocks will be added to the drop test platforms to represent landing site rock distributions.

  13. Pore-throat sizes in sandstones, siltstones, and shales: Reply

    USGS Publications Warehouse

    Nelson, Philip H.

    2011-01-01

    In his discussion of my article (Nelson, 2009), W. K. Camp takes issue with the concept that buoyancy is not the dominant force in forming and maintaining the distribution of gas in tight-gas accumulations (Camp, 2011). I will restrict my response to the issues he raised regarding buoyant versus nonbuoyant drive and to a few comments regarding water saturation and production. I claim that the pressure generated in petroleum source rocks (Pg), instead of the buoyancy pressure (Pb), provides the energy to charge most tight sandstones with gas. The arguments are fourfold: (1) buoyant columns of sufficient height seldom exist in low-permeability sand-shale sequences, (2) tight-gas systems display a pressure profile that declines instead of increases upward, (3) gas is pervasive in overpressured systems, and (4) source rocks can generate pore pressures sufficiently high to charge tight sandstones.

  14. The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, western Australia: Trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maas, R.; McCulloch, M.T.

    1991-07-01

    Clastic metasedimentary rocks of mid-Archean age from the Mt. Narryer and Jack Hills metasedimentary belts have REE patterns resembling those of mid- to late-Archean pelitic-quartzitic cratonic sequences elsewhere, and post-Archean continental rocks in general. Detrital zircons in the metasediments range in age from ca. 3,000 to 3,700 Ma. This indicates a provenance from mature cratonic sources controlled by K-rich granitic rocks. Additional minor sediment sources were identified as older, mainly chemical sedimentary sequences, ultramafic rocks, and felsic rocks characterized by low HREE contents, perhaps of tonalitic affinity. Differences between sedimentary REE patterns and those in the surrounding 3.73-3.0 Ga orthogneissmore » terrain, and between detrital zircon ages and the age distribution in the gneisses, suggest that the present association of the metasedimentary belts with the orthogneiss terrain is of tectonic origin. The occurrence of detrital zircons with U-Pb ages > 4 Ga in certain quartzites and conglomerates of the Jack Hills and Mt. Narryer metasedimentary sequences indicates a further, most likely granitic, source. {epsilon}{sub Nd}(T{sub Dep}) values in Jack Hills metasediments vary widely (+5 to {minus}12) but have a smaller range in the Mt. Narryer belt ({minus}5 to {minus}9). The lowest {epsilon}{sub Nd} values of both sequences are interpreted to reflect the presence of detritus derived from 4.1-4.2 Ga old LREE-enriched continental crust in proportions considerably larger ({ge} 10%) than estimated previously from the abundance of pre-4 Ga detrital zircons ({approx}3%). This would imply the former existence of significant volumes of pre-4 Ga continental crust in the provenance of the Mt. Narryer and Jack Hills metasediments.« less

  15. Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano.

    PubMed

    Finn, C A; Sisson, T W; Deszcz-Pan, M

    2001-02-01

    Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows and future collapses could threaten areas that are now densely populated. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.

  16. Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano

    USGS Publications Warehouse

    Finn, C.A.; Sisson, T.W.; Deszcz-Pan, M.

    2001-01-01

    Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows1. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes1-4 and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows5,6 and future collapses could threaten areas that are now densely populated7. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit3-5,8. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.

  17. MX Siting Investigation. Geotechnical Evaluation. Detailed Aggregate Resources Study. Pahroc Study Area, Nevada.

    DTIC Science & Technology

    1981-06-05

    source is a fairly limited outcrop of calcareous sandstone classified as dolomite rock (Do). Class RBIb Sources: Pour basin-fill sources within the study...Paleozoic rocks consist of limestone, dolomite , and quartzite with interbedded sandstone and shale. These units are generally exposed along the northern...categories simplify discussion and presentation without altering the conclusions of the study. 2.2.1 Rock Units Dolomite rocks (Do) and carbonate rocks

  18. The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, Western Australia: Trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons

    NASA Astrophysics Data System (ADS)

    Maas, Roland; McCulloch, Malcolm T.

    1991-07-01

    Clastic metasedimentary rocks of mid-Archean age from the Mt. Narryer and Jack Hills metasedimentary belts have REE patterns resembling those of mid- to late-Archean pelitic-quartzitic cratonic sequences elsewhere, and post-Archean continental rocks in general. Detrital zircons in the metasediments range in age from ca. 3000 to 3700 Ma. This indicates a provenance from mature cratonic sources controlled by K-rich granitic rocks. Additional minor sediment sources were identified as older, mainly chemical sedimentary sequences, ultramafic rocks, and felsic rocks characterized by low HREE contents, perhaps of tonalitic affinity. The association of the near-shore/fluviatile clastic association studied here with extensive turbiditic and chemical sedimentary sequences indicates these sources formed part of a (rifted ?) cratonic margin ca. 3 Ga ago. Differences between sedimentary REE patterns and those in the surrounding 3.73-3.0 Ga orthogneiss terrain, and between detrital zircon ages and the age distribution in the gneisses, suggest that the present association of the metasedimentary belts with the orthogneiss terrain is of tectonic origin. The occurrence of detrital zircons with U-Pb ages > 4 Ga in certain quartzites and conglomerates of the Jack Hills and Mt. Narryer metasedimentary sequences indicates a further, most likely granitic, source. ɛNd( TDep) values in Jack Hills metasediments vary widely (+5 to -12) but have a smaller range in the Mt. Narryer belt (-5 to -9). The lowest ɛNd values of both sequences are interpreted to reflect the presence of detritus derived from 4.1-4.2 Ga old LREE-enriched continental crust in proportions considerably larger (≥ 10%) than estimated previously from the abundance of pre-4 Ga detrital zircons (≈3%). This would imply the former existence of significant volumes of pre-4 Ga continental crust in the provenance of the Mt. Narryer and Jack Hills metasediments.

  19. Sedimentary provenance of Maastrichtian oil shales, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Fathy, Douaa; Wagreich, Michael; Mohamed, Ramadan S.; Zaki, Rafat

    2017-04-01

    Maastrichtian oil shales are distributed within the Central Eastern Desert in Egypt. In this study elemental geochemical data have been applied to investigate the probable provenance of the sedimentary detrital material of the Maastrichtian oil shale beds within the Duwi and the Dakhla formations. The Maastrichtian oil shales are characterized by the enrichment in Ca, P, Mo, Ni, Zn, U, Cr and Sr versus post-Archean Australian shales (PAAS). The chondrite-normalized patterns of the Maastrichtian oil shale samples are showing LREE enrichment, HREE depletion, slightly negative Eu anomaly, no obvious Ce anomaly and typical shale-like PAAS-normalized patterns. The total REE well correlated with Si, Al, Fe, K and Ti, suggesting that the REE of the Maastrichtian oil shales are derived from terrigenous source. Chemical weathering indices such as Chemical Index of Alteration (CIA), Chemical Proxy of Alteration (CPA) and Plagioclase Index of Alteration (PIA) indicate moderate to strong chemical weathering. We suggest that the Maastrichtian oil shale is mainly derived from first cycle rocks especially intermediate rocks without any significant inputs from recycled or mature sources. The proposed data illustrated the impact of the parent material composition on evolution of oil shale chemistry. Furthermore, the paleo-tectonic setting of the detrital source rocks for the Maastrichtian oil shale is probably related to Proterozoic continental island arcs

  20. Mineralogical and geochemical characterization of waste rocks from a gold mine in northeastern Thailand: application for environmental impact protection.

    PubMed

    Assawincharoenkij, Thitiphan; Hauzenberger, Christoph; Ettinger, Karl; Sutthirat, Chakkaphan

    2018-02-01

    Waste rocks from gold mining in northeastern Thailand are classified as sandstone, siltstone, gossan, skarn, skarn-sulfide, massive sulfide, diorite, and limestone/marble. Among these rocks, skarn-sulfide and massive sulfide rocks have the potential to generate acid mine drainage (AMD) because they contain significant amounts of sulfide minerals, i.e., pyrrhotite, pyrite, arsenopyrite, and chalcopyrite. Moreover, both sulfide rocks present high contents of As and Cu, which are caused by the occurrence of arsenopyrite and chalcopyrite, respectively. Another main concern is gossan contents, which are composed of goethite, hydrous ferric oxide (HFO), quartz, gypsum, and oxidized pyroxene. X-ray maps using electron probe micro-analysis (EPMA) indicate distribution of some toxic elements in Fe-oxyhydroxide minerals in the gossan waste rock. Arsenic (up to 1.37 wt.%) and copper (up to 0.60 wt.%) are found in goethite, HFO, and along the oxidized rim of pyroxene. Therefore, the gossan rock appears to be a source of As, Cu, and Mn. As a result, massive sulfide, skarn-sulfide, and gossan have the potential to cause environmental impacts, particularly AMD and toxic element contamination. Consequently, the massive sulfide and skarn-sulfide waste rocks should be protected from oxygen and water to avoid an oxidizing environment, whereas the gossan waste rocks should be protected from the formation of AMD to prevent heavy metal contamination.

  1. The sedimentary organic matter from a Lake Ichkeul core (far northern Tunisia): Rock-Eval and biomarker approach

    NASA Astrophysics Data System (ADS)

    Affouri, Hassène; Sahraoui, Olfa

    2017-05-01

    The vertical distributions of bulk and molecular biomarker composition in samples from a ca. 156 cm sediment core from Lake Ichkeul were determined. Bulk analysis (Rock-Eval pyrolysis, carbonate, lipid extraction) and molecular analysis of saturated fractions were used to characterize the nature, preservation conditions and input of sedimentary organic matter (OM) to this sub-wet lake environment. The sediments are represented mainly by gray-black silty-clay facies where the carbonate (CaCO3) content varies in a range of 10-30% dry sediment. Rock-Eval pyrolysis revealed a homogeneous total organic carbon (TOC) content of ca. 1% sediment, but with down core fluctuation, indicating different anoxic conditions at different depths and material source variation. The values show three periods of relative enrichment, exceeding ca. 1%, at 146-134 cm, 82 cm and 14-0 cm depth. The low Hydrogen Index (HI) values [<119 mg hydrocarbon (HC)/g TOC)] were characteristic of continental Type III OM. The Tmax values in the range 415-420 °C were characteristic of immature OM at an early diagenetic stage. The distributions of n-alkanes (C17 to C34), isoprenoid (iso) alkanes (pristane and phytane), terpanes and steranes showed that the OM is a mixture of marine algal and bacterial source and emergent and floating higher plant origin. In addition, the distributions, as well as several biomarker ratios (n-alkanes, iso-alkanes/n-alkanes), showed that the OM is a mixture of immature and mature. Significant downcore fluctuation was observed in the molecular composition. This indicates intense microbial activity below ca. 50 cm core depth under an anoxic and brackish environment.

  2. Dominant factors in controlling marine gas pools in South China

    USGS Publications Warehouse

    Xu, S.; Watney, W.L.

    2007-01-01

    In marine strata from Sinian to Middle Triassic in South China, there develop four sets of regional and six sets of local source rocks, and ten sets of reservoir rocks. The occurrence of four main formation periods in association with five main reconstruction periods, results in a secondary origin for the most marine gas pools in South China. To improve the understanding of marine gas pools in South China with severely deformed geological background, the dominant control factors are discussed in this paper. The fluid sources, including the gas cracked from crude oil, the gas dissolved in water, the gas of inorganic origin, hydrocarbons generated during the second phase, and the mixed pool fluid source, were the most significant control factors of the types and the development stage of pools. The period of the pool formation and the reconstruction controlled the pool evolution and the distribution on a regional scale. Owing to the multiple periods of the pool formation and the reconstruction, the distribution of marine gas pools was complex both in space and in time, and the gas in the pools is heterogeneous. Pool elements, such as preservation conditions, traps and migration paths, and reservoir rocks and facies, also served as important control factors to marine gas pools in South China. Especially, the preservation conditions played a key role in maintaining marine oil and gas accumulations on a regional or local scale. According to several dominant control factors of a pool, the pool-controlling model can be constructed. As an example, the pool-controlling model of Sinian gas pool in Weiyuan gas field in Sichuan basin was summed up. ?? Higher Education Press and Springer-Verlag 2007.

  3. Characterizing 3D grain size distributions from 2D sections in mylonites using a modified version of the Saltykov method

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Marco; Llana-Fúnez, Sergio

    2016-04-01

    The understanding of creep behaviour in rocks requires knowledge of 3D grain size distributions (GSD) that result from dynamic recrystallization processes during deformation. The methods to estimate directly the 3D grain size distribution -serial sectioning, synchrotron or X-ray-based tomography- are expensive, time-consuming and, in most cases and at best, challenging. This means that in practice grain size distributions are mostly derived from 2D sections. Although there are a number of methods in the literature to derive the actual 3D grain size distributions from 2D sections, the most popular in highly deformed rocks is the so-called Saltykov method. It has though two major drawbacks: the method assumes no interaction between grains, which is not true in the case of recrystallised mylonites; and uses histograms to describe distributions, which limits the quantification of the GSD. The first aim of this contribution is to test whether the interaction between grains in mylonites, i.e. random grain packing, affects significantly the GSDs estimated by the Saltykov method. We test this using the random resampling technique in a large data set (n = 12298). The full data set is built from several parallel thin sections that cut a completely dynamically recrystallized quartz aggregate in a rock sample from a Variscan shear zone in NW Spain. The results proved that the Saltykov method is reliable as long as the number of grains is large (n > 1000). Assuming that a lognormal distribution is an optimal approximation for the GSD in a completely dynamically recrystallized rock, we introduce an additional step to the Saltykov method, which allows estimating a continuous probability distribution function of the 3D grain size population. The additional step takes the midpoints of the classes obtained by the Saltykov method and fits a lognormal distribution with a trust region using a non-linear least squares algorithm. The new protocol is named the two-step method. The conclusion of this work is that both the Saltykov and the two-step methods are accurate and simple enough to be useful in practice in rocks, alloys or ceramics with near-equant grains and expected lognormal distributions. The Saltykov method is particularly suitable to estimate the volumes of particular grain fractions, while the two-step method to quantify the full GSD (mean and standard deviation in log grain size). The two-step method is implemented in a free, open-source and easy-to-handle script (see http://marcoalopez.github.io/GrainSizeTools/).

  4. Distribution of dissolved trace metals around the Sacrificos coral reef island, in the southwestern Gulf of Mexico.

    PubMed

    Rosales-Hoz, L; Carranza-Edwards, A; Sanvicente-Añorve, L; Alatorre-Mendieta, M A; Rivera-Ramirez, F

    2009-11-01

    A reef system in the southwestern Gulf of Mexico is affected by anthropogenic activities, sourced by urban, fluvial, and sewage waters. Dissolved metals have higher concentrations during the rainy season. V and Pb, were derived from an industrial source and transported to the study area by rain water. On the other hand, Jamapa River is the main source for Cu and Ni, which carries dissolved elements from adjacent volcanic rocks. Principal Component Analysis shows a common source for dissolved nitrogen, phosphates, TOC, and suspended matters probably derived from a sewage treatment plant, which is situated near to the study area.

  5. Assessment of undiscovered conventionally recoverable petroleum resources of the Northwest European region

    USGS Publications Warehouse

    Masters, Charles D.; Klemme, H. Douglas

    1984-01-01

    The estimates of undiscovered conventionally recoverable petroleum resources in the northwest European region at probability levels of 95 percent, 5 percent, statistical mean, and mode are for oil (in billions of barrels): 9, 34, 20, and 15; and for gas (in trillions of cubic feet): 92, 258, 167, and 162. The occurrence of petroleum can be accounted for in two distinct geological plays located in the various subbasins of the region. Play I is associated with the distribution of mature source rocks of Late Jurassic age relative to four distinct trapping conditions. The play has been demonstrated productive mostly in the Viking and Central Grabens of the North Sea, where the shale has been buried to optimum depths for the generation of both oil and gas. To the north of 62 ? N. latitude up to the Barents Sea, source rocks become increasingly deeply buried and are interpreted to be dominantly gas prone; a narrow band of potentially oil-prone shales tracks most of the coast of Norway, but water depths in favorable localities commonly range from 600 to 1,200 feet. To the south of the Central Graben, the Jurassic source rocks are either immature or minimally productive because of a change in facies. Undrilled traps remain within the favorable source-rock area, and exploration will continue to challenge the boundaries of conventional wisdom, especially on the Norwegian side where little has .been reported on the geology of the adjoining Bergen High or Horda Basin, though, reportedly, the Jurassic source rocks are missing on the high and are immature in the southern part of the basin. Play II is associated with the distribution of a coal facies of Carboniferous age that is mature for the generation of gas and locally underlies favorable reservoir and sealing rocks. The play is limited largely by facies development to the present area of discovery and production but is limited as well to the southeast into onshore Netherlands and Germany by the unfavorable economics of an increasing nitrogen content in the gas. This increase is apparently caused by excessive temperatures associated with increasing depth of burial of the source rock. The history of discovery in the North Sea would appear to deny the commonly held maxim that large fields are found first and early in the exploration process. However, if the discovery data are examined from the perspective of the award date of each exploration license, then it is clear that the largest fields and most of the reserves have indeed been found early in the exploration process of a particular license. Discoveries made within 1 year of granting the license are on average large giants, and they account for slightly less than two-thirds of the original reserves. Discoveries made within 2 to 5 years of the granting of the license are on average less than giant size and smaller than increment-l-year discoveries by a factor of 4; these fields account for a little less than one-third of the reserves. Those fields found 6 or more years after the granting of the license are relatively small and account for 20 percent of all discoveries but only 4 percent of total original reserves. These data suggest that a measure of an area's exploration maturity is the length of time elapsed since the award of the concession.

  6. Alaskan North Slope petroleum systems

    USGS Publications Warehouse

    Magoon, L.B.; Lillis, P.G.; Bird, K.J.; Lampe, C.; Peters, K.E.

    2003-01-01

    Six North Slope petroleum systems are identified, described, and mapped using oil-to-oil and oil-to-source rock correlations, pods of active source rock, and overburden rock packages. To map these systems, we assumed that: a) petroleum source rocks contain 3.2 wt. % organic carbon (TOC); b) immature oil-prone source rocks have hydrogen indices (HI) >300 (mg HC/gm TOC); c) the top and bottom of the petroleum (oil plus gas) window occur at vitrinite reflectance values of 0.6 and 1.0% Ro, respectively; and d) most hydrocarbons are expelled within the petroleum window. The six petroleum systems we have identified and mapped are: a) a southern system involving the Kuna-Lisburne source rock unit that was active during the Late Jurassic and Early Cretaceous; b) two western systems involving source rock in the Kingak-Blankenship, and GRZ-lower Torok source rock units that were active during the Albian; and c) three eastern systems involving the Shublik-Otuk, Hue Shale and Canning source rock units that were active during the Cenozoic. The GRZ-lower Torok in the west is correlative with the Hue Shale to the east. Four overburden rock packages controlled the time of expulsion and gross geometry of migration paths: a) a southern package of Early Cretaceous and older rocks structurally-thickened by early Brooks Range thrusting; b) a western package of Early Cretaceous rocks that filled the western part of the foreland basin; c) an eastern package of Late Cretaceous and Paleogene rocks that filled the eastern part of the foreland basin; and d) an offshore deltaic package of Neogene rocks deposited by the Colville, Canning, and Mackenzie rivers. This petroleum system poster is part of a series of Northern Alaska posters on modeling. The poster in this session by Saltus and Bird present gridded maps for the greater Northern Alaskan onshore and offshore that are used in the 3D modeling poster by Lampe and others. Posters on source rock units are by Keller and Bird as well as Peters and others. Sandstone and shale compaction properties used in sedimentary basin modeling are covered in a poster by Rowan and others. The results of this modeling exercise will be used in our next Northern Alaska oil and gas resource assessment.

  7. Burial history, thermal history and hydrocarbon generation modelling of the Jurassic source rocks in the basement of the Polish Carpathian Foredeep and Outer Carpathians (SE Poland)

    NASA Astrophysics Data System (ADS)

    Kosakowski, Paweł; Wróbel, Magdalena

    2012-08-01

    Burial history, thermal maturity, and timing of hydrocarbon generation were modelled for the Jurassic source rocks in the basement of the Carpathian Foredeep and marginal part of the Outer Carpathians. The area of investigation was bounded to the west by Kraków, to the east by Rzeszów. The modelling was carried out in profiles of wells: Będzienica 2, Dębica 10K, Góra Ropczycka 1K, Goleszów 5, Nawsie 1, Pławowice E1 and Pilzno 40. The organic matter, containing gas-prone Type III kerogen with an admixture of Type II kerogen, is immature or at most, early mature to 0.7 % in the vitrinite reflectance scale. The highest thermal maturity is recorded in the south-eastern part of the study area, where the Jurassic strata are buried deeper. The thermal modelling showed that the obtained organic matter maturity in the initial phase of the "oil window" is connected with the stage of the Carpathian overthrusting. The numerical modelling indicated that the onset of hydrocarbon generation from the Middle Jurassic source rocks was also connected with the Carpathian thrust belt. The peak of hydrocarbon generation took place in the orogenic stage of the overthrusting. The amount of generated hydrocarbons is generally small, which is a consequence of the low maturity and low transformation degree of kerogen. The generated hydrocarbons were not expelled from their source rock. An analysis of maturity distribution and transformation degree of the Jurassic organic matter shows that the best conditions for hydrocarbon generation occurred most probably in areas deeply buried under the Outer Carpathians. It is most probable that the "generation kitchen" should be searched for there.

  8. Bioremediation in fractured rock: 1. Modeling to inform design, monitoring, and expectations

    USGS Publications Warehouse

    Tiedeman, Claire; Shapiro, Allen M.; Hsieh, Paul A.; Imbrigiotta, Thomas; Goode, Daniel J.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Johnson, Carole D.; Williams, John H.; Curtis, Gary P.

    2018-01-01

    Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower‐permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture‐dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high‐ and low‐permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured‐rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.

  9. A Detailed Study of Debris Flow Source Areas in the Northern Colorado Front Range.

    NASA Astrophysics Data System (ADS)

    Arana-Morales, A.; Baum, R. L.; Godt, J.

    2014-12-01

    Nearly continuous, heavy rainfall occurred during 9-13 September 2013 causing flooding and widespread landslides and debris flows in the northern Colorado Front Range. Whereas many recent studies have identified erosion as the most common process leading to debris flows in the mountains of Colorado, nearly all of the debris flows mapped in this event began as small, shallow landslides. We mapped the boundaries of 415 September 2013 debris flows in the Eldorado Springs and Boulder 7.5-minute quadrangles using 0.5-m-resolution satellite imagery. We characterized the landslide source areas of six debris flows in the field as part of an effort to identify what factors controlled their locations. Four were on a dip slope in sedimentary rocks in the Pinebrook Hills area, near Boulder, and the other two were in granitic rocks near Gross Reservoir. Although we observed no obvious geomorphic differences between the source areas and surrounding non-landslide areas, we noted several characteristics that the source areas all had in common. Slopes of the source areas ranged from 28° to 35° and most occurred on planar or slightly concave slopes that were vegetated with grass, small shrubs, and sparse trees. The source areas were shallow, irregularly shaped, and elongated downslope: widths ranged from 4 to 9 m, lengths from 6 to 40 m and depths ranged from 0.7 to 1.2 m. Colluvium was the source material for all of the debris flows and bedrock was exposed in the basal surface of all of the source areas. We observed no evidence for concentrated surface runoff upslope from the sources. Local curvature and roughness of bedrock and surface topography, and depth distribution and heterogeneity of the colluvium appear to have controlled the specific locations of these shallow debris-flow source areas. The observed distribution and characteristics of the source areas help guide ongoing efforts to model initiation of the debris flows.

  10. Total petroleum systems of the Bonaparte Gulf Basin area, Australia; Jurassic, Early Cretaceous-Mesozoic; Keyling, Hyland Bay-Permian; Milligans-Carboniferous, Permian

    USGS Publications Warehouse

    Bishop, M.G.

    1999-01-01

    The Bonaparte Gulf Basin Province (USGS #3910) of northern Australia contains three important hydrocarbon source-rock intervals. The oldest source-rock interval and associated reservoir rocks is the Milligans-Carboniferous, Permian petroleum system. This petroleum system is located at the southern end of Joseph Bonaparte Gulf and includes both onshore and offshore areas within a northwest to southeast trending Paleozoic rift that was initiated in the Devonian. The Milligans Formation is a Carboniferous marine shale that sources accumulations of both oil and gas in Carboniferous and Permian deltaic, marine shelf carbonate, and shallow to deep marine sandstones. The second petroleum system in the Paleozoic rift is the Keyling, Hyland Bay-Permian. Source rocks include Lower Permian Keyling Formation delta-plain coals and marginal marine shales combined with Upper Permian Hyland Bay Formation prodelta shales. These source-rock intervals provide gas and condensate for fluvial, deltaic, and shallow marine sandstone reservoirs primarily within several members of the Hyland Bay Formation. The Keyling, Hyland Bay-Permian petroleum system is located in the Joseph Bonaparte Gulf, north of the Milligans-Carboniferous, Permian petroleum system, and may extend northwest under the Vulcan graben sub-basin. The third and youngest petroleum system is the Jurassic, Early Cretaceous-Mesozoic system that is located seaward of Joseph Bonaparte Gulf on the Australian continental shelf, and trends southwest-northeast. Source-rock intervals in the Vulcan graben sub-basin include deltaic mudstones of the Middle Jurassic Plover Formation and organic-rich marine shales of the Upper Jurassic Vulcan Formation and Lower Cretaceous Echuca Shoals Formation. These intervals produce gas, oil, and condensate that accumulates in, shallow- to deep-marine sandstone reservoirs of the Challis and Vulcan Formations of Jurassic to Cretaceous age. Organic-rich, marginal marine claystones and coals of the Plover Formation (Lower to Upper Jurassic), combined with marine claystones of the Flamingo Group and Darwin Formation (Upper Jurassic to Lower Cretaceous) comprise the source rocks for the remaining area of the system. These claystones and coals source oil, gas, and condensate accumulations in reservoirs of continental to marine sandstones of the Plover Formation and Flamingo Group. Shales of the regionally distributed Lower Cretaceous Bathurst Island Group and intraformational shales act as seals for hydrocarbons trapped in anticlines and fault blocks, which are the major traps of the province. Production in the Bonaparte Gulf Basin Province began in 1986 using floating production facilities, and had been limited to three offshore fields located in the Vulcan graben sub-basin. Cumulative production from these fields totaled more than 124 million barrels of oil before the facilities were removed after production fell substantially in 1995. Production began in 1998 from three offshore wells in the Zone of Cooperation through floating production facilities. After forty years of exploration, a new infrastructure of pipelines and facilities are planned to tap already discovered offshore reserves and to support additional development.

  11. Geochemical and Isotopic Evidences of the Magmatic Sources in the Eastern Sector of the Trans-Mexican Volcanic Belt: Xihuingo-Chichicuautla Volcanic Field

    NASA Astrophysics Data System (ADS)

    Valadez, S.; Martinez-serrano, R.; Juarez-Lopez, K.; Solis-Pichardo, G.; Perez-Arvizu, O.

    2011-12-01

    The study of magmatism in the Trans-Mexican Volcanic Belt (TMVB) has great importance due to several features such as its obliquity with respect to the Middle American Trench and its petrological and geochemical variability, which are not common in most typical volcanic arcs. Although several papers have contributed significantly to the understanding of most important magmatic processes in this province, there are still several questions such as the characterization of magmatic sources. In the present work, we provide new stratigraphic, petrographic, geochemical and Sr, Nd and Pb isotopic data as well as some K-Ar age determinations from the Xihuingo-Chichicuautla volcanic field (XCVF), located at the eastern part of the TMVB, with the aim to identify the magmatic sources that produced the main volcanic rocks. The volcanic structures in the XCVF are divided in two main groups according to the petrographic and geochemical compositions: 1) dacitic domes, andesitic lava flows and some dacitic-rhyolitic ignimbrites and 2) scoria cones, shield volcanoes and associated lava flows of basalt to basaltic-andesite composition. Distribution of most volcanic structures is probably controlled by NE-SW fault and fractures system. This fault system was studied by other authors who established that volcanic activity started ca. 13.5 Ma ago, followed by a volcanic hiatus of ca. 10 Ma, and the late volcanic activity began ca. 3 to 1 Ma. In this work we dated 2 rock samples by K-Ar method, which yielded ages of 402 and 871 Ka, which correspond to the most recent volcanic activity in this study area. The volcanic rocks of the XCVF display compositions from basalts to rhyolites but in general all rocks show trace element patterns typical of magmatic arcs. However, we can identify two main magmatic sources: a depleted magmatic source represented by dacitic-andesitic rocks which present a LILE enrichment with respect to HFSE indicating that a magmatic source was modified by fluids derived from the subduction processes. These magmas probably suffered fractional crystallization and minor assimilation in the continental crust. Sr, Nd isotopic compositions for this first group display the most radiogenic values (87Sr/86Sr from 0.7046 to 0.7047 and ɛNd from 2.2 to 2.8). The second source for the basaltic-andesite and basalt could be associated with an enriched mantle. These rocks present a minor LILE enrichment with respect to HSFE, and Sr and Nd isotopic values less radiogenic than the felsic rocks of the first group (87Sr/86Sr from 0.7040 to 0.7045 and ɛNd from 3.1 to 4.8). According to these evidences we can establish that the magmas emplaced in the study area were produced from a heterogeneous mantle source with complex magmatic processes combined with different interaction degrees between the magmas and continental crust.

  12. Petrographic characterization of lunar soils: Application of x ray digital-imaging to quantitative and automated analysis

    NASA Technical Reports Server (NTRS)

    Higgins, Stefan J.; Patchen, Allan; Chambers, John G.; Taylor, Lawrence A.; Mckay, David S.

    1994-01-01

    The rocks and soils of the moon will be the raw materials for various engineering needs at a lunar base, such as sources of hydrogen, oxygen, metals, etc. The material of choice for most of the bulk needs is the regolith and its less than 1 cm fraction, the soil. For specific mineral resources it may be necessary to concentrate minerals from either rocks or soils. Therefore, quantitative characterizations of these rocks and soils are necessary in order to better define their mineral resource potential. However, using standard point-counting microscopic procedures, it is difficult to quantitatively determine mineral abundances and virtually impossible to obtain data on mineral distributions within grains. As a start to fulfilling these needs, Taylor et al. and Chambers et al. have developed a procedure for characterization of crushed lunar rocks using x ray digital imaging. The development of a similar digital imaging procedure for lunar soils as obtained from a spectrometer is described.

  13. Geochemistry of Eagle Ford group source rocks and oils from the first shot field area, Texas

    USGS Publications Warehouse

    Edman, Janell D.; Pitman, Janet K.; Hammes, Ursula

    2010-01-01

    Total organic carbon, Rock-Eval pyrolysis, and vitrinite reflectance analyses performed on Eagle Ford Group core and cuttings samples from the First Shot field area, Texas demonstrate these samples have sufficient quantity, quality, and maturity of organic matter to have generated oil. Furthermore, gas chromatography and biomarker analyses performed on Eagle Ford Group oils and source rock extracts as well as weight percent sulfur analyses on the oils indicate the source rock facies for most of the oils are fairly similar. Specifically, these source rock facies vary in lithology from shales to marls, contain elevated levels of sulfur, and were deposited in a marine environment under anoxic conditions. It is these First Shot Eagle Ford source facies that have generated the oils in the First Shot Field. However, in contrast to the generally similar source rock facies and organic matter, maturity varies from early oil window to late oil window in the study area, and these maturity variations have a pronounced effect on both the source rock and oil characteristics. Finally, most of the oils appear to have been generated locally and have not experienced long distance migration. 

  14. Tertiary volcanic rocks of the Mineral Mountain and Teapot Mountain quadrangles, Pinal County, Arizona

    USGS Publications Warehouse

    Keith, William J.; Theodore, Ted G.

    1979-01-01

    The widespread distribution of Tertiary volcanic rocks in south-central Arizona is controlled in part by prevolcanic structures along which volcanic vents were localized. Volcanic rocks in the Mineral Mountain and Teapot Mountain quadrangles mark the site of a major northwest-trending structural hingeline. This hingeline divides an older Precambrian X terrane on the west from intensely deformed sequences of rock as young as Pennsylvanian on the east, suggesting increased westerly uplift. The volcanic rocks consist of a pile of complexly interlayered rhyolite, andesite, dacite, flows and intrusive rocks, water-laid tuffs, and very minor olivine basalt. Although the rocks erupted from several different vents, time relations, space relations, and chemistry each give strong evidence of a single source for all the rocks. Available data (by the K-Ar dating method) on hornblende and biotite separates from the volcanic rocks range from 14 to 19 m.y. and establish the pre-middle Miocene age of major dislocations along the structural hingeline. Most of the volcanic rocks contain glass, either at the base of the flows or as an envelope around the intrusive phases. One of the intrusive rhyolites, however, seems to represent one of the final eruptions. Intense vesiculation of the intrusive rhyolite suggests a large content of volatiles at the time of its eruption. Mineralization is associated with the more silicic of these middle Miocene volcanic rocks; specifically, extensive fissure quartz veins contain locally significant amounts of silver, lead, and zinc and minor amounts of gold. Many of the most productive deposits are hosted by the volcanic rocks, although others occur in the Precambrian rocks. Magnetic data correspond roughly to the geology in outlining the overall extent of the volcanic rocks as a magnetic low.

  15. Modeling deformation processes of salt caverns for gas storage due to fluctuating operation pressures

    NASA Astrophysics Data System (ADS)

    Böttcher, N.; Nagel, T.; Goerke, U.; Khaledi, K.; Lins, Y.; König, D.; Schanz, T.; Köhn, D.; Attia, S.; Rabbel, W.; Bauer, S.; Kolditz, O.

    2013-12-01

    In the course of the Energy Transition in Germany, the focus of the country's energy sources is shifting from fossil to renewable and sustainable energy carriers. Since renewable energy sources, such as wind and solar power, are subjected to annual, seasonal, and diurnal fluctuations, the development and extension of energy storage capacities is a priority in German R&D programs. Common methods of energy storage are the utilization of subsurface caverns as a reservoir for natural or artificial fuel gases, such as hydrogen, methane, or the storage of compressed air. The construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to the possibility of solution mining. Another advantage of evaporite as a host material is the self-healing capacity of salt rock. Gas caverns are capable of short-term energy storage (hours to days), so the operating pressures inside the caverns are fluctuating periodically with a high number of cycles. This work investigates the influence of fluctuating operation pressures on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. Our simulations include the thermodynamic behaviour of the gas during the loading/ unloading of the cavern. This provides information on the transient pressure and temperature distribution on the cavern boundary to calculate the deformation of its geometry. Non-linear material models are used for the mechanical analysis, which describe the creep and self-healing behavior of the salt rock under fluctuating loading pressures. In order to identify the necessary material parameters, we perform experimental studies on the mechanical behaviour of salt rock under varying pressure and temperature conditions. Based on the numerical results, we further derive concepts for monitoring THM quantities in the vicinity of the cavern. These programs will allow detecting changes of the host rock properties during the construction and operation of the storage facility. The developed model will be used by public authorities for land use planning issues.

  16. Electromagnetic exploration in high-salinity groundwater zones: case studies from volcanic and soft sedimentary sites in coastal Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, Koichi; Kusano, Yukiko; Ochi, Ryota; Nishiyama, Nariaki; Tokunaga, Tomochika; Tanaka, Kazuhiro

    2017-01-01

    Estimating the spatial distribution of groundwater salinity in coastal plain regions is becoming increasingly important for site characterisation and the prediction of hydrogeological environmental conditions resulting from radioactive waste disposal and underground CO2 storage. In previous studies of the freshwater-saltwater interface, electromagnetic methods were used for sites characterised by unconsolidated deposits or Neocene soft sedimentary rocks. However, investigating the freshwater-saltwater interface in hard rock sites (e.g. igneous areas) is more complex, with the permeability of the rocks greatly influenced by fractures. In this study, we investigated the distribution of high-salinity groundwater at two volcanic rock sites and one sedimentary rock site, each characterised by different hydrogeological features. Our investigations included (1) applying the controlled source audio-frequency magnetotelluric (CSAMT) method and (2) conducting laboratory tests to measure the electrical properties of rock core samples. We interpreted the 2D resistivity sections by referring to previous data on geology and geochemistry of groundwater. At the Tokusa site, an area of inland volcanic rocks, low resistivity zones were detected along a fault running through volcanic rocks and shallow sediments. The results suggest that fluids rise through the Tokusa-Jifuku Fault to penetrate shallow sediments in a direction parallel to the river, and some fluids are diluted by rainwater. At the Oki site, a volcanic island on a continental shelf, four resistivity zones (in upward succession: low, high, low and high) were detected. The results suggest that these four zones were formed during a transgression-regression cycle caused by the last glacial period. At the Saijo site, located on a coastal plain composed of thick sediments, we observed a deep low resistivity zone, indicative of fossil seawater remnant from a transgression after the last glacial period. The current coastal plain formed in historical times, following which fresh water penetrated the upper parts of the fossil seawater zone to form a freshwater aquifer ~200 m in thickness.

  17. The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS

    NASA Astrophysics Data System (ADS)

    Menéndez Duarte, Rosana; Marquínez, Jorge

    2002-02-01

    Analysis of the spatial distribution of rockfall deposits at a regional scale (over an area of 250 km 2 of northern Spain) using a cartographic database supported by a Geographic Information System (GIS) reveals several relationships between rockfall activity and environmental variables. Recent rockfall activity is inferred when recent scree is preserved at the bottom of the rock slopes. In order to identify the slope source areas of the scree we have mapped the deposit's drainage basin, applying topographic criteria, and we have combined these basins with the rock slopes map. A method for setting the basin boundaries automatically will replace manual cartography. This method is based on algorithms available within many commercial software programs and originally planned to analyse the behaviour of fluids over a topographic surface. The results obtained by combining the rockfall area source map with the geology and DTM show the relationships between the distribution of rockfall deposits and lithology, elevation and slope of the rockwall and a strong control of the joint type and density. Elevation influence on rockfall has been associated with climatic variations with elevation. Other variables, such as orientation, show complex influences that are difficult to interpret.

  18. Radon emanation from giant landslides of Koefels (Tyrol, Austria) and Langtang Himal (Nepal)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purtscheller, F.; Pirchl, T.; Sieder, G.

    1995-07-01

    The identification of extremely high indoor radon concentrations in the village Umhausen (Tyrol, Austria) initiated a scientific program to get information about the source and distribution of this noble gas. The high concentrations can not be related to U anomalies or large-scale fault zones. The nearby giant landslide of Koefels, with its highly fractured and crushed orthogneisses, are the only possible source of radon, despite the fact that the U and Ra content of the rocks is by no means exceptional. The reasons for the high emanation rates from the landslide are discussed and compared to results gained from amore » similar examination of the giant landslide of Langtang Himal (Nepal). The exceptional geologic situation in both cases, as well as the spatial distribution of different concentration levels, indicate that both landslides must be considered as the production sites of radon. Independent of the U and Ra contents of the rocks, the most important factors producing high emanation rates are the production of a high active surface area in circulation pathways for Rn-enriched soil air by brittle deformation due to the impact of the landslidemass. 37 refs., 4 figs., 1 tab.« less

  19. Mechanism of Muong Nong-type tektite formation and speculation on the source of Australasian tektites

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.

    1992-01-01

    The source crater of the youngest and largest of the tektite strewnfields, the Australasian strewnfield, has not been located. A number of lines of evidence indicate that the Muong Nong-type tektites, primarily found in Indochina, are more primitive than the much more abundant and widespread splash-form tektites, and are proximal to the source. In this study the spatial distribution of Muong Nong-type tektite sites and chemical character have been used to indicate the approximate location of the source. The variation of Muong Nong-type tektite chemical composition appears to be caused by mixing of two silicate rock end-members and a small amount of limestone, and not by vapor fractionation. The variation in composition is not random, and does not support in situ melting or multiple impact theories. The distribution of both Muong Nong and splash-form tektite sites suggest the source is in a limited area near the southern part of the Thailand-Laos border.

  20. Re-Os systematics of komatiites and komatiitic basalts at Dundonald Beach, Ontario, Canada: Evidence for a complex alteration history and implications of a late-Archean chondritic mantle source

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A.; Sproule, R. A.; Walker, R. J.; Lesher, C.

    2004-12-01

    Re-Os concentrations and isotopic compositions have been examined in one komatiite unit and one komatiitic basalt unit at Dundonald Beach, which is part of the spatially-extensive 2.7 Ga Kidd-Munro volcanic assemblage in the Abitibi greenstone belt, Ontario, Canada. The komatiitic rocks in this locality record at least three episodes of alteration of Re-Os elemental and isotope systematics. First, an average of 40% and as much as 75% Re was lost due to shallow degassing during eruption and/or hydrothermal leaching during or immediately after the lava emplacement. Second, the Re-Os isotope systematics of the rocks with 187Re/188Os ratios >1 were reset at ˜2.5 Ga, most likely due to a regional metamorphic event. Finally, there is evidence for relatively recent gain and loss of Re. The variations in Os concentrations in the Dundonald komatiites yield a relative bulk distribution coefficient for Os (DOs solid/liquid) of 2-4, consistent with those obtained for stratigraphically-equivalent komatiites in the nearby Alexo area and in Munro Township. This suggests that Os was moderately compatible during crystal-liquid fractionation of the magma parental to the Kidd-Munro komatiitic rocks. Furthermore, whole-rock samples and chromite separates with low 187Re/188Os ratios (<1) yield a precise chondritic average initial 187Os/188Os ratio of 0.1083 ± 0.0006 (\\gammaOs = 0.0 ± 0.6). The chondritic initial Os isotopic composition of the mantle source for the Dundonald rocks is consistent with that determined for komatiites in the Alexo area and in Munro Township. Our Os isotope results for the Dundonald komatiitic rocks, combined with those in the Alexo and Pyke Hill areas suggest that the mantle source region for the Kidd- Munro volcanic assemblage had evolved along a long-term chondritic Os isotopic trajectory until their eruption at ˜2.7 Ga. The chondritic initial Os isotopic composition of the Kidd-Munro komatiites is indistinguishable from that of the projected contemporaneous convective upper mantle. The uniform chondritic Os isotopic composition of the ˜2.7 Ga mantle source for the Kidd-Munro komatiites contrasts with the typical large-scale Os isotopic heterogeneity in the mantle sources for komatiites from the Gorgona Island, present-day ocean island basalts or arc-related lavas. This suggests a significantly more homogeneous mantle source in the Archean compared to the presentday mantle.

  1. Hydrocarbon source rock potential of the Karoo in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Hiller, K.; Shoko, U.

    1996-07-01

    The hydrocarbon potential of Zimbabwe is tied to the Karoo rifts which fringe the Zimbabwe Craton, i.e. the Mid-Zambezi basin/rift and the Mana Pools basin in the northwest, the Cabora Bassa basin in the north and the Tuli-Bubye and Sabi-Runde basins in the south. Based on the geochemical investigation of almost one thousand samples of fine clastic Karoo sediments, a concise source rock inventory has been established showing the following features. No marine source rocks have been identified. In the Mid-Zambezi area and Cabora Bassa basin, the source rocks are gas-prone, carbonaceous to coaly mudstones and coal of Lower Karoo age. In the Cabora Bassa basin, similar gas-prone source rocks occur in the Upper Karoo (Angwa Alternations Member). These kerogen type III source rocks are widespread and predominantly immature to moderately mature. In the southern basins, the Lower Karoo source rocks are gas-prone; in addition some have a small condensate potential. Most of the samples are, however, overmature due to numerous dolerite intrusions. Samples with a mixed gas, condensate and oil potential (mainly kerogen types II and III) were identified in the Lower Karoo (Coal Measure and Lower Madumabisa Mudstone Formations) of the Mid-Zambezi basin, and in the Louver Karoo (Mkanga Formation) and Upper Karoo (Upper Angwa Alternations Member Formation) of the Cabora Bassa basin. The source rocks, with a liquid potential, are also immature to moderately mature and were deposited in swamp, paludal and lacustrine environments of limited extent.

  2. Source rock potential in Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raza, H.A.

    1991-03-01

    Pakistan contains two sedimentary basins: Indus in the east and Balochistan in the west. The Indus basin has received sediments from precambrian until Recent, albeit with breaks. It has been producing hydrocarbons since 1914 from three main producing regions, namely, the Potwar, Sulaisman, and Kirthar. In the Potwar, oil has been discovered in Cambrian, Permian, Jurassic, and Tertiary rocks. Potential source rocks are identified in Infra-Cambrian, Permian, Paleocene, and Eocene successions, but Paleocene/Eocene Patala Formation seems to be the main source of most of the oil. In the Sulaiman, gas has been found in Cretaceous and Tertiary; condensate in Cretaceousmore » rocks. Potential source rocks are indicated in Cretaceous, Paleocene, and Eocene successions. The Sembar Formation of Early Cretaceous age appears to be the source of gas. In the Kirthar, oil and gas have been discovered in Cretaceous and gas has been discovered in paleocene and Eocene rocks. Potential source rocks are identified in Kirthar and Ghazij formations of Eocene age in the western part. However, in the easter oil- and gas-producing Badin platform area, Union Texas has recognized the Sembar Formation of Early Cretaceous age as the only source of Cretaceous oil and gas. The Balochistan basin is part of an Early Tertiary arc-trench system. The basin is inadequately explored, and there is no oil or gas discovery so far. However, potential source rocks have been identified in Eocene, Oligocene, Miocene, and Pliocene successions based on geochemical analysis of surface samples. Mud volcanoes are present.« less

  3. Mesozoic non-marine petroleum source rocks determined by palynomorphs in the Tarim Basin, Xinjiang, northwestern China

    USGS Publications Warehouse

    Jiang, D.-X.; Wang, Y.-D.; Robbins, E.I.; Wei, J.; Tian, N.

    2008-01-01

    The Tarim Basin in Northwest China hosts petroleum reservoirs of Cambrian, Ordovician, Carboniferous, Triassic, Jurassic, Cretaceous and Tertiary ages. The sedimentary thickness in the basin reaches about 15 km and with an area of 560000 km2, the basin is expected to contain giant oil and gas fields. It is therefore important to determine the ages and depositional environments of the petroleum source rocks. For prospective evaluation and exploration of petroleum, palynological investigations were carried out on 38 crude oil samples collected from 22 petroleum reservoirs in the Tarim Basin and on additionally 56 potential source rock samples from the same basin. In total, 173 species of spores and pollen referred to 80 genera, and 27 species of algae and fungi referred to 16 genera were identified from the non-marine Mesozoic sources. By correlating the palynormorph assemblages in the crude oil samples with those in the potential source rocks, the Triassic and Jurassic petroleum source rocks were identified. Furthermore, the palynofloras in the petroleum provide evidence for interpretation of the depositional environments of the petroleum source rocks. The affinity of the miospores indicates that the petroleum source rocks were formed in swamps in brackish to lacustrine depositional environments under warm and humid climatic conditions. The palynomorphs in the crude oils provide further information about passage and route of petroleum migration, which is significant for interpreting petroleum migration mechanisms. Additionally, the thermal alternation index (TAI) based on miospores indicates that the Triassic and Jurassic deposits in the Tarim Basin are mature petroleum source rocks. ?? Cambridge University Press 2008.

  4. Radioactive Contamination of Alluvial Soils in the Taiga Landscapes of Yakutia with 137Cs, 226Ra, and 238U

    NASA Astrophysics Data System (ADS)

    Chevychelov, A. P.; Sobakin, P. I.

    2017-12-01

    The concentrations and distribution of 137Cs in alluvial soils (Fluvisols) of the upper and middle reaches of the Markha River in the northwest of Yakutia and 226Ra and 238U in alluvial soils within the El'kon uranium ore deposit in the south of Yakutia have been studied. It is shown that the migration of radiocesium in the permafrost-affected soils of Yakutia owing to alluviation processes extends to more than 600 km from the source of the radioactive contamination. The migration of 137Cs with water flows is accompanied by its deposition in the buried horizons of alluvial soils during extremely high floods caused by ice jams. In the technogenic landscapes of southern Yakutia, active water migration of 238U and 226Ra from radioactive dump rocks. The leaching of 238U with surface waters from the rocks is more intense than the leaching of 226Ra. The vertical distribution patterns of 238U and 226Ra in the profiles of alluvial soils are complex. Uranium tends to accumulate in the surface humus horizon and in the buried soil horizons, whereas radium does not display any definite regularities of its distribution in the soil profiles. At present, the migration of 238U and 226Ra with river water and their accumulation in the alluvial soils extend to about 30 km from the source.

  5. Aeromagnetic survey map of Sacramento Valley, California

    USGS Publications Warehouse

    Langenheim, Victoria E.

    2015-01-01

    Three aeromagnetic surveys were flown to improve understanding of the geology and structure in the Sacramento Valley. The resulting data serve as a basis for geophysical interpretations, and support geological mapping, water and mineral resource investigations, and other topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals commonly mark lithologic or structural boundaries. Bodies of serpentinite and other mafic and ultramafic rocks tend to produce the most intense positive magnetic anomalies (for example, in the northwest part of the map). These rock types are the inferred sources, concealed beneath weakly magnetic, valley-fill deposits, of the most prominent magnetic features in the map area, the magnetic highs that extend along the valley axis. Cenozoic volcanic rocks are also an important source of magnetic anomalies and coincide with short-wavelength anomalies that can be either positive (strong central positive anomaly flanked by lower-amplitude negative anomalies) or negative (strong central negative anomaly flanked by lower-amplitude positive anomalies), reflecting the contribution of remanent magnetization. Rocks with more felsic compositions or even some sedimentary units also can cause measurable magnetic anomalies. For example, the long, linear, narrow north-trending anomalies (with amplitudes of <50 nanoteslas [nT]) along the western margin of the valley coincide with exposures of the Mesozoic Great Valley sequence. Note that isolated, short-wavelength anomalies, such as those in the city of Sacramento and along some of the major roads, are caused by manmade features.

  6. Preparing rock powder specimens of controlled size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P.

    1968-01-01

    Apparatus produces rock powder specimens of the size distribution needed in geological sampling. By cutting grooves in the surface of the rock sample and then by milling these shallow, parallel ridges, the powder specimen is produced. Particle size distribution is controlled by changing the height and width of ridges.

  7. REE Distribution in Cultivated and No Cultivated Soils in Two Viticultural Areas of Central Chile: Mineralogical, Pedological and Anthropic Influences

    NASA Astrophysics Data System (ADS)

    Castillo, P.; Townley, B.; Aburto, F.

    2017-12-01

    Within the scope of a Corfo-Innova Project (I+D Wines of Chile-University of Chile) we have recognized remarkable REE patterns in soils of two vineyards located in traditional vinicultural areas: Casablanca and Santa Cruz. Both vineyards have granitic parent rock, with similar petrographic features and REE patterns. We studied REE distribution on twelve cultivated soil profiles at each vineyard, where a full mineralogical, geochemical and pedogenic sampling and characterization was performed. To establish the effect of management no cultivated soil profiles were included from each vineyard location. REE in soil samples were measured by ICP-MS using two digestion methods: lithium metaborate/tetraborate fusion to obtain REE contents in total soil and MMI® partial extraction technique for REE contents on bioavailable phases.Soils display similar signatures of REEs respect to the rock source at both vineyards, but showing relative enrichments in soils of Casablanca and depletion in soils of Santa Cruz. Bioavailable phase data indicates a relative depletion of LREEs compared to HREEs and different anomalies for Ce (positive vs negative) in different areas of the same vineyard. Similar patterns of soils and parent rock suggest that REEs are adequate tracers of lithological source. Enrichments and/or depletions of REE patterns in soils respect to the rock source and Ce anomalies, evidence differential pedogenetic processes occurring at each sampled site. Results of bioavailable phase are coherent with the immobilization and fractionation of LREEs by stable minerals within soils as clays and Fe oxides. Mineralogical results in soil thin sections of Casablanca evidence the occurrence of Ti phases as sphene, ilmenite and rutile, which probably control the relative REE enrichment, since these minerals are considered more stable under pedogenic conditions.Finally, cultivated soils show a depleted but analogous pattern of REE regarding to no cultivated soil, indicating the REEs loss due to agricultural land use. Our preliminary hypothesis is the existence of organometallic complexes that retain REEs in natural soils, which are degraded with vinicultural management. However other factors as differential weathering rates of minerals, clays mineralogy and fractionation of REE by plants must be considered.

  8. Relating rock avalanche morphology to emplacement processes

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite/limestone sequences to weaker siliciclastic and evaporitic beds (sand-/siltstones, rauhwacken) can be pinpointed on LiDAR shaded relief images of the rock avalanche deposit. Hence, several morphological signatures are clearly related to differences in mechanical behaviour of the involved lithologies, whereas others reflect particular emplacement modes of the same rock unit: e.g. rockslide motion versus rock avalanche spreading. Reference Patzelt G. 2012. The rock avalanches of Tschirgant and Haiming (Upper Inn Valley, Tyrol, Austria), comment on the map supply. (German language only). Jahrbuch der Geologischen Bundesanstalt 152(1-4): 13-24.

  9. Geologic Assessment of Undiscovered Gas Resources of the Eastern Oregon and Washington Province

    USGS Publications Warehouse

    U.S. Geological Survey Eastern Oregon and Washington Province Assessment Team, (compiler)

    2008-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geology-based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States, focusing on the distribution, quantity, and availability of oil and natural gas resources. The USGS has completed an assessment of the undiscovered oil and gas potential of the Eastern Oregon and Washington Province of Oregon and Washington (USGS Province 5005). The province is a priority Energy Policy and Conservation Act (EPCA) province for the National Assessment because of its potential for oil and gas resources. The assessment of this province is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (stratigraphy, sedimentology, petrophysical properties), and hydrocarbon traps (trap formation and timing). In the Eastern Oregon and Washington Province, the USGS used this geologic framework to define one total petroleum system and two assessment units within the total petroleum system, and quantitatively estimated the undiscovered gas resources within each assessment unit.

  10. The modern atmospheric background dust load: Recognition in Central Asian snowpack, and compositional constraints

    USGS Publications Warehouse

    Hinkley, T.; Pertsiger, F.; Zavjalova, L.

    1997-01-01

    Dusts in strata of snowpack in the Alai-Pamir range, Kirghizstan, Central Asia, have chemical compositions that are in the same restricted range as those of the dusts found in snowpacks at three other locations: central south Greenland, the St. Elias range (Alaska), and coastal Antarctica, where special-type local dust sources certainly cannot dominate. This similarity at the four widely separated sites appears to indicate that there is a modern atmospheric background dust that is the same on a regional, hemispheric, or global scale. The common compositional range is that of average crustal rock, or of moderately ferromagnesian volcanic rock. It is not that of carbonate, nor highly siliciceous rocks. Previously, the existence of an atmospheric background dust has been postulated only on the basis of its particle size distribution, and only from observations in polar regions. The present study partially determines the chemical composition of the background dust, and confirms its existence in snowpack at four localities worldwide, including the center of the earth's largest continent where dusts of local source have considerable influence. U.S. copyright. Published in 1997 by the American Geophysical Union.

  11. Isotopic and noble gas geochemistry in geothermal research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, B.M.; DePaolo, D.J.

    1997-12-31

    The objective of this program is to provide, through isotopic analyses of fluids, fluid inclusions, and rocks and minerals coupled with improved methods for geochemical data analysis, needed information regarding sources of geothermal heat and fluids, the spatial distribution of fluid types, subsurface flow, water-rock reaction paths and rates, and the temporal evolution of geothermal systems. Isotopic studies of geothermal fluids have previously been limited to the light stable isotopes of H, C, and O. However, other isotopic systems such as the noble gases (He, Ne, Ar, Kr and Xe) and reactive elements (e.g. B, N, S, Sr and Pb)more » are complementary and may even be more important in some geothermal systems. The chemistry and isotopic composition of a fluid moving through the crust will change in space and time in response to varying chemical and physical parameters or by mixing with additional fluids. The chemically inert noble gases often see through these variations, making them excellent tracers for heat and fluid sources. Whereas, the isotopic compositions of reactive elements are useful tools in characterizing water-rock interaction and modeling the movement of fluids through a geothermal reservoir.« less

  12. Metabasalts as sources of metals in orogenic gold deposits

    NASA Astrophysics Data System (ADS)

    Pitcairn, Iain K.; Craw, Dave; Teagle, Damon A. H.

    2015-03-01

    Although metabasaltic rocks have been suggested to be important source rocks for orogenic gold deposits, the mobility of Au and related elements (As, Sb, Se, and Hg) from these rocks during alteration and metamorphism is poorly constrained. We investigate the effects of increasing metamorphic grade on the concentrations of Au and related elements in a suite of metabasaltic rocks from the Otago and Alpine Schists, New Zealand. The metabasaltic rocks in the Otago and Alpine Schists are of MORB and WPB affinity and are interpreted to be fragments accreted from subducting oceanic crust. Gold concentrations are systematically lower in the higher metamorphic grade rocks. Average Au concentrations vary little between sub-greenschist (0.9 ± 0.5 ppb) and upper greenschist facies (1.0 ± 0.5 ppb), but decrease significantly in amphibolite facies samples (0.21 ± 0.07 ppb). The amount of Au depleted from metabasaltic rocks during metamorphism is on a similar scale to that removed from metasedimentary rocks in Otago. Arsenic concentrations increase with metamorphic grade with the metabasaltic rocks acting as a sink rather than a source of this element. The concentrations of Sb and Hg decrease between sub-greenschist and amphibolite facies but concentration in amphibolite facies rocks are similar to those in unaltered MORB protoliths and therefore unaltered oceanic crust cannot be a net source of Sb and Hg in a metamorphic environment. The concentrations of Au, As, Sb, and Hg in oceanic basalts that have become integrated into the metamorphic environment may be heavily influenced by the degree of seafloor alteration that occurred prior to metamorphism. We suggest that metasedimentary rocks are much more suitable source rocks for fluids and metals in orogenic gold deposits than metabasaltic rocks as they show mobility during metamorphism of all elements commonly enriched in this style of deposit.

  13. Rare earth elements in the sedimentary cycle - A pilot study of the first leg

    NASA Technical Reports Server (NTRS)

    Basu, A.; Blanchard, D. P.; Brannon, J. C.

    1982-01-01

    The effects of source rock composition and climate on the natural abundances of rare elements (REE) in the first leg of the sedimentary cycle are evaluated using a study with Holocene fluvia sands. The medium grained sand fraction of samples collected from first order streams exclusively draining granitic plutons in Montana (semi-arid), Georgia (humid), and South Carolina (humid) are analyzed. It is found that the REE distribution patterns (but not the total absolute abundances) of the daughter sands are very similar, despite compositional differences between parent plutons. Averages of the three areas are determined to have a La/Lu ratio of about 103, showing a depletion of heavy REE with respect to an average granite (La/Lu = 79) or the composition of North American Shales (La/Lu = 55). However, the Eu/Sm ratio in sands from these areas is about 0.22, which is very close to this ratio in North American Shales (0.21), although the overall REE distribution of these sands is not similar to that of the North American Shales in any way. It is concluded that the major rock type, but neither its minor subdivisions nor the climate, controls the REE distribution patterns in first cycle daughter sands, although the total and the parent rock-normalized abundances of REE in sands from humid areas are much lower than those in sands from arid areas.

  14. A CO2-Silica Geothermometer for Low Temperature Geothermal Resource Assessment, with Application to Resources in the Safford Basin, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witcher, James C.; Stone, Claudia

    1983-11-01

    Geothermics is the study of the earth's heat energy, it's affect on subsurface temperature distribution, it's physical and chemical sources, and it's role in dynamic geologic processes. The term, geothermometry, is applied to the determination of equilibrium temperatures of natural chemical systems, including rock, mineral, and liquid phases. An assemblage of minerals or a chemical system whose phase composition is a function of temperature and pressure can be used as a geothermometer. Thus a geothermometer is useful to determine the formation temperature of rock or the last equilibrium temperature of a flowing aqueous solution such as ground water and hydrothermalmore » fluids.« less

  15. The effect of mineral composition on the sorption of cesium ions on geological formations.

    PubMed

    Kónya, József; Nagy, Noémi M; Nemes, Zoltán

    2005-10-15

    The sorption of cesium-137 on rock samples, mainly on clay rocks, is determined as a function of the mineral composition of the rocks. A relation between the mineral groups (tectosilicates, phyllosilicates, clay minerals, carbonates) and their cesium sorption properties is shown. A linear model is constructed by which the distribution coefficients of the different minerals can be calculated from the mineral composition and the net distribution coefficient of the rock. On the basis of the distribution coefficients of the minerals the cesium sorption properties of other rocks can be predicted.

  16. Revision of Hopewellian trading patterns in Midwestern North America based on mineralogical sourcing

    USGS Publications Warehouse

    Hughes, R.E.; Berres, T.E.; Moore, D.M.; Farnsworth, K.B.

    1998-01-01

    Traditional exchange models purport that all Hopewell-style platform pipes of flint clay were quarried and crafted in southern Ohio by Native Americans from a local kaolinitic flint clay, and that those found in the Havana Hopewell region of western Illinois were transported from southern Ohio along an Ohio River trade network. However, the results of this study show that berthierine-rich flint clay from northwestern Illinois was the only source for pipestone artifacts of the Havana Hopewell region. We base this on (1) X-ray diffraction analysis of quickly made smears, (2) spatiotemporal distribution of artifacts in the Sterling-Rock Falls, Illinois area, and (3) petrographic, X-ray fluorescence, Mo??ssbauer, and SEM/EDX analyses. This understanding of the source of this material made it possible to visually identify the source of large numbers of curated artifacts as having been made of material from the Sterling-Rock Falls area. This discovery has implications for understanding cultural and material exchange among Hopewellian societies. Also, it is the first report of berthierine flint clay and of flint clay that formed before the evolution of terrestrial plants. ?? 1998 John Wiley & Sons, Inc.

  17. In situ fragmentation and rock particle sorting on arid hills

    NASA Astrophysics Data System (ADS)

    McGrath, Gavan S.; Nie, Zhengyao; Dyskin, Arcady; Byrd, Tia; Jenner, Rowan; Holbeche, Georgina; Hinz, Christoph

    2013-03-01

    Transport processes are often proposed to explain the sorting of rock particles on arid hillslopes, where mean rock particle size often decreases in the downslope direction. Here we show that in situ fragmentation of rock particles can also produce similar patterns. A total of 93,414 rock particles were digitized from 880 photographs of the surface of three mesa hills in the Great Sandy Desert, Australia. Rock particles were characterized by the projected Feret's diameter and circularity. Distance from the duricrust cap was found to be a more robust explanatory variable for diameter than the local hillslope gradient. Mean diameter decreased exponentially downslope, while the fractional area covered by rock particles decreased linearly. Rock particle diameters were distributed lognormally, with both the location and scale parameters decreasing approximately linearly downslope. Rock particle circularity distributions showed little change; only a slight shift in the mode to more circular particles was noted to occur downslope. A dynamic fragmentation model was used to assess whether in situ weathering alone could reproduce the observed downslope fining of diameters. Modeled and observed size distributions agreed well and both displayed a preferential loss of relatively large rock particles and an apparent approach to a terminal size distribution of the rocks downslope. We show this is consistent with a size effect in material strength, where large rocks are more susceptible to fatigue failure under stress than smaller rocks. In situ fragmentation therefore produces qualitatively similar patterns to those that would be expected to arise from selective transport.

  18. Application of Multivariate Statistical Analysis to Biomarkers in Se-Turkey Crude Oils

    NASA Astrophysics Data System (ADS)

    Gürgey, K.; Canbolat, S.

    2017-11-01

    Twenty-four crude oil samples were collected from the 24 oil fields distributed in different districts of SE-Turkey. API and Sulphur content (%), Stable Carbon Isotope, Gas Chromatography (GC), and Gas Chromatography-Mass Spectrometry (GC-MS) data were used to construct a geochemical data matrix. The aim of this study is to examine the genetic grouping or correlations in the crude oil samples, hence the number of source rocks present in the SE-Turkey. To achieve these aims, two of the multivariate statistical analysis techniques (Principle Component Analysis [PCA] and Cluster Analysis were applied to data matrix of 24 samples and 8 source specific biomarker variables/parameters. The results showed that there are 3 genetically different oil groups: Batman-Nusaybin Oils, Adıyaman-Kozluk Oils and Diyarbakir Oils, in addition to a one mixed group. These groupings imply that at least, three different source rocks are present in South-Eastern (SE) Turkey. Grouping of the crude oil samples appears to be consistent with the geographic locations of the oils fields, subsurface stratigraphy as well as geology of the area.

  19. A program to calculate pulse transmission responses through transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Li, Wei; Schmitt, Douglas R.; Zou, Changchun; Chen, Xiwei

    2018-05-01

    We provide a program (AOTI2D) to model responses of ultrasonic pulse transmission measurements through arbitrarily oriented transversely isotropic rocks. The program is built with the distributed point source method that treats the transducers as a series of point sources. The response of each point source is calculated according to the ray-tracing theory of elastic plane waves. The program could offer basic wave parameters including phase and group velocities, polarization, anisotropic reflection coefficients and directivity patterns, and model the wave fields, static wave beam, and the observed signals for pulse transmission measurements considering the material's elastic stiffnesses and orientations, sample dimensions, and the size and positions of the transmitters and the receivers. The program could be applied to exhibit the ultrasonic beam behaviors in anisotropic media, such as the skew and diffraction of ultrasonic beams, and analyze its effect on pulse transmission measurements. The program would be a useful tool to help design the experimental configuration and interpret the results of ultrasonic pulse transmission measurements through either isotropic or transversely isotropic rock samples.

  20. Estimation of Deeper Structure at the Soultz Hot Dry Rock Field by Means of Reflection Method Using 3C AE as Wave Source

    NASA Astrophysics Data System (ADS)

    Soma, N.; Niitsuma, H.; Baria, R.

    1997-12-01

    We investigate the deep subsurface structure below the artificial reservoir at the Soultz Hot Dry Rock (HDR) site in France by a reflection method which uses acoustic emission (AE) as a wave source. In this method, we can detect reflected waves by examining the linearity of a three-dimensional hodogram. Additionally for imaging a deep subsurface structure, we employ a three-dimensional inversion with a restriction of wave polarization angles and with a compensation for a heterogeneous source distribution.¶We analyzed 101 AE wave forms observed at the Soultz site during the hydraulic testing in 1993. Some deep reflectors were revealed by this method. The bottom of the artificial reservoir that is presumed from all of the AE locations in 1993 was delineated at the depth of about 3900 m as a reflector. Other deeper reflectors were detected below the reservoir, which would not have been detected using conventional methods. Furthermore these reflectors agreed with the results of the tri-axial drill-bit VSP (Asanuma et al., 1996).

  1. Formation conditions and REY enrichment of the 2060 Ma phosphorus mineralization at Schiel (South Africa): geochemical and geochronological constraints

    NASA Astrophysics Data System (ADS)

    Graupner, Torsten; Klemd, Reiner; Henjes-Kunst, Friedhelm; Goldmann, Simon; Behnsen, Helge; Gerdes, Axel; Dohrmann, Reiner; Barton, Jay M.; Opperman, Rehan

    2018-02-01

    Rocks of the rare-earth element (REY)-enriched apatite deposit in the eastern part of the Schiel Alkaline Complex (SAC; Southern Marginal Zone, Limpopo Belt) were studied for their whole-rock and mineral chemistry, REY mineral distribution and geochronology. Apart from phoscorite (sensu lato), pyroxenite and various syenitic rock types with quite variable apatite contents display P-REY enrichments. Field observations, mineralogical composition as well as major and trace element chemistry of soils make it possible to constrain the distribution of the hidden P-REY-rich rock types in the apatite deposit. Uranium-lead ages of zircon from phoscorite (sensu lato) and syenite are in the range of 2.06-2.05 Ga. Samarium-neodymium (ɛNd(t) -8.6 to -6.0) and in part Rb-Sr (87Sr/86Sr(t) 0.70819-0.70859) isotope data for whole-rock samples and mineral separates indicate an origin from an isotopically enriched and slightly variable source. Fluorapatite, early allanite and titanite are the main REY carriers at Schiel. Fluorapatite dominates the REY budget of pyroxenite and phoscorite, whereas early allanite hosts most of the REY in syenite. Three apatite types are distinguished based on their occurrence in the rocks, REYtotal contents and colouration in cathodoluminescence microscopy. Magmatic apatite in pyroxenite and in phoscorite (sensu lato) as well as early stage type I/II apatite in syenitic rocks have moderate to high REYtotal abundances (up to 3.2 wt%) with the mineral enriched in light REE. Early ferriallanite-(Ce) is strongly enriched in light REE and shows very high REYtotal values (13.7-26.4 wt%), while late allanite has lower REYtotal concentrations (6.9-14.9 wt%). Titanite is abundant in most syenitic rocks (REYtotal 1.7-6.4 wt%); chevkinite-(Ce) occurs locally and contributes to an REY enrichment in contact aureoles between syenite and different lithologies. Apatite-enriched rocks in the SAC in part contain significantly higher REYtotal concentrations in apatite grains compared to those in apatite-mineralized pyroxenite, phoscorite and carbonatite from Phalaborwa.

  2. Geochemistry and provenance of some detrital heavy minerals of alluvial sediments from Neagra Şarului River, Eastern Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Ciortescu, Catalina; Iancu, Ovidiu Gabriel; Bulgariu, Dumitru; Popa, Ciprian

    2014-05-01

    The present work focuses on the analyses of a selection of heavy mineral assemblages sampled from the Neagra Şarului River's alluvia, in order to determine their provenance and distribution, using their geochemical and physical characteristics. The study focused on a mountain river of about 30 km long, located in the north-western part of the Eastern Carpathians, an important tributary of the Bistria River. The bedrocks in the river drainage basin are constituted mainly by igneous rocks from Călimani Volcanic Complex in the west, and secondarily by a small area of low to medium grade metamorphic rocks, part of Crystalline-Mesozoic Zone, in the east. In order to trace the source of each individual mineral species, we prepared our samples via field separation and subsequent laboratory sieving using 8 different size fractions. An electromagnetic separator (Frantz Isodynamic) was used to separate and classify each heavy minerals species, depending on their magnetic susceptibility. Thus prepared, more than 500 grains per samples (from the 0.5-1 mm size fraction) were mounted on thin sections and analyzed using a Cambridge Microscan M9 with EDS system. These analyses served for mineral identification and relative abundance determination. The classification of the minerals and the nature of their inclusions are derived from the major element compositions computed from SEM-EDX analysis. We also used a stereo microscope in order to determine complementary properties of the grains, such as: color, degree of roundness and degree of alteration. In order of abundance, the main heavy minerals are magnetite, hematite, pyroxene, pyrite, manganese oxides, garnet, apatite, titanium oxides (ilmenite, titanite and rutile/anatase), chlorite, olivine, epidote, biotite and rhodochrosite. A particularity of the studied area is the presence of an altered magnetite caused first by the hydrothermal alteration and strong weathering of the source rocks and second by the river's acid water. Manganese oxides are present only in grain fractions greater than 0.25 mm due to higher susceptibility to weathering and dissolution of the Mn aggregates in the river bed. Despite low distribution of the metamorphic units in the river's studied basin, the garnets almandine (Alm 13-88%) and spessartine (Sps 0.5-87%), specific to the medium grade metamorphic rocks, have a relative high frequency. In this study, heavy mineral assemblages generally reflect the composition of primary (augite, almandine) and accessory minerals present in source rocks. The last ones are both primary (apatite) and secondary, which are mainly derived from hydrothermal deposition (e. g. pyrite) and from supergene alterations (e. g. manganese, iron oxides/ hydroxides, and other altered product of magnetite). Therefore, the mineral analyses were not limited to only tracking the source of each mineral species, but they also revealed the characteristics of their parent rocks.

  3. The Lunar Rock Size Frequency Distribution from Diviner Infrared Measurements

    NASA Astrophysics Data System (ADS)

    Elder, C. M.; Hayne, P. O.; Piqueux, S.; Bandfield, J.; Williams, J. P.; Ghent, R. R.; Paige, D. A.

    2016-12-01

    Knowledge of the rock size frequency distribution on a planetary body is important for understanding its geologic history and for selecting landing sites. The rock size frequency distribution can be estimated by counting rocks in high resolution images, but most bodies in the solar system have limited areas with adequate coverage. We propose an alternative method to derive and map rock size frequency distributions using multispectral thermal infrared data acquired at multiple times during the night. We demonstrate this new technique for the Moon using data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer in conjunction with three dimensional thermal modeling, leveraging the differential cooling rates of different rock sizes. We assume an exponential rock size frequency distribution, which has been shown to yield a good fit to rock populations in various locations on the Moon, Mars, and Earth [2, 3] and solve for the best radiance fits as a function of local time and wavelength. This method presents several advantages: 1) unlike other thermally derived rock abundance techniques, it is sensitive to rocks smaller than the diurnal skin depth; 2) it does not result in apparent decrease in rock abundance at night; and 3) it can be validated using images taken at the lunar surface. This method yields both the fraction of the surface covered in rocks of all sizes and the exponential factor, which defines the rate of drop-off in the exponential function at large rock sizes. We will present maps of both these parameters for the Moon, and provide a geological interpretation. In particular, this method reveals rocks in the lunar highlands that are smaller than previous thermal methods could detect. [1] Bandfield J. L. et al. (2011) JGR, 116, E00H02. [2] Golombek and Rapp (1997) JGR, 102, E2, 4117-4129. [3] Cintala, M.J. and K.M. McBride (1995) NASA Technical Memorandum 104804.

  4. Numeric stratigraphic modeling: Testing sequence Numeric stratigraphic modeling: Testing sequence stratigraphic concepts using high resolution geologic examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentrout, J.M.; Smith-Rouch, L.S.; Bowman, S.A.

    1996-08-01

    Numeric simulations based on integrated data sets enhance our understanding of depositional geometry and facilitate quantification of depositional processes. Numeric values tested against well-constrained geologic data sets can then be used in iterations testing each variable, and in predicting lithofacies distributions under various depositional scenarios using the principles of sequence stratigraphic analysis. The stratigraphic modeling software provides a broad spectrum of techniques for modeling and testing elements of the petroleum system. Using well-constrained geologic examples, variations in depositional geometry and lithofacies distributions between different tectonic settings (passive vs. active margin) and climate regimes (hothouse vs. icehouse) can provide insight tomore » potential source rock and reservoir rock distribution, maturation timing, migration pathways, and trap formation. Two data sets are used to illustrate such variations: both include a seismic reflection profile calibrated by multiple wells. The first is a Pennsylvanian mixed carbonate-siliciclastic system in the Paradox basin, and the second a Pliocene-Pleistocene siliciclastic system in the Gulf of Mexico. Numeric simulations result in geometry and facies distributions consistent with those interpreted using the integrated stratigraphic analysis of the calibrated seismic profiles. An exception occurs in the Gulf of Mexico study where the simulated sediment thickness from 3.8 to 1.6 Ma within an upper slope minibasin was less than that mapped using a regional seismic grid. Regional depositional patterns demonstrate that this extra thickness was probably sourced from out of the plane of the modeled transect, illustrating the necessity for three-dimensional constraints on two-dimensional modeling.« less

  5. Numerical Homogenization of Jointed Rock Masses Using Wave Propagation Simulation

    NASA Astrophysics Data System (ADS)

    Gasmi, Hatem; Hamdi, Essaïeb; Bouden Romdhane, Nejla

    2014-07-01

    Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young's modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young's modulus of equivalent medium for wave propagation analysis.

  6. Archaean tectonic systems: A view from igneous rocks

    NASA Astrophysics Data System (ADS)

    Moyen, Jean-François; Laurent, Oscar

    2018-03-01

    This work examines the global distribution of Archaean and modern igneous rock's compositions, without relying on preconceptions about the link between rock compositions and tectonic sites (in contrast with "geotectonic" diagrams). Rather, Archaean and modern geochemical patterns are interpreted and compared in terms of source and melting conditions. Mafic rocks on the modern Earth show a clear chemical separation between arc and non-arc rocks. This points to the first order difference between wet (arc) and dry (mid-ocean ridges and hotspots) mantle melting. Dry melts are further separated in depleted (MORB) and enriched (OIB) sources. This three-fold pattern is a clear image of the ridge/subduction/plume system that dominates modern tectonics. In contrast, Archaean mafic and ultramafic rocks are clustered in an intermediate position, between the three main modern types. This suggests that the Archaean mantle had lesser amounts of clearly depleted or enriched portions; that true subductions were rare; and that the distinction between oceanic plateaus and ridges may have been less significant. Modern granitic rocks dominantly belong to two groups: arc-related granitoids, petrologically connected to arc basalts; and collision granitoids, related to felsic sources. In contrast, the Archaean record is dominated by the TTG suite that derives from an alkali-rich mafic source (i.e. altered basalt). The geochemical diversity of the TTG suite points to a great range of melting depths, from ca. 5 to > 20 kbar. This reveals the absence of large sedimentary accumulations, again the paucity of modern-like arc situations, and the importance played by reworking of an earlier basaltic shell, in a range of settings (including some proto-subduction mechanisms). Nonetheless, granitoids in each individual region show a progressive transition towards more modern-looking associations of arc-like and peraluminous granites. Collectively, the geochemical evidence suggests an Archaean Earth with somewhat different tectonic systems. In particular, the familiar distinction between collision, arcs, ridges and hotspots seems to blur in the Archaean. Rather, the large-scale geochemical pattern reveals a long-lived, altered and periodically resurfaced basaltic crust. This protocrust is reworked, through a range of processes occurring at various depths that correspond to a progressive stabilization of burial systems and the establishment of true subductions. A punctuated onset of global plate tectonics is unlikely to have occurred, but rather short-term episodes of proto-subduction in the late Archaean evolved over time into longer-term, more stable style of plate tectonics as mantle temperature decayed.

  7. Coping with the cold: an ecological context for the abundance and distribution of rock sandpipers during winter in upper Cook Inlet, Alaska

    USGS Publications Warehouse

    Ruthrauff, Daniel R.; Gill, Robert E.; Tibbitts, T. Lee

    2013-01-01

    Shorebirds are conspicuous and abundant at high northern latitudes during spring and summer, but as seasonal conditions deteriorate, few remain during winter. To the best of our knowledge, Cook Inlet, Alaska (60.6˚ N, 151.6˚ W), is the world’s coldest site that regularly supports wintering populations of shorebirds, and it is also the most northerly nonbreeding location for shorebirds in the Pacific Basin. During the winters of 1997–2012, we conducted aerial surveys of upper Cook Inlet to document the spatial and temporal distribution and number of Rock Sandpipers (Calidris ptilocnemis) using the inlet. The average survey total was 8191 ± 6143 SD birds, and the average of each winter season’s highest single-day count was 13 603 ± 4948 SD birds. We detected only Rock Sandpipers during our surveys, essentially all of which were individuals of the nominate subspecies (C. p. ptilocnemis). Survey totals in some winters closely matched the population estimate for this subspecies, demonstrating the region’s importance as a nonbreeding resource to the subspecies. Birds were most often found at only a handful of sites in upper Cook Inlet, but shifted their distribution to more southerly locations in the inlet during periods of extreme cold. Two environmental factors allow Rock Sandpipers to inhabit Cook Inlet during winter: 1) an abundant bivalve (Macoma balthica) food source and 2) current and tidal dynamics that keep foraging substrates accessible during all but extreme periods of cold and ice accretion. C. p. ptilocnemis is a subspecies of high conservation concern for which annual winter surveys may serve as a relatively inexpensive population-monitoring tool that will also provide insight into adaptations that allow these birds to exploit high-latitude environments in winter.

  8. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the measured data. Comparisons of the model and data from drillholes show good but not perfect agreement. ?? 2005 Author(s). This work is licensed under a Creative Commons License.

  9. Comparative Analysis of Fluoride Concentrations in Groundwaters in Northern and Southern Ghana: Implications for the Contaminant Sources

    NASA Astrophysics Data System (ADS)

    Sunkari, Emmanuel Daanoba; Zango, Musah Saeed; Korboe, Harriet Mateko

    2018-04-01

    Bongo and Sekyere South districts, both in the northern and southern parts of Ghana, respectively, have high populations living in rural areas and most of them use groundwater for drinking purposes. The groundwater in these areas is prone to contamination from natural and/or artificial sources. Therefore this study aims; (1) to present a comparative analysis of the fluoride concentration in groundwater samples from Bongo and Sekyere South districts and the associated groundwater-rock interaction that may be the cause for the varied fluoride concentrations, (2) to determine the leaching potential of fluoride from the host rocks as the possible mechanism for groundwater contamination. Sixty (60) groundwater samples from active pumping wells and twelve (12) rock samples from outcrops were collected from various communities in the two districts for fluoride concentration and mineralogical analysis. Based on the variations in fluoride concentration, fluoride spatial distribution maps were prepared using empirical Bayesian kriging interpolation method and analysed by means of hierarchical cluster analysis. The fluoride concentration in Bongo district varies between 1.71 and 4.0 mg/L, whereas that in Sekyere South district changes from 0.3 to 0.8 mg/L. From the mineralogical studies, biotite has the highest percentage in the Bongo district and has positive correlation with fluoride concentration in the analysed water samples than in the Sekyere South district. The elevated fluoride concentration in the Bongo district relative to the Sekyere South district is due to the dissolution of biotite in the groundwater and the sufficient groundwater-rock interaction since the water samples are mainly sourced from deeper boreholes. This high fluoride concentration has resulted in a plethora of reported cases of dental fluorosis and other health-related issues in Bongo.

  10. Comparative Analysis of Fluoride Concentrations in Groundwaters in Northern and Southern Ghana: Implications for the Contaminant Sources

    NASA Astrophysics Data System (ADS)

    Sunkari, Emmanuel Daanoba; Zango, Musah Saeed; Korboe, Harriet Mateko

    2018-05-01

    Bongo and Sekyere South districts, both in the northern and southern parts of Ghana, respectively, have high populations living in rural areas and most of them use groundwater for drinking purposes. The groundwater in these areas is prone to contamination from natural and/or artificial sources. Therefore this study aims; (1) to present a comparative analysis of the fluoride concentration in groundwater samples from Bongo and Sekyere South districts and the associated groundwater-rock interaction that may be the cause for the varied fluoride concentrations, (2) to determine the leaching potential of fluoride from the host rocks as the possible mechanism for groundwater contamination. Sixty (60) groundwater samples from active pumping wells and twelve (12) rock samples from outcrops were collected from various communities in the two districts for fluoride concentration and mineralogical analysis. Based on the variations in fluoride concentration, fluoride spatial distribution maps were prepared using empirical Bayesian kriging interpolation method and analysed by means of hierarchical cluster analysis. The fluoride concentration in Bongo district varies between 1.71 and 4.0 mg/L, whereas that in Sekyere South district changes from 0.3 to 0.8 mg/L. From the mineralogical studies, biotite has the highest percentage in the Bongo district and has positive correlation with fluoride concentration in the analysed water samples than in the Sekyere South district. The elevated fluoride concentration in the Bongo district relative to the Sekyere South district is due to the dissolution of biotite in the groundwater and the sufficient groundwater-rock interaction since the water samples are mainly sourced from deeper boreholes. This high fluoride concentration has resulted in a plethora of reported cases of dental fluorosis and other health-related issues in Bongo.

  11. Age, distribution, and stratigraphic relationship of rock units in the San Joaquin Basin Province, California: Chapter 5 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2008-01-01

    The San Joaquin Basin is a major petroleum province that forms the southern half of California’s Great Valley, a 700-km-long, asymmetrical basin that originated between a subduction zone to the west and the Sierra Nevada to the east. Sedimentary fill and tectonic structures of the San Joaquin Basin record the Mesozoic through Cenozoic geologic history of North America’s western margin. More than 25,000 feet (>7,500 meters) of sedimentary rocks overlie the basement surface and provide a nearly continuous record of sedimentation over the past ~100 m.y. Further, depositional geometries and fault structures document the tectonic evolution of the region from forearc setting to strike-slip basin to transpressional margin. Sedimentary architecture in the San Joaquin Basin is complicated because of these tectonic regimes and because of lateral changes in depositional environment and temporal changes in relative sea level. Few formations are widespread across the basin. Consequently, a careful analysis of sedimentary facies is required to unravel the basin’s depositional history on a regional scale. At least three high-quality organic source rocks formed in the San Joaquin Basin during periods of sea level transgression and anoxia. Generated on the basin’s west side, hydrocarbons migrated into nearly every facies type in the basin, from shelf and submarine fan sands to diatomite and shale to nonmarine coarse-grained rocks to schist. In 2003, the U.S. Geological Survey (USGS) completed a geologic assessment of undiscovered oil and gas resources and future additions to reserves in the San Joaquin Valley of California (USGS San Joaquin Basin Province Assessment Team, this volume, chapter 1). Several research aims supported this assessment: identifying and mapping the petroleum systems, modeling the generation, migration, and accumulation of hydrocarbons, and defining the volumes of rock to be analyzed for additional resources. To better understand the three dimensional relationships between hydrocarbon source and reservoir rocks, we compiled a database consisting of more than 13,000 well picks and of one-mile resolution seismic grids. Both the well picks and the seismic grids characterize the depths to the top of key stratigraphic units. This database formed the basis of subsequent numerical modeling efforts, including the construction of a three- dimensional geologic model (Hosford Scheirer, this volume, chapter 7) and simulation of the petroleum systems in space and time (Peters, Magoon, Lampe, and others, this volume, chapter 12). To accomplish this modeling, we synthesized the age, geographic distribution, lithology, and petroleum characteristics of hydrocarbon source and reservoir rocks in the basin. The results of that synthesis are presented in this paper in the form of new stratigraphic correlation columns for the northern, central, and southern San Joaquin Valley (fig. 5.1; note that all figures are at the back of this report, following the References Cited). The stratigraphic relationships and ages published here draw heavily on published and unpublished studies of the San Joaquin Basin. The stratigraphy presented in each of the columns necessarily idealizes the subsurface geology over a relatively large area, instead of representing the specific geology at an individual well, oil and gas field, or outcrop. In this paper we present the background rationale for defining the geographic divisions of the basin (inset map, fig. 5.1), the paleontological time scales used for assigning absolute ages to rock units (figs. 5.2 and 5.3), and the supporting maps illustrating the geographic distribution of each rock type included in the stratigraphic column (figs. 5.4 through 5.64).

  12. Proterozoic to Mesozoic evolution of North-West Africa and Peri-Gondwana microplates: Detrital zircon ages from Morocco and Canada

    NASA Astrophysics Data System (ADS)

    Marzoli, Andrea; Davies, Joshua H. F. L.; Youbi, Nasrrddine; Merle, Renaud; Dal Corso, Jacopo; Dunkley, Daniel J.; Fioretti, Anna Maria; Bellieni, Giuliano; Medina, Fida; Wotzlaw, Jörn-Frederik; McHone, Greg; Font, Eric; Bensalah, Mohamed Khalil

    2017-05-01

    The complex history of assemblage and disruption of continental plates surrounding the Atlantic Ocean is in part recorded by the distribution of detrital zircon ages entrained in continental sedimentary strata from Morocco (Central High Atlas and Argana basins) and Canada (Grand Manan Island, New Brunswick). Here we investigate detrital zircon from the latest Triassic (ca. 202 Ma) sedimentary strata directly underlying lava flows of the Central Atlantic magmatic province or interlayered within them. SHRIMP (Sensitive High-Resolution Ion MicroProbe) and LA-ICP-MS (Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry) U-Pb ages for zircon range from Paleozoic to Archean with a dominant Neoproterozoic peak, and significant amounts of ca. 2 Ga zircon. These ages suggest a prevailing West African (Gondwanan) provenance at all sampling sites. Notably, the Paleoproterozoic zircon population is particularly abundant in central Morocco, north of the High Atlas chain, suggesting the presence of Eburnean-aged rocks in this part of the country, which is consistent with recent geochronologic data from outcropping rocks. Minor amounts of late Mesoproterozoic and early Neoproterozoic zircon ages (ca. 1.1-0.9 Ga) in Moroccan samples are more difficult to interpret. A provenance from Avalonia or Amazonia, as proposed by previous studies is not supported by the age distributions observed here. An involvement of more distal source regions, possibly located in north-eastern Africa (Arabian Nubian Shield) would instead be possible. Paleozoic zircon ages are abundant in the Canadian sample, pointing to a significant contribution from Hercynian aged source rocks. Such a signal is nearly absent in the Moroccan samples, suggesting that zircon-bearing Hercynian granitic rocks of the Moroccan Meseta block were not yet outcropping at ca. 200 Ma. The only Moroccan samples that yield Paleozoic zircon ages are those interlayered within the CAMP lavas, suggesting an increased dismantling (i.e. uplift) of the Hercynian chain during emplacement of CAMP lava flows, combined with subsidence of the volcanic grabens.

  13. The significance of 24-norcholestanes, triaromatic steroids and dinosteroids in oils and Cambrian-Ordovician source rocks from the cratonic region of the Tarim Basin, NW China

    USGS Publications Warehouse

    Li, Meijun; Wang, T.-G.; Lillis, Paul G.; Wang, Chunjiang; Shi, Shengbao

    2012-01-01

    Two oil families in Ordovician reservoirs from the cratonic region of the Tarim Basin are distinguished by the distribution of regular steranes, triaromatic steroids, norcholestanes and dinosteroids. Oils with relatively lower contents of C28 regular steranes, C26 20S, C26 20R + C27 20S and C27 20R regular triaromatic steroids, dinosteranes, 24-norcholestanes and triaromatic dinosteroids originated from Middle–Upper Ordovician source rocks. In contrast, oils with abnormally high abundances of the above compounds are derived from Cambrian and Lower Ordovician source rocks. Only a few oils have previously been reported to be of Cambrian and Lower Ordovician origin, especially in the east region of the Tarim Basin. This study further reports the discovery of oil accumulations of Cambrian and Lower Ordovician origin in the Tabei and Tazhong Uplifts, which indicates a potential for further discoveries involving Cambrian and Lower Ordovician sourced oils in the Tarim Basin. Dinosteroids in petroleum and ancient sediments are generally thought to be biomarkers for dinoflagellates and 24-norcholestanes for dinoflagellates and diatoms. Therefore, the abnormally high abundance of these compounds in extracts from the organic-rich sediments in the Cambrian and Lower Ordovician and related oils in the cratonic region of the Tarim Basin suggests that phytoplankton algae related to dinoflagellates have appeared and might have flourished in the Tarim Basin during the Cambrian Period. Steroids with less common structural configurations are underutilized and can expand understanding of the early development history of organisms, as well as define petroleum systems.

  14. A hydrological and geochemical analysis of chromium mobilization from serpentinized ultramafic rocks and serpentine soils at the McLaughlin Natural Reserve, Lake County, California

    NASA Astrophysics Data System (ADS)

    McClain, C.; Maher, K.; Fendorf, S.

    2011-12-01

    California recently adopted the nation's first Public Health Goal (PHG) for hexavalent chromium (Cr(VI)) in drinking water (0.02 μg/L) because recent studies show that Cr(VI) may be carcinogenic through ingestion. Approximately one third of drinking water sources in California tested for Cr(VI) have levels above 1 μg/L and thus may pose a risk to human health. Cr(VI) can enter drinking water directly from anthropogenic sources or from the release of Cr(III) in natural geogenic sources such as rocks, sediments and soils, and subsequent oxidation to Cr(VI) by manganese oxides. Ultramafic rocks and related soils and sediments have elevated Cr and Mn concentrations compared to other rock types. To study the release of Cr(VI) to water from geogenic sources we examined the local hydrology, groundwater, surface water, soils and sediment compositions within a serpentinized ultramafic terrain along Hunting Creek, a tributary to Putah Creek, at the McLaughlin Natural Reserve in the California Coast Ranges. The hydrology of the site is dominated by fracture flow: groundwater wells were screened in fractured serpentinite, and springs emanating from fractured serpentinite bedrock contribute to the baseflow of Hunting Creek. Soil profiles and bedrock were analyzed for major and trace elements by XRF to assess the fate of Cr during weathering and the distribution of manganese oxides. These factors, along with mineral surface areas, microbial activity, water content, and flow dynamics, collectively control the oxidation of Cr(III). The prevalence of Mg-HCO3 waters at this site indicates that waters are primarily interacting with serpentinites. Pyroxenes are slightly to highly undersaturated and amorphous silica is saturated. Smectite clays, chlorite, and hydromagnesite are supersaturated, indicating formation of secondary mineral phases is favorable and could lead to the inclusion of Cr(III). Total Cr concentrations in surface and groundwater vary from 0.1-26 μg/L and Cr(VI) concentrations vary from < 2.5-22 μg/L, where the highest concentrations were found in seeps emanating from fractured serpentinite and in tributaries to Hunting Creek. Aqueous Cr is mostly present as Cr(VI) (likely CrO42- and MgCrO4), which is consistent with the high pH (7.98-8.72). A reactive transport approach, constrained by solid and fluid data, was used to assess the geochemical transformations that occur along flow paths in order to evaluate the coupling between hydrologic and biogeochemical processes. Similar ultramafic rocks and terrains occur in belts along the Coast Range and the Foothills to the Sierra Nevada and in the Klamath Mountains. Creeks and rivers draining these ultramafic terrains have transported Cr-bearing sediments to the Central Valley, (and other densely populated sedimentary basins and alluvial plains) where they are now widely distributed both at the surface and buried underground, interlaced with aquifer materials. This study highlights the importance of using a holistic approach that considers multiple length scales to understand the factors that control Cr distribution and speciation in natural waters.

  15. Zircon U-Pb ages and Hf isotopic compositions indicate multiple sources for Grenvillian detrital zircon deposited in western Laurentia

    NASA Astrophysics Data System (ADS)

    Howard, Amanda L.; Farmer, G. Lang; Amato, Jeffrey M.; Fedo, Christopher M.

    2015-12-01

    Combined U-Pb ages and Hf isotopic data from 1.0 Ga to 1.3 Ga (Grenvillian) detrital zircon in Neoproterozoic and Cambrian siliciclastic sedimentary rocks in southwest North America, and from igneous zircon in potential Mesoproterozoic source rocks, are used to better assess the provenance of detrital zircon potentially transported across Laurentia in major river systems originating in the Grenville orogenic highlands. High-precision hafnium isotopic analyses of individual ∼1.1 Ga detrital zircon from Neoproterozoic siliciclastic sedimentary rocks in Sonora, northern Mexico, reveal that these zircons have low εHf (0) (-22 to -26) and were most likely derived from ∼1.1 Ga granitic rocks embedded in local Mojave Province Paleoproterozoic crust. In contrast, Grenvillian detrital zircons in Cambrian sedimentary rocks in Sonora, the Great Basin, and the Mojave Desert, have generally higher εHf (0) (-15 to -21) as demonstrated both by high precision solution-based, and by lower precision laser ablation, ICPMS data and were likely derived from more distal sources further to the east/southeast in Laurentia. Comparison to new and existing zircon U-Pb geochronology and Hf isotopic data from Grenvillian crystalline rocks from the Appalachian Mountains, central and west Texas, and from Paleoproterozoic terranes throughout southwest North America reveals that zircon in Cambrian sandstones need not entirely represent detritus transported across the continent from Grenville province rocks in the vicinity of the present-day southern Appalachian Mountains. Instead, these zircons could have been derived from more proximal, high εHf (0), ∼1.1 Ga, crystalline rocks such as those exposed today in the Llano Uplift in central Texas and in the Franklin Mountains of west Texas. Regardless of the exact source(s) of the Grenvillian detrital zircon, new and existing whole-rock Nd isotopic data from Neoproterozoic to Cambrian siliciclastic sedimentary rocks in the Mojave Desert demonstrate that the occurrences of higher εHf (0), Grenvillian detrital zircons are decoupled from the sources of the bulk of the sedimentary detritus in which the zircons are entrained. The Cambrian Wood Canyon Formation and the underlying ;off craton; Neoproterozoic Johnnie Formation and Stirling Quartzite all contain higher εHf (0), Grenvillian detrital zircon, in some cases as the dominant detrital zircon population. However, only portions of the Wood Canyon Formation have whole rock Nd isotopic compositions consistent with a bulk sediment source in ∼1.1 Ga sources rocks. Whole rock Nd isotopic compositions of the remaining portions of this unit, and all of the Johnnie Formation and Stirling Quartzite, require bulk sediment sources principally in Paleoproterozoic continental crust. We consider the observed decoupling in the sources of Grenvillian detrital zircon and bulk sediment in the Wood Canyon Formation and underlying siliciclastic sediments as a demonstration that detrital zircon U-Pb and Hf isotopic data alone can provide an incomplete picture of the source of sediments that comprise a given siliciclastic stratigraphic unit.

  16. Provenance from zircon U-Pb age distributions in crustally contaminated granitoids

    NASA Astrophysics Data System (ADS)

    Bahlburg, Heinrich; Berndt, Jasper

    2016-05-01

    The basement of sedimentary basins is often entirely covered by a potentially multi-stage basin fill and therefore removed from direct observation and sampling. Melts intruding through the basin stratigraphy at a subsequent stage in the geological evolution of a region may assimilate significant volumes of country rocks. This component may be preserved in the intrusive body either as xenoliths or it may be reflected only by the age spectrum of incorporated zircons. Here we present the case of an Ordovician calc-alkaline intrusive belt in NW Argentina named the "Faja Eruptiva de la Puna Oriental" (Faja Eruptiva), which in the course of intrusion sampled the unexposed and unknown basement of the Ordovician basin in this region, and parts of the basin stratigraphy. We present new LA-ICP-MS U-Pb ages on zircons from 9 granodiorites and granites of the Faja Eruptiva. The main part of the Faja Eruptiva intruded c. 445 Ma in the Late Ordovician. The zircon ages obtained from the intrusive rocks have a large spread between 2683.5 ± 21.6 and 440.0 ± 4.9 Ma and reflect the underlying crust and may be interpreted in several ways. The inherited zircons may have been derived from the oldest known unit in the region, the thick siliciclastic turbidite successions of the upper Neoproterozoic-lower Cambrian Puncoviscana Formation, which is inferred to represent the basement of the NW Argentina. The basement to the Puncoviscana Formation is not known. Alternatively, the inherited zircons may reflect the geochronological structure of the entire unexposed Early Paleozoic crust underlying this region of which the Puncoviscana Formation was only one component. This crust likely contained rocks pertaining to and detritus derived from earlier orogenic cycles of the southwestern Amazonia craton, including sources of Early Meso- and Paleoproterozoic age. Detritus derived, in turn, from the Faja Eruptiva intrusive belt reflects the origin of the granitoids as well as the inherited geochronological and isotope geochemical structure of either the basement and/or distant sources having supplied material to the basement rocks. If unrecognized, sediment formed from such granitoid sources may erroneously be used to infer the exposure of, and direct detrital contributions from, a variety of older source rocks in fact not directly involved in the studied source-sink system.

  17. New Constraints on the Rock Size Distribution on the Moon from Diviner Infrared Measurements

    NASA Astrophysics Data System (ADS)

    Elder, C. M.; Hayne, P. O.; Piqueux, S.; Bandfield, J. L.; Ghent, R. R.; Williams, J. P.; Paige, D. A.

    2015-12-01

    Most of the Moon's surface is covered by fine-grained regolith produced by impacts, but rocks of various sizes are also present. Rock abundances can be used to distinguish different surface units and quantify the ages of craters [1,2]. Furthermore, the size distribution of a population of rocks reflects the process by which they were formed and fragmented [3]. Knowing the distribution of rock sizes on the Moon can improve our understanding of regolith generation, evolution, and distribution, can be used to select landing sites, and can provide insight into the processes that have shaped the lunar surface. The high thermal inertia of rocks compared to fine-grained regolith leads to multiple temperatures within the field of view of nighttime multispectral data returned from the Lunar Reconnaissance Orbiter (LRO) Diviner thermal radiometer. This data has been used to map the rock abundance across the lunar surface [1]. However, the derived rock abundance is not constant over the course of the lunar night; small rocks cool faster than large rocks and eventually become indistinguishable from regolith using Diviner data. Thus the detectable rock abundance will decrease over the course of the lunar night. Here we use this change in measured rock abundance with time to constrain the size distribution of rock fragments, and map its variation across the lunar surface. We will show results from this study and discuss the implications for the geologic processes shaping the lunar surface. [1] Bandfield J. L. et al. (2011) JGR, 116, E00H02. [2] Ghent R. R. et al. (2014) Geology, 42, no. 12, 1059-1062. [3] Hartmann W. K. (1969) Icarus, 10, 201-213. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  18. Reactive solute transport in an asymmetrical fracture-rock matrix system

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance which refers to the zero diffusion between the fracture and the rock matrix during the water flushing phase is closely associated with dispersive process in the fracture.

  19. Geochemistry of approximately 1.9 Ga sedimentary rocks from northeastern Labrador, Canada

    NASA Technical Reports Server (NTRS)

    Hayashi, K. I.; Fujisawa, H.; Holland, H. D.; Ohmoto, H.

    1997-01-01

    Fifty-eight rock chips from fifteen samples of sedimentary rocks from the Ramah Group (approximately 1.9 Ga) in northeastern Labrador, Canada, were analyzed for major and minor elements, including C and S, to elucidate weathering processes on the Earth's surface about 1.9 Ga ago. The samples come from the Rowsell Harbour, Reddick Bight, and Nullataktok Formations. Two rock series, graywackes-gray shales of the Rowsell Harbour, Reddick Bight and Nullataktok Formations, and black shales of the Nullataktok Formation, are distinguishable on the basis of lithology, mineralogy, and major and trace element chemistry. The black shales show lower concentrations than the graywackes-gray shales in TiO2 (0.3-0.7 wt% vs. 0.7-1.8 wt%), Al2O3 (9.5-20.1 wt% vs. 13.0-25.0 wt%), and sigma Fe (<1 wt% vs. 3.8-13.9 wt% as FeO). Contents of Zr, Th, U, Nb, Ce, Y, Rb, Y, Co, and Ni are also lower in the black shales. The source rocks for the Ramah Group sediments were probably Archean gneisses with compositions similar to those in Labrador and western Greenland. The major element chemistry of source rocks for the Ramah Group sedimentary rocks was estimated from the Al2O3/TiO2 ratios of the sedimentary rocks and the relationship between the major element contents (e.g., SiO2 wt%) and Al2O3/TiO2 ratios of the Archean gneisses. This approach is justified, because the Al/Ti ratios of shales generally retain their source rock values; however, the Zr/Al, Zr/Ti, and Cr/Ni ratios fractionate during the transport of sediments. The measured SiO2 contents of shales in the Ramah Group are generally higher than the estimated SiO2 contents of source rocks by approximately 5 wt%. This correction may also have to be applied when estimating average crustal compositions from shales. Two provenances were recognized for the Ramah Group sediments. Provenance I was comprised mostly of rocks of bimodal compositions, one with SiO2 contents approximately 45 wt% and the other approximately 65 wt%, and was the source for most sedimentary rocks of the Ramah Group, except for black shales of the Nullataktok Formation. The black shales were apparently derived from Provenance II that was comprised mostly of felsic rocks with SiO2 contents approximately 65 wt%. Comparing the compositions of the Ramah Group sedimentary rocks and their source rocks, we have recognized that several major elements, especially Ca and Mg, were lost almost entirely from the source rocks during weathering and sedimentation. Sodium and potassium were also leached almost entirely during the weathering of the source rocks. However, significant amounts of Na were added to the black shales and K to all the rock types during diagenesis and/or regional metamorphism. The intensity of weathering of source rocks for the Ramah Group sediments was much higher than that of typical Phanerozoic sediments, possibly because of a higher PCO2 in the Proterozoic atmosphere. Compared to the source rock values, the Fe3+/Ti ratios of many of the graywackes and gray shales of the Ramah Group are higher, the Fe2+/Ti ratios are lower, and the sigma Fe/Ti ratios are the same. Such characteristics of the Fe geochemistry indicate that these sedimentary rocks are comprised of soils formed by weathering of source rocks under an oxygen-rich atmosphere. The atmosphere about 1.9 Ga was, therefore, oxygen rich. Typical black shales of Phanerozoic age exhibit positive correlations between the organic C contents and the concentrations of S, U, and Mo, because these elements are enriched in oxygenated seawater and are removed from seawater by organic matter in sediments. However, such correlations are not found in the Ramah Group sediments. Black shales of the Ramah Group contain 1.7-2.8 wt% organic C, but are extremely depleted in sigma Fe (<1 wt% as FeO), S (<0.3 wt%), U (approximately l ppm), Mo (<5 ppm), Ni (<2 ppm), and Co (approximately 0 ppm). This lack of correlation, however, does not imply that the approximately 1.9 Ga atmosphere-ocean system was anoxic. Depletion of these elements from the Ramah Group sediments may have occurred during diagenesis.

  20. A diffuse radar scattering model from Martian surface rocks

    NASA Technical Reports Server (NTRS)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  1. FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns

    NASA Astrophysics Data System (ADS)

    Healy, David; Rizzo, Roberto E.; Cornwell, David G.; Farrell, Natalie J. C.; Watkins, Hannah; Timms, Nick E.; Gomez-Rivas, Enrique; Smith, Michael

    2017-02-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, and spatial distributions often exhibit some kind of order. In detail, relationships may exist among the different fracture attributes, e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture attributes and patterns. This paper describes FracPaQ, a new open source, cross-platform toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on previously published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales, rock types and tectonic settings. The implemented methods presented are inherently scale independent, and a key task where applicable is analysing and integrating quantitative fracture pattern data from micro-to macro-scales. The toolbox was developed in MATLAB™ and the source code is publicly available on GitHub™ and the Mathworks™ FileExchange. The code runs on any computer with MATLAB installed, including PCs with Microsoft Windows, Apple Macs with Mac OS X, and machines running different flavours of Linux. The application, source code and sample input files are available in open repositories in the hope that other developers and researchers will optimise and extend the functionality for the benefit of the wider community.

  2. Source rock contributions to the Lower Cretaceous heavy oil accumulations in Alberta: a basin modeling study

    USGS Publications Warehouse

    Berbesi, Luiyin Alejandro; di Primio, Rolando; Anka, Zahie; Horsfield, Brian; Higley, Debra K.

    2012-01-01

    The origin of the immense oil sand deposits in Lower Cretaceous reservoirs of the Western Canada sedimentary basin is still a matter of debate, specifically with respect to the original in-place volumes and contributing source rocks. In this study, the contributions from the main source rocks were addressed using a three-dimensional petroleum system model calibrated to well data. A sensitivity analysis of source rock definition was performed in the case of the two main contributors, which are the Lower Jurassic Gordondale Member of the Fernie Group and the Upper Devonian–Lower Mississippian Exshaw Formation. This sensitivity analysis included variations of assigned total organic carbon and hydrogen index for both source intervals, and in the case of the Exshaw Formation, variations of thickness in areas beneath the Rocky Mountains were also considered. All of the modeled source rocks reached the early or main oil generation stages by 60 Ma, before the onset of the Laramide orogeny. Reconstructed oil accumulations were initially modest because of limited trapping efficiency. This was improved by defining lateral stratigraphic seals within the carrier system. An additional sealing effect by biodegraded oil may have hindered the migration of petroleum in the northern areas, but not to the east of Athabasca. In the latter case, the main trapping controls are dominantly stratigraphic and structural. Our model, based on available data, identifies the Gordondale source rock as the contributor of more than 54% of the oil in the Athabasca and Peace River accumulations, followed by minor amounts from Exshaw (15%) and other Devonian to Lower Jurassic source rocks. The proposed strong contribution of petroleum from the Exshaw Formation source rock to the Athabasca oil sands is only reproduced by assuming 25 m (82 ft) of mature Exshaw in the kitchen areas, with original total organic carbon of 9% or more.

  3. WEST AND EAST PALISADES ROADLESS AREAS, IDAHO AND WYOMING.

    USGS Publications Warehouse

    Oriel, Steven S.; Benham, John R.

    1984-01-01

    Studies of the West and East Palisades Roadless Areas, which lie within the Idaho-Wyoming thrust belt, document structures, reservoir formations, source beds, and thermal maturities comparable to those in producing oil and gas field farther south in the belt. Therefore, the areas are highly favorable for the occurrence of oil and gas. Phosphate beds of appropriate grade within the roadless areas are thinner and less accessible than those being mined from higher thrust sheets to the southwest; however, they contain 98 million tons of inferred phosphate rock resources in areas of substantiated phosphate resource potential. Sparsely distributed thin coal seams occur in the roadless areas. Although moderately pure limestone is present, it is available from other sources closer to markets. Geochemical anomalies from stream-sediment and rock samples for silver, copper, molydenum, and lead occur in the roadless areas but they offer little promise for the occurrence of metallic mineral resources. A possible geothermal resource is unproven, despite thermal phenomena at nearby sites.

  4. Petroleum geology and resources of the Nepa-Botuoba High, Angara-Lena Terrace, and Cis-Patom Foredeep, southeastern Siberian Craton, Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    Three structural provinces of this report, the Nepa-Botuoba High, the Angara-Lena Terrace, and the Cis-Patom Foredeep, occupy the southeastern part of the Siberian craton northwest of the Baikal-Patom folded region (fig. 1). The provinces are similar in many aspects of their history of development, stratigraphic composition, and petroleum geology characteristics. The sedimentary cover of the provinces overlies the Archean?Lower Proterozoic basement of the Siberian craton. Over most of the area of the provinces, the basement is covered by Vendian (uppermost Proterozoic, 650?570 Ma) clastic and carbonate rocks. Unlike the case in the more northwestern areas of the craton, older Riphean sedimentary rocks here are largely absent and they appear in the stratigraphic sequence only in parts of the Cis-Patom Foredeep province. Most of the overlying sedimentary section consists of Cambrian and Ordovician carbonate and clastic rocks, and it includes a thick Lower Cambrian salt-bearing formation. Younger rocks are thin and are present only in marginal areas. 1 A single total petroleum system (TPS) embraces all three provinces. The TPS is unique in two aspects: (1) its rich hydro-carbon reserves are derived from Precambrian source rocks and (2) preservation of oil and gas fields is extremely long owing to the presence of the Lower Cambrian undeformed salt seal. Discovered reserves of the TPS are about 2 billion barrels of oil and more than 30 trillion cubic feet of gas. The stratigraphic distribution of oil and gas reserves is narrow; all fields are in Vendian to lowermost Cambrian clastic and carbonate reservoirs that occur below Lower Cambrian salt. Both structural and stratigraphic traps are known. Source rocks are absent in the sedimentary cover of the provinces, with the possible exception of a narrow zone on the margin of the Cis-Patom Foredeep province. Source rocks are interpreted here to be Riphean and Vendian organic-rich shales of the Baikal-Patom folded region. These rocks presently are deformed and metamorphosed, but they generated oil and gas before the deformation occurred in Late Silurian and Devonian time. Generated hydrocarbons migrated updip onto the craton margin. The time of migration and formation of fields is constrained by the deposition of Lower Cambrian salt and by the Late Silurian or Devonian metamorphism of source rocks. This time frame indicates that the TPS is one of the oldest petroleum systems in the world. All three provinces are exploration frontiers, and available geologic data are limited; therefore, only one assessment unit has been identified. The largest undiscovered hydrocarbon resources are expected to be in Vendian clastic reservoirs in both structural and stratigraphic traps of the Nepa-Botuoba High province. The petroleum potential of Vendian?lowermost Cambrian carbonate reservoirs is smaller. Nevertheless, these reservoirs may contain significant resources. Gas is expected to dominate over oil in the resource base.

  5. The role of rock moisture on regulating hydrologic and solute fluxes in the critical zone

    NASA Astrophysics Data System (ADS)

    Rempe, D. M.; Druhan, J. L.; Hahm, W. J.; Wang, J.; Murphy, C.; Cargill, S.; Dietrich, W. E.; Tune, A. K.

    2017-12-01

    In environments where the vadose zone extends below the soil layer into underlying weathered bedrock, the water held in the weathering -generated pores can be an important source of moisture to vegetation. The heterogeneous distribution of pore space in weathered bedrock, furthermore, controls the subsurface water flowpaths that dictate how water is partitioned in the critical zone (CZ) and evolves geochemically. Here, we present the results of direct monitoring of the fluxes of water and solutes through the deep CZ using a novel vadose zone monitoring system (VMS) as well as geophysical logging and sampling in a network of deep wells across a steep hillslope in Northern California. At our study site (Eel River CZO), multi-year monitoring reveals that a significant fraction of incoming rainfall (up to 30%) is seasonally stored in the fractures and matrix of the upper 12 m of weathered bedrock as rock moisture. Intensive geochemical and geophysical observations distributed from the surface to the depth of unweathered bedrock indicate that the seasonal addition and depletion of rock moisture has key implications for hydrologic and geochemical processes. First, rock moisture storage provides an annually consistent water storage reservoir for use by vegetation during the summer, which buffers transpiration fluxes against variability in seasonal precipitation. Second, because the timing and magnitude of groundwater recharge and streamflow are controlled by the annual filling and drainage of the rock moisture, rock moisture regulates the partitioning of hydrologic fluxes. Third, we find that rock moisture dynamics—which influence the myriad geochemical and microbial processes that weather bedrock—strongly correspond with the observed vertical weathering profile. As a result of the coupling between chemical weathering reactions and hydrologic fluxes, the geochemical composition of groundwater and streamflow is influenced by the temporal dynamics of rock moisture. Our findings highlight the strong influence of water transport and storage dynamics in the weathered bedrock beneath the soil layer on catchment-scale hydrologic and geochemical fluxes, and underscore the need for further exploration of the fractured bedrock vadose zones common to many upland landscapes.

  6. Post-collisional magmatism in the Late Miocene Rodna-Bârgău district (East Carpathians, Romania): Geochemical constraints and petrogenetic models

    NASA Astrophysics Data System (ADS)

    Fedele, Lorenzo; Seghedi, Ioan; Chung, Sun-Lin; Laiena, Fabio; Lin, Te-Hsien; Morra, Vincenzo; Lustrino, Michele

    2016-12-01

    Post-collisional magmatism in the Late Miocene Rodna-Bârgău subvolcanic district (East Carpathians) gave rise to a wide variety of rock compositions, allowing recognition of four groups of calcalkaline rocks with distinctive petrography, mineral chemistry, whole-rock geochemistry and Sr-Nd-Hf isotope features. New U-Pb zircon datings, together with literature data, indicate that the emplacement of the four rock groups was basically contemporaneous in the 11.5-8 Ma time span. The low potassium group (LKG) includes the most abundant lithotypes of the area, ranging from basaltic andesite to dacite, characterized by K-poor tschermakitic amphibole, weak enrichment in LILE and LREE, relatively low 87Sr/86Sr, coupled with relatively high 143Nd/144Nd and 176Hf/177Hf. The high potassium group (HKG) includes amphibole-bearing microgabbro, amphibole andesite and amphibole- and biotite dacite, with K-richer magnesio-hastingsite to hastingsite amphibole, more marked enrichments in incompatible elements, higher 87Sr/86Sr and lower 143Nd/144Nd and 176Hf/177Hf. These two main rock groups seem to have originated from similar juxtaposed mantle sources, with the HKG possibly related to slightly more enriched domains (with higher H2O reflected by the higher modal amphibole) with respect to LKG (with higher plagioclase/amphibole ratios). The evolution of the two rock series involved also open-system processes, taking place mainly in the upper crust for the HKG, in the lower crust for LKG magmas. In addition, limited occurrences of generally younger strongly evolved peraluminous rhyolites and microgranites (Acid group) and sialic-dominated "leucocratic" andesites and dacites (LAD group) were also recognized to the opposite outermost areas of the district. These two latter rock groups were generated by the melting of a basic metamorphic crustal source (respectively in hydrous and anhydrous conditions), favored by the heat released by mantle melts from the adjoining central area. The peculiar distribution of the products of the four rock groups in well defined sectors argues for a strong control of the local crustal tectonic regime on magmatism, influenced by the change from a transpressional to trastensional stage.

  7. Contributions to the geology of uranium and thorium by the United States Geological Survey and Atomic Energy Commission for the United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, Switzerland, 1955

    USGS Publications Warehouse

    Page, Lincoln R.; Stocking, Hobart E.; Smith, Harriet B.

    1956-01-01

    Within the boundaries of the United States abnormal amounts of uranium have been found in rocks of nearly all geologic ages and lithologic types. Distribution of ore is more restricted. On the Colorado Plateau, the Morrison formation of Jurassic age yields 61.4 percent of the ore produced in the United States, and the Chinle conglomerate and Shinarump formation of Triassic age contribute 26.0 and 5.8 percent, respectively. Clastic, carbonaceous, and carbonate sedimentary rocks of Tertiary, Mesozoic, and Paleozoic ages and veins of Tertiary age are the source of the remaining 6.8 percent.

  8. The Kingak shale of northern Alaska-regional variations in organic geochemical properties and petroleum source rock quality

    USGS Publications Warehouse

    Magoon, L.B.; Claypool, G.E.

    1984-01-01

    The Kingak Shale, a thick widespread rock unit in northern Alaska that ranges in age from Early Jurassic through Early Cretaceous, has adequate to good oil source rock potential. This lenticular-shaped rock unit is as much as 1200 m thick near the Jurassic shelf edge, where its present-day burial depth is about 5000 m. Kingak sediment, transported in a southerly direction, was deposited on the then marine continental shelf. The rock unit is predominantly dark gray Shale with some interbeds of thick sandstone and siltstone. The thermal maturity of organic matter in the Kingak Shale ranges from immature (2.0%R0) in the Colville basin toward the south. Its organic carbon and hydrogen contents are highest in the eastern part of northern Alaska south of and around the Kuparuk and Prudhoe Bay oil fields. Carbon isotope data of oils and rock extracts indicate that the Kingak Shale is a source of some North Slope oil, but is probably not the major source. ?? 1984.

  9. Timing and petroleum sources for the Lower Cretaceous Mannville Group oil sands of northern Alberta based on 4-D modeling

    USGS Publications Warehouse

    Higley, D.K.; Lewan, M.D.; Roberts, L.N.R.; Henry, M.

    2009-01-01

    The Lower Cretaceous Mannville Group oil sands of northern Alberta have an estimated 270.3 billion m3 (BCM) (1700 billion bbl) of in-place heavy oil and tar. Our study area includes oil sand accumulations and downdip areas that partially extend into the deformation zone in western Alberta. The oil sands are composed of highly biodegraded oil and tar, collectively referred to as bitumen, whose source remains controversial. This is addressed in our study with a four-dimensional (4-D) petroleum system model. The modeled primary trap for generated and migrated oil is subtle structures. A probable seal for the oil sands was a gradual updip removal of the lighter hydrocarbon fractions as migrated oil was progressively biodegraded. This is hypothetical because the modeling software did not include seals resulting from the biodegradation of oil. Although the 4-D model shows that source rocks ranging from the Devonian-Mississippian Exshaw Formation to the Lower Cretaceous Mannville Group coals and Ostracode-zone-contributed oil to Mannville Group reservoirs, source rocks in the Jurassic Fernie Group (Gordondale Member and Poker Chip A shale) were the initial and major contributors. Kinetics associated with the type IIS kerogen in Fernie Group source rocks resulted in the early generation and expulsion of oil, as early as 85 Ma and prior to the generation from the type II kerogen of deeper and older source rocks. The modeled 50% peak transformation to oil was reached about 75 Ma for the Gordondale Member and Poker Chip A shale near the west margin of the study area, and prior to onset about 65 Ma from other source rocks. This early petroleum generation from the Fernie Group source rocks resulted in large volumes of generated oil, and prior to the Laramide uplift and onset of erosion (???58 Ma), which curtailed oil generation from all source rocks. Oil generation from all source rocks ended by 40 Ma. Although the modeled study area did not include possible western contributions of generated oil to the oil sands, the amount generated by the Jurassic source rocks within the study area was 475 BCM (2990 billion bbl). Copyright ?? 2009. The American Association of Petroleum Geologists. All rights reserved.

  10. Geomechanics-Based Stochastic Analysis of Injection- Induced Seismicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi, Ahmad

    The production of geothermal energy from dry and low permeability reservoirs is achieved by water circulation in natural and/or man-made fractures, and is referred to as enhanced or engineered geothermal systems (EGS). Often, the permeable zones have to be created by stimulation, a process which involves fracture initiation and/or activation of discontinuities such as faults and joints due to pore pressure and the in-situ stress perturbations. The stimulation of a rock mass is often accompanied by multiple microseismic events. Micro-seismic events associated with rock failure in shear, and shear slip on new or pre-existing fracture planes and possibly their propagations.more » The microseismic signals contain information about the sources of energy that can be used for understanding the hydraulic fracturing process and the created reservoir properties. Detection and interpretation of microseismic events is useful for estimating the stimulated zone, created reservoir permeability and fracture growth, and geometry of the geological structures and the in-situ stress state. The process commonly is referred to as seismicity-based reservoir characterization (SBRC). Although, progress has been made by scientific & geothermal communities for quantitative and qualitative analysis of reservoir stimulation using SBRC several key questions remain unresolved in the analysis of micro-seismicity namely, variation of seismic activity with injection rate, delayed micro-seismicity, and the relation of stimulated zone to the injected volume and its rate, and the resulting reservoir permeability. In addition, the current approach to SBRC does not consider the full range of relevant poroelastic and thermoelastic phenomena and neglects the uncertainty in rock properties and in-situ stress in the data inversion process. The objective of this research and technology developments was to develop a 3D SBRC model that addresses these shortcomings by taking into account hydro-thermo-poro-mechanical mechanisms associated with injection and utilizing a state-of-the-art stochastic inversion procedure. The approach proposed herein is innovative and significantly improves the existing SBCR technology (e.g., Shapiro et al. 2003) for geothermal reservoirs in several ways. First, the current scope of the SBRC is limited with respect to the physical processes considered and the rock properties used. Usually, the geomechanics analyses within SBRC is limited to the pore pressure diffusion in the rock mass, which is modeled using a time-dependent parabolic equation and solved using a finite element algorithm with either a line or a point source. However, water injection induces both poroelastic and thermoelastic stresses in the rock mass which affect the stress state. In fact, it has been suggested that thermoelastic stresses can play a dominant role in reservoir seismicity (Ghassemi et al., 2007). We include these important effects by using a fully-coupled poro-thermoelastic constitutive equations for the rock mass which will be solved using a 3D finite element model with more realistic injection geometries such as multiple injection/extraction sources (and in fractures), uncertainty in the material parameters and the in-situ stress distribution to better reflect the pore pressure and stress distributions. In addition, we developed a 3D stochastic fracture network model to study MEQ generation in fracture rocks. The model was verified using laboratory experiments, and calibrated and applied to Newberry EGS stimulation. In previous SBRC approaches, the triggering of micro-seismicity is modeled base on the assumption that the prior stochastic criticality model of the rock mass is a valid and adequate description. However, this assumption often does not hold in the field. Thus, we improved upon the current SBRC approach by using the micro-seismic responses to estimate the hydraulic diffusivity as well as the criticality distribution itself within the field. In this way, instead of relying on our a priori knowledge of criticality distribution, we combine an initial probabilistic description of criticality with the information contained in microseismic measurements to arrive at criticality solutions that are conditioned on both field data and our prior knowledge. Previous SBRC have relied upon a deterministic inversion approach to estimate the permeability, and the extent of the stimulated zone, whereas a stochastic inversion algorithm that recognizes and quantifies the uncertainties in the prior model, the time evolution of pore pressure distributions (modeling errors), and the observed seismic events is developed and used herein to realistically assess the quality of the solution. Finally, we developed a technique for processing discrete MEQ data to estimate fracture network properties such as dip and dip directions. The approach was successfully applied to the Fenton Hill HRD experiment and the Newberry EGS with results in good agreement with field observations.« less

  11. Detailed Aggregate Resources Study, Dry Lake Valley, Nevada.

    DTIC Science & Technology

    1981-05-29

    LOCAL SAND SOURCES IGENERALLY CYLINDERS. DRYING SHRINKAGE I COLLECTED WITHIN A FEW MILES OF CORRESPONDING LEDGE-ROCK SOURCES) SUPPLIED FINE MENS...COMPRESSIVE AND TENSILE STh LEDGE-ROCK SOURCES SUPPLIED COARSE AGGREGATES; LOCAL SAND SOURCES IGENERALLY CYLINDERS. DRYING SHRINKAGE COLLECTED WITHIN A FEW

  12. The effect of oil-water-rock partitioning on the occurrence of alkylphenols in petroleum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.; Larter, S.; Jones, M.

    1997-05-01

    Low molecular weight (C{sub 0}-C{sub 3}) alkylphenols are ubiquitous constituents of crude oils and formation waters of petroleum systems, and they represent legislatively monitored pollutants in produced oils and waters from offshore petroleum facilities. Their origin and the controls on their abundance are uncertain. Analysis of forty-four oils from various petroleum provinces, together with laboratory partitioning experiments, has provided further information on these controls. Although phenols are clearly partitioned between oil and water in petroleum systems, the consistency of most nondegraded petroleum phenol distributions (despite the apparent decrease of phenol concentrations in petroleums with increasing secondary migration distance) requires phenolmore » partitioning between petroleum, water, and solid phases-chiefly kerogen in the carrier bed. The retention of significant phenol concentrations in petroleums that have migrated tens of kilometres does indicate that petroleum typically only equilibrates with minor volumes of rock and associated waters. Laboratory experiments indicate that oils which have migrated approximately 25 km in the North Sea Tampen Spur through Jurassic sandstones may have equilibrated with less than 20 vol of rock and water, and possibly much less than 1 vol, depending on the sorbing phases within the rock (i.e., mineral or organic matter) and the wetting phase (oil or water). We conclude, supporting the hypothesis of Ioppolo-Armanios et al. (1995), that although ortho-substituted isomers dominate the phenol distributions of many petroleums, this reflects catalytic alkylation/isomerisation of unknown alkylphenol precursors in source rocks, rather than selective removal of meta- and para-substituted alkylphenol isomers from petroleum by water washing. 35 refs., 7 figs., 2 tabs.« less

  13. The mobility and distribution of heavy metals during the formation of first cycle red beds.

    USGS Publications Warehouse

    Zielinski, R.A.; Bloch, S.; Walker, T.R.

    1983-01-01

    Analysis of the heavy metal content in a Holocene-Pliocene red bed sequence near San Felipe in N Baja California, Mexico, has yielded new information on the mobility and distribution of these metals during ageing of iron oxyhydroxides from the amorphous to the crystalline state. Whole-rock samples (27) and a series of successive leachates were analysed for V, Al, Cr, Mn, Fe, Co, Ni, Cu and Zn by ICP spectrometry and for U by a delayed neutron technique. These data are supported by a variety of other mineralogical and petrographical observations. The results indicate that the metal content of the samples is predominantly inherited from the constituent detrital minerals. Reddening of the whole-rock samples does not promote major open-system migration of the heavy metals; rather, contained metals redistribute themselves on an intergranular scale, moving from detrital mineral hosts to the secondary iron oxides. The amount of secondary iron oxides and the fraction of whole-rock metals associated with these oxides increase during red-bed development. In addition, the abundance of well- crystallized iron oxides increases during this period. Differences in the leaching efficiency for various metals are related to differences in metal site distribution and intergranular permeability. Inferred conditions for rapid vs limited removal of metals from red beds are summarized. It is suggested that developed red beds which are well flushed by suitable pore fluids may be sources of significant quantities of heavy metals. -J.E.S.

  14. Tectono-thermal evolution in a region with thin-skinned tectonics: the western nappes in the Cantabrian Zone (Variscan belt of NW Spain)

    NASA Astrophysics Data System (ADS)

    Bastida, F.; Brime, C.; García-López, S.; Sarmiento, G. N.

    The palaeotemperature distribution in the transition from diagenesis to metamorphism in the western nappes of the Cantabrian Zone (Somiedo, La Sobia and Aramo Units) are analysed by conodont colour alteration index (CAI) and illite crystallinity (IC). Structural and stratigraphic control in distribution of CAI and IC values is observed. Both CAI and IC value distributions show that anchizonal conditions are reached in the lower part of the Somiedo Unit. A disruption of the thermal trend by basal thrusts is evidenced by CAI and IC values. There is an apparent discrepancy between the IC and CAI values in Carboniferous rocks of the Aramo Unit; the IC has mainly anchizonal values, whereas the CAI has diagenetic values. Discrepant IC values are explained as a feature inherited from the source area. In the Carboniferous rocks of the La Sobia Unit, both IC and CAI indicate diagenetic conditions. The anchimetamorphism predated completion of emplacement of the major nappes; it probably developed previously and/or during the early stages of motion of the units. Temperature probably decreased when the metamorphosed zones of the sheets rose along ramps and were intensely eroded. In the context of the Iberian Variscan belt, influence of tectonic factors on the metamorphism is greater in the internal parts, where the strain and cleavage are always present, than in the external parts (Cantabrian Zone), where brittle deformation and rock translation are dominant, with an increasing role of the burial on the metamorphism.

  15. Geologic framework of oil and gas genesis in main sedimentary basins from Romania Oprea Dicea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu, N.; Morariu, C.D.

    1991-03-01

    Oil and gas fields located in Moldavic nappes are encompassed in Oligocene and lower Miocene formations, mostly in the marginal folds nappe, where Kliwa Sandstone sequences have high porosity, and in the Black Sea Plateau. The origin of the hydrocarbon accumulations from the Carpathian foredeep seems to be connected to the Oligocene-lower Miocene bituminous formations of the marginal folds and sub-Carpathian nappes. In the Gethic depression, the hydrocarbon accumulations originate in Oligocene and Miocene source rocks and host in structural, stratigraphical, and lithological traps. The accumulations connected with tectonic lines that outline the areal extension of the Oligocene, Miocene, andmore » Pliocene formations are in the underthrusted Moesian platform. The hydrocarbon accumulations related to the Carpathian foreland represent about 40% of all known accumulations in Romania. Most of them are located in the Moesian platform. In this unit, the oil and gas fields present a vertical distribution at different stratigraphic levels, from paleozoic to Neogene, and in all types of reservoirs, suggesting multicycles of oleogenesis, migration, accumulation, and sealing conditions. The hydrocarbon deposits known so far on the Black Sea continental plateau are confined in the Albian, Cenomanian, Turonian-Senonian, and Eocene formations. The traps are of complex type structural, lithologic, and stratigraphic. The reservoirs are sandstones, calcareous sandstones, limestones, and sands. The hydrocarbon source rocks are pelitic and siltic Oligocene formations. Other older source rocks are probably Cretaceous.« less

  16. Nitrate release from waste rock dumps in the Elk Valley, British Columbia, Canada.

    PubMed

    Mahmood, Fazilatun N; Barbour, S Lee; Kennedy, C; Hendry, M Jim

    2017-12-15

    The origin, distribution and leaching of nitrate (NO 3 - ) from coal waste rock dumps in the Elk Valley, British Columbia, Canada were defined using chemical and NO 3 - isotope analyses (δ 15 N- and δ 18 O-NO 3 - ) of solids samples of pre- and post-blast waste rock and from thick (up to 180m) unsaturated waste rock dump profiles constructed between 1982 and 2012 as well as water samples collected from a rock drain located at the base of one dump and effluent from humidity cell (HC) and leach pad (LP) tests on waste rock. δ 15 N- and δ 18 O-NO 3 - values and NO 3 - concentrations of waste rock and rock drain waters confirmed the source of NO 3 - in the waste rock to be explosives and that limited to no denitrification occurs in the dump. The average mass of N released during blasting was estimated to be about 3-6% of the N in the explosives. NO 3 - concentrations in the fresh-blast waste rock and recently placed waste rock used for the HC and LP experiments were highly variable, ranging from below detection to 241mg/kg. The mean and median concentrations of these samples ranged from 10-30mg/kg. In this range of concentrations, the initial aqueous concentration of fresh-blasted waste rock could range from approximately 200-600mg NO 3 - -N/L. Flushing of NO 3 - from the HCs, LPs and a deep field profile was simulated using a scale dependent leaching efficiency (f) where f ranged from 5-15% for HCs, to 35-80% for the LPs, to 80-90% for the field profile. Our findings show aqueous phase NO 3 - from blasting residuals is present at highly variable initial concentrations in waste rock and the majority of this NO 3 - (>75%) should be flushed by recharging water during displacement of the first stored water volume. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance: constraints from trace elements, mineral chemistry and SHRIMP dating of zircons

    NASA Astrophysics Data System (ADS)

    Li, Renwei; Li, Shuangying; Jin, Fuquan; Wan, Yusheng; Zhang, Shukun

    2004-04-01

    A suite of slightly metamorphosed Carboniferous sedimentary strata occurs in the northern margin of the Dabie Mountains, central China. It consists, in ascending order, of the upper Huayuanqiang Formation (C 1), the Yangshan Formation (C 1), the Daorenchong Formation (C 1-2), the most widely distributed Huyoufang Formation (C 2) and the Yangxiaozhuang Formation (C 2). The provenance of the Carboniferous sedimentary rocks is constrained by the integration of trace elements, detrital mineral chemistry and sensitive high resolution ion microprobe (SHRIMP) dating of detrital zircons, which can help to understand the connection between the provenance and the Paleozoic tectonic evolution of the Qinling-Dabie Orogen. The trace element compositions indicate that the source terrain was probably a continental island arc. Detrital tourmalines were mainly derived from aluminous and Al-poor metapelites and metapsammites, and some are sourced from Li-poor granitoids, pegmatites and aplites. Detrital garnets, found only in the uppermost Huyoufang Formation, are almandine and Mn-almandine garnets, indicating probable sources mainly from garnetiferous schists, and partly from granitoid rocks. The detrital white K-micas are muscovitic in the Huayuanqiang, Daorenchong and Huyoufang Formations, and phengitic with Si contents (p.f.u.) from 3.20 up to max. 3.47-3.53 in the uppermost Huyoufang and the Yangxiaozhuang Formations, a meta-sedimentary source. Major components in the detrital zircon age structure for the Huyoufang Formation range from 506 to 363 Ma, centering on ˜400 and ˜480 Ma, which is characteristic of the Qinling and Erlangping Groups in the Qinling and Tongbai Mountains, central China. Evidently, the major source of the Carboniferous sedimentary rocks in the northern margin of Dabie Mountains was from the southern margin of the Sino-Korean Craton represented by the Qinling and Erlangping Groups. The source area was an island-arc system during the Early Paleozoic that collided with the Sino-Korea plate towards the end of the Early Paleozoic or during the Devonian. A prominent feature in the detrital zircon age structure of the Huyoufang Formation is the Neoproterozoic detritus, which could be derived only from the Yangtze Craton. Reasonable interpretation of the two distinct source materials for the Huyoufang Formation is that the two plates were juxtaposed through collision before the late Carboniferous.

  18. Oil/source rock correlations in the Polish Flysch Carpathians and Mesozoic basement and organic facies of the Oligocene Menilite Shales: Insights from hydrous pyrolysis experiments

    USGS Publications Warehouse

    Curtis, John B.; Kotarba, M.J.; Lewan, M.D.; Wieclaw, D.

    2004-01-01

    The Oligocene Menilite Shales in the study area in the Polish Flysch Carpathians are organic-rich and contain varying mixtures of Type-II, Type-IIS and Type-III kerogen. The kerogens are thermally immature to marginally mature based on atomic H/C ratios and Rock-Eval data. This study defined three organic facies, i.e., sedimentary strata with differing hydrocarbon-generation potentials due to varying types and concentrations of organic matter. These facies correspond to the Silesian Unit and the eastern and western portions of the Skole Unit. Analysis of oils generated by hydrous pyrolysis of outcrop samples of Menilite Shales demonstrates that natural crude oils reservoired in the flysch sediments appear to have been generated from the Menilite Shales. Natural oils reservoired in the Mesozoic basement of the Carpathian Foredeep appear to be predominantly derived and migrated from Menilite Shales, with a minor contribution from at least one other source rock most probably within Middle Jurassic strata. Definition of organic facies may have been influenced by the heterogeneous distribution of suitable Menilite Shales outcrops and producing wells, and subsequent sample selection during the analytical phases of the study. ?? 2004 Elsevier Ltd. All rights reserved.

  19. Provenance of sands from the confluence of the Amazon and Madeira rivers based on detrital heavy minerals and luminescence of quartz and feldspar

    NASA Astrophysics Data System (ADS)

    do Nascimento, Daniel R.; Sawakuchi, André O.; Guedes, Carlos C. F.; Giannini, Paulo C. F.; Grohmann, Carlos H.; Ferreira, Manuela P.

    2015-03-01

    Source-to-sink systems are poorly known in tropical rivers. For the Amazonian rivers, the majority of the provenance studies remain focused on the suspended load, implying a poor understanding of the processes governing production and distribution of sands. In this study, we perform heavy mineral and optically stimulated luminescence (OSL) analysis to cover the entire spectrum (heavy and light minerals fraction) of 29 sand samples of the Lower Madeira river region (Amazon and Madeira rivers), of which the main goal was to find provenance indicators specific to these rivers. Despite the tropical humid climate, the sands of the Amazon and Lower Madeira rivers are rich in unstable heavy minerals as augite, hypersthene, green hornblende and andalusite. The Madeira river is highlighted by its higher content of andalusite, with source attributed to the Amazon Craton (medium-to-high grade metamorphic rocks), while the Amazon river, upstream of the Madeira river mouth, has a signature of augite and hypersthene, that suggests an Andean provenance (volcanic rocks). Sands from the Madeira river can be tracked in the Amazon river by the increasing concentration in andalusite. OSL analysis of the light minerals fraction was used as an index of feldspar concentration and sedimentary history of quartz grains. Lower feldspar concentration and quartz grains with longer sedimentary history (higher OSL sensitivity) also point to a major contribution of cratonic sources for the sands in the Madeira river. While the sands from the Lower Madeira would be mainly supplied by cratonic rocks, previous work recognised that suspended sediments (silt and clay) are derived from Andean rocks. Therefore, we interpret a decoupling between the sources of sand and mud (silt and clay) under transport in the Madeira river. Andean sands (rich in augite and hypersthene) would be trapped in the foreland zones of the Beni and Mamoré tributaries. In the Amazon river sands, the low OSL sensitivity of the quartz, higher content of feldspar and unstable heavy mineral assemblage dominated by augite and hypersthene suggest both a fast transport from Andean sources with fine sediment bypass over foreland areas.

  20. Maps showing the distribution of uranium-deposit clusters in the Colorado Plateau uranium province

    USGS Publications Warehouse

    Finch, Warren I.

    1991-01-01

    The Colorado Palteau Uranium Province (CPUP) is defined by the distribution of uranium deposits, chiefly the sandstone-type, in upper Paleozoic and Mesozoic sedimentary rocks within the Colorado Plateau physiographic province (Granger and others, 1986).  The uranium province is bordered by widely distributed and mostly minor uranium deposits in Precambrian and Tertiary rocks and by outcrops of Tertiary extrusive and intrusive igneous rocks.  

  1. A comparison of the rates of hydrocarbon generation from Lodgepole, False Bakken, and Bakken formation petroleum source rocks, Williston Basin, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvie, D.M.; Elsinger, R.J.; Inden, R.F.

    1996-06-01

    Recent successes in the Lodgepole Waulsortian Mound play have resulted in the reevaluation of the Williston Basin petroleum systems. It has been postulated that hydrocarbons were generated from organic-rich Bakken Formation source rocks in the Williston Basin. However, Canadian geoscientists have indicated that the Lodgepole Formation is responsible for oil entrapped in Lodgepole Formation and other Madison traps in portions of the Canadian Williston Basin. Furthermore, geoscientists in the U.S. have recently shown oils from mid-Madison conventional reservoirs in the U.S. Williston Basin were not derived from Bakken Formation source rocks. Kinetic data showing the rate of hydrocarbon formation frommore » petroleum source rocks were measured on source rocks from the Lodgepole, False Bakken, and Bakken Formations. These results show a wide range of values in the rate of hydrocarbon generation. Oil prone facies within the Lodgepole Formation tend to generate hydrocarbons earlier than the oil prone facies in the Bakken Formation and mixed oil/gas prone and gas prone facies in the Lodgepole Formation. A comparison of these source rocks using a geological model of hydrocarbon generation reveals differences in the timing of generation and the required level of maturity to generate significant amounts of hydrocarbons.« less

  2. Shale characterization in mass transport complex as a potential source rock: An example from onshore West Java Basin, Indonesia

    NASA Astrophysics Data System (ADS)

    Nugraha, A. M. S.; Widiarti, R.; Kusumah, E. P.

    2017-12-01

    This study describes a deep-water slump facies shale of the Early Miocene Jatiluhur/Cibulakan Formation to understand its potential as a source rock in an active tectonic region, the onshore West Java. The formation is equivalent with the Gumai Formation, which has been well-known as another prolific source rock besides the Oligocene Talang Akar Formation in North West Java Basin, Indonesia. The equivalent shale formation is expected to have same potential source rock towards the onshore of Central Java. The shale samples were taken onshore, 150 km away from the basin. The shale must be rich of organic matter, have good quality of kerogen, and thermally matured to be categorized as a potential source rock. Investigations from petrography, X-Ray diffractions (XRD), and backscattered electron show heterogeneous mineralogy in the shales. The mineralogy consists of clay minerals, minor quartz, muscovite, calcite, chlorite, clinopyroxene, and other weathered minerals. This composition makes the shale more brittle. Scanning Electron Microscope (SEM) analysis indicate secondary porosities and microstructures. Total Organic Carbon (TOC) shows 0.8-1.1 wt%, compared to the basinal shale 1.5-8 wt%. The shale properties from this outcropped formation indicate a good potential source rock that can be found in the subsurface area with better quality and maturity.

  3. Permian arc evolution associated with Panthalassa subduction along the eastern margin of the South China block, based on sandstone provenance and U-Pb detrital zircon ages of the Kurosegawa belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Hirano, Miho; Kurihara, Toshiyuki; Takahashi, Toshiro; Ueda, Hayato

    2018-01-01

    We have studied the petrography, geochemistry, and detrital zircon U-Pb ages of sandstones from shallow-marine forearc sediments, accretionary complexes (ACs), and metamorphosed accretionary complexes (Meta-ACs) within the Kurosegawa belt of Southwest Japan. Those rocks formed in a forearc region of a Permian island arc associated with subduction of the Panthalassa oceanic crust along the eastern margin of the South China block (Yangtze block). The provenance of the shallow-marine sediments was dominated by basaltic to andesitic volcanic rocks and minor granitic rocks during the late Middle to Late Permian. The ACs were derived from felsic to andesitic volcanic rocks during the Late Permian. The provenance of Meta-ACs was dominated by andesitic volcanic rocks in the Middle Permian. The provenance, source rock compositions, and zircon age distribution for the forearc sediments, ACs and Meta-ACs have allowed us to reconstruct the geological history of the Permian arc system of the Kurosegawa belt. During the Middle Permian, the ACs were accreted along the eastern margin of the South China block. The Middle Permian arc was an immature oceanic island arc consisting of andesitic volcanic rocks. During the Late Permian, the ACs formed in a mature arc, producing voluminous felsic to andesitic volcanic rocks. A forearc basin developed during the late Middle to Late Permian. Subsequently, the Middle Permian ACs and part of the Late Permian AC underwent low-grade metamorphism in the Late to Early Jurassic, presenting the Meta-ACs.

  4. Statistical Characterization of the Mechanical Parameters of Intact Rock Under Triaxial Compression: An Experimental Proof of the Jinping Marble

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Zhong, Shan; Cui, Jie; Feng, Xia-Ting; Song, Leibo

    2016-12-01

    We investigated the statistical characteristics and probability distribution of the mechanical parameters of natural rock using triaxial compression tests. Twenty cores of Jinping marble were tested under each different levels of confining stress (i.e., 5, 10, 20, 30, and 40 MPa). From these full stress-strain data, we summarized the numerical characteristics and determined the probability distribution form of several important mechanical parameters, including deformational parameters, characteristic strength, characteristic strains, and failure angle. The statistical proofs relating to the mechanical parameters of rock presented new information about the marble's probabilistic distribution characteristics. The normal and log-normal distributions were appropriate for describing random strengths of rock; the coefficients of variation of the peak strengths had no relationship to the confining stress; the only acceptable random distribution for both Young's elastic modulus and Poisson's ratio was the log-normal function; and the cohesive strength had a different probability distribution pattern than the frictional angle. The triaxial tests and statistical analysis also provided experimental evidence for deciding the minimum reliable number of experimental sample and for picking appropriate parameter distributions to use in reliability calculations for rock engineering.

  5. Geologic assessment of undiscovered hydrocarbon resources of the Western Oregon and Washington Province

    USGS Publications Warehouse

    ,; Brownfield, Michael E.; Charpentier, Ronald R.; Cook, Troy A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.; Le, P.A.; ,

    2011-01-01

    The purpose of the U.S. Geological Survey (USGS) National Oil and Gas Assessment is to develop geology-based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States, focusing on the distribution, quantity, and availability of oil and natural gas resources. The USGS has completed an assessment of the undiscovered, technically recoverable oil and gas resources in western Oregon and Washington (USGS Western Oregon and Washington Province 5004). The province includes all of Oregon and Washington north of the Klamath Mountains and west of the crest of the Cascade Range, and extends offshore to the 3-mi limit of State waters on the west and to the International Boundary in the Straits of Juan de Fuca and Canada on the north. It measures about 450 mi north-south and 50 to 160 mi east-west, encompassing more than 51,000 mi2. The assessment of the Western Oregon and Washington Province is geology based and used the total petroleum system (TPS) concept. The geologic elements of a TPS include hydrocarbon source rocks (source rock maturation and hydrocarbon generation and migration), reservoir rocks (quality and distribution), and traps for hydrocarbon accumulation. Using these geologic criteria, two conventional and one unconventional (continuous) total petroleum systems were defined, with one assessment unit (AU) in each TPS: (1) the Cretaceous-Tertiary Composite TPS and the Western Oregon and Washington Conventional Gas AU, (2) the Tertiary Marine TPS and the Tertiary-Marine Gas AU, and (3) the Tertiary Coalbed Gas TPS and the Eocene Coalbed Gas AU, in which a cell-based methodology was used to estimate coalbed-gas resources.

  6. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Bach, Wolfgang

    2009-02-01

    In recent years, serpentinized ultramafic rocks have received considerable attention as a source of H 2 for hydrogen-based microbial communities and as a potential environment for the abiotic synthesis of methane and other hydrocarbons within the Earth's crust. Both of these processes rely on the development of strongly reducing conditions and the generation of H 2 during serpentinization, which principally results from reaction of water with ferrous iron-rich minerals contained in ultramafic rocks. In this report, numerical models are used to investigate the potential influence of chemical thermodynamics on H 2 production during serpentinization. The results suggest that thermodynamic constraints on mineral stability and on the distribution of Fe among mineral alteration products as a function of temperature are likely to be major factors controlling the extent of H 2 production. At high temperatures (>˜315 °C), rates of serpentinization reactions are fast, but H 2 concentrations may be limited by the attainment of stable thermodynamic equilibrium between olivine and the aqueous fluid. Conversely, at temperatures below ˜150 °C, H 2 generation is severely limited both by slow reaction kinetics and partitioning of Fe(II) into brucite. At 35 MPa, peak temperatures for H 2 production occur at 200-315 °C, indicating that the most strongly reducing conditions will be attained during alteration within this temperature range. Fluids interacting with peridotite in this temperature range are likely to be the most productive sources of H 2 for biology, and should also produce the most favorable environments for abiotic organic synthesis. The results also suggest that thermodynamic constraints on Fe distribution among mineral alteration products have significant implications for the timing of magnetization of the ocean crust, and for the occurrence of native metal alloys and other trace minerals during serpentinization.

  7. Petroleum geology and resources of the Baykit High province, East Siberia, Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The Baykit High province consists of two principal structural units?the Baykit regional high in the west, which occupies most of the province, and the Katanga structural saddle in the east. The province is on the western margin of the Siberian craton east of theYenisey Ridge foldbelt. The province is an exploration frontier and only a few prospects have been drilled. The oldest sedimentary rocks of the province, Riphean carbonate and clastic strata of Late Proterozoic age (1,650?650 million years old) that were deposited on the passive margin, cover the Archean?Lower Proterozoic basement. Basal Vendian (uppermost Proterozoic, 650?570 million years old) clastic rocks unconformably overlie various units of the Riphean and locally lie directly on the basement. Younger Vendian and lowermost Cambrian rocks are primarily dolomites. The Vendian/Cambrian boundary is con-formable, and its exact stratigraphic position has not been identified with certainty. The Lower Cambrian section is thick, and it consists of alternating beds of dolomite and evaporites (mostly salt). Middle and Upper Cambrian strata are composed of shale and dolomite. Ordovician-Silurian and upper Paleozoic rocks are thin, and they are present only in the northern areas of the province. Structural pattern of Riphean rocks differs substantially from that of Vendian-Cambrian rocks. A single total petroleum system (TPS) was identified in the Baykit High province. Discovered oil of the system is chiefly concentrated in Riphean carbonate reservoirs of the Yurubchen-Tokhom zone that is currently being explored and that has the Abstract 1 potential to become a giant field (or group of fields). The TPS also contains about 5 trillion cubic feet of discovered recover-able gas in clastic reservoir rocks at the base of the Vendian section. Petroleum source rocks are absent in the stratigraphic succession over most of the TPS area. Riphean organic-rich shales and carbonates that crop out in the Yenisey Ridge foldbelt west of the Baykit high are probable source rocks. Their areal distribution extends from the foldbelt into the foredeep along the province?s western margin. Potential source rocks also are present in platform depressions in eastern areas of the province. Hydrocarbon generation and migration west of the province started as early as Riphean time, before the beginning of the deformation in the Yenisey Ridge foldbelt that occurred about 820?850 million years ago. However, the presently known oil and gas accumulations were formed after deposition of the Lower Cambrian salt seal. Available data allow identification of only one assessment unit, and it covers the entire TPS area. Undiscovered oil and gas resources are moderate, primarily due to the poor quality of reservoir rocks. However, the reserve growth in the Yurubchen-Tokhom zone may be large and may exceed the volume of undiscovered resources in the rest of the province. Most oil and gas resourcesareexpectedtobeinstructuralandstratigraphictrapsin Riphean carbonate reservoirs. Vendian clastic reservoirs are probably gas-prone.

  8. Source and Assessment of Metal Pollution at Khetri Copper Mine Tailings and Neighboring Soils, Rajasthan, India.

    PubMed

    Punia, Anita; Siddaiah, N Siva; Singh, Saurabh K

    2017-11-01

    We present here the results of the study on metal pollution by identifying source, abundance and distribution in soil and tailings of Khetri copper complex (KCC) mines, Rajasthan India. The region is highly contaminated by copper (Cu) with higher values in the soil near overburden material (1224 mg/kg) and tailings (111 mg/kg). The average Cu (231 mg/kg) concentration of soil is ~9, 5 and 32 times higher than upper crust, world average shale (WAS) and local background soil (LS), respectively. However this reaches to ~82, 46 and 280 times higher in case of tailing when compared. The correlation and principal component analysis for soil reveals that the source of Cu, Zn, Co, Ni, Mn and Fe is mining and Pb and Cd could be result of weathering of parent rocks and other anthropogenic activities. The source for Cr in soil is both mining activities and weathering of parent rocks. The values of index of geo-accumulation (I geo ) and pollution load index for soil using LS as background are higher compared to values calculated using WAS. The metal rich sulphide bearing overburden material as well as tailings present in the open environment at KCC mines region warrants a proper management to minimize their impact on the environment.

  9. Oils and hydrocarbon source rocks of the Baltic syneclise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanev, S.; Margulis, L.; Bojesen-Koefoed, J.A.

    Prolific source rock horizons of varying thickness, having considerable areal extent, occur over the Baltic syneclise. These source sediments are rich and have excellent petroleum generation potential. Their state of thermal maturity varies form immature in the northeastern part of the syneclise to peak generation maturity in the southwestern part of the region-the main kitchen area. These maturity variations are manifest in petroleum composition in the region. Hence, mature oils occur in the Polish and Kaliningrad areas, immature oils in small accumulations in Latvian and central Lithuanian onshore areas, and intermediate oils in areas between these extremes. The oil accumulationsmore » probably result from pooling of petroleum generated from a number of different source rocks at varying levels of thermal maturity. Hence, no single source for petroleum occurrences in the Baltic syneclise may be identified. The paper describes the baltic syneclise, source rocks, thermal maturity and oils and extracts.« less

  10. Distribution of manganese between coexisting biotite and hornblende in plutonic rocks

    USGS Publications Warehouse

    Greenland, L.P.; Gottfried, D.; Tilling, R.I.

    1968-01-01

    The distribution of manganese between coexisting biotite and hornblende for 80 mineral pairs from igneous rocks of diverse provenance (including Southern California, Sierra Nevada, Boulder, and Boulder Creek batholiths and the Jemez Mountains volcanics) has been determined by neutron activation analysis. Data on the distribution ratio (Kd = Mnhornblende Mnbiotite) indicate that an equilibrium distribution of Mn is closely approached, though not completely attained, in most samples from plutonic environments. Comparison of Kd values of mineral pairs with bulk chemical composition of host rocks reveals no correlation. Because initial crystallization temperatures vary with rock composition, the lack of correlation of composition with Kd suggests that the equilibrium distribution of Mn between biotite and hornblende reflects exchange at subsolidus temperatures rather than initial crystallization temperatures. The highest Kd values are for volcanic rocks, in which rapid quenching prevents subsolidus redistribution of Mn. For sample pairs from the Southern California and Sierra Nevada batholiths there is a positive correlation of Kd with TiO2 content of biotite. Though the evidence is not compelling, Kd may also correlate with the rate of cooling and/or the presence or absence of sphene in the rock. ?? 1968.

  11. Early Precambrian mantle derived rocks in the southern Prince Charles Mountains, East Antarctica: age and isotopic constraints

    USGS Publications Warehouse

    Mikhalsky, E.V.; Henjes-Kunst, F.; Roland, N.W.

    2007-01-01

    Mafic and ultramafic rocks occurring as lenses, boudins, and tectonic slabs within metamorphic units in the southern Mawson Escarpment display mantle characteristics of either a highly enriched, or highly depleted nature. Fractionation of these mantle rocks from their sources may be as old as Eoarchaean (ca 3850 Ma) while their tectonic emplacement probably occurred prior to 2550 Ma (U-Pb SHRIMP data). These results provide for the first time evidence for Archaean suturing within East Antarctica. Similar upper mantle sources are likely present in the northern Mawson Escarpment. A younger age limit of these rocks is 2200 Ma, as indicated by presumably metamorphic zircon ages while their magmatic age may be constrained by single zircon dates at 2450-2250 Ma. The area of the northern Mawson Escarpment is most likely of ensimatic origin and includes mafic rocks which were derived from distinct mantle source(s) during Palaeoproterozoic time.

  12. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  13. Spatial Distribution of Stony Desertification and Key Influencing Factors on Different Sampling Scales in Small Karst Watersheds

    PubMed Central

    Zhang, Zhenming; Zhou, Yunchao; Wang, Shijie

    2018-01-01

    Karst areas are typical ecologically fragile areas, and stony desertification has become the most serious ecological and economic problems in these areas worldwide as well as a source of disasters and poverty. A reasonable sampling scale is of great importance for research on soil science in karst areas. In this paper, the spatial distribution of stony desertification characteristics and its influencing factors in karst areas are studied at different sampling scales using a grid sampling method based on geographic information system (GIS) technology and geo-statistics. The rock exposure obtained through sampling over a 150 m × 150 m grid in the Houzhai River Basin was utilized as the original data, and five grid scales (300 m × 300 m, 450 m × 450 m, 600 m × 600 m, 750 m × 750 m, and 900 m × 900 m) were used as the subsample sets. The results show that the rock exposure does not vary substantially from one sampling scale to another, while the average values of the five subsamples all fluctuate around the average value of the entire set. As the sampling scale increases, the maximum value and the average value of the rock exposure gradually decrease, and there is a gradual increase in the coefficient of variability. At the scale of 150 m × 150 m, the areas of minor stony desertification, medium stony desertification, and major stony desertification in the Houzhai River Basin are 7.81 km2, 4.50 km2, and 1.87 km2, respectively. The spatial variability of stony desertification at small scales is influenced by many factors, and the variability at medium scales is jointly influenced by gradient, rock content, and rock exposure. At large scales, the spatial variability of stony desertification is mainly influenced by soil thickness and rock content. PMID:29652811

  14. Spatial Distribution of Stony Desertification and Key Influencing Factors on Different Sampling Scales in Small Karst Watersheds.

    PubMed

    Zhang, Zhenming; Zhou, Yunchao; Wang, Shijie; Huang, Xianfei

    2018-04-13

    Karst areas are typical ecologically fragile areas, and stony desertification has become the most serious ecological and economic problems in these areas worldwide as well as a source of disasters and poverty. A reasonable sampling scale is of great importance for research on soil science in karst areas. In this paper, the spatial distribution of stony desertification characteristics and its influencing factors in karst areas are studied at different sampling scales using a grid sampling method based on geographic information system (GIS) technology and geo-statistics. The rock exposure obtained through sampling over a 150 m × 150 m grid in the Houzhai River Basin was utilized as the original data, and five grid scales (300 m × 300 m, 450 m × 450 m, 600 m × 600 m, 750 m × 750 m, and 900 m × 900 m) were used as the subsample sets. The results show that the rock exposure does not vary substantially from one sampling scale to another, while the average values of the five subsamples all fluctuate around the average value of the entire set. As the sampling scale increases, the maximum value and the average value of the rock exposure gradually decrease, and there is a gradual increase in the coefficient of variability. At the scale of 150 m × 150 m, the areas of minor stony desertification, medium stony desertification, and major stony desertification in the Houzhai River Basin are 7.81 km², 4.50 km², and 1.87 km², respectively. The spatial variability of stony desertification at small scales is influenced by many factors, and the variability at medium scales is jointly influenced by gradient, rock content, and rock exposure. At large scales, the spatial variability of stony desertification is mainly influenced by soil thickness and rock content.

  15. Modelling of the petroleum formation in the Mahakam sediments (Indonesia): Organic geochemical controls of the results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosse, E.; Burris, J.; Ouidin, J.L.

    1990-06-01

    Since the Miocene, the delta of the Mahakam River has accumulated thousands of meters of sediments in the eastern part of the Kutei Basin (Kalimantan, Indonesia). Source-rock candidates are the coals of the deltaic plain and several types of shales, mainly the delta front/prodelta area. Organic matter basically derives from higher plants, but each source facies presents important intrinsic variations of petroleum potential. These variations are overprinted by subsequent maturation trends. Geochemical and petrographical data are integrated on the general framework provided by a new synthetic interpretation of the sedimentary sequences, relying upon the concepts of seismic stratigraphy. From coremore » samples at a given level of maturation, the variations of several organic parameters are discussed in relation to the depositional paleoenvironment and to the possible precursors. 1D and 2D numerical routines are used to reconstruct the maturation history of source rocks. These tools are based upon a kinetic modeling of kerogen cracking. Model outputs are compared with observed maturation trends. The understanding of the initial organic facies distribution provides precise constraints in the selection of a homogenous samples set for this comparison purpose.« less

  16. Geochemistry, Nd-Pb Isotopes, and Pb-Pb Ages of the Mesoproterozoic Pea Ridge Iron Oxide-Apatite–Rare Earth Element Deposit, Southeast Missouri

    USGS Publications Warehouse

    Ayuso, Robert A.; Slack, John F.; Day, Warren C.; McCafferty, Anne E.

    2016-01-01

    Iron oxide-apatite and iron oxide-copper-gold deposits occur within ~1.48 to 1.47 Ga volcanic rocks of the St. Francois Mountains terrane near a regional boundary separating crustal blocks having contrasting depleted-mantle Sm-Nd model ages (TDM). Major and trace element analyses and Nd and Pb isotope data were obtained to characterize the Pea Ridge deposit, improve identification of exploration targets, and better understand the regional distribution of mineralization with respect to crustal blocks. The Pea Ridge deposit is spatially associated with felsic volcanic rocks and plutons. Mafic to intermediate-composition rocks are volumetrically minor. Data for major element variations are commonly scattered and strongly suggest element mobility. Ratios of relatively immobile elements indicate that the felsic rocks are evolved subalkaline dacite and rhyolite; the mafic rocks are basalt to basaltic andesite. Granites and rhyolites display geochemical features typical of rocks produced by subduction. Rare earth element (REE) variations for the rhyolites are diagnostic of rocks affected by hydrothermal alteration and associated REE mineralization. The magnetite-rich rocks and REE-rich breccias show similar REE and mantle-normalized trace element patterns.Nd isotope compositions (age corrected) show that: (1) host rhyolites have ɛNd from 3.44 to 4.25 and TDM from 1.51 to 1.59 Ga; (2) magnetite ore and specular hematite rocks display ɛNd from 3.04 to 4.21 and TDM from 1.6 to 1.51 Ga, and ɛNd from 2.23 to 2.81, respectively; (3) REE-rich breccias have ɛNd from 3.04 to 4.11 and TDM from 1.6 to 1.51 Ga; and (4) mafic to intermediate-composition rocks range in ɛNd from 2.35 to 3.66 and in TDM from 1.66 to 1.56. The ɛNd values of the magnetite and specular hematite samples show that the REE mineralization is magmatic; no evidence exists for major overprinting by younger, crustal meteoric fluids, or by externally derived Nd. Host rocks, breccias, and magnetite ore shared a common origin from a similar source.Lead isotope ratios are diverse: (1) host rhyolite has 206Pb/204Pb from 24.261 to 50.091; (2) Pea Ridge and regional galenas have 206Pb/204Pb from 16.030 to 33.548; (3) REE-rich breccia, magnetite ore, and specular hematite rock are more radiogenic than galena; (4) REE-rich breccias have high 206Pb/204Pb (38.122–1277.61) compared to host rhyolites; and (5) REE-rich breccias are more radiogenic than magnetite ore and specular-hematite rock, having 206Pb/204Pb up to 230.65. Radiogenic 207Pb/206Pb age estimates suggest the following: (1) rhyolitic host rocks have ages of ~1.50 Ga, (2) magnetite ore is ~1.44 Ga, and (3) REE-rich breccias are ~1.48 Ga. These estimates are broadly consistent and genetically link the host rhyolite, REE-rich breccia, and magnetite ore as being contemporaneous.Alteration style and mineralogical or textural distinctions among the magnetite-rich rocks and REE-rich breccias do not correlate with different isotopic sources. In our model, magmatic fluids leached metals from the coeval felsic rocks (rhyolites), which provided the metal source reflected in the compositions of the REE-rich breccias and mineralized rocks. This model allows for the likelihood of contributions from other genetically related felsic and intermediate to more mafic rocks stored deeper in the crust. The deposit thus records an origin as a magmatic-hydrothermal system that was not affected by Nd and Pb remobilization processes, particularly if these processes also triggered mixing with externally sourced metal-bearing fluids. The Pea Ridge deposit was part of a single, widespread, homogeneous mixing system that produced a uniform isotopic composition, thus representing an excellent example of an igneous-dominated system that generated coeval magmatism and REE mineralization. Geochemical features suggest that components in the Pea Ridge deposit originated from sources in an orogenic margin. Basaltic magmatism produced by mantle decompression melting provided heat for extracting melts from the middle or lower crust. Continual addition of mafic magmas to the base of the subcontinental lithosphere, in a back-arc setting, remelted calc-alkaline rocks enriched in metals that were stored in the crust.The St. Francois Mountains terrane is adjacent to the regional TDM line (defined at a value of 1.55 Ga) that separates ~1600 Ma basement to the west, from younger basements to the east. Data for Pea Ridge straddle the TDM values proposed for the line. The Sm-Nd isotope system has been closed since formation of the deposit and the original igneous signatures have not been affected by cycles of alteration or superimposed mineralizing events. No evidence exists for externally derived Nd or Sm. The source region for metals within the Pea Ridge deposit had a moderate compositional variation and the REE-rich breccias and mineralized rocks are generally isotopically homogeneous. The Pea Ridge deposit thus constitutes a distinctive isotopic target for use as a model in identifying other mineralized systems that may share the same metal source in the St. Francois Mountains terrane and elsewhere in the eastern Granite-Rhyolite province.

  17. Hydrocarbon source potential of the Tanezzuft Formation, Murzuq Basin, south-west Libya: An organic geochemical approach

    NASA Astrophysics Data System (ADS)

    El Diasty, W. Sh.; El Beialy, S. Y.; Anwari, T. A.; Batten, D. J.

    2017-06-01

    A detailed organic geochemical study of 20 core and cuttings samples collected from the Silurian Tanezzuft Formation, Murzuq Basin, in the south-western part of Libya has demonstrated the advantages of pyrolysis geochemical methods for evaluating the source-rock potential of this geological unit. Rock-Eval pyrolysis results indicate a wide variation in source richness and quality. The basal Hot Shale samples proved to contain abundant immature to early mature kerogen type II/III (oil-gas prone) that had been deposited in a marine environment under terrigenous influence, implying good to excellent source rocks. Strata above the Hot Shale yielded a mixture of terrigenous and marine type III/II kerogen (gas-oil prone) at the same maturity level as the Hot Shale, indicating the presence of only poor to fair source rocks.

  18. Automatic rocks detection and classification on high resolution images of planetary surfaces

    NASA Astrophysics Data System (ADS)

    Aboudan, A.; Pacifici, A.; Murana, A.; Cannarsa, F.; Ori, G. G.; Dell'Arciprete, I.; Allemand, P.; Grandjean, P.; Portigliotti, S.; Marcer, A.; Lorenzoni, L.

    2013-12-01

    High-resolution images can be used to obtain rocks location and size on planetary surfaces. In particular rock size-frequency distribution is a key parameter to evaluate the surface roughness, to investigate the geologic processes that formed the surface and to assess the hazards related with spacecraft landing. The manual search for rocks on high-resolution images (even for small areas) can be a very intensive work. An automatic or semi-automatic algorithm to identify rocks is mandatory to enable further processing as determining the rocks presence, size, height (by means of shadows) and spatial distribution over an area of interest. Accurate rocks and shadows contours localization are the key steps for rock detection. An approach to contour detection based on morphological operators and statistical thresholding is presented in this work. The identified contours are then fitted using a proper geometric model of the rocks or shadows and used to estimate salient rocks parameters (position, size, area, height). The performances of this approach have been evaluated both on images of Martian analogue area of Morocco desert and on HiRISE images. Results have been compared with ground truth obtained by means of manual rock mapping and proved the effectiveness of the algorithm. The rock abundance and rocks size-frequency distribution derived on selected HiRISE images have been compared with the results of similar analyses performed for the landing site certification of Mars landers (Viking, Pathfinder, MER, MSL) and with the available thermal data from IRTM and TES.

  19. Mechanical study of the Chartreuse Fold-and-Thrust Belt: relationships between fluids overpressure and decollement within the Toarcian source-rock

    NASA Astrophysics Data System (ADS)

    Berthelon, Josselin; Sassi, William; Burov, Evgueni

    2016-04-01

    Many source-rocks are shale and constitute potential detachment levels in Fold-and-Thrust Belts (FTB): the toarcian Schistes-Cartons in the French Chartreuse FTB for example. Their mechanical properties can change during their burial and thermal maturation, as for example when large amount of hydrocarbon fluids are generated. A structural reconstruction of the Chartreuse FTB geo-history places the Toarcian Formation as the major decollement horizon. In this work, a mechanical analysis integrating the fluids overpressuring development is proposed to discuss on the validity of the structural interpretation. At first, an analogue of the Chartreuse Toarcian Fm, the albanian Posidonia Schist, is documented as it can provide insights on its initial properties and composition of its kerogen content. Laboratory characterisation documents the vertical evolution of the mineralogical, geochemical and mechanical parameters of this potential decollement layer. These physical parameters (i.e. Total Organic Carbon (TOC), porosity/permeability relationship, friction coefficient) are used to address overpressure buildup in the frontal part of the Chartreuse FTB with TEMISFlow Arctem Basin modelling approach (Faille et al, 2014) and the structural emplacement of the Chartreuse thrust units using the FLAMAR thermo-mechanical model (Burov et al, 2014). The hydro-mechanical modeling results highlight the calendar, distribution and magnitude of the overpressure that developed within the source-rock in the footwall of a simple fault-bend fold structure localized in the frontal part of the Chartreuse FTB. Several key geological conditions are required to create an overpressure able to fracture the shale-rocks and induce a significant change in the rheological behaviour: high TOC, low permeability, favourable structural evolution. These models highlight the importance of modeling the impact of a diffuse natural hydraulic fracturing to explain fluids propagation toward the foreland within the decollement layer. In turn, with the FLAMAR geo-mechanical models it is shown that for key mechanical parameters within the Chartreuse mechanical stratigraphy (such as friction coefficient, cohesion and viscosity properties), the mechanical boundary conditions to activate, localize and propagate shear thrust in the toarcian source-rock can be found to discuss on the hydro-mechanics of the structural evolution: the very weak mechanical properties that must be attributed to the source-rock to promote the formation of a decollement tend to justify the hypothesis of high fluids pressures in it. In FLAMAR, the evolution of the toarcian source-rock mechanical properties, calibrated on the temperature of kerogen-to-gas transformation, can be introduced to allow its activation as a decollement at a burial threshold. However, without hydro-mechanical coupling, it is not possible to predict where the overpressured regions that localised these changes are positioned. As such, this work also highlights the need for a fully-coupled hydro-mechanical model to further investigate the relationship between fluids and deformations in FTB and accretionary prisms. Burov, E., Francois, T., Yamato, P., & Wolf, S. (2014). Mechanisms of continental subduction and exhumation of HP and UHP rocks. Gondwana Research, 25(2), 464-493. Faille, I., Thibaut, M., Cacas, M.-C., Havé, P., Willien, F., Wolf, S., Agelas, L., Pegaz-Fiornet, S., 2014. Modeling Fluid Flow in Faulted Basins. Oil Gas Sci. Technol. - Rev. d'IFP Energies Nouv. 69, 529-553.

  20. Rock-Eval pyrolysis and vitrinite reflectance results from the Sheep Creek 1 well, Susitna basin, south-central Alaska

    USGS Publications Warehouse

    Stanley, Richard G.; Lillis, Paul G.; Pawlewicz, Mark J.; Haeussler, Peter J.

    2014-01-01

    We used Rock-Eval pyrolysis and vitrinite reflectance to examine the petroleum source potential of rock samples from the Sheep Creek 1 well in the Susitna basin of south-central Alaska. The results show that Miocene nonmarine coal, carbonaceous shale, and mudstone are potential sources of hydrocarbons and are thermally immature with respect to the oil window. In the samples that we studied, coals are more organic-rich and more oil-prone than carbonaceous shales and silty mudstones, which appear to be potential sources of natural gas. Lithologically similar rocks may be present in the deeper parts of the subsurface Susitna basin located west of the Sheep Creek 1 well, where they may have been buried deeply enough to generate oil and (or) gas. The Susitna basin is sparsely drilled and mostly unexplored, and no commercial production of hydrocarbons has been obtained. However, the existence of potential source rocks of oil and gas, as shown by our Rock-Eval results, suggests that undiscovered petroleum accumulations may be present in the Susitna basin.

  1. Geology, thermal maturation, and source rock geochemistry in a volcanic covered basin: San Juan sag, south-central Colorado

    USGS Publications Warehouse

    Gries, R.R.; Clayton, J.L.; Leonard, C.

    1997-01-01

    The San Juan sag, concealed by the vast San Juan volcanic field of south-central Colorado, has only recently benefited from oil and gas wildcat drilling and evaluations. Sound geochemical analyses and maturation modeling are essential elements for successful exploration and development. Oil has been produced in minor quantities from an Oligocene sill in the Mancos Shale within the sag, and major oil and gas production occurs from stratigraphically equivalent rocks in the San Juan basin to the south-west and in the Denver basin to the northeast. The objectives of this study were to identify potential source rocks, assess thermal maturity, and determine hydrocarbon-source bed relationships. Source rocks are present in the San Juan sag in the upper and lower Mancos Shale (including the Niobrara Member), which consists of about 666 m (2184 ft) of marine shale with from 0.5 to 3.1 wt. % organic carbon. Pyrolysis yields (S1 + S2 = 2000-6000 ppm) and solvent extraction yields (1000-4000 ppm) indicate that some intervals within the Mancos Shale are good potential source rocks for oil, containing type II organic matter, according to Rock-Eval pyrolysis assay. Oils produced from the San Juan sag and adjacent part of the San Juan basin are geochemically similar to rock extracts obtained from these potential source rock intervals. Based on reconstruction of the geologic history of the basin integrated with models of organic maturation, we conclude that most of the source rock maturation occurred in the Oligocene and Miocene. Little to no maturation took place during Laramide subsidence of the basin, when the Animas and Blanco Basin formations were deposited. The timing of maturation is unlike that of most Laramide basins in the Rocky Mountain region, where maturation occurred as a result of Paleocene and Eocene basin fill. The present geothermal gradient in the San Juan sag is slightly higher (average 3.5??C/100 m; 1.9??F/100 ft) than the regional average for southern Rocky Mountain basins; however, although the sag contains intrusives and a volcanic cover, the gradient is significantly lower than that reported for parts of the adjacent San Juan basin (4.7??C/100 m; 2.6??F/100 ft). Burial depth appears to be a more important controlling factor in the thermal history of the source rocks than local variations in the geothermal gradient due to volcanic activity. Interestingly, the thick overburden of volcanic rocks appears to have provided the necessary burial depth for maturation.

  2. Coal-rock interface detector

    NASA Technical Reports Server (NTRS)

    Rose, S. D.; Crouch, C. E.; Jones, E. W. (Inventor)

    1979-01-01

    A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid.

  3. Active source monitoring at the Wenchuan fault zone: coseismic velocity change associated with aftershock event and its implication

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Ge, Hongkui; Wang, Baoshan; Hu, Jiupeng; Yuan, Songyong; Qiao, Sen

    2014-12-01

    With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M s5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~120 m rather than dynamic strong ground shaking. And a velocity decrease of ~2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.

  4. Dynamic Fragmentation of Jointed Rock Blocks During Rockslide-Avalanches: Insights From Discrete Element Analyses

    NASA Astrophysics Data System (ADS)

    Zhao, Tao; Crosta, Giovanni Battista; Dattola, Giuseppe; Utili, Stefano

    2018-04-01

    The dynamic fragmentation of jointed rock blocks during rockslide avalanches has been investigated by discrete element method simulations for a multiple arrangement of a rock block sliding over a simple slope geometry. The rock blocks are released along an inclined sliding plane and subsequently collide onto a flat horizontal plane at a sharp kink point. The contact force chains generated by the impact appear initially at the bottom frontal corner of the rock block and then propagate radially upward to the top rear part of the block. The jointed rock blocks exhibit evident contact force concentration and discontinuity of force wave propagation near the joint, associating with high energy dissipation of granular dynamics. The corresponding force wave propagation velocity can be less than 200 m/s, which is much smaller than that of an intact rock (1,316 m/s). The concentration of contact forces at the bottom leads to high rock fragmentation intensity and momentum boosts, facilitating the spreading of many fine fragments to the distal ends. However, the upper rock block exhibits very low rock fragmentation intensity but high energy dissipation due to intensive friction and damping, resulting in the deposition of large fragments near the slope toe. The size and shape of large fragments are closely related to the orientation and distribution of the block joints. The cumulative fragment size distribution can be well fitted by the Weibull's distribution function, with very gentle and steep curvatures at the fine and coarse size ranges, respectively. The numerical results of fragment size distribution can match well some experimental and field observations.

  5. Rhenium-osmium isotopes and highly siderophile elements in ultramafic rocks from the Eoarchean Saglek Block, northern Labrador, Canada: implications for Archean mantle evolution

    NASA Astrophysics Data System (ADS)

    Ishikawa, Akira; Suzuki, Katsuhiko; Collerson, Kenneth D.; Liu, Jingao; Pearson, D. Graham; Komiya, Tsuyoshi

    2017-11-01

    We determined highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) concentrations and 187Os/188Os ratios for ultramafic rocks distributed over the Eoarchean gneiss complex of the Saglek-Hebron area in northern Labrador, Canada in order to constrain to what extent variations in HSE abundances are recorded in Early Archean mantle that have well-resolved 182W isotope anomalies relative to the present-day mantle (∼+11 ppm: Liu et al., 2016). The samples analysed here have been previously classified into two suites: mantle-derived peridotites occurring as tectonically-emplaced slivers of lithospheric mantle, and metakomatiites comprising mostly pyroxenitic layers in supracrustal units dominated by amphibolites. Although previous Sm-Nd and Pb-Pb isotope studies provided whole-rock isochrons indicative of ∼3.8 Ga protolith formation for both suites, our whole-rock Re-Os isotope data on a similar set of samples yield considerably younger errorchrons with ages of 3612 ± 130 Ma (MSWD = 40) and 3096 ± 170 Ma (MSWD = 10.2) for the metakomatiite and lithospheric mantle suites, respectively. The respective initial 187Os/188Os = 0.10200 ± 18 for metakomatiites and 0.1041 ± 18 for lithospheric mantle rocks are within the range of chondrites. Re-depletion Os model ages for unradiogenic samples from the two suites are consistent with the respective Re-Os errorchrons (metakomatiite TRD = 3.4-3.6 Ga; lithospheric mantle TRD = 2.8-3.3 Ga). These observations suggest that the two ultramafic suites are not coeval. However, the estimated mantle sources for the two ultramafics suites are similar in terms of their broadly chondritic evolution of 187Os/188Os and their relative HSE patterns. In detail, both mantle sources show a small excess of Ru/Ir similar to that in modern primitive mantle, but a ∼20% deficit in absolute HSE abundances relative to that in modern primitive mantle (metakomatiite 74 ± 18% of PUM; lithospheric mantle 82 ± 10% of PUM), consistent with the ∼3.8 Ga Isua mantle source and Neoarchean komatiite sources around the world (∼70-86% of PUM). This demonstrates that the lower HSE abundances are not unique to the sources of komatiites, but rather might be a ubiquitous feature of Archean convecting mantle. This tentatively suggests that chondritic late accretion components boosted the convecting mantle HSE inventory after core separation in the Hadean, and that the Eoarchean to Neoarchean convecting mantle was depleted in its HSE content relative to that of today. Further investigation of Archean mantle-derived rocks is required to explore this hypothesis.

  6. Studying physical properties of deformed intact and fractured rocks by micro-scale hydro-mechanical-seismicity model

    NASA Astrophysics Data System (ADS)

    Raziperchikolaee, Samin

    The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.

  7. South Atlantic sag basins: new petroleum system components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, S.G.; Mello, M.R.

    Newly discovered pre-salt source rocks, reservoirs and seals need to be included as components to the petroleum systems of both sides of the South Atlantic. These new components lie between the pre-salt rift strata and the Aptian salt layers, forming large, post-rift, thermal subsidence sag basins. These are differentiated from the older rift basins by the lack of syn-rift faulting and a reflector geometry that is parallel to the base salt regional unconformity rather than to the Precambrian basement. These basins are observed in deep water regions overlying areas where both the mantle and the crust have been involved inmore » the extension. This mantle involvement creates post-rift subsiding depocenters in which deposition is continuous while proximal rift-phase troughs with little or no mantle involvement are bypassed and failed to accumulate potential source rocks during anoxic times. These features have been recognized in both West African Kwanza Basin and in the East Brasil Rift systems. The pre-salt source rocks that are in the West African sag basins were deposited in lacustrine brackish to saline water environment and are geochemically distinct from the older, syn-rift fresh to brackish water lakes, as well as from younger, post-salt marine anoxic environments of the drift phase. Geochemical analyses of the source rocks and their oils have shown a developing source rock system evolving from isolated deep rift lakes to shallow saline lakes, and culminating with the infill of the sag basin by large saline lakes to a marginally marine restricted gulf. Sag basin source rocks may be important in the South Atlantic petroleum system by charging deep-water prospects where syn-rift source rocks are overmature and the post-salt sequences are immature.« less

  8. Kaersutite-bearing xenoliths and megacrysts in volcanic rocks from the Funk Seamount in the souhtwest Indian Ocean

    NASA Technical Reports Server (NTRS)

    Reid, Arch M.; Le Roex, Anton P.

    1988-01-01

    The petrography, mineral chemistry, and whole-rock compositions of volcanic rocks dredged from the Funk Seamount, located 60 km NW of Marion Island in the southwestern Indian Ocean, are presented together with the mineral chemistry of their inclusions. On the basis of these characteristics, the possible relationships between the Funk Seamount's volcanic rocks and the megacrysts and xenoliths in these rocks are discussed. It is argued that the Funk Seamount lavas derive from a similar mantle source region as that of the Marion Island and Prince Edward Island hotspot lavas. The geochemical signature of these lavas implies derivation from a source that is enriched (e.g., in Ti, K, P, and Nb) over the depleted mantle source regions for the adjacent mid-ocean ridge basalts.

  9. Investigation of geological structures with a view to HLRW disposal, as revealed through 3D inversion of aeromagnetic and gravity data and the results of CSAMT exploration

    NASA Astrophysics Data System (ADS)

    An, Zhiguo; Di, Qingyun

    2016-12-01

    The Alxa area in Inner Mongolia has been selected as a possible site for geological disposal of high-level radioactive waste (HLRW). Based on results of a previous study on crustal stability, the Tamusu rock mass has been chosen as the target. To determine the geological structure of this rock mass, aeromagnetic and gravity data are collected and inverted. Three-dimensional (3D) inversion horizontal slices show that the internal density of the rock mass and the distribution of magnetic properties are not uniform, with fractures and fragmentation being present. To confirm this result, the controlled source audio-frequency magnetotelluric method (CSAMT) was applied to explore the geological structures, the typical CSAMT sounding curve was analyzed, and the response characteristics of the geological structure and surrounding rock are distinguished. The original data were processed and interpreted in combination with data from surface geology and drilling and logging data. It is found that the CSAMT results were consistent with those from 3D inversion of the gravity and magnetic data, confirming the existence of fractures and fragmentation in the exploration area.

  10. Imaging the source region of the 2003 San Simeon earthquake within the weak Franciscan subduction complex, central California

    USGS Publications Warehouse

    Hauksson, E.; Oppenheimer, D.; Brocher, T.M.

    2004-01-01

    Data collected from the 2003 Mw6.5 San Simeon earthquake sequence in central California and a 1986 seismic refraction experiment demonstrate that the weak Franciscan subduction complex suffered brittle failure in a region without significant velocity contrast across a slip plane. Relocated hypocenters suggest a spatial relationship between the seismicity and the Oceanic fault, although blind faulting on a nearby, unknown fault is an equally plausible alternative. The aftershock volume is sandwiched between the Nacimiento and Oceanic faults and is characterized by rocks of low compressional velocity (Vp) abutted to the east and west by rocks of higher Vp. This volume of inferred Franciscan rocks is embedded within the larger Santa Lucia anticline. Pore fluids, whose presence is implied by elevated Vp/Vs values, may locally decrease normal stress and limit the aftershock depth distribution between 3 to 10 km within the hanging wall. The paucity of aftershocks along the mainshock rupture surface may reflect either the absence of a damage zone or an almost complete stress drop within the low Vp or weak rock matrix surrounding the mainshock rupture. Copyright 2004 by the American Geophysical Union.

  11. Aeromagnetic Map with Geology of the Los Angeles 30 x 60 Minute Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Hildenbrand, T.G.; Jachens, R.C.; Campbell, R.H.; Yerkes, R.F.

    2006-01-01

    Introduction: An important objective of geologic mapping is to project surficial structures and stratigraphy into the subsurface. Geophysical data and analysis are useful tools for achieving this objective. This aeromagnetic anomaly map provides a three-dimensional perspective to the geologic mapping of the Los Angeles 30 by 60 minute quadrangle. Aeromagnetic maps show the distribution of magnetic rocks, primarily those containing magnetite (Blakely, 1995). In the Los Angeles quadrangle, the magnetic sources are Tertiary and Mesozoic igneous rocks and Precambrian crystalline rocks. Aeromagnetic anomalies mark abrupt spatial contrasts in magnetization that can be attributed to lithologic boundaries, perhaps caused by faulting of these rocks or by intrusive contacts. This aeromagnetic map overlain on geology, with information from wells and other geophysical data, provides constraints on the subsurface geology by allowing us to trace faults beneath surficial cover and estimate fault dip and offset. This map supersedes Langenheim and Jachens (1997) because of its digital form and the added value of overlaying the magnetic data on a geologic base. The geologic base for this map is from Yerkes and Campbell (2005); some of their subunits have been merged into one on this map.

  12. A Discrete Element Method Approach to Progressive Localization of Damage in Granular Rocks and Associated Seismicity

    NASA Astrophysics Data System (ADS)

    Vora, H.; Morgan, J.

    2017-12-01

    Brittle failure in rock under confined biaxial conditions is accompanied by release of seismic energy, known as acoustic emissions (AE). The objective our study is to understand the influence of elastic properties of rock and its stress state on deformation patterns, and associated seismicity in granular rocks. Discrete Element Modeling is used to simulate biaxial tests on granular rocks of defined grain size distribution. Acoustic Energy and seismic moments are calculated from microfracture events as rock is taken to conditions of failure under different confining pressure states. Dimensionless parameters such as seismic b-value and fractal parameter for deformation, D-value, are used to quantify seismic character and distribution of damage in rock. Initial results suggest that confining pressure has the largest control on distribution of induced microfracturing, while fracture energy and seismic magnitudes are highly sensitive to elastic properties of rock. At low confining pressures, localized deformation (low D-values) and high seismic b-values are observed. Deformation at high confining pressures is distributed in nature (high D-values) and exhibit low seismic b-values as shearing becomes the dominant mode of microfracturing. Seismic b-values and fractal D-values obtained from microfracturing exhibit a linear inverse relationship, similar to trends observed in earthquakes. Mode of microfracturing in our simulations of biaxial compression tests show mechanistic similarities to propagation of fractures and faults in nature.

  13. Thermal maturity patterns (conodont color alteration index and vitrinite reflectance) in Upper Ordovician and Devonian rocks of the Appalachian basin: a major revision of USGS Map I-917-E using new subsurface collections: Chapter F.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Repetski, John E.; Ryder, Robert T.; Weary, David J.; Harris, Anita G.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The conodont color alteration index (CAI) introduced by Epstein and others (1977) and Harris and others (1978) is an important criterion for estimating the thermal maturity of Ordovician to Mississippian rocks in the Appalachian basin. Consequently, the CAI isograd maps of Harris and others (1978) are commonly used by geologists to characterize the thermal and burial history of the Appalachian basin and to better understand the origin and distribution of oil and gas resources in the basin. The main objectives of this report are to present revised CAI isograd maps for Ordovician and Devonian rocks in the Appalachian basin and to interpret the geologic and petroleum resource implications of these maps. The CAI isograd maps presented herein complement, and in some areas replace, the CAI-based isograd maps of Harris and others (1978) for the Appalachian basin. The CAI data presented in this report were derived almost entirely from subsurface samples, whereas the CAI data used by Harris and others (1978) were derived almost entirely from outcrop samples. Because of the different sampling methods, there is little geographic overlap of the two data sets. The new data set is mostly from the Allegheny Plateau structural province and most of the data set of Harris and others (1978) is from the Valley and Ridge structural province, east of the Allegheny structural front (fig. 1). Vitrinite reflectance, based on dispersed vitrinite in Devonian black shale, is another important parameter for estimating the thermal maturity in pre-Pennsylvanian-age rocks of the Appalachian basin (Streib, 1981; Cole and others, 1987; Gerlach and Cercone, 1993; Rimmer and others, 1993; Curtis and Faure, 1997). This chapter also presents a revised percent vitrinite reflectance (%R0) isograd map based on dispersed vitrinite recovered from selected Devonian black shales. The Devonian black shales used for the vitrinite studies reported herein also were analyzed by RockEval pyrolysis and total organic carbon (TOC) content in weight percent. Although the RockEval and TOC data are included in this chapter (table 1), they are not shown on the maps. The revised CAI isograd and percent vitrinite reflectance isograd maps cover all or parts of Kentucky, New York, Ohio, Pennsylvania, Virginia, and West Virginia (fig. 1), and the following three stratigraphic intervals: Upper Ordovician carbonate rocks, Lower and Middle Devonian carbonate rocks, and Middle and Upper Devonian black shales. These stratigraphic intervals were chosen for the following reasons: (1) they represent target reservoirs for much of the oil and gas exploration in the Appalachian basin; (2) they are stratigraphically near probable source rocks for most of the oil and gas; (3) they include geologic formations that are nearly continuous across the basin; (4) they contain abundant carbonate grainstone-packstone intervals, which give a reasonable to good probability of recovery of conodont elements from small samples of drill cuttings; and (5) the Middle and Upper Devonian black shale contains large amounts of organic matter for RockEval, TOC, and dispersed vitrinite analyses. Thermal maturity patterns of the Upper Ordovician Trenton Limestone are of particular interest here, because they closely approximate the thermal maturity patterns in the overlying Upper Ordovician Utica Shale, which is the probable source rock for oil and gas in the Upper Cambrian Rose Run Sandstone (sandstone), Upper Cambrian and Lower Ordovician Knox Group (Dolomite), Lower and Middle Ordovician Beekmantown Group (dolomite or Dolomite), Upper Ordovician Trenton and Black River Limestones, and Lower Silurian Clinton/Medina sandstone (Cole and others, 1987; Jenden and others, 1993; Laughrey and Baldassare, 1998; Ryder and others, 1998; Ryder and Zagorski, 2003). The thermal maturity patterns of the Lower Devonian Helderberg Limestone (Group), Middle Devonian Onondaga Limestone, and Middle Devonian Marcellus Shale-Upper Devonian Rhine street Shale Member-Upper Devonian Ohio Shale are of interest, because they closely approximate the thermal maturity patterns in the Marcellus Shale, Upper Devonian Rhinestreet Shale Member, and Upper Devonian Huron Member of the Ohio Shale, which are the most important source rocks for oil and gas in the Appalachian basin (de Witt and Milici, 1989; Klemme and Ulmishek, 1991). The Marcellus, Rhinestreet, and Huron units are black-shale source rocks for oil and (or) gas in the Lower Devonian Oriskany Sandstone, the Upper Devonian sandstones, the Middle and Upper Devonian black shales, and the Upper Devonian-Lower Mississippian(?) Berea Sandstone (Patchen and others, 1992; Roen and Kepferle, 1993; Laughrey and Baldassare, 1998).

  14. Molecular marker and stable carbon isotope analyses of carbonaceous Ambassador uranium ores of Mulga Rock in Western Australia

    NASA Astrophysics Data System (ADS)

    Jaraula, C.; Schwark, L.; Moreau, X.; Grice, K.; Bagas, L.

    2013-12-01

    Mulga Rock is a multi-element deposit containing uranium hosted by Eocene peats and lignites deposited in inset valleys incised into Permian rocks of the Gunbarrel Basin and Precambrian rocks of the Yilgarn Craton and Albany-Fraser Orogen. Uranium readily adsorbs onto minerals or phytoclasts to form organo-uranyl complexes. This is important in pre-concentrating uranium in this relatively young ore deposit with rare uraninite [UO2] and coffinite [U(SiO4)1-x(OH)4x], more commonly amorphous and sub-micron uranium-bearing particulates. Organic geochemical and compound-specific stable carbon isotope analyses were conducted to identify possible associations of molecular markers with uranium accumulation and to recognize effect(s) of ionizing radiation on molecular markers. Samples were collected from the Ambassador deposit containing low (<200 ppm) to high (>2000 ppm) uranium concentrations. The bulk rock C/N ratios of 82 to 153, Rock-Eval pyrolysis yields of 316 to 577 mg hydrocarbon/g TOC (Hydrogen Index, HI) and 70 to 102 mg CO2/g TOC (Oxygen Index, OI) are consistent with a terrigenous and predominantly vascular plant OM source deposited in a complex shallow water system, ranging from lacustrine to deltaic, swampy wetland and even shallow lake settings as proposed by previous workers. Organic solvent extracts were separated into saturated hydrocarbon, aromatic hydrocarbon, ketone, and a combined free fatty acid and alcohol fraction. The molecular profiles appear to vary with uranium concentration. In samples with relatively low uranium concentrations, long-chain n-alkanes, alcohols and fatty acids derived from epicuticular plant waxes dominate. The n-alkane distributions (C27 to C31) reveal an odd/even preference (Carbon Preference Index, CPI=1.5) indicative of extant lipids. Average δ13C of -27 to -29 ‰ for long-chain n-alkanes is consistent with a predominant C3 plant source. Samples with relatively higher uranium concentrations contain mostly intermediate-length n-alkanes, ketones, alcohols, and fatty acids (C20 to C24) with no preferential distribution (CPI~1). Intermediate length n-alkanes have modest carbon isotope enrichment compared to long-chain n-alkanes. These shorter-chain hydrocarbons are interpreted to represent alteration products. The diversity and relative abundance of ketones in highly mineralised Mulga Rock peats and lignites are not consistent with aerobic and diagenetic degradation of terrigenous OM in oxic environments. Moreover, molecular changes cannot be associated with thermal breakdown due to the low maturity of the deposits. It is possible that the association of high uranium concentrations and potential radiolysis resulted in the oxidation of alcohol functional groups into aldehydes and ketones and breakdown of highly aliphatic macromolecules (i.e. spores, pollen, cuticles, and algal cysts). These phytoclasts are usually considered to be recalcitrant as they evolved to withstand chemical and physical degradation. Previous petrographic analyses show that spores, pollen and wood fragments are preferentially enriched in uranium. Their molecular compositions are feasible sources of short- to intermediate-length n-alkanes that dominate the mineralised peats and lignites.

  15. Mineralogic and petrologic implications of Viking geochemical results from Mars - Interim report

    NASA Technical Reports Server (NTRS)

    Baird, A. K.; Toulmin, P., III; Rose, H. J., Jr.; Christian, R. P.; Clark, B. C.; Keil, K.; Gooding, J. L.

    1976-01-01

    Chemical results from four samples of Martian fines delivered to Viking landers 1 and 2 are remarkably similar in that they all have high iron; moderate magnesium, calcium, and sulfur; low aluminum; and apparently very low alkalies and trace elements. This composition is best interpreted as representing the weathering products of mafic igneous rocks. A mineralogic model, derived from computer mixing studies and laboratory analog preparations, suggests that Mars fines could be an intimate mixture of about 80% iron-rich clay, about 10% magnesium sulfate (kieserite), about 5% carbonate (calcite), and about 5% iron oxides (hematite, magnetite, maghemite, goethite). The mafic nature of the present fines (distributed globally) and their probable source rocks seems to preclude large-scale planetary differentiation of a terrestrial nature.

  16. Mineralogic and petrologic implications of viking geochemical results from Mars: interim report.

    PubMed

    Baird, A K; Toulmin, P; Clark, B C; Rose, H J; Keil, K; Christian, R P; Gooding, J L

    1976-12-11

    Chemical results from four samples of martian fines delivered to Viking landers 1 and 2 are remarkably similar in that they all have high iron; moderate magnesium, calcium, and sulfur; low aluminum; and apparently very low alkalies and trace elements. This composition is best interpreted as representing the weathering products of mafic igneous rocks. A mineralogic model, derived from computer mixing studies and laboratory analog preparations, suggests that Mars fines could be an intimate mixture of about 80 percent iron-rich clay, about 10 percent magnesium sulfate (kieserite?), about 5 percent carbonate (calcite), and about 5 percent iron oxides (hematite, magnetite, maghemite, goethite?). The mafic nature of the present fines (distributed globally) and their probable source rocks seems to preclude large-scale planetary differentiation of a terrestrial nature.

  17. A High-Resolution Multitechniques Approach to Characterize Bio-Organo-Mineral Associations Within Rock Samples: Tracking Biological vs Abiotic Processes? Towards a Better Understanding of the Deep Carbon Cycle.

    NASA Astrophysics Data System (ADS)

    Pisapia, C.

    2015-12-01

    Among all elements, carbon plays one of the major roles for the sustainability of life on Earth. Past considerations of the carbon cycle have mainly focused on surface processes occurring at the atmosphere, oceans and shallow crustal environments. By contrast, little is known about the Deep Carbon cycle whereas both geochemical and biological processes may induce organic carbon production and/or consumption at depth. Indeed, the nowadays-recognized capability of geochemical processes such as serpentinization to generate abiotic organic compounds as well as the existence of a potentially important intraterrestrial life raises questions about the limit of biotic/abiotic carbon on Earth's deep interior and how it impacts global biogeochemical cycles. It is then mandatory to increase our knowledge on the nature and extent of carbon reservoirs along with their sources, sinks and fluxes in the subsurface. This implies to be able to finely characterize organomineral associations within crustal rocks although it might be hampered by the scarceness and heterogeneous micrometric spatial distribution of organic molecules in natural rocks. We then developed an in situ analytical strategy based on the combination of high-resolution techniques to track organic molecules at the pore level in natural rocks and to determine their biological or abiotic origin. We associated classical high-resolution techniques and synchrotron-based imaging techniques in order to characterize their nature and localization (SEM/TEM, coupled CLSM/Raman spectroscopy, Tof-SIMS) along with their 3D-distribution relatively to mineral phases (S-FTIR, S-DeepUV, XANES, Biphoton microscopy). The effectiveness of this approach to shed light on the speciation and nature of carbon in subsurface environments will be illustrated through the study of (i) subsurface ecosystems and abiotic organic carbon within ultramafic rocks of the oceanic lithosphere as putative analogs for the nature and functioning of primitive ecosystems on Earth and of (ii) ecosystems inhabiting Archean craton and potentially playing a role in punk-rock karstification processes and rocks weathering.

  18. A New Biomarker Proxy for Palaeo-pCO2 Reconstruction in Ancient Sediments

    NASA Astrophysics Data System (ADS)

    Pancost, R. D.; Magness, S.; Maxwell, J. R.

    2001-12-01

    The carbon isotopic composition of marine organic matter has commonly been used in chemostratigraphy or as a proxy for ancient pCO2 levels. Both of these goals require that the source of organic matter be well defined, and in the case of palaeo-pCO2 investigations, the organic matter must be derived ultimately from aquatic photoautotrophs. However, additional sources, including terrestrial biomass, heterotrophs, or bacteria, can also contribute to total organic carbon (TOC). In the past decade, numerous workers have attempted to refine organic carbon isotope records using the isotopic composition of individual compounds (biomarkers) rather than the TOC. The appeal of this approach is that by examining specific biomarkers, a signal diagnostic for photoautotrophic organisms can be obtained. For compound-specific isotope analyses to be most effective, the compounds analysed must have a relatively specific source. Among the most commonly used biomarkers in palaeo-pCO2 investigations are alkenones, long-chain ketones derived exclusively from certain species of haptophyte algae. However, alkenones are absent in rocks older than the Jurassic and either absent or present in low abundances in rocks older than the Miocene. Thus, in older rocks, other biomarkers, including steranes (derived from eukaryotic sterols), phytane (presumably derived from chlorophyll), and n-alkanes (derived from algal macromolecules), are used. Unfortunately, these compounds can have alternative sources and become less reliable as isotopic proxies for photoautotrophs with increasing thermal maturity and complexity of the hydrocarbon distribution. Here we propose the use of a maleimides (1H-pyrrole-2,5-diones) as a new biomarker class for evaluating past changes in photoautotroph carbon isotopic compositions. Maleimides have three key advantages over other biomarkers in ancient rocks. First, they are degradation products of chlorophyll and have no known alternative origins in marine sediments. Second, because of their unique structure, they can be readily isolated from other organic components facilitating the determination of accurate carbon isotope ratios. Finally, the pyrrole structure is relatively stable insuring that maleimides survive even in thermally mature rocks. We have applied the analysis of maleimides to investigations of sediments from the Kupferschiefer (Permian), Vena del Gesso (Messinian) and Livello Bonarelli (Cenomanian-Turonian boundary) formations. In all three cases, the carbon isotopic compositions of selected maleimides exhibit shifts predicted by either carbonate or other biomarker carbon isotope profiles.

  19. High magnetic susceptibility granodiorite as a source of surface magnetic anomalies in the King George Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Kon, S.; Nakamura, N.; Funaki, M.; Sakanaka, S.

    2012-12-01

    Change in plate motion produces convergence of the two oceanic lithospheres and the formation of volcanic island arcs above the subducted older and thicker plate. The association of calc-alkaline diorites to tonalites and granodiorites (ACG) is typical plutonic rocks of the volcanic arcs. In the many island arcs that surround the Pacific Ocean, ACG generally forms shallow level plutons and is closely associated with volcanic rocks. The Japan Arc setting had occurred the emplacement of the highly magnetic granitoid along the fore-arc basin before back-arc spreading at middle Miocene, showing a linear positive magnetic anomaly. Similar magnetic anomalies have also been exhibited along the Circum-Pacific Belt. Along East Antarctica, it is well known that the South Shetland Islands have been formed by back-arc spreading related to the subduction along the South Shetland trench during the late Cretaceous and middle Miocene. Moreover, geology in the South Shetland Islands consists of lava flows with subordinate pyroclastic deposits, intrusive dykes-sills, granitic plutons, displaying a typical subduction-related calc-alkaline volcanic association. However, there is little report on the presence of fore-arc granitoid. Here we report the distribution and structure of the granitic plutons around Marian Cove in the King George Island, South Shetland, East Antarctica by surface geological survey and magnetic anisotropic studies. Then we compare the distribution of granitic plutons with surface magnetic anomalies through our ship-borne and foot-borne magnetic surveys. The granitic plutons are distributed only shallow around the Marian cove in the King George Island, and the plutons had been intruded in the Sejong formation with pyroclastic deposits and basaltic/rhyoritic lavas, suggesting the post back-arc spreading. We sampled 8 plutons, 12 basaltic lavas and 6 andestic dykes, all located within four kilometer radius from the Korean Antarctic research station (King Sejong station) in the western side of King George Island. The plutonic rocks of diorite and granodiorite show high values of bulk magnetic susceptibility of c.a. 0.01-0.4 SI, appearing to be the source of positive magnetic anomaly. We also revealed the preferred petrofabric lineation directions at the sites using anisotropy of magnetic susceptibility (AMS). The AMS showed the plutonic rocks represent the vertical intrusion from the deep seated magma. Our optical microscope observation verified the maximum AMS orientation is parallel to the preferred alignment of framework-forming plagioclase, suggesting the alignment of euhedral magnetite grains along the long-axes of plagioclases. Our ship-borne and foot-borne surveys of geomagnetic filed anomaly agree well with the distribution of the plutonic rocks, revealing the possible origin of surface magnetic anomaly. These suggests that the plutons in this area may be included ACG, and this magnetic surveys is proposed to infer the availability to find out the presence of granitoid.

  20. Changes in porosity and organic matter phase distribution monitored by NMR relaxometry following hydrous pyrolysis under uniaxial confinement

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Lewan, Michael D.; Miller, Michael; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Artificial maturation methods are used to induce changes in source rock thermal maturity without the uncertainties that arise when comparing natural samples from a particular basin that often represent different levels of maturation and different lithofacies. A novel uniaxial confinement clamp was used on Woodford Shale cores in hydrous pyrolysis experiments to limit sample expansion by simulating the effect of overburden present during thermal maturation in natural systems. These samples were then subjected to X-ray computed tomography (X-CT) imaging and low-field nuclear magnetic resonance (LF-NMR) relaxometry measurements. LF-NMR relaxometry is a noninvasive technique commonly used to measure porosity and pore-size distributions in fluid-filled porous media, but may also measure hydrogen present in hydrogen-bearing organic solids. Standard T1 and T2 relaxation distributions were determined and two dimensional T1-T2 correlation measurements were performed on the Woodford Shale cores. The T1-T2 correlations facilitate resolution of organic phases in the system. The changes observed in NMR-relaxation times correspond to bitumen and lighter hydrocarbon production that occur as source rock organic matter matures. The LF-NMR porosities of the core samples at maximum oil generation are significantly higher than porosities measured by other methods. This discrepancy likely arises from the measurement of highly viscous organic constituents in addition to fluid-filled porosity. An unconfined sample showed shorter relaxation times and lower porosity. This difference is attributed to the lack of fractures observed in the unconfined sample by X-CT.

  1. Peculiarities of convection and oil maturation in 3D porous medium structure.

    NASA Astrophysics Data System (ADS)

    Yurie Khachay, Professor; Mindubaev, Mansur

    2017-04-01

    An important estimation of oil source thickness productivity is to study the thermal influences of magmatic intrusions on the maturation of the organic matter. The heterogeneity of permeability distribution of the reservoir rock and respectively the convection structure provide temperature heterogeneity and different degree of maturity for the oil source material. A numerical algorithm for solving the problem of developed convection in two-dimensional and three-dimensional models of the porous medium, which consists of a system of Darcy equations, heat conduction with convection term and the continuity equation, is developed. Because of the effective values of the coefficients of thermal conductivity, heat capacity, viscosity and permeability of the medium depend from the temperature; the system of equations is nonlinear. For solution we used the dimensionless system of coordinates. For numerical solution we used the longitudinal cross-implicit scheme. The coordinates step for the 3D model had been used constant and equal to H/20, where H=1- dimensionless thickness of porous medium layer. As it is shown from the variants of numerical solution, by the stationary regime of developed convection because of the temperature heterogeneous distribution in the sedimentary reservoir the formation of oil source matter different degree of maturity is possible. That result is very significant for estimation of reservoirs oil-bearing The work was fulfilled by supporting of the Fund of UB RAS, project 1518532. Reference 1. Yurie Khachay and Mansur Mindubaev, 2016, Effect of convective transport in porous media on the conductions of organic matter maturation and generation of hydrocarbons in trap rocks complexes, Energy Procedia. 74 pp.79-83.

  2. Rock fragment distributions and regolith evolution in the Ouachita Mountains, Arkansas, USA

    Treesearch

    Jonathan D. Phillips; Ken Luckow; Daniel A. Marion; Kristin R. Adams

    2005-01-01

    Rock fragments in the regolith are a persistent property that reflects the combined influences of geologic controls, erosion, deposition, bioturbation, and weathering. The distribution of rock fragments in regoliths of the Ouachita Mountains, Arkansas, shows that sandstone fragments are common in all layers, even if sandstone is absent in parent material. Shale and...

  3. Qualitative and quantitative analysis of Dibenzofuran, Alkyldibenzofurans, and Benzo[b]naphthofurans in crude oils and source rock extracts

    USGS Publications Warehouse

    Meijun Li,; Ellis, Geoffrey S.

    2015-01-01

    Dibenzofuran (DBF), its alkylated homologues, and benzo[b]naphthofurans (BNFs) are common oxygen-heterocyclic aromatic compounds in crude oils and source rock extracts. A series of positional isomers of alkyldibenzofuran and benzo[b]naphthofuran were identified in mass chromatograms by comparison with internal standards and standard retention indices. The response factors of dibenzofuran in relation to internal standards were obtained by gas chromatography-mass spectrometry analyses of a set of mixed solutions with different concentration ratios. Perdeuterated dibenzofuran and dibenzothiophene are optimal internal standards for quantitative analyses of furan compounds in crude oils and source rock extracts. The average concentration of the total DBFs in oils derived from siliciclastic lacustrine rock extracts from the Beibuwan Basin, South China Sea, was 518 μg/g, which is about 5 times that observed in the oils from carbonate source rocks in the Tarim Basin, Northwest China. The BNFs occur ubiquitously in source rock extracts and related oils of various origins. The results of this work suggest that the relative abundance of benzo[b]naphthofuran isomers, that is, the benzo[b]naphtho[2,1-d]furan/{benzo[b]naphtho[2,1-d]furan + benzo[b]naphtho[1,2-d]furan} ratio, may be a potential molecular geochemical parameter to indicate oil migration pathways and distances.

  4. FNF Construction Inc. Window Rock Airport Project: Coverage Under General Air Quality Permit for New or Modified Minor Source Cement Batch Plants in Indian Country

    EPA Pesticide Factsheets

    Approved Request for Coverage under General Air Quality Permit for New or Modified Minor Source Cement Batch Plants in Indian Country for FNF Construction Inc. Window Rock Airport Soil Cement Mixing Plant Project, Beacon Road, Window Rock, Arizona 86515.

  5. Refinement of Regional Distance Seismic Moment Tensor and Uncertainty Analysis for Source-Type Identification

    DTIC Science & Technology

    2014-09-02

    release; distribution is unlimited. rock zone which provides a pathway for formation fluids, natural gas and crude oil from deeper strata that are... southeast Louisiana (Figure 21). It is a part of the Gulf Coast salt basin which exhibits many salt structures formed by upward flow of sedimentary salt...primarily, evaporites) on account of low density of salt and overburden pressures caused by younger sedimentary deposits (Beckman and Williamson, 1990

  6. Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale, San Joaquin Basin, California, based on hydrous-pyrolysis experiments

    USGS Publications Warehouse

    Lewan, Michael D.; Dolan, Michael P.; Curtis, John B.

    2014-01-01

    The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOCO). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is compositionally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to illite. As a result, illitization only reaches 35% to 40% at 310°C for 72 hr and remains unchanged to 365°C for 72 hr. Bitumen generation before or during early illitization in these experiments emphasizes the importance of knowing when and to what degree illitization occurs in natural maturation of a smectite-rich source rock to determine its expulsion efficiency. Complete illitization prior to bitumen generation is common for Paleozoic source rocks (e.g., Woodford Shale and Retort Phosphatic Shale Member of the Phosphoria Formation), and expulsion efficiencies can be determined on immature samples by hydrous pyrolysis. Conversely, smectite is more common in Cenozoic source rocks like the Kreyenhagen Shale, and expulsion efficiencies determined by hydrous pyrolysis need to be made on samples that reflect the level of illitization at or near bitumen generation in the subsurface.

  7. Major and Trace Element Geochemistry and Os Isotopic Compositions of Komatiites From Dundonald Beach, Abitibi Greenstone Belt, Canada

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A.; Walker, R. J.; Sproule, R. A.; Lesher, C.

    2003-12-01

    We have examined the major and trace elements, and Os isotopic compositions of a suite of cumulate and spinifex textured komatiitic rocks from the Dundonald Beach area, part of the ˜2.7 Ga Abitibi greenstone Belt, Ontario, Canada. This suite of rocks forms a series from peridotitic komatiites (MgO ˜ 42 wt.% on a volatile-free basis) to komatiitic basalts (MgO ˜8 wt.%). Based on major element oxide ratios (e.g. Al2O3/TiO2 ˜21-26 and CaO/Al2O3 typically <= 1) and unfractionated HREE characteristics (e.g. (Gd/Yb)N ˜0.9-1.1), these rocks are similar to the spatially associated Al-undepleted komatiites from Alexo and Munro Townships. Also, these rocks are strongly LREE-depleted ((La/Sm)N = 0.41-0.67; (Ce/Yb)N = 0.41-0.70)) and have variable total REE (4-22 ppm). A strong negative correlation between Mg# and total REEs suggests that the REE patterns of these rocks are primary features of their mantle source. The Re-Os isotope results for whole-rock komatiites and chromite separates from a single flow yield a model 3 isochron age of 2606 +/- 55 Ma. This age is slightly younger ( ˜50 Ma) compared to the U-Pb zircon ages of the associated volcanics reported from the presumed extension of the same Kidd-Munro assemblage in Alexo and Munro Townships. The initial 187Os/188Os ratio (0.1090 +/- 0.0019) obtained from the regression is essentially chondritic (γ Os(T) = -0.2 +/- 1.7). The peridotitic komatiites have the highest Os concentrations and low 187Re/188Os ratios (up to ˜4.2 ppb and < 0.5, respectively) among the whole rocks, whereas the komatiitic basalts have relatively low Os concentrations ( ˜0.3 ppb) and high 187Re/188Os ratios ( ˜3.1-11.9). For these komatiites, Os was compatible with the mantle residue (DOsmantle-melt ˜7.6), whereas Re was moderately incompatible (DRe ˜0.6), typical of most komatiitic magmas. The absence of a strong correlation between Os and Ni concentrations in the whole-rocks suggests that the distribution of Os in these rocks is not primarily controlled by fractionation of olivine. The apparent DReol+chmt/liq. ( ˜0.7), on the other hand, suggests that Re was moderately incompatible in olivine and/or chromite during the differentiation of komatiitic magmas. A chondritic initial Os isotopic composition for the mantle source for these komatiites is consistent with that previously reported for the komatiites from Alexo and Munro Townships. Our Os isotopic results for Dundonald komatiites, combined with those reported for Alexo and Pyke Hill komatiites, therefore, suggest that a major portion of the ˜2.7 Ga mantle source for the komatiites in the Abitibi greenstone belt was dominated by Os with chondritic isotopic compositions. Also, the LREE-depleted, yet chondritic Os isotopic composition for the mantle source of these komatiites is indistinguishable from the projected chondritic composition of the contemporaneous depleted convective upper mantle.

  8. Rock size-frequency distributions analysis at lunar landing sites based on remote sensing and in-situ imagery

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian

    2017-10-01

    Rock populations can supply fundamental geological information about origin and evolution of a planet. In this paper, we used Lunar Reconnaissance Orbiter (LRO) narrow-angle camera (NAC) images to identify rocks at the lunar landing sites (including Chang'e 3 (CE-3), Apollo and Surveyor series). The diameter and area of each identified rock were measured to generate distributions of rock cumulative fractional area and size-frequency on a log-log plot. The two distributions both represented the same shallow slopes at smaller diameters followed by steeper slopes at larger diameters. A reasonable explanation for the lower slopes may be the resolution and space weathering effects. By excluding the smaller diameters, rock populations derived from NAC images showed approximately linear relationships and could be fitted well by power laws. In the last, the entire rock populations derived from both NAC and in-situ imagery could be described by one power function at the lunar landing sites except the CE-3 and Apollo 11 landing sites. This may be because that the process of a large rock breaking down to small rocks even fine particles can be modeled by fractal theories. Thus, rock populations on lunar surfaces can be extrapolated along the curves of rock populations derived from NAC images to smaller diameters. In the future, we can apply rock populations from remote sensing images to estimate the number of rocks with smaller diameters to select the appropriate landing sites for the CE-4 and CE-5 missions.

  9. 40 CFR 436.180 - Applicability; description of the phosphate rock subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphate rock subcategory. 436.180 Section 436.180 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Phosphate Rock Subcategory § 436.180 Applicability; description of the phosphate rock... bearing rock, ore or earth for the phosphate content. [43 FR 9809, Mar. 10, 1978] ...

  10. 40 CFR 436.180 - Applicability; description of the phosphate rock subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphate rock subcategory. 436.180 Section 436.180 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Phosphate Rock Subcategory § 436.180 Applicability; description of the phosphate rock... bearing rock, ore or earth for the phosphate content. [43 FR 9809, Mar. 10, 1978] ...

  11. 40 CFR 436.180 - Applicability; description of the phosphate rock subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphate rock subcategory. 436.180 Section 436.180 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Phosphate Rock Subcategory § 436.180 Applicability; description of the phosphate rock... bearing rock, ore or earth for the phosphate content. [43 FR 9809, Mar. 10, 1978] ...

  12. Nitrogen in rock: Occurrences and biogeochemical implications

    USGS Publications Warehouse

    Holloway, J.M.; Dahlgren, R.A.

    2002-01-01

    There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.

  13. Medial moraines of glaciers of the Copper River Basin, Alaska: Discrete landslides dominate over other sources

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Fischer, L.; Furfaro, R.; Huggel, C.; Korup, O.; Leonard, G. J.; Uhlmann, M.; Wessels, R. L.; Wolfe, D. F.

    2009-12-01

    Medial moraines are visually dominant structures of most large valley glaciers in the Copper River Basin (CRB), Alaska. Areally extensive but thin (usually <20 cm) accumulations of debris pose challenges for glacier mapping based on multispectral imagery, as done, for instance, in the GLIMS project. The sources of this material include large discrete landslides from wallrocks and from lateral moraines; diffuse contributions from rock falls and talus creep; rocks delivered via snow and ice avalanches; ingestion of lateral moraines along tributary convergences; and basal erosional debris. Evidence indicates that in CRB glaciers, discrete large avalanches predominate as the major contributors of moraine mass. Subglacial erosional debris is predominantly pulverized to small grain sizes and flushed. Many large, young avalanches exist on CRB glaciers. Evidence from colorimetry indicates that many medial moraines actually are landslides that have been sheared and swept downglacier, thus mimicking the form of other types of medial moraines formed where tributaries coalesce and flow down valley. Landcover classification of ASTER imagery, qualitative observations from air photos, and semiquantitative field-based estimations of rock color types indicate that on Allen Glacier, and other CRB glaciers, landslides are the sources of most medial moraines. On Allen and Root Glacier, for example, we see very few boulders with obvious signs of basal abrasion, whereas nearly all boulders exhibit signs of irregular fracture, for example in landslides. Such landslides have large effects on the thermal and mass balance of CRB glaciers, sometimes opposing or in other cases accentuating the effects of global/regional climate change. Considering the link between landslides and seismicity, and that Magnitude 8-9 earthquakes may occur nearby only about once a century, which is also the characteristic response time of large glaciers to climate shifts, seismicity must be considered along with climate change induced glacier responses in the CRB. Ultimately, climate has the final word, and already this is evident in the glacier record. Glacial flour is probably almost entirely from bed erosion. We will present estimates of the contributions of landslides and subglacially pulverized glacial rock flour to the overall rock mass budget of Allen Glacier. Each of the components of the rock mass budget differs in its probable distribution on the surface and within a typical glacier. We will present some preliminary empirical determinations of the influence of various thicknesses of supraglacial rock debris on the local mass balance of Allen Glacier; the net zero influence is exhibited for debris thicknesses on the order of 1 cm of fine debris or ~50% coverage by cobbles or boulders.

  14. Fluorine, fluorite, and fluorspar in central Colorado

    USGS Publications Warehouse

    Wallace, Alan R.

    2010-01-01

    Fluorine (F) is a widespread element that was deposited in a variety of rocks, minerals, and geologic environments in central Colorado. It occurs as a trace element, as a major component of the mineral fluorite (CaFs), and as a major economic source of fluorine in fluorspar deposits, which are massive concentrations of fluorite. This study has compiled available geochemical analyses of rocks, both unmineralized and mineralized, to determine the distribution of fluorine in specific age-lithologic categories, ranging from 1.8-giga-annum (Ga) metamorphic rocks to modern soils, throughout central Colorado. It also draws upon field studies of fluorine-rich mineral deposits, including fluorspar deposits, to decipher the nearly two-billion-year-long geologic history of fluorine in the study area, with implications for mineral-resource evaluations and exploration. The resulting compilation provides an important inventory of the naturally occurring levels and sources of fluorine that ultimately weather, erode, and become part of surface waters that are used for domestic water supplies in densely populated areas along the Colorado Front Range. Most commonly, fluorine is a trace element in virtually all rocks in the region. In the 3,798 unmineralized rocks that were analyzed for fluorine in the study area, the average fluorine content was 1,550 parts per million (ppm). The median was 640 ppm, nearly identical to the average crustal abundance of 650 ppm, and some high-fluorine rocks in the Pikes Peak area skewed the average to a value much greater than the median. Most unmineralized age-lithologic rock suites, including Proterozoic metamorphic rocks, 1.7- and 1.4-Ga granitic batholiths, Cambrian igneous rocks, Phanerozoic sedimentary rocks, and Laramide and Tertiary igneous rocks, had median fluorine values of 400 to 740 ppm fluorine. In all suites, however, a small number of analyzed samples contained more than 1 percent (10,000 ppm) fluorine. The 1.1-Ga plutonic rocks related to the Pikes Peak batholith had a mean fluorine content of 1,700 ppm, and primary magmatic fluorite and fluorite-bearing pegmatites are common throughout that igneous mass. Fluorine was deposited in many types of economic mineral deposits in central Colorado, and it currently is a significant trace element in some thermal springs. In the fluorspar deposits, fluorine contents were as high as 37 percent. Some fluorine-rich porphyry systems, such as Jamestown, had fluorine values that ranged from 200 ppm to nearly 37 percent fluorine, and veins in other deposits contained hydrothermal fluorite, although it was not ubiquitous. For the 495 samples from non-fluorspar mining districts (and excluding Jamestown), however, the median fluorine content was 990 ppm. This is above the crustal average but still relatively modest compared to the fluorspar deposits, and it indicates that the majority of the mineralizing systems in central Colorado did not deposit large amounts of fluorine. Nevertheless, the fluorine- and fluorite-rich mineral deposits could be used as guides for the evaluation and discovery of related but concealed porphyry and epithermal base- and precious-metal deposits. The Cenozoic geologic history of central Colorado included multiple periods during which fluorine-bearing rocks and mineral deposits were exposed, weathered, and eroded. This protracted history has released fluorine into soils and regoliths, and modern rainfall and snowmelt interact with these substrates to add fluorine to the hydrosphere. This study did not evaluate the fluorine contents of water or make any predictions about what areas might be major sources for dissolved fluorine. However, the abundant data that are available on fluorine in surface water and ground water can be coupled with the results of this study to provide additional insight into natural sources of fluorine in domestic drinking water.

  15. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA

    USGS Publications Warehouse

    Lillis, Paul G.; Selby, David

    2013-01-01

    Rhenium-osmium (Re-Os) geochronometry is applied to crude oils derived from the Permian Phosphoria Formation of the Bighorn Basin in Wyoming and Montana to determine whether the radiogenic age reflects the timing of petroleum generation, timing of migration, age of the source rock, or the timing of thermochemical sulfate reduction (TSR). The oils selected for this study are interpreted to be derived from the Meade Peak Phosphatic Shale and Retort Phosphatic Shale Members of the Phosphoria Formation based on oil-oil and oil-source rock correlations utilizing bulk properties, elemental composition, δ13C and δ34S values, and biomarker distributions. The δ34S values of the oils range from -6.2‰ to +5.7‰, with oils heavier than -2‰ interpreted to be indicative of TSR. The Re and Os isotope data of the Phosphoria oils plot in two general trends: (1) the main trend (n = 15 oils) yielding a Triassic age (239 ± 43 Ma) with an initial 187Os/188Os value of 0.85 ± 0.42 and a mean square weighted deviation (MSWD) of 1596, and (2) the Torchlight trend (n = 4 oils) yielding a Miocene age (9.24 ± 0.39 Ma) with an initial 187Os/188Os value of 1.88 ± 0.01 and a MSWD of 0.05. The scatter (high MSWD) in the main-trend regression is due, in part, to TSR in reservoirs along the eastern margin of the basin. Excluding oils that have experienced TSR, the regression is significantly improved, yielding an age of 211 ± 21 Ma with a MSWD of 148. This revised age is consistent with some studies that have proposed Late Triassic as the beginning of Phosphoria oil generation and migration, and does not seem to reflect the source rock age (Permian) or the timing of re-migration (Late Cretaceous to Eocene) associated with the Laramide orogeny. The low precision of the revised regression (±21 Ma) is not unexpected for this oil family given the long duration of generation from a large geographic area of mature Phosphoria source rock, and the possible range in the initial 187Os/188Os values of the Meade Peak and Retort source units. Effects of re-migration may have contributed to the scatter, but thermal cracking and biodegradation likely have had minimal or no effect on the main-trend regression. The four Phosphoria-sourced oils from Torchlight and Lamb fields yield a precise Miocene age Re-Os isochron that may reflect the end of TSR in the reservoir due to cooling below a threshold temperature in the last 10 m.y. from uplift and erosion of overlying rocks. The mechanism for the formation of a Re-Os isotopic relationship in a family of crude oils may involve multiple steps in the petroleum generation process. Bitumen generation from the source rock kerogen may provide a reset of the isotopic chronometer, and incremental expulsion of oil over the duration of the oil window may provide some of the variation seen in 187Re/188Os values from an oil family.

  16. Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations

    PubMed Central

    2018-01-01

    The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution. PMID:29614776

  17. Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations.

    PubMed

    Wetzel, Maria; Kempka, Thomas; Kühn, Michael

    2018-04-01

    The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.

  18. Water quality issues associated with agricultural drainage in semiarid regions

    NASA Astrophysics Data System (ADS)

    Sylvester, Marc A.

    High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.

  19. Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu area, southwestern China

    NASA Astrophysics Data System (ADS)

    Xu, Chunxia; Yin, Runsheng; Peng, Jiantang; Hurley, James P.; Lepak, Ryan F.; Gao, Jianfeng; Feng, Xinbin; Hu, Ruizhong; Bi, Xianwu

    2018-03-01

    The Lanuoma and Cuona sediment-hosted Pb-Zn deposits hosted by Upper Triassic limestone and sandstone, respectively, are located in the Changdu area, SW China. Mercury concentrations and Hg isotopic compositions from sulfide minerals and potential source rocks (e.g., the host sedimentary rocks and the metamorphic basement) were investigated to constrain metal sources and mineralization processes. In both deposits, sulfide minerals have higher mercury (Hg) concentrations (0.35 to 1185 ppm) than the metamorphic basement rocks (0.05 to 0.15 ppm) and sedimentary rocks (0.02 to 0.08 ppm). Large variations of mass-dependent fractionation (3.3‰ in δ202Hg) and mass-independent fractionation (0.3‰ in Δ199Hg) of Hg isotopes were observed. Sulfide minerals have Hg isotope signatures that are similar to the hydrothermal altered rocks around the deposit, and similar to the metamorphic basement, but different from barren sedimentary rocks. The variation of Δ199Hg suggests that Hg in sulfides was mainly derived from the underlying metamorphic basement. Mercury isotopes could be a geochemical tracer in understanding metal sources in hydrothermal ore deposits.

  20. An Image-based Micro-continuum Pore-scale Model for Gas Transport in Organic-rich Shale

    NASA Astrophysics Data System (ADS)

    Guo, B.; Tchelepi, H.

    2017-12-01

    Gas production from unconventional source rocks, such as ultra-tight shales, has increased significantly over the past decade. However, due to the extremely small pores ( 1-100 nm) and the strong material heterogeneity, gas flow in shale is still not well understood and poses challenges for predictive field-scale simulations. In recent years, digital rock analysis has been applied to understand shale gas transport at the pore-scale. An issue with rock images (e.g. FIB-SEM, nano-/micro-CT images) is the so-called "cutoff length", i.e., pores and heterogeneities below the resolution cannot be resolved, which leads to two length scales (resolved features and unresolved sub-resolution features) that are challenging for flow simulations. Here we develop a micro-continuum model, modified from the classic Darcy-Brinkman-Stokes framework, that can naturally couple the resolved pores and the unresolved nano-porous regions. In the resolved pores, gas flow is modeled with Stokes equation. In the unresolved regions where the pore sizes are below the image resolution, we develop an apparent permeability model considering non-Darcy flow at the nanoscale including slip flow, Knudsen diffusion, adsorption/desorption, surface diffusion, and real gas effect. The end result is a micro-continuum pore-scale model that can simulate gas transport in 3D reconstructed shale images. The model has been implemented in the open-source simulation platform OpenFOAM. In this paper, we present case studies to demonstrate the applicability of the model, where we use 3D segmented FIB-SEM and nano-CT shale images that include four material constituents: organic matter, clay, granular mineral, and pore. In addition to the pore structure and the distribution of the material constituents, we populate the model with experimental measurements (e.g. size distribution of the sub-resolution pores from nitrogen adsorption) and parameters from the literature and identify the relative importance of different physics on gas production. Overall, the micro-continuum model provides a novel tool for digital rock analysis of organic-rich shale.

  1. Geologic map of the Caetano caldera, Lander and Eureka counties, Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.; John, David A.

    2011-01-01

    The Eocene (34 Ma) Caetano caldera in north-central Nevada offers an exceptional opportunity to study the physical and petrogenetic evolution of a large (20 km by 10–18 km pre-extensional dimensions) silicic magma chamber, from precursor magmatism to caldera collapse and intrusion of resurgent plutons. Caldera-related rocks shown on this map include two units of crystal-rich intracaldera tuff totaling over 4 km thickness, caldera collapse breccias, tuff dikes that fed the eruption, hydrothermally altered post-eruption rocks, and two generations of resurgent granitic intrusions (John et al., 2008). The map also depicts middle Miocene (about 16–12 Ma) normal faults and synextensional basins that accommodated >100 percent extension and tilted the caldera into a series of ~40° east-dipping blocks, producing exceptional 3-D exposures of the caldera interior (Colgan et al., 2008). This 1:75,000-scale map is a compilation of published maps and extensive new mapping by the authors (fig. 1), and supersedes a preliminary 1:100,000-scale map published by Colgan et al. (2008) and John et al. (2008). New mapping focused on the margins of the Caetano caldera, the distribution and lithology of rocks within the caldera, and on the Miocene normal faults and sedimentary basins that record Neogene extensional faulting. The definition of geologic units and their distribution within the caldera is based entirely on new mapping, except in the northern Toiyabe Range, where mapping by Gilluly and Gates (1965) was modified with new field observations. The distribution of pre-Cenozoic rocks outside the caldera was largely compiled from existing sources with minor modifications, with the exception of the northeastern caldera margin (west of the Cortez Hills Mine), which was remapped in the course of this work and published as a stand-alone 1:6000-scale map (Moore and Henry, 2010).

  2. Overview and Preliminary Results from the PoroTomo project at Brady Hot Springs, Nevada: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology

    NASA Astrophysics Data System (ADS)

    Cardiff, M. A.; Feigl, K. L.; Zeng, X.; Lord, N. E.; Lancelle, C.; Parker, L.; Reinisch, E. C.; Lim, D.; Ali, S. T.; Fratta, D.; Thurber, C. H.; Wang, H. F.; Robertson, M.; Lopeman, J.; Kreemer, C.; Morency, C.; Davatzes, N. C.; Team, P.; Coleman, T.; Miller, D. E.

    2016-12-01

    In the geothermal field at Brady Hot Springs, Nevada, highly permeable conduits along faults appear to channel fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells. Subsidence occurs over an elliptical area that is 4 km by 1.5 km. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in units with depth less than 600 m. (S. Tabrez Ali et al., Geothermics, 2016). Characterizing such structures in terms of their rock mechanical properties is essential to successful operations of Enhanced Geothermal Systems (EGS). The goal of the PoroTomo project is to assess an integrated technology for characterizing and monitoring changes in the rock mechanical properties of an EGS reservoir in three dimensions with a spatial resolution better than 50 meters. The targeted rock mechanical properties include: saturation, porosity, Young's modulus, Poisson's ratio, and density, all of which are "critically important" characteristics of a viable EGS reservoir. In March 2016, we deployed the integrated technology in a 1500-by-500-by-400-meter volume at Brady. The 15-day deployment included 4 distinct time intervals with intentional manipulations of the pumping rates in injection and production wells. The data set includes: active seismic sources, fiber-optic cables for Distributed Acoustic Sensing (DAS) and Distributed Temperature Sensing (DTS) arranged vertically in a borehole to 400 m depth and horizontally in a trench 8700 m in length and 0.5 m in depth; 244 seismometers on the surface, 3 pressure sensors in observation wells, continuous geodetic measurements at 3 GPS stations, and 7 InSAR acquisitions. To account for the mechanical behavior of both the rock and the fluids, we are developing numerical models for the 3-D distribution of the material properties. The PoroTomo project is funded by a grant from the U.S. Department of Energy.

  3. Helicopter magnetic and electromagnetic surveys at Mounts Adams, Baker and Rainier, Washington: implications for debris flow hazards and volcano hydrology

    USGS Publications Warehouse

    Finn, Carol A.; Deszcz-Pan, Maria

    2011-01-01

    High‐resolution helicopter magnetic and electromagnetic (HEM) data flown over the rugged, ice‐covered Mt. Adams, Mt. Baker and Mt. Rainier volcanoes (Washington), reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water‐saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Alteration at Mount Baker is restricted to thinner (<300 m) zones beneath Sherman Crater and the Dorr Fumarole Fields. The EM data identified water‐saturated rocks from the surface to the detection limit (100–200 m) in discreet zones at Mt. Rainier and Mt Adams and over the entire summit region at Mt. Baker. The best estimates for ice thickness are obtained over relatively low resistivity (<800 ohm‐m) ground for the main ice cap on Mt. Adams and over most of the summit of Mt. Baker. The modeled distribution of alteration, pore fluids and partial ice volumes on the volcanoes helps identify likely sources for future alteration‐related debris flows, including the Sunset Amphitheater region at Mt. Rainier, steep cliffs at the western edge of the central altered zone at Mount Adams and eastern flanks of Mt. Baker.

  4. Assessment of Undiscovered Technically Recoverable Oil and Gas Resources of the Bakken Formation, Williston Basin, Montana and North Dakota, 2008

    USGS Publications Warehouse

    Pollastro, R.M.; Roberts, L.N.R.; Cook, T.A.; Lewan, M.D.

    2008-01-01

    The U.S. Geological Survey (USGS) has completed an assessment of the undiscovered oil and associated gas resources of the Upper Devonian to Lower Mississippian Bakken Formation in the U.S. portion of the Williston Basin of Montana and North Dakota and within the Williston Basin Province. The assessment is based on geologic elements of a total petroleum system (TPS), which include (1) source-rock distribution, thickness, organic richness, maturation, petroleum generation, and migration; (2) reservoir-rock type (conventional or continuous), distribution, and quality; and (3) character of traps and time of formation with respect to petroleum generation and migration. Framework studies in stratigraphy and structural geology and modeling of petroleum geochemistry, combined with historical exploration and production analyses, were used to estimate the undiscovered, technically recoverable oil resource of the Bakken Formation. Using this framework, the USGS defined a Bakken-Lodgepole TPS and seven assessment units (AU) within the system. For the Bakken Formation, the undiscovered oil and associated gas resources were quantitatively estimated for six of these AUs.

  5. Petroleum potential of the Reggane Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudjema, A.; Hamel, M.; Mohamedi, A.

    1990-05-01

    The intracratonic Reggane basin is located on the Saharan platform, southwest of Algeria. The basin covers an area of approximately 140,000 km{sup 2}, extending between the Eglab shield in the south and the Ougarta ranges in the north. Although exploration started in the early 1950s, only a few wells were drilled in this basin. Gas was discovered with a number of oil shows. The sedimentary fill, mainly Paleozoic shales and sandstones, has a thickness exceeding 5,000 m in the central part of the basin. The reservoirs are Cambrian-Ordovician, Siegenian, Emsian, Tournaisian, and Visean sandstones with prospective petrophysical characteristics. Silurian Uppermore » Devonian and, to a lesser extent Carboniferous shales are the main source rocks. An integrated study was done to assess the hydrocarbon potential of this basin. Tectonic evolution source rocks and reservoirs distribution maturation analyses followed by kinetic modeling, and hydrogeological conditions were studied. Results indicate that gas accumulations could be expected in the central and deeper part of the basin, and oil reservoirs could be discovered on the basin edge.« less

  6. Multiple component end-member mixing model of dilution: hydrochemical effects of construction water at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

    2008-12-01

    The standard dual-component and two-member linear mixing model is often used to quantify water mixing of different sources. However, it is no longer applicable whenever actual mixture concentrations are not exactly known because of dilution. For example, low-water-content (low-porosity) rock samples are leached for pore-water chemical compositions, which therefore are diluted in the leachates. A multicomponent, two-member mixing model of dilution has been developed to quantify mixing of water sources and multiple chemical components experiencing dilution in leaching. This extended mixing model was used to quantify fracture-matrix interaction in construction-water migration tests along the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain, Nevada, USA. The model effectively recovers the spatial distribution of water and chemical compositions released from the construction water, and provides invaluable data on the matrix fracture interaction. The methodology and formulations described here are applicable to many sorts of mixing-dilution problems, including dilution in petroleum reservoirs, hydrospheres, chemical constituents in rocks and minerals, monitoring of drilling fluids, and leaching, as well as to environmental science studies.

  7. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales

    USGS Publications Warehouse

    Kotarba, M.J.; Clayton, J.L.; Rice, D.D.; Wagner, M.

    2002-01-01

    We analyzed 40 coal samples and 45 carbonaceous shale samples of varying thermal maturity (vitrinite reflectance 0.59% to 4.28%) from the Upper Carboniferous coal-bearing strata of the Upper Silesian, Lower Silesian, and Lublin basins, Poland, to evaluate their potential for generation and expulsion of gaseous and liquid hydrocarbons. We evaluated source rock potential based on Rock-Eval pyrolysis yield, elemental composition (atomic H/C and O/C), and solvent extraction yields of bitumen. An attempt was made to relate maceral composition to these source rock parameters and to composition of the organic matter and likely biological precursors. A few carbonaceous shale samples contain sufficient generation potential (pyrolysis assay and elemental composition) to be considered potential source rocks, although the extractable hydrocarbon and bitumen yields are lower than those reported in previous studies for effective Type III source rocks. Most samples analysed contain insufficient capacity for generation of hydrocarbons to reach thresholds required for expulsion (primary migration) to occur. In view of these findings, it is improbable that any of the coals or carbonaceous shales at the sites sampled in our study would be capable of expelling commercial amounts of oil. Inasmuch as a few samples contained sufficient generation capacity to be considered potential source rocks, it is possible that some locations or stratigraphic zones within the coals and shales could have favourable potential, but could not be clearly delimited with the number of samples analysed in our study. Because of their high heteroatomic content and high amount of asphaltenes, the bitumens contained in the coals are less capable of generating hydrocarbons even under optimal thermal conditions than their counterpart bitumens in the shales which have a lower heteroatomic content. Published by Elsevier Science B.V.

  8. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan

    2017-04-01

    Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the influence of rock fragment cover on purple soil slope erosion process were carried on, under different conditions with two kind of rock fragment positions (resting on soil surface and embedded into top soil layer), varied rock fragment coverage (Rc, 0% 40%), two kind of soils with textural porosity or structural porosity, and three kind of rainfall intensities (I, 1 mm/min, 1.5 mm/min and 2 mm/min). Simulated rainfall experiments in situ plots in the field, combined with simulated rainfall experiments in soil pans indoor, were used. The main conclusions of this dissertation are as following: 1. The spatial distribution characteristics of rock fragments in purple soil slope and its effects on the soil physical properties were clarified basically. 2. The mechanism of influence of rock fragments within top soil layer on soil erosion processes was understood and a threshold of rock fragment content on the infiltration was figured out. 3. The relationships between surface rock fragment cover and hillslope soil erosion in purple soil under different conditions with varied rock fragment positions, soil structures and rainfall intensities were obtained and the soil and water conservation function of surface rock fragment cover on reducing soil loss was affirmed.

  9. Detrital zircon provenance of Mesoproterozoic to Cambrian arenites in the Western United States and Northwestern Mexico

    USGS Publications Warehouse

    Stewart, John H.; Gehrels, G.E.; Barth, A.P.; Link, P.K.; Christie-Blick, N.; Wrucke, C.T.

    2001-01-01

    U-Pb isotopic dating of detrital zircon from supracrustal Proterozoic and Cambrian arenites from the western United States and northern Mexico reveal three main age groups, 1.90 to 1.62 Ga, 1.45 to 1.40 Ga, and 1.2 to 1.0 Ga. Small amounts of zircons with ages of 3.1 to 2.5 Ga, 1.57 Ga, 1.32 Ga, 1.26 Ga, 0.7 Ga, and 0.5 Ga are also present. Detrital zircons ranging in age from 1.90 to 1.62 Ga and from 1.45 to 1.40 Ga are considered to have been derived from Proterozoic crystalline basement rocks of these known ages, and probably in part from reworked Proterozoic supracrustal sedimentary rocks, of the western United States. The 1.2 to 1.0 Ga detrital zircon ages from California, Arizona, and Sonora are characterized by distinct spikes (1.11 Ga, in particular) in the age-probability plots. These spikes are interpreted to indicate the influx of zircon from major silicic volcanic fields. Igneous rocks such as the Pikes Peak Granite (1.093 Ga) of Colorado, and the Aibo Granite (1.110 Ga) of Sonora, Mexico, may represent the deeply eroded roots of such volcanic fields. Samples from farther north along the Cordilleran margin that contain abundant 1.2-1.0 Ga detrital zircons do not show spikes in the age distribution, but rather ages spread out across the entire 1.2-1.0 Ga range. These age spectra resemble those for detrital zircons from the Grenville province, which is considered their source. Less common detrital zircons had a variety of sources. Zircons ranging in age from 3.36 to 2.31 Ga were apparently derived from inland parts of the North American continent from Wyoming to Canada. Zircons of about 1.577 Ga are highly unusual and may have had an exotic source; they may have come from Australia and been deposited in North America when Australia and North America were juxtaposed as part of the hypothetical Rodinian supercontinent. Detrital zircon of ??1.320 Ga apparently had the same source as that for tuff (1.320 Ga) in the Pioneer Shale of the Apache Group in Arizona. Detrital zircons of about 1.26 Ga in the Apache Group and Troy Quartzite appear to be related to local, approximately coeval volcanic fields. Zircons of about 0.7 Ga may have had a source in igneous rocks related to rifting of the Proterozoic supercontinent of Rodinia, and 0.5 Ga zircons a source in relatively small areas of granitic rocks of this known, or inferred, age in Oklahoma, Texas, New Mexico, and Colorado.

  10. A quantitative analysis of rock cliff erosion environments

    NASA Astrophysics Data System (ADS)

    Lim, M.; Rosser, N.; Petley, D. N.; Norman, E. C.; Barlow, J.

    2009-12-01

    The spatial patterns and temporal sequencing of failures from coastal rock cliffs are complex and typically generate weak correlations with environmental variables such as tidal inundation, wave energy, wind and rain. Consequently, understanding of rock cliff behaviour, its response to predicted changes in environmental forcing and, more specifically, the interaction between marine and climatic factors in influencing failure processes has remained limited. This work presents the results from the first attempt to characterise and quantify the conditions on coastal cliffs that lead to accelerated rates of material detachment. The rate of change in an 80 m high section of coastal rock cliffs has been surveyed annually with high-resolution terrestrial laser scanning (TLS). The rockfall data have been analysed according to a simplified source geology that exhibit distinct magnitude-frequency distributions relating to the dominance of particular failure types. An integrated network of sensors and instrumentation designed to reflect the lithological control on failure has been installed to examine both the distinction between prevailing conditions and those affecting the local cliff environment and the physical response of different rock types to micro-climatic processes. The monitoring system records near-surface rock strain, temperature, moisture and micro-seismic displacement in addition to air temperature, humidity, radiation, precipitation, water-level and three-dimensional wind characteristics. A characteristic environmental signal, unique to the cliff face material, has been identified that differs substantially from that experienced by the surrounding area; suggesting that established methods of meteorological and tidal data collection are insufficient and inappropriate to represent erosive processes. The interaction between thermo- and hydro-dynamics of the cliff environment and the physical response of the rock highlights the composite environmental effects acting on the rock mass and provides a new interpretation on the dominant controls on the behaviour of coastal rock cliffs that challenges the almost universal application of undercutting and cantilever collapse as the primary driver of rock cliff erosion.

  11. Preliminary lithogeochemical map showing near-surface rock types in the Chesapeake Bay watershed, Virginia and Maryland

    USGS Publications Warehouse

    Peper, John D.; McCartan, Lucy; Horton, J. Wright; Reddy, James E.

    2001-01-01

    This preliminary experimental lithogeochemical map shows the distribution of rock types in the Virginia and Maryland parts of the Chesapeake Bay watershed. The map was produced digitally by classifying geologic-map units according to composition, mineralogy, and texture; rather than by age and stratigraphic relationships as shown on traditional geologic maps. This map differs from most lithologic maps in that the lithogeochemical unit classification distinguishes those rock units having key water-reactive minerals that may induce acid neutralization, or reduction, of hosted water at the weathering interface. The validity of these rock units, however, is independent of water chemistry, because the rock units are derived from geologic maps and rock descriptions. Areas of high soil carbon content, and sulfide metal deposits are also shown. Water-reactive minerals and their weathering reactions yield five lithogeochemical unit classes: 1) carbonate rock and calcareous rocks and sediments, the most acid-neutralizing; 2)carbonaceous-sulfidic rocks and sediments, oxygen-depleting and reducing; 3) quartzofeldspathic rocks and siliciclastic sediments, relatively weakly reactive with water; 4) mafic silicate rocks/sediments, oxygen consuming and high solute-load delivering; and, 5) the rarer calcareous-sulfidic (carbonaceous) rocks, neutralizing and reducing. Earlier studies in some parts of the map area have related solute loads in ground and stream waters to some aspects of bedrock lithology. More recent preliminary tests of relationships between four of the classes of mapped lithogeochemical units and ground water chemistry, in the Mid-Atlantic area using this map, have focused on and verified the nitrate-reducing and acid-neutralizing properties of some bedrock and unconsolidated aquifer rock types. Sulfide mineral deposits and their mine-tailings effects on waters are beginning to be studied by others. Additional testing of relationships among the lithogeochemical units and aspects of ground and surface water chemistry could help to refine the lithogeochemical classification, and this map. The testing could also improve the usefulness of the map for assessing aquifer reactivity and the transport properties of reactive contaminants such as acid rain, and nitrate from agricultural sources, in the Chesapeake Bay watershed.

  12. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    PubMed

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  13. Restoration of Circum-Arctic Upper Jurassic source rock paleolatitude based on crude oil geochemistry

    USGS Publications Warehouse

    Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.

    2008-01-01

    Tectonic geochemical paleolatitude (TGP) models were developed to predict the paleolatitude of petroleum source rock from the geochemical composition of crude oil. The results validate studies designed to reconstruct ancient source rock depositional environments using oil chemistry and tectonic reconstruction of paleogeography from coordinates of the present day collection site. TGP models can also be used to corroborate tectonic paleolatitude in cases where the predicted paleogeography conflicts with the depositional setting predicted by the oil chemistry, or to predict paleolatitude when the present day collection locality is far removed from the source rock, as might occur due to long distance subsurface migration or transport of tarballs by ocean currents. Biomarker and stable carbon isotope ratios were measured for 496 crude oil samples inferred to originate from Upper Jurassic source rock in West Siberia, the North Sea and offshore Labrador. First, a unique, multi-tiered chemometric (multivariate statistics) decision tree was used to classify these samples into seven oil families and infer the type of organic matter, lithology and depositional environment of each organofacies of source rock [Peters, K.E., Ramos, L.S., Zumberge, J.E., Valin, Z.C., Scotese, C.R., Gautier, D.L., 2007. Circum-Arctic petroleum systems identified using decision-tree chemometrics. American Association of Petroleum Geologists Bulletin 91, 877-913]. Second, present day geographic locations for each sample were used to restore the tectonic paleolatitude of the source rock during Late Jurassic time (???150 Ma). Third, partial least squares regression (PLSR) was used to construct linear TGP models that relate tectonic and geochemical paleolatitude, where the latter is based on 19 source-related biomarker and isotope ratios for each oil family. The TGP models were calibrated using 70% of the samples in each family and the remaining 30% of samples were used for model validation. Positive relationships exist between tectonic and geochemical paleolatitude for each family. Standard error of prediction for geochemical paleolatitude ranges from 0.9?? to 2.6?? of tectonic paleolatitude, which translates to a relative standard error of prediction in the range 1.5-4.8%. The results suggest that the observed effect of source rock paleolatitude on crude oil composition is caused by (i) stable carbon isotope fractionation during photosynthetic fixation of carbon and (ii) species diversity at different latitudes during Late Jurassic time. ?? 2008 Elsevier Ltd. All rights reserved.

  14. Publications - GMC 209 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 209 Publication Details Title: Source rock potential and geochemical characterization of OCS Y Reference DGSI, Inc., 1993, Source rock potential and geochemical characterization of OCS Y-0943-1 (Aurora

  15. New activities at the U.S. Geological Survey

    USGS Publications Warehouse

    McKelvey, Vincent E.

    1974-01-01

    As the Nation's principal source of information about the configuration of the land surface, the composition and structure of the rocks at and beneath the surface, the distribution and character of its energy, mineral, and water resources, and the nature of natural geologic processes, the U. S. Geological Survey focuses its work on some of the Nation's most critical problems. As the Survey tackles new problems with new techniques, it is fully aware of the resource needs and environmental pressures of an expanding economy and growing population.

  16. Regional-scale controls on the spatial activity of rockfalls (Turtmann Valley, Swiss Alps) - A multivariate modeling approach

    NASA Astrophysics Data System (ADS)

    Messenzehl, Karoline; Meyer, Hanna; Otto, Jan-Christoph; Hoffmann, Thomas; Dikau, Richard

    2017-06-01

    In mountain geosystems, rockfalls are among the most effective sediment transfer processes, reflected in the regional-scale distribution of talus slopes. However, the understanding of the key controlling factors seems to decrease with increasing spatial scale, due to emergent and complex system behavior and not least to recent methodological shortcomings in rockfall modeling research. In this study, we aim (i) to develop a new approach to identify major regional-scale rockfall controls and (ii) to quantify the relative importance of these controls. Using a talus slope inventory in the Turtmann Valley (Swiss Alps), we applied for the first time the decision-tree based random forest algorithm (RF) in combination with a principal component logistic regression (PCLR) to evaluate the spatial distribution of rockfall activity. This study presents new insights into the discussion on whether periglacial rockfall events are controlled more by topo-climatic, cryospheric, paraglacial or/and rock mechanical properties. Both models explain the spatial rockfall pattern very well, given the high areas under the Receiver Operating Characteristic (ROC) curves of > 0.83. Highest accuracy was obtained by the RF, correctly predicting 88% of the rockfall source areas. The RF appears to have a great potential in geomorphic research involving multicollinear data. The regional permafrost distribution, coupled to the bedrock curvature and valley topography, was detected to be the primary rockfall control. Rockfall source areas cluster within a low-radiation elevation belt (2900-3300 m a.s.l,) consistent with a permafrost probability of > 90%. The second most important factor is the time since deglaciation, reflected by the high abundance of rockfalls along recently deglaciated (< 100 years), north-facing slopes. However, our findings also indicate a strong rock mechanical control on the paraglacial rockfall activity, declining either exponentially or linearly since deglaciation. The study demonstrates the benefit of combined statistical approaches for predicting rockfall activity in deglaciated, permafrost-affected mountain valleys and highlights the complex interplay between rock mechanical, paraglacial and topo-climatic controls at the regional scale.

  17. Metasomatized mantle as the source of Mid-Miocene-Quaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence

    NASA Astrophysics Data System (ADS)

    Lechmann, Anna; Burg, Jean-Pierre; Ulmer, Peter; Guillong, Marcel; Faridi, Mohammad

    2018-04-01

    Middle Miocene to Quaternary volcanic rocks cover large areas of the Azerbaijan Province in NW Iran. This study reports two separate age clusters out of 23 new LA-ICP-MS U-Pb zircon ages: (1) Middle Miocene (16.2-10.6 Ma) and (2) Latest Miocene-Late Pleistocene (5.5-0.4 Ma). Major and trace element bulk rock geochemistry and initial Sr, Nd, Pb radiogenic isotope data on the dated rocks provide new constraints on the Mid-Miocene to Quaternary volcanism in this region. The analyses are distributed over a large compositional range from low-K to high-K calc-alkaline andesites and dacites/rhyolites to more alkaline trachybasalts and dacites with shoshonitic affinities. Chondrite-normalized REE patterns are steep with significant enrichment in LREE and low abundances of HREE indicating a garnet control. Plots of primitive mantle-normalized trace elements show negative Ti and Nb-Ta anomalies indicative of an arc signature. The wide compositional range and the ubiquitous presence of an arc signature reveal that the source mantle is heterogeneous and metasomatically altered. Sr, Nd and Pb radiogenic isotope data further point towards an enriched mantle source and/or crustal contamination. Crustal contamination is best recognized by inherited zircon cores, which yield Late Neoproterozoic to Early Cambrian ages typical for the Iranian basement. The occurrence of adakite-like compositions with elevated magnesium numbers, Cr and Ni concentrations argue against a fractionation-driven process but point to a subcrustal origin. Overall, the analyzed lavas show no spatial and temporal relation to a potential subduction zone, confirming the dated volcanics to be post-collisional and not related to singular processes such as slab retreat or delamination of a continuous lower crustal sliver. We propose three hypotheses to explain the reported disparity in distribution, age and composition and favour small-scale sublithospheric convection or incorporation of crustal material into the metasomatized mantle. The discovery of the late Miocene time gap is in line with previously advocated exhumation pulses and coincides with a major tectonic reorganization in the Arabian-Eurasian realm at this time.

  18. Preliminary source rock evaluation and hydrocarbon generation potential of the early Cretaceous subsurface shales from Shabwah sub-basin in the Sabatayn Basin, Western Yemen

    NASA Astrophysics Data System (ADS)

    Al-Matary, Adel M.; Hakimi, Mohammed Hail; Al Sofi, Sadam; Al-Nehmi, Yousif A.; Al-haj, Mohammed Ail; Al-Hmdani, Yousif A.; Al-Sarhi, Ahmed A.

    2018-06-01

    A conventional organic geochemical study has been performed on the shale samples collected from the early Cretaceous Saar Formation from the Shabwah oilfields in the Sabatayn Basin, Western Yemen. The results of this study were used to preliminary evaluate the potential source-rock of the shales in the Saar Formation. Organic matter richness, type, and petroleum generation potential of the analysed shales were assessed. Total organic carbon content and Rock- Eval pyrolysis results indicate that the shale intervals within the early Cretaceous Saar Formation have a wide variation in source rock generative potential and quality. The analysed shale samples have TOC content in the range of 0.50 and 5.12 wt% and generally can be considered as fair to good source rocks. The geochemical results of this study also indicate that the analysed shales in the Saar Formation are both oil- and gas-prone source rocks, containing Type II kerogen and mixed Types II-III gradient to Type III kerogen. This is consistent with Hydrogen Index (HI) values between 66 and 552 mg HC/g TOC. The temperature-sensitive parameters such as vitrinite reflectance (%VRo), Rock-Eval pyrolysis Tmax and PI reveal that the analysed shale samples are generally immature to early-mature for oil-window. Therefore, the organic matter has not been altered by thermal maturity thus petroleum has not yet generated. Therefore, exploration strategies should focus on the known deeper location of the Saar Formation in the Shabwah-sub-basin for predicting the kitchen area.

  19. Automatic Rock Detection and Mapping from HiRISE Imagery

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Adams, Douglas S.; Cheng, Yang

    2008-01-01

    This system includes a C-code software program and a set of MATLAB software tools for statistical analysis and rock distribution mapping. The major functions include rock detection and rock detection validation. The rock detection code has been evolved into a production tool that can be used by engineers and geologists with minor training.

  20. Gravity-induced stresses in stratified rock masses

    USGS Publications Warehouse

    Amadei, B.; Swolfs, H.S.; Savage, W.Z.

    1988-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.

  1. A four-dimensional petroleum systems model for the San Joaquin Basin Province, California: Chapter 12 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Peters, Kenneth E.; Magoon, Leslie B.; Lampe, Carolyn; Scheirer, Allegra Hosford; Lillis, Paul G.; Gautier, Donald L.

    2008-01-01

    A calibrated numerical model depicts the geometry and three-dimensional (3-D) evolution of petroleum systems through time (4-D) in a 249 x 309 km (155 x 192 mi) area covering all of the San Joaquin Basin Province of California. Model input includes 3-D structural and stratigraphic data for key horizons and maps of unit thickness, lithology, paleobathymetry, heat flow, original total organic carbon, and original Rock-Eval pyrolysis hydrogen index for each source rock. The four principal petroleum source rocks in the basin are the Miocene Antelope shale of Graham and Williams (1985; hereafter referred to as Antelope shale), the Eocene Kreyenhagen Formation, the Eocene Tumey formation of Atwill (1935; hereafter referred to as Tumey formation), and the Cretaceous to Paleocene Moreno Formation. Due to limited Rock-Eval/total organic carbon data, the Tumey formation was modeled using constant values of original total organic carbon and original hydrogen index. Maps of original total organic carbon and original hydrogen index were created for the other three source rocks. The Antelope shale was modeled using Type IIS kerogen kinetics, whereas Type II kinetics were used for the other source rocks. Four-dimensional modeling and geologic field evidence indicate that maximum burial of the three principal Cenozoic source rocks occurred in latest Pliocene to Holocene time. For example, a 1-D extraction of burial history from the 4-D model in the Tejon depocenter shows that the bottom of the Antelope shale source rock began expulsion (10 percent transformation ratio) about 4.6 Ma and reached peak expulsion (50 percent transformation ratio) about 3.6 Ma. Except on the west flank of the basin, where steep dips in outcrop and seismic data indicate substantial uplift, little or no section has been eroded. Most petroleum migration occurred during late Cenozoic time in distinct stratigraphic intervals along east-west pathways from pods of active petroleum source rock in the Tejon and Buttonwillow depocenters to updip sandstone reservoirs. Satisfactory runs of the model required about 18 hours of computation time for each simulation using parallel processing on a Linux-based cluster.

  2. Publications - GMC 54 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 54 Publication Details Title: Source rock evaluation/TAI for ARCO Itkillik River Unit #1 information. Bibliographic Reference Texaco, Inc., [n.d.], Source rock evaluation/TAI for ARCO Itkillik River

  3. Publications - GMC 249 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 249 Publication Details Title: Source rock geochemical and visual kerogen data from cuttings Reference Unknown, 1995, Source rock geochemical and visual kerogen data from cuttings (2,520-8,837') of the

  4. Popping Rocks Revealed: Investigations from 14°N on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Wanless, V. D.; Jones, M.; Kurz, M. D.; Soule, S. A.; Fornari, D. J.; Bendana, S.; Mittelstaedt, E. L.

    2017-12-01

    The popping rock, recovered in dredge 2πD43 in 1985, is commonly considered to be one of the most representative samples of undegassed upper mantle, based on high volatile and noble gas abundances. While this basalt is used to reconstruct mantle volatile contents and CO2 fluxes from mid-ocean ridges (MOR), the origin of the popping rock has remained ambiguous due to a lack of geologic context. Here, we present results from the first combined geochemical, geophysical, and geologic investigation of popping rocks from 14N on the Mid-Atlantic Ridge. By combining lava compositions with high-resolution bathymetric maps, we show that the popping rocks are confined to a single geographic area, at the transition between magmatic and tectonic segments. Fifteen popping rocks were collected in situ using the Alvin submersible in 2016. X-ray microtomography indicates that these lavas have variable vesicle abundances; including the highest vesicularities (>19%) recorded for any MOR basalt. Dissolved CO2 contents (163-175 ppm) are similar to proximal non-popping rocks and are in equilibrium at their eruption depths (>3600 m); however, total CO2 contents (based on vesicularity, dissolved CO2, and vesicle gas contents) are higher than non-popping rocks, ranging from 2800-14150 ppm. The popping rocks have average 3He/4He ratios of 8.17 ± 0.1 Ra and 4He concentrations of 1.84e-5 to 7.67e-5 cc/g STP. Compared to non-popping lavas, the popping rocks have a narrow range of major and trace element concentrations, suggesting little to no crystallization occurred during ascent or eruption. REE patterns and trace element ratios are indistinguishable in the popping rocks (La/Sm = 2.89 ± 0.05), indicating similar mantle sources and extents of melting. Based on lava compositions and spatial distribution, we suggest that the popping rocks at 14N were produced under similar magmatic conditions and erupted over short timescales, perhaps during a series of closely timed eruptions.

  5. The origin of oil in the Cretaceous succession from the South Pars Oil Layer of the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Rahmani, Omeid; Aali, Jafar; Junin, Radzuan; Mohseni, Hassan; Padmanabhan, Eswaran; Azdarpour, Amin; Zarza, Sahar; Moayyed, Mohsen; Ghazanfari, Parviz

    2013-07-01

    The origin of the oil in Barremian-Hauterivian and Albian age source rock samples from two oil wells (SPO-2 and SPO-3) in the South Pars oil field has been investigated by analyzing the quantity of total organic carbon (TOC) and thermal maturity of organic matter (OM). The source rocks were found in the interval 1,000-1,044 m for the Kazhdumi Formation (Albian) and 1,157-1,230 m for the Gadvan Formation (Barremian-Hauterivian). Elemental analysis was carried out on 36 samples from the source rock candidates (Gadvan and Kazhdumi formations) of the Cretaceous succession of the South Pars Oil Layer (SPOL). This analysis indicated that the OM of the Barremian-Hauterivian and Albian samples in the SPOL was composed of kerogen Types II and II-III, respectively. The average TOC of analyzed samples is less than 1 wt%, suggesting that the Cretaceous source rocks are poor hydrocarbon (HC) producers. Thermal maturity and Ro values revealed that more than 90 % of oil samples are immature. The source of the analyzed samples taken from Gadvan and Kazhdumi formations most likely contained a content high in mixed plant and marine algal OM deposited under oxic to suboxic bottom water conditions. The Pristane/nC17 versus Phytane/nC18 diagram showed Type II-III kerogen of mixture environments for source rock samples from the SPOL. Burial history modeling indicates that at the end of the Cretaceous time, pre-Permian sediments remained immature in the Qatar Arch. Therefore, lateral migration of HC from the nearby Cretaceous source rock kitchens toward the north and south of the Qatar Arch is the most probable origin for the significant oils in the SPOL.

  6. Chemometric differentiation of crude oil families in the San Joaquin Basin, California

    USGS Publications Warehouse

    Peters, Kenneth E.; Coutrot, Delphine; Nouvelle, Xavier; Ramos, L. Scott; Rohrback, Brian G.; Magoon, Leslie B.; Zumberge, John E.

    2013-01-01

    Chemometric analyses of geochemical data for 165 crude oil samples from the San Joaquin Basin identify genetically distinct oil families and their inferred source rocks and provide insight into migration pathways, reservoir compartments, and filling histories. In the first part of the study, 17 source-related biomarker and stable carbon-isotope ratios were evaluated using a chemometric decision tree (CDT) to identify families. In the second part, ascendant hierarchical clustering was applied to terpane mass chromatograms for the samples to compare with the CDT results. The results from the two methods are remarkably similar despite differing data input and assumptions. Recognized source rocks for the oil families include the (1) Eocene Kreyenhagen Formation, (2) Eocene Tumey Formation, (3–4) upper and lower parts of the Miocene Monterey Formation (Buttonwillow depocenter), and (5–6) upper and lower parts of the Miocene Monterey Formation (Tejon depocenter). Ascendant hierarchical clustering identifies 22 oil families in the basin as corroborated by independent data, such as carbon-isotope ratios, sample location, reservoir unit, and thermal maturity maps from a three-dimensional basin and petroleum system model. Five families originated from the Eocene Kreyenhagen Formation source rock, and three families came from the overlying Eocene Tumey Formation. Fourteen families migrated from the upper and lower parts of the Miocene Monterey Formation source rocks within the Buttonwillow and Tejon depocenters north and south of the Bakersfield arch. The Eocene and Miocene families show little cross-stratigraphic migration because of seals within and between the source rocks. The data do not exclude the possibility that some families described as originating from the Monterey Formation actually came from source rock in the Temblor Formation.

  7. Recognition of the importance of geogenic sources in the content of metals in PM2.5 collected in the Mexico City Metropolitan Area.

    PubMed

    Morton-Bermea, Ofelia; Garza-Galindo, Rodrigo; Hernández-Álvarez, Elizabeth; Amador-Muñoz, Omar; Garcia-Arreola, Maria Elena; Ordoñez-Godínez, Sara L; Beramendi-Orosco, Laura; Santos-Medina, Graciela L; Miranda, Javier; Rosas-Pérez, Irma

    2018-01-17

    The study of airborne metals in urban areas is relevant due to their toxic effects on human health and organisms. In this study, we analyzed metals including rare earth elements (REE) in particles smaller than 2.5 μm (PM 2.5 ), collected at five sites around the Mexico City Metropolitan Area (MCMA), during three periods in 2011: April (dry-warm season, DW), August (rainy season, R), and November (dry-cold season, DC). Principal component analysis allowed identifying factors related to geogenic sources and factors related to anthropogenic sources. The recognition of the high impact of geogenic sources in PM 2.5 is in agreement with the REE distribution patterns, which show similar behavior as those shown by igneous rocks, confirming the influence of the regional geogenic material. Metals associated to geogenic sources showed higher concentration (p < 0.05) at NE of the MCMA and a significant correlation with prevalent winds. Geogenic metals show similar seasonal distribution, with the highest concentration during DW (p < 0.05), suggesting a possible metal resuspension effect which affects more significantly at lower relative humidity (RH). The metals associated with anthropogenic sources are in agreement with the urban complexity of the area, showing homogenous distribution throughout MCMA (p > 0.05) and no similar seasonal pattern among them. These unexpected results exposed outstanding information regarding the identification of different geogenic sources as the main contributors of metals in the atmospheric environment in the MCMA and highlighted the importance of meteorology in the spatial and seasonal metal patterns.

  8. Representation of the crystalline rock matrix as a micro-Discrete Fracture Network: concepts and application

    NASA Astrophysics Data System (ADS)

    Trinchero, P.; Löfgren, M.; Bosbach, D.; Deissmann, G.; Ebrahimi, H.; Gylling, B.; Molinero, J.; Puigdomenech, I.; Selroos, J. O.; Sidborn, M.; Svensson, U.

    2017-12-01

    The matrix of crystalline rocks is typically constituted by mineral grains with characteristic sizes that vary from mm-scale (or less) up to cm-scale. These mineral grains are separated and intersected by micro-fractures, which build the so-called inter-granular space. Here, we present a generic model of the crystalline rock matrix, which is built upon a micro-Discrete Fracture Network (micro-DFN). To mimic the multiscale nature of grains and inter-granular space, different sets of micro-fractures are employed, each having a different length interval and intensity. The occurrence of these fracture sets is described by Poisson distributions, while the fracture aperture in these sets defines the porosity of the rock matrix. The proposed micro-DFN model is tested and calibrated against experimental observations from Forsmark (Sweden) and the resulting system is used to carry out numerical experiments aimed at assessing the redox buffering capacity of the heterogeneous crystalline rock matrix against the infiltration of glacial oxygenated melt-water. The chemically reactive mineral considered in this study is biotite, whose distribution is simulated with a single stochastic realization that honors the average abundance and grain size observed in mineralogical studies of Forsmark. The exposed surface area of biotite grains, which provide a source of ferrous ions that are in turn oxidized by the dissolved oxygen, is related to the underlying micro-DFN. The results of the mechanistic reactive transport simulations are compared to an existing analytical solution based on the assumption of homogeneity. This evaluation shows that the matrix indeed behaves as a composite system, with most of the oxygen being consumed in "highly reactive pathways" and a non negligible part of the oxygen diffuses deeper into the matrix. Sensitivity analyses to diffusivity show that this effect is more pronounced at high Damköhler numbers (diffusion limited regime) while at lower Damköhler numbers the solution approaches that predicted by the homogeneous model.

  9. 3-D time-domain induced polarization tomography: a new approach based on a source current density formulation

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Revil, A.

    2018-04-01

    Induced polarization (IP) of porous rocks can be associated with a secondary source current density, which is proportional to both the intrinsic chargeability and the primary (applied) current density. This gives the possibility of reformulating the time domain induced polarization (TDIP) problem as a time-dependent self-potential-type problem. This new approach implies a change of strategy regarding data acquisition and inversion, allowing major time savings for both. For inverting TDIP data, we first retrieve the electrical resistivity distribution. Then, we use this electrical resistivity distribution to reconstruct the primary current density during the injection/retrieval of the (primary) current between the current electrodes A and B. The time-lapse secondary source current density distribution is determined given the primary source current density and a distribution of chargeability (forward modelling step). The inverse problem is linear between the secondary voltages (measured at all the electrodes) and the computed secondary source current density. A kernel matrix relating the secondary observed voltages data to the source current density model is computed once (using the electrical conductivity distribution), and then used throughout the inversion process. This recovered source current density model is in turn used to estimate the time-dependent chargeability (normalized voltages) in each cell of the domain of interest. Assuming a Cole-Cole model for simplicity, we can reconstruct the 3-D distributions of the relaxation time τ and the Cole-Cole exponent c by fitting the intrinsic chargeability decay curve to a Cole-Cole relaxation model for each cell. Two simple cases are studied in details to explain this new approach. In the first case, we estimate the Cole-Cole parameters as well as the source current density field from a synthetic TDIP data set. Our approach is successfully able to reveal the presence of the anomaly and to invert its Cole-Cole parameters. In the second case, we perform a laboratory sandbox experiment in which we mix a volume of burning coal and sand. The algorithm is able to localize the burning coal both in terms of electrical conductivity and chargeability.

  10. Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.; Elliott, Peggy E.

    2002-01-01

    The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologically complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence hydraulic conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

  11. Impact of rock mass temperature on potential power and electricity generation in the ORC installation

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, Michał

    2017-11-01

    The basic source of information for determining the temperature distribution in the rock mass and thus the potential for thermal energy contained in geothermal water conversion to electricity, are: temperature measurements in stable geothermic conditions, temperature measurements in unstable conditions, measurements of maximum temperatures at the bottom of the well. Incorrect temperature estimation can lead to errors during thermodynamic parameters calculation and consequently economic viability of the project. The analysis was performed for the geothermal water temperature range of 86-100°C, for dry working fluid R245fa. As a result of the calculations, the data indicate an increase in geothermal power as the geothermal water temperature increases. At 86°C, the potential power is 817.48 kW, increases to 912.20 kW at 88°C and consequently to 1 493.34 kW at 100°C. These results are not surprising, but show a scale of error in assessing the potential that can result improper interpretation of the rock mass and geothermal waters temperature.

  12. Uzbek licensing round brings geology, potential into focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heafford, A.P.; Lichtman, G.S.

    1993-08-09

    Uzbekistan is a Central Asian Republic that declared independence from the former Soviet Union in 1991. Uzbekistan produces about 18 million bbl/year of oil and 40 bcf/year of gas. It is the third largest gas producer in the Commonwealth of Independent States and imports oil. The Uzbek government and oil and gas industry are offering exploration acreage for foreign participation via competitive bid. Acreage on offer includes fields for development and unproven-underexplored areas. Terms awaiting approval by the Cabinet of Ministers provide financial incentives for rapid development of existing reserves, creation of required infrastructure, and long term investment growth. Licensemore » areas concentrate on acreage where western equipment and technology can bring new reserves economically on line in the near future. National oil company Uzbekneftegaz was created in 1992 to oversee the extraction, transport, and refining of hydrocarbons in Uzbekistan. The paper describes some of the fields and infrastructure in place, the structural geology, stratigraphy, petroleum distribution, source rocks, reservoir rocks, cap rocks, traps, and hydrocarbon composition, which includes oil, gases, and gas condensates.« less

  13. Method and apparatus for determining two-phase flow in rock fracture

    DOEpatents

    Persoff, Peter; Pruess, Karsten; Myer, Larry

    1994-01-01

    An improved method and apparatus as disclosed for measuring the permeability of multiple phases through a rock fracture. The improvement in the method comprises delivering the respective phases through manifolds to uniformly deliver and collect the respective phases to and from opposite edges of the rock fracture in a distributed manner across the edge of the fracture. The improved apparatus comprises first and second manifolds comprising bores extending within porous blocks parallel to the rock fracture for distributing and collecting the wetting phase to and from surfaces of the porous blocks, which respectively face the opposite edges of the rock fracture. The improved apparatus further comprises other manifolds in the form of plenums located adjacent the respective porous blocks for uniform delivery of the non-wetting phase to parallel grooves disposed on the respective surfaces of the porous blocks facing the opposite edges of the rock fracture and generally perpendicular to the rock fracture.

  14. Maps showing abundance and distribution of mercury in rock samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.

    1985-01-01

    This map presents data on the abundance and distribution of mercury in 3,146 rock samples from the Medford quadrangle. Most of the rock samples were collected incidental to geologic, geochemical, and mineral resources studies in the period from 1974 to 1980, but about 6 percent date from earlier investigations (Wells, 1940; 1956; Wells and others 1949). 

  15. Rock Statistics at the Mars Pathfinder Landing Site, Roughness and Roving on Mars

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Bridges, N. T.; Anderson, R. C.; Golombek, M. P.

    1999-01-01

    Several rock counts have been carried out at the Mars Pathfinder landing site producing consistent statistics of rock coverage and size-frequency distributions. These rock statistics provide a primary element of "ground truth" for anchoring remote sensing information used to pick the Pathfinder, and future, landing sites. The observed rock population statistics should also be consistent with the emplacement and alteration processes postulated to govern the landing site landscape. The rock population databases can however be used in ways that go beyond the calculation of cumulative number and cumulative area distributions versus rock diameter and height. Since the spatial parameters measured to characterize each rock are determined with stereo image pairs, the rock database serves as a subset of the full landing site digital terrain model (DTM). Insofar as a rock count can be carried out in a speedier, albeit coarser, manner than the full DTM analysis, rock counting offers several operational and scientific products in the near term. Quantitative rock mapping adds further information to the geomorphic study of the landing site, and can also be used for rover traverse planning. Statistical analysis of the surface roughness using the rock count proxy DTM is sufficiently accurate when compared to the full DTM to compare with radar remote sensing roughness measures, and with rover traverse profiles.

  16. Mineralogy and source rock evaluation of the marine Oligo-Miocene sediments in some wells in the Nile Delta and North Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    El sheikh, Hassan; Faris, Mahmoud; Shaker, Fatma; Kumral, Mustafa

    2016-06-01

    This paper aims to study the mineralogical composition and determine the petroleum potential of source rocks of the Oligocene-Miocene sequence in the Nile Delta and North Sinai districts. The studied interval in the five wells can be divided into five rock units arranged from the top to base; Qawasim, Sidi Salem, Kareem, Rudeis, and Qantara formations. The bulk rock mineralogy of the samples was investigated using X-Ray Diffraction technique (XRD). The results showed that the sediments of the Nile Delta area are characterized by the abundance of quartz and kaolinite with subordinate amounts of feldspars, calcite, gypsum, dolomite, and muscovite. On the other hand, the data of the bulk rock analysis at the North Sinai wells showed that kaolinite, quartz, feldspar and calcite are the main constituents associated with minor amounts of dolomite, gypsum, mica, zeolite, and ankerite. Based on the organic geochemical investigations (TOC and Rock-Eval pyrolysis analyses), all studied formations in both areas are thermally immature but in the Nile delta area, Qawasim, Sidi Salem and Qantara formations (El-Temsah-2 Well) are organically-rich and have a good petroleum potential (kerogen Type II-oil-prone), while Rudeis Formation is a poor petroleum potential source rock (kerogen Type III-gas-prone). In the North Sinai area, Qantara Formation has a poor petroleum potential (kerogen Type III-gas-prone) and Sidi Salem Formation (Bardawil-1 Well) is a good petroleum potential source rock (kerogen Type II-oil-prone).

  17. Petroleum systems of the Southeast Tertiary basins and Marbella area, Southeast Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes, F.

    1996-08-01

    This study was done in an area where insufficient organic-rich rocks were available for a reliable oil-source rock correlation. However, oil-rock correlations, molecular characteristics of key horizons, paleofacies maps, maturation and potential migration pathways suggest the Tithonian as a major source rock. Moreover, there is good evidence of high quality source rocks in Oxfordian, Kimmeridgian, Middle-Upper Cretaceous and Paleogene (mainly in the Eocene). Plays were identified in Upper Jurassic oolitic sequences, Early-Middle Cretaceus carbonate platform rocks and breccias, Late Cretaceous basinal fracture carbonates, Paleogene carbonates and breccias, Early-Middle Miocene mounds and submarine fans and isolated carbonate platform sediments and Miocene-Recentmore » turbidites. Seal rocks are shaly carbonates and anhydrites from Tithonian, basinal carbonates and anhydrites from Middle-Upper Cretaceous, basinal carbonates and marls from Upper Cretaceous and Paleogene shales, and bathyal shales from Early Miocene-Recent. The first phase of oil migration from upper Jurassic-Early Cretaceous source rocks occurred in the Early-Middle Cretaceous. In the Upper Cretaceous the Chortis block collided with Chiapas, and as a result mild folding and some hydrocarbons were emplaced to the structural highs. The main phase of structuration and folding of the Sierra de Chiapas started in the Miocene, resulting in well-defined structural traps. Finally, in Plio-Pleistocene the Chortis block was separated, the major compressional period finished and the southern portion of Sierra de Chiapas was raised isostatically. As a result of major subsidence, salt withdrawal and increased burial depth, conditions were created for the generation of liquid hydrocarbons from the Paleogene shales.« less

  18. Terrestrial Fe-oxide Concretions and Mars Blueberries: Comparisons of Similar Advective and Diffusive Chemical Infiltration Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Chan, M. A.

    2006-12-01

    Abundant iron oxide concretions occurring in Navajo Sandstone of southern Utah and those discovered at Meridiani Planum, Mars share many common observable physical traits such as their spheriodal shapes, occurrence, and distribution patterns in sediments. Terrestrial concretions are products of interaction between oxygen-rich aquifer water and basin-derived reducing (iron-rich) water. Water-rock interaction simulations show that diffusion of oxygen and iron supplied by slow-moving water is a reasonable mechanism for producing observed concretion patterns. In short, southern Utah iron oxide concretions are results of Liesegang-type diffusive infiltration reactions in sediments. We propose that the formation of blueberry hematite concretions in Mars sediments followed a similar diagenetic mechanism where iron was derived from the alteration of volcanic substrate and oxygen was provided by the early Martian atmosphere. Although the terrestrial analog differs in the original host rock composition, both the terrestrial and Mars iron-oxide precipitation mechanisms utilize iron and oxygen interactions in sedimentary host rock with diffusive infiltration of solutes from two opposite sources. For the terrestrial model, slow advection of iron-rich water is an important factor that allowed pervasive and in places massive precipitation of iron-oxide concretions. In Mars, evaporative flux of water at the top of the sediment column may have produced a slow advective mass-transfer mechanism that provided a steady source and the right quantity of iron. The similarities of the terrestrial and Martian systems are demonstrated using a water-rock interaction simulator Sym.8, initially in one-dimensional systems. Boundary conditions such as oxygen content of water, partial pressure of oxygen, and supply rate of iron were varied. The results demonstrate the importance of slow advection of water and diffusive processes for producing diagenetic iron oxide concretions.

  19. Numerical simulation and analysis for low-frequency rock physics measurements

    NASA Astrophysics Data System (ADS)

    Dong, Chunhui; Tang, Genyang; Wang, Shangxu; He, Yanxiao

    2017-10-01

    In recent years, several experimental methods have been introduced to measure the elastic parameters of rocks in the relatively low-frequency range, such as differential acoustic resonance spectroscopy (DARS) and stress-strain measurement. It is necessary to verify the validity and feasibility of the applied measurement method and to quantify the sources and levels of measurement error. Relying solely on the laboratory measurements, however, we cannot evaluate the complete wavefield variation in the apparatus. Numerical simulations of elastic wave propagation, on the other hand, are used to model the wavefield distribution and physical processes in the measurement systems, and to verify the measurement theory and analyze the measurement results. In this paper we provide a numerical simulation method to investigate the acoustic waveform response of the DARS system and the quasi-static responses of the stress-strain system, both of which use axisymmetric apparatus. We applied this method to parameterize the properties of the rock samples, the sample locations and the sensor (hydrophone and strain gauges) locations and simulate the measurement results, i.e. resonance frequencies and axial and radial strains on the sample surface, from the modeled wavefield following the physical experiments. Rock physical parameters were estimated by inversion or direct processing of these data, and showed a perfect match with the true values, thus verifying the validity of the experimental measurements. Error analysis was also conducted for the DARS system with 18 numerical samples, and the sources and levels of error are discussed. In particular, we propose an inversion method for estimating both density and compressibility of these samples. The modeled results also showed fairly good agreement with the real experiment results, justifying the effectiveness and feasibility of our modeling method.

  20. 40 CFR 60.401 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock Plants § 60.401 Definitions. (a) Phosphate rock plant means any plant which produces or prepares phosphate rock product by any or..., calcining, and grinding. (b) Phosphate rock feed means all material entering the process unit, including...

  1. 40 CFR 60.401 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock Plants § 60.401 Definitions. (a) Phosphate rock plant means any plant which produces or prepares phosphate rock product by any or..., calcining, and grinding. (b) Phosphate rock feed means all material entering the process unit, including...

  2. 40 CFR 60.401 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock Plants § 60.401 Definitions. (a) Phosphate rock plant means any plant which produces or prepares phosphate rock product by any or..., calcining, and grinding. (b) Phosphate rock feed means all material entering the process unit, including...

  3. 40 CFR 60.401 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock Plants § 60.401 Definitions. (a) Phosphate rock plant means any plant which produces or prepares phosphate rock product by any or..., calcining, and grinding. (b) Phosphate rock feed means all material entering the process unit, including...

  4. Petrogenesis of early Jurassic basalts in southern Jiangxi Province, South China: Implications for the thermal state of the Mesozoic mantle beneath South China

    NASA Astrophysics Data System (ADS)

    Cen, Tao; Li, Wu-xian; Wang, Xuan-ce; Pang, Chong-jin; Li, Zheng-xiang; Xing, Guang-fu; Zhao, Xi-lin; Tao, Jihua

    2016-07-01

    Early Jurassic bimodal volcanic and intrusive rocks in southern South China show distinct associations and distribution patterns in comparison with those of the Middle Jurassic and Cretaceous rocks in the area. It is widely accepted that these rocks formed in an extensional setting, although the timing of the onset and the tectonic driver for extension are debated. Here, we present systematic LA-ICP-MS zircon U-Pb ages, whole-rock geochemistry and Sr-Nd isotope data for bimodal volcanic rocks from the Changpu Formation in the Changpu-Baimianshi and Dongkeng-Linjiang basins in southern Jiangxi Province, South China. Zircon U-Pb ages indicate that the bimodal volcanic rocks erupted at ca. 190 Ma, contemporaneous with the Fankeng basalts ( 183 Ma). A compilation of geochronological results demonstrates that basin-scale basaltic eruptions occurred during the Early Jurassic within a relatively short interval (< 5 Ma). These Early Jurassic basalts have tholeiitic compositions and OIB-like trace element distribution patterns. Geochemical analyses show that the basalts were derived from depleted asthenospheric mantle, dominated by a volatile-free peridotite source. The calculated primary melt compositions suggest that the basalts formed at 1.9-2.1 GPa, with melting temperatures of 1378 °C-1405 °C and a mantle potential temperature (TP) ranging from 1383 °C to 1407 °C. The temperature range is somewhat hotter than normal mid-ocean-basalt (MORB) mantle but similar to an intra-plate continental mantle setting, such as the Basin and Range Province in western North America. This study provides an important constraint on the Early Jurassic mantle thermal state beneath South China. Reference: Raczek, I., Stoll, B., Hofmann, A.W., Jochum, K.P. 2001. High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS. Geostandards Newsletter 25(1), 77-86.

  5. "Normal" to adakite-like arc magmatism associated with the El Abra porphyry copper deposit, Central Andes, Northern Chile

    NASA Astrophysics Data System (ADS)

    Rabbia, Osvaldo M.; Correa, Karen J.; Hernández, Laura B.; Ulrich, Thomas

    2017-03-01

    The El Abra porphyry copper deposit belongs to the Late Eocene—Early Oligocene metallogenic belt of northern Chile, which host several world-class porphyry copper deposits. Our previous geochronological work done on this deposit provides the temporal framework for petrological data interpretation. The magmatic history of the El Abra deposit lasts for 8.6 Ma and can be divided into two stages. An early period, from about 45 to 38.7 Ma, dominated by diorites and quartz monzodiorites with "normal" (non-adakite) arc geochemistry and a late period, with rocks younger than 38.7 Ma that developed adakite-like geochemistry, where equigranular granodiorites are the volumetrically dominant rock type (e.g., Clara granodiorite 38 Ma). These granodiorites are then intruded by leucocratic porphyry dikes and aplites. Most copper mineralization is associated with multiple intrusions of these younger porphyritic rocks, described as the El Abra porphyry unit, and emplaced over a 1.4 Ma period, from 37.5 to 36.1 Ma. The adakite-like geochemistry of the younger rock units (<38.7 Ma) is attested by a significant depletion in REE contents, particularly MREE and HREE (concave MREE distribution patterns), high La/Yb and Sr/Y ratios, and Na2O and Al2O3 contents, along with the absence of the Eu anomaly in normalized REE distribution patterns. The evolution of this large, long-lived magmatic system from "normal" to adakite-like arc magmatism is discussed in a tectonic context of crust overthickening due to a major orogenic episode (Incaic compressive phase). This tectonic setting may have promoted higher pressure conditions at the lower crust "hot zone" and increased the crustal residence time of derivative melts favoring extensive differentiation leading to water-rich (and oxidized?) felsic melts, where amphibole fractionation played an important role. Strontium, Nd, and Pb isotope data suggest a common mantle source for both the non-adakite and adakite-like rocks. This implies that these two groups of rocks from the El Abra porphyry copper deposit may have largely resulted from the different crustal conditions under which they have evolved.

  6. 30 CFR 75.403 - Maintenance of incombustible content of rock dust.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maintenance of incombustible content of rock... Materials and Rock Dusting § 75.403 Maintenance of incombustible content of rock dust. [Statutory Provision] Where rock dust is required to be applied, it shall be distributed upon the top, floor, and sides of all...

  7. Simulation of Mechanical Processes in Gas Storage Caverns for Short-Term Energy Storage

    NASA Astrophysics Data System (ADS)

    Böttcher, Norbert; Nagel, Thomas; Kolditz, Olaf

    2015-04-01

    In recent years, Germany's energy management has started to be transferred from fossil fuels to renewable and sustainable energy carriers. Renewable energy sources such as solar and wind power are subjected by fluctuations, thus the development and extension of energy storage capacities is a priority in German R&D programs. This work is a part of the ANGUS+ Project, funded by the federal ministry of education and research, which investigates the influence of subsurface energy storage on the underground. The utilization of subsurface salt caverns as a long-term storage reservoir for fossil fuels is a common method, since the construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to solution mining. Another advantage of evaporate as host material is the self-healing behaviour of salt rock, thus the cavity can be assumed to be impermeable. In the framework of short-term energy storage (hours to days), caverns can be used as gas storage reservoirs for natural or artificial fuel gases, such as hydrogen, methane, or compressed air, where the operation pressures inside the caverns will fluctuate more frequently. This work investigates the influence of changing operation pressures at high frequencies on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. The salt behaviour is described by well-known constitutive material models which are capable of predicting creep, self-healing, and dilatancy processes. Our simulations include the thermodynamic behaviour of gas storage process, temperature development and distribution on the cavern boundary, the deformation of the cavern geometry, and the prediction of the dilatancy zone. Based on the numerical results, optimal operation modes can be found for individual caverns, so the risk of host rock damage can be minimized. Furthermore, the model can be used to design efficient monitoring programs to detect possible variations of the host rock due construction and operation of the storage facility. The developed model will be used by public authorities for land use planning issues.

  8. Tectonics of Chukchi Sea Shelf sedimentary basins and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Agasheva, Mariia; Antonina, Stoupakova; Anna, Suslova; Yury, Karpov

    2016-04-01

    The Chukchi Sea Shelf placed in the East Arctic offshore of Russia between East Siberian Sea Shelf and North Slope Alaska. The Chukchi margin is considered as high petroleum potential play. The major problem is absence of core material from drilling wells in Russian part of Chukchi Shelf, hence strong complex geological and geophysical analyses such as seismic stratigraphy interpretation should be provided. In addition, similarity to North Slope and Beaufort Basins (North Chukchi) and Hope Basin (South Chukchi) allow to infer the resembling sedimentary succession and petroleum systems. The Chukchi Sea Shelf include North and South Chukchi Basins, which are separated by Wrangel-Herald Arch and characterized by different opening time. The North Chukchi basin is formed as a general part of Canada Basin opened in Early Cretaceous. The South Chukchi Basin is characterized by a transtensional origin of the basin, this deformation related to motion on the Kobuk Fault [1]. Because seismic reflections follow chronostratigraphic correlations, it is possible to achieve stratigraphic interpretation. The main seismic horizons were indicated as: PU, JU, LCU, BU, mBU marking each regional unconformities. Reconstruction of main tectonic events of basin is important for building correct geological model. Since there are no drilling wells in the North and South Chukchi basins, source rocks could not be proven. Referring to the North Chukchi basin, source rocks equivalents of Lower Cretaceous Pebble Shale Formation, Lower Jurassic Kingdak shales and Upper Triassic Shublik Formation (North Slope) is possible exhibited [2]. In the South Chukchi, it is possible that Cretaceous source rocks could be mature for hydrocarbon generation. Erosions and uplifts that could effect on hydrocarbon preservation was substantially in Lower Jurassic and Early Cretaceous periods. Most of the structures may be connected with fault and stratigraphy traps. The structure formed at Wrangel-Herald Arch to North-Chukchi through similar to well-known structure in Norwegian part of Barents Sea - Loppa High. In South Chukchi basin, the seismic wave shows interesting structures akin to diaper fold. Inversion-related anticlines and stratigraphic pinch-outs traps could presence in Cretaceous-Cenozoic cross section. As a result, we gathered and analyzed source rocks and reservoir analogs and gained improved sedimentary models in Eastern Russian Shelfs (Laptev, East Siberian and Chukchi Seas). Appropriate tectonic conditions, proven by well testing source rocks in North Slope and high thickness of basins suggest a success of hydrocarbon exploration in Russian part of Chukchi Sea Shelf. [1] Verzhbitsky V. E., S. D. Sokolov, E. M. Frantzen, A. Little, M. I. Tuchkova, and L.I. Lobkovsky, 2012, The South Chukchi Sedimentary Basin (Chukchi Sea, Russian Arctic): Age, structural pattern,and hydrocarbon potential, in D. Gao, ed., Tectonics and sedimentation: Implications for petroleum systems: AAPG Memoir 100, p.267-290. [2] Peters K. E., Magoon L. B., Bird K. J., Valin Z. C., Keller M. A. North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge AAPG Bulletin, V. 90, No. 2 (February 2006), 2006, P. 261-292.

  9. Polygenetic Aspect of Unit Theory Oil Generation

    NASA Astrophysics Data System (ADS)

    Galant, Yuri

    2015-04-01

    In the framework of a unified theory Oil Generation one of important moments is the consideration of the distribution of oil in the Earth's Crust. Analysis of the distribution of oil deposits in the Earth's Crust showed that oil distributed throughout the stratigraphic section from ancient to modern sediments and from a depth of 12 kilometers to the Earth's surface. The distribution of oil almost meets all stages of metamorphism of rocks. Correlation of the section of oil distribution to genetic types of ore deposits showed that each genetic type ore deposits has its analogue oil field . So it is possible to classify oil fields on 1) endogenous: the actual magmatic, post-magmatic, contact-metasomatic (skarn), hydrothermal, exhalation, carbonatite, pegmatite, 2) exogenous: weathering, oxidation, sedimentary,3) metamorphogenic: metamorphosed, metamorphic. Model of such distribution of oil deposits can be a process of successive formation of oil deposits of mantle degassing tube. Thus oil is polygenic by way of formation of deposits, but their source is united.

  10. Distribution of chemical elements in calc-alkaline igneous rocks, soils, sediments and tailings deposits in northern central Chile

    NASA Astrophysics Data System (ADS)

    Oyarzún, Jorge; Oyarzun, Roberto; Lillo, Javier; Higueras, Pablo; Maturana, Hugo; Oyarzún, Ricardo

    2016-08-01

    This study follows the paths of 32 chemical elements in the arid to semi-arid realm of the western Andes, between 27° and 33° S, a region hosting important ore deposits and mining operations. The study encompasses igneous rocks, soils, river and stream sediments, and tailings deposits. The chemical elements have been grouped according to the Goldschmidt classification, and their concentrations in each compartment are confronted with their expected contents for different rock types based on geochemical affinities and the geologic and metallogenic setting. Also, the element behavior during rock weathering and fluvial transport is here interpreted in terms of the ionic potentials and solubility products. The results highlight the similarity between the chemical composition of the andesites and that of the average Continental Crust, except for the higher V and Mn contents of the former, and their depletion in Mg, Ni, and Cr. The geochemical behavior of the elements in the different compartments (rocks, soils, sediments and tailings) is highly consistent with the mobility expected from their ionic potentials, their sulfates and carbonates solubility products, and their affinities for Fe and Mn hydroxides. From an environmental perspective, the low solubility of Cu, Zn, and Pb due to climatic, chemical, and mineralogical factors reduces the pollution risks related to their high to extremely high contents in source materials (e.g., rocks, altered zones, tailings). Besides, the complex oxyanions of arsenic get bound by colloidal particles of Fe-hydroxides and oxyhydroxides (e.g., goethite), thus becoming incorporated to the fine sediment fraction in the stream sediments.

  11. The Ghost in the Machine: Fracking in the Earth's Complex Brittle Crust

    NASA Astrophysics Data System (ADS)

    Malin, P. E.

    2015-12-01

    This paper discusses in the impact of complex rock properties on practical applications like fracking and its associated seismic emissions. A variety of borehole measurements show that the complex physical properties of the upper crust cannot be characterized by averages on any scale. Instead they appear to follow 3 empirical rule: a power law distribution in physical scales, a lognormal distribution in populations, and a direct relation between changes in porosity and log(permeability). These rules can be directly related to the presence of fluid rich and seismically active fractures - from mineral grains to fault segments. (These are the "ghosts" referred to in the title.) In other physical systems, such behaviors arise on the boundaries of phase changes, and are studied as "critical state physics". In analogy to the 4 phases of water, crustal rocks progress upward from a un-fractured, ductile lower crust to nearly cohesionless surface alluvium. The crust in between is in an unstable transition. It is in this layer methods such as hydrofracking operate - be they in Oil and Gas, geothermal, or mining. As a result, nothing is predictable in these systems. Crustal models have conventionally been constructed assuming that in situ permeability and related properties are normally distributed. This approach is consistent with the use of short scale-length cores and logs to estimate properties. However, reservoir-scale flow data show that they are better fit to lognormal distributions. Such "long tail" distributions are observed for well productivity, ore vein grades, and induced seismic signals. Outcrop and well-log data show that many rock properties also show a power-law-type variation in scale lengths. In terms of Fourier power spectra, if peaks per km is k, then their power is proportional to 1/k. The source of this variation is related to pore-space connectivity, beginning with grain-fractures. We then show that a passive seismic method, Tomographic Fracture ImagingTM (TFI), can observe the distribution of this connectivity. Combined with TFI data, our fracture-connectivity model reveals the most significant crustal features and account for their range of passive and stimulated behaviors.

  12. Modeling transient heat transfer in nuclear waste repositories.

    PubMed

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  13. Stochastic multicomponent reactive transport analysis of low quality drainage release from waste rock piles: Controls of the spatial distribution of acid generating and neutralizing minerals

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Mayer, K. Ulrich; Beckie, Roger D.

    2017-06-01

    In mining environmental applications, it is important to assess water quality from waste rock piles (WRPs) and estimate the likelihood of acid rock drainage (ARD) over time. The mineralogical heterogeneity of WRPs is a source of uncertainty in this assessment, undermining the reliability of traditional bulk indicators used in the industry. We focused in this work on the bulk neutralizing potential ratio (NPR), which is defined as the ratio of the content of non-acid-generating minerals (typically reactive carbonates such as calcite) to the content of potentially acid-generating minerals (typically sulfides such as pyrite). We used a streamtube-based Monte-Carlo method to show why and to what extent bulk NPR can be a poor indicator of ARD occurrence. We simulated ensembles of WRPs identical in their geometry and bulk NPR, which only differed in their initial distribution of the acid generating and acid neutralizing minerals that control NPR. All models simulated the same principal acid-producing, acid-neutralizing and secondary mineral forming processes. We show that small differences in the distribution of local NPR values or the number of flow paths that generate acidity strongly influence drainage pH. The results indicate that the likelihood of ARD (epitomized by the probability of occurrence of pH< 4 in a mixing boundary) within the first 100 years can be as high as 75% for a NPR = 2 and 40% for NPR = 4. The latter is traditionally considered as a ;universally safe; threshold to ensure non-acidic waters in practical applications. Our results suggest that new methods that explicitly account for mineralogical heterogeneity must be sought when computing effective (upscaled) NPR values at the scale of the piles.

  14. Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments

    USGS Publications Warehouse

    Rooney, A.D.; Selby, D.; Lewan, M.D.; Lillis, P.G.; Houzay, J.-P.

    2012-01-01

    Successful application of the 187Re–187Os geochronometer has enabled the determination of accurate and precise depositional ages for organic-rich sedimentary rocks (ORS) as well as establishing timing constraints of petroleum generation. However, we do not fully understand the systematics and transfer behaviour of Re and Os between ORS and petroleum products (e.g., bitumen and oil). To more fully understand the behaviour of Re–Os systematics in both source rocks and petroleum products we apply hydrous pyrolysis to two immature hydrocarbon source rocks: the Permian Phosphoria Formation (TOC = 17.4%; Type II-S kerogen) and the Jurassic Staffin Formation (TOC = 2.5%; Type III kerogen). The laboratory-based hydrous pyrolysis experiments were carried out for 72 h at 250, 300, 325 and 350 °C. These experiments provided us with whole rock, extracted rock and bitumen and in some cases expelled oil and asphaltene for evaluation of Re–Os isotopic and elemental abundance. The data from these experiments demonstrate that the majority (>95%) of Re and Os are housed within extracted rock and that thermal maturation does not result in significant transfer of Re or Os from the extracted rock into organic phases. Based on existing thermodynamic data our findings suggest that organic chelating sites have a greater affinity for the quadravalent states of Re and Os than sulphides. Across the temperature range of the hydrous pyrolysis experiments both whole rock and extracted rock 187Re/188Os ratios show small variations (3.3% and 4.7%, for Staffin, respectively and 6.3% and 4.9% for Phosphoria, respectively). Similarly, the 187Os/188Os ratios show only minor variations for the Staffin and Phosphoria whole rock and extracted rock samples (0.6% and 1.4% and 1.3% and 2.2%). These isotopic data strongly suggest that crude oil generation through hydrous pyrolysis experiments does not disturb the Re–Os systematics in ORS as supported by various studies on natural systems. The elemental abundance data reveal limited transfer of Re and Os into the bitumen from a Type III kerogen in comparison to Type II-S kerogen (0.02% vs. 3.7%), suggesting that these metals are very tightly bound in Type III kerogen structure. The 187Os/188Os data from the pyrolysis generated Phosphoria bitumens display minor variation (4%) across the experimental temperatures, with values similar to that of the source rock. This indicates that the isotopic composition of the bitumen reflects the isotopic composition of the source rock at the time of petroleum generation. These data further support the premise that the Os isotopic composition of oils and bitumens can be used to fingerprint petroleum deposits to specific source rocks. Oil generated through the hydrous pyrolysis experiments does not contain appreciable quantities of Re or Os (~120 and ~3 ppt, respectively), in contrast to natural oils (2–50 ppb and 34–288 ppt for Re and Os, respectively), which may suggest that kinetic parameters are fundamental to the transfer of Re and Os from source rocks to oils. From this we hypothesise that, at the temperatures employed in hydrous pyrolysis, Re and Os are assimilated into the extracted rock as a result of cross-linking reactions.

  15. Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments

    NASA Astrophysics Data System (ADS)

    Rooney, Alan D.; Selby, David; Lewan, Michael D.; Lillis, Paul G.; Houzay, Jean-Pierre

    2012-01-01

    Successful application of the 187Re-187Os geochronometer has enabled the determination of accurate and precise depositional ages for organic-rich sedimentary rocks (ORS) as well as establishing timing constraints of petroleum generation. However, we do not fully understand the systematics and transfer behaviour of Re and Os between ORS and petroleum products (e.g., bitumen and oil). To more fully understand the behaviour of Re-Os systematics in both source rocks and petroleum products we apply hydrous pyrolysis to two immature hydrocarbon source rocks: the Permian Phosphoria Formation (TOC = 17.4%; Type II-S kerogen) and the Jurassic Staffin Formation (TOC = 2.5%; Type III kerogen). The laboratory-based hydrous pyrolysis experiments were carried out for 72 h at 250, 300, 325 and 350 °C. These experiments provided us with whole rock, extracted rock and bitumen and in some cases expelled oil and asphaltene for evaluation of Re-Os isotopic and elemental abundance. The data from these experiments demonstrate that the majority (>95%) of Re and Os are housed within extracted rock and that thermal maturation does not result in significant transfer of Re or Os from the extracted rock into organic phases. Based on existing thermodynamic data our findings suggest that organic chelating sites have a greater affinity for the quadravalent states of Re and Os than sulphides. Across the temperature range of the hydrous pyrolysis experiments both whole rock and extracted rock 187Re/188Os ratios show small variations (3.3% and 4.7%, for Staffin, respectively and 6.3% and 4.9% for Phosphoria, respectively). Similarly, the 187Os/188Os ratios show only minor variations for the Staffin and Phosphoria whole rock and extracted rock samples (0.6% and 1.4% and 1.3% and 2.2%). These isotopic data strongly suggest that crude oil generation through hydrous pyrolysis experiments does not disturb the Re-Os systematics in ORS as supported by various studies on natural systems. The elemental abundance data reveal limited transfer of Re and Os into the bitumen from a Type III kerogen in comparison to Type II-S kerogen (0.02% vs. 3.7%), suggesting that these metals are very tightly bound in Type III kerogen structure. The 187Os/188Os data from the pyrolysis generated Phosphoria bitumens display minor variation (4%) across the experimental temperatures, with values similar to that of the source rock. This indicates that the isotopic composition of the bitumen reflects the isotopic composition of the source rock at the time of petroleum generation. These data further support the premise that the Os isotopic composition of oils and bitumens can be used to fingerprint petroleum deposits to specific source rocks. Oil generated through the hydrous pyrolysis experiments does not contain appreciable quantities of Re or Os (∼120 and ∼3 ppt, respectively), in contrast to natural oils (2-50 ppb and 34-288 ppt for Re and Os, respectively), which may suggest that kinetic parameters are fundamental to the transfer of Re and Os from source rocks to oils. From this we hypothesise that, at the temperatures employed in hydrous pyrolysis, Re and Os are assimilated into the extracted rock as a result of cross-linking reactions.

  16. Wrench related faults and their control on the tectonics and Eocene sedimentation in the L13-L15 sub-sag area, Pearl River Mouth basin, China

    NASA Astrophysics Data System (ADS)

    Chen, Shuping; Xu, Shunshan; Cai, Yu; Ma, Xiaodan

    2017-09-01

    Recent oil discoveries in the L13-L15 sub-sag area in the Pearl River Mouth basin have inspired interest in Paleogene hydrocarbon targets. However, the structures and their control on reservoirs have not been completely studied. The aim of this paper is to address the tectonics and Eocene sedimentation based on 3D seismic data. We documented characteristics from four aspects of the faults in the study area: (a) fault arrangement; (b) fault segmentation; (c) flower structures; and (d) distribution of the depocenters along the faults. Based on the above data, we propose that the structures in the studied area were formed by a right-handed wrench. The principal shear for this model was caused by NNE- to NE-ward motion of the eastern part of the Eurasia plate due to the collision of the Indian-Australian and Eurasian plates starting approximately 49 Ma ago. The L13-L15 sub-sag area underwent early Eocene rifting, a late Eocene rifting-depression transition and an Oligocene-Quaternary thermal depression. The rift phase included three stages: the initial rifting, intensive rifting and late rifting. The deep lake mudstone deposited during the intensive rifting stage is the source rock with the most potential for oil generation. Shallow lake source rocks formed in the late rifting and transition stages are the secondary source rocks. Reservoir sweet spots were formed in the early period of the intensive rifting and late rifting stages. The junction sites between the front of the meandering river delta plain and fault steps are favorable places for good reservoirs. The sediments in the transition stage are rich in sandstone, making them perfect sites for prospecting reservoirs.

  17. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor ofmore » radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.« less

  18. Lunar "dunite", "pyroxenite" and "anorthosite"

    USGS Publications Warehouse

    Wilshire, H.G.; Jackson, E.D.

    1972-01-01

    Monomineralic aggregates of olivine, clinopyroxene, orthopyroxene and plagioclase with granoblastic textures are widespread minor constituents of Apollo 14 breccias. Recrystallization is commonly incomplete within these aggregates, leaving relict material that clearly indicates single-mineral-grain sources for the aggregates. The aggregates are not, therefore, properly characterized by igneous rock names, nor can any conclusions regarding differentiation be drawn from them. Average sizes of the aggregates indicate source rocks with grain sizes mostly larger than 1 to 5 mm, a few clasts of which occur in the breccias; the proportions of the different types of aggregates suggest dominantly feldspathic source rocks. ?? 1972.

  19. Geochemical constraints on the petrogenesis of the pyroclastic rocks in Abakaliki basin (Lower Benue Rift), Southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Chukwu, Anthony; Obiora, Smart C.

    2018-05-01

    The pyroclastic rocks in the Cretaceous Abakaliki basin occur mostly as oval-shaped bodies, consisting of lithic/lava and vitric fragments. They are commonly characterized by parallel and cross laminations, as well contain xenoliths of shale, mudstone and siltstones from the older Asu River Group of Albian age. The rocks are basic to ultrabasic in composition, comprising altered alkali basalts, altered tuffs, minor lapillistones and agglomerates. The mineral compositions are characterized mainly by laths of calcic plagioclase, pyroxene (altered), altered olivines and opaques. Calcite, zeolite and quartz represent the secondary mineral constituents. Geochemically, two groups of volcaniclastic rocks, are distinguished: alkaline and tholeiitic rocks, both represented by fresh and altered rock samples. The older alkali basalts occur within the core of the Abakaliki anticlinorium while the younger tholeiites occur towards the periphery. Though most of the rocks are moderate to highly altered [Loss on ignition (LOI, 3.43-22.07 wt. %)], the use of immobile trace element such as Nb, Zr, Y, Hf, Ti, Ta and REEs reflect asthenospheric mantle source compositions. The rocks are enriched in incompatible elements and REEs (∑REE = 87.98-281.0 ppm for alkaline and 69.45-287.99 ppm for tholeiites). The ratios of La/Ybn are higher in the alkaline rocks ranging from 7.69 to 31.55 compared to the tholeiitic rocks which range from 4.4 to 16.89 and indicating the presence of garnet-bearing lherzolite in the source mantle. The spidergrams and REEs patterns along with Zr/Nb, Ba/Nb, Rb/Nb ratios suggest that the rocks were generated by a mantle plume from partial melting of mixed enriched mantle sources (HIMU, EMI and EMII) similar to the rocks of the south Atlantic Ocean such as St. Helena (alkaline rocks) and Ascension rocks (tholeiitic rocks). The rocks were formed in a within-plate setting of the intra-continental rift type similar to other igneous rocks in the Benue Rift and are not related to any subduction event as previously suggested.

  20. Interpolity exchange of basalt tools facilitated via elite control in Hawaiian archaic states

    PubMed Central

    Kirch, Patrick V.; Mills, Peter R.; Lundblad, Steven P.; Sinton, John; Kahn, Jennifer G.

    2012-01-01

    Ethnohistoric accounts of late precontact Hawaiian archaic states emphasize the independence of chiefly controlled territories (ahupua‘a) based on an agricultural, staple economy. However, elite control of unevenly distributed resources, such as high-quality volcanic rock for adze production, may have provided an alternative source of economic power. To test this hypothesis we used nondestructive energy-dispersive X-ray fluorescence (ED-XRF) analysis of 328 lithic artifacts from 36 archaeological features in the Kahikinui district, Maui Island, to geochemically characterize the source groups. This process was followed by a limited sampling using destructive wavelength-dispersive X-ray fluorescence (WD-XRF) analysis to more precisely characterize certain nonlocal source groups. Seventeen geochemical groups were defined, eight of which represent extra-Maui Island sources. Although the majority of stone tools were derived from Maui Island sources (71%), a significant quantity (27%) of tools derived from extraisland sources, including the large Mauna Kea quarry on Hawai‘i Island as well as quarries on O‘ahu, Moloka‘i, and Lāna‘i islands. Importantly, tools quarried from extralocal sources are found in the highest frequency in elite residential features and in ritual contexts. These results suggest a significant role for a wealth economy based on the control and distribution of nonagricultural goods and resources during the rise of the Hawaiian archaic states. PMID:22203984

  1. Colloids in the River Inn

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Baumann, Thomas

    2014-05-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau. Samples were collected after each tributary from a sub-catchment and filtered on-site. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analyses provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of indvidual particles. Particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition.

  2. Geochemistry, palynology, and regional geology of worldclass Upper Devonian source rocks in the Madre de Dios basin, Bolivia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, K.E.; Conrad, K.T.; Carpenter, D.G.

    Recent exploration drilling indicates the existence of world-class source rock in the Madre de Dios basin, Bolivia. In the Pando-1 X and -2X wells, over 200 m of poorly bioturbated, organic-rich (TOC = 3-16 wt.%) prodelta to shelf mudstones in the Frasnian-Famennian Tomachi Formation contain oil-prone organic matter (hydrogen index = 400-600 mg HC/g TOC). Our calculated source prolificity indices for this interval in these wells (SPI = 15-18 tons of hydrocarbons per square meter of source rock) exceed that for the Upper Jurassic in Central Saudi Arabia. The Tomachi interval is lithologically equivalent to the Colpacucho Formation in themore » northern Altiplano, the Iquiri Formation in the Cordillera Oriental, and is coeval with other excellent source rocks in North America, Africa, and Eurasia. All of these rocks were deposited under conditions favorable for accumulation of organic matter, including a global highstand and high productivity. However, the Madre de Dios basin was situated at high latitude during the Late Devonian and some of the deposits are interpreted to be of glacial origin, indicating conditions not generally associated with organic-rich deposition. A biomarker and palynological study of Upper Devonian rocks in the Pando-1X well suggests deposition under conditions similar to certain modern fjords. High productivity resulted in preservation of abundant organic matter in the bottom sediments despite a cold, toxic water column. Low-sulfur crude oil produced from the Pando-1X well is geochemically similar to, but more mature than, extracts from associated organic-rich Tomachi samples, and was generated from deeper equivalents of these rocks.« less

  3. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-03-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  4. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-07-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  5. Size-Frequency Distributions of Rocks on Mars and Earth Analog Sites: Implications for Future Landed Missions

    NASA Technical Reports Server (NTRS)

    Golombeck, M.; Rapp, D.

    1996-01-01

    The size-frequency distribution of rocks and the Vicking landing sites and a variety of rocky locations on the Earth that formed from a number of geologic processes all have the general shape of simple exponential curves, which have been combined with remote sensing data and models on rock abundance to predict the frequency of boulders potentially hazardous to future Mars landers and rovers.

  6. The origin of gas seeps and shallow gas in northern part of South China Sea

    NASA Astrophysics Data System (ADS)

    Li, M.; Jin, X.

    2003-04-01

    The northern part of South China Sea is of passive continental margin, which geologic units include shelf, slope and deep sea basin. There are rifting basins forming during Paleogene (or Cretaceous ?) to Quaternary developed on shelf and slope, which sediments are dominated by fluvial and lake clastic rock of Paleogene, and marine clastic rock and carbonate of Neogene - Quaternary. The main basins include the Pearl River Mouth Basin, Beibu Gulf basin, Qiongdongnan Basin and Yinggehai basin. They contain rich oil and gas resources, and have become important industrial oil and gas producing region in South China Sea. With the increasing of petroleum exploration actives and marine petroleum engineering, it has been paid more attention to the investigation and research of gas seeps and shallow gas, for they become a potential threaten to the marine engineering while they are regarded as the indicators of industrial oil and gas. By study the distribution and geochemical characteristics of gas seeps in northeast part of Yinggehai basin and shallow gas in sediments on slope, combined with their regional geologic background, this paper deals with the origin, migration pathway and emission mechanism of gas seeps and shallow gas in northern part of South China Sea, for providing a base knowledge for the evaluation of marine engineering geology. In northeast part of Yinggehai basin gas seeps have been found and recorded for near 100 years. During 1990s, as a part of petroleum exploration, the gas seeps in the basin have been investigated and research by oil companies (Baojia Huang et al., 1992; Jiaqiong He et al., 2000). Gas seeps were found in shallow water area along southwest coast of Hainan Island, water depth usually less than 50 m. The occurrence of gas seeps can be divided into two types: (1) gas continuously emission, continuous gas bubbles groups can be detected by sonar underwater and observed on water surface. (2) gas intermittently emission, the time intervals vary in different places. Gas chimneys can be found on seafloor, which show blank zone on seismic profiles, locally with pit holes. The geochemical analyses of gas samples from gas seeps indicate its composition is dominated by hydrocarbon gas, the other include CO_2, N_2 and O_2. The gas has high dry index, and heavier δ13C_1.This shows that the gas is of matured- over matured thermogenic gas. The geochemical characteristics of extracts from sediments in the area are similar to those of penetrated source rock of Neogene in the basin, indicating the gas is from the matured source rock in the basin, the diapric zone and fault act as the migration pathway. The gas samples on slope were obtained through degasification of sediments collected by SONNE. Geochemical analyses show that the gas composition is dominated by methane, with high dry index and heavier δ13C_1, belonging to typical thermogenic gas. On maturity chart, the gas samples on upper slope fall in the area near the boundary of condensate, indicating higher maturity, while those on lower slope has lower maturity and fall in the area near oil window. The gas samples from deep sea basin is mixed gas of thermogenic gas and biogas. Therefore, it is reasonable to consider the deep buried source rock as the origin of the gas, and the active faults are the migration pathway. As stated above, the gas seeps and shallow gas in northern part of South China Sea were mainly originated from deep buried source rock, migrated through diapric zone or active faults. Their distribution and occurrence have directly relation with the source rock type and maturity, and the tectonic active of the underlying basins. The petroleum exploration has proved that Yinggehai basin and Qiongdongnan basin on the western part are favored for gas generation, while the Pearl River Mouth Basin and Beibu Gulf basin on the eastern part are favored for oil generation. This may account for the distribution of gas seeps which concentrated in the Yinggehai basin. Therefore, an effective and practical evaluation of the potential dangers of gas for marine engineering need to consider the regional geologic background. This study is financially supported by the National Major Fundamental Research and Development Project (No. G20000467). Reference Baojia Huang et al. 1992 Investigation and Origin of Oil-Gas Seepages in the Yinggehai Sea, China Offshore Oil and Gas (Geology), 1992,6(4): 1-7. Jiaxiong He et al. 2000 The Distribution of Oil-Gas Seeps in northern slope of Yinggehai Basin and the Analyses of Petroleum exploration prospect in the Basin, Natural Gas Geoscience Vol. 11, No.2, 1-9. Xianglong Jin et al. 1989 Research Report on Geoscience of South China Sea, Donghai Marine Science Vol. 7, No.4, 1-92.

  7. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay colloid concentration is expected to be very low (<1ppb, for 10-100nm) which restricts their relevance for radionuclide transport. Copyright © 2016. Published by Elsevier B.V.

  8. Geochemical Composition of Surface Water in the Mineralized Lom Basin, East Cameroon: Natural and Anthropogenic Sources.

    NASA Astrophysics Data System (ADS)

    Mimba, M. E.; Ohba, T.; Nguemhe Fils, S. C.; Wirmvem, M. J.

    2016-12-01

    Thousands of people in East Cameroon depend on surface water for consumption and domestic purposes. The Lom basin, north of the region, is heavily mineralized especially in gold owing to its regional geological setting. Although research has been done regarding the rock type, age, formation history and reconnaissance gold surveys, surface water investigation in the area has received limited attention. Thus, this study appraises the first regional hydrogeochemical program for environmental assessment of the mineralized Lom basin. Fifty-two representative stream water samples were collected under base flow conditions and analysed for major cations (Ca2+, Mg2+, Na+, K+ ), major anions (HCO3-, F-, Cl-, NO2-, NO3-, Br-, PO43-, SO42- ) and stable isotopes (δD and δ18O). Calcium and HCO3- were the dominant ions. The chemical facies were CaHCO3 and NaHCO3 indicating surface water draining igneous/metamorphic rocks in hot and humid equatorial climate, resulting in the discordant dissolution of primary silicate minerals. From the isotopic evaluation, the stream water is of meteoric origin, shows negligible evaporation effect and has a common recharge source. The major ion geochemistry demonstrated the potential to discriminate between natural and anthropogenic origins. Distribution trends of Ca2+, Mg2+, Na+, K+, HCO3- and SO42- showed a correlation with the lithology and the occurrence of sulphide minerals associated with hydrothermal gold mineralization in the area. The distribution patterns of NO3- and Cl- reflect pollution from settlement. Overall, the chemistry of stream water in the Lom basin is mainly controlled by rock weathering compared to anthropogenic influence. Surface water quality is easily influenced by anthropogenic activities, and stream sediment collects effectively trace metals resulting from such activities. Hence, geochemical mapping incorporating stream water and stream sediment is of considerable value in future investigations within the Lom basin.

  9. 77 FR 23665 - Procurement List Proposed Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ...: Services Service Type/Location: Mailroom Operations, Official Mail Distribution Center, 1 Rock Island Arsenal, Building 132, Rock Island, IL. NPA: The Arc of the Quad Cities Area, Rock Island, IL. Contracting Activity: Dept of the ARMY, W4MM USA Joint Munitions CMD, Rock Island, IL. Service Type/Location: Custodial...

  10. Experiments on the role of water in petroleum formation

    NASA Astrophysics Data System (ADS)

    Lewan, M. D.

    1997-09-01

    Pyrolysis experiments were conducted on immature petroleum source rocks under various conditions to evaluate the role of water in petroleum formation. At temperatures less than 330°C for 72 h, the thermal decomposition of kerogen to bitumen was not significantly affected by the presence or absence of liquid water in contact with heated gravel-sized source rock. However, at 330 and 350°C for 72 h, the thermal decomposition of generated bitumen was significantly affected by the presence or absence of liquid water. Carbon-carbon bond cross linking resulting in the formation of an insoluble bitumen (i.e., pyrobitumen) is the dominant reaction pathway in the absence of liquid water. Conversely, thermal cracking of carbon-carbon bonds resulting in the generation of saturate-enriched oil, which is similar to natural crude oils, is the dominant reaction pathway in the presence of liquid water. This difference in reaction pathways is explained by the availability of an exogenous source of hydrogen, which reduces the rate of thermal decomposition, promotes thermal cracking, and inhibits carbon-carbon bond cross linking. The distribution of generated n-alkanes is characteristic of a free radical mechanism, with a broad carbon-number distribution (i.e., C 5 to C 35) and only minor branched alkanes from known biological precursors (i.e., pristane and phytane). The generation of excess oxygen in the form of CO 2 in hydrous experiments and the high degree of hydrocarbon deuteration in a D 2O experiment indicate that water dissolved in the bitumen is an exogenous source of hydrogen. The lack of an effect on product composition and yield with an increase in H + activity by five orders of magnitude in a hydrous experiment indicates that an ionic mechanism for water interactions with thermally decomposing bitumen is not likely. Several mechanistically simple and thermodynamically favorable reactions that are consistent with the available experimental data are envisaged for the generation of exogenous hydrogen and excess oxygen as CO 2. One reaction series involves water oxidizing existing carbonyl groups to form hydrogen and car☐yl groups, with the latter forming CO 2 by decar☐ylation with increasing thermal stress. Another reaction series involves either hydrogen or oxygen in dissolved water molecules directly interacting with unpaired electrons to form a hydrogen-terminated free-radical site or an oxygenated functional group, respectively. The latter is expected to be susceptible to oxidation by other dissolved water molecules to generate additional hydrogen and CO 2. In addition to water acting as an exogenous source of hydrogen, it is also essential to the generation of an expelled saturate-enriched oil that is similar to natural crude oil. This role of water is demonstrated by the lack of an expelled oil in an experiment where a liquid Ga sbnd In alloy is substituted for liquid water. Experiments conducted with high salinity water and high water/rock ratios indicate that selective aqueous solubility of hydrocarbons is not responsible for the expelled oil generated in hydrous pyrolysis experiments. Similarly, a hydrous pyrolysis experiment conducted with isolated kerogen indicates that expelled oil in hydrous pyrolysis is not the result of preferential sorption of polar organic components by the mineral matrix of a source rock. It is envisaged that dissolved water in the bitumen network of a source rock causes an immiscible saturate-enriched oil to become immiscible with the thermally decomposing polar-enriched bitumen. The overall geochemical implication of these results is that it is essential to consider the role of water in experimental studies designed to understand natural rates of petroleum generation, expulsion mechanisms of primary migration, thermal stability of crude oil, reaction kinetics of biomarker transformations, and thermal maturity indicators in sedimentary basins.

  11. Experiments on the role of water in petroleum formation

    USGS Publications Warehouse

    Lewan, M.D.

    1997-01-01

    Pyrolysis experiments were conducted on immature petroleum source rocks under various conditions to evaluate the role of water in petroleum formation. At temperatures less than 330??C for 72 h, the thermal decomposition of kerogen to bitumen was not significantly affected by the presence or absence of liquid water in contact with heated gravel-sized source rock. However, at 330 and 350??C for 72 h, the thermal decomposition of generated bitumen was significantly affected by the presence or absence of liquid water. Carbon-carbon bond cross linking resulting in the formation of an insoluble bitumen (i.e., pyrobitumen) is the dominant reaction pathway in the absence of liquid water. Conversely, thermal cracking of carbon-carbon bonds resulting in the generation of saturate-enriched oil, which is similar to natural crude oils, is the dominant reaction pathway in the presence of liquid water. This difference in reaction pathways is explained by the availability of an exogenous source of hydrogen, which reduces the rate of thermal decomposition, promotes thermal cracking, and inhibits carbon-carbon bond cross linking. The distribution of generated n-alkanes is characteristic of a free radical mechanism, with a broad carbon-number distribution (i.e., C5 to C35) and only minor branched alkanes from known biological precursors (i.e., pristane and phytane). The generation of excess oxygen in the form of CO2 in hydrous experiments and the high degree of hydrocarbon deuteration in a D2O experiment indicate that water dissolved in the bitumen is an exogenous source of hydrogen. The lack of an effect on product composition and yield with an increase in H+ activity by five orders of magnitude in a hydrous experiment indicates that an ionic mechanism for water interactions with thermally decomposing bitumen is not likely. Several mechanistically simple and thermodynamically favorable reactions that are consistent with the available experimental data are envisaged for the generation of exogenous hydrogen and excess oxygen as CO2. One reaction series involves water oxidizing existing carbonyl groups to form hydrogen and carboxyl groups, with the latter forming CO2 by decarboxylation with increasing thermal stress. Another reaction series involves either hydrogen or oxygen in dissolved water molecules directly interacting with unpaired electrons to form a hydrogen-terminated free-radical site or an oxygenated functional group, respectively. The latter is expected to be susceptible to oxidation by other dissolved water molecules to generate additional hydrogen and CO2. In addition to water acting as an exogenous source of hydrogen, it is also essential to the generation of an expelled saturate-enriched oil that is similar to natural crude oil. This role of water is demonstrated by the lack of an expelled oil in an experiment where a liquid Ga-In alloy is substituted for liquid water. Experiments conducted with high salinity water and high water/rock ratios indicate that selective aqueous solubility of hydrocarbons is not responsible for the expelled oil generated in hydrous pyrolysis experiments. Similarly, a hydrous pyrolysis experiment conducted with isolated kerogen indicates that expelled oil in hydrous pyrolysis is not the result of preferential sorption of polar organic components by the mineral matrix of a source rock. It is envisaged that dissolved water in the bitumen network of a source rock causes an immiscible saturate-enriched oil to become immiscible with the thermally decomposing polar-enriched bitumen. The overall geochemical implication of these results is that it is essential to consider the role of water in experimental studies designed to understand natural rates of petroleum generation, expulsion mechanisms of primary migration, thermal stability of crude oil, reaction kinetics of biomarker transformations, and thermal maturity indicators in sedimentary basins. Copyright ?? 1997 Elsevier Science Ltd.

  12. Expectations of Rock Music Consumption for Entertainment and Information Relative to the Active Involvement of the User.

    ERIC Educational Resources Information Center

    Rouner, Donna; Noyes, Amy

    Before examining potentially negative effects of rock music on adolescents, it is necessary to demonstrate links between adolescent motivations for consuming rock music and active involvement relative to that use and also to consider how much rock listeners rely on rock music as a source for information about values, beliefs, and social…

  13. Aquifers survey in the context of source rocks exploitation: from baseline acquisition to long term monitoring

    NASA Astrophysics Data System (ADS)

    Garcia, Bruno; Rouchon, Virgile; Deflandre, Jean-Pierre

    2017-04-01

    Producing hydrocarbons from source rocks (like shales: a mix of clays, silts, carbonate and sandstone minerals containing matured organic matter, i.e. kerogen oil and gas, but also non-hydrocarbon various species of chemical elements including sometimes radioactive elements) requires to create permeability within the rock matrix by at least hydraulically fracturing the source rock. It corresponds to the production of hydrocarbon fuels that have not been naturally expelled from the pressurized matured source rock and that remain trapped in the porosity or/and kerogen porosity of the impermeable matrix. Azimuth and extent of developed fractures can be respectively determined and mapped by monitoring the associated induced microseismicity. This allows to have an idea of where and how far injected fluids penetrated the rock formation. In a geological context, aquifers are always present in the vicinity -or on fluid migration paths- of such shale formations: deep aquifers (near the shale formation) up to sub-surface and potable (surface) aquifers. Our purpose will be to track any unsuitable invasion or migration of chemicals specifies coming from matured shales of production fluids including both drilling and fracturing ones into aquifers. Our objective is to early detect and alarm of any anomaly to avoid any important environmental issue. The approach consists in deploying a specific sampling tool within a well to recover formation fluids and to run a panoply of appropriate laboratory tests to state on fluid characteristics. Of course for deep aquifers, such a characterization process may consider aquifer properties prior producing shale oil and gas, as they may contain naturally some chemical species present in the source rocks. One can also consider that a baseline acquisition could be justified in case of possible previous invasion of non-natural fluids in the formation under survey (due to any anthropogenic action at surface or in the underground). The paper aims at presenting the protocol and routine test we propose to make our early detection approach efficient for production of shale hydrocarbon fluids, in considering the source-rock reservoir itself, the aquifers, and also the chemical species present in the fluids that are used for hydraulic fracturing operations.

  14. Temperature and petroleum generation history of the Wilcox Formation, Louisiana

    USGS Publications Warehouse

    Pitman, Janet K.; Rowan, Elisabeth Rowan

    2012-01-01

    A one-dimensional petroleum system modeling study of Paleogene source rocks in Louisiana was undertaken in order to characterize their thermal history and to establish the timing and extent of petroleum generation. The focus of the modeling study was the Paleocene and Eocene Wilcox Formation, which contains the youngest source rock interval in the Gulf Coast Province. Stratigraphic input to the models included thicknesses and ages of deposition, lithologies, amounts and ages of erosion, and ages for periods of nondeposition. Oil-generation potential of the Wilcox Formation was modeled using an initial total organic carbon of 2 weight percent and an initial hydrogen index of 261 milligrams of hydrocarbon per grams of total organic carbon. Isothermal, hydrous-pyrolysis kinetics determined experimentally was used to simulate oil generation from coal, which is the primary source of oil in Eocene rocks. Model simulations indicate that generation of oil commenced in the Wilcox Formation during a fairly wide age range, from 37 million years ago to the present day. Differences in maturity with respect to oil generation occur across the Lower Cretaceous shelf edge. Source rocks that are thermally immature and have not generated oil (depths less than about 5,000 feet) lie updip and north of the shelf edge; source rocks that have generated all of their oil and are overmature (depths greater than about 13,000 feet) are present downdip and south of the shelf edge. High rates of sediment deposition coupled with increased accommodation space at the Cretaceous shelf margin led to deep burial of Cretaceous and Tertiary source rocks and, in turn, rapid generation of petroleum and, ultimately, cracking of oil to gas.

  15. Petroleum generation and migration in the Mesopotamian Basin and Zagros fold belt of Iraq: Results from a basin-modeling study

    USGS Publications Warehouse

    Pitman, Janet K.; Steinshouer, D.; Lewan, M.D.

    2004-01-01

    A regional 3-D total petroleum-system model was developed to evaluate petroleum generation and migration histories in the Mesopotamian Basin and Zagros fold belt in Iraq. The modeling was undertaken in conjunction with Middle East petroleum assessment studies conducted by the USGS. Regional structure maps, isopach and facies maps, and thermal maturity data were used as input to the model. The oil-generation potential of Jurassic source-rocks, the principal known source of the petroleum in Jurassic, Cretaceous, and Tertiary reservoirs in these regions, was modeled using hydrous pyrolysis (Type II-S) kerogen kinetics. Results showed that oil generation in source rocks commenced in the Late Cretaceous in intrashelf basins, peak expulsion took place in the late Miocene and Pliocene when these depocenters had expanded along the Zagros foredeep trend, and generation ended in the Holocene when deposition in the foredeep ceased. The model indicates that, at present, the majority of Jurassic source rocks in Iraq have reached or exceeded peak oil generation and most rocks have completed oil generation and expulsion. Flow-path simulations demonstrate that virtually all oil and gas fields in the Mesopotamian Basin and Zagros fold belt overlie mature Jurassic source rocks (vertical migration dominated) and are situated on, or close to, modeled migration pathways. Fields closest to modeled pathways associated with source rocks in local intrashelf basins were charged earliest from Late Cretaceous through the middle Miocene, and other fields filled later when compression-related traps were being formed. Model results confirm petroleum migration along major, northwest-trending folds and faults, and oil migration loss at the surface.

  16. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls

    USGS Publications Warehouse

    Guo, Huaming; Jia, Yongfeng; Wanty, Richard B.; Jiang, Yuxiao; Zhao, Weiguang; Xiu, Wei; Shen, Jiaxing; Li, Yuan; Cao, Yongsheng; Wu, Yang; Zhang, Di; Wei, Chao; Zhang, Yilong; Cao, Wengeng; Foster, Andrea L.

    2016-01-01

    Although As concentrations have been investigated in shallow groundwater from the Hetao basin, China, less is known about U and As distributions in deep groundwater, which would help to better understand their origins and fate controls. Two hundred and ninety-nine groundwater samples, 122 sediment samples, and 14 rock samples were taken from the northwest portion of the Hetao basin, and analyzed for geochemical parameters. Results showed contrasting distributions of groundwater U and As, with high U and low As concentrations in the alluvial fans along the basin margins, and low U and high As concentrations downgradient in the flat plain. The probable sources of both As and U in groundwater were ultimately traced to the bedrocks in the local mountains (the Langshan Mountains). Chemical weathering of U-bearing rocks (schist, phyllite, and carbonate veins) released and mobilized U as UO2(CO3)22 − and UO2(CO3)34 − species in the alluvial fans under oxic conditions and suboxic conditions where reductions of Mn and NO3− were favorable (OSO), resulting in high groundwater U concentrations. Conversely, the recent weathering of As-bearing rocks (schist, phyllite, and sulfides) led to the formation of As-bearing Fe(III) (hydr)oxides in sediments, resulting in low groundwater As concentrations. Arsenic mobilization and U immobilization occurred in suboxic conditions where reduction of Fe(III) oxides was favorable and reducing conditions (SOR). Reduction of As-bearing Fe(III) (hydr)oxides, which were formed during palaeo-weathering and transported and deposited as Quaternary aquifer sediments, was believed to release As into groundwater. Reduction of U(VI) to U(IV) would lead to the formation of uraninite, and therefore remove U from groundwater. We conclude that the contrasting distributions of groundwater As and U present a challenge to ensuring safe drinking water in analogous areas, especially with high background values of U and As.

  17. New data on carbonatites of the Il'mensky-Vishnevogorsky alkaline complex, the southern Urals, Russia

    NASA Astrophysics Data System (ADS)

    Nedosekova, I. L.

    2007-04-01

    Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575-300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300-200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044-0.7045 and ɛNd ranging from 0.65 to -3.3 testify to their derivation from a deep mantle source of EM1 type.

  18. Stratigraphy, petrography, and provenance of Archean sedimentary rocks of the Nsuze Group, Pongola Supergroup, in the Wit M'folozi Inlier, South Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamero de Villarroel, H.; Lowe, D.R.

    1993-02-01

    The Upper Archean Pongola Supergroup is a succession of clastic and volcanic rocks that represents the oldest relatively unmetamorphosed sedimentary sequence deposited on the basement of the 3.5-3.2 Ga-old Kaapvaal Craton. The Pongola Supergroup includes two subdivisions, the Nsuze and the Mozaan Groups. The Nsuze Group is composed of clastic rocks, minor carbonate units, and basalt. Nsuze sandstones are dominated by granite-derived sediments, and minor basaltic-derived detritus. Most Nsuze sedimentary rocks are sandstones that include both quartz-fieldspar and lithic-rich varieties. The mineralogy of Nsuze sandstones reflects the mixing of debris derived from two distinctive sources: (1) a sialic plutonic sourcemore » yielding quartz and microcline and (2) a basaltic source yielding basaltic lithic detritus and plagioclase. The most likely source rocks for the Nsuze sandstones in the Wit M'folozi Inlier were Archean granitic basement, represented by the Mpuluzi batholith, and Nsuze basaltic volcanic rocks. Both continental arc and rift settings have been proposed for the Pongola Supergroup. Nsuze sandstones show similarities to continental arc sandstone suites. However, there is no report of the existence of high standing stratovolcanoes, calc-alkaline plutonism, or contact and regional metamorphism of the intruded volcanic-sedimentary and basement rocks in the Pongola basin, features that are typically associated with continental arcs. The dominance of continent-derived detritus in the Nsuze Group argues that volcanic rocks made up a minor part of the exposed source area and that volcanism was largely restricted to the basin of deposition. Collectively, available evidence favors an intracratonic rift for the depositional setting of the Nsuze Group.« less

  19. Provenance and paleogeography of the Devonian Durazno Group, southern Parana Basin in Uruguay

    NASA Astrophysics Data System (ADS)

    Uriz, N. J.; Cingolani, C. A.; Basei, M. A. S.; Blanco, G.; Abre, P.; Portillo, N. S.; Siccardi, A.

    2016-03-01

    A succession of Devonian cover rocks occurs in outcrop and in the subsurface of central-northern Uruguay where they were deposited in an intracratonic basin. This Durazno Group comprises three distinct stratigraphic units, namely the Cerrezuelo, Cordobés and La Paloma formations. The Durazno Group does not exceed 300 m of average thickness and preserves a transgressive-regressive cycle within a shallow-marine siliciclastic shelf platform, and is characterized by an assemblage of invertebrate fossils of Malvinokaffric affinity especially within the Lower Devonian Cordobés shales. The sedimentary provenance of the Durazno Group was determined using petrography, geochemistry, and morphological studies of detrital zircons as well as their U-Pb ages. Sandstone petrography of Cerrezuelo and La Paloma sequences shows that they have a dominantly quartz-feldspathic composition with a minor contribution of other minerals. Whole-rock geochemical data indicate that alteration was strong in each of the three formations studied; chondritic-normalized REE patterns essentially parallel to PAAS, the presence of a negative Eu-anomaly, and Th/Sc and La/Hf ratios point to an average source composition similar to UCC or slightly more felsic. Within the Cerrezuelo Formation, recycling of older volcano-metasedimentary sources is interpreted from Zr/Sc ratios and high Hf, Zr, and REE concentrations. U-Pb detrital zircon age populations of the Cerrezuelo and La Paloma formations indicate that the principal source terranes are of Neoproterozoic age, but include also minor populations derived from Mesoproterozoic and Archean-Paleoproterozoic rocks. A provenance from the Cuchilla Dionisio-Dom Feliciano, Nico Pérez and Piedra Alta terranes of Uruguay and southern Brazil is likely. This study establishes an intracratonic extensional tectonic setting during Durazno time. Considering provenance age sources, regional paleocurrent distributions and the established orogenic history recorded in SW Gondwana, we suggest that the basin fill was derived from paleohighs located in what is currently SE Uruguay.

  20. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; McInnes, Brent I. A.; Li, JinXiang; Zhao, JunXing

    2018-03-01

    Arc magmas are more oxidized than mid-ocean ridge basalts; however, there is continuing debate as to whether this higher oxidation state is inherited from the source magma or developed during late-stage magmatic differentiation processes. Well-constrained Late Jurassic to Early Cretaceous arc-related intermediate to felsic rocks derived from distinct magma sources provide us with a good opportunity to resolve this enigma. A series of granitoids from the western Central Lhasa subterrane were analyzed for whole-rock magnetic susceptibility, Fe2O3/FeO ratios, and trace elements in zircon. Compared to Late Jurassic samples (1.8 ± 2.0 × 10-4 emu g-1 oe-1, Fe3+/Fetotal = 0.32 ± 0.07, zircon Ce4+/Ce3+* = 15.0 ± 13.4), Early Cretaceous rocks show higher whole-rock magnetic susceptibility (5.8 ± 2.5 × 10-4 emu g-1 oe-1), Fe3+/Fetotal ratios (0.43 ± 0.04), and zircon Ce4+/Ce3+* values (23.9 ± 22.3). In addition, positive correlations among whole-rock magnetic susceptibility, Fe3+/Fetotal ratios, and zircon Ce4+/Ce3+* reveal a slight increase in oxidation state from fO2 = QFM to NNO in the Late Jurassic to fO2 = ˜NNO in the Early Cretaceous. Obvious linear correlation between oxidation indices (whole-rock magnetic susceptibility, zircon Ce4+/Ce3+*) and source signatures (zircon ɛHf(t), TDM C ages) indicates that the oxidation state was predominantly inherited from the source with only a minor contribution from magmatic differentiation. Thus, the sources for both the Late Jurassic and Early Cretaceous rocks were probably influenced by mantle wedge-derived magma, contributing to the increased fO2. Compared to ore-forming rocks at giant porphyry Cu deposits, the relatively low oxidation state (QFM to NNO) and negative ɛHf(t) (-16 to 0) of the studied granitoids implies relative infertility. However, this study demonstrates two potential fast and effective indices ( fO2 and ɛHf(t)) to evaluate the fertility of granitoids for porphyry-style mineralization. In an exploration context for the west Central Lhasa subterrane, features indicative of potential fertility might include more oxidized, positive ɛHf(t), young rocks (<130 Ma).

  1. Near-Infrared Imaging for Spatial Mapping of Organic Content in Petroleum Source Rocks

    NASA Astrophysics Data System (ADS)

    Mehmani, Y.; Burnham, A. K.; Vanden Berg, M. D.; Tchelepi, H.

    2017-12-01

    Natural gas from unconventional petroleum source rocks (shales) plays a key role in our transition towards sustainable low-carbon energy production. The potential for carbon storage (in adsorbed state) in these formations further aligns with efforts to mitigate climate change. Optimizing production and development from these resources requires knowledge of the hydro-thermo-mechanical properties of the rock, which are often strong functions of organic content. This work demonstrates the potential of near-infrared (NIR) spectral imaging in mapping the spatial distribution of organic content with O(100µm) resolution on cores that can span several hundred feet in depth (Mehmani et al., 2017). We validate our approach for the immature oil shale of the Green River Formation (GRF), USA, and show its applicability potential in other formations. The method is a generalization of a previously developed optical approach specialized to the GRF (Mehmani et al., 2016a). The implications of this work for spatial mapping of hydro-thermo-mechanical properties of excavated cores, in particular thermal conductivity, are discussed (Mehmani et al., 2016b). References:Mehmani, Y., A.K. Burnham, M.D. Vanden Berg, H. Tchelepi, "Quantification of organic content in shales via near-infrared imaging: Green River Formation." Fuel, (2017). Mehmani, Y., A.K. Burnham, M.D. Vanden Berg, F. Gelin, and H. Tchelepi. "Quantification of kerogen content in organic-rich shales from optical photographs." Fuel, (2016a). Mehmani, Y., A.K. Burnham, H. Tchelepi, "From optics to upscaled thermal conductivity: Green River oil shale." Fuel, (2016b).

  2. Regional Stratigraphy and Petroleum Systems of the Michigan Basin, North America

    USGS Publications Warehouse

    Swezey, Christopher S.

    2008-01-01

    Although more than 100 years of research have gone into deciphering the stratigraphy of the Michigan basin of North America, it remains a challenge to visualize the basin stratigraphy on a regional scale and to describe stratigraphic relations within the basin. Similar difficulties exist for visualizing and describing the regional distribution of petroleum source rocks and reservoir rocks. This publication addresses these difficulties by combining data on Paleozoic and Mesozoic stratigraphy and petroleum geology of the Michigan basin. The areal extent of this structural basin is presented along with data in eight schematic chronostratigraphic sections arranged from north to south, with time denoted in equal increments along the sections. The stratigraphic data are modified from American Association of Petroleum Geologists (AAPG) (1984), Johnson and others (1992), Sanford (1993), and Cross (1998), and the time scale is taken from Harland and others (1990). Informal North American chronostratigraphic terms from AAPG (1984) are shown in parentheses. Stratigraphic sequences as defined by Sloss (1963, 1988) and Wheeler (1963) also are included, as well as the locations of major petroleum source rocks and major petroleum plays. The stratigraphic units are colored according to predominant lithology, in order to emphasize general lithologic patterns and to provide a broad overview of the Michigan basin. For purposes of comparison, schematic depictions of stratigraphy and interpreted events in the Michigan basin and adjacent Appalachian basin are shown. The paper version of this map is available for purchase from the USGS Store.

  3. Rock-avalanche Deposits Record Quantitative Information On Internal Deformation During Runout

    NASA Astrophysics Data System (ADS)

    McSaveney, M. J.; Zhang, M.

    2016-12-01

    The rock avalanche deposit at Wenjiagou Creek, China, shows grain-size changes with distance from source and with depth below the surface. To see what quantitative information on internal deformation might be able to be inferred from such information, we conducted a series of laboratory tests using a conventional ring-shear apparatus (Torshear Model 27-WF2202) at GNS Science, Lower Hutt, NZ. Lacking ready access to the limestone of the Wenjiagou Creek deposit, we used locally sourced 0.5-2 mm sand sieved from the greywacke-derived gravel bed of the Hutt River. To keep within the reliable operating limits of the apparatus, we conducted 38 dry tests using the combinations of normal stress, shear rate and shear displacement listed in Table 1. Size distributions were determined over the range 0.1 - 2000 µm using a laser sizer. Results showed that the number of grain breakages increased systematically with increasing normal stress and shear displacement, while shear rate had no significant influence. We concluded that if calibrated using appropriate materials, we would be able to quantify amounts of internal shear deformation in a rock avalanche by analysis of grain-size variations in the deposit. Table 1 Ring-shear test program Normal stress (kPa) Shear rate (mm/min) Shear displacement (mm) 200 100 74.2 37.1 0 100 200 500 1000 3000 400 100 74.2 37.1 0 100 200 500 1000 600 100 74.2 0 100 200 500 1000

  4. Conditional estimates of the number of podiform chromite deposits

    USGS Publications Warehouse

    Singer, D.A.

    1994-01-01

    A desirable guide for estimating the number of undiscovered mineral deposits is the number of known deposits per unit area from another well-explored permissive terrain. An analysis of the distribution of 805 podiform chromite deposits among ultramafic rocks in 12 subareas of Oregon and 27 counties of California is used to examine and extend this guide. The average number of deposits in this sample of 39 areas is 0.225 deposits per km2 of ultramafic rock; the frequency distribution is significantly skewed to the right. Probabilistic estimates can be made by using the observation that the lognormal distribution fits the distribution of deposits per unit area. A further improvement in the estimates is available by using the relationship between the area of ultramafic rock and the number of deposits. The number (N) of exposed podiform chromite deposits can be estimated by the following relationship: log10(N)=-0.194+0.577 log10(area of ultramafic rock). The slope is significantly different from both 0.0 and 1.0. Because the slope is less than 1.0, the ratio of deposits to area of permissive rock is a biased estimator when the area of ultramafic rock is different from the median 93 km2. Unbiased estimates of the number of podiform chromite deposits can be made with the regression equation and 80 percent confidence limits presented herein. ?? 1994 Oxford University Press.

  5. Burial History, Thermal Maturity, and Oil and Gas Generation History of Source Rocks in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.

    2008-01-01

    Burial history, thermal maturity, and timing of oil and gas generation were modeled for seven key source-rock units at eight well locations throughout the Bighorn Basin in Wyoming and Montana. Also modeled was the timing of cracking to gas of Phosphoria Formation-sourced oil in the Permian Park City Formation reservoirs at two well locations. Within the basin boundary, the Phosphoria is thin and only locally rich in organic carbon; it is thought that the Phosphoria oil produced from Park City and other reservoirs migrated from the Idaho-Wyoming thrust belt. Other petroleum source rocks include the Cretaceous Thermopolis Shale, Mowry Shale, Frontier Formation, Cody Shale, Mesaverde and Meeteetse Formations, and the Tertiary (Paleocene) Fort Union Formation. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the Bighorn Basin (Emblem Bench, Red Point/Husky, and Sellers Draw), three at intermediate depths (Amoco BN 1, Santa Fe Tatman, and McCulloch Peak), and two at relatively shallow locations (Dobie Creek and Doctor Ditch). The thermal maturity of source rocks is greatest in the deep central part of the basin and decreases to the south, east, and north toward the basin margins. The Thermopolis and Mowry Shales are predominantly gas-prone source rocks, containing a mix of Type-III and Type-II kerogens. The Frontier, Cody, Mesaverde, Meeteetse, and Fort Union Formations are gas-prone source rocks containing Type-III kerogen. Modeling results indicate that in the deepest areas, (1) the onset of petroleum generation from Cretaceous rocks occurred from early Paleocene through early Eocene time, (2) peak petroleum generation from Cretaceous rocks occurred during Eocene time, and (3) onset of gas generation from the Fort Union Formation occurred during early Eocene time and peak generation occurred from late Eocene to early Miocene time. Only in the deepest part of the basin did the oil generated from the Thermopolis and Mowry Shales start generating gas from secondary cracking, which occurred in the late Eocene to Miocene. Also, based on modeling results, gas generation from the cracking of Phosphoria oil reservoired in the Park City Formation began in the late Eocene in the deep part of the basin but did not anywhere reach peak generation.

  6. 8. Photographic copy of photograph. (Source: Department of Interior. Bureau ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photographic copy of photograph. (Source: Department of Interior. Bureau of Reclamation. Bitterroot Project History 1931-1962. National Archives, Denver, RG 115, Accession #115-90-039, Box 243) Photographer unknown. View of original rock-fill crib diversion structure, September 13, 1949. Diversion and head works for big ditch on Rock Creek. - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  7. Extraction of Iodine from Source Rock and Oil for Radioiodine Dating Final Report CRADA No. TC-1550-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, J. E.; Summa, L.

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Exxon Production Research Company (EPR) to develop improved techniques for extracting, concentrating, and measuring iodine from large volumes of source rock and oil. The purpose of this project was to develop a technique for measuring total iodine extracted from rock, obtain isotopic ratios, and develop age models for samples provided by EPR.

  8. Terrigenous sediment supply along the Chilean continental margin: modern regional patterns of texture and composition

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Hebbeln, D.; Wefer, G.

    The regional patterns of texture and composition of modern continental slope and pelagic sediments off Chile between 25°S and 43°S reflect the latitudinal segmentation of geological, morphological, and climatic features of the continental hinterland. Grain-size characteristics are controlled by the grain-size of source rocks, the weathering regime, and mode of sediment input (eolian off northern Chile vs fluvial further south). Bulk-mineral assemblages reveal a low grade of maturity. Regional variations are governed by the source-rock composition of the different geological terranes and the relative source-rock contribution of the Coastal Range and Andes, as controlled by the continental hydrology. The relative abundance of clay minerals is also predominantly influenced by the source-rock composition and partly by continental smectite neoformation. Latitudinal variations of illite crystallinities along the Chilean continental slope (and west of the Peru-Chile trench) clearly reflect modifications of the weathering regime which correspond to the strong climatic zonation of Chile.

  9. Paleofacies of Eocene Lower Ngimbang Source Rocks in Cepu Area, East Java Basin based on Biomarkers and Carbon-13 Isotopes

    NASA Astrophysics Data System (ADS)

    Devi, Elok A.; Rachman, Faisal; Satyana, Awang H.; Fahrudin; Setyawan, Reddy

    2018-02-01

    The Eocene Lower Ngimbang carbonaceous shales are geochemically proven hydrocarbon source rocks in the East Java Basin. Sedimentary facies of source rock is important for the source evaluation that can be examined by using biomarkers and carbon-13 isotopes data. Furthermore, paleogeography of the source sedimentation can be reconstructed. The case study was conducted on rock samples of Lower Ngimbang from two exploration wells drilled in Cepu area, East Java Basin, Kujung-1 and Ngimbang-1 wells. The biomarker data include GC and GC-MS data of normal alkanes, isoprenoids, triterpanes, and steranes. Carbon-13 isotope data include saturate and aromatic fractions. Various crossplots of biomarker and carbon-13 isotope data of the Lower Ngimbang source samples from the two wells show that the source facies of Lower Ngimbang shales changed from transitional/deltaic setting at Kujung-1 well location to marginal marine setting at Ngimbang-1 well location. This reveals that the Eocene paleogeography of the Cepu area was composed of land area in the north and marine setting to the south. Biomarkers and carbon-13 isotopes are powerful data for reconstructing paleogeography and paleofacies. In the absence of fossils in some sedimentary facies, these geochemical data are good alternatives.

  10. Petrography and geochemistry of Jurassic sandstones from the Jhuran Formation of Jara dome, Kachchh basin, India: Implications for provenance and tectonic setting

    NASA Astrophysics Data System (ADS)

    Periasamy, V.; Venkateshwarlu, M.

    2017-06-01

    Sandstones of Jhuran Formation from Jara dome, western Kachchh, Gujarat, India were studied for major, trace and rare earth element (REE) geochemistry to deduce their paleo-weathering, tectonic setting, source rock characteristics and provenance. Petrographic analysis shows that sandstones are having quartz grains with minor amount of K-feldspar and lithic fragments in the modal ratio of Q 89:F 7:L 4. On the basis of geochemical results, sandstones are classified into arkose, sub-litharenite, wacke and quartz arenite. The corrected CIA values indicate that the weathering at source region was moderate to intense. The distribution of major and REE elements in the samples normalized to upper continental crust (UCC) and chondrite values indicate similar pattern of UCC. The tectonic discrimination diagram based on the elemental concentrations and elemental ratios of Fe2O3 + MgO vs. TiO2, SiO2 vs. log(K2O/Na2O), Sc/Cr vs. La/Y, Th-Sc-Zr/10, La-Th-Sc plots Jhuran Formation samples in continental rift and collision settings. The plots of Ni against TiO2, La/Sc vs. Th/Co and V-Ni-Th ∗10 reveals that the sediments of Jhuran Formation were derived from felsic rock sources. Additionally, the diagram of (Gd/Yb) N against Eu/Eu ∗ suggest the post-Archean provenance as source possibly Nagar Parkar complex for the studied samples.

  11. CT Identification and Fractal Characterization of 3-D Propagation and Distribution of Hydrofracturing Cracks in Low-Permeability Heterogeneous Rocks

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Ju, Yang; Gao, Feng; Ranjith, Pathegama G.; Zhang, Qianbing

    2018-03-01

    Understanding and characterization of the three-dimensional (3-D) propagation and distribution of hydrofracturing cracks in heterogeneous rock are key for enhancing the stimulation of low-permeability petroleum reservoirs. In this study, we investigated the propagation and distribution characteristics of hydrofracturing cracks, by conducting true triaxial hydrofracturing tests and computed tomography on artificial heterogeneous rock specimens. Silica sand, Portland cement, and aedelforsite were mixed to create artificial heterogeneous rock specimens using the data of mineral compositions, coarse gravel distribution, and mechanical properties that were measured from the natural heterogeneous glutenite cores. To probe the effects of material heterogeneity on hydrofracturing cracks, the artificial homogenous specimens were created using the identical matrix compositions of the heterogeneous rock specimens and then fractured for comparison. The effects of horizontal geostress ratio on the 3-D growth and distribution of cracks during hydrofracturing were examined. A fractal-based method was proposed to characterize the complexity of fractures and the efficiency of hydrofracturing stimulation of heterogeneous media. The material heterogeneity and horizontal geostress ratio were found to significantly influence the 3-D morphology, growth, and distribution of hydrofracturing cracks. A horizontal geostress ratio of 1.7 appears to be the upper limit for the occurrence of multiple cracks, and higher ratios cause a single crack perpendicular to the minimum horizontal geostress component. The fracturing efficiency is associated with not only the fractured volume but also the complexity of the crack network.

  12. Stress Wave Source Characterization: Impact, Fracture, and Sliding Friction

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory Christofer

    Rapidly varying forces, such as those associated with impact, rapid crack propagation, and fault rupture, are sources of stress waves which propagate through a solid body. This dissertation investigates how properties of a stress wave source can be identified or constrained using measurements recorded at an array of sensor sites located far from the source. This methodology is often called the method of acoustic emission and is useful for structural health monitoring and the noninvasive study of material behavior such as friction and fracture. In this dissertation, laboratory measurements of 1--300 mm wavelength stress waves are obtained by means of piezoelectric sensors which detect high frequency (10 kHz--3MHz) motions of a specimen's surface, picometers to nanometers in amplitude. Then, stress wave source characterization techniques are used to study ball impact, drying shrinkage cracking in concrete, and the micromechanics of stick-slip friction of Poly(methyl methacrylate) (PMMA) and rock/rock interfaces. In order to quantitatively relate recorded signals obtained with an array of sensors to a particular stress wave source, wave propagation effects and sensor distortions must be accounted for. This is achieved by modeling the physics of wave propagation and transduction as linear transfer functions. Wave propagation effects are precisely modeled by an elastodynamic Green's function, sensor distortion is characterized by an instrument response function, and the stress wave source is represented with a force moment tensor. These transfer function models are verified though calibration experiments which employ two different mechanical calibration sources: ball impact and glass capillary fracture. The suitability of the ball impact source model, based on Hertzian contact theory, is experimentally validated for small (˜1 mm) balls impacting massive plates composed of four different materials: aluminum, steel, glass, and PMMA. Using this transfer function approach and the two mechanical calibration sources, four types of piezoelectric sensors were calibrated: three commercially available sensors and the Glaser-type conical piezoelectric sensor, which was developed in the Glaser laboratory. The distorting effects of each sensor are modeled using autoregressive-moving average (ARMA) models, and because vital phase information is robustly incorporated into these models, they are useful for simulating or removing sensor-induced distortions, so that a displacement time history can be retrieved from recorded signals. The Glaser-type sensor was found to be very well modeled as a unidirectional displacement sensor which detects stress wave disturbances down to about 1 picometer in amplitude. Finally, the merits of a fully calibrated experimental system are demonstrated in a study of stress wave sources arising from sliding friction, and the relationship between those sources and earthquakes. A laboratory friction apparatus was built for this work which allows the micro-mechanisms of friction to be studied with stress wave analysis. Using an array of 14 Glaser-type sensors, and precise models of wave propagation effects and the sensor distortions, the physical origins of the stress wave sources are explored. Force-time functions and focal mechanisms are determined for discrete events found amid the "noise" of friction. These localized events are interpreted to be the rupture of micrometer-sized contacts, known as asperities. By comparing stress wave sources from stick-slip experiments on plastic/plastic and rock/rock interfaces, systematic differences were found. The rock interface produces very rapid (<1 microsecond) implosive forces indicative of brittle asperity failure and fault gouge formation, while rupture on the plastic interface releases only shear force and produces a source more similar to earthquakes commonly recorded in the field. The difference between the mechanisms is attributed to the vast differences in the hardness and melting temperatures of the two materials, which affect the distribution of asperities as well as their failure behavior. With proper scaling, the strong link between material properties and laboratory earthquakes will aid in our understanding of fault mechanics and the generation of earthquakes and seismic tremor.

  13. URANIUM IN ROCK MINERALS OF THE INTRUSION OF KYZL-OMPUL MOUNTAINS (NORTH KIRGISIA) (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonova, L.L.; Pogiblova, L.S.

    1961-01-01

    The uranium distribution in rock minerals (syenites, granosyenites, and alaskite granites) of the Kyzyl-Ompul raassif is studied. Alaskite granites are characterized by the granite type of uranium distribution in minerals, about 50 percent of this element being connected with rockforming and about 50 percent with accessory uranium minerals. ln syenites uranium (about 70 percent) is bound to rockforming minerals. The same minerals from syenites and granites strongly differ by their uranium content and are constant in the ranges of each of those rock types. Granosyenites have aa intermediate (between syenites and granites) type of uranium distribution in minerals. (auth)

  14. Martian aeolian features and deposits - Comparisons with general circulation model results

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Skypeck, A.; Pollack, J. B.

    1993-02-01

    The relationships between near-surface winds and the distribution of wind-related features are investigated by means of a general circulation model of Mars' atmosphere. Predictions of wind surface stress as a function of season and dust optical depth are used to investigate the distribution and orientation of wind streaks, yardangs, and rock abundance on the surface. The global distribution of rocks on the surface correlates well with predicted wind stress, particularly during the dust storm season. The rocky areas are sites of strong winds, suggesting that fine material is swept away by the wind, leaving rocks and coarser material behind.

  15. Petroleum source-rock potentials of the cretaceous transgressive-regressive sedimentary sequences of the Cauvery Basin

    NASA Astrophysics Data System (ADS)

    Chandra, Kuldeep; Philip, P. C.; Sridharan, P.; Chopra, V. S.; Rao, Brahmaji; Saha, P. K.

    The present work is an attempt to contribute to knowledge on the petroleum source-rock potentials of the marine claystones and shales of basins associated with passive continental margins where the source-rock developments are known to have been associated with the anoxic events in the Mesozoic era. Data on three key exploratory wells from three major depressions Ariyallur-Pondicherry, Thanjavur and Nagapattinam of the Cauvery Basin are described and discussed. The average total organic carbon contents of the transgressive Pre-Albian-Cinomanian and Coniacian/Santonian claystones/shales range from 1.44 and 1.16%, respectively. The transgressive/regressive Campanian/Maastrichtian claystones contain average total organic carbon varying from 0.62 to 1.19%. The kerogens in all the studied stratigraphic sequences are classified as type-III with Rock-Eval hydrogen indices varying from 30 to 275. The nearness of land masses to the depositional basin and the mainly clastic sedimentation resulted in accumulation and preservation of dominantly type-III kerogens. The Pre-Albian to Cinomanian sequences of peak transgressive zone deposited in deep marine environments have kerogens with a relatively greater proportion of type-II components with likely greater contribution of planktonic organic matters. The global anoxic event associated with the Albian-Cinomanian marine transgression, like in many other parts of the world, has pervaded the Cauvery Basin and favoured development of good source-rocks with type-III kerogens. The Coniacian-Campanian-Maastrichtian transgressive/regressive phase is identified to be relatively of lesser significance for development of good quality source-rocks.

  16. Geochemistry of the Neoproterozoic metabasic rocks from the Negele area, southern Ethiopia: Tectonomagmatic implications

    NASA Astrophysics Data System (ADS)

    Yihunie, Tadesse; Adachi, Mamoru; Yamamoto, Koshi

    2006-03-01

    Neoproterozoic metabasic rocks along with metasediments and ultramafic rocks constitute the Kenticha and Bulbul lithotectonic domains in the Negele area. They occur as amphibolite and amphibole schist in the Kenticha, and amphibole schist and metabasalt in the Bulbul domains. These rocks are dominantly basaltic in composition and exhibit low-K tholeiitic characteristics. They are slightly enriched in large ion lithophile (LIL) and light rare earth (LRE) elements and depleted in high field strength (HFS) and heavy rare earth (HRE) elements. They exhibit chemical characteristics similar to back-arc basin and island-arc basalts, but include a few samples with slightly higher Y, Zr and Nb contents. Initial Sr isotopic ratios and ɛNd values for the Kenticha metabasic rocks range from 0.7048 to 0.7051 and from 4.7 to 9.6 whereas for the Bulbul metabasic rocks they range from 0.7032 to 0.7055 and from -0.1 to 5.5, respectively. The trace elements and Sr-Nd isotope compositions of samples from the Kenticha and Bulbul domains suggest similar, but isotopically heterogeneous magma sources. The magma is inferred to have derived from depleted source with a contribution from an enriched mantle source component.

  17. Pore Pressure and Stress Distributions Around a Hydraulic Fracture in Heterogeneous Rock

    NASA Astrophysics Data System (ADS)

    Gao, Qian; Ghassemi, Ahmad

    2017-12-01

    One of the most significant characteristics of unconventional petroleum bearing formations is their heterogeneity, which affects the stress distribution, hydraulic fracture propagation and also fluid flow. This study focuses on the stress and pore pressure redistributions during hydraulic stimulation in a heterogeneous poroelastic rock. Lognormal random distributions of Young's modulus and permeability are generated to simulate the heterogeneous distributions of material properties. A 3D fully coupled poroelastic model based on the finite element method is presented utilizing a displacement-pressure formulation. In order to verify the model, numerical results are compared with analytical solutions showing excellent agreements. The effects of heterogeneities on stress and pore pressure distributions around a penny-shaped fracture in poroelastic rock are then analyzed. Results indicate that the stress and pore pressure distributions are more complex in a heterogeneous reservoir than in a homogeneous one. The spatial extent of stress reorientation during hydraulic stimulations is a function of time and is continuously changing due to the diffusion of pore pressure in the heterogeneous system. In contrast to the stress distributions in homogeneous media, irregular distributions of stresses and pore pressure are observed. Due to the change of material properties, shear stresses and nonuniform deformations are generated. The induced shear stresses in heterogeneous rock cause the initial horizontal principal stresses to rotate out of horizontal planes.

  18. The Phosphoria Formation at the Hot Springs Mine in Southeast Idaho; a source of selenium and other trace elements to surface water, ground water, vegetation, and biota

    USGS Publications Warehouse

    Piper, David Z.; Skorupa, J.P.; Presser, T.S.; Hardy, M.A.; Hamilton, S.J.; Huebner, M.; Gulbrandsen, R.A.

    2000-01-01

    Major-element oxides and trace elements in the Phosphoria Formation at the Hot Springs Mine, Idaho were determined by a series of techniques. In this report, we examine the distribution of trace elements between the different solid components aluminosilicates, apatite, organic matter, opal, calcite, and dolomite that largely make up the rocks. High concentrations of several trace elements throughout the deposit, for example, As, Cd, Se, Tl, and U, at this and previously examined sites have raised concern about their introduction into the environment via weathering and the degree to which mining and the disposal of mined waste rock from this deposit might be accelerating that process. The question addressed here is how might the partitioning of trace elements between these solid host components influence the introduction of trace elements into ground water, surface water, and eventually biota, via weathering? In the case of Se, it is partitioned into components that are quite labile under the oxidizing conditions of subaerial weathering. As a result, it is widely distributed throughout the environment. Its concentration exceeds the level of concern for protection of wildlife at virtually every trophic level.

  19. Ancient Laurentian detrital zircon in the closing Iapetus Ocean, Southern Uplands terrane, Scotland

    NASA Astrophysics Data System (ADS)

    Waldron, John W. F.; Floyd, James D.; Simonetti, Antonio; Heaman, Larry M.

    2008-07-01

    Early Paleozoic sandstones in the Southern Uplands terrane ofScotland were deposited during closure of the Iapetus Oceanbetween Laurentia and Avalonia. Their tectonic setting and sourcesare controversial, and different authors have supported subduction-accretion,extensional continental-margin development, or back-arc basinsettings. We report new U-Pb detrital zircon ages from fiveLate Ordovician sandstones from the Northern Belt of the SouthernUplands and test models of their tectonic setting. The U-Pbzircon age distributions are dominated by peaks characteristicof sources in Laurentia and include grains as old as 3.6 Ga,older than any previously recorded in the British CaledonidesSE of the Laurentian foreland. Discordant grains in one samplesuggest derivation via erosion of metasedimentary rocks incorporatedin the Grampian-Taconian orogen. Rare Neoproterozoic grains,previously interpreted as originating from a peri-Gondwananterrane, may be derived from igneous rocks associated with Iapetanrifting. Only rare zircons are contemporary with the depositionalages. The results are difficult to reconcile with extensionalcontinental-margin and back-arc models, but they support anactive continental-margin subduction-accretion model. Closesimilarities with distributions from the Newfoundland Appalachiansare consistent with sinistral transpression during closing ofthe Iapetus Ocean.

  20. Element distribution patterns in the ordovician Galena group, Southeastern Minnesota: Indicators of fluid flow and provenance of terrigenous material

    USGS Publications Warehouse

    Lively, R.S.; Morey, G.B.; Mossler, J.H.

    1997-01-01

    As part of a regional geochemical investigation of lower Paleozoic strata in the Hollandale embayment of southeastern Minnesota, elemental concentrations in acid-insoluble residues were determined for carbonate rock in the Middle Ordovician Galena Group. Elemental distribution patterns within the insoluble residues, particularly those of Ti, Al, and Zr, show that the Wisconsin dome and the Wisconsin arch, which contributed sediment to the embayment prior to Galena time, continued as weak sources of sediment during this period. In contrast, trace metals commonly associated with Mississippi Valley-type lead-zinc mineralization, including Pb, Zn, Cu, Ag, Ni, Co, As, and Mo, show dispersal patterns that are independent of those associated with primary depositional phenomena. These trace metals are concentrated in southern Minnesota in carbonate rocks near the interface between limestone- and dolostone-dominated strata. Dispersal patterns imply that the metals were carried by a north-flowing regional ground-water system. The results show that the geochemical attributes of insoluble residues can be used to distinguish provenance and transport directions of primary sediments within a depositional basin from effects of subsequent regional ground-water flow systems.

  1. Coupled petrological-geodynamical modeling of a compositionally heterogeneous mantle plume

    NASA Astrophysics Data System (ADS)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.; Mertz, Dieter F.; Yang, Jianfeng; Baumann, Tobias S.

    2018-01-01

    Self-consistent geodynamic modeling that includes melting is challenging as the chemistry of the source rocks continuously changes as a result of melt extraction. Here, we describe a new method to study the interaction between physical and chemical processes in an uprising heterogeneous mantle plume by combining a geodynamic code with a thermodynamic modeling approach for magma generation and evolution. We pre-computed hundreds of phase diagrams, each of them for a different chemical system. After melt is extracted, the phase diagram with the closest bulk rock chemistry to the depleted source rock is updated locally. The petrological evolution of rocks is tracked via evolving chemical compositions of source rocks and extracted melts using twelve oxide compositional parameters. As a result, a wide variety of newly generated magmatic rocks can in principle be produced from mantle rocks with different degrees of depletion. The results show that a variable geothermal gradient, the amount of extracted melt and plume excess temperature affect the magma production and chemistry by influencing decompression melting and the depletion of rocks. Decompression melting is facilitated by a shallower lithosphere-asthenosphere boundary and an increase in the amount of extracted magma is induced by a lower critical melt fraction for melt extraction and/or higher plume temperatures. Increasing critical melt fractions activates the extraction of melts triggered by decompression at a later stage and slows down the depletion process from the metasomatized mantle. Melt compositional trends are used to determine melting related processes by focusing on K2O/Na2O ratio as indicator for the rock type that has been molten. Thus, a step-like-profile in K2O/Na2O might be explained by a transition between melting metasomatized and pyrolitic mantle components reproducible through numerical modeling of a heterogeneous asthenospheric mantle source. A potential application of the developed method is shown for the West Eifel volcanic field.

  2. Lead in the Getchell-Turquoise ridge Carlin-type gold deposits from the perspective of potential igneous and sedimentary rock sources in Northern Nevada: Implications for fluid and metal sources

    USGS Publications Warehouse

    Tosdal, R.M.; Cline, J.S.; Fanning, C.M.; Wooden, J.L.

    2003-01-01

    Lead isotope compositions of bulk mineral samples (fluorite, orpiment, and realgar) determined using conventional techniques and of ore-stage arsenian pyrite using the Sensitive High Resolution Ion-Microprobe (SHRIMP) in the Getchell and Turquoise Ridge Carlin-type gold deposits (Osgood Mountains) require contribution from two different Pb sources. One Pb source dominates the ore stage. It has a limited Pb isotope range characterized by 208Pb/206Pb values of 2.000 to 2.005 and 207Pb/206Pb values of 0.8031 to 0.8075, as recorded by 10-??m-diameter spot SHRIMP analyses of ore-stage arsenian pyrite. These values approximately correspond to 206Pb/204Pb of 19.3 to 19.6, 207Pb/204Pb of 15.65 to 15.75, and 208Pb/204Pb of 39.2 to 39.5. This Pb source is isotopically similar to that in average Neoproterozoic and Cambrian elastic rocks but not to any potential magmatic sources. Whether those clastic rocks provided Pb to the ore fluid cannot be unequivocally proven because their Pb isotope compositions over the same range as in ore-stage arsenian pyrite are similar to those of Ordovician to Devonian siliciclastic and calcareous rocks. The Pb source in the calcareous rocks most likely is largely detrital minerals, since that detritus was derived from the same sources as the detritus in the Neoproterozoic and Cambrian clastic rocks. The second Pb source is characterized by a large range of 206Pb/204Pb values (18-34) with a limited range of 208Pb/204Pb values (38.1-39.5), indicating low but variable Th/U and high and variable U/Pb values. The second Pb source dominates late and postore-stage minerals but is also found in preore sulfide minerals. These Pb isotope characteristics typify Ordovician to Devonian siliciclastic and calcareous rocks around the Carlin trend in northeast Nevada. Petrologically similar rocks host the Getchell and Turquoise Ridge deposits. Lead from the second source was either contributed from the host sedimentary rock sequences or brought into the hydrothermal system by oxidized ground water as the system collapsed. Late ore- and postore-stage sulfide minerals (pyrite, orpiment, and stibnite) from the Betze-Post and Meikle deposits in the Carlin trend and from the Jerritt Canyon mining district have Pb isotope characteristics similar to those determined in Getchell and Turquoise Ridge. This observation suggests that the Pb isotope compositions of their ore fluids may be similar to those at Getchell and Turquoise Ridge. Two models can explain the Pb isotope compositions of the ore-stage arsenian pyrite versus the late ore or postore sulfide minerals. In either model, Pb from the Ordovician to Devonian siliciclastic and calcareous rock source enters the hydrothermal system late in the ore stage but not to any extent during the main stage of ore deposition. In one model, ore-stage Pb was derived from a source with Pb isotope compositions similar to those of the Neoproterozoic and Cambrian clastic sequence, transported as part of the ore fluid and then deposited in the ore-stage arsenian pyrite and fluorite. The second model is based on the observation that the Pb isotope characteristics of the ore-stage minerals also are found in some Ordovician to Devonian calcareous and siliciclastic rocks. Hence, ore-stage Pb could have been derived locally and simply concentrated during the ore stage. Critical to the second model is the removal of all high 206Pb/204Pb (>20) material during alteration. It Also requires the retention of only the low 206Pb/204Pb component of the Ordovician to Devonian sedimentary rocks. This critical step is possible only if the high 206Pb/204Pb values are contained in readily dissolvable mineral phases, whereas the low 206Pb/204Pb values are found only in refractory minerals that released Pb during a final alteration stage just prior deposition of auriferous arsenian pyrite. Distinguishing between Pb transported with the ore fluid or inherited from the site of mineral deposition is not straightforward

  3. Electrical resistivity surveys in Prospect Gulch, San Juan County, Colorado

    USGS Publications Warehouse

    McDougal, Robert R.

    2006-01-01

    Prospect Gulch is a major source of naturally occurring and mining related metals to Cement Creek, a tributary of the upper Animas River in southwestern Colorado. Efforts to improve water quality in the watershed have focused on Prospect Gulch because many of its abandoned mines and are located on federal lands. Information on sources and pathways of metals, and related ground-water flow, will be useful to help prioritize and develop remediation strategies. It has been shown that the occurrence of sulfate, aluminum, iron, zinc and other metals associated with historical mining and the natural weathering of pyritic rock is substantial. In this study, direct current resistivity surveys were conducted to determine the subsurface resistivity distribution and to identify faults and fractures that may act as ground-water conduits or barriers to flow. Five lines of resistivity data were collected in the vicinity of Prospect Gulch, and cross-section profiles were constructed from the field data using a two-dimensional inversion algorithm. The conductive anomalies in the profiles are most likely caused by wet or saturated rocks and sediments, clay rich deposits, or high TDS ground water. Resistive anomalies are likely bedrock, dry surficial and sub-surface deposits, or deposits of ferricrete.

  4. Isotopic data for Late Cretaceous intrusions and associated altered and mineralized rocks in the Big Belt Mountains, Montana

    USGS Publications Warehouse

    du Bray, Edward A.; Unruh, Daniel M.; Hofstra, Albert H.

    2017-03-07

    The quartz monzodiorite of Mount Edith and the concentrically zoned intrusive suite of Boulder Baldy constitute the principal Late Cretaceous igneous intrusions hosted by Mesoproterozoic sedimentary rocks of the Newland Formation in the Big Belt Mountains, Montana. These calc-alkaline plutonic masses are manifestations of subduction-related magmatism that prevailed along the western edge of North America during the Cretaceous. Radiogenic isotope data for neodymium, strontium, and lead indicate that the petrogenesis of the associated magmas involved a combination of (1) sources that were compositionally heterogeneous at the scale of the geographically restricted intrusive rocks in the Big Belt Mountains and (2) variable contamination by crustal assimilants also having diverse isotopic compositions. Altered and mineralized rocks temporally, spatially, and genetically related to these intrusions manifest at least two isotopically distinct mineralizing events, both of which involve major inputs from spatially associated Late Cretaceous igneous rocks. Alteration and mineralization of rock associated with the intrusive suite of Boulder Baldy requires a component characterized by significantly more radiogenic strontium than that characteristic of the associated igneous rocks. However, the source of such a component was not identified in the Big Belt Mountains. Similarly, altered and mineralized rocks associated with the quartz monzodiorite of Mount Edith include a component characterized by significantly more radiogenic strontium and lead, particularly as defined by 207Pb/204Pb values. The source of this component appears to be fluids that equilibrated with proximal Newland Formation rocks. Oxygen isotope data for rocks of the intrusive suite of Boulder Baldy are similar to those of subduction-related magmatism that include mantle-derived components; oxygen isotope data for altered and mineralized equivalents are slightly lighter.

  5. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam

    NASA Astrophysics Data System (ADS)

    Hoang, Thi Hong Anh; Choi, Sung Hi; Yu, Yongjae; Pham, Trung Hieu; Nguyen, Kim Hoang; Ryu, Jong-Sik

    2018-01-01

    This study presents a comprehensive analysis of the major and trace element, mineral, and Sr, Nd, Pb and Mg isotopic compositions of late Cenozoic intraplate basaltic rocks from central and southern Vietnam. The Sr, Nd, and Pb isotopic compositions of these basalts define a tight linear array between Indian mid-ocean-ridge basalt (MORB)-like mantle and enriched mantle type 2 (EM2) components. These basaltic rocks contain low concentrations of CaO (6.4-9.7 wt%) and have high Fe/Mn ratios (> 60) and FeO/CaO-3MgO/SiO2 values (> 0.54), similar to partial melts derived from pyroxenite/eclogite sources. This similarity is also supported by the composition of olivine within these samples, which contains low concentration of Ca and high concentrations of Ni, and shows high Fe/Mn ratios. The basaltic rocks have elevated Dy/Yb ratios that fall within the range of melts derived from garnet lherzolite material, although their Yb contents are much higher than those of modeled melts derived from only garnet lherzolite material and instead plot near the modeled composition of eclogite-derived melts. The Vietnamese basaltic rocks have lighter δ26Mg values (- 0.38 ± 0.06‰) than is expected for the normal mantle (- 0.25 ± 0.07‰), and these values decrease with decreasing Hf/Hf* and Ti/Ti* ratios, indicating that these basalts were derived from a source containing carbonate material. On primitive mantle-normalized multi-element variation diagrams, the central Vietnamese basalts are characterized by positive Sr, Eu, and Ba anomalies. These basalts also plot within the pelagic sediment field in Pbsbnd Pb isotopic space. This suggests that the mantle source of the basalts contained both garnet peridotite and recycled oceanic crust. A systematic analysis of variations in geochemical composition in basalts from southern to central Vietnam indicates that the recycled oceanic crust (possibly the paleo-Pacific slab) source material contains varying proportions of gabbro, basalt, and sediment. The basalts from south-central Vietnam (12°N-14°N) may be dominated by the lowest portion of the residual slab that contains rutile-bearing plagioclase-rich gabbroic eclogite, whereas the uppermost portion of the recycled slab, including sediment and basaltic material with small amounts of gabbro, may be a major constituent of the source for the basalts within the central region of Vietnam (14°N-16°N). Finally, the southern region (10°N-12°N) contains basalts sourced mainly from recycled upper oceanic crust that is basalt-rich and contains little or no sediment.

  6. Late Paleozoic crustal history of central coastal Queensland interpreted from geochemistry of Mesozoic plutons: The effects of continental rifting

    USGS Publications Warehouse

    Allen, C.M.; Wooden, J.L.; Chappell, B.W.

    1997-01-01

    The eastern margin of Australia is understood to be the result of continental rifting during the Cretaceous and Tertiary. Consistent with this model, Cretaceous igneous rocks (granites to basalts) in a continental marginal setting near Bowen, Queensland are isotonically retarded, having isotopic ratios similar to those of most island arcs (Sri = 0.7030-0.7039, ??Nd = +6.46 to +3.00 and 206Pb/204Pb = 18.44-18.77, 207Pb/204Pb = 15.552-15.623, and 208Pb/204Pb = 37.90-38.52). These isotopic signatures are much less evolved than the Late Carboniferous-Permian batholith that many Cretaceous plutons intrude. As rocks ranging in age from about 300-100 Ma are well exposed near Bowen, we can track magma evolution through time. The significant change of magma source occurred much earlier than the Cretaceous based on the fact that Triassic granites in the same area are also isotonically primitive. We attribute the changes of magma composition to crustal rifting during the Late Permian and earliest Triassic. The Cretaceous rocks (actually latest Jurassic to Cretaceous, 145-98 Ma) themselves show compositional trends with time. Rocks of appropriate mineralogy for Al-in-hornblende geobarometry yield pressures ranging from 250 to 80 MPa for rocks ranging in age from 145 to 125 Ma, respectively. More significantly, this older group is relatively compositionally restricted, and is Sr-rich, and Y- and Zr-poor compared to 120-98 Ma rocks. This younger groups is bimodal, being comprised principally of basalts and rhyolites (granites). REE patterns for a given rock type, however, do not differ with age tribute these relatively subtle trace element differences to small differences in conditions (T, aH2O) at the site of melting. Cretaceous crustal rifting can explain the range of rock types and the spatial distribution of rocks < 120 Ma in a longitudinal strip between and overlapping with provinces of older Cretaceous intrusions. A subduction-related setting is assigned to the 145-125 Ma igneous rocks (those more than 50 Ma older than sea floor spreading). ?? 1997 Elsevier Science B.V.

  7. Reconnaissance studies of potential petroleum source rocks in the Middle Jurassic Tuxedni Group near Red Glacier, eastern slope of Iliamna Volcano

    USGS Publications Warehouse

    Stanley, Richard G.; Herriott, Trystan M.; LePain, David L.; Helmold, Kenneth P.; Peterson, C. Shaun

    2013-01-01

    Previous geological and organic geochemical studies have concluded that organic-rich marine shale in the Middle Jurassic Tuxedni Group is the principal source rock of oil and associated gas in Cook Inlet (Magoon and Anders, 1992; Magoon, 1994; Lillis and Stanley, 2011; LePain and others, 2012; LePain and others, submitted). During May 2009 helicopter-assisted field studies, 19 samples of dark-colored, fine-grained rocks were collected from exposures of the Red Glacier Formation of the Tuxedni Group near Red Glacier, about 70 km west of Ninilchik on the eastern flank of Iliamna Volcano (figs. 1 and 3). The rock samples were submitted to a commercial laboratory for analysis by Rock-Eval pyrolysis and to the U.S. Geological Survey organic geochemical laboratory in Denver, Colorado, for analysis of vitrinite reflectance. The results show that values of vitrinite reflectance (percent Ro) in our samples average about 2 percent, much higher than the oil window range of 0.6–1.3 percent (Johnsson and others, 1993). The high vitrinite reflectance values indicate that the rock samples experienced significant heating and furthermore suggest that these rocks may have generated oil and gas in the past but no longer have any hydrocarbon source potential. The high thermal maturity of the rock samples may have resulted from (1) the thermaleffects of igneous activity (including intrusion by igneous rocks), (2) deep burial beneath Jurassic, Cretaceous, and Tertiary strata that were subsequently removed by uplift and erosion, or (3) the combined effects of igneous activity and burial.

  8. Rock sampling. [method for controlling particle size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  9. An integrated study of geochemistry and mineralogy of the Upper Tukau Formation, Borneo Island (East Malaysia): Sediment provenance, depositional setting and tectonic implications

    NASA Astrophysics Data System (ADS)

    Nagarajan, Ramasamy; Roy, Priyadarsi D.; Kessler, Franz L.; Jong, John; Dayong, Vivian; Jonathan, M. P.

    2017-08-01

    An integrated study using bulk chemical composition, mineralogy and mineral chemistry of sedimentary rocks from the Tukau Formation of Borneo Island (Sarawak, Malaysia) is presented in order to understand the depositional and tectonic settings during the Neogene. Sedimentary rocks are chemically classified as shale, wacke, arkose, litharenite and quartz arenite and consist of quartz, illite, feldspar, rutile and anatase, zircon, tourmaline, chromite and monazite. All of them are highly matured and were derived from a moderate to intensively weathered source. Bulk and mineral chemistries suggest that these rocks were recycled from sedimentary to metasedimentary source regions with some input from granitoids and mafic-ultramafic rocks. The chondrite normalized REE signature indicates the presence of felsic rocks in the source region. Zircon geochronology shows that the samples were of Cretaceous and Triassic age. Comparable ages of zircon from the Tukau Formation sedimentary rocks, granitoids of the Schwaner Mountains (southern Borneo) and Tin Belt of the Malaysia Peninsular suggest that the principal provenance for the Rajang Group were further uplifted and eroded during the Neogene. Additionally, presence of chromian spinels and their chemistry indicate a minor influence of mafic and ultramafic rocks present in the Rajang Group. From a tectonic standpoint, the Tukau Formation sedimentary rocks were deposited in a passive margin with passive collisional and rift settings. Our key geochemical observation on tectonic setting is comparable to the regional geological setting of northwestern Borneo as described in the literature.

  10. Analyses of Rock Size-Frequency Distributions and Morphometry of Modified Hawaiian Lava Flows: Implications for Future Martian Landing Sites

    NASA Technical Reports Server (NTRS)

    Craddock, Robert A.; Golombek, Matthew; Howard, Alan D.

    2000-01-01

    Both the size-frequency distribution and morphometry of rock populations emplaced by a variety of geologic processes in Hawaii indicate that such information may be useful in planning future landing sites on Mars and interpreting the surface geology.

  11. Micro-Ct Imaging of Multi-Phase Flow in Carbonates and Sandstones

    NASA Astrophysics Data System (ADS)

    Andrew, M. G.; Bijeljic, B.; Blunt, M. J.

    2013-12-01

    One of the most important mechanisms that limits the escape of CO2 when injected into the subsurface for the purposes of carbon storage is capillary trapping, where CO2 is stranded as pore-scale droplets (ganglia). Prospective storage sites are aquifers or reservoirs that tend to be at conditions where CO2 will reside as a super-critical phase. In order to fully describe physical mechanisms characterising multi-phase flow during and post CO2 injection, experiments need to be conducted at these elevated aquifer/reservoir conditions - this poses a considerable experimental challenge. A novel experimental apparatus has been developed which uses μCT scanning for the non-invasive imaging of the distribution of CO2 in the pore space of rock with resolutions of 7μm at temperatures and pressures representative of the conditions present in prospective saline aquifer CO2 storage sites. The fluids are kept in chemical equilibrium with one-another and with the rock into which they are injected. This is done to prevent the dissolution of the CO2 in the brine to form carbonic acid, which can then react with the rock, particularly carbonates. By eliminating reaction we study the fundamental mechanisms of capillary trapping for an unchanging pore structure. In this study we present a suite of results from three carbonate and two sandstone rock types, showing that, for both cases the CO2 acts as the non-wetting phase and significant quantities of CO2 is trapped. The carbonate examined represent a wide variety of pore topologies with one rock with a very well connected, high porosity pore space (Mt Gambier), one with a lower porosity, poorly connected pore space (Estaillades) and one with a cemented bead pack type pore space (Ketton). Both sandstones (Doddington and Bentheimer) were high permeability granular quartzites. CO2 was injected into each rock, followed by brine injection. After brine injection the entire length of the rock core was scanned, processed and segmented into grain, brine and CO2. Experiments were repeated five times for each rock type, allowing for statistical errors to be estimated. The images from each experiment were approximately 900x900x3200 voxels, representing a sample size of approximately 6.4mm x 6.4mm x 22.4mm. Higher residual saturations were found in the sandstones (Bentheimer: 0.299×0.009, Doddington: 0.27×0.03) than in the carbonates (Mt Gambier: 0.187×0.007, Estaillades: 0.190×0.005, Ketton: 0.193×0.012). The size frequency distribution of ganglia was also examined. The largest ganglia contributed negligibly to the total residual saturation in all cases apart from Mt Gambier, where the increased connectivity of the pore-space inhibits non-wetting phase snap-off. The snap-off of ganglia is understood theoretically as a percolation process, and ganglia size distributions show approximately power-law distributions with exponents agreeing with predictions from percolation theory apart from in Mt Gambier limestone, where the extreme connectivity of the pore space may cause snap-off to be a non-percolation like process. We also present the first dynamic real time multiphase fluid displacements at reservoir conditions. These images were taken using the same reservoir-condition flow rig at Diamond Light Source synchrotron. This advanced facility allows for scanning intervals of 30 seconds, enabling the imaging of discrete pore-filling events (Haines jumps).

  12. Hot dry rock geothermal energy: A renewable energy resource that is ready for development now

    NASA Astrophysics Data System (ADS)

    Brown, D. W.; Potter, R. M.; Myers, C. W.

    Hot dry rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, is a very large and well-distributed resource of nonpolluting, and essentially renewable, energy that is available globally. Its use could help mitigate climatic change and reduce acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nations's dependence on imported oil, enhancing national security and reducing our trade deficit. On a national scale we can begin to develop this new source, using it directly for power generation or for direct-heat applications, or indirectly in hybrid geothermal/fossil-fuel power plants. In the HDR concept, which has been demonstrated in the field in two different applications and flow-tested for periods up to one year, heat is recovered from the earth by pressurized water in a closed-loop circulation system. As a consequence, minimal effluents are released to the atmosphere, and no wastes are produced. This paper describes the nature of the HDR resource and the technology required to implement the heat-mining concept. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source.

  13. The dilemma of the Jiaodong gold deposits: Are they unique?

    USGS Publications Warehouse

    Goldfarb, Richard J.; Santosh, M.

    2013-01-01

    The ca. 126–120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as >3000 t Au. The vein and disseminated ores are hosted by NE- to NNE-trending brittle normal faults that parallel the margins of ca. 165–150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Precambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous “Yanshanian” intracontinental extensional deformation and associated gold formation.Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong deposits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolatilization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130–123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineralization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate subduction, and seismicity along the continental-scale Tan-Lu fault. Possible ore genesis scenarios include those where ore fluids were produced directly by the metamorphism of oceanic lithosphere and overlying sediment on the subducting paleo-Pacific slab, or by devolatilization of an enriched mantle wedge above the slab. Both the sulfur and gold could be sourced from either the oceanic sediments or the serpentinized mantle. A better understanding of the architecture of the paleo-Pacific slab during Early Cretaceous below the eastern margin of China is essential to determination of the validity of possible models.

  14. A regional soil and sediment geochemical study in northern California

    USGS Publications Warehouse

    Goldhaber, M.B.; Morrison, J.M.; Holloway, J.M.; Wanty, R.B.; Helsel, D.R.; Smith, D.B.

    2009-01-01

    Regional-scale variations in soil geochemistry were investigated in a 20,000-km2 study area in northern California that includes the western slope of the Sierra Nevada, the southern Sacramento Valley and the northern Coast Ranges. Over 1300 archival soil samples collected from the late 1970s to 1980 in El Dorado, Placer, Sutter, Sacramento, Yolo and Solano counties were analyzed for 42 elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry following a near-total dissolution. These data were supplemented by analysis of more than 500 stream-sediment samples from higher elevations in the Sierra Nevada from the same study site. The relatively high-density data (1 sample per 15 km2 for much of the study area) allows the delineation of regional geochemical patterns and the identification of processes that produced these patterns. The geochemical results segregate broadly into distinct element groupings whose distribution reflects the interplay of geologic, hydrologic, geomorphic and anthropogenic factors. One such group includes elements associated with mafic and ultramafic rocks including Cr, Ni, V, Co, Cu and Mg. Using Cr as an example, elevated concentrations occur in soils overlying ultramafic rocks in the foothills of the Sierra Nevada (median Cr = 160 mg/kg) as well as in the northern Coast Ranges. Low concentrations of these elements occur in soils located further upslope in the Sierra Nevada overlying Tertiary volcanic, metasedimentary and plutonic rocks (granodiorite and diorite). Eastern Sacramento Valley soil samples, defined as those located east of the Sacramento River, are lower in Cr (median Cr = 84 mg/kg), and are systematically lower in this suite compared to soils from the west side of the Sacramento Valley (median Cr = 130 mg/kg). A second group of elements showing a coherent pattern, including Ca, K, Sr and REE, is derived from relatively silicic rocks types. This group occurs at elevated concentrations in soils overlying volcanic and plutonic rocks at higher elevations in the Sierras (e.g. median La = 28 mg/kg) and the east side of the Sacramento Valley (median 20 mg/kg) compared to soils overlying ultramafic rocks in the Sierra Nevada foothills (median 15 mg/kg) and the western Sacramento Valley (median 14 mg/kg). The segregation of soil geochemistry into distinctive groupings across the Sacramento River arises from the former presence of a natural levee (now replaced by an artificial one) along the banks of the river. This levee has been a barrier to sediment transport. Sediment transport to the Valley by glacial outwash from higher elevations in the Sierra Nevada and, more recently, debris from placer Au mining has dominated sediment transport to the eastern Valley. High content of mafic elements (and low content of silicic elements) in surface soil in the west side of the valley is due to a combination of lack of silicic source rocks, transport of ultramafic rock material from the Coast Ranges, and input of sediment from the late Mesozoic Great Valley Group, which is itself enriched in mafic elements. A third group of elements (Zn, Cd, As and Cu) reflect the impact of mining activity. Soil with elevated content of these elements occurs along the Sacramento River in both levee and adjacent flood basin settings. It is interpreted that transport of sediment down the Sacramento River from massive sulfide mines in the Klamath Mountains to the north has caused this pattern. The Pb, and to some extent Zn, distribution patterns are strongly impacted by anthropogenic inputs. Elevated Pb content is localized in major cites and along major highways due to inputs from leaded gasoline. Zinc has a similar distribution pattern but the source is tire wear.

  15. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  16. Distribution of trace metals in anchialine caves of Adriatic Sea, Croatia

    NASA Astrophysics Data System (ADS)

    Cuculić, Vlado; Cukrov, Neven; Kwokal, Željko; Mlakar, Marina

    2011-11-01

    This study presents results of the first comprehensive research on ecotoxic trace metals (Cd, Pb, Cu and Zn) in aquatic anchialine ecosystems. Data show the influence of hydrological and geological characteristics on trace metals in highly stratified anchialine water columns. Distribution of Cd, Pb, Cu and Zn in two anchialine water bodies, Bjejajka Cave and Lenga Pit in the Mljet National park, Croatia were investigated seasonally from 2006 to 2010. Behaviour and concentrations of dissolved and total trace metals in stratified water columns and metal contents in sediment, carbonate rocks and soil of the anchialine environment were evaluated. Trace metals and dissolved organic carbon (DOC) concentrations in both anchialine water columns were significantly elevated compared to adjacent seawater. Zn and Cu concentrations were the highest in the Lenga Pit water column and sediment. Elevated concentrations of Zn, Pb and Cu in Bjejajka Cave were mainly terrigenous. Significantly elevated concentrations of cadmium (up to 0.3 μg L -1) were found in the water column of Bjejajka cave, almost two orders of magnitude higher compared to nearby surface seawater. Laboratory analysis revealed that bat guano was the major source of cadmium in Bjejajka Cave. Cadmium levels in Lenga Pit, which lacks accumulations of bat guano, were 20-fold lower. Moreover, low metal amounts in carbonate rocks in both caves, combined with mineral leaching experiments, revealed that carbonates play a minor role as a source of metals in both water columns. We observed two types of vertical distribution pattern of cadmium in the stratified anchialine Bjejajka Cave water column. At lower salinities, non-conservative behaviour was characterized by strong desorption and enrichment of dissolved phase while, at salinities above 20, Cd behaved conservatively and its dissolved concentration decreased. Conservative behaviour of Cu, Pb, Zn and DOC was observed throughout the water column. After heavy rains, Cd showed reduced concentration and uniform vertical distribution, suggesting a non-terrestrial origin. Under the same conditions, concentrations of total and dissolved Pb, Cu, Zn and DOC were significantly elevated. Variations of trace metal vertical distributions in anchialine water columns were caused by large inputs of fresh water (extraordinary rainy events), and were not influenced by seasonal changes.

  17. Marine geology of the Near Islands Shelf, Alaska

    USGS Publications Warehouse

    Scruton, Philip Challacombe

    1953-01-01

    During the summer of 1950 on the insular shelf surrounding the Near Islands, Alaska, 193 oceanographic stations were occupied from aboard the U. S. Geological Survey vessel EIDER. Bottom character and temperature observations were made at these stations. The composition and size distribution characteristics of the bottom samples have been determined. Components of terrigenous origin are angular to subangular sand and silt and angular to well rounded granules, pebbles, and cobbles, all composed of little-altered fragments of the fine grained insular rocks. Components of marine origin are the skeletons of Foraminifera, diatoms, and sponges and the broken shells of a few species of mollusks and of one echinoid species. A chart, based also on the study of approximately 600 USC&GS bottom notations, was prepared to show the distribution of these components of the sediments. Bed rock is exposed on most of the shelf; where sediment occurs terrigenous components are generally most important near shore, whereas marine components are more important seaward of the islands. Studies of the Foraminifera fauna and the diatom flora (identified by K. E. Lohman) and the few mollusks of quantitative importance show these organisms to be forms characteristic of cold or deep water or occurring in a wide range of temperature conditions. The Foraminifera exhibit depth zonation which seems to be controlled in part by temperature and in part by depth or some other variable which is a function of depth. Sphericity and roundness studies made on pebbles from the shelf, the beaches, and the fluvio-glacial deposits together with shelf topographic features and Foraminifera from sediment deposited before ice wastage was complete suggest the shelf was not subjected to prolonged surf action during the post-glacial rise of sea level. To aid in interpreting the sediments and their distribution several subaerial and marine environmental factors were investigated. Those factors found to be of most importance in determining sediment character and distribution are recent geologic history, nature of terrigenous source material, temperature, topography, rainfall, size of source area, history of the water mass, waves, and currents. The data derived from this study show the importance of climate as an important variable in determining sediment character and distribution in the Near Islands.

  18. Simulation of ground-water flow to assess geohydrologic factors and their effect on source-water areas for bedrock wells in Connecticut

    USGS Publications Warehouse

    Starn, J. Jeffrey; Stone, Janet Radway

    2005-01-01

    Generic ground-water-flow simulation models show that geohydrologic factors?fracture types, fracture geometry, and surficial materials?affect the size, shape, and location of source-water areas for bedrock wells. In this study, conducted by the U.S. Geological Survey in cooperation with the Connecticut Department of Public Health, ground-water flow was simulated to bedrock wells in three settings?on hilltops and hillsides with no surficial aquifer, in a narrow valley with a surficial aquifer, and in a broad valley with a surficial aquifer?to show how different combinations of geohydrologic factors in different topographic settings affect the dimensions and locations of source-water areas in Connecticut. Three principal types of fractures are present in bedrock in Connecticut?(1) Layer-parallel fractures, which developed as partings along bedding in sedimentary rock and compositional layering or foliation in metamorphic rock (dips of these fractures can be gentle or steep); (2) unroofing joints, which developed as strain-release fractures parallel to the land surface as overlying rock was removed by erosion through geologic time; and (3) cross fractures and joints, which developed as a result of tectonically generated stresses that produced typically near-vertical or steeply dipping fractures. Fracture geometry is defined primarily by the presence or absence of layering in the rock unit, and, if layered, by the angle of dip in the layering. Where layered rocks dip steeply, layer-parallel fracturing generally is dominant; unroofing joints also are typically well developed. Where layered rocks dip gently, layer-parallel fracturing also is dominant, and connections among these fractures are provided only by the cross fractures. In gently dipping rocks, unroofing joints generally do not form as a separate fracture set; instead, strain release from unroofing has occurred along gently dipping layer-parallel fractures, enhancing their aperture. In nonlayered and variably layered rocks, layer-parallel fracturing is absent or poorly developed; fracturing is dominated by well-developed subhorizontal unroofing joints and steeply dipping, tectonically generated fractures and (or) cooling joints. Cross fractures (or cooling joints) in nonlayered and variably layered rocks have more random orientations than in layered rocks. Overall, nonlayered or variably layered rocks do not have a strongly developed fracture direction. Generic ground-water-flow simulation models showed that fracture geometry and other geohydrologic factors affect the dimensions and locations of source-water areas for bedrock wells. In general, source-water areas to wells reflect the direction of ground-water flow, which mimics the land-surface topography. Source-water areas to wells in a hilltop setting were not affected greatly by simulated fracture zones, except for an extensive vertical fracture zone. Source-water areas to wells in a hillside setting were not affected greatly by simulated fracture zones, except for the combination of a subhorizontal fracture zone and low bedrock vertical hydraulic conductivity, as might be the case where an extensive subhorizontal fracture zone is not connected or is poorly connected to the surface through vertical fractures. Source-water areas to wells in a narrow valley setting reflect complex ground-water-flow paths. The typical flow path originates in the uplands and passes through either till or bedrock into the surficial aquifer, although only a small area of the surficial aquifer actually contributes water to the well. Source-water areas in uplands can include substantial areas on both sides of a river. Source-water areas for wells in this setting are affected mainly by the rate of ground-water recharge and by the degree of anisotropy. Source-water areas to wells in a broad valley setting (bedrock with a low angle of dip) are affected greatly by fracture properties. The effect of a given fracture is to channel the

  19. Petrologic variations in Apollo 16 surface soils

    NASA Technical Reports Server (NTRS)

    Houck, K. J.

    1982-01-01

    Source rock, maturation history and intrasite variation data are derived for the Apollo 16 regolith by comparing modal analyses of 15 surface soils with rake and rock sample data. Triangular source rock component plots show that Apollo 16 soils have similar source rocks that are well homogenized throughout the site. The site can be divided into three soil petrographic provinces. Central site soils are mature, well homogenized, and enriched in glass. They are probably the most typical Cayley Plains materials present. North Ray soils are immature to submature, containing North Ray ejecta. South Ray soils are mature, but contain small amounts of fresh impact melts and plagioclase, due perhaps to the breakdown of blocky South Ray ejecta. The different compositions and physical properties of North and South Ray ejecta support the hypothesis that the latter event excavated Cayley material, while the former excavated Descartes materials.

  20. Geochemistry of Archean Mafic Amphibolites from the Amsaga Area, West African Craton, Mauritania: Occurrence of Archean oceanic plateau

    NASA Astrophysics Data System (ADS)

    El Atrassi, Fatima; Debaille, Vinciane; Mattielli, Nadine; Berger, Julien

    2015-04-01

    While Archean terrains are mainly composed of a TTG (Tonalite-trondhjemite-granodiorite) suite, more mafic lithologies such as amphibolites are also a typical component of those ancient terrains. Although mafic rocks represent only ~10% of the Archean cratons, they may provide key evidence of the role and nature of basaltic magmatism in the formation of the Archean crust as well as the evolution of the Archean mantle. This study focuses on the Archean crust from the West African craton in Mauritania (Amsaga area). The Amsaga Archean crust mainly consists of TTG and thrust-imbricated slices of mafic volcanic rocks, which have been affected by polymetamorphic events from the amphibolite to granulite facies. We report the results of a combined petrologic, Sm-Nd isotopic, major element and rare earth element (REE) study of the Archean amphibolites in the West African craton. This study was conducted in order to characterize these rocks, to constrain the time of their formation and to evaluate their tectonic setting and their possible mantle source. Our petrological observations show that these amphibolites have fine to medium granoblastic and nematoblastic textures. They are dominated by amphibolite-facies mineral assemblages (mainly amphibole and plagioclase), but garnet and clinopyroxene occur in a few samples. These amphibolites have tholeiitic basalt composition. On a primitive mantle-normalized diagram, they display fairly flat patterns without negative anomalies for either Eu or Nb-Ta. We have shown using Sm-Nd whole rock isotopic data that these amphibolites formed at 3.3 ±0.075 Ga. They have positive ɛNdi values (+5.2 ± 1.6). These samples show isotopically juvenile features, which rule out the possibility of significant contamination of the protolith magmas by ancient continental crust. Based on these geochemical data we propose that the tholeiitic basalts were formed in an oceanic plateau tectonic setting from a mantle plume source and that they have a depleted mantle source. It is the first time that such a signature is observed in the Archean part of the West African craton, and would suggest a widespread bimodal distribution of trace elements signature in all Archean basalts.

  1. Early Cretaceous bimodal volcanic rocks in the southern Lhasa terrane, south Tibet: Age, petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ding, Lin; Liu, Zhi-Chao; Zhang, Li-Yun; Yue, Ya-Hui

    2017-01-01

    Limited geochronological and geochemical data from Early Cretaceous igneous rocks of the Gangdese Belt have resulted in a dispute regarding the subduction history of Neo-Tethyan Ocean. To approach this issue, we performed detailed in-situ zircon U-Pb and Hf isotopic, whole-rock elemental and Sr-Nd isotopic analyses on Late Mesozoic volcanic rocks exposed in the Liqiongda area, southern Lhasa terrane. These volcanic rocks are calc-alkaline series, dominated by basalts, basaltic andesites, and subordinate rhyolites, with a bimodal suite. The LA-ICPMS zircon U-Pb dating results of the basaltic andesites and rhyolites indicate that these volcanic rocks erupted during the Early Cretaceous (137-130 Ma). The basaltic rocks are high-alumina (average > 17 wt.%), enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs), showing subduction-related characteristics. They display highly positive zircon εHf(t) values (+ 10.0 to + 16.3) and whole-rock εNd(t) values (+ 5.38 to + 7.47). The silicic suite is characterized by low Al2O3 (< 15.4 wt.%), Mg# (< 40), and TiO2 (< 0.3 wt.%) abundances; enriched and variable concentrations of LILEs and REEs; and strongly negative Eu anomalies (Eu/Eu* = 0.08-0.19), as well as depleted Hf isotopic compositions (εHf(t) = + 4.9 to + 16.4) and Nd isotopic compositions (εNd(t) = + 5.26 to + 6.71). Consequently, we envision a process of basaltic magmas similar to that of MORB extracted from a source metasomatized by slab-derived components for the petrogenesis of mafic rocks, whereas the subsequent mafic magma underplating triggered partial melting of the juvenile crust to generate acidic magma. Our results confirm the presence of Early Cretaceous volcanism in the southern Lhasa terrane. Combined with the distribution of the contemporary magmatism, deformation style, and sedimentary characteristics in the Lhasa terrane, we favor the suggestion that the Neo-Tethyan oceanic lithosphere was flat-lying beneath the Lhasa terrane during the Early Cretaceous. Appendix Table A2. LA-MC-ICPMS zircon Hf isotopes of volcanic rocks from Liqiongda area. Appendix Table A3. Whole-rock major, trace element and Sr-Nd isotope data of the volcanic rocks from the Liqiongda area.

  2. Growing Pebbles and Conceptual Prisms - Understanding the Source of Student Misconceptions about Rock Formation.

    ERIC Educational Resources Information Center

    Kusnick, Judi

    2002-01-01

    Analyzes narrative essays--stories of rock formation--written by pre-service elementary school teachers. Reports startling misconceptions among preservice teachers on pebbles that grow, human involvement in rock formation, and sedimentary rocks forming as puddles as dry up, even though these students had completed a college level course on Earth…

  3. Grain Size Distribution in Mudstones: A Question of Nature vs. Nurture

    NASA Astrophysics Data System (ADS)

    Schieber, J.

    2011-12-01

    Grain size distribution in mudstones is affected by the composition of the source material, the processes of transport and deposition, and post-depositional diagenetic modification. With regard to source, it does make a difference whether for example a slate belt is eroded vs a stable craton. The former setting tends to provide a broad range of detrital quartz in the sub 62 micron size range in addition to clays and greenschist grade rock fragments, whereas the latter may be biased towards coarser quartz silt (30-60 microns), in addition to clays and mica flakes. In flume experiments, when fine grained materials are transported in turbulent flows at velocities that allow floccules to transfer to bedload, a systematic shift of grain size distribution towards an increasingly finer grained suspended load is observed as velocity is lowered. This implies that the bedload floccules are initially constructed of only the coarsest clay particles at high velocities, and that finer clay particles become incorporated into floccules as velocity is lowered. Implications for the rock record are that clay beds deposited from decelerating flows should show subtle internal grading of coarser clay particles; and that clay beds deposited from continuous fast flows should show a uniform distribution of coarse clays. Still water settled clays should show a well developed lower (coarser) and upper (finer) subdivision. A final complication arises when diagenetic processes, such as the dissolution of biogenic silica, give rise to diagenetic quartz grains in the silt to sand size range. This diagenetic silica precipitates in fossil cavities and pore spaces of uncompacted muds, and on casual inspection can be mistaken for detrital quartz. In distal mudstone successions close to 100 % of "apparent" quartz silt can be of that origin, and reworking by bottom currents can further enhance a detrital perception by producing rippled and laminated silt beds. Although understanding how size distributions in mudstones evolve is considered central to problems in hillslope, fluvial, aeolian, coastal, and submarine systems, one can not simply measure distributions and hope to arrive at an answer. The complex origins of mudstones are reflected in their very broad compositional range, and multiple overprinted processes have to be considered in order to make sense out of observed grain size distributions.

  4. Sierra Nevada Rock Glaciers: Biodiversity Refugia in a Warming World?

    NASA Astrophysics Data System (ADS)

    Millar, C. I.; Westfall, R. D.

    2007-12-01

    Rock glaciers and related periglacial rock-ice features (RIFs) are common landforms in high, dry mountain ranges, and widely distributed throughout canyons of the Sierra Nevada, California, USA (Millar & Westfall, in press). Due to insulating rock carapaces, active rock glaciers (ice-cored) have been documented to maintain ice longer, and thus contribute to more enduring hydrologic output, under past warming climates than typical ice glaciers. This function has been suggested for the coming century. We propose a broader hydrologic and ecologic role for RIFs as temperatures rise in the future. For the Sierra Nevada, we suggest that canyons with either active or relict RIFs (Holocene and Pleistocene) maintain water longer and distribute water more broadly than canyons that were scoured by ice glaciers and are defined by primary river and lake systems. RIFs provide persistent, distributed water for extensive wetland habitat, rare in these otherwise barren, high, and dry locations. We mapped and assessed the area of wetlands surrounding active and relict RIFs from the central eastern Sierra Nevada; from these we delineated wetland vegetation community types and recorded plant species found in RIF-supported wetlands. Mid-elevation RIFs, likely inactive or with transient ice, develop soil patches on their rock matrix. At the Barney Rock Glacier (Duck Pass, Mammoth Crest), we inventoried plant species on all soil patches, and measured cover for each species per patch and total plant cover for the rock glacier. RIF landforms also appear to support high-elevation mammals. We show that American beaver (Castor canadensis) is associated with canyons dominated by active or relict RIFs and propose that the articulating, persistent, and distributed nature of streams makes dam-building easier than other canyons. Beavers further contribute to maintaining water and creating wetland habitat in upper watersheds by engineering ponds and marshes, and contributing to riparian extent. We also mapped 125 discrete locations of American pika (Ochotona princeps) and found a strong association of pika presence with active and relict RIFs, in particular cirque rock glaciers, valley rock glaciers, and boulder streams. Using the PRISM climate model and a small network of temperature dataloggers from RIF habitats, we present a climate envelope for the pika habitats we surveyed. We propose that the large area of RIFs in the Sierra Nevada over a range of elevations could provide extensive habitat for pika in the warming future. RIFs in general are a group of landforms little studied in high mountains of western North America but of potential increasing importance to hydrologic and ecologic function as climate warms in the future. Millar, C.I. and R.D. Westfall. In press. Rock glaciers and periglacial rock-ice features in the Sierra Nevada; Classification, distribution, and climate relationships. Quaternary International.

  5. The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China.

    PubMed

    Liu, Shan; Qi, Shihua; Luo, Zhaohui; Liu, Fangzhi; Ding, Yang; Huang, Huanfang; Chen, Zhihua; Cheng, Shenggao

    2018-02-01

    Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water-rock-hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water-rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T 2 g 3 ) and upper of Yongningzhen formation (T 1 yn 4 ). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.

  6. Preliminary Aeromagnetic Map of Joshua Tree National Park and Vicinity, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Hill, P.L.

    2010-01-01

    This aeromagnetic map of Joshua Tree National Park and vicinity is intended to promote further understanding of the geology and structure in the region by serving as a basis for geophysical interpretations and by supporting geological mapping, water-resource investigations, and various topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals commonly mark lithologic or structural boundaries. Bodies of mafic and ultramafic rocks tend to produce the most intense magnetic anomalies, but such generalizations must be applied with caution because rocks with more felsic compositions, or even some sedimentary units, also can cause measurable magnetic anomalies. The database includes two ASCII files containing new aeromagnetic data and two ASCII files with point locations of the local maximum horizontal gradient derived from the aeromagnetic data. This metadata file describes the horizontal gradient locations derived from new and existing aeromagnetic data. This aeromagnetic map identifies magnetic features as a basis for geophysical interpretations; the gradients help define the edges of magnetic sources. This database updates geophysical information originally presented in smaller-scale formats and includes detailed aeromagnetic data collected by EON Geosciences, Inc.

  7. No evidence of extraterrestrial noble metal and helium anomalies at Marinoan glacial termination

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, Bernhard; Waters, Christine A.; Kurz, Mark D.; Hoffman, Paul F.

    2016-03-01

    High concentrations of extraterrestrial iridium have been reported in terminal Sturtian and Marinoan glacial marine sediments and are used to argue for long (likely 3-12 Myr) durations of these Cryogenian glaciations. Reanalysis of the Marinoan sedimentary rocks used in the original study, supplemented by sedimentary rocks from additional terminal Marinoan sections, however, does not confirm the initial report. New platinum group element concentrations, and 187Os/188Os and 3He/4He signatures are consistent with crustal origin and minimal extraterrestrial contributions. The discrepancy is likely caused by different sample masses used in the two studies, with this study being based on much larger samples that better capture the stochastic distribution of extraterrestrial particles in marine sediments. Strong enrichment of redox-sensitive elements, particularly rhenium, up-section in the basal postglacial cap carbonates, may indicate a return to more fully oxygenated seawater in the aftermath of the Marinoan snowball earth. Sections dominated by hydrogenous osmium indicate increasing submarine hydrothermal sources and/or continental inputs that are increasingly dominated by young mantle-derived rocks after deglaciation. Sedimentation rate estimates for the basal cap carbonates yield surprisingly slow rates of a few centimeters per thousand years. This study highlights the importance of using sedimentary rock samples that represent sufficiently large area-time products to properly sample extraterrestrial particles representatively, and demonstrates the value of using multiple tracers of extraterrestrial matter.

  8. Evaluation of hydrocarbon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cashman, P.H.; Trexler, J.H. Jr.

    1992-09-30

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphicmore » studies continue to support the interpretation that rocks mapped as the {open_quotes}Eleana Formation{close_quotes} are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock.« less

  9. Heterogeneous vesiculation of 2011 El Hierro xeno-pumice revealed by X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Berg, S. E.; Troll, V. R.; Deegan, F. M.; Burchardt, S.; Krumbholz, M.; Mancini, L.; Polacci, M.; Carracedo, J. C.; Soler, V.; Arzilli, F.; Brun, F.

    2016-12-01

    During the first week of the 2011 El Hierro submarine eruption, abundant light-coloured pumiceous, high-silica volcanic bombs coated in dark basanite were found floating on the sea. The composition of the light-coloured frothy material (`xeno-pumice') is akin to that of sedimentary rocks from the region, but the textures resemble felsic magmatic pumice, leaving their exact mode of formation unclear. To help decipher their origin, we investigated representative El Hierro xeno-pumice samples using X-ray computed microtomography for their internal vesicle shapes, volumes, and bulk porosity, as well as for the spatial arrangement and size distributions of vesicles in three dimensions (3D). We find a wide range of vesicle morphologies, which are especially variable around small fragments of rock contained in the xeno-pumice samples. Notably, these rock fragments are almost exclusively of sedimentary origin, and we therefore interpret them as relicts an the original sedimentary ocean crust protolith(s). The irregular vesiculation textures observed probably resulted from pulsatory release of volatiles from multiple sources during xeno-pumice formation, most likely by successive release of pore water and mineral water during incremental heating and decompression of the sedimentary protoliths.

  10. Low-fluorine Stockwork Molybdenite Deposits

    USGS Publications Warehouse

    Ludington, Steve; Hammarstrom, Jane; Piatak, Nadine M.

    2009-01-01

    Low-fluorine stockwork molybdenite deposits are closely related to porphyry copper deposits, being similar in their tectonic setting (continental volcanic arc) and the petrology (calc-alkaline) of associated igneous rock types. They are mainly restricted to the Cordillera of western Canada and the northwest United States, and their distribution elsewhere in the world may be limited. The deposits consist of stockwork bodies of molybdenite-bearing quartz veinlets that are present in and around the upper parts of intermediate to felsic intrusions. The deposits are relatively low grade (0.05 to 0.2 percent Mo), but relatively large, commonly >50 million tons. The source plutons for these deposits range from granodiorite to granite in composition; the deposits primarily form in continental margin subduction-related magmatic arcs, often concurrent with formation of nearby porphyry copper deposits. Oxidation of pyrite in unmined deposits or in tailings and waste rock during weathering can lead to development of acid-rock drainage and limonite-rich gossans. Waters associated with low-fluorine stockwork molybdenite deposits tend to be nearly neutral in pH; variable in concentrations of molybdenum (10,000 ug/L); below regulatory guidelines for copper, iron, lead, zinc, and mercury; and locally may exceed guidelines for arsenic, cadmium, and selenium.

  11. Multifractal model of magnetic susceptibility distributions in some igneous rocks

    USGS Publications Warehouse

    Gettings, Mark E.

    2012-01-01

    Measurements of in-situ magnetic susceptibility were compiled from mainly Precambrian crystalline basement rocks beneath the Colorado Plateau and ranges in Arizona, Colorado, and New Mexico. The susceptibility meter used measures about 30 cm3 of rock and measures variations in the modal distribution of magnetic minerals that form a minor component volumetrically in these coarsely crystalline granitic to granodioritic rocks. Recent measurements include 50–150 measurements on each outcrop, and show that the distribution of magnetic susceptibilities is highly variable, multimodal and strongly non-Gaussian. Although the distribution of magnetic susceptibility is well known to be multifractal, the small number of data points at an outcrop precludes calculation of the multifractal spectrum by conventional methods. Instead, a brute force approach was adopted using multiplicative cascade models to fit the outcrop scale variability of magnetic minerals. Model segment proportion and length parameters resulted in 26 676 models to span parameter space. Distributions at each outcrop were normalized to unity magnetic susceptibility and added to compare all data for a rock body accounting for variations in petrology and alteration. Once the best-fitting model was found, the equation relating the segment proportion and length parameters was solved numerically to yield the multifractal spectrum estimate. For the best fits, the relative density (the proportion divided by the segment length) of one segment tends to be dominant and the other two densities are smaller and nearly equal. No other consistent relationships between the best fit parameters were identified. The multifractal spectrum estimates appear to distinguish between metamorphic gneiss sites and sites on plutons, even if the plutons have been metamorphosed. In particular, rocks that have undergone multiple tectonic events tend to have a larger range of scaling exponents.

  12. The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moretti, I.; Montemurro, G.; Aguilera, E.

    A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mgmore » HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.« less

  13. Computational Modeling of Seismic Wave Propagation Velocity-Saturation Effects in Porous Rocks

    NASA Astrophysics Data System (ADS)

    Deeks, J.; Lumley, D. E.

    2011-12-01

    Compressional and shear velocities of seismic waves propagating in porous rocks vary as a function of the fluid mixture and its distribution in pore space. Although it has been possible to place theoretical upper and lower bounds on the velocity variation with fluid saturation, predicting the actual velocity response of a given rock with fluid type and saturation remains an unsolved problem. In particular, we are interested in predicting the velocity-saturation response to various mixtures of fluids with pressure and temperature, as a function of the spatial distribution of the fluid mixture and the seismic wavelength. This effect is often termed "patchy saturation' in the rock physics community. The ability to accurately predict seismic velocities for various fluid mixtures and spatial distributions in the pore space of a rock is useful for fluid detection, hydrocarbon exploration and recovery, CO2 sequestration and monitoring of many subsurface fluid-flow processes. We create digital rock models with various fluid mixtures, saturations and spatial distributions. We use finite difference modeling to propagate elastic waves of varying frequency content through these digital rock and fluid models to simulate a given lab or field experiment. The resulting waveforms can be analyzed to determine seismic traveltimes, velocities, amplitudes, attenuation and other wave phenomena for variable rock models of fluid saturation and spatial fluid distribution, and variable wavefield spectral content. We show that we can reproduce most of the published effects of velocity-saturation variation, including validating the Voigt and Reuss theoretical bounds, as well as the Hill "patchy saturation" curve. We also reproduce what has been previously identified as Biot dispersion, but in fact in our models is often seen to be wave multi-pathing and broadband spectral effects. Furthermore, we find that in addition to the dominant seismic wavelength and average fluid patch size, the smoothness of the fluid patches are a critical factor in determining the velocity-saturation response; this is a result that we have not seen discussed in the literature. Most importantly, we can reproduce all of these effects using full elastic wavefield scattering, without the need to resort to more complicated squirt-flow or poroelastic models. This is important because the physical properties and parameters we need to model full elastic wave scattering, and predict a velocity-saturation curve, are often readily available for projects we undertake; this is not the case for poroelastic or squirt-flow models. We can predict this velocity saturation curve for a specific rock type, fluid mixture distribution and wavefield spectrum.

  14. The information content of high-frequency seismograms and the near-surface geologic structure of "hard rock" recording sites

    USGS Publications Warehouse

    Cranswick, E.

    1988-01-01

    Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the "signal" is the site response of the nearsurface. Several examples of waveform data recorded at "hard rock" sites, which are generally assumed to have a "flat" transfer function, are presented to demonstrate the severe signal distortions, including fmax, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinct fmax site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms of fmax and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra. ?? 1988 Birkha??user Verlag.

  15. Geochemical characterization of the siliciclastic rocks of Chitravati Group, Cuddapah Supergroup: Implications for provenance and depositional environment

    NASA Astrophysics Data System (ADS)

    Somasekhar, V.; Ramanaiah, S.; Sarma, D. Srinivasa

    2018-06-01

    Petrological and geochemical studies have been carried out on Pulivendla and Gandikota Quartzite from Chitravati Group of Cuddapah Supergroup to decipher the provenance and depositional environment. Both the units are texturally mature with sub-rounded to well-rounded and moderately to well-sorted grains. Majority of the framework grains are quartz, in the form of monocrystalline quartz, followed by feldspars (K-feldspar and plagioclase), mica, rock fragments, heavy minerals, with minor proportion of the matrix and cement. Based on major element geochemical classification diagram, Pulivendla Quartzite is considered as quartz-arenite and arkose to sub-arkose, whereas Gandikota Quartzite falls in the field of lith-arenite and arkose to sub-arkose. Weathering indices like CIA, PIA, CIW, ICV, Th/U ratio and A-CN-K ternary diagram suggest moderate to intense chemical weathering of the source rocks of these quartzites. Whole rock geochemistry of quartzites indicate that they are primarily from the first-cycle sediments, along with some minor recycled components. Also their sources were mostly intermediate-felsic igneous rocks of Archean age. The tectonic discrimination plots, Th-Sc-Zr/10 of both these formations reflect active to passive continental margin setting. Chondrite-normalized rare earth element (REE) patterns, and various trace element ratios like Cr/Th, Th/Co, La/Sc and Th/Cr indicate dominantly felsic source with minor contribution from mafic source. Th/Sc ratios of Pulivendla and Gandikota Quartzite are in close proximity with average values of 2.83, 3.45 respectively, which is higher than AUCC (Th/Sc=0.97), demonstrating that the contributions from more alkali source rocks than those that contributed to AUCC.

  16. Geochemistry and source waters of rock glacier outflow, Colorado Front Range

    USGS Publications Warehouse

    Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L.

    2006-01-01

    We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine ecosystem at this time of year there does not appear to be large differences in water quality among rock glacier outflow, glacier and blockslope discharge, and discharge from small alpine catchments. However, in September concentrations of Mg2+ in the outflow of the rock glacier increased to more than 900 ??eq L-1 compared to values of less than 40 ??eq L-1 at all the other sites, concentrations of Ca2+ were greater than 4,000 ??eq L-1 compared to maximum values of less than 200 ??eq L-1 at all other sites, and concentrations of SO42- reached 7,000 ??eq L-1, compared to maximum concentrations below 120 ??eq L-1 at the other sites. Inverse geochemical modelling suggests that dissolution of pyrite, epidote, chlorite and minor calcite as well as the precipitation of silica and goethite best explain these elevated concentrations of solutes in the outflow of the rock glacier. Three component hydrograph separation using end-member mixing analysis shows that melted snow comprised an average of 30% of RG5 outflow, soil water 32%, and base flow 38%. Snow was the dominant source water in June, soil water was the dominant water source in July, and base flow was the dominant source in September. Enrichment of ?? 18O from - 10??? in the outflow of the rock glacier compared to -20??? in snow and enrichment of deuterium excess from +17.5??? in rock glacier outflow compared to +11??? in snow, suggests that melt of internal ice that had undergone multiple melt/freeze episodes was the dominant source of base flow. Copyright ?? 2005 John Wiley & Sons, Ltd.

  17. Modeling and comparative study of fluid velocities in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Hingerl, Ferdinand F.; Romanenko, Konstantin; Pini, Ronny; Balcom, Bruce; Benson, Sally

    2013-04-01

    Detailed knowledge of the distribution of effective porosity and fluid velocities in heterogeneous rock samples is crucial for understanding and predicting spatially resolved fluid residence times and kinetic reaction rates of fluid-rock interactions. The applicability of conventional MRI techniques to sedimentary rocks is limited by internal magnetic field gradients and short spin relaxation times. The approach developed at the UNB MRI Centre combines the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme and three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE). These methods were designed to reduce the errors due to effects of background gradients and fast transverse relaxation. SPRITE is largely immune to time-evolution effects resulting from background gradients, paramagnetic impurities and chemical shift. Using these techniques quantitative 3D porosity maps as well as single-phase fluid velocity fields in sandstone core samples were measured. Using a new Magnetic Resonance Imaging technique developed at the MRI Centre at UNB, we created 3D maps of porosity distributions as well as single-phase fluid velocity distributions of sandstone rock samples. Then, we evaluated the applicability of the Kozeny-Carman relationship for modeling measured fluid velocity distributions in sandstones samples showing meso-scale heterogeneities using two different modeling approaches. The MRI maps were used as reference points for the modeling approaches. For the first modeling approach, we applied the Kozeny-Carman relationship to the porosity distributions and computed respective permeability maps, which in turn provided input for a CFD simulation - using the Stanford CFD code GPRS - to compute averaged velocity maps. The latter were then compared to the measured velocity maps. For the second approach, the measured velocity distributions were used as input for inversely computing permeabilities using the GPRS CFD code. The computed permeabilities were then correlated with the ones based on the porosity maps and the Kozeny-Carman relationship. The findings of the comparative modeling study are discussed and its potential impact on the modeling of fluid residence times and kinetic reaction rates of fluid-rock interactions in rocks containing meso-scale heterogeneities are reviewed.

  18. Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster, Panulirus cygnus.

    PubMed

    Hovey, Renae K; Van Niel, Kimberly P; Bellchambers, Lynda M; Pember, Matthew B

    2012-01-01

    The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km(2) area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2) of 64 and an 80% correct classification. Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats.

  19. Modelling Deep Water Habitats to Develop a Spatially Explicit, Fine Scale Understanding of the Distribution of the Western Rock Lobster, Panulirus cygnus

    PubMed Central

    Hovey, Renae K.; Van Niel, Kimberly P.; Bellchambers, Lynda M.; Pember, Matthew B.

    2012-01-01

    Background The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Methods and Findings Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D2 of 64 and an 80% correct classification. Conclusions Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats. PMID:22506021

  20. Hydrogen in rocks: an energy source for deep microbial communities

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Dickinson, J. Thomas; Cash, Michele

    2002-01-01

    To survive in deep subsurface environments, lithotrophic microbial communities require a sustainable energy source such as hydrogen. Though H2 can be produced when water reacts with fresh mineral surfaces and oxidizes ferrous iron, this reaction is unreliable since it depends upon the exposure of fresh rock surfaces via the episodic opening of cracks and fissures. A more reliable and potentially more voluminous H2 source exists in nominally anhydrous minerals of igneous and metamorphic rocks. Our experimental results indicate that H2 molecules can be derived from small amounts of H2O dissolved in minerals in the form of hydroxyl, OH- or O3Si-OH, whenever such minerals crystallized in an H2O-laden environment. Two types of experiments were conducted. Single crystal fracture experiments indicated that hydroxyl pairs undergo an in situ redox conversion to H2 molecules plus peroxy links, O3Si/OO\\SiO3. While the peroxy links become part of the mineral structure, the H2 molecules diffused out of the freshly fractured mineral surfaces. If such a mechanism occurred in natural settings, the entire rock column would become a volume source of H2. Crushing experiments to facilitate the outdiffusion of H2 were conducted with common crustal igneous rocks such as granite, andesite, and labradorite. At least 70 nmol of H2/g diffused out of coarsely crushed andesite, equivalent at standard pressure and temperature to 5,000 cm3 of H2/m3 of rock. In the water-saturated, biologically relevant upper portion of the rock column, the diffusion of H2 out of the minerals will be buffered by H2 saturation of the intergranular water film.

  1. Egret-Hibernia(!), a significant petroleum system, northern Grand Banks area, offshore eastern Canada

    USGS Publications Warehouse

    Magoon, L.B.; Hudson, T.L.; Peters, K.E.

    2005-01-01

    Egret-Hibernia(!) is a well-explored petroleum system (3.25 billion barrels oil equivalent [BOE]) located in the Jeanne d'Arc Basin on the Labrador - Newfoundland shelf. Rifting and sediment fill began in the Late Triassic. Egret source rock was deposited in the Late Jurassic at about 153 Ma. After this time, alternating reservoir rock and seal rock were deposited with some syndepositional faulting. By the end of the Early Cretaceous, faults and folds had formed numerous structural traps. For the next 100 m.y., overburden rock thermally matured the source rock when it reached almost 4 km (2.5 mi) burial depth. For 2 km (1.25 mi) below this depth, oil and gas were expelled, until the source was depleted. The expelled petroleum migrated updip to nearby faulted, anticlinal traps, where much of it migrated across faults and upsection to the Hibernia Formation (44% recoverable oil) and Avalon Formation (28%). Accumulation size decreased, and gas content increased from west to east, independent of trap size. These changes correspond to a decrease in source rock richness and quality from west to east. Almost all (96%) of the discovered petroleum resides in the Lower Cretaceous or older reservoir rock units. All accumulations found to date are normally pressured in structural traps. Fifty-two exploration wells found eighteen discoveries. Their size ranges from 1.2 to 0.01 billion BOE. Most discoveries were made between 1979 and 1991. The discovery cycle began with larger accumulations and progressed to smaller accumulations. The estimated sizes of the larger accumulations have grown since 1990. Estimated mean value for undiscovered hydrocarbons is 3.8 billion BOE, thereby raising the ultimate size of Egret-Hibernia(!) to 6.19 billion BOE. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  2. Rapid formation of rock armour for soil - rock fragment mixture during simulated rainfall

    NASA Astrophysics Data System (ADS)

    Poultney, E.; McGrath, G. S.; Hinz, C.

    2009-04-01

    Preventing erosion is an important issue in disturbed semi-arid and arid landscapes. This is in particular of highest importance for mining companies while undertaking land rehabilitation. An onsite investigation of the impact of surface rock fragments on erosion was conducted at Telfer goldmine in the Great Sandy Desert, Western Australia. The study site is a waste rock dump designed to mimic the concave slope of a natural mesa to both discourage erosion and blend in with its natural surroundings. Four treatments were used to construct the slope: two are topsoil mixed with rock fragments, and two are unmixed topsoil. A field study investigating erosion rills, particle size distribution, rock fragment coverage surface roughness and vegetation was carried out to determine changes down and across slope. The treatments constructed by mixing topsoil and rock fragments are more stable and show rock fragment distributions that more closely resemble patterns found on natural mesas surrounding Telfer. A controlled study using trays of topsoil mixed with rock fragment volumes of 50%, 60%, 70% and 80% were used to investigate how varying mixtures of rock fragments and topsoil erode using rainfall intensities between 20 and 100 mm h-1. Two runs of 25 minutes each were used to assess the temporal evolution of rock armouring. Surface coverage results converged for the 50%, 60% and 70% mixtures after the first run to coverage of about 90%, suggesting that fine sediment proportion does not affect rate and degree of rock armouring.

  3. Application of uniaxial confining-core clamp with hydrous pyrolysis in petrophysical and geochemical studies of source rocks at various thermal maturities

    USGS Publications Warehouse

    Lewan, Michael D.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Understanding changes in petrophysical and geochemical parameters during source rock thermal maturation is a critical component in evaluating source-rock petroleum accumulations. Natural core data are preferred, but obtaining cores that represent the same facies of a source rock at different thermal maturities is seldom possible. An alternative approach is to induce thermal maturity changes by laboratory pyrolysis on aliquots of a source-rock sample of a given facies of interest. Hydrous pyrolysis is an effective way to induce thermal maturity on source-rock cores and provide expelled oils that are similar in composition to natural crude oils. However, net-volume increases during bitumen and oil generation result in expanded cores due to opening of bedding-plane partings. Although meaningful geochemical measurements on expanded, recovered cores are possible, the utility of the core for measuring petrophysical properties relevant to natural subsurface cores is not suitable. This problem created during hydrous pyrolysis is alleviated by using a stainless steel uniaxial confinement clamp on rock cores cut perpendicular to bedding fabric. The clamp prevents expansion just as overburden does during natural petroleum formation in the subsurface. As a result, intact cores can be recovered at various thermal maturities for the measurement of petrophysical properties as well as for geochemical analyses. This approach has been applied to 1.7-inch diameter cores taken perpendicular to the bedding fabric of a 2.3- to 2.4-inch thick slab of Mahogany oil shale from the Eocene Green River Formation. Cores were subjected to hydrous pyrolysis at 360 °C for 72 h, which represents near maximum oil generation. One core was heated unconfined and the other was heated in the uniaxial confinement clamp. The unconfined core developed open tensile fractures parallel to the bedding fabric that result in a 38 % vertical expansion of the core. These open fractures did not occur in the confined core, but short, discontinuous vertical fractures on the core periphery occurred as a result of lateral expansion.

  4. Spatial and temporal distribution of Mesozoic adakitic rocks along the Tan-Lu fault, Eastern China: Constraints on the initiation of lithospheric thinning

    NASA Astrophysics Data System (ADS)

    Gu, Hai-Ou; Xiao, Yilin; Santosh, M.; Li, Wang-Ye; Yang, Xiaoyong; Pack, Andreas; Hou, Zhenhui

    2013-09-01

    The Mesozoic tectonics in East China is characterized by significant lithospheric thinning of the North China Craton, large-scale strike-slip movement along the Tan-Lu fault, and regional magmatism with associated metallogeny. Here we address the possible connections between these three events through a systematic investigation of the geochemistry, zircon geochronology and whole rock oxygen isotopes of the Mesozoic magmatic rocks distributed along the Tan-Lu fault in the Shandong province. The characteristic spatial and temporal distributions of high-Mg adakitic rocks along the Tan-Lu fault with emplacement ages of 134-128 Ma suggest a strong structural control for the emplacement of these intrusions, with magma generation possibly associated with the subduction of the Pacific plate in the early Cretaceous. The low-Mg adakitic rocks (127-120 Ma) in the Su-Lu orogenic belt were formed later than the high-Mg adakitic rocks, whereas in the Dabie orogenic belt, most of the low-Mg adakitic rocks (143-129 Ma) were generated earlier than the high-Mg adakitic rocks. Based on available data, we suggest that the large scale strike-slip tectonics of the Tan-Lu fault in the Mesozoic initiated cratonic destruction at the south-eastern margin of the North China Craton, significantly affecting the lower continental crust within areas near the fault. This process resulted in crustal fragments sinking into the asthenosphere and reacting with peridotites, which increased the Mg# of the adakitic melts, generating the high-Mg adakitic rocks. The gravitationally unstable lower continental crust below the Tan-Lu fault in the Su-Lu orogenic belt triggered larger volume delamination of the lower continental crust or foundering of the root.

  5. Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)

    NASA Astrophysics Data System (ADS)

    Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.

    2013-12-01

    We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG-NMR experiments. We then use our preferred multi-phase model to directly calculate flow in pore space images of two different sandstones and observe excellent agreement with experimental relative permeabilities. Also we calculate cluster size distributions in good agreement with experimental studies. Our analysis shows that the simulations are able to predict both multi-phase flow and transport properties directly on large 3D pore space images of real rocks. Pore space images, left and velocity distributions, right (Yang and Boek, 2013)

  6. The Influence of Lithology on the Formation of Reaction Infiltration Instabilities in Mantle Rocks

    NASA Astrophysics Data System (ADS)

    Pec, M.; Holtzman, B. K.; Zimmerman, M. E.; Kohlstedt, D. L.

    2017-12-01

    The formation of oceanic plates requires extraction of large volumes of melt from the mantle. Several lines of evidence suggest that melt extraction is rapid and, therefore, necessitates high-permeability pathways. Such pathways may form as a result of melt-rock reactions. We report the results of a series of Darcy-type experiments designed to study the development of channels due to melt-solid reactions in mantle lithologies. We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high pressure (P = 300 MPa) and high temperatures (T = 1200° or 1250°C) with a controlled pressure gradient (∂P/∂z = 0-100 MPa/mm). To study the influence of lithology on the channel formation, we synthesized partially molten rocks of harzburgitic (40:40:20 Ol - Opx - basalt), wehrlitic (40:40:20 Ol - Cpx - basalt) and lherzolitic (65:25:10 Ol - Opx - Cpx) composition. The melt source was a disk of alkali basalt. In all experiments, irrespective of the exact mineralogy, melt - undersaturated in silica - from the source dissolved pyroxene in the partially molten rock and precipitated olivine ( Fo82), thereby forming a dunite reaction layer at the interface between the source and the partially molten rock. In samples annealed under a small pressure gradient, the reaction layer was roughly planar. However, if the velocity of melt due to porous flow exceeded 0.1 µm/s, the reaction layer locally protruded into the partially molten rock forming finger-like, melt-rich channels in rocks of wehrlitic and harzburgitic composition. The lherzolitic rocks were generally impermeable to the melt except at highest-pressure gradients where a narrow fracture developed, forming a dyke which drained the melt reservoir. Three-dimensional reconstructions using micro-CT images revealed clear differences between the dyke (a narrow, through-going planar feature) and the channels formed by reactive infiltration (multiple sinuous finger-like features). Apparently, the fraction of soluble minerals together with the melt fraction in the partially molten rock control whether dykes or reactive channels develop. Our experiments demonstrate that melt-rock reactions can lead to channelization in mantle lithologies, and the observed lithological transformations broadly agree with those observed in nature

  7. Engineering and Design: Rock Mass Classification Data Requirements for Rippability

    DTIC Science & Technology

    1983-06-30

    Engineering and Design ROCK MASS CLASSIFICATION DATA REQUIREMENTS FOR RIPPABILITY Distribution Restriction Statement Approved for public release...and Design: Rock Mass Classification Data Requirements for Rippability Contract Number Grant Number Program Element Number Author(s) Project...Technical Letter 1110-2-282 Engineering and Design ROCK MASS CLASSIFICATION DATA REQUIREMENTS FOR RIPPABILITY 1“ -“ This ETL contains information on data

  8. A theoretical approach to quantify the effect of random cracks on rock deformation in uniaxial compression

    NASA Astrophysics Data System (ADS)

    Zhou, Shuwei; Xia, Caichu; Zhou, Yu

    2018-06-01

    Cracks have a significant effect on the uniaxial compression of rocks. Thus, a theoretically analytical approach was proposed to assess the effects of randomly distributed cracks on the effective Young’s modulus during the uniaxial compression of rocks. Each stage of the rock failure during uniaxial compression was analyzed and classified. The analytical approach for the effective Young’s modulus of a rock with only a single crack was derived while considering the three crack states under stress, namely, opening, closure-sliding, and closure-nonsliding. The rock was then assumed to have many cracks with randomly distributed direction, and the effect of crack shape and number during each stage of the uniaxial compression on the effective Young’s modulus was considered. Thus, the approach for the effective Young’s modulus was used to obtain the whole stress-strain process of uniaxial compression. Afterward, the proposed approach was employed to analyze the effects of related parameters on the whole stress-stain curve. The proposed approach was eventually compared with some existing rock tests to validate its applicability and feasibility. The proposed approach has clear physical meaning and shows favorable agreement with the rock test results.

  9. Preliminary isostatic residual gravity anomaly map of Paso Robles 30 x 60 minute quadrangle, California

    USGS Publications Warehouse

    McPhee, D.K.; Langenheim, V.E.; Watt, J.T.

    2011-01-01

    This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.

  10. Zircon U-Pb chronology, geochemistry and Sr-Nd-Pb isotopic compositions of the Volcanic Rocks in the Elashan area, NW China: petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Wei, J.; Shi, W.; Li, P.; Chen, M.; Zhao, X.

    2017-12-01

    Elashan area is located in the intersection of the East Kunlun Orogenic Belt (EKOB) and the West Qinling Orogenic (WQOB). We present petrology, zircon U-Pb ages, whole-rock geochemistry and Sr-Nd-Pb isotopic compositions from the andesite and felsic volcanic rocks (rhyolite and rhyolitic tuffs) in Elashan group volcanic rock. The LA-ICP-MS zircon U-Pb age data indicate that the volcanic rocks are emplaced at 250 247 Ma. The volcanic rocks have high -K and aluminum - peraluminous characteristics, A/CNK = 1.07 1.82, δ ranges from 1.56 2.95, the main body is calc-alkaline rock. They are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in some high field strength elements (HFSEs, e.g., Nb, Ta, P and Ti), while having a flat heavy REE (HREEs) pattern. The ∑REE values of 178.68 to 298.11 ppm, average 230.50 ppm. The LREE/HREE values of 4.39 to 11.78 ppm, average 6.77 ppm. REE fractionation is obvious, REE distribution curve was right smooth, and have slightly negative Eu anomalies (Eu/Eu*=0.44-0.80, average 0.60), which as similar to the island arc volcanic rocks. The volcanic rocks have initial 87Sr/86Sr ratios of 0.71028-0.71232, ɛNd(t) values of -6.7 to -7.6, with T2DM-Nd ranging from 1561 to 1640 Ma. Pb isotopic composition (206 Pb / 204 Pb)t = 18.055 18.330, (207 Pb / 204 Pb)t = 15.586 15.618, (208 Pb / 204 Pb)t = 37.677 38.332. Geochemical and Sr-Nd-Pb isotopes indicates that Elashan group volcanic magma derived mainly from the lower crust. Elashan group volcanic rocks is the productive East Kunlun block and West Qinling block collision, which makes the thicken crust caused partial melting in the study area. The source rocks is probably from metamorphic sandstone of Bayankala. But with Y-Nb and Rb-(Y+Nb), R1-R2 and Rb/10-Hf-Ta*3 diagrams showing that intermediate-acid rocks mainly formed in volcanic arc-collision environment, probably the collision event is short , therefore rocks retain the original island arc properties. The formation age of intermediate -acidic volcanic rock can represent the time in which the end of transgressive and the beginning of intercontinental evolution in the northeastern Tibetan Plateau.

  11. A molecular and isotopic study of the organic matter from the Paris Basin, France

    NASA Technical Reports Server (NTRS)

    Lichtfouse, E.; Albrecht, P.; Behar, F.; Hayes, J. M.

    1994-01-01

    Thirteen Liassic sedimentary rocks of increasing depth and three petroleums from the Paris Basin were studied for 13C/12C isotopic compositions and biological markers, including steranes, sterenes, methylphenanthrenes, methylanthracenes, and triaromatic steroids. The isotopic compositions of n-alkanes from mature sedimentary rocks and petroleums fall in a narrow range (2%), except for the deepest Hettangian rock and the Trias petroleum, for which the short-chain n-alkanes are enriched and depleted in 13C, respectively. Most of the molecular parameters increase over the 2000-2500 m depth range, reflecting the transformation of the organic matter at the onset of petroleum generation. In this zone, carbonate content and carbon isotopic composition of carbonates, as well as molecular parameters, are distinct for the Toarcian and Hettangian source rocks and suggest a migration of organic matter from these two formations. Two novel molecular parameters were defined for this task: one using methyltriaromatic steroids from organic extracts; the other using 1-methylphenanthrene and 2-methylanthracene from kerogen pyrolysates. The anomalous high maturity of the Dogger petroleum relative to the maturity-depth trend of the source rocks is used to estimate the minimal vertical distance of migration of the organic matter from the source rock to the reservoir.

  12. Origin of sulfur for elemental sulfur concentration in salt dome cap rocks, Gulf Coast Basin, USA

    NASA Astrophysics Data System (ADS)

    Hill, J. M.; Kyle, R.; Loyd, S. J.

    2017-12-01

    Calcite cap rocks of the Boling and Main Pass salt domes contain large elemental sulfur accumulations. Isotopic and petrographic data indicate complex histories of cap rock paragenesis for both domes. Whereas paragenetic complexity is in part due to the open nature of these hydrodynamic systems, a comprehensive understanding of elemental sulfur sources and concentration mechanisms is lacking. Large ranges in traditional sulfur isotope compositions (δ34S) among oxidized and reduced sulfur-bearing phases has led some to infer that microbial sulfate reduction and/or influx of sulfide-rich formation waters occurred during calcite cap rock formation. Ultimately, traditional sulfur isotope analyses alone cannot distinguish among local microbial or exogenous sulfur sources. Recently, multiple sulfur isotope (32S, 33S, 34S, 36S) studies reveal small, but measurable differences in mass-dependent behavior of microbial and abiogenic processes. To distinguish between the proposed sulfur sources, multiple-sulfur-isotope analyses have been performed on native sulfur from the Boling and Main Pass cap rocks. Similarities or deviations from equilibrium relationships indicate which pathways were responsible for native sulfur precipitation. Pathway determination provides insight into Gulf Coast cap rock development and potentially highlights the conditions that led to anomalous sulfur enrichment in Boling and Main Pass Domes.

  13. New insights on timing of oil and gas generation in the central Gulf Coast interior zone based on hydrous-pyrolysis kinetic parameters

    USGS Publications Warehouse

    Lewan, Michael D.; Dutton, Shirley P.; Ruppel, Stephen C.; Hentz, Tucker F.

    2002-01-01

    Timing of oil and gas generation from Turonian and Smackover source rocks in the central Gulf CoastInterior Zone was determined in one-dimensional burial-history curves (BHCs) using hydrous-pyrolysis kinetic parameters. The results predict that basal Smackover source-rock intervals with Type-IIS kerogen completed oil generation between 121 and 99 Ma, and Turonian source-rocks with Type-II kerogen remain immature over most of the same area. The only exception to the latter occurs in the northwestern part of the Mississippi salt basin, where initial stages of oil generation have started as a result of higher thermal gradients. This maturity difference between Turonian and Smackover source rocks is predicted with present-day thermal gradients. Predicted oil generation prior to the Sabine and Monroe uplifts suggests that a significant amount of the oil emplaced in Cretaceous reservoirs of these uplifts would have been lost during periods of erosion. Hydrous-pyrolysis kineticparameters predict that cracking of Smackover oil to gas started 52 Ma, which postdates major uplift and erosional events of the Sabine and Monroe uplifts. This generated gas would accumulate and persist in these uplift areas as currently observed. The predicted timing of oil and gas generation with hydrous-pyrolysis kinetic parameters is in accordance with the observed scarcity of oil from Turonian source rocks, predominance of gas accumulations on the Sabine and Monroe uplifts, and predominance of oil accumulations along the northern rim of the Interior Zone.

  14. Reservoir Condition Pore-scale Imaging of Multiple Fluid Phases Using X-ray Microtomography

    PubMed Central

    Andrew, Matthew; Bijeljic, Branko; Blunt, Martin

    2015-01-01

    X-ray microtomography was used to image, at a resolution of 6.6 µm, the pore-scale arrangement of residual carbon dioxide ganglia in the pore-space of a carbonate rock at pressures and temperatures representative of typical formations used for CO2 storage. Chemical equilibrium between the CO2, brine and rock phases was maintained using a high pressure high temperature reactor, replicating conditions far away from the injection site. Fluid flow was controlled using high pressure high temperature syringe pumps. To maintain representative in-situ conditions within the micro-CT scanner a carbon fiber high pressure micro-CT coreholder was used. Diffusive CO2 exchange across the confining sleeve from the pore-space of the rock to the confining fluid was prevented by surrounding the core with a triple wrap of aluminum foil. Reconstructed brine contrast was modeled using a polychromatic x-ray source, and brine composition was chosen to maximize the three phase contrast between the two fluids and the rock. Flexible flow lines were used to reduce forces on the sample during image acquisition, potentially causing unwanted sample motion, a major shortcoming in previous techniques. An internal thermocouple, placed directly adjacent to the rock core, coupled with an external flexible heating wrap and a PID controller was used to maintain a constant temperature within the flow cell. Substantial amounts of CO2 were trapped, with a residual saturation of 0.203 ± 0.013, and the sizes of larger volume ganglia obey power law distributions, consistent with percolation theory. PMID:25741751

  15. Zircon U-Pb ages and Sr-Nd isotope ratios for the Sirstan granitoid body, NE Iraq: Evidence of magmatic activity in the Middle Cretaceous Period

    NASA Astrophysics Data System (ADS)

    Abdulzahra, Imad Kadhim; Hadi, Ayten; Azizi, Hossein; Asahara, Yoshihiro; Yamamoto, Koshi

    2017-03-01

    The Sirstan granitoid (SG), comprising diorite and granodiorite, is located in the Shalair Valley area, in the northeastern part of Iraq within the Sanandaj-Sirjan Zone (SSZ) of the Zagros Orogenic Belt. The U-Pb zircon dating of the SG rocks has revealed a concordia age of 110 Ma, which is interpreted as the age of crystallization of this granitoid body during the Middle Cretaceous. The whole-rock Rb-Sr isochron data shows an age of 52.4 ± 9.4 Ma (MSWD = 1.7), which implies the reactivation of the granitoid body in the Early Eocene due to the collision between the Arabian and Iranian plates. These rocks show metaluminous affinity with low values of Nb, Ta and Ti compared to chondrite, suggesting the generation of these rocks over the subduction zone in an active continental margin regime. The SG rocks are hornblende-bearing I-type granitoids with microgranular mafic enclaves. The positive values of ɛNd (t = 110 Ma) (+0.1 to +2.7) and the low (87Sr/86Sr)i ratios (0.7044 to 0.7057) indicate that the magma source of the SG granitoids is a depleted subcontinental mantle. The chemical and isotope compositions show that the SG body originated from the metasomatic mantle without a major role for continental contamination. Our findings show that the granitoid bodies distributed in the SSZ were derived from the continuous Neo-Tethys subduction beneath the SSZ in Mesozoic times and that the SSZ was an active margin in the Middle Cretaceous.

  16. Using Crater Counts to Constrain Erosion Rates on Mars: Implications for the Global Dust Cycle, Sedimentary Rock Erosion and Organic Matter Preservation

    NASA Astrophysics Data System (ADS)

    Mayer, D. P.; Kite, E. S.

    2016-12-01

    Sandblasting, aeolian infilling, and wind deflation all obliterate impact craters on Mars, complicating the use of crater counts for chronology, particularly on sedimentary rock surfaces. However, crater counts on sedimentary rocks can be exploited to constrain wind erosion rates. Relatively small, shallow craters are preferentially obliterated as a landscape undergoes erosion, so the size-frequency distribution of impact craters in a landscape undergoing steady exhumation will develop a shallower power-law slope than a simple production function. Estimating erosion rates is important for several reasons: (1) Wind erosion is a source of mass for the global dust cycle, so the global dust reservoir will disproportionately sample fast-eroding regions; (2) The pace and pattern of recent wind erosion is a sorely-needed constraint on models of the sculpting of Mars' sedimentary-rock mounds; (3) Near-surface complex organic matter on Mars is destroyed by radiation in <108 years, so high rates of surface exhumation are required for preservation of near-surface organic matter. We use crater counts from 18 HiRISE images over sedimentary rock deposits as the basis for estimating erosion rates. Each image was counted by ≥3 analysts and only features agreed on by ≥2 analysts were included in the erosion rate estimation. Erosion rates range from 0.1-0.2 {μ }m/yr across all images. These rates represent an upper limit on surface erosion by landscape lowering. At the conference we will discuss the within and between-image variability of erosion rates and their implications for recent geological processes on Mars.

  17. The surface orientation of some Apollo 14 rocks.

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Morrison, D. A.; Hartung, J. B.

    1972-01-01

    Detailed stereomicroscopic studies of the distribution of microcraters, soil covers, and glass coatings were performed to reconstruct the most recent surface orientations of selected Apollo 14 rocks. Surface orientations could be established for rocks 14053, 14073, 14301, 14303, 14307, 14310, and 14311 (which includes rock 14308). A tentative orientation of rock 14055 is suggested, and comments concerning the surface history of rocks 14302, 14305, and 14318 are presented. The examination of rocks 14066, 14306, and 14321 indicates that these specimens have complicated surface histories that prevent reconstruction of their orientation by the criteria that were established in these stereomicroscopic studies.

  18. Characteristics of terrestrial basaltic rock populations: Implications for Mars lander and rover science and safety

    NASA Astrophysics Data System (ADS)

    Craddock, Robert A.; Golombek, Matthew P.

    2016-08-01

    We analyzed the morphometry of basaltic rock populations that have been emplaced or affected by a variety of geologic processes, including explosive volcanic eruptions (as a proxy for impact cratering), catastrophic flooding, frost shattering, salt weathering, alluvial deposition, and chemical weathering. Morphometric indices for these rock populations were compared to an unmodified population of rocks that had broken off a solidified lava flow to understand how different geologic processes change rock shape. We found that a majority of rocks have an sphericity described as either a disc or sphere in the Zingg classification system and posit that this is a function of cooling fractures in the basalt (Zingg [1935] Schweiz. Miner. Petrogr. Mitt., 15, 39-140). Angularity (roundness) is the most diagnostic morphometric index, but the Corey Shape Factor (CSF), Oblate-Prolate Index (OPI) and deviation from compactness (D) also sometimes distinguished weathering processes. Comparison of our results to prior analyses of rock populations found at the Mars Pathfinder, Spirit, and Curiosity landing sites support previous conclusions. The observation that the size-frequency distribution of terrestrial rock populations follow exponential functions similar to lander and orbital measurements of rocks on Mars, which is expected from fracture and fragmentation theory, indicates that these distributions are being dominantly controlled by the initial fracture and fragmentation of the basalt.

  19. Extracting Information from Folds in Rocks.

    ERIC Educational Resources Information Center

    Hudleston, Peter John

    1986-01-01

    Describes the three processes of folding in rocks: buckling, bending, and passive folding. Discusses how geometrical properties and strain distributions help to identify which processes produce natural folds, and also provides information about the mechanical properties of rocks, and the sense of shear in shear zones. (TW)

  20. Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution

    USGS Publications Warehouse

    Wooden, J.L.; Mueller, P.A.

    1988-01-01

    A series of compositionally diverse, Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains, Montana and Wyoming, U.S.A., have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial ratios lower than would be expected for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. Crustal contamination during emplacement can be ruled out for a variety of reasons. Instead a model involving subduction of continental detritus and contamination of the overlying mantle as is often proposed for modern subduction environments is preferred. This contaminated mantle would have all the isotopic characteristics of mantle enriched by internal mantle metasomatism but would require no long-term growth or changes in parent to daughter element ratios. This contaminated mantle would make a good source for some of the Cenozoic mafic volcanics of the Columbia River, Snake River Plain, and Yellowstone volcanic fields that are proposed to come from ancient, enriched lithospheric mantle. The isotopic characteristics of the 2.70 Ga old Stillwater Complex are a perfect match for the proposed contaminated mantle which provides an alternative to crustal contamination during emplacement. The Pb isotopic characteristics of the Late Archean rocks of the eastern Beartooth Mountains are similar to those of other Late Archean rocks of the Wyoming Province and suggest that Early Archean, upper crustal rocks were common in this terrane. The isotopic signatures of Late Archean rocks in the Wyoming Province are distinctive from those of other Archean cratons in North America which are dominated by a MORB-like, Archean mantle source (Superior Province) and/or a long-term depleted crustal source (Greenland). ?? 1988.

  1. The geochemistry of primitive volcanic rocks of the Ankaratra volcanic complex, and source enrichment processes in the genesis of the Cenozoic magmatism in Madagascar

    NASA Astrophysics Data System (ADS)

    Melluso, L.; Cucciniello, C.; le Roex, A. P.; Morra, V.

    2016-07-01

    The Ankaratra volcanic complex in central Madagascar consists of lava flows, domes, scoria cones, tuff rings and maars of Cenozoic age that are scattered over 3800 km2. The mafic rocks include olivine-leucite-nephelinites, basanites, alkali basalts and hawaiites, and tholeiitic basalts. Primitive samples have high Mg# (>60), high Cr and Ni concentrations; their mantle-normalized patterns peak at Nb and Ba, have troughs at K, and smoothly decrease towards the least incompatible elements. The Ankaratra mafic rocks show small variation in Sr-Nd-Pb isotopic compositions (e.g., 87Sr/86Sr = 0.70377-0.70446, 143Nd/144Nd = 0.51273-0.51280, 206Pb/204Pb = 18.25-18.87). These isotopic values differ markedly from those of Cenozoic mafic lavas of northern Madagascar and the Comoro archipelago, typical Indian Ocean MORB and oceanic basalt end-members. The patterns of olivine nephelinitic magmas can be obtained through 3-10% partial melting of a mantle source that was enriched by a Ca-rich alkaline melt, and that contained garnet, carbonates and phlogopite. The patterns of tholeiitic basalts can be obtained after 10-12% partial melting of a source enriched with lower amounts of the same alkaline melt, in the spinel- (and possibly amphibole-) facies mantle, hence in volumes where carbonate is not a factor. The significant isotopic change from the northernmost volcanic rocks of Madagascar and those in the central part of the island implicates a distinct source heterogeneity, and ultimately assess the role of the continental lithospheric mantle as source region. The source of at least some volcanic rocks of the still active Comoro archipelago may have suffered the same time-integrated geochemical and isotopic evolution as that of the northern Madagascar volcanic rocks.

  2. Seismological evidence for monsoon induced micro to moderate earthquake sequence beneath the 2011 Talala, Saurashtra earthquake, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Singh, A. P.; Mishra, O. P.

    2015-10-01

    In order to understand the processes involved in the genesis of monsoon induced micro to moderate earthquakes after heavy rainfall during the Indian summer monsoon period beneath the 2011 Talala, Saurashtra earthquake (Mw 5.1) source zone, we assimilated 3-D microstructures of the sub-surface rock materials using a data set recorded by the Seismic Network of Gujarat (SeisNetG), India. Crack attributes in terms of crack density (ε), the saturation rate (ξ) and porosity parameter (ψ) were determined from the estimated 3-D sub-surface velocities (Vp, Vs) and Poisson's ratio (σ) structures of the area at varying depths. We distinctly imaged high-ε, high-ξ and low-ψ anomalies at shallow depths, extending up to 9-15 km. We infer that the existence of sub-surface fractured rock matrix connected to the surface from the source zone may have contributed to the changes in differential strain deep down to the crust due to the infiltration of rainwater, which in turn induced micro to moderate earthquake sequence beneath Talala source zone. Infiltration of rainwater during the Indian summer monsoon might have hastened the failure of the rock by perturbing the crustal volume strain of the causative source rock matrix associated with the changes in the seismic moment release beneath the surface. Analyses of crack attributes suggest that the fractured volume of the rock matrix with high porosity and lowered seismic strength beneath the source zone might have considerable influence on the style of fault displacements due to seismo-hydraulic fluid flows. Localized zone of micro-cracks diagnosed within the causative rock matrix connected to the water table and their association with shallow crustal faults might have acted as a conduit for infiltrating the precipitation down to the shallow crustal layers following the fault suction mechanism of pore pressure diffusion, triggering the monsoon induced earthquake sequence beneath the source zone.

  3. Iodine distribution in natural waters of different chemical composition in relation to water-bearing soils and rocks and water fractions in areas subjected to radioiodine contamination

    NASA Astrophysics Data System (ADS)

    Kolmykova, Liudmila; Korobova, Elena

    2017-04-01

    Iodine is an essential microelement required for normal functioning of thyroid gland. Natural deficiency of stable iodine is compensated by its active intake by thyroid and provokes its higher irradiation in case of radiation accidents and contamination of the environment by radioiodine isotopes. The bioavailability of both stable and radioactive iodine and the specificity of its uptake by living organisms largely depends on geochemical parameters of the environment related to natural conditions of water migration. The goal of the study was to investigate spatial distribution of iodine in natural water of different chemical composition in relation to typical water-bearing soils and rocks and water fractions in Bryansk areas subjected to radioiodine contamination after the Chernobyl accident and to evaluate contribution of this factor to the occurrence of endemic thyroid diseases among local population inhabiting geochemically different areas of fluvioglacial and loess-like sedimentary rocks. The highest content of iodine (Me=13.3 µg/l) was observed in surface water of landscapes with H-Ca, Ca and H-Ca-Fe classes of water migration. The lowest microelement level (Me=5.25 µg/l) was noted in groundwater of landscapes with H, H-Fe classes of water migration in areas of Paleogene water bearing rocks. Regardless of the type of source and class of water migration up to 90% of the total content of iodide is present in the fraction <0.45 µm (as determined by membrane filtration). Up to 50% of iodine pass to solution containing particles < 0.1 µm and increases up to 80% in absence of roughly dispersed sorbents in this fraction. The surface water in areas of loess-like sedimentary rocks hosts the highest levels of iodine where its associated with calcium mineral aquatic complexes and the suspended particles. The obtained data is believed to be useful in explanation of mobility and intake of iodine and its radioactive analogues by rural population living in different geochemical conditions and using local drinking waters. The data should be accounted of in planning prophylactics of endemic diseases and counter measures in case of radioiodine fallout.

  4. Magnetic anisotropy behaviour of pyrrhotite as determined by low- and high-field experiments

    NASA Astrophysics Data System (ADS)

    Martín-Hernández, F.; Dekkers, M. J.; Bominaar-Silkens, I. M. A.; Maan, J. C.

    2008-07-01

    Here we report on the sources of magnetic anisotropy in pyrrhotite, an iron sulphide present in many rocks as an important carrier of the Natural Remanent Magnetization. While the magnetic hysteresis parameters of pyrrhotite are well known, the existing database concerning its anisotropy behaviour is patchy and ambiguous. Therefore, a collection of 11 seemingly single crystals of natural pyrrhotite was scrutinized. Before embarking on the anisotropy determinations the set of single crystals was extensively characterized rock magnetically by measuring Curie temperatures, hysteresis loops, IRM acquisition curves, and FORC diagrams (the latter three all at room temperature). First the variation of the low-field susceptibility as function of applied field and grain size was evaluated for fields ranging from 1 to 450 A m-1. Existing grain size dependent data and the present larger crystals show a logarithmic grain size dependence. This enables estimating the grain size for unimodal pyrrhotite distributions in rocks. Measured trends are better fitted with an exponential function than with a Rayleigh Law style function. Based on the rock magnetic characterization and the behaviour of the anisotropy of magnetic susceptibility six samples (of the original 11) were selected for the high-field anisotropy determinations within the basal plane. Those data were acquired with a torque cantilever-type magnetometer. As expected, most single crystals showed a pure 6-θ curve within their basal plane because of the easy axis configuration. In some crystals, however, lower harmonic terms overlapped the 6-θ term. This may be the dominant source of the observed variation in magnetic anisotropy properties. Torque data of three of the six samples were of sufficient quality to allow evaluation of K1. Re-evaluation of existing torque data and including the present newly derived determinations, yields for the anisotropy constant of pyrrhotite within the basal plane K1: (2.7 +/- 0.2) 104 Jm-3. This is over an order of magnitude more precise than the sparse existing K1 data; only the value reported by Mikami and co-authors in 1959 agrees with the new determination. With this firmly established K1 value meaningful anisotropy models are now possible for pyrrhotite-bearing rocks.

  5. Sedimentary modeling and analysis of petroleum system of the upper Tertiary sequences in southern Ulleung sedimentary Basin, East Sea (Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Cheong, D.; Kim, D.; Kim, Y.

    2010-12-01

    The block 6-1 located in the southwestern margin of the Ulleung basin, East Sea (Sea of Japan) is an area where recently produces commercial natural gas and condensate. A total of 17 exploratory wells have been drilled, and also many seismic explorations have been carried out since early 1970s. Among the wells and seismic sections, the Gorae 1 well and a seismic section through the Gorae 1-2 well were chosen for this simulation work. Then, a 2-D graphic simulation using SEDPAK elucidates the evolution, burial history and diagenesis of the sedimentary sequence. The study area is a suitable place for modeling a petroleum system and evaluating hydrocarbon potential of reservoir. Shale as a source rock is about 3500m deep from sea floor, and sandstones interbedded with thin mud layers are distributed as potential reservoir rocks from 3,500m to 2,000m deep. On top of that, shales cover as seal rocks and overburden rocks upto 900m deep. Input data(sea level, sediment supply, subsidence rate, etc) for the simulation was taken from several previous published papers including the well and seismic data, and the thermal maturity of the sediment was calculated from known thermal gradient data. In this study area, gas and condensate have been found and commercially produced, and the result of the simulation also shows that there is a gas window between 4000m and 6000m deep, so that three possible interpretations can be inferred from the simulation result. First, oil has already moved and gone to the southeastern area along uplifting zones. Or second, oil has never been generated because organic matter is kerogen type 3, and or finally, generated oil has been converted into gas by thermally overcooking. SEDPAK has an advantage that it provides the timing and depth information of generated oil and gas with TTI values even though it has a limit which itself can not perform geochemical modeling to analyze thermal maturity level of source rocks. Based on the result of our simulation, added exploratory wells are required to discover deeper gas located in the study area.

  6. Organic geochemical study of domanik deposits, Tatarstan Republic.

    NASA Astrophysics Data System (ADS)

    Nosova, F. F.; Pronin, N. V.

    2010-05-01

    High-bituminous argillo-siliceous carbonate deposits of domanik formation (DF) occurring within pale depressions and down warps in the east of the Russian platform are treated by many investigators as a main source of oil and gas in the Volga-Ural province. In this study a special attention was turned to organic-rich rocks DF witch outcrop in the central part (Uratminskaya area 792, 806 boreholes) and in the west part (Sviyagskaya, 423) of the Tatarstan Republic. The aim of the present paper is to characterize the organic matter: origin, depositional environments, thermal maturity and biodegradation-weathering effects. Nowadays the most informative geochemical parameters are some biomarkers which qualitatively and are quantitatively defined from distributions of n-alkanes and branched alkanes. Biomarkers - it's original fingerprints of biomass of organic matter, that reflect molecular hydrocarbonic structure. The bulk, molecular composition of oil is initially a function of the type and maturity of the source rock from which it has been expelled, while the source rock type reflects both the nature of precursor organisms and the conditions of its deposition. Methodology used in this study included sampling, bitumen extraction, liquid-column chromatography and gas chromatography/mass spectrometry analyses. The bitumen was fractionated by column chromatography on silica gel. Non-aromatic or alifatics, aromatics and polar compounds were obtained. Alifatic were analysed by gas chromatography/mass spectrometry Percin Elmer. The hydrocarbons present in the sediments of DF and have a carbon numbers ranging from 12 through 38. The samples contain variably inputs from both terrigenous and non-terrigenous (probably marine algal) organic matter as evident in bimodal GC fingerprints of some samples. Pristane and phytane, also, occur in very high concentration in sample extracts. The relatively low Pr/Ph ratios, CPI and OEP<1 imply that the domanik organic matter was deposited in reducing environments. Mass chromatograms show the distribution of regular steranes, iso-steranes, lower molecular weight C21 and C22 steranes (pregnanes) (m/z 217) and triterpanes (m/z 191). The biomarkers distribution of the domanic samples generally suggests a major marine phytoplankton contribution relative to terrigenous land plant source input. The marine affinity is evident from the relatively abundant C27 steranes, which are biomarkers for marine algal contribution to organic matter and low C29 sterane contens. In this present study, samples are dominated by 5α, 14α, 17α (H)-20R and 5β, 14α, 17α (H)-20R steranes (biological configuration). The ratios of 20S/(20S+20R) for αααC29 steranes and ββ/(αα + ββ) for 5α-C29 steranes in the samples, are 0.21 to 0.55 and to 0.12 to 0.50, respectively. The thermal maturity level, assessed by values of several biomarker parameters has been estimated to be within end of diagenesis/eginning of catagenesis and correspond to theoretical vitrinite values (R0) in the range 0.57-0.65%.

  7. Neoproterozoic stratigraphic framework of the Tarim Craton in NW China: Implications for rift evolution

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Guan, Shuwei; Zhang, Shuichang; Yang, Haijun; Jin, Jiuqiang; Zhang, Xiaodan; Zhang, Chunyu

    2018-06-01

    The Tarim Craton is overlain by thick Neoproterozoic sedimentary successions in rift tectonic setting. This study examines the latest outcrop, seismic, and drilling core data with the objective of investigating the regional stratigraphy to deeply recognize the evolution of rifting in the craton. Cryogenian to Lower Ediacaran successions are mainly composed of clastic rocks with thicknesses of 2000-3000 m, and the Upper Ediacaran successions are composed of carbonate rocks with thicknesses of 500-800 m. The rift basins and stratigraphic zones are divided into northern and southern parts by a central paleo-uplift. The northern rift basin extends through the northern Tarim Craton in an E-W direction with two depocenters (Aksu and Kuruktag). The southern rift basin is oriented NE-SW. There are three or four phases of tillites in the northern zone, while there are two in the southern zone. Given the north-south difference of the stratigraphic framework, the northern rift basin initiated at ca. 740 Ma and the southern rift basin initiated at ca. 780 Ma. During the Cryogenian and Ediacaran, the northern and southern rift basins were separated by the central paleo-uplift, finally connecting with each other in the early Cambrian. Tectonic deformation in the Late Ediacaran led to the formation of a parallel unconformity in the rift basins and an angular unconformity in the central paleo-uplift. The Neoproterozoic rift basins continued to affect the distribution of Lower Cambrian hydrocarbon source rocks. The north-south distribution and evolution of the rift basins in the Tarim Craton have implications for reconstructions of the Rodinia supercontinent.

  8. Fractal density modeling of crustal heterogeneity from the KTB deep hole

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming

    2017-03-01

    Fractal or multifractal concepts have significantly enlightened our understanding of crustal heterogeneity. Much attention has focused on 1/f scaling natures of physicochemical heterogeneity of Earth crust from fractal increment perspective. In this study, fractal density model from fractal clustering point of view is used to characterize the scaling behaviors of heterogeneous sources recorded at German Continental Deep Drilling Program (KTB) main hole, and of special contribution is the local and global multifractal analysis revisited by using Haar wavelet transform (HWT). Fractal density modeling of mass accumulation generalizes the unit of rock density from integer (e.g., g/cm3) to real numbers (e.g., g/cmα), so that crustal heterogeneities with respect to source accumulation are quantified by singularity strength of fractal density in α-dimensional space. From that perspective, we found that the bulk densities of metamorphic rocks exhibit fractal properties but have a weak multifractality, decreasing with the depth. The multiscaling natures of chemical logs also have been evidenced, and the observed distinct fractal laws for mineral contents are related to their different geochemical behaviors within complex lithological context. Accordingly, scaling distributions of mineral contents have been recognized as a main contributor to the multifractal natures of heterogeneous density for low-porosity crystalline rocks. This finally allows us to use de Wijs cascade process to explain the mechanism of fractal density. In practice, the proposed local singularity analysis based on HWT is suggested as an attractive high-pass filtering to amplify weak signatures of well logs as well as to delineate microlithological changes.

  9. Core Flooding Experiments Combined with X-rays and Micro-PET Imaging as a Tool to Calculate Fluid Saturations in a Fracture

    NASA Astrophysics Data System (ADS)

    Gran, M.; Zahasky, C.; Garing, C.; Pollyea, R. M.; Benson, S. M.

    2017-12-01

    One way to reduce CO2 emissions is to capture CO2 generated in power plants and other industrial sources to inject it into a geological formation. Sedimentary basins are the ones traditionally used to store CO2 but the emission sources are not always close to these type of basins. In this case, basalt rocks present a good storage alternative due their extent and also their potential for mineral trapping. Flow through basaltic rocks is governed by the permeable paths provided by rock fractures. Hence, knowing the behavior of the multiphase flow in these fractures becomes crucial. With the aim to describe how aperture and liquid-gas interface changes in the fracture affect relative permeability and what are the implications of permeability stress dependency, a series of core experiments were conducted. To calculate fracture apertures and fluid saturations, core flooding experiments combined with medical X-Ray CT scanner and micro-PET imaging (Micro Positron Emission Tomography) were performed. Capillary pressure and relative permeability drainage curves were simultaneously measured in a fractured basalt core under typical storage reservoir pressures and temperatures. The X-Ray scanner allows fracture apertures to be measured quite accurately even for fractures as small as 30 µ, but obtaining fluid saturations is not straightforward. The micro-PET imaging provides dynamic measurements of tracer distributions which can be used to calculate saturation. Here new experimental data is presented and the challenges associated with measuring fluid saturations using both X-Rays and micro-PET are discussed.

  10. Geology of the Devonian black shales of the Appalachian Basin

    USGS Publications Warehouse

    Roen, J.B.

    1984-01-01

    Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones. ?? 1984.

  11. The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Lowenstern, J. B.; Vivit, D.V.; Bullen, T.D.

    2005-01-01

    Calcite is frequently cited as a source of excess Ca, Sr and alkalinity in solutes discharging from silicate terrains yet, no previous effort has been made to assess systematically the overall abundance, composition and petrogenesis of accessory calcite in granitoid rocks. This study addresses this issue by analyzing a worldwide distribution of more than 100 granitoid rocks. Calcite is found to be universally present in a concentration range between 0.028 to 18.8 g kg-1 (mean = 2.52 g kg-1). Calcite occurrences include small to large isolated anhedral grains, fracture and cavity infillings, and sericitized cores of plagioclase. No correlation exists between the amount of calcite present and major rock oxide compositions, including CaO. Ion microprobe analyses of in situ calcite grains indicate relatively low Sr (120 to 660 ppm), negligible Rb and 87Sr/86Sr ratios equal to or higher than those of coexisting plagioclase. Solutes, including Ca and alkalinity produced by batch leaching of the granitoid rocks (5% CO2 in DI water for 75 d at 25??C), are dominated by the dissolution of calcite relative to silicate minerals. The correlation of these parameters with higher calcite concentrations decreases as leachates approach thermodynamic saturation. In longer term column experiments (1.5 yr), reactive calcite becomes exhausted, solute Ca and Sr become controlled by feldspar dissolution and 87Sr/ 86Sr by biotite oxidation. Some accessory calcite in granitoid rocks is related to intrusion into carbonate wall rock or produced by later hydrothermal alteration. However, the ubiquitous occurrence of calcite also suggests formation during late stage (subsolidus) magmatic processes. This conclusion is supported by petrographic observations and 87Sr/86Sr analyses. A review of thermodynamic data indicates that at moderate pressures and reasonable CO2 fugacities, calcite is a stable phase at temperatures of 400 to 700??C. Copyright ?? 2005 Elsevier Ltd.

  12. Assessment of the Spatial Distribution of Metal(Oid)s in Soils Around an Abandoned Pb-Smelter Plant

    NASA Astrophysics Data System (ADS)

    dos Santos, Nielson Machado; do Nascimento, Clístenes Williams Araújo; Matschullat, Jörg; de Olinda, Ricardo Alves

    2017-03-01

    Todos os Santos (All Saints) Bay area, NE-Brazil, is known for one of the most important cases of urban lead (Pb) contamination in the world. The main objective of this work was to assess and interpret the spatial distribution of As, Cd, Hg, Pb, and Zn in "background" soils of this environmentally impacted bay area, using a combination of geostatistical and multivariate analytical methods to distinguish between natural and anthropogenic sources of those metal(oid)s in soils. We collected 114 topsoil samples (0.0-0.2 m depth) from 38 sites. The median values for trace metal concentrations in soils (mg kg-1) followed the order Pb (33.9) > Zn (8.8) > As (1.2) > Cd (0.2) > Hg (0.07), clearly reflecting a Pb-contamination issue. Principal component analysis linked Cd, Pb, and Zn to the same factor (F1), chiefly corroborating their anthropogenic origin; yet, both Pb and Zn are also influenced by natural lithogenic sources. Arsenic and Hg concentrations (F2) are likely related to the natural component alone; their parent material (igneous-metamorphic rocks) seemingly confirm this hypothesis. The heterogeneity of sources and the complexity of the spatial distribution of metals in large areas such as the Todos os Santos Bay warrant, the importance of multivariate and geostatistical analyses in the interpretation of environmental data.

  13. Geochemical modeling of low melt-fraction anatexis in a peraluminous system: The Pena Negra complex (central Spain)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bea, F.

    1991-07-01

    A study was made of the chemical fractionation associated with four cases of anatectic segregation of low melt-fraction cordieritic granites from migmatized meta-greywackes. The aims of the study were to (1) reveal the fractionation patterns of major and trace elements, (2) compare the major element chemistry of leucogranites and the quantitative behavior of source minerals during anatexis - inferred by mass-balance adjustment - with available experimental data for peraluminous systems, and (3) discuss the behavior of trace elements in crustal melting by comparing the chemically determined composition of leucogranites with the results of three fractionation models. Two of these assumemore » a perfect diffusive behavior of trace elements within residual solids, but they use a different set of distribution coefficients. The third assumes a perfect nondiffusive behavior. In relation to their source rocks, the leucogranites are strongly depleted in Li, Transition Elements, and Light Rare Earth Elements, but enriched in K{sub 2}O, SiO{sub 2}, and Ba. Mass balance analysis using the Anatexis Mixing Model shows that the chemistry of cordierite leucogranites is compatible with its having originated by closed-system, water-undersaturated anatexis on previously migmatized meta-greywackes, leaving a residue enriched in cordierite plus biotite and exhausted in K-feldspar. Biotite melts congruently unless important amounts of sillimanite were also present in the source. Compared with experimental metals obtained from sources with the same chemical composition but with a different femic mineralogy (biotite + sillimanite, instead of cordierite + biotite), the Pena Negra leucogranites are richer in K{sub 2}O and MgO with a lower Fe/(Fe + Mg) ratio. The differences in magnesium are believed to result from the changes in the mineral assemblage of the source rocks.« less

  14. Ebb and flow of encroachment by nonnative rainbow trout in a small stream in the southern Appalachian Mountains

    USGS Publications Warehouse

    Larson, Gary L.; Moore, S.E.

    1995-01-01

    Brook trout Salvelinus fontinalis is the native salmonid species of streams in the southern Appalachian Mountains. The present distribution of this species, once widespread from headwaters to lower reaches of large streams, is restricted to mostly headwater areas. Changes in the distribution of native brook trout in the presence of' nonnative rainbow trout Oncorhynchus mykiss have been documented in Great Smoky Mountains National Park. When rainbow trout were first found in a tributary (Rock Creek) in the park in 1979, a study was begun to assess changes through time in distribution and abundance of rainbow trout in Rock Creek and to compare the brook trout and rainbow trout associations in Rock Creek with associations found in other park streams. Abundance of brook trout was low in the downstream sections of Rock Creek in 1979a??1993. Brook trout abundance was highest in the steep-gradient, pool-dominated headwater section which was only 2 km from the confluence of Rock Creek and Cosby Creek. Rainbow trout were present in low densities in Rock Creek during the same period. Although rainbow trout were most abundant in the lower stream sections and never found in the headwater section, adult and age-0 rainbow trout were found in the middle section in 1988. Rainbow trout were absent in the middle section in 1991, but one large adult rainbow trout was present in the section in 1992 and 1993. Floods, freshets, and periods of low stream discharge appeared to play an important role in the distribution and population structure of rainbow trout in Rock Creek. The lower portion of Rock Creek was poor trout habitat because the sections were dominated by cobblea??rubble substrate and shallow riffle areas. Stream habitat appeared to be better suited for brook trout than for rainbow trout in the steep-gradient upstream sections which were dominated by boulder-cobble substrate and deep pools. The results of this study suggest that encroachment by rainbow trout can exhibit considerable ebb and flow in steep-gradient tributaries in the park, and they suggest substantial evolutionary adaptation by brook trout to the hydrological conditions in the Rock Creek drainage.

  15. Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents

    NASA Astrophysics Data System (ADS)

    Shapiro, Allen M.; Evans, Christopher E.; Hayes, Erin C.

    2017-08-01

    Characterizing properties of the rock matrix that control retention and release of chlorinated solvents is essential in evaluating the extent of contamination and the application of remediation technologies in fractured rock. Core samples from seven closely spaced boreholes in a mudstone subject to trichloroethene (TCE) contamination were analyzed using Mercury Intrusion Porosimetry to investigate porosity and pore size distribution as a function of mudstone characteristics, and depth and lateral extent in the aquifer; organic carbon content was also evaluated to identify the potential for adsorption. Porosity and retardation factor varied over two orders of magnitude, with the largest porosities and largest retardation factors associated with carbon-rich mudstone layers. Larger porosities were also measured in the shallow rock that has been subject to enhanced groundwater flow. Porosity also varied over more than an order of magnitude in spatially continuous mudstone layers. The analyses of the rock cores indicated that the largest pore diameters may be accessible to entry of the nonaqueous form of TCE. Although the porosity associated with the largest pore diameters is small ( 0.1%), that volume of TCE can significantly affect the total TCE that is retained in the rock matrix. The dimensions of the largest pore diameters may also be accessible to microbes responsible for reductive dechlorination; however, the small percentage of the pore space that can accommodate microbes may limit the extent of reductive dechlorination in the rock matrix.

  16. Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents

    USGS Publications Warehouse

    Shapiro, Allen M.; Evans, Chrsitopher E.; Hayes, Erin C.

    2017-01-01

    Characterizing properties of the rock matrix that control retention and release of chlorinated solvents is essential in evaluating the extent of contamination and the application of remediation technologies in fractured rock. Core samples from seven closely spaced boreholes in a mudstone subject to trichloroethene (TCE) contamination were analyzed using Mercury Intrusion Porosimetry to investigate porosity and pore size distribution as a function of mudstone characteristics, and depth and lateral extent in the aquifer; organic carbon content was also evaluated to identify the potential for adsorption. Porosity and retardation factor varied over two orders of magnitude, with the largest porosities and largest retardation factors associated with carbon-rich mudstone layers. Larger porosities were also measured in the shallow rock that has been subject to enhanced groundwater flow. Porosity also varied over more than an order of magnitude in spatially continuous mudstone layers. The analyses of the rock cores indicated that the largest pore diameters may be accessible to entry of the nonaqueous form of TCE. Although the porosity associated with the largest pore diameters is small (~ 0.1%), that volume of TCE can significantly affect the total TCE that is retained in the rock matrix. The dimensions of the largest pore diameters may also be accessible to microbes responsible for reductive dechlorination; however, the small percentage of the pore space that can accommodate microbes may limit the extent of reductive dechlorination in the rock matrix.

  17. Factors affecting occurrence and distribution of selected contaminants in ground water from selected areas in the Piedmont Aquifer System, Eastern United States, 1993-2003

    USGS Publications Warehouse

    Lindsey, Bruce D.; Falls, W. Fred; Ferrari, Matthew J.; Zimmerman, Tammy M.; Harned, Douglas A.; Sadorf, Eric M.; Chapman, Melinda J.

    2006-01-01

    Results of ground-water sampling from 255 wells and 19 springs in 11 studies done by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program within the Piedmont Aquifer System (PAS) were analyzed to determine the factors affecting occurrence and distribution of selected contaminants. The contaminants, which were selected on the basis of potential human-health effects, included nitrate, pesticides, volatile organic compounds (VOCs), and radon.The PAS was subdivided on the basis of the general rock type of the aquifers into three areas for the study—crystalline, carbonate, and siliciclastic. The 11 studies were designed to areally represent an individual aquifer rock type and overall are representative of the PAS in their distribution; 7 studies are in the crystalline-rock aquifers, 3 studies are in the siliciclasticrock aquifers, and 1 study is in the carbonate-rock aquifers. Four of the studies were focused on land use, 1 in an agricultural area and 3 in urban areas. The remaining studies had wells representing a range of land-use types.Analysis of results of nitrate sampling indicated that in 8 of the 10 areas where nitrate concentrations were measured, median concentrations of nitrate were below 3 mg/L (milligrams per liter); 2 of the 10 areas had statistically significant higher median concentrations when compared to the other 8 areas. The agricultural land-use study in the carbonate-rock aquifer in the Lower Susquehanna River Basin had the highest median nitrate concentration (11 mg/L), and 60 percent of the wells sampled exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 10 mg/L. The major aquifer study in the crystalline-rock aquifer of the Lower Susquehanna River Basin Study Unit had the second-highest median nitrate concentration. Nitrate concentrations were positively correlated to the percentage of agricultural land use around the well, the total input of nitrogen from all sources, dissolved oxygen concentration, lithology, depth to water, and soil-matrix characteristics. A linear regression model was used to determine that increases in the percentage of agricultural land use, the input of nitrogen from all sources, and dissolved oxygen were the most significant variables affecting increased concentration of nitrate. A logistic regression model was used to determine that those same factors were the most significant variables affecting whether or not the nitrate concentration would exceed 4 mg/L.Of the analysis of samples from 253 wells and 19 springs for 47 pesticides, no sample had a pesticide concentration that exceeded any USEPA MCL. The most frequently detected pesticide was desethyl atrazine, a degradation product of atrazine; the detection frequency was 47 percent. Other frequently detected pesticides included atrazine, metolachlor, simazine, alachlor, prometon, and dieldrin. Detection frequency was affected by the analytical reporting limits; the frequency of detection was somewhat lower when all pesticides were censored to the highest common detection limit. Source factors such as agricultural land use (for agricultural herbicides), urban land use (for insecticides), and the application rate were found to have positive statistical correlations with pesticide concentration. Transport factors such as depth to water and percentage of well-drained soils, sand, or silt typically were positively correlated with higher pesticide concentrations.Sampling for VOCs was conducted in 187 wells and 19 springs that were sampled for 59 VOCs. There were 137 detections of VOCs above the common censoring limit of 0.2 µg/L. The most frequently detected VOCs were chloroform, a trihalomethane, and methyl-tert butyl ether (MTBE), a fuel oxygenate. Seventy-nine wells had at least one VOC detected. The detections were related to land use and well depth. Kendall’s tau correlations indicated a significant positive correlation between chloroform concentration and urban land use, leaking underground storage tanks, population density, and well depth. MTBE concentrations also were positively correlated to urban land use, leaking underground storage tanks, population density, and well depth.Radon was sampled at 205 sites. The subdivisions used for analysis of other contaminants were not adequate for analysis of radon because radon varies on the basis of variations in mineralogy that are not reflected by the general lithologic categories used for the rest of the studies. Concentrations of radon were highest in areas where the crystalline-rock aquifers had felsic mineralogy, and the lowest concentrations of radon were in areas where the crystalline-rocks aquifer had mafic mineralogy. Water from wells in siliciclastic-rock aquifers had concentrations of radon lower than that in the felsic crystalline-rock aquifers. More than 90 percent of the wells sampled for radon exceeded the proposed MCL of 300 pCi/L (picoCuries per liter); however, only 13 percent of those wells had concentrations in water that exceeded the alternative maximum contaminant level (AMCL), a higher level that can be used by municipalities addressing other sources of radon exposure.Overall, concentrations of constituents were related to land-use factors for nitrate, pesticides, VOCs, and to aquifer lithology for radon. None of the 47 pesticides or 59 VOCs analyzed exceeded the MCLs where those constituents were sampled. Concentrations exceeded the MCL for nitrate in 11 percent of the wells sampled. Nearly 91 percent of the wells sampled exceeded the proposed MCL for radon. Additional sampling in selected areas would improve overall understanding of the PAS and increase the possibility of creating predictive models of ground-water quality in this area.

  18. Distribution of Minor Elements in Calcite From the Unsaturated Zone at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Marshall, B. D.; Whelan, J. F.

    2001-12-01

    Calcite is sporadically distributed in fractures and cavities in the volcanic rocks that form the 500- to 700-m-thick unsaturated zone at Yucca Mountain. Previous work has shown that the calcite precipitated from water moving downward through the unsaturated zone since the volcanic rocks were emplaced approximately 13 Ma. Calcite thus serves as a proxy for the chemistry and amounts of past percolation, two parameters that are important in predictions of the future behavior of the potential radioactive waste repository at Yucca Mountain. Latest calcite, which began forming between approximately 5 and 2 Ma, typically displays fine-scale growth zoning defined by distributions of Mn (inferred from cathodoluminescence), Mg, and Sr. Electron microprobe (EPMA) mapping of outermost calcite reveals Mg growth zoning1 and higher overall concentrations of Mg in late calcite than in older calcite. Micro X-ray fluorescence (micro-XRF) maps were obtained by slow rastering of the samples over a 100-watt X-ray source collimated through a final aperture of 100 μ m. Although the spatial resolution of the micro-XRF mapping is much less than that of EPMA, this technique reveals distributions of some elements to which EPMA is less sensitive. Micro-XRF maps show that Sr is spatially correlated with Mg; Sr concentrations range to 500 μ g/g at the resolution of the 100-μ m collimator. Because both Mg and Sr have similar calcite-water distribution coefficients much less than one, the Mg/Sr in calcite reflects the Mg/Sr of the water that precipitated the calcite. The distribution coefficient for Mn is greater than one and variations in Mn are not correlated with Mg and Sr. Covariation of Mg and Sr in the percolating water may be explained by reactions that affect the rate of uptake of chemical constituents from the overlying rock and soil, and/or evaporation. Late calcite has lower δ 13C values, probably due to a regional change from wetter to drier climate conditions. The higher Mg and Sr concentrations in the late calcite may record lower deposition rates and decreased percolation fluxes due to the drier climate. 1 Wilson, N.S.F., Cline, J.S., and Lundberg, S.A.W., 2000, Paragenesis and chemical composition of secondary mineralization at Yucca Mountain, Nevada, Geol. Soc. Am. Abs. Prog., v. 32, p. A260.

  19. The spatial distribution of rocks on Mars

    NASA Astrophysics Data System (ADS)

    Christensen, P. R.

    1986-11-01

    A Viking IR Thematic Mapper observations-based mapping of the spatial distribution of rocks exposed on the planet's surface exhibits a 6-percent areal coverage rock abundance. A model for the determination of rock abundance relates the thermal emission in each of the four Thematic Mapper bands to temperature contrasts in the field of view as well as to nonunit thermal emissivity due to absorption bands in the surface materials and the scattering of the outgoing energy by atmospheric dust and water ice; since each of these produces characteristic spectral and diurnal signatures, they can be readily separated. Dual-polarization radar measurements show the Tharsis volcanic region to be very rough, while thermal measurements indicate few rocks, accompanied by a dust covering. These observations suggest an approximately 1-km thick mantle of fines, overlying a rough subsurface, on which both erosional and depositional aeolian processes have exerted considerable influence.

  20. Geological mapping and analysis in determining resource recitivity limestone rocks in the village of Mersip and surrounding areas, district Limun, Sorolangun Regency, Jambi Province

    NASA Astrophysics Data System (ADS)

    Dona, Obie Mario; Ibrahim, Eddy; Susilo, Budhi Kuswan

    2017-11-01

    The research objective is to describe potential, to analyze the quality and quantity of limestone, and to know the limit distribution of rocks based on the value of resistivity, the pattern of distribution of rocks by drilling, the influence mineral growing on rock against resistivity values, the model deposition of limestone based on the value resistivity of rock and drilling, and the comparison between the interpretation resistivity values based on petrographic studies by drilling. Geologic Formations study area consists of assays consisting of altered sandstone, phyllite, slate, siltstone, grewake, and inset limestone. Local quartz sandstone, schist, genealogy, which is Member of Mersip Stylists Formation, consists of limestone that formed in shallow seas. Stylists Formation consists of slate, shale, siltstone and sandstone. This research methodology is quantitative using experimental observation by survey. This type of research methodology by its nature is descriptive analysis.

  1. A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model

    NASA Astrophysics Data System (ADS)

    Li, Jie; Huang, Houxu; Wang, Mingyang

    2017-03-01

    In this paper, the micro-cracks in the brittle rocks are assumed to be penny shaped and evenly distributed; the damage and dilatancy of the brittle rocks is attributed to the growth and expansion of numerous micro-cracks under the local tensile stress. A single crack's behaviour under the local tensile stress is generalized to all cracks based on the distributed damage mechanics. The relationship between the local tensile stress and the external loading is derived based on the Maxwell model. The damage factor corresponding to the external loading is represented using the p-alpha ( p- α) model. A dilatancy equation that can build up a link between the external loading and the rock dilatancy is established. A test of dilatancy of a brittle rock under triaxial compression is conducted; the comparison between experimental results and our theoretical results shows good consistency.

  2. A powerful tool for assessing distribution and fate of potentially toxic metals (PTMs) in soils: integration of laser ablation spectrometry (LA-ICP-MS) on thin sections with soil micromorphology and geochemistry.

    PubMed

    Scarciglia, Fabio; Barca, Donatella

    2017-04-01

    The dynamic behavior and inherent spatial heterogeneity, at different hierarchic levels, of the soil system often make the spatial distribution of potentially toxic metals (PTMs) quite complex and difficult to assess correctly. This work demonstrates that the application of laser ablation spectrometry (LA-ICP-MS) to soil thin sections constitutes an ancillary powerful tool to well-established analytical methods for tracing the behavior and fate of potential soil contaminants at the microsite level. It allowed to discriminate the contribution of PTMs in distinct soil sub-components, such as parent rock fragments, neoformed, clay-enriched or humified matrix, and specific pedogenetic features of illuvial origin (unstained or iron-stained clay coatings) even at very low contents. PTMs were analyzed in three soil profiles located in the Muravera area (Sardinia, Italy), where several, now abandoned mines were exploited. Recurrent trends of increase of many PTMs from rock to pedogenic matrix and to illuvial clay coatings, traced by LA-ICP-MS compositional data, revealed a pedogenetic control on metal fractionation and distribution, based on adsorption properties of clay minerals, iron oxyhydroxides or organic matter, and downprofile illuviation processes. The main PTMs patterns coupled with SEM-EDS analyses suggest that heavy metal-bearing mineral grains were sourced from the mine plants, in addition to the natural sedimentary input. The interplay between soil-forming processes and geomorphic dynamics significantly contributed to the PTMs spatial distribution detected in the different pedogenetic horizons and soil features.

  3. Characterization of fracture permeability with high-resolution vertical flow measurements during borehole pumping.

    USGS Publications Warehouse

    Paillet, Frederick L.; Hess, A.E.; Cheng, C.H.; Hardin, E.

    1987-01-01

    The distribution of fracture permeability in granitic rocks was investigated by measuring the distribution of vertical flow in boreholes during periods of steady pumping. Pumping tests were conducted at two sites chosen to provide examples of moderately fractured rocks near Mirror Lake, New Hampshire and intensely fractured rocks near Oracle, Arizona. A sensitive heat-pulse flowmeter was used for accurate measurements of vertical flow as low as 0.2 liter per minute. Results indicate zones of fracture permeability in crystalline rocks are composed of irregular conduits that cannot be approximated by planar fractures of uniform aperture, and that the orientation of permeability zones may be unrelated to the orientation of individual fractures within those zones.-Authors

  4. Process and Energy Optimization Assessment, Rock Island Arsenal, IL

    DTIC Science & Technology

    2004-09-01

    Approved for public release; distribution is unlimited. ER D C /C ER L TR -0 4- 17 Process and Energy Optimization Assessment Rock Island... Optimization Assessment: Rock Island Arsenal, IL Mike C.J. Lin, Alexander M. Zhivov, and Veera M. Boddu, Construction Engineering Research...and Energy Optimization Assessment (PEOA) was conducted at Rock Island Arsenal (RIA), IL to identify process, energy, and environmental opportunities

  5. Geothermal potential of Caledonian granites underlying Upper Palaeozoic sedimentary basins astride the Iapetus Suture Zone in Ireland

    NASA Astrophysics Data System (ADS)

    Fritschle, Tobias; Daly, J. Stephen; Whitehouse, Martin J.; McConnell, Brian; Buhre, Stephan

    2014-05-01

    Upper Palaeozoic sedimentary basins in Ireland overlie crystalline rocks within the Caledonian Iapetus Suture Zone. Beneath these basins, Lower Palaeozoic rocks, formed and deformed during the Caledonian orogenic cycle, were intruded by c. 420-390 Ma late-tectonic granites at various tectonic levels. These include the subsurface Kentstown and Glenamaddy granites discovered by mineral exploration drilling. While these granites comprise actual targets for Enhanced Geothermal System (EGS) exploration, several others likely exist based on geophysical considerations. In order to test the regional geothermal potential, the buried granites as well as analogue exposed rocks are being investigated geochemically. The geothermal potential of the intrusives depends on their heat production rate (HPR), which is calculated using rock density and concentrations of the heat producing elements (HPE) uranium, thorium and potassium. In spite of their close spacing and similar ages, the whole-rock geochemistry of the granites varies significantly, but with no obvious geographical control (Fritschle et al., 2013; 2014). The granite HPR values range from 1.4 μW/m3 for the Dhoon Granite (Isle of Man) to 4.9 μW/m3 for the Drogheda Granite (Ireland). This compares with the average HPR for a 'typical' granite of 2.7 μW/m3 (Goldstein et al., 2009). It is demonstrated that an elevated HPR of a granite can be related to enrichment in one of the HPE alone (e.g., uranium-enrichment in the Foxdale Granite (Isle of Man), or thorium-enrichment in the Drogheda Granite). Enrichment in HPE in a granite may occur due to different reasons including hydrothermal (re-) distribution of uranium, or the assimilation of thorium-rich wall-rocks. Hence, the distribution of the HPE in particular minerals, veins and source lithologies, along with the petrophysical characteristics of the sedimentary basins and the granites' petrogenesis, are currently being investigated as possible mechanisms controlling their heat production budget. Fritschle, T., Daly, J.S., Whitehouse, M.J., McConnell, B., Buhre, S., 2013. U-Pb Zircon Ages from Granites in the Iapetus Suture Zone in Ireland and the Isle of Man. Mineralogical Magazine, 77(5): 1115. Fritschle, T., Daly, J.S., Whitehouse, M.J., McConnell, B., Buhre, S., 2014. Zircon geochronology and Hf-O isotope geochemistry from granites in the Iapetus Suture Zone in Ireland and the Isle of Man. This issue. Goldstein, B.A., Hill, A.J., Long, A., Budd, A.R., Ayling, B., Malavazos, M., 2009. Hot rocks down under - evolution of a new energy industry. Geothermal Resources Council Transactions, 33: 185-198.

  6. Building the 3D Geological Model of Wall Rock of Salt Caverns Based on Integration Method of Multi-source data

    NASA Astrophysics Data System (ADS)

    Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI

    2017-02-01

    In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.

  7. The fate of diamondoids in coals and sedimentary rocks

    USGS Publications Warehouse

    Wei, Z.; Moldowan, J.M.; Jarvie, D.M.; Hill, R.

    2006-01-01

    Diamondoids were detected in the extracts of a series of coals and rocks varying in maturity, lithology, source input, and depositional environment. At the same maturity level, diamondoids are generally about a magnitude more abundant in source rocks than in coals. The concentrations of diamondoids are maturity dependent. However, while diamondoids become more abundant with the increasing thermal maturity, a diminution in diamondoid concentrations is observed at the maturity value of about Ro = 4.0% in both coals and rocks. The occurrence of diamantane destruction at 550 ??C during pyrolysis suggests that diamondoids may be eventually destroyed at high temperatures in the Earth. Here we propose three main phases of diamondoid life in nature: diamondoid generation (phase I, Ro 4.0%). ?? 2006 Geological Society of America.

  8. Assessment of potential oil and gas resources in source rocks of the Alaska North Slope, 2012

    USGS Publications Warehouse

    Houseknecht, David W.; Rouse, William A.; Garrity, Christopher P.; Whidden, Katherine J.; Dumoulin, Julie A.; Schenk, Christopher J.; Charpentier, Ronald R.; Cook, Troy A.; Gaswirth, Stephanie B.; Kirschbaum, Mark A.; Pollastro, Richard M.

    2012-01-01

    The U.S. Geological Survey estimated potential, technically recoverable oil and gas resources for source rocks of the Alaska North Slope. Estimates (95-percent to 5-percent probability) range from zero to 2 billion barrels of oil and from zero to nearly 80 trillion cubic feet of gas.

  9. Source-rock evaluation of outcrop samples from Vanuatu (Malakula, Espiritu Santo, Maewo, and Pentecost)

    USGS Publications Warehouse

    Buchbinder, Binyamin; Halley, Robert B.

    1988-01-01

    The samples collected for the present study represent only a portion of the sedimentary column in the various sedimentary basins of Vanuatu.  The characterize only the outer margins of the sedimentary basins and do not necessarily reflect the source-rock potential of the deeper (offshore) parts of the basins.

  10. Publications - GMC 325 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    (Hydrocarbon-Show) evaluation for 4 Husky Oil NPR Operations Inc. wells, and Source-Rock evaluation for 4 Husky Oil NPR Operations Inc. wells Authors: Huizinga, B.J. Publication Date: Jan 2006 Publisher: Alaska ) evaluation for 4 Husky Oil NPR Operations Inc. wells, and Source-Rock evaluation for 4 Husky Oil NPR

  11. Geophysics of Volcanic Landslide Hazards: The Inside Story

    NASA Astrophysics Data System (ADS)

    Finn, C.; Deszcz-Pan, M.; Bedrosian, P. A.

    2013-05-01

    Flank collapses of volcanoes pose significant potential hazards, including triggering lahars, eruptions, and tsunamis. Significant controls on the stability of volcanoes are the distribution of hydrothermal alteration and the location of groundwater. Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure and the transport of mass and heat. Interaction of groundwater with acid magmatic gases can lead to hydrothermal alteration that mechanically weakens rocks and makes them prone to failure and flank collapse. Therefore, detecting the presence and volume of hydrothermally altered rocks and shallow ground water is critical for evaluating landslide hazards. High-resolution helicopter magnetic and electromagnetic (HEM) data collected over the rugged, ice-covered Mount Adams, Mount Baker, Mount Rainier, Mount St. Helens (Washington) and Mount Iliamna (Alaska) volcanoes, reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping, other geophysical data and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water-saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Water-saturated alteration at Mount Baker is restricted to thinner (<200 m) zones beneath Sherman Crater and the Dorr Fumarole Fields. The HEM data can be used to identify water-saturated fresh volcanic rocks from the surface to the detection limit (~100-200 m) in discreet zones on the summits of Mount Rainier and Mt Adams, in shattered fresh dome rocks under the crater of Mount St. Helens and in the entire summit region at Mount Baker. A 50-100 m thick water saturated layer is imaged within or beneath parts of glaciers on Mount Iliamna. Removal of ice and snow during eruptions and landslide can result in lahars and floods. Ice thickness measurements critical for flood and mudflow hazards studies are very sparse on most volcanoes. The HEM data are used to estimate ice thickness over portions of Mount Baker and Mount Adams volcanoes. The best estimates for ice thickness are obtained over relatively low resistivity (<600 ohm-m) ground for the main ice cap on Mount Adams and over most of the summit of Mount Baker. The modeled distribution of alteration, pore fluids and partial ice volumes on the volcanoes helps identify likely sources for future alteration-related debris flows, including the Sunset Amphitheater region at Mount Rainier, steep cliffs at the western edge of the central altered zone at Mount Adams, south and north flanks of Mount Baker, and central Mount Iliamna. The water saturated shattered fresh dome material in the crater of Mount St. Helens may have served as part of the slip surface for the 1980 debris avalanche.

  12. [Source apportionment of soil heavy metals in Jiapigou goldmine based on the UNMIX model].

    PubMed

    Ai, Jian-chao; Wang, Ning; Yang, Jing

    2014-09-01

    The paper determines 16 kinds of metal elements' concentration in soil samples which collected in Jipigou goldmine upper the Songhua River. The UNMIX Model which was recommended by US EPA to get the source apportionment results was applied in this study, Cd, Hg, Pb and Ag concentration contour maps were generated by using Kriging interpolation method to verify the results. The main conclusions of this study are: (1)the concentrations of Cd, Hg, Pb and Ag exceeded Jilin Province soil background values and enriched obviously in soil samples; (2)using the UNMIX Model resolved four pollution sources: source 1 represents human activities of transportation, ore mining and garbage, and the source 1's contribution is 39. 1% ; Source 2 represents the contribution of the weathering of rocks and biological effects, and the source 2's contribution is 13. 87% ; Source 3 is a comprehensive source of soil parent material and chemical fertilizer, and the source 3's contribution is 23. 93% ; Source 4 represents iron ore mining and transportation sources, and the source 4's contribution is 22. 89%. (3)the UNMIX Model results are in accordance with the survey of local land-use types, human activities and Cd, Hg and Pb content distributions.

  13. Transformation of juvenile Izu-Bonin-Mariana oceanic arc into mature continental crust: An example from the Neogene Izu collision zone granitoid plutons, Central Japan

    NASA Astrophysics Data System (ADS)

    Saito, Satoshi; Tani, Kenichiro

    2017-04-01

    Granitic rocks (sensulato) are major constituents of upper continental crust. Recent reviews reveal that the average composition of Phanerozoic upper continental crust is granodioritic. Although oceanic arcs are regarded as a site producing continental crust material in an oceanic setting, intermediate to felsic igneous rocks occurring in modern oceanic arcs are dominantly tonalitic to trondhjemitic in composition and have lower incompatible element contents than the average upper continental crust. Therefore, juvenile oceanic arcs require additional processes in order to get transformed into mature continental crust enriched in incompatible elements. Neogene granitoid plutons are widely exposed in the Izu Collision Zone in central Japan, where the northern end of the Izu-Bonin-Mariana (IBM) arc (juvenile oceanic arc) has been colliding with the Honshu arc (mature island arc) since Middle Miocene. The plutons in this area are composed of various types of granitoids ranging from tonalite to trondhjemite, granodiorite, monzogranite and granite. Three main granitoid plutons are distributed in this area: Tanzawa plutonic complex, Kofu granitic complex, and Kaikomagatake granitoid pluton. Tanzawa plutonic complex is dominantly composed of tonalite and trondhjemite and characterized by low concentration of incompatible elements and shows geochemical similarity with modern juvenile oceanic arcs. In contrast, Kofu granitic complex and Kaikomagatake granitoid pluton consists mainly of granodiorite, monzogranite and granite and their incompatible element abundances are comparable to the average upper continental crust. Previous petrogenetic studies on these plutons suggested that (1) the Tanzawa plutonic complex formed by lower crustal anatexis of juvenile basaltic rocks occurring in the IBM arc, (2) the Kofu granitic complex formed by anatexis of 'hybrid lower crust' comprising of both basaltic rocks of the IBM arc and metasedimentary rocks of the Honshu arc, and (3) the Kaikomagatake granitoid pluton formed by anatexis of 'hybrid lower crust' consisting of K-rich rear-arc crust of the IBM arc and metasedimentary rocks of the Honshu arc. These studies collectively suggest that the chemical diversity within the Izu Collision Zone granitoid plutons reflects the chemical variation of basaltic sources (i.e., across-arc chemical variation in the IBM arc) as well as variable contribution of the metasedimentary component in the source region. The petrogenetic models of the Izu Collision Zone granitoid plutons suggest that collision with another mature arc/continent, hybrid lower crust formation and subsequent hybrid source anatexis are required for juvenile oceanic arcs to produce granitoid magmas with enriched compositions. The Izu Collision Zone granitoid plutons provide an exceptional example of the collision-induced transformation from a juvenile oceanic arc to the mature continental crust.

  14. Total Petroleum Systems of the Northwest Shelf, Australia: The Dingo-Mungaroo/Barrow and the Locker-Mungaroo/Barrow

    USGS Publications Warehouse

    Bishop, Michele G.

    1999-01-01

    The Northwest Shelf Province (U.S.G.S. #3948) of Australia contains two important hydrocarbon source-rock intervals and numerous high quality reservoir intervals. These are grouped into two petroleum systems, Dingo-Mungaroo/Barrow and Locker-Mungaroo/Barrow, where the Triassic Mungaroo Formation and the Early Cretaceous Barrow Group serve as the major reservoir rocks for the Jurassic Dingo Claystone and Triassic Locker Shale source rocks. The primary source rock, Dingo Claystone, was deposited in restricted marine conditions during the Jurassic subsidence of a regional sub-basin trend. The secondary source rock, Locker Shale, was deposited in terrestrially-influenced, continental seaway conditions during the Early Triassic at the beginning of the breakup of Pangea. These systems share potential reservoir rocks of deep-water, proximal and distal deltaic, marginal marine, and alluvial origins, ranging in age from Late Triassic through Cretaceous. Interformational seals and the regional seal, Muderong Shale, along with structural and stratigraphic traps account for the many types of hydrocarbon accumulations in this province. In 1995, the Northwest Shelf produced 42% of the hydrocarbon liquids in Australia, and in 1996 surpassed the Australian Bass Straits production, with 275,000 barrels per day (bpd) average. This region is the major producing province of Australia. Known reserves as of 1995 are estimated at 11.6 billion of barrels of oil equivalent (BBOE)(Klett and others, 1997) . Although exploration has been conducted since 1955, many types of prospects have not been targeted and major reserves continue to be discovered.

  15. Earth's first stable continents did not form by subduction

    NASA Astrophysics Data System (ADS)

    Johnson, Tim; Brown, Michael; Gardiner, Nicholas; Kirkland, Christopher; Smithies, Hugh

    2017-04-01

    The geodynamic setting in which Earth's first stable cratonic nuclei formed remains controversial. Most exposed Archaean continental crust comprises rocks of the tonalite-trondhjemite-granodiorite (TTGs) series that were produced from partial melting of low magnesium basaltic source rocks and have 'arc-like' trace element signatures that resemble continental crust produced in modern supra-subduction zone settings. The East Pilbara Terrane, Western Australia, is amongst the oldest fragments of preserved continental crust of Earth. Low magnesium basalts of the Paleoarchaean Coucal Formation, at the base of the Pilbara Supergroup, have trace element compositions consistent with the putative source rocks for TTGs. These basalts may be remnants of the ≥35 km-thick pre-3.5 Ga plateau-like basaltic crust that is predicted to have formed if mantle temperatures were much hotter than today. Using phase equilibria modelling of an average uncontaminated Coucal basalt, we confirm their suitability as TTG source rocks. The results suggest that TTGs formed by 20-30% melting along high geothermal gradients (≥700 °C/GPa), which accord with apparent geotherms recorded by >95% of Archaean rocks worldwide. Moreover, the trace element composition of the Coucal basalts demonstrates that they were derived from an earlier generation of mafic/ultramafic rocks, and that the arc-like signature in Archaean TTGs was inherited through an ancestral source lineage. The protracted multistage process required for production and stabilisation of Earth's first continents, coupled with the high geothermal gradients, are incompatible with modern-style subduction and favour a stagnant lid regime in the early Archaean.

  16. Distribution, microfabric, and geochemical characteristics of siliceous rocks in central orogenic belt, China: implications for a hydrothermal sedimentation model.

    PubMed

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch

    2014-01-01

    Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian--Ordovician, and Carboniferous--Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08-95.30%), Ba (42.45-503.0 ppm), and ΣREE (3.28-19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb) N, and (La/Ce) N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  17. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    PubMed Central

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch.

    2014-01-01

    Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%), Ba (42.45–503.0 ppm), and ΣREE (3.28–19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb)N, and (La/Ce)N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics. PMID:25140349

  18. Distal Ejecta from Lunar Impacts: Extensive Regions of Rocky Deposits

    NASA Technical Reports Server (NTRS)

    Bandfield, Joshua L.; Cahill, Joshua T. S.; Carter, Lynn M.; Neish, Catherine D.; Patterson, G. Wesley; Williams, Jean-Pierre; Paige, David A.

    2016-01-01

    Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer, Mini-RF, and LRO Camera data were used to identify and characterize rocky lunar deposits that appear well separated from any potential source crater. Two regions are described: 1) A approximate 18,000 sq km area with elevated rock abundance and extensive melt ponds and veneers near the antipode of Tycho crater (167.5 deg E, 42.5 deg N). This region has been identified previously, using radar and aging data. 2) A much larger and more diffuse region, covering approximately 730,000 sq km, centered near 310 deg E, 35 deg S, containing elevated rock abundance and numerous granular flow deposits on crater walls. The rock distributions in both regions favor certain slope azimuths over others, indicating a directional component to the formation of these deposits. The spatial distribution of rocks is consistent with the arrival of ejecta from the west and northwest at low angles (approximately 10-30 deg) above the horizon in both regions. The derived age and slope orientations of the deposits indicate that the deposits likely originated as ejecta from the Tycho impact event. Despite their similar origin, the deposits in the two regions show significant differences in the datasets. The Tycho crater antipode deposit covers a smaller area, but the deposits are pervasive and appear to be dominated by impact melts. By contrast, the nearside deposits cover a much larger area and numerous granular flows were triggered. However, the features in this region are less prominent with no evidence for the presence of impact melts. The two regions appear to be surface expressions of a distant impact event that can modify surfaces across wide regions, resulting in a variety of surface morphologies. The Tycho impact event may only be the most recent manifestation of these processes, which likely have played a role in the development of the regolith throughout lunar history

  19. Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Xiu-Jin; Liu, Li-Juan

    2013-10-01

    Whole rock major and trace element, Nd-Sr and zircon Hf isotopic compositions and secondary-ion mass spectrometry zircon U-Pb ages of eleven granitoid intrusions and dioritic rocks from the East Junggar (NW China) were analyzed in this study. The East Junggar granitoids were emplaced during terminal Early to Late Carboniferous (325-301 Ma) following volcanic eruption of the Batamayi Formation. Zircons from the East Junggar granitoids yielded 210 concordant 206Pb/238U ages which are all younger than 334 Ma and exhibit ɛHf(t) values distinctly higher than Devonian arc volcanic-rocks. Seismic P-wave velocities of deep crust of the East Junggar proper resemble those of oceanic crust (OC). These characteristics suggest absence of volcanic rock and volcano-sedimentary rock of Devonian and Early Carboniferous from the source region. The East Junggar granitoids show ɛNd(t) and initial 87Sr/86Sr values substantially overlapping those of the Armantai ophiolite in the area. The Early Paleozoic OC with seamount-like composition as the Zhaheba-Armantai ophiolites remained in the lower crust and formed main source rock of the East Junggar granitoids. Based on petrography and geochemistry, the East Junggar granitoids are classified into peralkaline A-type in the northern subarea, I-type (I1 and I2 subgroups) mainly in the north and A-type in the south of the southern subarea. The perthitic or argillated core and oligoclasic rim with an argillated boundary of feldspar phenocrysts and inclusion of perthites or its overgrowth by matrix plagioclase, in the monzogranites (northern subarea), suggest mixing of peralkaline granitic magma with mafic magma. In the north of the southern subarea, the presence of magmatic microdioritic enclaves (MMEs) in the I1 subgroup granitoids, transfer of plagioclase phenocrysts and hornblendes between host granodiorite and the MME across the boundary and a prominent resorption surface in the plagioclase phenocrysts indicate mixing of crustal magma (I2 subgroup granitoids) with mafic magma. Magma mixing shifted (87Sr/86Sr)i of the I1 subgroup granitoids towards the mantle array. Two generations of hornblende with zonal distribution and similar mineral and geochemical compositions of quartz monzodiorite and hosted MME with unfractionated rare earth elements (REE) suggest extended magma mixing with onset probably at or near source region. These observations imply concurrency of mantle input and the crustal melting and, hence, a causal relationship between underplating/intraplating and the lower OC/upper OC melting. The I-type granitoids experienced plagioclase and hornblende fractionations, whereas fractionated phases of the two groups of A-type granites were alkali feldspar and albite-oligoclase with significant involvement of F--rich fluid. Granodioritic parent magmas of the I2 subgroup granitoids stemmed from the hydrous upper OC. Parent magmas of the two A-type groups possess syenogranitic or quartz syenitic compositions. The peralkaline A-type granites stemmed from the lower OC, whereas the A-type granites from dehydrated upper OC left behind after extensive partial melting and extraction of I-type granitoids. Based on comparison in the ternary system Mg2SiO4-CaAl2SiO6-SiO2, most of the Batamayi volcanic rocks with affinity to ocean-island basalts were derived from asthenospheric upwelling. The gabbro-dioritic rocks with higher light to heavy REE ratios stemmed from metasomatized lithospheric mantle. Both of the above mafic rocks contain subducted slab component.

  20. Investigation of rock samples by neutron diffraction and ultrasonic sounding

    NASA Astrophysics Data System (ADS)

    Burilichev, D. E.; Ivankina, T. I.; Klima, K.; Locajicek, T.; Nikitin, A. N.; Pros, Z.

    2000-03-01

    The interpretation of large-scale geophysical anisotropies largely depends upon the knowledge of rock anisotropies of any kind (compositions, foliations, grain shape, physical properties). Almost all physical rock properties (e.g. elastic, thermal, magnetic properties) are related to the textures of the rock constituents since they are anisotropic for the single crystal. Although anisotropy determinations are numerous, systematic investigations are scarce. Therefore, several rock samples with different microfabrics were selected for texture analysis and to determine its P-wave distributions at various confining pressures.

  1. Photogeologic maps of the Iris SE and Doyleville SW quadrangles, Saguache County, Colorado

    USGS Publications Warehouse

    McQueen, Kathleen

    1957-01-01

    The Iris SE and Doyleville SW quadrangles, Saguache County, Colorado include part ot the Cochetopa mining district. Photogeologic maps of these quadrangles show the distribution of sedimentary rocks of Jurassic and Cretaceous age; precambrian granite, schist, and gneiss; and igneous rocks of Tertiary age. Sedimentary rocks lie on an essentially flat erosion surface on Precambrian rocks. Folds appear to be absent but faults present an extremely complex structural terrane. Uraniferous deposits occur at fault intersections in Precambriam and Mesozoic rocks.

  2. Mars Pathfinder Near-Field Rock Distribution Re-Evaluation

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Golombek, M. P.

    2003-01-01

    We have completed analysis of a new near-field rock count at the Mars Pathfinder landing site and determined that the previously published rock count suggesting 16% cumulative fractional area (CFA) covered by rocks is incorrect. The earlier value is not so much wrong (our new CFA is 20%), as right for the wrong reason: both the old and the new CFA's are consistent with remote sensing data, however the earlier determination incorrectly calculated rock coverage using apparent width rather than average diameter. Here we present details of the new rock database and the new statistics, as well as the importance of using rock average diameter for rock population statistics. The changes to the near-field data do not affect the far-field rock statistics.

  3. Oil geochemistry of the northern Llanos Basin, Colombia. A model for migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramon, J.C.; Dzou, L.

    1996-12-31

    The chemical composition of 23 crude oils and one oil seep from Llanos Basin, Colombia were studied in detail by geochemical methods in order to understand their genetic relationship. A filling history model is proposed to explain the observed composition variations in Llanos Basin oils. Geochemical fingerprinting indicates that there are six families of crude oils. The biomarker compositions have been used to identify characteristics of the source rocks. The Llanos oils contain marine algal- derived {open_quotes}C30 steranes{close_quotes} (i.e., 24-n-propylcholestanes), which are diagnostic for oils generated from marine Cretaceous source rocks. A significant HC-contribution from a Tertiary source is alsomore » indicated by the presence of high concentration of the {open_quotes}flowering plant{close_quotes}-markers oleanane, bicadinanes and oleanoids. Low DBT/Phen, %sulfur values and high diasteranes concentration indicate that the source rock is clay-rich. Biomarker maturity parameters indicate a wide range of source-rock thermal maturities from early to late oil window. Heavy biodegradation has been particularly common among the first oils to fill reservoirs in central Llanos oil fields. The older altered heavy oils were mixed with a second pulse of oil explaining the wide range of oil gravities measured in the central Llanos Basin.« less

  4. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  5. Summary of northern Atlantic coastal plain hydrology and its relation to disposal of high-level radioactive waste in buried crystalline rock; a preliminary appraisal

    USGS Publications Warehouse

    Lloyd, O.B.; Larson, J.D.; Davis, R.W.

    1985-01-01

    Interpretation of available hydrologic data suggests that some areas beneath the Coastal Plain in the States of Delaware, Maryland, New Jersey, North Carolina, and Virginia might have some potential for the disposal of nuclear waste in crystalline rock that is buried beneath the Coastal Plain sediments. The areas of major interest occur where the top of the basement rock lies between 1,000 and 4,000 feet below sea level, the aquifer(s) immediately above the basement rock are saturated with saline water, confining material overlies the saline water bearing aquifer(s), and groundwater flow in the saline water aquifer(s) can be established. Preliminary data on (1) the distribution and thickness of the lowermost aquifers and confining beds, (2) the distribution of hydraulic conductivity in the lowermost aquifers, (3) estimated hydraulic heads and inferred direction of lateral groundwater flow for 1980, and (4) the distribution of saline water and brine, indicate eastern parts of the study area relatively best meet most of the criteria proposed for sediments that would overlie any potential buried crystalline-rock disposal site.

  6. Distribution and provenance of lunar highland rock types at North Ray Crater, Apollo 16

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Ostertag, R.; Borchardt, R.; Malley, J.; Rehfeldt, A.; Reimold, W. U.

    1982-01-01

    In connection with its selenographic setting in the central lunar highlands, the Apollo 16 landing site in the Descartes area is highly important as a prime sampling area for rocks which formed as part of the primordial crust and as a key location for the analysis of the deformation and transport of crustal material by impact processes. The present investigation is concerned with the North Ray crater, which is located on the N-S running boundary between the smooth Cayley plains to the west and the Descartes mountains to the east. Attention is given to aspects of selenography and location of samples, the ejecta distribution of post-Cayley impact craters, sample classification, the frequency distribution of rock types in the North Ray Crater ejecta, an interpretation of compositional and age data, a model of the target stratigraphy and excavation of North Ray Crater, and implications for the emplacement and provenance of North Ray target rocks.

  7. 40 CFR 60.404 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock.../ton) of phosphate rock feed. cs=concentration of particulate matter, g/dscm (g/dscf). Qsd=volumetric flow rate of effluent gas, dscm/hr (dscf/hr). P=phosphate rock feed rate, Mg/hr (ton/hr). K=conversion...

  8. 40 CFR 60.404 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock.../ton) of phosphate rock feed. cs = concentration of particulate matter, g/dscm (g/dscf). Qsd = volumetric flow rate of effluent gas, dscm/hr (dscf/hr). P=phosphate rock feed rate, Mg/hr (ton/hr). K...

  9. 40 CFR 60.404 - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock.../ton) of phosphate rock feed. cs=concentration of particulate matter, g/dscm (g/dscf). Qsd=volumetric flow rate of effluent gas, dscm/hr (dscf/hr). P=phosphate rock feed rate, Mg/hr (ton/hr). K=conversion...

  10. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock... subpart shall cause to be discharged into the atmosphere: (1) From any phosphate rock dryer any gases which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed (0...

  11. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock... subpart shall cause to be discharged into the atmosphere: (1) From any phosphate rock dryer any gases which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed (0...

  12. 40 CFR 60.404 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock.../ton) of phosphate rock feed. cs=concentration of particulate matter, g/dscm (g/dscf). Qsd=volumetric flow rate of effluent gas, dscm/hr (dscf/hr). P=phosphate rock feed rate, Mg/hr (ton/hr). K=conversion...

  13. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock... subpart shall cause to be discharged into the atmosphere: (1) From any phosphate rock dryer any gases which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed (0...

  14. 40 CFR 60.404 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock.../ton) of phosphate rock feed. cs=concentration of particulate matter, g/dscm (g/dscf). Qsd=volumetric flow rate of effluent gas, dscm/hr (dscf/hr). P=phosphate rock feed rate, Mg/hr (ton/hr). K=conversion...

  15. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock... subpart shall cause to be discharged into the atmosphere: (1) From any phosphate rock dryer any gases which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed (0...

  16. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock... subpart shall cause to be discharged into the atmosphere: (1) From any phosphate rock dryer any gases which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed (0...

  17. Thermal Inertia of Rocks and Rock Populations and Implications for Landing Hazards on Mars

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    Rocks represent an obvious potential hazard to a landing spacecraft. They also represent an impediment to rover travel and objects of prime scientific interest. Although Mars Orbiter Camera (MOC) images are of high enough resolution to distinguish the largest rocks (an extremely small population several meters diameter or larger), traditionally the abundance and distribution of rocks on Mars have been inferred from thermal inertia and radar measurements, our meager ground truth sampling of landing sites, and terrestrial rock populations. In this abstract, we explore the effective thermal inertia of rocks and rock populations, interpret the results in terms of abundances and populations of potentially hazardous rocks, and conclude with interpretations of rock hazards on the Martian surface and in extremely high thermal inertia areas.

  18. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the sixth quarter of this research project the research team developed a method and the experimental procedures for acquiring the data needed for ultrasonic tomography of rock core samples under triaxial stress conditions as outlined in Task 10. Traditional triaxial compression experiments, where compressional and shear wave velocities are measured, provide little or no information about the internal spatial distribution of mechanical damage within the sample. The velocities measured between platen-to-platen or sensor-to-sensor reflects an averaging of all the velocities occurring along that particular raypath across the boundaries of the rock. The research team is attempting to develop andmore » refine a laboratory equivalent of seismic tomography for use on rock samples deformed under triaxial stress conditions. Seismic tomography, utilized for example in crosswell tomography, allows an imaging of the velocities within a discrete zone within the rock. Ultrasonic or acoustic tomography is essentially the extension of that field technology applied to rock samples deforming in the laboratory at high pressures. This report outlines the technical steps and procedures for developing this technology for use on weak, soft chalk samples. Laboratory tests indicate that the chalk samples exhibit major changes in compressional and shear wave velocities during compaction. Since chalk is the rock type responsible for the severe subsidence and compaction in the North Sea it was selected for the first efforts at tomographic imaging of soft rocks. Field evidence from the North Sea suggests that compaction, which has resulted in over 30 feet of subsidence to date, is heterogeneously distributed within the reservoir. The research team will attempt to image this very process in chalk samples. The initial tomographic studies (Scott et al., 1994a,b; 1998) were accomplished on well cemented, competent rocks such as Berea sandstone. The extension of the technology to weaker samples is more difficult but potentially much more rewarding. The chalk, since it is a weak material, also attenuates wave propagation more than other rock types. Three different types of sensors were considered (and tested) for the tomographic imaging project: 600 KHz PZT, 1 MHz PZT, and PVDF film sensors. 600 KHz PZT crystals were selected because they generated a sufficiently high amplitude pulse to propagate across the damaged chalk. A number of different configurations were considered for placement of the acoustic arrays. It was decided after preliminary testing that the most optimum arrangement of the acoustic sensors was to place three arrays of sensors, with each array containing twenty sensors, around the sample. There would be two horizontal arrays to tomographically image two circular cross-sectional planes through the rock core sample. A third array would be vertically oriented to provide a vertical cross-sectional view of the sample. A total of 260 acoustic raypaths would be shot and acquired in the horizontal acoustic array to create each horizontal tomographic image. The sensors can be used as both acoustic sources or as acoustic each of the 10 pulsers to the 10 receivers.« less

  19. VNIR reflectance spectroscopy of natural carbonate rocks: implication for remote sensing identification of fault damage zones

    NASA Astrophysics Data System (ADS)

    Traforti, Anna; Mari, Giovanna; Carli, Cristian; Demurtas, Matteo; Massironi, Matteo; Di Toro, Giulio

    2017-04-01

    Reflectance spectroscopy in the visible and near-infrared (VNIR) is a common technique used to study the mineral composition of Solar System bodies from remote sensed and in-situ robotic exploration. In the VNIR spectral range, both crystal field and vibrational overtone absorptions can be present with spectral characteristics (i.e. albedo, slopes, absorption band with different positions and depths) that vary depending on composition and texture (e.g. grain size, roughness) of the sensed materials. The characterization of the spectral variability related to the rock texture, especially in terms of grain size (i.e., both the size of rock components and the size of particulates), commonly allows to obtain a wide range of information about the different geological processes modifying the planetary surfaces. This work is aimed at characterizing how the grain size reduction associated to fault zone development produces reflectance variations in rock and mineral spectral signatures. To achieve this goal we present VNIR reflectance analysis of a set of fifteen rock samples collected at increasing distances from the fault core of the Vado di Corno fault zone (Campo Imperatore Fault System - Italian Central Apennines). The selected samples had similar content of calcite and dolomite but different grain size (X-Ray Powder Diffraction, optical and scanning electron microscopes analysis). Consequently, differences in the spectral signature of the fault rocks should not be ascribed to mineralogical composition. For each sample, bidirectional reflectance spectra were acquired with a Field-Pro Spectrometer mounted on a goniometer, on crushed rock slabs reduced to grain size <800, <200, <63, <10 μm and on intact fault zone rock slabs. The spectra were acquired on dry samples, at room temperature and normal atmospheric pressure. The source used was a Tungsten Halogen lamp with an illuminated spot area of ca. 0.5 cm2and incidence and emission angles of 30˚ and 0˚ respectively. The spectral analysis of the crushed and intact rock slabs in the VNIR spectral range revealed that in both cases, with increasing grain size: (i) the reflectance decreases (ii) VNIR spectrum slopes (i.e. calculated between wavelengths of 0.425 - 0.605 μm and 2.205 - 2.33 μm, respectively) and (iii) carbonate main absorption band depth (i.e. vibrational absorption band at wavelength of ˜2.3 μm) increase. In conclusion, grain size variations resulting from the fault zone evolution (e.g., cumulated slip or development of thick damage zones) produce reflectance variations in rocks and mineral spectral signatures. The remote sensing analysis in the VNIR spectral range can be applied to identify the spatial distribution and extent of fault core and damage zone domains for industrial and seismic hazard applications. Moreover, the spectral characterization of carbonate-built rocks can be of great interest for the surface investigation of inner planets (e.g. Earth and Mars) and outer bodies (e.g. Galilean icy satellites). On these surfaces, carbonate minerals at different grain sizes are common and usually related to water and carbon distribution, with direct implications for potential life outside Earth (e.g. Mars).

  20. Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.

    PubMed

    Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J

    2017-09-08

    Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

  1. Minor and trace element geochemistry of volcanic rocks dredged from the Galapagos spreading center: role of crystal fractionation and mantle heterogeneity.

    USGS Publications Warehouse

    Clague, D.A.; Frey, F.A.; Thompson, G.; Rindge, S.

    1981-01-01

    A wide range of rock types (abyssal tholeiite, Fe-Ti-rich basalt, andesite, and rhyodacite) were dredged from near 95oW and 85oW on the Galapagos spreading center. Computer modeling of major element compositions has shown that these rocks could be derived from common parental magmas by successive degrees of fractional crystallization. However, the P2O5/K2O ratio implies distinct mantle source compositions for the two areas. These source regions also have different rare earth element (REE) abundance patterns. The sequence of fractionated lavas differs for the two areas and indicates earlier fractionation of apatite and titanomagnetite in the lavas from 95oW. The mantle source regions for these two areas are interpreted to be depleted in incompatible (and volatile?) elements, although the source region beneath 95oW is less severely depleted in La and K. -Authors

  2. Geochemical Analysis for Sedimentary Emerald Mineralization in Western Emerald belt, Colombia

    NASA Astrophysics Data System (ADS)

    Nino Vasquez, Gabriel Felipe; Song, Sheng-Rong

    2017-04-01

    1Gabriel Felipe Nino Vasquez and 1Sheng-Rong Song 1Department of Geosciences, National Taiwan University Colombia hosts a large quantity of mineral resources due to its complex tectonic arrangement, and emerald deposits are one of the most representatives for the country. Emeralds in Colombia occur mainly in black shale, and are located in eastern Andes Cordillera with two parallel belts separated by approximately 130 Km: the Western belt (WB) and the Eastern belt (EB). The geological, mineralogical and tectonic features from these belts are quite similar (Buenaventura 2002). Previous researchers concluded that emeralds in Colombia came from hydrothermal sedimentary processes without any magmatic influence, and suggested that the source of Cr, V and Be (which are important components of the beryl) was the host rock. According to their results, the process which allowed the shale to release these cations was the metasomatism (albitization and carbonization), which was resulted from the interaction between the rocks and the alkaline brines. Fractures and fault planes originated by these tectonic movements were fulfilled by enriched fluids, which they allowed emeralds and the other minerals precipitation with decreasing alkalinity and pressure (Giuliani et al. 1994). However, there were several pitfalls of conclusions drawn from previous researches. Firstly, Cr and V were widely distributed and come from mafic and ultramafic rocks, and Be was mostly found in pegmatites, finding these elements in sedimentary rocks suggest that probably the ultramafic rocks occurred not far from the deposits. Secondly, there was an inconsistency in the estimated temperatures of emeralds formation, i.e. temperature of hydrothermal sedimentary deposits was only 200° C, while laboratory analysis showed that the formation of emeralds was higher than 300° C. Therefore, there might still be an allocthonus influence on emerald formation that significantly increases the temperature. This research is going to contribute information in order to clarify these inconsistencies, We have done the O and C isotopes in calcite and S isotope in pyrite and shale from different mines along the (WB) in order to determine the main fluid source of the mineralization. Selected samples will also be analyzed with EDS, RAMAN and ICP-MS methods to obtain the exact compositions of elements with extremely low concentrations in host rock, metazomatized host rock and mineralization (productive and not productive veins); the main purpose is to measure how strong were the fluid-rock interaction to leach elements out from the black shale. Thin sections from the altered shale and vein have been analyzed with the purpose of identify paragenesis and microstructures in the mineralization. Finally, we would like to gather the results from different sectors and compare it with the previous studies.

  3. Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin - a GIS-based analysis using weights of evidence

    USGS Publications Warehouse

    Mihalasky, Mark J.

    2001-01-01

    The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a segment of the Roberts Mountain thrust front, which bridges the southern ends of the trends. This pattern appears to delineate two well-defined, sub-parallel, northwest?southeast-trending crustal-scale structural zones. These features, here termed the ?Carlin? and ?Cortez? structural zones, are believed to control the regional-scale distribution of the sedimentary rock-hosted occurrences. Mineralizing processes were focused along these structural zones and significant ore deposits exist where they intersect other tectonic zones, favorable host rock-types, and (or) where appropriate physio-chemical conditions were present. The origin and age of the Carlin and Cortez structural zones are not well constrained, however, they are considered to be transcurrent features representing a long-lived, deep-crustal or mantle-rooted zone of weakness. Areas of elevated volcanic rock-hosted mineral potential are principally distributed along two broad and diffuse belts that trend (1) northwest-southeast across southwestern Nevada, parallel to the Sierra Nevada, and (2) northeast-southwest across northern Nevada, extending diagonally from the Sierra Nevada to southern Idaho. The first belt corresponds to the Walker Lane shear zone, a wide region of complex strike-slip faulting. The second, here termed the ?Humboldt shear(?) zone?, may represent a structural zone of transcurrent movement. Together, the Walker Lane and Humboldt shear(?) zones are believed to control the regional-scale distribution of volcanic rock-hosted occurrences. Volcanic rock-hosted mineralization was closely tied to the southward and westward migration of Tertiary magmatism across the region (which may have been mantle plume-driven). Both magmatic and mineralizing processes were localized and concentrated along these structural zones. The Humboldt shear(?) zone may have also affected the distribution of sedimentary rock-hosted mineralization along the Battle Mountain?Eureka (C

  4. The organic geochemistry of black sedimentary barite: significance and implications of trapped fatty acids

    USGS Publications Warehouse

    Miller, R.E.; Brobst, D.A.; Beck, P.C.

    1977-01-01

    Fatty acids isolated in sedimentary black barite (BaSO4) from Arkansas and Nevada were identified by gas chromatography-mass spectroscopy. The dominant or major fatty acids found in these beds of barite are C16:0, C18:0, and C18:1. The occurrence and distribution of these acids in this type of rock may serve as "molecular fingerprints" of microbial biogeochemical processes. The organic matter and associated microorganisms are shown to be trapped within the finely crystalline barite, thus forming a closed system for microbial diagenesis. Important differences that occur in the distribution of the lesser or minor fatty acids probably result from: (1) the nature of the progenitor organic detritus in the environment of barite deposition: and (2) the subsequent degree of microbiological alteration of the parent organic debris swept into and trapped in the depositional environment. Three general models of sedimentary environments are proposed in which anoxic conditions may prevail and where barium sulfate (BaSO4) may precipitate: (1) in a silled basin with semi-restricted circulation; (2) on an outer continental shelf where the slope is encroached upon by water of the oxygen minimum layer; (3) on a low-energy, inner shelf or semi-restricted embayment impinged by a wedge of anoxic water. The major geochemical and geological parameters which are believed to be the significant factors controlling the formation and high grade of these organic-rich, black bedded barites are: (1) a unique source of barium-rich fluid that only contains trace amounts of other elements; (2) the presence of an anoxic bottom environment within the depositional basin; (3) a reflux source of sulfate ion; (4) an adequate source of organic matter. The results of this study may serve as guidelines for future exploration in similar, untested sedimentary basins, especially those with rocks of middle Paleozoic age. ?? 1977.

  5. Isotope U-Pb age on single zircon and REE distribution in rocks and zircon from paleoproterozoic Kandalaksha-Kolvitsa complex Baltic shield

    NASA Astrophysics Data System (ADS)

    Steshenko, Ekaterina; Bayanova, Tamara; Drogobuzhskaya, Svetlana; Lyalina, Ludmila; Serov, Pavel; Chashchin, Viktor; Elizarov, Dmitriy

    2017-04-01

    Kandalaksha-Kolvitsa paleoproterozoic complex located in the N-E part of Baltic shield and consists of three zones. Marginal zone (mesocratic metanorite) lies at the base of the massif. Main zone is composed of leucocratic metagabbro. The upper zone is alteration of mataanorthosite and leucocratic metagabbro. All rocks were subjected to granulate and anorthositic metamorphism. Age of magmatic crystallization of the massif was determined for the first time, using the U-Pb isotope method for single zircon grains. Three fractions of single zircons from anorthosite of the Kandalaksha massif gave precise U-Pb age of 2435.5 ± 4.8 Ma. For the first time REE concentration (WR) was determined using a quadrupole mass spectrometer (Agilent 7500 ce ICP-MS) in the main varieties of rocks of the Kandalaksha-Kolvitsa paleoproterozoic complex. Anorthosite and leucocratic metagabbros (main zone) are characterized by a flat spectrum distribution of HREE, which were normalized by [1]. The REE pattern is characterized by significant positive anomalies of Eu ((Eu / Eu *)n = 3.72-3.91) in anorthosite and leucogabbros and 7.26 - in ortoamfibolitah. General content of individual elements that are common for this type of rocks: Cen = 5.82-8.54, Ybn = 1.54-1.58, which indicates that the process of crystallization of the rock occurred with predominant accumulation of plagioclase. According to geochemical and Nd-Sr isotopic data (ISr=0.702 - 0.706, ɛNd(T) = +1 - (-3)) Kandalaksha Kolvitsa complex, appear to have a general plume source with Paleoproterozoic layered intrusions of the Baltic Shield [2] Distribution of REE (ELAN-9000 ICP-MS) in zircon have a typical magmatic species: a positive Ce, negative Eu anomaly and HREE flat spectrum. Titanium content in zircons were measured for the calculation of their crystallization temperature with 8350C. These data are evidence of magmatic origin of zircon [3]. The scientific researches are supported by RFBR (projects № 15-35-20501, № 16-05-00305, 16-05-00367, 16-05-00427) and theme of state assignment № 0231-2015-0005. References: 1. Boynton W.V. Cosmochemistry of the rare earth elements: meteorite studies // Ed. Henderson P. Rare earth element geochemistry. Amsterdam: Elsevier. 1984. P. 63-114. 2. Watson E. B., Wark D.A., Thomas J.B. Crystallization thermometers for zircon and rutile // Contrib. Miner. Petrol. 2006. V. 151. P. 413-433. 3. Hoskin P.W.O. and Schaltegger U. The Composition of zirconand igneous and metamorphic petrogenesis // Reviews in mineralogy & geochemistry. 2003. V. 53. P. 27-62.

  6. Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils

    NASA Astrophysics Data System (ADS)

    Rodríguez-Robles, Ulises; Arredondo, Tulio; Huber-Sannwald, Elisabeth; Alfredo Ramos-Leal, José; Yépez, Enrico A.

    2017-11-01

    While semiarid forests frequently colonize rocky substrates, knowledge is scarce on how roots garner resources in these extreme habitats. The Sierra San Miguelito Volcanic Complex in central Mexico exhibits shallow soils and impermeable rhyolitic-rock outcrops, which impede water movement and root placement beyond the soil matrix. However, rock fractures, exfoliated rocks and soil pockets potentially permit downward water percolation and root growth. With ground-penetrating radar (GPR) and electrical resistivity tomography (ERT), two geophysical methods advocated by Jayawickreme et al. (2014) to advance root ecology, we advanced in the method development studying root and water distribution in shallow rocky soils and rock fractures in a semiarid forest. We calibrated geophysical images with in situ root measurements, and then extrapolated root distribution over larger areas. Using GPR shielded antennas, we identified both fine and coarse pine and oak roots from 0.6 to 7.5 cm diameter at different depths into either soil or rock fractures. We also detected, trees anchoring their trunks using coarse roots underneath rock outcroppings. With ERT, we tracked monthly changes in humidity at the soil-bedrock interface, which clearly explained spatial root distribution of both tree species. Geophysical methods have enormous potential in elucidating root ecology. More interdisciplinary research could advance our understanding in belowground ecological niche functions and their role in forest ecohydrology and productivity.

  7. Constraining lithospheric removal and asthenospheric input to melts in Central Asia: A geochemical study of Triassic to Cretaceous magmatic rocks in the Gobi Altai (Mongolia)

    NASA Astrophysics Data System (ADS)

    Sheldrick, Thomas C.; Barry, Tiffany L.; Van Hinsbergen, Douwe J. J.; Kempton, Pamela D.

    2018-01-01

    Throughout northeast China, eastern and southern Mongolia, and eastern Russia there is widespread Mesozoic intracontinental magmatism. Extensive studies on the Chinese magmatic rocks have suggested lithospheric mantle removal was a driver of the magmatism. The timing, distribution and potential diachroneity of such lithospheric mantle removal remains poorly constrained. Here, we examine successions of Mesozoic lavas and shallow intrusive volcanic plugs from the Gobi Altai in southern Mongolia that appear to be unrelated to regional, relatively small-scale deformation; at the time of magmatism, the area was 200 km from any active margin, or, after its Late Jurassic-Early Cretaceous closure, from the suture of the Mongol-Okhotsk Ocean. 40Ar/39Ar radiometric age data place magmatic events in the Gobi Altai between 220 to 99.2 Ma. This succession overlaps Chinese successions and therefore provides an opportunity to constrain whether Mesozoic lithosphere removal may provide an explanation for the magmatism here too, and if so, when. We show that Triassic to Lower Cretaceous lavas in the Gobi Altai (from Dulaan Bogd, Noyon Uul, Bulgantiin Uul, Jaran Bogd and Tsagaan Tsav) are all light rare-earth element (LREE) and large-ion lithophile element (LILE)-enriched, with negative Nb and Ta anomalies (Nb/La and Ta/La ≤ 1). Geochemical data suggest that these lavas formed by low degrees of partial melting of a metasomatised lithospheric mantle that may have been modified by melts derived from recycled rutile-bearing eclogite. A gradual reduction in the involvement of garnet in the source of these lavas points towards a shallowing of the depth of melting after 125 Ma. By contrast, geochemical and isotope data from the youngest magmatic rocks in the area - 107-99 Ma old volcanic plugs from Tsost Magmatic Field - have OIB-like trace element patterns and are interpreted to have formed by low degrees of partial melting of a garnet-bearing lherzolite mantle source. These rocks did not undergo significant crustal contamination, and were derived from asthenospheric mantle. The evidence of a gradual shallowing of melting in the Gobi lava provinces, culminating in an asthenospheric source signature in the youngest magmatic rocks is similar to examples from neighboring China, emphasising the wide-scale effect of a regional Mesozoic magmatic event during similar time periods. We suggest that Mongolia underwent lithospheric thinning/delamination during the Mesozoic (between 125 and 107 Ma) with patchy areas thinning sufficiently to enable the generation of relatively small-scale asthenospheric-derived magmatism to predominate in the late Cretaceous.

  8. Influence of scale-dependent fracture intensity on block size distribution and rock slope failure mechanisms in a DFN framework

    NASA Astrophysics Data System (ADS)

    Agliardi, Federico; Galletti, Laura; Riva, Federico; Zanchi, Andrea; Crosta, Giovanni B.

    2017-04-01

    An accurate characterization of the geometry and intensity of discontinuities in a rock mass is key to assess block size distribution and degree of freedom. These are the main controls on the magnitude and mechanisms of rock slope instabilities (structurally-controlled, step-path or mass failures) and rock mass strength and deformability. Nevertheless, the use of over-simplified discontinuity characterization approaches, unable to capture the stochastic nature of discontinuity features, often hampers a correct identification of dominant rock mass behaviour. Discrete Fracture Network (DFN) modelling tools have provided new opportunities to overcome these caveats. Nevertheless, their ability to provide a representative picture of reality strongly depends on the quality and scale of field data collection. Here we used DFN modelling with FracmanTM to investigate the influence of fracture intensity, characterized on different scales and with different techniques, on the geometry and size distribution of generated blocks, in a rock slope stability perspective. We focused on a test site near Lecco (Southern Alps, Italy), where 600 m high cliffs in thickly-bedded limestones folded at the slope scale impend on the Lake Como. We characterized the 3D slope geometry by Structure-from-Motion photogrammetry (range: 150-1500m; point cloud density > 50 pts/m2). Since the nature and attributes of discontinuities are controlled by brittle failure processes associated to large-scale folding, we performed a field characterization of meso-structural features (faults and related kinematics, vein and joint associations) in different fold domains. We characterized the discontinuity populations identified by structural geology on different spatial scales ranging from outcrops (field surveys and photo-mapping) to large slope sectors (point cloud and photo-mapping). For each sampling domain, we characterized discontinuity orientation statistics and performed fracture mapping and circular window analyses in order to measure fracture intensity (P21) and persistence (trace length distributions). Then, we calibrated DFN models for different combinations of P21/P32 and trace length distributions, characteristic of data collected on different scale. Comparing fracture patterns and block size distributions obtained from different models, we outline the strong influence of field data quality and scale on the rock mass behaviours predicted by DFN. We show that accounting for small scale features (close but short fractures) results in smaller but more interconnected blocks, eventually characterized by low removability and partly supported by intact rock strength. On the other hand, DFN based on data surveyed on slope scale enhance the structural control of persistent fracture on the kinematic degree-of freedom of medium-sized blocks, with significant impacts on the selection and parametrization of rock slope stability modelling approaches.

  9. Experimental Study on the Coupling Mechanism of Early-strength Backfill and Rock

    NASA Astrophysics Data System (ADS)

    Wang, Mingxu

    2017-11-01

    In order to study the interaction mechanism between the ore rock and backfill at the early stage, paraffin is chosen as the cementing agent. Based on the damage mechanics and fractal theory, the interaction mechanism between the ore rock and backfill is characterized by the relevant tests on the complex of proportioned ore rock and backfill with resistance strain gauge, crack propagation, microscopic imaging and AE. The experimental results showed that: 1) Through the axial loading test, compared with the early strength of the cemented filling and paraffin mechanical deformation characteristics, the stress and strain curves of the two had a common linear deformation law, while in the early strength of the filling elastic capacity strong, with a certain degree of resilience. 2) The bearing capacity of the backfill was weak, but the deformation ability was strong. During the bearing process, the deformation of the upper load was mainly caused by the ore rock, which leaded to the damage of the rock. 3) The distribution of AE points during the co-carrying of the filling and the ore rock was monitored by the acoustic emission instrument. The damage occurred mainly in the contact zone between the backfill and the ore rock zone. The corresponding AE point distribution also validated the crack happening.

  10. Geochemical typification of kimberlite and related rocks of the North Anabar region, Yakutia

    NASA Astrophysics Data System (ADS)

    Kargin, A. V.; Golubeva, Yu. Yu.

    2017-11-01

    The results of geochemical typification of kimberlites and related rocks (alneites and carbonatites) of the North Anabar region are presented with consideration of the geochemical specification of their source and estimation of their potential for diamonds. The content of representative trace elements indicates the predominant contribution of an asthenospheric component (kimberlites and carbonatites) in their source, with a subordinate contribution of vein metasomatic formations containing Cr-diopside and ilmenite. A significant contribution of water-bearing potassium metasomatic parageneses is not recognized. According to the complex of geochemical data, the studied rocks are not industrially diamondiferous.

  11. Geochemistry, geochronology, mineralogy, and geology suggest sources of and controls on mineral systems in the southern Toquima Range, Nye County, Nevada; with geochemistry maps of gold, silver, mercury, arsenic, antimony, zinc, copper, lead, molybdenum, bismuth, iron, titanium, vanadium, cobalt, beryllium, boron, fluorine, and sulfur; and with a section on lead associations, mineralogy and paragenesis, and isotopes

    USGS Publications Warehouse

    Shawe, Daniel R.; Hoffman, James D.; Doe, Bruce R.; Foord, Eugene E.; Stein, Holly J.; Ayuso, Robert A.

    2003-01-01

    Geochemistry maps showing the distribution and abundance of 18 elements in about 1,400 rock samples, both mineralized and unmineralized, from the southern Toquima Range, Nev., indicate major structural and lithologic controls on mineralization, and suggest sources of the elements. Radiometric age data, lead mineralogy and paragenesis data, and lead-isotope data supplement the geochemical and geologic data, providing further insight into timing, sources, and controls on mineralization. Major zones of mineralization are centered on structural margins of calderas and principal northwest-striking fault zones, as at Round Mountain, Manhattan, and Jefferson mining districts, and on intersections of low-angle and steep structures, as at Belmont mining district. Paleozoic sedimentary rocks, mostly limestones (at Manhattan, Jefferson, and Belmont districts), and porous Oligocene ash-flow tuffs (at Round Mountain district) host the major deposits, although all rock types have been mineralized as evidenced by numerous prospects throughout the area. Principal mineral systems are gold-silver at Round Mountain where about 7 million ounces of gold and more than 4 million ounces of silver has been produced; gold at Gold Hill in the west part of the Manhattan district where about a half million ounces of gold has been produced; gold-mercury-arsenic-antimony in the east (White Caps) part of the Manhattan district where a few hundred thousand ounces of gold has been produced; and silver-lead-antimony at Belmont where more than 150,000 ounces of silver has been produced. Lesser amounts of gold and silver have been produced from the Jefferson district and from scattered mines elsewhere in the southern Toquima Range. A small amount of tungsten was produced from mines in the granite of the Round Mountain pluton exposed east of Round Mountain, and small amounts of arsenic, antimony, and mercury have been produced elsewhere in the southern Toquima Range. All elements show unique distribution patterns that suggest specific sources and lithologic influences on deposition, as well as multiple episodes of mineralization. Principal episodes of mineralization are Late Cretaceous (molybdenum and tungsten in and near granite; silver at Belmont and Silver Point mines), early Oligocene [tourmaline and base- and precious-metals around the granodiorite of Dry Canyon stock as well as at Manhattan(?)], late Oligocene (gold at Round Mountain and Jefferson), and Miocene (gold at Manhattan). Most likely principal sources of molybdenum, tungsten, silver, and bismuth are Cretaceous granites; of antimony, arsenic, and mercury are intermediate-composition early Oligocene intrusives; and of gold are early and late Oligocene and early Miocene magmas of the volcanic cycle. Lead may have been derived principally from Cretaceous granitic magma and Paleozoic sedimentary rocks. Several areas prospective for undiscovered mineral deposits are suggested by spatial patterns of element distributions related to geologic features. The Manhattan district in the vicinity of the White Caps mine may be underlain by a copper-molybdenum porphyry system related to a buried stock; peripheral high-grade gold veins and skarn deposits may be present below deposits previously mined. The Jefferson district also may be underlain by a copper-molybdenum porphyry system related to a buried stock, it too with peripheral high-grade gold deposits. The Bald Mountain Canyon belt of small gold veins has potential for deeper deposits in buried porous ash-flow tuff similar to the huge Round Mountain low-grade gold-silver deposit. Several other areas have potential for a variety of mineral deposits. Altogether the geochemical, geochronologic, mineralogic, and geologic evidence suggests recurring mineralizing episodes of varied character, from Late Cretaceous to late Tertiary time, related to a long-lived hot spot deep in the crust or in the upper mantle. Granite plutons of Late Cretaceous age were minerali

  12. Stochastic multicomponent reactive transport analysis of low quality drainage release from waste rock piles: Controls of the spatial distribution of acid generating and neutralizing minerals.

    PubMed

    Pedretti, Daniele; Mayer, K Ulrich; Beckie, Roger D

    2017-06-01

    In mining environmental applications, it is important to assess water quality from waste rock piles (WRPs) and estimate the likelihood of acid rock drainage (ARD) over time. The mineralogical heterogeneity of WRPs is a source of uncertainty in this assessment, undermining the reliability of traditional bulk indicators used in the industry. We focused in this work on the bulk neutralizing potential ratio (NPR), which is defined as the ratio of the content of non-acid-generating minerals (typically reactive carbonates such as calcite) to the content of potentially acid-generating minerals (typically sulfides such as pyrite). We used a streamtube-based Monte-Carlo method to show why and to what extent bulk NPR can be a poor indicator of ARD occurrence. We simulated ensembles of WRPs identical in their geometry and bulk NPR, which only differed in their initial distribution of the acid generating and acid neutralizing minerals that control NPR. All models simulated the same principal acid-producing, acid-neutralizing and secondary mineral forming processes. We show that small differences in the distribution of local NPR values or the number of flow paths that generate acidity strongly influence drainage pH. The results indicate that the likelihood of ARD (epitomized by the probability of occurrence of pH<4 in a mixing boundary) within the first 100years can be as high as 75% for a NPR=2 and 40% for NPR=4. The latter is traditionally considered as a "universally safe" threshold to ensure non-acidic waters in practical applications. Our results suggest that new methods that explicitly account for mineralogical heterogeneity must be sought when computing effective (upscaled) NPR values at the scale of the piles. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early Paleozoic magmatic rocks in the North Altun orogenic belt.

  14. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    PubMed

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Basalt Pb isotope analysis and the prehistoric settlement of Polynesia.

    PubMed Central

    Weisler, M I; Woodhead, J D

    1995-01-01

    The prehistoric settlement of the Pacific Ocean has intrigued scholars and stimulated anthropological debate for the past two centuries. Colonized over a few millennia during the mid to late Holocene, the islands of the Pacific--displaying a wide diversity of geological and biotic variability--provided the stage for endless "natural experiments" in human adaptation. Crucial to understanding the evolution and transformation of island societies is documenting the relative degree of interisland contacts after island colonization. In the western Pacific, ideal materials for archaeologically documenting interisland contact--obsidian, pottery, and shell ornaments--are absent or of limited geographic distribution in Polynesia. Consequently, archaeologists have relied increasingly on fine-grained basalt artifacts as a means for documenting colonization routes and subsequent interisland contacts. Routinely used x-ray fluorescence characterization of oceanic island basalt has some problems for discriminating source rocks and artifacts in provenance studies. The variation in trace and major element abundances is largely controlled by near-surface magma-chamber processes and is broadly similar between most oceanic islands. We demonstrate that Pb isotope analysis accurately discriminates rock source and is an excellent technique for charting the scale, frequency, and temporal span of imported fine-grained basalt artifacts found throughout Polynesia. The technique adds another tool for addressing evolutionary models of interaction, isolation, and cultural divergence in the eastern Pacific. PMID:7892194

  16. Geology and petroleum resources of the Barents-northern Kara shelf in light of new geologic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulmishek, G.

    1985-10-01

    The Barents-northern Kara shelf, one of the largest continental shelves in the world, is still in the earliest stage of exploration for oil and gas. During the last several years, numerous seismic surveys have been conducted, a number of wells have been drilled, and several gas fields have been discovered. This report summarizes the geological data gathered during recent exploration activities and presents the changes in earlier concepts necessitated by consideration of these new data. The revised assessment of undiscovered petroleum resources is based on new information about the distribution and quality of source rocks and reservoir rocks and themore » structural framework of the shelf. Special attention is paid to evaluating the oil versus gas potential of the shelf, an evaluation that strongly depends on the expected offshore extension of oil-source facies in the Lower-Middle Triassic section. The most probable amounts of undiscovered petroleum resources of the shelf are estimated at 14.2 x 10/sup 9/ barrels of oil and 312.2 x 10/sup 12/ cubic feet of gas. The Finnmark trough, the south Barents and North Novaya Zemlya depressions, and the offshore continuation of the Timan-Pechora basin possess the great majority of these resources. 103 refs., 12 figs., 1 tab.« less

  17. Coal-type gas provinces in China and their geochemical characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiaobao; Xu Yonghang; Shen Ping

    1996-12-31

    The distribution of coal - type gases in China can be divided into the east gas province, the central gas province and the west gas province the east gas province lies in the East China Meso - Cenozoic Rift Belt, including Donghai Basin and Bohaiwan Basin. The ages of gas source rocks are Carbo - Permian and Tertiary. The types of gas reservoirs are a anticline or a hidden mountain - fault block combination reservoir. The CH{sub 4} content ofthe gases there is 83 -90%, with {delta}{sup 13}C{sub 1} -35.5 {approximately} -39.9{per_thousand}, and {delta}{sup 13}C{sub 2} -24.0 {approximately} -26.8{per_thousand}. Themore » {delta}{sup 13}C of condensate oils associated with the gases ranges from -25.4{per_thousand} to -26.8{per_thousand}. The central gas province is inside the Central China Paleozoic Plates, including Orclos Basin and Sichuan Basin. The gas source rocks are Carbo - Permian and Triassic. The types of gas reservoirs are an anticline-fault combination or a lithological-tectonic combination reservoir. The {delta}{sup 13}C{sub 1} of the gases there is -37.9 {approximately} -37. l{per_thousand}, with the {delta}{sup 13}C of condensate oil accompanying them - 25.1 {approximately} -26.6{per_thousand}. The west gas province is within the West China Late Paleozoic Intracontinental Compressive Belt, including Tarim Basin, Jungar Basin and Tuna Basin. The age of gas source rocks is Jurassic. The types of gas reservoirs are an anticline or an anticline-fault reservoir. The CH{sub 4} content of the gases there varies from 60 to 90%, with {delta}{sup 13}C{sub 1} from - 38.7 to -43.7{per_thousand} and {delta} {sup 13}C{sub 2} from -25.9{per_thousand} to -29.9{per_thousand}. The {delta} {sup 13}C of light oils and condensate oils accompanying the gases changes from 24.3{per_thousand} to 27.8{per_thousand}.« less

  18. Coal-type gas provinces in China and their geochemical characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiaobao; Xu Yonghang; Shen Ping

    1996-01-01

    The distribution of coal - type gases in China can be divided into the east gas province, the central gas province and the west gas province the east gas province lies in the East China Meso - Cenozoic Rift Belt, including Donghai Basin and Bohaiwan Basin. The ages of gas source rocks are Carbo - Permian and Tertiary. The types of gas reservoirs are a anticline or a hidden mountain - fault block combination reservoir. The CH[sub 4] content ofthe gases there is 83 -90%, with [delta][sup 13]C[sub 1] -35.5 [approximately] -39.9[per thousand], and [delta][sup 13]C[sub 2] -24.0 [approximately] -26.8[permore » thousand]. The [delta][sup 13]C of condensate oils associated with the gases ranges from -25.4[per thousand] to -26.8[per thousand]. The central gas province is inside the Central China Paleozoic Plates, including Orclos Basin and Sichuan Basin. The gas source rocks are Carbo - Permian and Triassic. The types of gas reservoirs are an anticline-fault combination or a lithological-tectonic combination reservoir. The [delta][sup 13]C[sub 1] of the gases there is -37.9 [approximately] -37. l[per thousand], with the [delta][sup 13]C of condensate oil accompanying them - 25.1 [approximately] -26.6[per thousand]. The west gas province is within the West China Late Paleozoic Intracontinental Compressive Belt, including Tarim Basin, Jungar Basin and Tuna Basin. The age of gas source rocks is Jurassic. The types of gas reservoirs are an anticline or an anticline-fault reservoir. The CH[sub 4] content of the gases there varies from 60 to 90%, with [delta][sup 13]C[sub 1] from - 38.7 to -43.7[per thousand] and [delta] [sup 13]C[sub 2] from -25.9[per thousand] to -29.9[per thousand]. The [delta] [sup 13]C of light oils and condensate oils accompanying the gases changes from 24.3[per thousand] to 27.8[per thousand].« less

  19. Contrasting cratonal provenances for upper Cretaceous Valle Group quartzite clasts, Baja California

    USGS Publications Warehouse

    Kimbrough, D.L.; Abbott, G.; Smith, D.P.; Mahoney, J.B.; Moore, Thomas E.; Gehrels, G.E.; Girty, G.H.; Cooper, John D.

    2006-01-01

    Late Cretaceous Valle Group forearcbasin deposits on the Vizcaino Peninsula of Baja California Sur are dominated by firstcycle arc-derived volcanic-plutonic detritus derived from the adjacent Peninsular Ranges batholith. Craton-derived quartzite clasts are a minor but ubiquitous component in Valle Group conglomerates. The source of these clasts has implications for tectonic reconstructions and sediment-dispersal paths along the paleo-North American margin. Three strongly contrasting types of quartzite are recognized based on petrology and detrital zircon U-Pb geochronology. The first type is ultramature quartz arenite with well-rounded, highly spherical zircon grains. Detrital zircon ages from this type are nearly all >1.8 Ga with age distributions that closely match the distinctive Middle-Late Ordovician Peace River arch detrital signature of the Cordilleran margin. This type has been previously recognized from prebatholithic rocks in northeast Baja California (San Felipe quartzite). A second quartzite type is subarkosic sandstone with strong affinity to southwestern North America; important features of the age spectra are ~1.0-1.2 Ga, 1.42 and 1.66 Ga peaks representing cratonal basement, 500-300 Ma grains interpreted as recycled Appalachian-derived grains, and 284- 232 Ma zircon potentially derived from the Early Permian-Middle Triassic east Mexico arc. This quartzite type could have been carried to the continental margin during Jurassic time as outboard equivalents of Colorado Plateau eolianites. The third quartzite type is quartz pebble conglomerate with significant ~900- 1400 Ma and ~450-650 Ma zircon components, as well as mid- and late Paleozoic grains. The source of this type of quartzite is more problematic but could match either upper Paleozoic strata in the Oaxaca terrane of southern Mexico or a southwestern North America source. The similarity of detrital 98 zircon spectra in all three Valle Group quartzite types to rocks of the adjacent Cordilleran margin support previous interpretations that Valle Group forearc basin sediments were deposited in proximity to rocks on the mainland of northwest Mexico and southwestern United States.

  20. Hydrothermal Links Between the Caribbean Plateau and OAE2

    NASA Astrophysics Data System (ADS)

    Duncan, R. A.; Snow, L. J.

    2003-12-01

    A popular current model for the sporadic occurrence of ocean anoxic events (OAEs) in the Cretaceous ties hydrothermally-induced changes in ocean chemistry (bio-limiting trace metals) during ocean plateau (LIP) volcanism to increased surface productivity, followed by mid-to-deep water oxygen depletion and accumulation of organic-rich sediments. This proposed connection is far from accepted, and important unresolved aspects include the timing of events and yet-to-be-proved synchroneity of volcanism and OAEs, the sensitivity of phytoplankton to bio-limiting (and toxic) trace metals, the difference in biotic responses at various OAEs, and the source of the hydrothermal inputs (sea floor spreading centers or ocean plateaus). To test this hypothesis we have measured the distribution of major, minor and trace element abundances in five pelagic carbonate and black shale sequences that bracket the OAE2, defined by a prominent positive excursion in the global seawater d13C record. Sedimentary sections at Rock Creek Canyon (Pueblo, CO), ODP Site 1138 (Kerguelen Plateau), Bass River (NJ), Totuma well (Venezuela) and Baranca el Canyon (Mexico) were chosen to examine potential trace metal patterns and gradients around the proposed source of hydrothermal inputs - the Caribbean Plateau, whose initial volcanic activity has been dated at 93-89 Ma. ICP-AES and ICP-MS elemental abundances from whole rock samples are normalized to Zr to remove the effect of terrestrial inputs. We find prominent trace metal "spikes" (up to 50 times background) for elements known to be concentrated in volatile degassing of magmas and in hydrothermal plumes resulting from seawater-rock reactions. These anomalies begin at the onset and continue well into the d13C excusion at all five sites. Furthermore, the magnitude of the anomalies decreases with distance from the Caribbean region, and the pattern of elements shifts from a wide range of metals near-source to predominantly long residence time metals far "downstream".

Top