Sample records for source term algorithm

  1. Survey on the Performance of Source Localization Algorithms.

    PubMed

    Fresno, José Manuel; Robles, Guillermo; Martínez-Tarifa, Juan Manuel; Stewart, Brian G

    2017-11-18

    The localization of emitters using an array of sensors or antennas is a prevalent issue approached in several applications. There exist different techniques for source localization, which can be classified into multilateration, received signal strength (RSS) and proximity methods. The performance of multilateration techniques relies on measured time variables: the time of flight (ToF) of the emission from the emitter to the sensor, the time differences of arrival (TDoA) of the emission between sensors and the pseudo-time of flight (pToF) of the emission to the sensors. The multilateration algorithms presented and compared in this paper can be classified as iterative and non-iterative methods. Both standard least squares (SLS) and hyperbolic least squares (HLS) are iterative and based on the Newton-Raphson technique to solve the non-linear equation system. The metaheuristic technique particle swarm optimization (PSO) used for source localisation is also studied. This optimization technique estimates the source position as the optimum of an objective function based on HLS and is also iterative in nature. Three non-iterative algorithms, namely the hyperbolic positioning algorithms (HPA), the maximum likelihood estimator (MLE) and Bancroft algorithm, are also presented. A non-iterative combined algorithm, MLE-HLS, based on MLE and HLS, is further proposed in this paper. The performance of all algorithms is analysed and compared in terms of accuracy in the localization of the position of the emitter and in terms of computational time. The analysis is also undertaken with three different sensor layouts since the positions of the sensors affect the localization; several source positions are also evaluated to make the comparison more robust. The analysis is carried out using theoretical time differences, as well as including errors due to the effect of digital sampling of the time variables. It is shown that the most balanced algorithm, yielding better results than the other algorithms in terms of accuracy and short computational time, is the combined MLE-HLS algorithm.

  2. Survey on the Performance of Source Localization Algorithms

    PubMed Central

    2017-01-01

    The localization of emitters using an array of sensors or antennas is a prevalent issue approached in several applications. There exist different techniques for source localization, which can be classified into multilateration, received signal strength (RSS) and proximity methods. The performance of multilateration techniques relies on measured time variables: the time of flight (ToF) of the emission from the emitter to the sensor, the time differences of arrival (TDoA) of the emission between sensors and the pseudo-time of flight (pToF) of the emission to the sensors. The multilateration algorithms presented and compared in this paper can be classified as iterative and non-iterative methods. Both standard least squares (SLS) and hyperbolic least squares (HLS) are iterative and based on the Newton–Raphson technique to solve the non-linear equation system. The metaheuristic technique particle swarm optimization (PSO) used for source localisation is also studied. This optimization technique estimates the source position as the optimum of an objective function based on HLS and is also iterative in nature. Three non-iterative algorithms, namely the hyperbolic positioning algorithms (HPA), the maximum likelihood estimator (MLE) and Bancroft algorithm, are also presented. A non-iterative combined algorithm, MLE-HLS, based on MLE and HLS, is further proposed in this paper. The performance of all algorithms is analysed and compared in terms of accuracy in the localization of the position of the emitter and in terms of computational time. The analysis is also undertaken with three different sensor layouts since the positions of the sensors affect the localization; several source positions are also evaluated to make the comparison more robust. The analysis is carried out using theoretical time differences, as well as including errors due to the effect of digital sampling of the time variables. It is shown that the most balanced algorithm, yielding better results than the other algorithms in terms of accuracy and short computational time, is the combined MLE-HLS algorithm. PMID:29156565

  3. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network

    NASA Astrophysics Data System (ADS)

    Zou, Zhen-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-04-01

    At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.

  4. An Improved Elastic and Nonelastic Neutron Transport Algorithm for Space Radiation

    NASA Technical Reports Server (NTRS)

    Clowdsley, Martha S.; Wilson, John W.; Heinbockel, John H.; Tripathi, R. K.; Singleterry, Robert C., Jr.; Shinn, Judy L.

    2000-01-01

    A neutron transport algorithm including both elastic and nonelastic particle interaction processes for use in space radiation protection for arbitrary shield material is developed. The algorithm is based upon a multiple energy grouping and analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. The algorithm is then coupled to the Langley HZETRN code through a bidirectional neutron evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for an aluminum water shield-target configuration is then compared with MCNPX and LAHET Monte Carlo calculations for the same shield-target configuration. With the Monte Carlo calculation as a benchmark, the algorithm developed in this paper showed a great improvement in results over the unmodified HZETRN solution. In addition, a high-energy bidirectional neutron source based on a formula by Ranft showed even further improvement of the fluence results over previous results near the front of the water target where diffusion out the front surface is important. Effects of improved interaction cross sections are modest compared with the addition of the high-energy bidirectional source terms.

  5. SISSY: An efficient and automatic algorithm for the analysis of EEG sources based on structured sparsity.

    PubMed

    Becker, H; Albera, L; Comon, P; Nunes, J-C; Gribonval, R; Fleureau, J; Guillotel, P; Merlet, I

    2017-08-15

    Over the past decades, a multitude of different brain source imaging algorithms have been developed to identify the neural generators underlying the surface electroencephalography measurements. While most of these techniques focus on determining the source positions, only a small number of recently developed algorithms provides an indication of the spatial extent of the distributed sources. In a recent comparison of brain source imaging approaches, the VB-SCCD algorithm has been shown to be one of the most promising algorithms among these methods. However, this technique suffers from several problems: it leads to amplitude-biased source estimates, it has difficulties in separating close sources, and it has a high computational complexity due to its implementation using second order cone programming. To overcome these problems, we propose to include an additional regularization term that imposes sparsity in the original source domain and to solve the resulting optimization problem using the alternating direction method of multipliers. Furthermore, we show that the algorithm yields more robust solutions by taking into account the temporal structure of the data. We also propose a new method to automatically threshold the estimated source distribution, which permits to delineate the active brain regions. The new algorithm, called Source Imaging based on Structured Sparsity (SISSY), is analyzed by means of realistic computer simulations and is validated on the clinical data of four patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. On the inclusion of mass source terms in a single-relaxation-time lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Aursjø, Olav; Jettestuen, Espen; Vinningland, Jan Ludvig; Hiorth, Aksel

    2018-05-01

    We present a lattice Boltzmann algorithm for incorporating a mass source in a fluid flow system. The proposed mass source/sink term, included in the lattice Boltzmann equation, maintains the Galilean invariance and the accuracy of the overall method, while introducing a mass source/sink term in the fluid dynamical equations. The method can, for instance, be used to inject or withdraw fluid from any preferred lattice node in a system. This suggests that injection and withdrawal of fluid does not have to be introduced through cumbersome, and sometimes less accurate, boundary conditions. The method also suggests that, through a chosen equation of state relating mass density to pressure, the proposed mass source term will render it possible to set a preferred pressure at any lattice node in a system. We demonstrate how this model handles injection and withdrawal of a fluid. And we show how it can be used to incorporate pressure boundaries. The accuracy of the algorithm is identified through a Chapman-Enskog expansion of the model and supported by the numerical simulations.

  7. Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Ariful; Buluc, Aydn; Pothen, Alex

    It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less

  8. Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting

    DOE PAGES

    Azad, Ariful; Buluc, Aydn; Pothen, Alex

    2016-03-24

    It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less

  9. Directional Unfolded Source Term (DUST) for Compton Cameras.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean J.; Horne, Steven M.; O'Brien, Sean

    2018-03-01

    A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.

  10. A controlled variation scheme for convection treatment in pressure-based algorithm

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Thakur, Siddharth; Tucker, Kevin

    1993-01-01

    Convection effect and source terms are two primary sources of difficulties in computing turbulent reacting flows typically encountered in propulsion devices. The present work intends to elucidate the individual as well as the collective roles of convection and source terms in the fluid flow equations, and to devise appropriate treatments and implementations to improve our current capability of predicting such flows. A controlled variation scheme (CVS) has been under development in the context of a pressure-based algorithm, which has the characteristics of adaptively regulating the amount of numerical diffusivity, relative to central difference scheme, according to the variation in local flow field. Both the basic concepts and a pragmatic assessment will be presented to highlight the status of this work.

  11. Automated source term and wind parameter estimation for atmospheric transport and dispersion applications

    NASA Astrophysics Data System (ADS)

    Bieringer, Paul E.; Rodriguez, Luna M.; Vandenberghe, Francois; Hurst, Jonathan G.; Bieberbach, George; Sykes, Ian; Hannan, John R.; Zaragoza, Jake; Fry, Richard N.

    2015-12-01

    Accurate simulations of the atmospheric transport and dispersion (AT&D) of hazardous airborne materials rely heavily on the source term parameters necessary to characterize the initial release and meteorological conditions that drive the downwind dispersion. In many cases the source parameters are not known and consequently based on rudimentary assumptions. This is particularly true of accidental releases and the intentional releases associated with terrorist incidents. When available, meteorological observations are often not representative of the conditions at the location of the release and the use of these non-representative meteorological conditions can result in significant errors in the hazard assessments downwind of the sensors, even when the other source parameters are accurately characterized. Here, we describe a computationally efficient methodology to characterize both the release source parameters and the low-level winds (eg. winds near the surface) required to produce a refined downwind hazard. This methodology, known as the Variational Iterative Refinement Source Term Estimation (STE) Algorithm (VIRSA), consists of a combination of modeling systems. These systems include a back-trajectory based source inversion method, a forward Gaussian puff dispersion model, a variational refinement algorithm that uses both a simple forward AT&D model that is a surrogate for the more complex Gaussian puff model and a formal adjoint of this surrogate model. The back-trajectory based method is used to calculate a ;first guess; source estimate based on the available observations of the airborne contaminant plume and atmospheric conditions. The variational refinement algorithm is then used to iteratively refine the first guess STE parameters and meteorological variables. The algorithm has been evaluated across a wide range of scenarios of varying complexity. It has been shown to improve the source parameters for location by several hundred percent (normalized by the distance from source to the closest sampler), and improve mass estimates by several orders of magnitude. Furthermore, it also has the ability to operate in scenarios with inconsistencies between the wind and airborne contaminant sensor observations and adjust the wind to provide a better match between the hazard prediction and the observations.

  12. Parallel Implementation of the Wideband DOA Algorithm on the IBM Cell BE Processor

    DTIC Science & Technology

    2010-05-01

    Abstract—The Multiple Signal Classification ( MUSIC ) algorithm is a powerful technique for determining the Direction of Arrival (DOA) of signals...Broadband Engine Processor (Cell BE). The process of adapting the serial based MUSIC algorithm to the Cell BE will be analyzed in terms of parallelism and...using Multiple Signal Classification MUSIC algorithm [4] • Computation of Focus matrix • Computation of number of sources • Separation of Signal

  13. A Well-Balanced Path-Integral f-Wave Method for Hyperbolic Problems with Source Terms

    PubMed Central

    2014-01-01

    Systems of hyperbolic partial differential equations with source terms (balance laws) arise in many applications where it is important to compute accurate time-dependent solutions modeling small perturbations of equilibrium solutions in which the source terms balance the hyperbolic part. The f-wave version of the wave-propagation algorithm is one approach, but requires the use of a particular averaged value of the source terms at each cell interface in order to be “well balanced” and exactly maintain steady states. A general approach to choosing this average is developed using the theory of path conservative methods. A scalar advection equation with a decay or growth term is introduced as a model problem for numerical experiments. PMID:24563581

  14. Bayesian source term determination with unknown covariance of measurements

    NASA Astrophysics Data System (ADS)

    Belal, Alkomiet; Tichý, Ondřej; Šmídl, Václav

    2017-04-01

    Determination of a source term of release of a hazardous material into the atmosphere is a very important task for emergency response. We are concerned with the problem of estimation of the source term in the conventional linear inverse problem, y = Mx, where the relationship between the vector of observations y is described using the source-receptor-sensitivity (SRS) matrix M and the unknown source term x. Since the system is typically ill-conditioned, the problem is recast as an optimization problem minR,B(y - Mx)TR-1(y - Mx) + xTB-1x. The first term minimizes the error of the measurements with covariance matrix R, and the second term is a regularization of the source term. There are different types of regularization arising for different choices of matrices R and B, for example, Tikhonov regularization assumes covariance matrix B as the identity matrix multiplied by scalar parameter. In this contribution, we adopt a Bayesian approach to make inference on the unknown source term x as well as unknown R and B. We assume prior on x to be a Gaussian with zero mean and unknown diagonal covariance matrix B. The covariance matrix of the likelihood R is also unknown. We consider two potential choices of the structure of the matrix R. First is the diagonal matrix and the second is a locally correlated structure using information on topology of the measuring network. Since the inference of the model is intractable, iterative variational Bayes algorithm is used for simultaneous estimation of all model parameters. The practical usefulness of our contribution is demonstrated on an application of the resulting algorithm to real data from the European Tracer Experiment (ETEX). This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI).

  15. Algorithm Development and Application of High Order Numerical Methods for Shocked and Rapid Changing Solutions

    DTIC Science & Technology

    2007-12-06

    high order well-balanced schemes to a class of hyperbolic systems with source terms, Boletin de la Sociedad Espanola de Matematica Aplicada, v34 (2006...schemes to a class of hyperbolic systems with source terms, Boletin de la Sociedad Espanola de Matematica Aplicada, v34 (2006), pp.69-80. 39. Y. Xu and C.-W

  16. Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data.

    PubMed

    Owen, Julia P; Wipf, David P; Attias, Hagai T; Sekihara, Kensuke; Nagarajan, Srikantan S

    2012-03-01

    In this paper, we present an extensive performance evaluation of a novel source localization algorithm, Champagne. It is derived in an empirical Bayesian framework that yields sparse solutions to the inverse problem. It is robust to correlated sources and learns the statistics of non-stimulus-evoked activity to suppress the effect of noise and interfering brain activity. We tested Champagne on both simulated and real M/EEG data. The source locations used for the simulated data were chosen to test the performance on challenging source configurations. In simulations, we found that Champagne outperforms the benchmark algorithms in terms of both the accuracy of the source localizations and the correct estimation of source time courses. We also demonstrate that Champagne is more robust to correlated brain activity present in real MEG data and is able to resolve many distinct and functionally relevant brain areas with real MEG and EEG data. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. A false-alarm aware methodology to develop robust and efficient multi-scale infrared small target detection algorithm

    NASA Astrophysics Data System (ADS)

    Moradi, Saed; Moallem, Payman; Sabahi, Mohamad Farzan

    2018-03-01

    False alarm rate and detection rate are still two contradictory metrics for infrared small target detection in an infrared search and track system (IRST), despite the development of new detection algorithms. In certain circumstances, not detecting true targets is more tolerable than detecting false items as true targets. Hence, considering background clutter and detector noise as the sources of the false alarm in an IRST system, in this paper, a false alarm aware methodology is presented to reduce false alarm rate while the detection rate remains undegraded. To this end, advantages and disadvantages of each detection algorithm are investigated and the sources of the false alarms are determined. Two target detection algorithms having independent false alarm sources are chosen in a way that the disadvantages of the one algorithm can be compensated by the advantages of the other one. In this work, multi-scale average absolute gray difference (AAGD) and Laplacian of point spread function (LoPSF) are utilized as the cornerstones of the desired algorithm of the proposed methodology. After presenting a conceptual model for the desired algorithm, it is implemented through the most straightforward mechanism. The desired algorithm effectively suppresses background clutter and eliminates detector noise. Also, since the input images are processed through just four different scales, the desired algorithm has good capability for real-time implementation. Simulation results in term of signal to clutter ratio and background suppression factor on real and simulated images prove the effectiveness and the performance of the proposed methodology. Since the desired algorithm was developed based on independent false alarm sources, our proposed methodology is expandable to any pair of detection algorithms which have different false alarm sources.

  18. A time reversal algorithm in acoustic media with Dirac measure approximations

    NASA Astrophysics Data System (ADS)

    Bretin, Élie; Lucas, Carine; Privat, Yannick

    2018-04-01

    This article is devoted to the study of a photoacoustic tomography model, where one is led to consider the solution of the acoustic wave equation with a source term writing as a separated variables function in time and space, whose temporal component is in some sense close to the derivative of the Dirac distribution at t  =  0. This models a continuous wave laser illumination performed during a short interval of time. We introduce an algorithm for reconstructing the space component of the source term from the measure of the solution recorded by sensors during a time T all along the boundary of a connected bounded domain. It is based at the same time on the introduction of an auxiliary equivalent Cauchy problem allowing to derive explicit reconstruction formula and then to use of a deconvolution procedure. Numerical simulations illustrate our approach. Finally, this algorithm is also extended to elasticity wave systems.

  19. Galileo Attitude Determination: Experiences with a Rotating Star Scanner

    NASA Technical Reports Server (NTRS)

    Merken, L.; Singh, G.

    1991-01-01

    The Galileo experience with a rotating star scanner is discussed in terms of problems encountered in flight, solutions implemented, and lessons learned. An overview of the Galileo project and the attitude and articulation control subsystem is given and the star scanner hardware and relevant software algorithms are detailed. The star scanner is the sole source of inertial attitude reference for this spacecraft. Problem symptoms observed in flight are discussed in terms of effects on spacecraft performance and safety. Sources of thse problems include contributions from flight software idiosyncrasies and inadequate validation of the ground procedures used to identify target stars for use by the autonomous on-board star identification algorithm. Problem fixes (some already implemented and some only proposed) are discussed. A general conclusion is drawn regarding the inherent difficulty of performing simulation tests to validate algorithms which are highly sensitive to external inputs of statistically 'rare' events.

  20. Reading Bombelli's x-purgated Algebra.

    ERIC Educational Resources Information Center

    Arcavi, Abraham; Bruckheimer, Maxim

    1991-01-01

    Presents the algorithm to approximate square roots as reproduced from the 1579 edition of an algebra book by Rafael Bombelli. The sequence of activities illustrates that the process of understanding an original source of mathematics, first at the algorithmic level and then with respect to its mathematical validity in modern terms, can be an…

  1. Linear feasibility algorithms for treatment planning in interstitial photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Rendon, A.; Beck, J. C.; Lilge, Lothar

    2008-02-01

    Interstitial Photodynamic therapy (IPDT) has been under intense investigation in recent years, with multiple clinical trials underway. This effort has demanded the development of optimization strategies that determine the best locations and output powers for light sources (cylindrical or point diffusers) to achieve an optimal light delivery. Furthermore, we have recently introduced cylindrical diffusers with customizable emission profiles, placing additional requirements on the optimization algorithms, particularly in terms of the stability of the inverse problem. Here, we present a general class of linear feasibility algorithms and their properties. Moreover, we compare two particular instances of these algorithms, which are been used in the context of IPDT: the Cimmino algorithm and a weighted gradient descent (WGD) algorithm. The algorithms were compared in terms of their convergence properties, the cost function they minimize in the infeasible case, their ability to regularize the inverse problem, and the resulting optimal light dose distributions. Our results show that the WGD algorithm overall performs slightly better than the Cimmino algorithm and that it converges to a minimizer of a clinically relevant cost function in the infeasible case. Interestingly however, treatment plans resulting from either algorithms were very similar in terms of the resulting fluence maps and dose volume histograms, once the diffuser powers adjusted to achieve equal prostate coverage.

  2. An Improved Neutron Transport Algorithm for Space Radiation

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Clowdsley, Martha S.; Wilson, John W.

    2000-01-01

    A low-energy neutron transport algorithm for use in space radiation protection is developed. The algorithm is based upon a multigroup analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. This analysis is accomplished by solving a realistic but simplified neutron transport test problem. The test problem is analyzed by using numerical and analytical procedures to obtain an accurate solution within specified error bounds. Results from the test problem are then used for determining mean values associated with rescattering terms that are associated with a multigroup solution of the straight-ahead Boltzmann equation. The algorithm is then coupled to the Langley HZETRN code through the evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for a water and an aluminum-water shield-target configuration is then compared with LAHET and MCNPX Monte Carlo code calculations for the same shield-target configuration. The algorithm developed showed a great improvement in results over the unmodified HZETRN solution. In addition, a two-directional solution of the evaporation source showed even further improvement of the fluence near the front of the water target where diffusion from the front surface is important.

  3. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  4. A Subspace Pursuit–based Iterative Greedy Hierarchical Solution to the Neuromagnetic Inverse Problem

    PubMed Central

    Babadi, Behtash; Obregon-Henao, Gabriel; Lamus, Camilo; Hämäläinen, Matti S.; Brown, Emery N.; Purdon, Patrick L.

    2013-01-01

    Magnetoencephalography (MEG) is an important non-invasive method for studying activity within the human brain. Source localization methods can be used to estimate spatiotemporal activity from MEG measurements with high temporal resolution, but the spatial resolution of these estimates is poor due to the ill-posed nature of the MEG inverse problem. Recent developments in source localization methodology have emphasized temporal as well as spatial constraints to improve source localization accuracy, but these methods can be computationally intense. Solutions emphasizing spatial sparsity hold tremendous promise, since the underlying neurophysiological processes generating MEG signals are often sparse in nature, whether in the form of focal sources, or distributed sources representing large-scale functional networks. Recent developments in the theory of compressed sensing (CS) provide a rigorous framework to estimate signals with sparse structure. In particular, a class of CS algorithms referred to as greedy pursuit algorithms can provide both high recovery accuracy and low computational complexity. Greedy pursuit algorithms are difficult to apply directly to the MEG inverse problem because of the high-dimensional structure of the MEG source space and the high spatial correlation in MEG measurements. In this paper, we develop a novel greedy pursuit algorithm for sparse MEG source localization that overcomes these fundamental problems. This algorithm, which we refer to as the Subspace Pursuit-based Iterative Greedy Hierarchical (SPIGH) inverse solution, exhibits very low computational complexity while achieving very high localization accuracy. We evaluate the performance of the proposed algorithm using comprehensive simulations, as well as the analysis of human MEG data during spontaneous brain activity and somatosensory stimuli. These studies reveal substantial performance gains provided by the SPIGH algorithm in terms of computational complexity, localization accuracy, and robustness. PMID:24055554

  5. Algorithms and analytical solutions for rapidly approximating long-term dispersion from line and area sources

    NASA Astrophysics Data System (ADS)

    Barrett, Steven R. H.; Britter, Rex E.

    Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105-8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean dispersion are shown to produce results several orders of magnitude more efficiently with a loss of accuracy small compared to the absolute accuracy of advanced dispersion models near sources. The method can be readily incorporated into existing dispersion models, and may allow for additional computation time to be expended on modelling dispersion processes more accurately in future, rather than on accounting for source geometry.

  6. An auto-adaptive optimization approach for targeting nonpoint source pollution control practices.

    PubMed

    Chen, Lei; Wei, Guoyuan; Shen, Zhenyao

    2015-10-21

    To solve computationally intensive and technically complex control of nonpoint source pollution, the traditional genetic algorithm was modified into an auto-adaptive pattern, and a new framework was proposed by integrating this new algorithm with a watershed model and an economic module. Although conceptually simple and comprehensive, the proposed algorithm would search automatically for those Pareto-optimality solutions without a complex calibration of optimization parameters. The model was applied in a case study in a typical watershed of the Three Gorges Reservoir area, China. The results indicated that the evolutionary process of optimization was improved due to the incorporation of auto-adaptive parameters. In addition, the proposed algorithm outperformed the state-of-the-art existing algorithms in terms of convergence ability and computational efficiency. At the same cost level, solutions with greater pollutant reductions could be identified. From a scientific viewpoint, the proposed algorithm could be extended to other watersheds to provide cost-effective configurations of BMPs.

  7. Treating convection in sequential solvers

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Thakur, Siddharth

    1992-01-01

    The treatment of the convection terms in the sequential solver, a standard procedure found in virtually all pressure based algorithms, to compute the flow problems with sharp gradients and source terms is investigated. Both scalar model problems and one-dimensional gas dynamics equations have been used to study the various issues involved. Different approaches including the use of nonlinear filtering techniques and adoption of TVD type schemes have been investigated. Special treatments of the source terms such as pressure gradients and heat release have also been devised, yielding insight and improved accuracy of the numerical procedure adopted.

  8. Time-frequency approach to underdetermined blind source separation.

    PubMed

    Xie, Shengli; Yang, Liu; Yang, Jun-Mei; Zhou, Guoxu; Xiang, Yong

    2012-02-01

    This paper presents a new time-frequency (TF) underdetermined blind source separation approach based on Wigner-Ville distribution (WVD) and Khatri-Rao product to separate N non-stationary sources from M(M <; N) mixtures. First, an improved method is proposed for estimating the mixing matrix, where the negative value of the auto WVD of the sources is fully considered. Then after extracting all the auto-term TF points, the auto WVD value of the sources at every auto-term TF point can be found out exactly with the proposed approach no matter how many active sources there are as long as N ≤ 2M-1. Further discussion about the extraction of auto-term TF points is made and finally the numerical simulation results are presented to show the superiority of the proposed algorithm by comparing it with the existing ones.

  9. A comparison of graph- and kernel-based -omics data integration algorithms for classifying complex traits.

    PubMed

    Yan, Kang K; Zhao, Hongyu; Pang, Herbert

    2017-12-06

    High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.

  10. A comparison of three-dimensional nonequilibrium solution algorithms applied to hypersonic flows with stiff chemical source terms

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Venkatapathy, Ethiraj

    1993-01-01

    Three solution algorithms, explicit underrelaxation, point implicit, and lower upper symmetric Gauss-Seidel (LUSGS), are used to compute nonequilibrium flow around the Apollo 4 return capsule at 62 km altitude. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness. The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15, 23, and 30, the LUSGS method produces an eight order of magnitude drop in the L2 norm of the energy residual in 1/3 to 1/2 the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 23 and above. At Mach 40 the performance of the LUSGS algorithm deteriorates to the point it is out-performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.

  11. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory

    NASA Astrophysics Data System (ADS)

    Wang, Kun-Peng; Tan, Han-Dong; Wang, Tao

    2017-06-01

    A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm.

  12. Multicast Routing of Hierarchical Data

    NASA Technical Reports Server (NTRS)

    Shacham, Nachum

    1992-01-01

    The issue of multicast of broadband, real-time data in a heterogeneous environment, in which the data recipients differ in their reception abilities, is considered. Traditional multicast schemes, which are designed to deliver all the source data to all recipients, offer limited performance in such an environment, since they must either force the source to overcompress its signal or restrict the destination population to those who can receive the full signal. We present an approach for resolving this issue by combining hierarchical source coding techniques, which allow recipients to trade off reception bandwidth for signal quality, and sophisticated routing algorithms that deliver to each destination the maximum possible signal quality. The field of hierarchical coding is briefly surveyed and new multicast routing algorithms are presented. The algorithms are compared in terms of network utilization efficiency, lengths of paths, and the required mechanisms for forwarding packets on the resulting paths.

  13. Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation

    NASA Astrophysics Data System (ADS)

    Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele

    2018-05-01

    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.

  14. Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations

    NASA Astrophysics Data System (ADS)

    Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro

    2017-05-01

    In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.

  15. Modeling of reverberant room responses for two-dimensional spatial sound field analysis and synthesis.

    PubMed

    Bai, Mingsian R; Li, Yi; Chiang, Yi-Hao

    2017-10-01

    A unified framework is proposed for analysis and synthesis of two-dimensional spatial sound field in reverberant environments. In the sound field analysis (SFA) phase, an unbaffled 24-element circular microphone array is utilized to encode the sound field based on the plane-wave decomposition. Depending on the sparsity of the sound sources, the SFA stage can be implemented in two manners. For sparse-source scenarios, a one-stage algorithm based on compressive sensing algorithm is utilized. Alternatively, a two-stage algorithm can be used, where the minimum power distortionless response beamformer is used to localize the sources and Tikhonov regularization algorithm is used to extract the source amplitudes. In the sound field synthesis (SFS), a 32-element rectangular loudspeaker array is employed to decode the target sound field using pressure matching technique. To establish the room response model, as required in the pressure matching step of the SFS phase, an SFA technique for nonsparse-source scenarios is utilized. Choice of regularization parameters is vital to the reproduced sound field. In the SFS phase, three SFS approaches are compared in terms of localization performance and voice reproduction quality. Experimental results obtained in a reverberant room are presented and reveal that an accurate room response model is vital to immersive rendering of the reproduced sound field.

  16. Computations of the three-dimensional flow and heat transfer within a coolant passage of a radial turbine blade

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.

    1991-01-01

    A numerical code is developed for computing three-dimensional, turbulent, compressible flow within coolant passages of turbine blades. The code is based on a formulation of the compressible Navier-Stokes equations in a rotating frame of reference in which the velocity dependent variable is specified with respect to the rotating frame instead of the inertial frame. The algorithm employed to obtain solutions to the governing equation is a finite-volume LU algorithm that allows convection, source, as well as diffusion terms to be treated implicitly. In this study, all convection terms are upwind differenced by using flux-vector splitting, and all diffusion terms are centrally differenced. This paper describes the formulation and algorithm employed in the code. Some computed solutions for the flow within a coolant passage of a radial turbine are also presented.

  17. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    NASA Astrophysics Data System (ADS)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  18. Engineering description of the ascent/descent bet product

    NASA Technical Reports Server (NTRS)

    Seacord, A. W., II

    1986-01-01

    The Ascent/Descent output product is produced in the OPIP routine from three files which constitute its input. One of these, OPIP.IN, contains mission specific parameters. Meteorological data, such as atmospheric wind velocities, temperatures, and density, are obtained from the second file, the Corrected Meteorological Data File (METDATA). The third file is the TRJATTDATA file which contains the time-tagged state vectors that combine trajectory information from the Best Estimate of Trajectory (BET) filter, LBRET5, and Best Estimate of Attitude (BEA) derived from IMU telemetry. Each term in the two output data files (BETDATA and the Navigation Block, or NAVBLK) are defined. The description of the BETDATA file includes an outline of the algorithm used to calculate each term. To facilitate describing the algorithms, a nomenclature is defined. The description of the nomenclature includes a definition of the coordinate systems used. The NAVBLK file contains navigation input parameters. Each term in NAVBLK is defined and its source is listed. The production of NAVBLK requires only two computational algorithms. These two algorithms, which compute the terms DELTA and RSUBO, are described. Finally, the distribution of data in the NAVBLK records is listed.

  19. A new method of optimal capacitor switching based on minimum spanning tree theory in distribution systems

    NASA Astrophysics Data System (ADS)

    Li, H. W.; Pan, Z. Y.; Ren, Y. B.; Wang, J.; Gan, Y. L.; Zheng, Z. Z.; Wang, W.

    2018-03-01

    According to the radial operation characteristics in distribution systems, this paper proposes a new method based on minimum spanning trees method for optimal capacitor switching. Firstly, taking the minimal active power loss as objective function and not considering the capacity constraints of capacitors and source, this paper uses Prim algorithm among minimum spanning trees algorithms to get the power supply ranges of capacitors and source. Then with the capacity constraints of capacitors considered, capacitors are ranked by the method of breadth-first search. In term of the order from high to low of capacitor ranking, capacitor compensation capacity based on their power supply range is calculated. Finally, IEEE 69 bus system is adopted to test the accuracy and practicality of the proposed algorithm.

  20. Modeling Interactions Among Turbulence, Gas-Phase Chemistry, Soot and Radiation Using Transported PDF Methods

    NASA Astrophysics Data System (ADS)

    Haworth, Daniel

    2013-11-01

    The importance of explicitly accounting for the effects of unresolved turbulent fluctuations in Reynolds-averaged and large-eddy simulations of chemically reacting turbulent flows is increasingly recognized. Transported probability density function (PDF) methods have emerged as one of the most promising modeling approaches for this purpose. In particular, PDF methods provide an elegant and effective resolution to the closure problems that arise from averaging or filtering terms that correspond to nonlinear point processes, including chemical reaction source terms and radiative emission. PDF methods traditionally have been associated with studies of turbulence-chemistry interactions in laboratory-scale, atmospheric-pressure, nonluminous, statistically stationary nonpremixed turbulent flames; and Lagrangian particle-based Monte Carlo numerical algorithms have been the predominant method for solving modeled PDF transport equations. Recent advances and trends in PDF methods are reviewed and discussed. These include advances in particle-based algorithms, alternatives to particle-based algorithms (e.g., Eulerian field methods), treatment of combustion regimes beyond low-to-moderate-Damköhler-number nonpremixed systems (e.g., premixed flamelets), extensions to include radiation heat transfer and multiphase systems (e.g., soot and fuel sprays), and the use of PDF methods as the basis for subfilter-scale modeling in large-eddy simulation. Examples are provided that illustrate the utility and effectiveness of PDF methods for physics discovery and for applications to practical combustion systems. These include comparisons of results obtained using the PDF method with those from models that neglect unresolved turbulent fluctuations in composition and temperature in the averaged or filtered chemical source terms and/or the radiation heat transfer source terms. In this way, the effects of turbulence-chemistry-radiation interactions can be isolated and quantified.

  1. Improvement in error propagation in the Shack-Hartmann-type zonal wavefront sensors.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2017-12-01

    Estimation of the wavefront from measured slope values is an essential step in a Shack-Hartmann-type wavefront sensor. Using an appropriate estimation algorithm, these measured slopes are converted into wavefront phase values. Hence, accuracy in wavefront estimation lies in proper interpretation of these measured slope values using the chosen estimation algorithm. There are two important sources of errors associated with the wavefront estimation process, namely, the slope measurement error and the algorithm discretization error. The former type is due to the noise in the slope measurements or to the detector centroiding error, and the latter is a consequence of solving equations of a basic estimation algorithm adopted onto a discrete geometry. These errors deserve particular attention, because they decide the preference of a specific estimation algorithm for wavefront estimation. In this paper, we investigate these two important sources of errors associated with the wavefront estimation algorithms of Shack-Hartmann-type wavefront sensors. We consider the widely used Southwell algorithm and the recently proposed Pathak-Boruah algorithm [J. Opt.16, 055403 (2014)JOOPDB0150-536X10.1088/2040-8978/16/5/055403] and perform a comparative study between the two. We find that the latter algorithm is inherently superior to the Southwell algorithm in terms of the error propagation performance. We also conduct experiments that further establish the correctness of the comparative study between the said two estimation algorithms.

  2. Efficient Development of High Fidelity Structured Volume Grids for Hypersonic Flow Simulations

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2003-01-01

    A new technique for the control of grid line spacing and intersection angles of a structured volume grid, using elliptic partial differential equations (PDEs) is presented. Existing structured grid generation algorithms make use of source term hybridization to provide control of grid lines, imposing orthogonality implicitly at the boundary and explicitly on the interior of the domain. A bridging function between the two types of grid line control is typically used to blend the different orthogonality formulations. It is shown that utilizing such a bridging function with source term hybridization can result in the excessive use of computational resources and diminishes robustness. A new approach, Anisotropic Lagrange Based Trans-Finite Interpolation (ALBTFI), is offered as a replacement to source term hybridization. The ALBTFI technique captures the essence of the desired grid controls while improving the convergence rate of the elliptic PDEs when compared with source term hybridization. Grid generation on a blunt cone and a Shuttle Orbiter is used to demonstrate and assess the ALBTFI technique, which is shown to be as much as 50% faster, more robust, and produces higher quality grids than source term hybridization.

  3. Algorithms for System Identification and Source Location.

    NASA Astrophysics Data System (ADS)

    Nehorai, Arye

    This thesis deals with several topics in least squares estimation and applications to source location. It begins with a derivation of a mapping between Wiener theory and Kalman filtering for nonstationary autoregressive moving average (ARMO) processes. Applying time domain analysis, connections are found between time-varying state space realizations and input-output impulse response by matrix fraction description (MFD). Using these connections, the whitening filters are derived by the two approaches, and the Kalman gain is expressed in terms of Wiener theory. Next, fast estimation algorithms are derived in a unified way as special cases of the Conjugate Direction Method. The fast algorithms included are the block Levinson, fast recursive least squares, ladder (or lattice) and fast Cholesky algorithms. The results give a novel derivation and interpretation for all these methods, which are efficient alternatives to available recursive system identification algorithms. Multivariable identification algorithms are usually designed only for left MFD models. In this work, recursive multivariable identification algorithms are derived for right MFD models with diagonal denominator matrices. The algorithms are of prediction error and model reference type. Convergence analysis results obtained by the Ordinary Differential Equation (ODE) method are presented along with simulations. Sources of energy can be located by estimating time differences of arrival (TDOA's) of waves between the receivers. A new method for TDOA estimation is proposed for multiple unknown ARMA sources and additive correlated receiver noise. The method is based on a formula that uses only the receiver cross-spectra and the source poles. Two algorithms are suggested that allow tradeoffs between computational complexity and accuracy. A new time delay model is derived and used to show the applicability of the methods for non -integer TDOA's. Results from simulations illustrate the performance of the algorithms. The last chapter analyzes the response of exact least squares predictors for enhancement of sinusoids with additive colored noise. Using the matrix inversion lemma and the Christoffel-Darboux formula, the frequency response and amplitude gain of the sinusoids are expressed as functions of the signal and noise characteristics. The results generalize the available white noise case.

  4. Evaluation of stochastic differential equation approximation of ion channel gating models.

    PubMed

    Bruce, Ian C

    2009-04-01

    Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.

  5. Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities.

    PubMed

    Wu, Tingzhu; Lin, Yue; Zheng, Lili; Guo, Ziquan; Xu, Jianxing; Liang, Shijie; Liu, Zhuguagn; Lu, Yijun; Shih, Tien-Mo; Chen, Zhong

    2018-02-19

    An optimal design of light-emitting diode (LED) lighting that benefits both the photosynthesis performance for plants and the visional health for human eyes has drawn considerable attention. In the present study, we have developed a multi-color driving algorithm that serves as a liaison between desired spectral power distributions and pulse-width-modulation duty cycles. With the aid of this algorithm, our multi-color plant-growth light sources can optimize correlated-color temperature (CCT) and color rendering index (CRI) such that photosynthetic luminous efficacy of radiation (PLER) is maximized regardless of the number of LEDs and the type of photosynthetic action spectrum (PAS). In order to illustrate the accuracies of the proposed algorithm and the practicalities of our plant-growth light sources, we choose six color LEDs and German PAS for experiments. Finally, our study can help provide a useful guide to improve light qualities in plant factories, in which long-term co-inhabitance of plants and human beings is required.

  6. Cramer-Rao bound analysis of wideband source localization and DOA estimation

    NASA Astrophysics Data System (ADS)

    Yip, Lean; Chen, Joe C.; Hudson, Ralph E.; Yao, Kung

    2002-12-01

    In this paper, we derive the Cramér-Rao Bound (CRB) for wideband source localization and DOA estimation. The resulting CRB formula can be decomposed into two terms: one that depends on the signal characteristic and one that depends on the array geometry. For a uniformly spaced circular array (UCA), a concise analytical form of the CRB can be given by using some algebraic approximation. We further define a DOA beamwidth based on the resulting CRB formula. The DOA beamwidth can be used to design the sampling angular spacing for the Maximum-likelihood (ML) algorithm. For a randomly distributed array, we use an elliptical model to determine the largest and smallest effective beamwidth. The effective beamwidth and the CRB analysis of source localization allow us to design an efficient algorithm for the ML estimator. Finally, our simulation results of the Approximated Maximum Likelihood (AML) algorithm are demonstrated to match well to the CRB analysis at high SNR.

  7. Multi-sources data fusion framework for remote triage prioritization in telehealth.

    PubMed

    Salman, O H; Rasid, M F A; Saripan, M I; Subramaniam, S K

    2014-09-01

    The healthcare industry is streamlining processes to offer more timely and effective services to all patients. Computerized software algorithm and smart devices can streamline the relation between users and doctors by providing more services inside the healthcare telemonitoring systems. This paper proposes a multi-sources framework to support advanced healthcare applications. The proposed framework named Multi Sources Healthcare Architecture (MSHA) considers multi-sources: sensors (ECG, SpO2 and Blood Pressure) and text-based inputs from wireless and pervasive devices of Wireless Body Area Network. The proposed framework is used to improve the healthcare scalability efficiency by enhancing the remote triaging and remote prioritization processes for the patients. The proposed framework is also used to provide intelligent services over telemonitoring healthcare services systems by using data fusion method and prioritization technique. As telemonitoring system consists of three tiers (Sensors/ sources, Base station and Server), the simulation of the MSHA algorithm in the base station is demonstrated in this paper. The achievement of a high level of accuracy in the prioritization and triaging patients remotely, is set to be our main goal. Meanwhile, the role of multi sources data fusion in the telemonitoring healthcare services systems has been demonstrated. In addition to that, we discuss how the proposed framework can be applied in a healthcare telemonitoring scenario. Simulation results, for different symptoms relate to different emergency levels of heart chronic diseases, demonstrate the superiority of our algorithm compared with conventional algorithms in terms of classify and prioritize the patients remotely.

  8. Semi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Shinn, J. L.

    1986-01-01

    Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogenous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the soruce terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated.

  9. Implementation issues of the nearfield equivalent source imaging microphone array

    NASA Astrophysics Data System (ADS)

    Bai, Mingsian R.; Lin, Jia-Hong; Tseng, Chih-Wen

    2011-01-01

    This paper revisits a nearfield microphone array technique termed nearfield equivalent source imaging (NESI) proposed previously. In particular, various issues concerning the implementation of the NESI algorithm are examined. The NESI can be implemented in both the time domain and the frequency domain. Acoustical variables including sound pressure, particle velocity, active intensity and sound power are calculated by using multichannel inverse filters. Issues concerning sensor deployment are also investigated for the nearfield array. The uniform array outperformed a random array previously optimized for far-field imaging, which contradicts the conventional wisdom in far-field arrays. For applications in which only a patch array with scarce sensors is available, a virtual microphone approach is employed to ameliorate edge effects using extrapolation and to improve imaging resolution using interpolation. To enhance the processing efficiency of the time-domain NESI, an eigensystem realization algorithm (ERA) is developed. Several filtering methods are compared in terms of computational complexity. Significant saving on computations can be achieved using ERA and the frequency-domain NESI, as compared to the traditional method. The NESI technique was also experimentally validated using practical sources including a 125 cc scooter and a wooden box model with a loudspeaker fitted inside. The NESI technique proved effective in identifying broadband and non-stationary sources produced by the sources.

  10. LS-APC v1.0: a tuning-free method for the linear inverse problem and its application to source-term determination

    NASA Astrophysics Data System (ADS)

    Tichý, Ondřej; Šmídl, Václav; Hofman, Radek; Stohl, Andreas

    2016-11-01

    Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. It is typically formalized as an inverse problem using a linear model that can explain observable quantities (e.g., concentrations or deposition values) as a product of the source-receptor sensitivity (SRS) matrix obtained from an atmospheric transport model multiplied by the unknown source-term vector. Since this problem is typically ill-posed, current state-of-the-art methods are based on regularization of the problem and solution of a formulated optimization problem. This procedure depends on manual settings of uncertainties that are often very poorly quantified, effectively making them tuning parameters. We formulate a probabilistic model, that has the same maximum likelihood solution as the conventional method using pre-specified uncertainties. Replacement of the maximum likelihood solution by full Bayesian estimation also allows estimation of all tuning parameters from the measurements. The estimation procedure is based on the variational Bayes approximation which is evaluated by an iterative algorithm. The resulting method is thus very similar to the conventional approach, but with the possibility to also estimate all tuning parameters from the observations. The proposed algorithm is tested and compared with the standard methods on data from the European Tracer Experiment (ETEX) where advantages of the new method are demonstrated. A MATLAB implementation of the proposed algorithm is available for download.

  11. Generation of optimal artificial neural networks using a pattern search algorithm: application to approximation of chemical systems.

    PubMed

    Ihme, Matthias; Marsden, Alison L; Pitsch, Heinz

    2008-02-01

    A pattern search optimization method is applied to the generation of optimal artificial neural networks (ANNs). Optimization is performed using a mixed variable extension to the generalized pattern search method. This method offers the advantage that categorical variables, such as neural transfer functions and nodal connectivities, can be used as parameters in optimization. When used together with a surrogate, the resulting algorithm is highly efficient for expensive objective functions. Results demonstrate the effectiveness of this method in optimizing an ANN for the number of neurons, the type of transfer function, and the connectivity among neurons. The optimization method is applied to a chemistry approximation of practical relevance. In this application, temperature and a chemical source term are approximated as functions of two independent parameters using optimal ANNs. Comparison of the performance of optimal ANNs with conventional tabulation methods demonstrates equivalent accuracy by considerable savings in memory storage. The architecture of the optimal ANN for the approximation of the chemical source term consists of a fully connected feedforward network having four nonlinear hidden layers and 117 synaptic weights. An equivalent representation of the chemical source term using tabulation techniques would require a 500 x 500 grid point discretization of the parameter space.

  12. Boundary control of bidomain equations with state-dependent switching source functions in the ionic model

    NASA Astrophysics Data System (ADS)

    Chamakuri, Nagaiah; Engwer, Christian; Kunisch, Karl

    2014-09-01

    Optimal control for cardiac electrophysiology based on the bidomain equations in conjunction with the Fenton-Karma ionic model is considered. This generic ventricular model approximates well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action potentials. However, it is challenging due to the appearance of state-dependent discontinuities in the source terms. A computational framework for the numerical realization of optimal control problems is presented. Essential ingredients are a shape calculus based treatment of the sensitivities of the discontinuous source terms and a marching cubes algorithm to track iso-surface of excitation wavefronts. Numerical results exhibit successful defibrillation by applying an optimally controlled extracellular stimulus.

  13. Prioritized packet video transmission over time-varying wireless channel using proactive FEC

    NASA Astrophysics Data System (ADS)

    Kumwilaisak, Wuttipong; Kim, JongWon; Kuo, C.-C. Jay

    2000-12-01

    Quality of video transmitted over time-varying wireless channels relies heavily on the coordinated effort to cope with both channel and source variations dynamically. Given the priority of each source packet and the estimated channel condition, an adaptive protection scheme based on joint source-channel criteria is investigated via proactive forward error correction (FEC). With proactive FEC in Reed Solomon (RS)/Rate-compatible punctured convolutional (RCPC) codes, we study a practical algorithm to match the relative priority of source packets and instantaneous channel conditions. The channel condition is estimated to capture the long-term fading effect in terms of the averaged SNR over a preset window. Proactive protection is performed for each packet based on the joint source-channel criteria with special attention to the accuracy, time-scale match, and feedback delay of channel status estimation. The overall gain of the proposed protection mechanism is demonstrated in terms of the end-to-end wireless video performance.

  14. An efficient hole-filling method based on depth map in 3D view generation

    NASA Astrophysics Data System (ADS)

    Liang, Haitao; Su, Xiu; Liu, Yilin; Xu, Huaiyuan; Wang, Yi; Chen, Xiaodong

    2018-01-01

    New virtual view is synthesized through depth image based rendering(DIBR) using a single color image and its associated depth map in 3D view generation. Holes are unavoidably generated in the 2D to 3D conversion process. We propose a hole-filling method based on depth map to address the problem. Firstly, we improve the process of DIBR by proposing a one-to-four (OTF) algorithm. The "z-buffer" algorithm is used to solve overlap problem. Then, based on the classical patch-based algorithm of Criminisi et al., we propose a hole-filling algorithm using the information of depth map to handle the image after DIBR. In order to improve the accuracy of the virtual image, inpainting starts from the background side. In the calculation of the priority, in addition to the confidence term and the data term, we add the depth term. In the search for the most similar patch in the source region, we define the depth similarity to improve the accuracy of searching. Experimental results show that the proposed method can effectively improve the quality of the 3D virtual view subjectively and objectively.

  15. Passive Localization of Multiple Sources Using Widely-Spaced Arrays With Application to Marine Mammals

    DTIC Science & Technology

    2008-09-30

    developing methods to simultaneously track multiple vocalizing marine mammals, we hope to contribute to the fields of marine mammal bioacoustics, ecology ...mammals, we hope to contribute to the fields of marine mammal bioacoustics, ecology , and anthropogenic impact mitigation. 15. SUBJECT TERMS 16. SECURITY...N00014-05-1-0074 (OA Graduate Traineeship for E-M Nosal) LONG-TERM GOALS The long-term goal of our research is to develop algorithms that use widely

  16. Comparison of Open Source Compression Algorithms on Vhr Remote Sensing Images for Efficient Storage Hierarchy

    NASA Astrophysics Data System (ADS)

    Akoguz, A.; Bozkurt, S.; Gozutok, A. A.; Alp, G.; Turan, E. G.; Bogaz, M.; Kent, S.

    2016-06-01

    High resolution level in satellite imagery came with its fundamental problem as big amount of telemetry data which is to be stored after the downlink operation. Moreover, later the post-processing and image enhancement steps after the image is acquired, the file sizes increase even more and then it gets a lot harder to store and consume much more time to transmit the data from one source to another; hence, it should be taken into account that to save even more space with file compression of the raw and various levels of processed data is a necessity for archiving stations to save more space. Lossless data compression algorithms that will be examined in this study aim to provide compression without any loss of data holding spectral information. Within this objective, well-known open source programs supporting related compression algorithms have been implemented on processed GeoTIFF images of Airbus Defence & Spaces SPOT 6 & 7 satellites having 1.5 m. of GSD, which were acquired and stored by ITU Center for Satellite Communications and Remote Sensing (ITU CSCRS), with the algorithms Lempel-Ziv-Welch (LZW), Lempel-Ziv-Markov chain Algorithm (LZMA & LZMA2), Lempel-Ziv-Oberhumer (LZO), Deflate & Deflate 64, Prediction by Partial Matching (PPMd or PPM2), Burrows-Wheeler Transform (BWT) in order to observe compression performances of these algorithms over sample datasets in terms of how much of the image data can be compressed by ensuring lossless compression.

  17. Correcting STIS CCD Point-Source Spectra for CTE Loss

    NASA Technical Reports Server (NTRS)

    Goudfrooij, Paul; Bohlin, Ralph C.; Maiz-Apellaniz, Jesus

    2006-01-01

    We review the on-orbit spectroscopic observations that are being used to characterize the Charge Transfer Efficiency (CTE) of the STIS CCD in spectroscopic mode. We parameterize the CTE-related loss for spectrophotometry of point sources in terms of dependencies on the brightness of the source, the background level, the signal in the PSF outside the standard extraction box, and the time of observation. Primary constraints on our correction algorithm are provided by measurements of the CTE loss rates for simulated spectra (images of a tungsten lamp taken through slits oriented along the dispersion axis) combined with estimates of CTE losses for actual spectra of spectrophotometric standard stars in the first order CCD modes. For point-source spectra at the standard reference position at the CCD center, CTE losses as large as 30% are corrected to within approx.1% RMS after application of the algorithm presented here, rendering the Poisson noise associated with the source detection itself to be the dominant contributor to the total flux calibration uncertainty.

  18. Spurious Solutions Of Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1992-01-01

    Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.

  19. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆

    PubMed Central

    López, J.D.; Litvak, V.; Espinosa, J.J.; Friston, K.; Barnes, G.R.

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. PMID:24041874

  20. A generalized LSTM-like training algorithm for second-order recurrent neural networks

    PubMed Central

    Monner, Derek; Reggia, James A.

    2011-01-01

    The Long Short Term Memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving them many time-steps later. LSTM’s original training algorithm provides the important properties of spatial and temporal locality, which are missing from other training approaches, at the cost of limiting it’s applicability to a small set of network architectures. Here we introduce the Generalized Long Short-Term Memory (LSTM-g) training algorithm, which provides LSTM-like locality while being applicable without modification to a much wider range of second-order network architectures. With LSTM-g, all units have an identical set of operating instructions for both activation and learning, subject only to the configuration of their local environment in the network; this is in contrast to the original LSTM training algorithm, where each type of unit has its own activation and training instructions. When applied to LSTM architectures with peephole connections, LSTM-g takes advantage of an additional source of back-propagated error which can enable better performance than the original algorithm. Enabled by the broad architectural applicability of LSTM-g, we demonstrate that training recurrent networks engineered for specific tasks can produce better results than single-layer networks. We conclude that LSTM-g has the potential to both improve the performance and broaden the applicability of spatially and temporally local gradient-based training algorithms for recurrent neural networks. PMID:21803542

  1. An efficient group multicast routing for multimedia communication

    NASA Astrophysics Data System (ADS)

    Wang, Yanlin; Sun, Yugen; Yan, Xinfang

    2004-04-01

    Group multicasting is a kind of communication mechanism whereby each member of a group sends messages to all the other members of the same group. Group multicast routing algorithms capable of satisfying quality of service (QoS) requirements of multimedia applications are essential for high-speed networks. We present a heuristic algorithm for group multicast routing with end to end delay constraint. Source-specific routing trees for each member are generated in our algorithm, which satisfy member"s bandwidth and end to end delay requirements. Simulations over random network were carried out to compare proposed algorithm performance with Low and Song"s. The experimental results show that our proposed algorithm performs better in terms of network cost and ability in constructing feasible multicast trees for group members. Moreover, our algorithm achieves good performance in balancing traffic, which can avoid link blocking and enhance the network behavior efficiently.

  2. A computational geometry approach to pore network construction for granular packings

    NASA Astrophysics Data System (ADS)

    van der Linden, Joost H.; Sufian, Adnan; Narsilio, Guillermo A.; Russell, Adrian R.; Tordesillas, Antoinette

    2018-03-01

    Pore network construction provides the ability to characterize and study the pore space of inhomogeneous and geometrically complex granular media in a range of scientific and engineering applications. Various approaches to the construction have been proposed, however subtle implementational details are frequently omitted, open access to source code is limited, and few studies compare multiple algorithms in the context of a specific application. This study presents, in detail, a new pore network construction algorithm, and provides a comprehensive comparison with two other, well-established Delaunay triangulation-based pore network construction methods. Source code is provided to encourage further development. The proposed algorithm avoids the expensive non-linear optimization procedure in existing Delaunay approaches, and is robust in the presence of polydispersity. Algorithms are compared in terms of structural, geometrical and advanced connectivity parameters, focusing on the application of fluid flow characteristics. Sensitivity of the various networks to permeability is assessed through network (Stokes) simulations and finite-element (Navier-Stokes) simulations. Results highlight strong dependencies of pore volume, pore connectivity, throat geometry and fluid conductance on the degree of tetrahedra merging and the specific characteristics of the throats targeted by the merging algorithm. The paper concludes with practical recommendations on the applicability of the three investigated algorithms.

  3. Audio visual speech source separation via improved context dependent association model

    NASA Astrophysics Data System (ADS)

    Kazemi, Alireza; Boostani, Reza; Sobhanmanesh, Fariborz

    2014-12-01

    In this paper, we exploit the non-linear relation between a speech source and its associated lip video as a source of extra information to propose an improved audio-visual speech source separation (AVSS) algorithm. The audio-visual association is modeled using a neural associator which estimates the visual lip parameters from a temporal context of acoustic observation frames. We define an objective function based on mean square error (MSE) measure between estimated and target visual parameters. This function is minimized for estimation of the de-mixing vector/filters to separate the relevant source from linear instantaneous or time-domain convolutive mixtures. We have also proposed a hybrid criterion which uses AV coherency together with kurtosis as a non-Gaussianity measure. Experimental results are presented and compared in terms of visually relevant speech detection accuracy and output signal-to-interference ratio (SIR) of source separation. The suggested audio-visual model significantly improves relevant speech classification accuracy compared to existing GMM-based model and the proposed AVSS algorithm improves the speech separation quality compared to reference ICA- and AVSS-based methods.

  4. An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications.

    PubMed

    Ye, Fei; Lou, Xin Yuan; Sun, Lin Fu

    2017-01-01

    This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm's performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem.

  5. An open-source framework for stress-testing non-invasive foetal ECG extraction algorithms.

    PubMed

    Andreotti, Fernando; Behar, Joachim; Zaunseder, Sebastian; Oster, Julien; Clifford, Gari D

    2016-05-01

    Over the past decades, many studies have been published on the extraction of non-invasive foetal electrocardiogram (NI-FECG) from abdominal recordings. Most of these contributions claim to obtain excellent results in detecting foetal QRS (FQRS) complexes in terms of location. A small subset of authors have investigated the extraction of morphological features from the NI-FECG. However, due to the shortage of available public databases, the large variety of performance measures employed and the lack of open-source reference algorithms, most contributions cannot be meaningfully assessed. This article attempts to address these issues by presenting a standardised methodology for stress testing NI-FECG algorithms, including absolute data, as well as extraction and evaluation routines. To that end, a large database of realistic artificial signals was created, totaling 145.8 h of multichannel data and over one million FQRS complexes. An important characteristic of this dataset is the inclusion of several non-stationary events (e.g. foetal movements, uterine contractions and heart rate fluctuations) that are critical for evaluating extraction routines. To demonstrate our testing methodology, three classes of NI-FECG extraction algorithms were evaluated: blind source separation (BSS), template subtraction (TS) and adaptive methods (AM). Experiments were conducted to benchmark the performance of eight NI-FECG extraction algorithms on the artificial database focusing on: FQRS detection and morphological analysis (foetal QT and T/QRS ratio). The overall median FQRS detection accuracies (i.e. considering all non-stationary events) for the best performing methods in each group were 99.9% for BSS, 97.9% for AM and 96.0% for TS. Both FQRS detections and morphological parameters were shown to heavily depend on the extraction techniques and signal-to-noise ratio. Particularly, it is shown that their evaluation in the source domain, obtained after using a BSS technique, should be avoided. Data, extraction algorithms and evaluation routines were released as part of the fecgsyn toolbox on Physionet under an GNU GPL open-source license. This contribution provides a standard framework for benchmarking and regulatory testing of NI-FECG extraction algorithms.

  6. Empirical retrieval of sea spray aerosol production using satellite microwave radiometry

    NASA Astrophysics Data System (ADS)

    Savelyev, I. B.; Yelland, M. J.; Norris, S. J.; Salisbury, D.; Pascal, R. W.; Bettenhausen, M. H.; Prytherch, J.; Anguelova, M. D.; Brooks, I. M.

    2017-12-01

    This study presents a novel approach to obtaining global sea spray aerosol (SSA) production source term by relying on direct satellite observations of the ocean surface, instead of more traditional approaches driven by surface meteorology. The primary challenge in developing this empirical algorithm is to compile a calibrated, consistent dataset of SSA surface flux collected offshore over a variety of conditions (i.e., regions and seasons), thus representative of the global SSA production variability. Such dataset includes observations from SEASAW, HiWASE, and WAGES field campaigns, during which the SSA flux was measured from the bow of a research vessel using consistent and state-of-the-art eddy covariance methodology. These in situ data are matched to observations of the state of the ocean surface from Windsat polarimetric microwave satellite radiometer. Previous studies demonstrated the ability of WindSat to detect variations in surface waves slopes, roughness and foam, which led to the development of retrieval algorithms for surface wind vector and more recently whitecap fraction. Similarly, in this study, microwave emissions from the ocean surface are matched to and calibrated against in situ observations of the SSA production flux. The resulting calibrated empirical algorithm is applicable for retrieval of SSA source term throughout the duration of Windsat mission, from 2003 to present.

  7. Full range line-field parallel swept source imaging utilizing digital refocusing

    NASA Astrophysics Data System (ADS)

    Fechtig, Daniel J.; Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-12-01

    We present geometric optics-based refocusing applied to a novel off-axis line-field parallel swept source imaging (LPSI) system. LPSI is an imaging modality based on line-field swept source optical coherence tomography, which permits 3-D imaging at acquisition speeds of up to 1 MHz. The digital refocusing algorithm applies a defocus-correcting phase term to the Fourier representation of complex-valued interferometric image data, which is based on the geometrical optics information of the LPSI system. We introduce the off-axis LPSI system configuration, the digital refocusing algorithm and demonstrate the effectiveness of our method for refocusing volumetric images of technical and biological samples. An increase of effective in-focus depth range from 255 μm to 4.7 mm is achieved. The recovery of the full in-focus depth range might be especially valuable for future high-speed and high-resolution diagnostic applications of LPSI in ophthalmology.

  8. Bayesian estimation of a source term of radiation release with approximately known nuclide ratios

    NASA Astrophysics Data System (ADS)

    Tichý, Ondřej; Šmídl, Václav; Hofman, Radek

    2016-04-01

    We are concerned with estimation of a source term in case of an accidental release from a known location, e.g. a power plant. Usually, the source term of an accidental release of radiation comprises of a mixture of nuclide. The gamma dose rate measurements do not provide a direct information on the source term composition. However, physical properties of respective nuclide (deposition properties, decay half-life) can be used when uncertain information on nuclide ratios is available, e.g. from known reactor inventory. The proposed method is based on linear inverse model where the observation vector y arise as a linear combination y = Mx of a source-receptor-sensitivity (SRS) matrix M and the source term x. The task is to estimate the unknown source term x. The problem is ill-conditioned and further regularization is needed to obtain a reasonable solution. In this contribution, we assume that nuclide ratios of the release is known with some degree of uncertainty. This knowledge is used to form the prior covariance matrix of the source term x. Due to uncertainty in the ratios the diagonal elements of the covariance matrix are considered to be unknown. Positivity of the source term estimate is guaranteed by using multivariate truncated Gaussian distribution. Following Bayesian approach, we estimate all parameters of the model from the data so that y, M, and known ratios are the only inputs of the method. Since the inference of the model is intractable, we follow the Variational Bayes method yielding an iterative algorithm for estimation of all model parameters. Performance of the method is studied on simulated 6 hour power plant release where 3 nuclide are released and 2 nuclide ratios are approximately known. The comparison with method with unknown nuclide ratios will be given to prove the usefulness of the proposed approach. This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI).

  9. Harmony: EEG/MEG Linear Inverse Source Reconstruction in the Anatomical Basis of Spherical Harmonics

    PubMed Central

    Petrov, Yury

    2012-01-01

    EEG/MEG source localization based on a “distributed solution” is severely underdetermined, because the number of sources is much larger than the number of measurements. In particular, this makes the solution strongly affected by sensor noise. A new way to constrain the problem is presented. By using the anatomical basis of spherical harmonics (or spherical splines) instead of single dipoles the dimensionality of the inverse solution is greatly reduced without sacrificing the quality of the data fit. The smoothness of the resulting solution reduces the surface bias and scatter of the sources (incoherency) compared to the popular minimum-norm algorithms where single-dipole basis is used (MNE, depth-weighted MNE, dSPM, sLORETA, LORETA, IBF) and allows to efficiently reduce the effect of sensor noise. This approach, termed Harmony, performed well when applied to experimental data (two exemplars of early evoked potentials) and showed better localization precision and solution coherence than the other tested algorithms when applied to realistically simulated data. PMID:23071497

  10. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  11. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Jinchao; Qin Chenghu; Jia Kebin

    2011-11-15

    Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescentmore » photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used rather than monochromatic data. Furthermore, the study conducted using an adaptive regularization parameter demonstrated our ability to accurately localize the bioluminescent source. With the adaptively estimated regularization parameter, the reconstructed center position of the source was (20.37, 31.05, 12.95) mm, and the distance to the real source was 0.63 mm. The results of the dual-source experiments further showed that our algorithm could localize the bioluminescent sources accurately. The authors then presented experimental evidence that the proposed algorithm exhibited its calculated efficiency over the heuristic method. The effectiveness of the new algorithm was also confirmed by comparing it with the L-curve method. Furthermore, various initial speculations regarding the regularization parameter were used to illustrate the convergence of our algorithm. Finally, in vivo mouse experiment further illustrates the effectiveness of the proposed algorithm. Conclusions: Utilizing numerical, physical phantom and in vivo examples, we demonstrated that the bioluminescent sources could be reconstructed accurately with automatic regularization parameters. The proposed algorithm exhibited superior performance than both the heuristic regularization parameter choice method and L-curve method based on the computational speed and localization error.« less

  12. pyJac: Analytical Jacobian generator for chemical kinetics

    NASA Astrophysics Data System (ADS)

    Niemeyer, Kyle E.; Curtis, Nicholas J.; Sung, Chih-Jen

    2017-06-01

    Accurate simulations of combustion phenomena require the use of detailed chemical kinetics in order to capture limit phenomena such as ignition and extinction as well as predict pollutant formation. However, the chemical kinetic models for hydrocarbon fuels of practical interest typically have large numbers of species and reactions and exhibit high levels of mathematical stiffness in the governing differential equations, particularly for larger fuel molecules. In order to integrate the stiff equations governing chemical kinetics, generally reactive-flow simulations rely on implicit algorithms that require frequent Jacobian matrix evaluations. Some in situ and a posteriori computational diagnostics methods also require accurate Jacobian matrices, including computational singular perturbation and chemical explosive mode analysis. Typically, finite differences numerically approximate these, but for larger chemical kinetic models this poses significant computational demands since the number of chemical source term evaluations scales with the square of species count. Furthermore, existing analytical Jacobian tools do not optimize evaluations or support emerging SIMD processors such as GPUs. Here we introduce pyJac, a Python-based open-source program that generates analytical Jacobian matrices for use in chemical kinetics modeling and analysis. In addition to producing the necessary customized source code for evaluating reaction rates (including all modern reaction rate formulations), the chemical source terms, and the Jacobian matrix, pyJac uses an optimized evaluation order to minimize computational and memory operations. As a demonstration, we first establish the correctness of the Jacobian matrices for kinetic models of hydrogen, methane, ethylene, and isopentanol oxidation (number of species ranging 13-360) by showing agreement within 0.001% of matrices obtained via automatic differentiation. We then demonstrate the performance achievable on CPUs and GPUs using pyJac via matrix evaluation timing comparisons; the routines produced by pyJac outperformed first-order finite differences by 3-7.5 times and the existing analytical Jacobian software TChem by 1.1-2.2 times on a single-threaded basis. It is noted that TChem is not thread-safe, while pyJac is easily parallelized, and hence can greatly outperform TChem on multicore CPUs. The Jacobian matrix generator we describe here will be useful for reducing the cost of integrating chemical source terms with implicit algorithms in particular and algorithms that require an accurate Jacobian matrix in general. Furthermore, the open-source release of the program and Python-based implementation will enable wide adoption.

  13. A recursive algorithm for the three-dimensional imaging of brain electric activity: Shrinking LORETA-FOCUSS.

    PubMed

    Liu, Hesheng; Gao, Xiaorong; Schimpf, Paul H; Yang, Fusheng; Gao, Shangkai

    2004-10-01

    Estimation of intracranial electric activity from the scalp electroencephalogram (EEG) requires a solution to the EEG inverse problem, which is known as an ill-conditioned problem. In order to yield a unique solution, weighted minimum norm least square (MNLS) inverse methods are generally used. This paper proposes a recursive algorithm, termed Shrinking LORETA-FOCUSS, which combines and expands upon the central features of two well-known weighted MNLS methods: LORETA and FOCUSS. This recursive algorithm makes iterative adjustments to the solution space as well as the weighting matrix, thereby dramatically reducing the computation load, and increasing local source resolution. Simulations are conducted on a 3-shell spherical head model registered to the Talairach human brain atlas. A comparative study of four different inverse methods, standard Weighted Minimum Norm, L1-norm, LORETA-FOCUSS and Shrinking LORETA-FOCUSS are presented. The results demonstrate that Shrinking LORETA-FOCUSS is able to reconstruct a three-dimensional source distribution with smaller localization and energy errors compared to the other methods.

  14. Meeting medical terminology needs--the Ontology-Enhanced Medical Concept Mapper.

    PubMed

    Leroy, G; Chen, H

    2001-12-01

    This paper describes the development and testing of the Medical Concept Mapper, a tool designed to facilitate access to online medical information sources by providing users with appropriate medical search terms for their personal queries. Our system is valuable for patients whose knowledge of medical vocabularies is inadequate to find the desired information, and for medical experts who search for information outside their field of expertise. The Medical Concept Mapper maps synonyms and semantically related concepts to a user's query. The system is unique because it integrates our natural language processing tool, i.e., the Arizona (AZ) Noun Phraser, with human-created ontologies, the Unified Medical Language System (UMLS) and WordNet, and our computer generated Concept Space, into one system. Our unique contribution results from combining the UMLS Semantic Net with Concept Space in our deep semantic parsing (DSP) algorithm. This algorithm establishes a medical query context based on the UMLS Semantic Net, which allows Concept Space terms to be filtered so as to isolate related terms relevant to the query. We performed two user studies in which Medical Concept Mapper terms were compared against human experts' terms. We conclude that the AZ Noun Phraser is well suited to extract medical phrases from user queries, that WordNet is not well suited to provide strictly medical synonyms, that the UMLS Metathesaurus is well suited to provide medical synonyms, and that Concept Space is well suited to provide related medical terms, especially when these terms are limited by our DSP algorithm.

  15. Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources.

    PubMed

    Bradley, Allison; Yao, Jun; Dewald, Jules; Richter, Claus-Peter

    2016-01-01

    Source localization algorithms often show multiple active cortical areas as the source of electroencephalography (EEG). Yet, there is little data quantifying the accuracy of these results. In this paper, the performance of current source density source localization algorithms for the detection of multiple cortical sources of EEG data has been characterized. EEG data were generated by simulating multiple cortical sources (2-4) with the same strength or two sources with relative strength ratios of 1:1 to 4:1, and adding noise. These data were used to reconstruct the cortical sources using current source density (CSD) algorithms: sLORETA, MNLS, and LORETA using a p-norm with p equal to 1, 1.5 and 2. Precision (percentage of the reconstructed activity corresponding to simulated activity) and Recall (percentage of the simulated sources reconstructed) of each of the CSD algorithms were calculated. While sLORETA has the best performance when only one source is present, when two or more sources are present LORETA with p equal to 1.5 performs better. When the relative strength of one of the sources is decreased, all algorithms have more difficulty reconstructing that source. However, LORETA 1.5 continues to outperform other algorithms. If only the strongest source is of interest sLORETA is recommended, while LORETA with p equal to 1.5 is recommended if two or more of the cortical sources are of interest. These results provide guidance for choosing a CSD algorithm to locate multiple cortical sources of EEG and for interpreting the results of these algorithms.

  16. Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources

    PubMed Central

    Bradley, Allison; Yao, Jun; Dewald, Jules; Richter, Claus-Peter

    2016-01-01

    Background Source localization algorithms often show multiple active cortical areas as the source of electroencephalography (EEG). Yet, there is little data quantifying the accuracy of these results. In this paper, the performance of current source density source localization algorithms for the detection of multiple cortical sources of EEG data has been characterized. Methods EEG data were generated by simulating multiple cortical sources (2–4) with the same strength or two sources with relative strength ratios of 1:1 to 4:1, and adding noise. These data were used to reconstruct the cortical sources using current source density (CSD) algorithms: sLORETA, MNLS, and LORETA using a p-norm with p equal to 1, 1.5 and 2. Precision (percentage of the reconstructed activity corresponding to simulated activity) and Recall (percentage of the simulated sources reconstructed) of each of the CSD algorithms were calculated. Results While sLORETA has the best performance when only one source is present, when two or more sources are present LORETA with p equal to 1.5 performs better. When the relative strength of one of the sources is decreased, all algorithms have more difficulty reconstructing that source. However, LORETA 1.5 continues to outperform other algorithms. If only the strongest source is of interest sLORETA is recommended, while LORETA with p equal to 1.5 is recommended if two or more of the cortical sources are of interest. These results provide guidance for choosing a CSD algorithm to locate multiple cortical sources of EEG and for interpreting the results of these algorithms. PMID:26809000

  17. An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications

    PubMed Central

    Lou, Xin Yuan; Sun, Lin Fu

    2017-01-01

    This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm’s performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem. PMID:28369096

  18. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM.

    PubMed

    López, J D; Litvak, V; Espinosa, J J; Friston, K; Barnes, G R

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. © 2013. Published by Elsevier Inc. All rights reserved.

  19. High-order flux correction/finite difference schemes for strand grids

    NASA Astrophysics Data System (ADS)

    Katz, Aaron; Work, Dalon

    2015-02-01

    A novel high-order method combining unstructured flux correction along body surfaces and high-order finite differences normal to surfaces is formulated for unsteady viscous flows on strand grids. The flux correction algorithm is applied in each unstructured layer of the strand grid, and the layers are then coupled together via a source term containing derivatives in the strand direction. Strand-direction derivatives are approximated to high-order via summation-by-parts operators for first derivatives and second derivatives with variable coefficients. We show how this procedure allows for the proper truncation error canceling properties required for the flux correction scheme. The resulting scheme possesses third-order design accuracy, but often exhibits fourth-order accuracy when higher-order derivatives are employed in the strand direction, especially for highly viscous flows. We prove discrete conservation for the new scheme and time stability in the absence of the flux correction terms. Results in two dimensions are presented that demonstrate improvements in accuracy with minimal computational and algorithmic overhead over traditional second-order algorithms.

  20. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1993-01-01

    The task objectives of this reporting phase included: (1) completing the draft of the LST Algorithms Theoretical Basic Document by July 30, 1993; (2) making a detailed characterization of the thermal infrared measurement system including spectrometer, blackbody, and radiation sources; (3) making TIR spectral measurements of water and snow-cover surfaces with the MIDAC M2401 spectrometer; and (4) making conceptual and engineering design of an accessory system for spectrometric measurements at variable angles. These objectives are based on the requirements by the MODIS Science Team and the unique challenge in the development of MODIS LST algorithms: to acquire accurate spectral emissivity data of land covers in the near-term and to make ground validations of the LST product in the long-term with a TIR measurement system.

  1. Examination of the suitability of an implementation of the Jette localized heterogeneities fluence term L(1)(x,y,z) in an electron beam treatment planning algorithm

    NASA Astrophysics Data System (ADS)

    Rodebaugh, Raymond Francis, Jr.

    2000-11-01

    In this project we applied modifications of the Fermi- Eyges multiple scattering theory to attempt to achieve the goals of a fast, accurate electron dose calculation algorithm. The dose was first calculated for an ``average configuration'' based on the patient's anatomy using a modification of the Hogstrom algorithm. It was split into a measured central axis depth dose component based on the material between the source and the dose calculation point, and an off-axis component based on the physics of multiple coulomb scattering for the average configuration. The former provided the general depth dose characteristics along the beam fan lines, while the latter provided the effects of collimation. The Gaussian localized heterogeneities theory of Jette provided the lateral redistribution of the electron fluence by heterogeneities. Here we terminated Jette's infinite series of fluence redistribution terms after the second term. Experimental comparison data were collected for 1 cm thick x 1 cm diameter air and aluminum pillboxes using the Varian 2100C linear accelerator at Rush-Presbyterian- St. Luke's Medical Center. For an air pillbox, the algorithm results were in reasonable agreement with measured data at both 9 and 20 MeV. For the Aluminum pill box, there were significant discrepancies between the results of this algorithm and experiment. This was particularly apparent for the 9 MeV beam. Of course a one cm thick Aluminum heterogeneity is unlikely to be encountered in a clinical situation; the thickness, linear stopping power, and linear scattering power of Aluminum are all well above what would normally be encountered. We found that the algorithm is highly sensitive to the choice of the average configuration. This is an indication that the series of fluence redistribution terms does not converge fast enough to terminate after the second term. It also makes it difficult to apply the algorithm to cases where there are no a priori means of choosing the best average configuration or where there is a complex geometry containing both lowly and highly scattering heterogeneities. There is some hope of decreasing the sensitivity to the average configuration by including portions of the next term of the localized heterogeneities series.

  2. Comparison of Point Cloud Registration Algorithms for Better Result Assessment - Towards AN Open-Source Solution

    NASA Astrophysics Data System (ADS)

    Lachat, E.; Landes, T.; Grussenmeyer, P.

    2018-05-01

    Terrestrial and airborne laser scanning, photogrammetry and more generally 3D recording techniques are used in a wide range of applications. After recording several individual 3D datasets known in local systems, one of the first crucial processing steps is the registration of these data into a common reference frame. To perform such a 3D transformation, commercial and open source software as well as programs from the academic community are available. Due to some lacks in terms of computation transparency and quality assessment in these solutions, it has been decided to develop an open source algorithm which is presented in this paper. It is dedicated to the simultaneous registration of multiple point clouds as well as their georeferencing. The idea is to use this algorithm as a start point for further implementations, involving the possibility of combining 3D data from different sources. Parallel to the presentation of the global registration methodology which has been employed, the aim of this paper is to confront the results achieved this way with the above-mentioned existing solutions. For this purpose, first results obtained with the proposed algorithm to perform the global registration of ten laser scanning point clouds are presented. An analysis of the quality criteria delivered by two selected software used in this study and a reflexion about these criteria is also performed to complete the comparison of the obtained results. The final aim of this paper is to validate the current efficiency of the proposed method through these comparisons.

  3. Image quality enhancement for skin cancer optical diagnostics

    NASA Astrophysics Data System (ADS)

    Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey

    2017-12-01

    The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.

  4. High-dose-rate prostate brachytherapy inverse planning on dose-volume criteria by simulated annealing.

    PubMed

    Deist, T M; Gorissen, B L

    2016-02-07

    High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data.

  5. A Method Based on Wavelet Transforms for Source Detection in Photon-counting Detector Images. II. Application to ROSAT PSPC Images

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.

    1997-07-01

    We apply to the specific case of images taken with the ROSAT PSPC detector our wavelet-based X-ray source detection algorithm presented in a companion paper. Such images are characterized by the presence of detector ``ribs,'' strongly varying point-spread function, and vignetting, so that their analysis provides a challenge for any detection algorithm. First, we apply the algorithm to simulated images of a flat background, as seen with the PSPC, in order to calibrate the number of spurious detections as a function of significance threshold and to ascertain that the spatial distribution of spurious detections is uniform, i.e., unaffected by the ribs; this goal was achieved using the exposure map in the detection procedure. Then, we analyze simulations of PSPC images with a realistic number of point sources; the results are used to determine the efficiency of source detection and the accuracy of output quantities such as source count rate, size, and position, upon a comparison with input source data. It turns out that sources with 10 photons or less may be confidently detected near the image center in medium-length (~104 s), background-limited PSPC exposures. The positions of sources detected near the image center (off-axis angles < 15') are accurate to within a few arcseconds. Output count rates and sizes are in agreement with the input quantities, within a factor of 2 in 90% of the cases. The errors on position, count rate, and size increase with off-axis angle and for detections of lower significance. We have also checked that the upper limits computed with our method are consistent with the count rates of undetected input sources. Finally, we have tested the algorithm by applying it on various actual PSPC images, among the most challenging for automated detection procedures (crowded fields, extended sources, and nonuniform diffuse emission). The performance of our method in these images is satisfactory and outperforms those of other current X-ray detection techniques, such as those employed to produce the MPE and WGA catalogs of PSPC sources, in terms of both detection reliability and efficiency. We have also investigated the theoretical limit for point-source detection, with the result that even sources with only 2-3 photons may be reliably detected using an efficient method in images with sufficiently high resolution and low background.

  6. Identification of Spurious Signals from Permeable Ffowcs Williams and Hawkings Surfaces

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.; Boyd, David D., Jr.; Nark, Douglas M.; Wiedemann, Karl E.

    2017-01-01

    Integral forms of the permeable surface formulation of the Ffowcs Williams and Hawkings (FW-H) equation often require an input in the form of a near field Computational Fluid Dynamics (CFD) solution to predict noise in the near or far field from various types of geometries. The FW-H equation involves three source terms; two surface terms (monopole and dipole) and a volume term (quadrupole). Many solutions to the FW-H equation, such as several of Farassat's formulations, neglect the quadrupole term. Neglecting the quadrupole term in permeable surface formulations leads to inaccuracies called spurious signals. This paper explores the concept of spurious signals, explains how they are generated by specifying the acoustic and hydrodynamic surface properties individually, and provides methods to determine their presence, regardless of whether a correction algorithm is employed. A potential approach based on the equivalent sources method (ESM) and the sensitivity of Formulation 1A (Formulation S1A) is also discussed for the removal of spurious signals.

  7. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily; Hall, Gregory

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  8. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE PAGES

    Goncharov, Vasily; Hall, Gregory

    2016-08-25

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  9. Influence of Iterative Reconstruction Algorithms on PET Image Resolution

    NASA Astrophysics Data System (ADS)

    Karpetas, G. E.; Michail, C. M.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The simulated PET scanner was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the modulation transfer function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL, the ordered subsets separable paraboloidal surrogate (OSSPS), the median root prior (MRP) and OSMAPOSL with quadratic prior, algorithms. OSMAPOSL reconstruction was assessed by using fixed subsets and various iterations, as well as by using various beta (hyper) parameter values. MTF values were found to increase with increasing iterations. MTF also improves by using lower beta values. The simulated PET evaluation method, based on the TLC plane source, can be useful in the resolution assessment of PET scanners.

  10. General purpose graphic processing unit implementation of adaptive pulse compression algorithms

    NASA Astrophysics Data System (ADS)

    Cai, Jingxiao; Zhang, Yan

    2017-07-01

    This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.

  11. Inverting Monotonic Nonlinearities by Entropy Maximization

    PubMed Central

    López-de-Ipiña Pena, Karmele; Caiafa, Cesar F.

    2016-01-01

    This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results. PMID:27780261

  12. Inverting Monotonic Nonlinearities by Entropy Maximization.

    PubMed

    Solé-Casals, Jordi; López-de-Ipiña Pena, Karmele; Caiafa, Cesar F

    2016-01-01

    This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results.

  13. Sparse Solutions for Single Class SVMs: A Bi-Criterion Approach

    NASA Technical Reports Server (NTRS)

    Das, Santanu; Oza, Nikunj C.

    2011-01-01

    In this paper we propose an innovative learning algorithm - a variation of One-class nu Support Vector Machines (SVMs) learning algorithm to produce sparser solutions with much reduced computational complexities. The proposed technique returns an approximate solution, nearly as good as the solution set obtained by the classical approach, by minimizing the original risk function along with a regularization term. We introduce a bi-criterion optimization that helps guide the search towards the optimal set in much reduced time. The outcome of the proposed learning technique was compared with the benchmark one-class Support Vector machines algorithm which more often leads to solutions with redundant support vectors. Through out the analysis, the problem size for both optimization routines was kept consistent. We have tested the proposed algorithm on a variety of data sources under different conditions to demonstrate the effectiveness. In all cases the proposed algorithm closely preserves the accuracy of standard one-class nu SVMs while reducing both training time and test time by several factors.

  14. Cluster compression algorithm: A joint clustering/data compression concept

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.

    1977-01-01

    The Cluster Compression Algorithm (CCA), which was developed to reduce costs associated with transmitting, storing, distributing, and interpreting LANDSAT multispectral image data is described. The CCA is a preprocessing algorithm that uses feature extraction and data compression to more efficiently represent the information in the image data. The format of the preprocessed data enables simply a look-up table decoding and direct use of the extracted features to reduce user computation for either image reconstruction, or computer interpretation of the image data. Basically, the CCA uses spatially local clustering to extract features from the image data to describe spectral characteristics of the data set. In addition, the features may be used to form a sequence of scalar numbers that define each picture element in terms of the cluster features. This sequence, called the feature map, is then efficiently represented by using source encoding concepts. Various forms of the CCA are defined and experimental results are presented to show trade-offs and characteristics of the various implementations. Examples are provided that demonstrate the application of the cluster compression concept to multi-spectral images from LANDSAT and other sources.

  15. Source term evaluation for combustion modeling

    NASA Technical Reports Server (NTRS)

    Sussman, Myles A.

    1993-01-01

    A modification is developed for application to the source terms used in combustion modeling. The modification accounts for the error of the finite difference scheme in regions where chain-branching chemical reactions produce exponential growth of species densities. The modification is first applied to a one-dimensional scalar model problem. It is then generalized to multiple chemical species, and used in quasi-one-dimensional computations of shock-induced combustion in a channel. Grid refinement studies demonstrate the improved accuracy of the method using this modification. The algorithm is applied in two spatial dimensions and used in simulations of steady and unsteady shock-induced combustion. Comparisons with ballistic range experiments give confidence in the numerical technique and the 9-species hydrogen-air chemistry model.

  16. Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?

    PubMed

    Esposito, Fabrizio; Formisano, Elia; Seifritz, Erich; Goebel, Rainer; Morrone, Renato; Tedeschi, Gioacchino; Di Salle, Francesco

    2002-07-01

    Independent component analysis (ICA) has been successfully employed to decompose functional MRI (fMRI) time-series into sets of activation maps and associated time-courses. Several ICA algorithms have been proposed in the neural network literature. Applied to fMRI, these algorithms might lead to different spatial or temporal readouts of brain activation. We compared the two ICA algorithms that have been used so far for spatial ICA (sICA) of fMRI time-series: the Infomax (Bell and Sejnowski [1995]: Neural Comput 7:1004-1034) and the Fixed-Point (Hyvärinen [1999]: Adv Neural Inf Proc Syst 10:273-279) algorithms. We evaluated the Infomax- and Fixed Point-based sICA decompositions of simulated motor, and real motor and visual activation fMRI time-series using an ensemble of measures. Log-likelihood (McKeown et al. [1998]: Hum Brain Mapp 6:160-188) was used as a measure of how significantly the estimated independent sources fit the statistical structure of the data; receiver operating characteristics (ROC) and linear correlation analyses were used to evaluate the algorithms' accuracy of estimating the spatial layout and the temporal dynamics of simulated and real activations; cluster sizing calculations and an estimation of a residual gaussian noise term within the components were used to examine the anatomic structure of ICA components and for the assessment of noise reduction capabilities. Whereas both algorithms produced highly accurate results, the Fixed-Point outperformed the Infomax in terms of spatial and temporal accuracy as long as inferential statistics were employed as benchmarks. Conversely, the Infomax sICA was superior in terms of global estimation of the ICA model and noise reduction capabilities. Because of its adaptive nature, the Infomax approach appears to be better suited to investigate activation phenomena that are not predictable or adequately modelled by inferential techniques. Copyright 2002 Wiley-Liss, Inc.

  17. The Chandra Source Catalog: Algorithms

    NASA Astrophysics Data System (ADS)

    McDowell, Jonathan; Evans, I. N.; Primini, F. A.; Glotfelty, K. J.; McCollough, M. L.; Houck, J. C.; Nowak, M. A.; Karovska, M.; Davis, J. E.; Rots, A. H.; Siemiginowska, A. L.; Hain, R.; Evans, J. D.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Doe, S. M.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Lauer, J.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    Creation of the Chandra Source Catalog (CSC) required adjustment of existing pipeline processing, adaptation of existing interactive analysis software for automated use, and development of entirely new algorithms. Data calibration was based on the existing pipeline, but more rigorous data cleaning was applied and the latest calibration data products were used. For source detection, a local background map was created including the effects of ACIS source readout streaks. The existing wavelet source detection algorithm was modified and a set of post-processing scripts used to correct the results. To analyse the source properties we ran the SAO Traceray trace code for each source to generate a model point spread function, allowing us to find encircled energy correction factors and estimate source extent. Further algorithms were developed to characterize the spectral, spatial and temporal properties of the sources and to estimate the confidence intervals on count rates and fluxes. Finally, sources detected in multiple observations were matched, and best estimates of their merged properties derived. In this paper we present an overview of the algorithms used, with more detailed treatment of some of the newly developed algorithms presented in companion papers.

  18. Combination of Adaptive Feedback Cancellation and Binaural Adaptive Filtering in Hearing Aids

    NASA Astrophysics Data System (ADS)

    Lombard, Anthony; Reindl, Klaus; Kellermann, Walter

    2009-12-01

    We study a system combining adaptive feedback cancellation and adaptive filtering connecting inputs from both ears for signal enhancement in hearing aids. For the first time, such a binaural system is analyzed in terms of system stability, convergence of the algorithms, and possible interaction effects. As major outcomes of this study, a new stability condition adapted to the considered binaural scenario is presented, some already existing and commonly used feedback cancellation performance measures for the unilateral case are adapted to the binaural case, and possible interaction effects between the algorithms are identified. For illustration purposes, a blind source separation algorithm has been chosen as an example for adaptive binaural spatial filtering. Experimental results for binaural hearing aids confirm the theoretical findings and the validity of the new measures.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debojyoti; Constantinescu, Emil M.

    The numerical simulation of meso-, convective-, and microscale atmospheric flows requires the solution of the Euler or the Navier-Stokes equations. Nonhydrostatic weather prediction algorithms often solve the equations in terms of derived quantities such as Exner pressure and potential temperature (and are thus not conservative) and/or as perturbations to the hydrostatically balanced equilibrium state. This paper presents a well-balanced, conservative finite difference formulation for the Euler equations with a gravitational source term, where the governing equations are solved as conservation laws for mass, momentum, and energy. Preservation of the hydrostatic balance to machine precision by the discretized equations is essentialmore » because atmospheric phenomena are often small perturbations to this balance. The proposed algorithm uses the weighted essentially nonoscillatory and compact-reconstruction weighted essentially nonoscillatory schemes for spatial discretization that yields high-order accurate solutions for smooth flows and is essentially nonoscillatory across strong gradients; however, the well-balanced formulation may be used with other conservative finite difference methods. The performance of the algorithm is demonstrated on test problems as well as benchmark atmospheric flow problems, and the results are verified with those in the literature.« less

  20. A High-Order Low-Order Algorithm with Exponentially Convergent Monte Carlo for Thermal Radiative Transfer

    DOE PAGES

    Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.

    2016-10-21

    In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less

  1. Short-Term Solar Forecasting Performance of Popular Machine Learning Algorithms: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florita, Anthony R; Elgindy, Tarek; Hodge, Brian S

    A framework for assessing the performance of short-term solar forecasting is presented in conjunction with a range of numerical results using global horizontal irradiation (GHI) from the open-source Surface Radiation Budget (SURFRAD) data network. A suite of popular machine learning algorithms is compared according to a set of statistically distinct metrics and benchmarked against the persistence-of-cloudiness forecast and a cloud motion forecast. Results show significant improvement compared to the benchmarks with trade-offs among the machine learning algorithms depending on the desired error metric. Training inputs include time series observations of GHI for a history of years, historical weather and atmosphericmore » measurements, and corresponding date and time stamps such that training sensitivities might be inferred. Prediction outputs are GHI forecasts for 1, 2, 3, and 4 hours ahead of the issue time, and they are made for every month of the year for 7 locations. Photovoltaic power and energy outputs can then be made using the solar forecasts to better understand power system impacts.« less

  2. A new DOD and DOA estimation method for MIMO radar

    NASA Astrophysics Data System (ADS)

    Gong, Jian; Lou, Shuntian; Guo, Yiduo

    2018-04-01

    The battlefield electromagnetic environment is becoming more and more complex, and MIMO radar will inevitably be affected by coherent and non-stationary noise. To solve this problem, an angle estimation method based on oblique projection operator and Teoplitz matrix reconstruction is proposed. Through the reconstruction of Toeplitz, nonstationary noise is transformed into Gauss white noise, and then the oblique projection operator is used to separate independent and correlated sources. Finally, simulations are carried out to verify the performance of the proposed algorithm in terms of angle estimation performance and source overload.

  3. Performance comparison of independent component analysis algorithms for fetal cardiac signal reconstruction: a study on synthetic fMCG data

    NASA Astrophysics Data System (ADS)

    Mantini, D.; Hild, K. E., II; Alleva, G.; Comani, S.

    2006-02-01

    Independent component analysis (ICA) algorithms have been successfully used for signal extraction tasks in the field of biomedical signal processing. We studied the performances of six algorithms (FastICA, CubICA, JADE, Infomax, TDSEP and MRMI-SIG) for fetal magnetocardiography (fMCG). Synthetic datasets were used to check the quality of the separated components against the original traces. Real fMCG recordings were simulated with linear combinations of typical fMCG source signals: maternal and fetal cardiac activity, ambient noise, maternal respiration, sensor spikes and thermal noise. Clusters of different dimensions (19, 36 and 55 sensors) were prepared to represent different MCG systems. Two types of signal-to-interference ratios (SIR) were measured. The first involves averaging over all estimated components and the second is based solely on the fetal trace. The computation time to reach a minimum of 20 dB SIR was measured for all six algorithms. No significant dependency on gestational age or cluster dimension was observed. Infomax performed poorly when a sub-Gaussian source was included; TDSEP and MRMI-SIG were sensitive to additive noise, whereas FastICA, CubICA and JADE showed the best performances. Of all six methods considered, FastICA had the best overall performance in terms of both separation quality and computation times.

  4. Multidimensional incremental parsing for universal source coding.

    PubMed

    Bae, Soo Hyun; Juang, Biing-Hwang

    2008-10-01

    A multidimensional incremental parsing algorithm (MDIP) for multidimensional discrete sources, as a generalization of the Lempel-Ziv coding algorithm, is investigated. It consists of three essential component schemes, maximum decimation matching, hierarchical structure of multidimensional source coding, and dictionary augmentation. As a counterpart of the longest match search in the Lempel-Ziv algorithm, two classes of maximum decimation matching are studied. Also, an underlying behavior of the dictionary augmentation scheme for estimating the source statistics is examined. For an m-dimensional source, m augmentative patches are appended into the dictionary at each coding epoch, thus requiring the transmission of a substantial amount of information to the decoder. The property of the hierarchical structure of the source coding algorithm resolves this issue by successively incorporating lower dimensional coding procedures in the scheme. In regard to universal lossy source coders, we propose two distortion functions, the local average distortion and the local minimax distortion with a set of threshold levels for each source symbol. For performance evaluation, we implemented three image compression algorithms based upon the MDIP; one is lossless and the others are lossy. The lossless image compression algorithm does not perform better than the Lempel-Ziv-Welch coding, but experimentally shows efficiency in capturing the source structure. The two lossy image compression algorithms are implemented using the two distortion functions, respectively. The algorithm based on the local average distortion is efficient at minimizing the signal distortion, but the images by the one with the local minimax distortion have a good perceptual fidelity among other compression algorithms. Our insights inspire future research on feature extraction of multidimensional discrete sources.

  5. Progress in the development of PDF turbulence models for combustion

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    A combined Monte Carlo-computational fluid dynamic (CFD) algorithm was developed recently at Lewis Research Center (LeRC) for turbulent reacting flows. In this algorithm, conventional CFD schemes are employed to obtain the velocity field and other velocity related turbulent quantities, and a Monte Carlo scheme is used to solve the evolution equation for the probability density function (pdf) of species mass fraction and temperature. In combustion computations, the predictions of chemical reaction rates (the source terms in the species conservation equation) are poor if conventional turbulence modles are used. The main difficulty lies in the fact that the reaction rate is highly nonlinear, and the use of averaged temperature produces excessively large errors. Moment closure models for the source terms have attained only limited success. The probability density function (pdf) method seems to be the only alternative at the present time that uses local instantaneous values of the temperature, density, etc., in predicting chemical reaction rates, and thus may be the only viable approach for more accurate turbulent combustion calculations. Assumed pdf's are useful in simple problems; however, for more general combustion problems, the solution of an evolution equation for the pdf is necessary.

  6. Hybrid Transverse Polar Navigation for High-Precision and Long-Term INSs

    PubMed Central

    Wu, Qiuping; Zhang, Rong; Hu, Peida; Li, Haixia

    2018-01-01

    Transverse navigation has been proposed to help inertial navigation systems (INSs) fill the gap of polar navigation ability. However, as the transverse system does not have the ability of navigate globally, a complicated switch between the transverse and the traditional algorithms is necessary when the system moves across the polar circles. To maintain the inner continuity and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs. Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and corresponding long-term contributions of main error sources is conducted for the high-precision INSs. According to the analytical expressions of the long-term navigation errors in polar areas, the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse horizontal position errors, and the first-order drift dominates the transverse azimuth error, which results from the g0 gyro drift coefficients that occur in corresponding directions. Simulations are conducted to validate the theoretical analysis and the deduced analytical expressions. The results show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation characteristics in polar areas as the traditional algorithm in low and mid latitude regions. PMID:29757242

  7. Hybrid Transverse Polar Navigation for High-Precision and Long-Term INSs.

    PubMed

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Zhang, Rong; Hu, Peida; Li, Haixia

    2018-05-12

    Transverse navigation has been proposed to help inertial navigation systems (INSs) fill the gap of polar navigation ability. However, as the transverse system does not have the ability of navigate globally, a complicated switch between the transverse and the traditional algorithms is necessary when the system moves across the polar circles. To maintain the inner continuity and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs. Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and corresponding long-term contributions of main error sources is conducted for the high-precision INSs. According to the analytical expressions of the long-term navigation errors in polar areas, the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse horizontal position errors, and the first-order drift dominates the transverse azimuth error, which results from the gyro drift coefficients that occur in corresponding directions. Simulations are conducted to validate the theoretical analysis and the deduced analytical expressions. The results show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation characteristics in polar areas as the traditional algorithm in low and mid latitude regions.

  8. Generalized reference fields and source interpolation for the difference formulation of radiation transport

    NASA Astrophysics Data System (ADS)

    Luu, Thomas; Brooks, Eugene D.; Szőke, Abraham

    2010-03-01

    In the difference formulation for the transport of thermally emitted photons the photon intensity is defined relative to a reference field, the black body at the local material temperature. This choice of reference field combines the separate emission and absorption terms that nearly cancel, thereby removing the dominant cause of noise in the Monte Carlo solution of thick systems, but introduces time and space derivative source terms that cannot be determined until the end of the time step. The space derivative source term can also lead to noise induced crashes under certain conditions where the real physical photon intensity differs strongly from a black body at the local material temperature. In this paper, we consider a difference formulation relative to the material temperature at the beginning of the time step, or in cases where an alternative temperature better describes the radiation field, that temperature. The result is a method where iterative solution of the material energy equation is efficient and noise induced crashes are avoided. We couple our generalized reference field scheme with an ad hoc interpolation of the space derivative source, resulting in an algorithm that produces the correct flux between zones as the physical system approaches the thick limit.

  9. Two-dimensional joint inversion of Magnetotelluric and local earthquake data: Discussion on the contribution to the solution of deep subsurface structures

    NASA Astrophysics Data System (ADS)

    Demirci, İsmail; Dikmen, Ünal; Candansayar, M. Emin

    2018-02-01

    Joint inversion of data sets collected by using several geophysical exploration methods has gained importance and associated algorithms have been developed. To explore the deep subsurface structures, Magnetotelluric and local earthquake tomography algorithms are generally used individually. Due to the usage of natural resources in both methods, it is not possible to increase data quality and resolution of model parameters. For this reason, the solution of the deep structures with the individual usage of the methods cannot be fully attained. In this paper, we firstly focused on the effects of both Magnetotelluric and local earthquake data sets on the solution of deep structures and discussed the results on the basis of the resolving power of the methods. The presence of deep-focus seismic sources increase the resolution of deep structures. Moreover, conductivity distribution of relatively shallow structures can be solved with high resolution by using MT algorithm. Therefore, we developed a new joint inversion algorithm based on the cross gradient function in order to jointly invert Magnetotelluric and local earthquake data sets. In the study, we added a new regularization parameter into the second term of the parameter correction vector of Gallardo and Meju (2003). The new regularization parameter is enhancing the stability of the algorithm and controls the contribution of the cross gradient term in the solution. The results show that even in cases where resistivity and velocity boundaries are different, both methods influence each other positively. In addition, the region of common structural boundaries of the models are clearly mapped compared with original models. Furthermore, deep structures are identified satisfactorily even with using the minimum number of seismic sources. In this paper, in order to understand the future studies, we discussed joint inversion of Magnetotelluric and local earthquake data sets only in two-dimensional space. In the light of these results and by means of the acceleration on the three-dimensional modelling and inversion algorithms, it is thought that it may be easier to identify underground structures with high resolution.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera-Palmer, Belkis

    Predicting the performance of radiation detection systems at field sites based on measured performance acquired under controlled conditions at test locations, e.g., the Nevada National Security Site (NNSS), remains an unsolved and standing issue within DNDO’s testing methodology. Detector performance can be defined in terms of the system’s ability to detect and/or identify a given source or set of sources, and depends on the signal generated by the detector for the given measurement configuration (i.e., source strength, distance, time, surrounding materials, etc.) and on the quality of the detection algorithm. Detector performance is usually evaluated in the performance and operationalmore » testing phases, where the measurement configurations are selected to represent radiation source and background configurations of interest to security applications.« less

  11. [GNU Pattern: open source pattern hunter for biological sequences based on SPLASH algorithm].

    PubMed

    Xu, Ying; Li, Yi-xue; Kong, Xiang-yin

    2005-06-01

    To construct a high performance open source software engine based on IBM SPLASH algorithm for later research on pattern discovery. Gpat, which is based on SPLASH algorithm, was developed by using open source software. GNU Pattern (Gpat) software was developped, which efficiently implemented the core part of SPLASH algorithm. Full source code of Gpat was also available for other researchers to modify the program under the GNU license. Gpat is a successful implementation of SPLASH algorithm and can be used as a basic framework for later research on pattern recognition in biological sequences.

  12. Supersonic propulsion simulation by incorporating component models in the large perturbation inlet (LAPIN) computer code

    NASA Technical Reports Server (NTRS)

    Cole, Gary L.; Richard, Jacques C.

    1991-01-01

    An approach to simulating the internal flows of supersonic propulsion systems is presented. The approach is based on a fairly simple modification of the Large Perturbation Inlet (LAPIN) computer code. LAPIN uses a quasi-one dimensional, inviscid, unsteady formulation of the continuity, momentum, and energy equations. The equations are solved using a shock capturing, finite difference algorithm. The original code, developed for simulating supersonic inlets, includes engineering models of unstart/restart, bleed, bypass, and variable duct geometry, by means of source terms in the equations. The source terms also provide a mechanism for incorporating, with the inlet, propulsion system components such as compressor stages, combustors, and turbine stages. This requires each component to be distributed axially over a number of grid points. Because of the distributed nature of such components, this representation should be more accurate than a lumped parameter model. Components can be modeled by performance map(s), which in turn are used to compute the source terms. The general approach is described. Then, simulation of a compressor/fan stage is discussed to show the approach in detail.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Jeffrey F.

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as amore » means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.« less

  14. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  15. An adaptive Bayesian inference algorithm to estimate the parameters of a hazardous atmospheric release

    NASA Astrophysics Data System (ADS)

    Rajaona, Harizo; Septier, François; Armand, Patrick; Delignon, Yves; Olry, Christophe; Albergel, Armand; Moussafir, Jacques

    2015-12-01

    In the eventuality of an accidental or intentional atmospheric release, the reconstruction of the source term using measurements from a set of sensors is an important and challenging inverse problem. A rapid and accurate estimation of the source allows faster and more efficient action for first-response teams, in addition to providing better damage assessment. This paper presents a Bayesian probabilistic approach to estimate the location and the temporal emission profile of a pointwise source. The release rate is evaluated analytically by using a Gaussian assumption on its prior distribution, and is enhanced with a positivity constraint to improve the estimation. The source location is obtained by the means of an advanced iterative Monte-Carlo technique called Adaptive Multiple Importance Sampling (AMIS), which uses a recycling process at each iteration to accelerate its convergence. The proposed methodology is tested using synthetic and real concentration data in the framework of the Fusion Field Trials 2007 (FFT-07) experiment. The quality of the obtained results is comparable to those coming from the Markov Chain Monte Carlo (MCMC) algorithm, a popular Bayesian method used for source estimation. Moreover, the adaptive processing of the AMIS provides a better sampling efficiency by reusing all the generated samples.

  16. Dictionary Learning Algorithms for Sparse Representation

    PubMed Central

    Kreutz-Delgado, Kenneth; Murray, Joseph F.; Rao, Bhaskar D.; Engan, Kjersti; Lee, Te-Won; Sejnowski, Terrence J.

    2010-01-01

    Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial “25 words or less”), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an over-complete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error). PMID:12590811

  17. Towards an accurate real-time locator of infrasonic sources

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Blom, P.; Polozov, A.; Marcillo, O.; Arrowsmith, S.; Hofstetter, A.

    2017-11-01

    Infrasonic signals propagate from an atmospheric source via media with stochastic and fast space-varying conditions. Hence, their travel time, the amplitude at sensor recordings and even manifestation in the so-called "shadow zones" are random. Therefore, the traditional least-squares technique for locating infrasonic sources is often not effective, and the problem for the best solution must be formulated in probabilistic terms. Recently, a series of papers has been published about Bayesian Infrasonic Source Localization (BISL) method based on the computation of the posterior probability density function (PPDF) of the source location, as a convolution of a priori probability distribution function (APDF) of the propagation model parameters with likelihood function (LF) of observations. The present study is devoted to the further development of BISL for higher accuracy and stability of the source location results and decreasing of computational load. We critically analyse previous algorithms and propose several new ones. First of all, we describe the general PPDF formulation and demonstrate that this relatively slow algorithm might be among the most accurate algorithms, provided the adequate APDF and LF are used. Then, we suggest using summation instead of integration in a general PPDF calculation for increased robustness, but this leads us to the 3D space-time optimization problem. Two different forms of APDF approximation are considered and applied for the PPDF calculation in our study. One of them is previously suggested, but not yet properly used is the so-called "celerity-range histograms" (CRHs). Another is the outcome from previous findings of linear mean travel time for the four first infrasonic phases in the overlapping consecutive distance ranges. This stochastic model is extended here to the regional distance of 1000 km, and the APDF introduced is the probabilistic form of the junction between this travel time model and range-dependent probability distributions of the phase arrival time picks. To illustrate the improvements in both computation time and location accuracy achieved, we compare location results for the new algorithms, previously published BISL-type algorithms and the least-squares location technique. This comparison is provided via a case study of different typical spatial data distributions and statistical experiment using the database of 36 ground-truth explosions from the Utah Test and Training Range (UTTR) recorded during the US summer season at USArray transportable seismic stations when they were near the site between 2006 and 2008.

  18. Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Cervelli, P.; Murray, M. H.; Segall, P.; Aoki, Y.; Kato, T.

    2001-06-01

    We have applied two Monte Carlo optimization techniques, simulated annealing and random cost, to the inversion of deformation data for fault and magma chamber geometry. These techniques involve an element of randomness that permits them to escape local minima and ultimately converge to the global minimum of misfit space. We have tested the Monte Carlo algorithms on two synthetic data sets. We have also compared them to one another in terms of their efficiency and reliability. We have applied the bootstrap method to estimate confidence intervals for the source parameters, including the correlations inherent in the data. Additionally, we present methods that use the information from the bootstrapping procedure to visualize the correlations between the different model parameters. We have applied these techniques to GPS, tilt, and leveling data from the March 1997 earthquake swarm off of the Izu Peninsula, Japan. Using the two Monte Carlo algorithms, we have inferred two sources, a dike and a fault, that fit the deformation data and the patterns of seismicity and that are consistent with the regional stress field.

  19. An evaluation of talker localization based on direction of arrival estimation and statistical sound source identification

    NASA Astrophysics Data System (ADS)

    Nishiura, Takanobu; Nakamura, Satoshi

    2002-11-01

    It is very important to capture distant-talking speech for a hands-free speech interface with high quality. A microphone array is an ideal candidate for this purpose. However, this approach requires localizing the target talker. Conventional talker localization algorithms in multiple sound source environments not only have difficulty localizing the multiple sound sources accurately, but also have difficulty localizing the target talker among known multiple sound source positions. To cope with these problems, we propose a new talker localization algorithm consisting of two algorithms. One is DOA (direction of arrival) estimation algorithm for multiple sound source localization based on CSP (cross-power spectrum phase) coefficient addition method. The other is statistical sound source identification algorithm based on GMM (Gaussian mixture model) for localizing the target talker position among localized multiple sound sources. In this paper, we particularly focus on the talker localization performance based on the combination of these two algorithms with a microphone array. We conducted evaluation experiments in real noisy reverberant environments. As a result, we confirmed that multiple sound signals can be identified accurately between ''speech'' or ''non-speech'' by the proposed algorithm. [Work supported by ATR, and MEXT of Japan.

  20. Searching Information Sources in Networks

    DTIC Science & Technology

    2017-06-14

    SECURITY CLASSIFICATION OF: During the course of this project, we made significant progresses in multiple directions of the information detection...result on information source detection on non-tree networks; (2) The development of information source localization algorithms to detect multiple... information sources. The algorithms have provable performance guarantees and outperform existing algorithms in 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND

  1. An EEG blind source separation algorithm based on a weak exclusion principle.

    PubMed

    Lan Ma; Blu, Thierry; Wang, William S-Y

    2016-08-01

    The question of how to separate individual brain and non-brain signals, mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings, is a significant problem in contemporary neuroscience. This study proposes and evaluates a novel EEG Blind Source Separation (BSS) algorithm based on a weak exclusion principle (WEP). The chief point in which it differs from most previous EEG BSS algorithms is that the proposed algorithm is not based upon the hypothesis that the sources are statistically independent. Our first step was to investigate algorithm performance on simulated signals which have ground truth. The purpose of this simulation is to illustrate the proposed algorithm's efficacy. The results show that the proposed algorithm has good separation performance. Then, we used the proposed algorithm to separate real EEG signals from a memory study using a revised version of Sternberg Task. The results show that the proposed algorithm can effectively separate the non-brain and brain sources.

  2. An Automated Summarization Assessment Algorithm for Identifying Summarizing Strategies

    PubMed Central

    Abdi, Asad; Idris, Norisma; Alguliyev, Rasim M.; Aliguliyev, Ramiz M.

    2016-01-01

    Background Summarization is a process to select important information from a source text. Summarizing strategies are the core cognitive processes in summarization activity. Since summarization can be important as a tool to improve comprehension, it has attracted interest of teachers for teaching summary writing through direct instruction. To do this, they need to review and assess the students' summaries and these tasks are very time-consuming. Thus, a computer-assisted assessment can be used to help teachers to conduct this task more effectively. Design/Results This paper aims to propose an algorithm based on the combination of semantic relations between words and their syntactic composition to identify summarizing strategies employed by students in summary writing. An innovative aspect of our algorithm lies in its ability to identify summarizing strategies at the syntactic and semantic levels. The efficiency of the algorithm is measured in terms of Precision, Recall and F-measure. We then implemented the algorithm for the automated summarization assessment system that can be used to identify the summarizing strategies used by students in summary writing. PMID:26735139

  3. Broadband Phase Retrieval for Image-Based Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature wavefront sensing, and Shack-Hartmann sensing, all of which entail disadvantages in comparison with image-based methods. The main disadvantages of these non-image based methods are complexity of test equipment and the need for a wavefront reference.

  4. The systems biology simulation core algorithm

    PubMed Central

    2013-01-01

    Background With the increasing availability of high dimensional time course data for metabolites, genes, and fluxes, the mathematical description of dynamical systems has become an essential aspect of research in systems biology. Models are often encoded in formats such as SBML, whose structure is very complex and difficult to evaluate due to many special cases. Results This article describes an efficient algorithm to solve SBML models that are interpreted in terms of ordinary differential equations. We begin our consideration with a formal representation of the mathematical form of the models and explain all parts of the algorithm in detail, including several preprocessing steps. We provide a flexible reference implementation as part of the Systems Biology Simulation Core Library, a community-driven project providing a large collection of numerical solvers and a sophisticated interface hierarchy for the definition of custom differential equation systems. To demonstrate the capabilities of the new algorithm, it has been tested with the entire SBML Test Suite and all models of BioModels Database. Conclusions The formal description of the mathematics behind the SBML format facilitates the implementation of the algorithm within specifically tailored programs. The reference implementation can be used as a simulation backend for Java™-based programs. Source code, binaries, and documentation can be freely obtained under the terms of the LGPL version 3 from http://simulation-core.sourceforge.net. Feature requests, bug reports, contributions, or any further discussion can be directed to the mailing list simulation-core-development@lists.sourceforge.net. PMID:23826941

  5. Development of an upwind, finite-volume code with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Molvik, Gregory A.

    1994-01-01

    Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques, and a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical, and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data.

  6. UV Reconstruction Algorithm And Diurnal Cycle Variability

    NASA Astrophysics Data System (ADS)

    Curylo, Aleksander; Litynska, Zenobia; Krzyscin, Janusz; Bogdanska, Barbara

    2009-03-01

    UV reconstruction is a method of estimation of surface UV with the use of available actinometrical and aerological measurements. UV reconstruction is necessary for the study of long-term UV change. A typical series of UV measurements is not longer than 15 years, which is too short for trend estimation. The essential problem in the reconstruction algorithm is the good parameterization of clouds. In our previous algorithm we used an empirical relation between Cloud Modification Factor (CMF) in global radiation and CMF in UV. The CMF is defined as the ratio between measured and modelled irradiances. Clear sky irradiance was calculated with a solar radiative transfer model. In the proposed algorithm, the time variability of global radiation during the diurnal cycle is used as an additional source of information. For elaborating an improved reconstruction algorithm relevant data from Legionowo [52.4 N, 21.0 E, 96 m a.s.l], Poland were collected with the following instruments: NILU-UV multi channel radiometer, Kipp&Zonen pyranometer, radiosonde profiles of ozone, humidity and temperature. The proposed algorithm has been used for reconstruction of UV at four Polish sites: Mikolajki, Kolobrzeg, Warszawa-Bielany and Zakopane since the early 1960s. Krzyscin's reconstruction of total ozone has been used in the calculations.

  7. Accuracy metrics for judging time scale algorithms

    NASA Technical Reports Server (NTRS)

    Douglas, R. J.; Boulanger, J.-S.; Jacques, C.

    1994-01-01

    Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.

  8. Enhanced K-means clustering with encryption on cloud

    NASA Astrophysics Data System (ADS)

    Singh, Iqjot; Dwivedi, Prerna; Gupta, Taru; Shynu, P. G.

    2017-11-01

    This paper tries to solve the problem of storing and managing big files over cloud by implementing hashing on Hadoop in big-data and ensure security while uploading and downloading files. Cloud computing is a term that emphasis on sharing data and facilitates to share infrastructure and resources.[10] Hadoop is an open source software that gives us access to store and manage big files according to our needs on cloud. K-means clustering algorithm is an algorithm used to calculate distance between the centroid of the cluster and the data points. Hashing is a algorithm in which we are storing and retrieving data with hash keys. The hashing algorithm is called as hash function which is used to portray the original data and later to fetch the data stored at the specific key. [17] Encryption is a process to transform electronic data into non readable form known as cipher text. Decryption is the opposite process of encryption, it transforms the cipher text into plain text that the end user can read and understand well. For encryption and decryption we are using Symmetric key cryptographic algorithm. In symmetric key cryptography are using DES algorithm for a secure storage of the files. [3

  9. Stream Kriging: Incremental and recursive ordinary Kriging over spatiotemporal data streams

    NASA Astrophysics Data System (ADS)

    Zhong, Xu; Kealy, Allison; Duckham, Matt

    2016-05-01

    Ordinary Kriging is widely used for geospatial interpolation and estimation. Due to the O (n3) time complexity of solving the system of linear equations, ordinary Kriging for a large set of source points is computationally intensive. Conducting real-time Kriging interpolation over continuously varying spatiotemporal data streams can therefore be especially challenging. This paper develops and tests two new strategies for improving the performance of an ordinary Kriging interpolator adapted to a stream-processing environment. These strategies rely on the expectation that, over time, source data points will frequently refer to the same spatial locations (for example, where static sensor nodes are generating repeated observations of a dynamic field). First, an incremental strategy improves efficiency in cases where a relatively small proportion of previously processed spatial locations are absent from the source points at any given iteration. Second, a recursive strategy improves efficiency in cases where there is substantial set overlap between the sets of spatial locations of source points at the current and previous iterations. These two strategies are evaluated in terms of their computational efficiency in comparison to ordinary Kriging algorithm. The results show that these two strategies can reduce the time taken to perform the interpolation by up to 90%, and approach average-case time complexity of O (n2) when most but not all source points refer to the same locations over time. By combining the approaches developed in this paper with existing heuristic ordinary Kriging algorithms, the conclusions indicate how further efficiency gains could potentially be accrued. The work ultimately contributes to the development of online ordinary Kriging interpolation algorithms, capable of real-time spatial interpolation with large streaming data sets.

  10. Seismic envelope-based detection and location of ground-coupled airwaves from volcanoes in Alaska

    USGS Publications Warehouse

    Fee, David; Haney, Matt; Matoza, Robin S.; Szuberla, Curt A.L.; Lyons, John; Waythomas, Christopher F.

    2016-01-01

    Volcanic explosions and other infrasonic sources frequently produce acoustic waves that are recorded by seismometers. Here we explore multiple techniques to detect, locate, and characterize ground‐coupled airwaves (GCA) on volcano seismic networks in Alaska. GCA waveforms are typically incoherent between stations, thus we use envelope‐based techniques in our analyses. For distant sources and planar waves, we use f‐k beamforming to estimate back azimuth and trace velocity parameters. For spherical waves originating within the network, we use two related time difference of arrival (TDOA) methods to detect and localize the source. We investigate a modified envelope function to enhance the signal‐to‐noise ratio and emphasize both high energies and energy contrasts within a spectrogram. We apply these methods to recent eruptions from Cleveland, Veniaminof, and Pavlof Volcanoes, Alaska. Array processing of GCA from Cleveland Volcano on 4 May 2013 produces robust detection and wave characterization. Our modified envelopes substantially improve the short‐term average/long‐term average ratios, enhancing explosion detection. We detect GCA within both the Veniaminof and Pavlof networks from the 2007 and 2013–2014 activity, indicating repeated volcanic explosions. Event clustering and forward modeling suggests that high‐resolution localization is possible for GCA on typical volcano seismic networks. These results indicate that GCA can be used to help detect, locate, characterize, and monitor volcanic eruptions, particularly in difficult‐to‐monitor regions. We have implemented these GCA detection algorithms into our operational volcano‐monitoring algorithms at the Alaska Volcano Observatory.

  11. Beamspace dual signal space projection (bDSSP): a method for selective detection of deep sources in MEG measurements.

    PubMed

    Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K; Cai, Chang; Nagarajan, Srikantan S

    2018-06-01

    Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.

  12. Beamspace dual signal space projection (bDSSP): a method for selective detection of deep sources in MEG measurements

    NASA Astrophysics Data System (ADS)

    Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K.; Cai, Chang; Nagarajan, Srikantan S.

    2018-06-01

    Objective. Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. Approach. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Main results. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. Significance. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.

  13. Martian methane plume models for defining Mars rover methane source search strategies

    NASA Astrophysics Data System (ADS)

    Nicol, Christopher; Ellery, Alex; Lynch, Brian; Cloutis, Ed

    2018-07-01

    The detection of atmospheric methane on Mars implies an active methane source. This introduces the possibility of a biotic source with the implied need to determine whether the methane is indeed biotic in nature or geologically generated. There is a clear need for robotic algorithms which are capable of manoeuvring a rover through a methane plume on Mars to locate its source. We explore aspects of Mars methane plume modelling to reveal complex dynamics characterized by advection and diffusion. A statistical analysis of the plume model has been performed and compared to analyses of terrestrial plume models. Finally, we consider a robotic search strategy to find a methane plume source. We find that gradient-based techniques are ineffective, but that more sophisticated model-based search strategies are unlikely to be available in near-term rover missions.

  14. Reconstructing cortical current density by exploring sparseness in the transform domain

    NASA Astrophysics Data System (ADS)

    Ding, Lei

    2009-05-01

    In the present study, we have developed a novel electromagnetic source imaging approach to reconstruct extended cortical sources by means of cortical current density (CCD) modeling and a novel EEG imaging algorithm which explores sparseness in cortical source representations through the use of L1-norm in objective functions. The new sparse cortical current density (SCCD) imaging algorithm is unique since it reconstructs cortical sources by attaining sparseness in a transform domain (the variation map of cortical source distributions). While large variations are expected to occur along boundaries (sparseness) between active and inactive cortical regions, cortical sources can be reconstructed and their spatial extents can be estimated by locating these boundaries. We studied the SCCD algorithm using numerous simulations to investigate its capability in reconstructing cortical sources with different extents and in reconstructing multiple cortical sources with different extent contrasts. The SCCD algorithm was compared with two L2-norm solutions, i.e. weighted minimum norm estimate (wMNE) and cortical LORETA. Our simulation data from the comparison study show that the proposed sparse source imaging algorithm is able to accurately and efficiently recover extended cortical sources and is promising to provide high-accuracy estimation of cortical source extents.

  15. AUTOCLASSIFICATION OF THE VARIABLE 3XMM SOURCES USING THE RANDOM FOREST MACHINE LEARNING ALGORITHM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, Sean A.; Murphy, Tara; Lo, Kitty K., E-mail: s.farrell@physics.usyd.edu.au

    In the current era of large surveys and massive data sets, autoclassification of astrophysical sources using intelligent algorithms is becoming increasingly important. In this paper we present the catalog of variable sources in the Third XMM-Newton Serendipitous Source catalog (3XMM) autoclassified using the Random Forest machine learning algorithm. We used a sample of manually classified variable sources from the second data release of the XMM-Newton catalogs (2XMMi-DR2) to train the classifier, obtaining an accuracy of ∼92%. We also evaluated the effectiveness of identifying spurious detections using a sample of spurious sources, achieving an accuracy of ∼95%. Manual investigation of amore » random sample of classified sources confirmed these accuracy levels and showed that the Random Forest machine learning algorithm is highly effective at automatically classifying 3XMM sources. Here we present the catalog of classified 3XMM variable sources. We also present three previously unidentified unusual sources that were flagged as outlier sources by the algorithm: a new candidate supergiant fast X-ray transient, a 400 s X-ray pulsar, and an eclipsing 5 hr binary system coincident with a known Cepheid.« less

  16. Simultaneous digital super-resolution and nonuniformity correction for infrared imaging systems.

    PubMed

    Meza, Pablo; Machuca, Guillermo; Torres, Sergio; Martin, Cesar San; Vera, Esteban

    2015-07-20

    In this article, we present a novel algorithm to achieve simultaneous digital super-resolution and nonuniformity correction from a sequence of infrared images. We propose to use spatial regularization terms that exploit nonlocal means and the absence of spatial correlation between the scene and the nonuniformity noise sources. We derive an iterative optimization algorithm based on a gradient descent minimization strategy. Results from infrared image sequences corrupted with simulated and real fixed-pattern noise show a competitive performance compared with state-of-the-art methods. A qualitative analysis on the experimental results obtained with images from a variety of infrared cameras indicates that the proposed method provides super-resolution images with significantly less fixed-pattern noise.

  17. COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y.; Borland, Michael

    Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.

  18. Probabilistic location estimation of acoustic emission sources in isotropic plates with one sensor

    NASA Astrophysics Data System (ADS)

    Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-04-01

    This paper presents a probabilistic acoustic emission (AE) source localization algorithm for isotropic plate structures. The proposed algorithm requires only one sensor and uniformly monitors the entire area of such plates without any blind zones. In addition, it takes a probabilistic approach and quantifies localization uncertainties. The algorithm combines a modal acoustic emission (MAE) and a reflection-based technique to obtain information pertaining to the location of AE sources. To estimate confidence contours for the location of sources, uncertainties are quantified and propagated through the two techniques. The approach was validated using standard pencil lead break (PLB) tests on an Aluminum plate. The results demonstrate that the proposed source localization algorithm successfully estimates confidence contours for the location of AE sources.

  19. Numerical study of supersonic combustion using a finite rate chemistry model

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Tiwari, S. N.; Kumar, A.; Drummond, J. P.

    1986-01-01

    The governing equations of two-dimensional chemically reacting flows are presented together with a global two-step chemistry model for H2-air combustion. The explicit unsplit MacCormack finite difference algorithm is used to advance the discrete system of the governing equations in time until convergence is attained. The source terms in the species equations are evaluated implicitly to alleviate stiffness associated with fast reactions. With implicit source terms, the species equations give rise to a block-diagonal system which can be solved very efficiently on vector-processing computers. A supersonic reacting flow in an inlet-combustor configuration is calculated for the case where H2 is injected into the flow from the side walls and the strut. Results of the calculation are compared against the results obtained by using a complete reaction model.

  20. Standardized shrinking LORETA-FOCUSS (SSLOFO): a new algorithm for spatio-temporal EEG source reconstruction.

    PubMed

    Liu, Hesheng; Schimpf, Paul H; Dong, Guoya; Gao, Xiaorong; Yang, Fusheng; Gao, Shangkai

    2005-10-01

    This paper presents a new algorithm called Standardized Shrinking LORETA-FOCUSS (SSLOFO) for solving the electroencephalogram (EEG) inverse problem. Multiple techniques are combined in a single procedure to robustly reconstruct the underlying source distribution with high spatial resolution. This algorithm uses a recursive process which takes the smooth estimate of sLORETA as initialization and then employs the re-weighted minimum norm introduced by FOCUSS. An important technique called standardization is involved in the recursive process to enhance the localization ability. The algorithm is further improved by automatically adjusting the source space according to the estimate of the previous step, and by the inclusion of temporal information. Simulation studies are carried out on both spherical and realistic head models. The algorithm achieves very good localization ability on noise-free data. It is capable of recovering complex source configurations with arbitrary shapes and can produce high quality images of extended source distributions. We also characterized the performance with noisy data in a realistic head model. An important feature of this algorithm is that the temporal waveforms are clearly reconstructed, even for closely spaced sources. This provides a convenient way to estimate neural dynamics directly from the cortical sources.

  1. Stratway: A Modular Approach to Strategic Conflict Resolution

    NASA Technical Reports Server (NTRS)

    Hagen, George E.; Butler, Ricky W.; Maddalon, Jeffrey M.

    2011-01-01

    In this paper we introduce Stratway, a modular approach to finding long-term strategic resolutions to conflicts between aircraft. The modular approach provides both advantages and disadvantages. Our primary concern is to investigate the implications on the verification of safety-critical properties of a strategic resolution algorithm. By partitioning the problem into verifiable modules much stronger verification claims can be established. Since strategic resolution involves searching for solutions over an enormous state space, Stratway, like most similar algorithms, searches these spaces by applying heuristics, which present especially difficult verification challenges. An advantage of a modular approach is that it makes a clear distinction between the resolution function and the trajectory generation function. This allows the resolution computation to be independent of any particular vehicle. The Stratway algorithm was developed in both Java and C++ and is available through a open source license. Additionally there is a visualization application that is helpful when analyzing and quickly creating conflict scenarios.

  2. PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-06-01

    The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).

  3. A critical review of principal traffic noise models: Strategies and implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Naveen, E-mail: ngarg@mail.nplindia.ernet.in; Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi 110042; Maji, Sagar

    2014-04-01

    The paper presents an exhaustive comparison of principal traffic noise models adopted in recent years in developed nations. The comparison is drawn on the basis of technical attributes including source modelling and sound propagation algorithms. Although the characterization of source in terms of rolling and propulsion noise in conjunction with advanced numerical methods for sound propagation has significantly reduced the uncertainty in traffic noise predictions, the approach followed is quite complex and requires specialized mathematical skills for predictions which is sometimes quite cumbersome for town planners. Also, it is sometimes difficult to follow the best approach when a variety ofmore » solutions have been proposed. This paper critically reviews all these aspects pertaining to the recent models developed and adapted in some countries and also discusses the strategies followed and implications of these models. - Highlights: • Principal traffic noise models developed are reviewed. • Sound propagation algorithms used in traffic noise models are compared. • Implications of models are discussed.« less

  4. Iterative algorithm for joint zero diagonalization with application in blind source separation.

    PubMed

    Zhang, Wei-Tao; Lou, Shun-Tian

    2011-07-01

    A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.

  5. A utility/cost analysis of breast cancer risk prediction algorithms

    NASA Astrophysics Data System (ADS)

    Abbey, Craig K.; Wu, Yirong; Burnside, Elizabeth S.; Wunderlich, Adam; Samuelson, Frank W.; Boone, John M.

    2016-03-01

    Breast cancer risk prediction algorithms are used to identify subpopulations that are at increased risk for developing breast cancer. They can be based on many different sources of data such as demographics, relatives with cancer, gene expression, and various phenotypic features such as breast density. Women who are identified as high risk may undergo a more extensive (and expensive) screening process that includes MRI or ultrasound imaging in addition to the standard full-field digital mammography (FFDM) exam. Given that there are many ways that risk prediction may be accomplished, it is of interest to evaluate them in terms of expected cost, which includes the costs of diagnostic outcomes. In this work we perform an expected-cost analysis of risk prediction algorithms that is based on a published model that includes the costs associated with diagnostic outcomes (true-positive, false-positive, etc.). We assume the existence of a standard screening method and an enhanced screening method with higher scan cost, higher sensitivity, and lower specificity. We then assess expected cost of using a risk prediction algorithm to determine who gets the enhanced screening method under the strong assumption that risk and diagnostic performance are independent. We find that if risk prediction leads to a high enough positive predictive value, it will be cost-effective regardless of the size of the subpopulation. Furthermore, in terms of the hit-rate and false-alarm rate of the of the risk prediction algorithm, iso-cost contours are lines with slope determined by properties of the available diagnostic systems for screening.

  6. Influenza-like illness surveillance on Twitter through automated learning of naïve language.

    PubMed

    Gesualdo, Francesco; Stilo, Giovanni; Agricola, Eleonora; Gonfiantini, Michaela V; Pandolfi, Elisabetta; Velardi, Paola; Tozzi, Alberto E

    2013-01-01

    Twitter has the potential to be a timely and cost-effective source of data for syndromic surveillance. When speaking of an illness, Twitter users often report a combination of symptoms, rather than a suspected or final diagnosis, using naïve, everyday language. We developed a minimally trained algorithm that exploits the abundance of health-related web pages to identify all jargon expressions related to a specific technical term. We then translated an influenza case definition into a Boolean query, each symptom being described by a technical term and all related jargon expressions, as identified by the algorithm. Subsequently, we monitored all tweets that reported a combination of symptoms satisfying the case definition query. In order to geolocalize messages, we defined 3 localization strategies based on codes associated with each tweet. We found a high correlation coefficient between the trend of our influenza-positive tweets and ILI trends identified by US traditional surveillance systems.

  7. Influenza-Like Illness Surveillance on Twitter through Automated Learning of Naïve Language

    PubMed Central

    Gesualdo, Francesco; Stilo, Giovanni; Agricola, Eleonora; Gonfiantini, Michaela V.; Pandolfi, Elisabetta; Velardi, Paola; Tozzi, Alberto E.

    2013-01-01

    Twitter has the potential to be a timely and cost-effective source of data for syndromic surveillance. When speaking of an illness, Twitter users often report a combination of symptoms, rather than a suspected or final diagnosis, using naïve, everyday language. We developed a minimally trained algorithm that exploits the abundance of health-related web pages to identify all jargon expressions related to a specific technical term. We then translated an influenza case definition into a Boolean query, each symptom being described by a technical term and all related jargon expressions, as identified by the algorithm. Subsequently, we monitored all tweets that reported a combination of symptoms satisfying the case definition query. In order to geolocalize messages, we defined 3 localization strategies based on codes associated with each tweet. We found a high correlation coefficient between the trend of our influenza-positive tweets and ILI trends identified by US traditional surveillance systems. PMID:24324799

  8. Feature extraction applied to agricultural crops as seen by LANDSAT

    NASA Technical Reports Server (NTRS)

    Kauth, R. J.; Lambeck, P. F.; Richardson, W.; Thomas, G. S.; Pentland, A. P. (Principal Investigator)

    1979-01-01

    The physical interpretation of the spectral-temporal structure of LANDSAT data can be conveniently described in terms of a graphic descriptive model called the Tassled Cap. This model has been a source of development not only in crop-related feature extraction, but also for data screening and for haze effects correction. Following its qualitative description and an indication of its applications, the model is used to analyze several feature extraction algorithms.

  9. Battlespace Awareness: Heterogeneous Sensor Maps of Large Scale, Complex Environments

    DTIC Science & Technology

    2017-06-13

    reference frames enable a system designer to describe the position of any sensor or platform at any point of time. This section introduces the...analysis to evaluate the quality of reconstructions created by our algorithms. CloudCompare is an open-source tool designed for this purpose [65]. In...structure of the data. The data term seeks to keep the proposed solution (u) similar to the originally observed values ( f ). A systems designer must

  10. Spurious Numerical Solutions Of Differential Equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  11. Hypothesis tests for the detection of constant speed radiation moving sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumazert, Jonathan; Coulon, Romain; Kondrasovs, Vladimir

    2015-07-01

    Radiation Portal Monitors are deployed in linear network to detect radiological material in motion. As a complement to single and multichannel detection algorithms, inefficient under too low signal to noise ratios, temporal correlation algorithms have been introduced. Test hypothesis methods based on empirically estimated mean and variance of the signals delivered by the different channels have shown significant gain in terms of a tradeoff between detection sensitivity and false alarm probability. This paper discloses the concept of a new hypothesis test for temporal correlation detection methods, taking advantage of the Poisson nature of the registered counting signals, and establishes amore » benchmark between this test and its empirical counterpart. The simulation study validates that in the four relevant configurations of a pedestrian source carrier under respectively high and low count rate radioactive background, and a vehicle source carrier under the same respectively high and low count rate radioactive background, the newly introduced hypothesis test ensures a significantly improved compromise between sensitivity and false alarm, while guaranteeing the stability of its optimization parameter regardless of signal to noise ratio variations between 2 to 0.8. (authors)« less

  12. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  13. Updates on the development of Deep Blue aerosol algorithm for constructing consistent long-term data records from MODIS to VIIRS

    NASA Astrophysics Data System (ADS)

    Hsu, N. Y. C.; Sayer, A. M.; Lee, J.; Kim, W. V.

    2017-12-01

    The impacts of natural and anthropogenic sources of air pollution on climate and human health have continued to gain attention from the scientific community. In order to facilitate these effects, high quality consistent long-term global aerosol data records from satellites are essential. Several EOS-era instruments (e.g., SeaWiFS, MODIS, and MISR) are able to provide such information with a high degree of fidelity. However, with the aging MODIS sensors and the launch of the VIIRS instrument on Suomi NPP in late 2011, the continuation of long-term aerosol data records suitable for climate studies from MODIS to VIIRS is needed urgently. Recently, we have successfully modified our MODIS Deep Blue algorithm to process the VIIRS data. Extensive works were performed in refining the surface reflectance determination scheme to account for the wavelength differences between MODIS and VIIRS. Better aerosol models (including non-spherical dust) are also now implemented in our VIIRS algorithm compared to the MODIS C6 algorithm. We will show the global (land and ocean) distributions of various aerosol products from Version 1 of the VIIRS Deep Blue data set. The preliminary validation results of these new VIIRS Deep Blue aerosol products using data from AERONET sunphotometers over land and ocean will be discussed. We will also compare the monthly averaged Deep Blue aerosol optical depth (AOD) from VIIRS with the MODIS C6 products to investigate if any systematic biases may exist between MODIS C6 and VIIRS AOD. The Version 1 VIIRS Deep Blue aerosol products are currently scheduled to be released to the public in 2018.

  14. An almost-parameter-free harmony search algorithm for groundwater pollution source identification.

    PubMed

    Jiang, Simin; Zhang, Yali; Wang, Pei; Zheng, Maohui

    2013-01-01

    The spatiotemporal characterization of unknown sources of groundwater pollution is frequently encountered in environmental problems. This study adopts a simulation-optimization approach that combines a contaminant transport simulation model with a heuristic harmony search algorithm to identify unknown pollution sources. In the proposed methodology, an almost-parameter-free harmony search algorithm is developed. The performance of this methodology is evaluated on an illustrative groundwater pollution source identification problem, and the identified results indicate that the proposed almost-parameter-free harmony search algorithm-based optimization model can give satisfactory estimations, even when the irregular geometry, erroneous monitoring data, and prior information shortage of potential locations are considered.

  15. Gravitational waves from rotating and precessing rigid bodies. 2: General solutions and computationally useful formulae

    NASA Technical Reports Server (NTRS)

    Zimmerman, M.

    1979-01-01

    The classical mechanics results for free precession which are needed in order to calculate the weak field, slow-motion, quadrupole-moment gravitational waves are reviewed. Within that formalism, algorithms are given for computing the exact gravitational power radiated and waveforms produced by arbitrary rigid-body freely-precessing sources. The dominant terms are presented in series expansions of the waveforms for the case of an almost spherical object precessing with a small wobble angle. These series expansions, which retain the precise frequency dependence of the waves, may be useful for gravitational astronomers when freely-precessing sources begin to be observed.

  16. Pose and motion recovery from feature correspondences and a digital terrain map.

    PubMed

    Lerner, Ronen; Rivlin, Ehud; Rotstein, Héctor P

    2006-09-01

    A novel algorithm for pose and motion estimation using corresponding features and a Digital Terrain Map is proposed. Using a Digital Terrain (or Digital Elevation) Map (DTM/DEM) as a global reference enables the elimination of the ambiguity present in vision-based algorithms for motion recovery. As a consequence, the absolute position and orientation of a camera can be recovered with respect to the external reference frame. In order to do this, the DTM is used to formulate a constraint between corresponding features in two consecutive frames. Explicit reconstruction of the 3D world is not required. When considering a number of feature points, the resulting constraints can be solved using nonlinear optimization in terms of position, orientation, and motion. Such a procedure requires an initial guess of these parameters, which can be obtained from dead-reckoning or any other source. The feasibility of the algorithm is established through extensive experimentation. Performance is compared with a state-of-the-art alternative algorithm, which intermediately reconstructs the 3D structure and then registers it to the DTM. A clear advantage for the novel algorithm is demonstrated in variety of scenarios.

  17. Gauß and beyond: the making of Easter algorithms

    NASA Astrophysics Data System (ADS)

    Bien, Reinhold

    2004-07-01

    It is amazing to see how many webpages are devoted to the art of finding the date of Easter Sunday. Just for illustration, the reader may search for terms such as Gregorian calendar, date of Easter, or Easter algorithm. Sophisticated essays as well as less enlightening contributions are presented, and many a doubt is expressed about the reliability of some results obtained with some Easter algorithms. In short, there is still a great interest in those problems. Gregorian Easter algorithms exist for two centuries (or more?), but most of their history is rather obscure. Some reasons may be that some important sources are written in Latin or in the German of Goethe's time, or they are difficult to discover. Without being complete, the following paper is intended to shed light on how those techniques emerged and evolved. Like a microcosm, the history of Easter algorithms resembles the history of any science: it is a story of trials, errors, and successes, and, last but not least, a story of offended pride. A number of articles, published before 1910, are cited in: A. Fraenkel, Die Berechnung des Osterfestes. Journal für die reine und angewandte Mathematik, Volume 138 (1910), 133-146.

  18. Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks.

    PubMed

    Lin, Na; Chen, Hanning; Jing, Shikai; Liu, Fang; Liang, Xiaodan

    2017-03-01

    In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS 2 Os, which extend the single population particle swarm optimization (PSO) algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS 2 O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS 2 O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm's performance. Then PS 2 O is used for solving the radio frequency identification (RFID) network planning (RNP) problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.

  19. Finite time convergent learning law for continuous neural networks.

    PubMed

    Chairez, Isaac

    2014-02-01

    This paper addresses the design of a discontinuous finite time convergent learning law for neural networks with continuous dynamics. The neural network was used here to obtain a non-parametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties was the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on discontinuous algorithms was used to adjust the weights of the neural network. The adaptive algorithm was derived by means of a non-standard Lyapunov function that is lower semi-continuous and differentiable in almost the whole space. A compensator term was included in the identifier to reject some specific perturbations using a nonlinear robust algorithm. Two numerical examples demonstrated the improvements achieved by the learning algorithm introduced in this paper compared to classical schemes with continuous learning methods. The first one dealt with a benchmark problem used in the paper to explain how the discontinuous learning law works. The second one used the methane production model to show the benefits in engineering applications of the learning law proposed in this paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments

    NASA Astrophysics Data System (ADS)

    Stafsudd, J. Z.; Asgari, S.; Hudson, R.; Yao, K.; Taciroglu, E.

    2008-04-01

    We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers). Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.

  1. Ant Lion Optimization algorithm for kidney exchanges.

    PubMed

    Hamouda, Eslam; El-Metwally, Sara; Tarek, Mayada

    2018-01-01

    The kidney exchange programs bring new insights in the field of organ transplantation. They make the previously not allowed surgery of incompatible patient-donor pairs easier to be performed on a large scale. Mathematically, the kidney exchange is an optimization problem for the number of possible exchanges among the incompatible pairs in a given pool. Also, the optimization modeling should consider the expected quality-adjusted life of transplant candidates and the shortage of computational and operational hospital resources. In this article, we introduce a bio-inspired stochastic-based Ant Lion Optimization, ALO, algorithm to the kidney exchange space to maximize the number of feasible cycles and chains among the pool pairs. Ant Lion Optimizer-based program achieves comparable kidney exchange results to the deterministic-based approaches like integer programming. Also, ALO outperforms other stochastic-based methods such as Genetic Algorithm in terms of the efficient usage of computational resources and the quantity of resulting exchanges. Ant Lion Optimization algorithm can be adopted easily for on-line exchanges and the integration of weights for hard-to-match patients, which will improve the future decisions of kidney exchange programs. A reference implementation for ALO algorithm for kidney exchanges is written in MATLAB and is GPL licensed. It is available as free open-source software from: https://github.com/SaraEl-Metwally/ALO_algorithm_for_Kidney_Exchanges.

  2. Study of efficient video compression algorithms for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Poo, Z.

    1975-01-01

    Results are presented of a study on video data compression techniques applicable to space flight communication. This study is directed towards monochrome (black and white) picture communication with special emphasis on feasibility of hardware implementation. The primary factors for such a communication system in space flight application are: picture quality, system reliability, power comsumption, and hardware weight. In terms of hardware implementation, these are directly related to hardware complexity, effectiveness of the hardware algorithm, immunity of the source code to channel noise, and data transmission rate (or transmission bandwidth). A system is recommended, and its hardware requirement summarized. Simulations of the study were performed on the improved LIM video controller which is computer-controlled by the META-4 CPU.

  3. A shock capturing technique for hypersonic, chemically relaxing flows

    NASA Technical Reports Server (NTRS)

    Eberhardt, S.; Brown, K.

    1986-01-01

    A fully coupled, shock capturing technique is presented for chemically reacting flows at high Mach numbers. The technique makes use of a total variation diminishing (TVD) dissipation operator which results in sharp, crisp shocks. The eigenvalues and eigenvectors of the fully coupled system, which includes species conversion equations in addition to the gas dynamics equations, are analytically derived for a general reacting gas. Species production terms for a model dissociating gas are introduced and are included in the algorithm. The convective terms are solved using a first-order TVD scheme while the source terms are solved using a fourth-order Runge-Kutta scheme to enhance stability. Results from one-dimensional numerical experiments are shown for a two species and a three species gas.

  4. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.

    PubMed

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-03-28

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

  5. Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery.

    PubMed

    Hashemi, SayedMasoud; Song, William Y; Sahgal, Arjun; Lee, Young; Huynh, Christopher; Grouza, Vladimir; Nordström, Håkan; Eriksson, Markus; Dorenlot, Antoine; Régis, Jean Marie; Mainprize, James G; Ruschin, Mark

    2017-04-07

    One of the limiting factors in cone-beam CT (CBCT) image quality is system blur, caused by detector response, x-ray source focal spot size, azimuthal blurring, and reconstruction algorithm. In this work, we develop a novel iterative reconstruction algorithm that improves spatial resolution by explicitly accounting for image unsharpness caused by different factors in the reconstruction formulation. While the model-based iterative reconstruction techniques use prior information about the detector response and x-ray source, our proposed technique uses a simple measurable blurring model. In our reconstruction algorithm, denoted as simultaneous deblurring and iterative reconstruction (SDIR), the blur kernel can be estimated using the modulation transfer function (MTF) slice of the CatPhan phantom or any other MTF phantom, such as wire phantoms. The proposed image reconstruction formulation includes two regularization terms: (1) total variation (TV) and (2) nonlocal regularization, solved with a split Bregman augmented Lagrangian iterative method. The SDIR formulation preserves edges, eases the parameter adjustments to achieve both high spatial resolution and low noise variances, and reduces the staircase effect caused by regular TV-penalized iterative algorithms. The proposed algorithm is optimized for a point-of-care head CBCT unit for image-guided radiosurgery and is tested with CatPhan phantom, an anthropomorphic head phantom, and 6 clinical brain stereotactic radiosurgery cases. Our experiments indicate that SDIR outperforms the conventional filtered back projection and TV penalized simultaneous algebraic reconstruction technique methods (represented by adaptive steepest-descent POCS algorithm, ASD-POCS) in terms of MTF and line pair resolution, and retains the favorable properties of the standard TV-based iterative reconstruction algorithms in improving the contrast and reducing the reconstruction artifacts. It improves the visibility of the high contrast details in bony areas and the brain soft-tissue. For example, the results show the ventricles and some brain folds become visible in SDIR reconstructed images and the contrast of the visible lesions is effectively improved. The line-pair resolution was improved from 12 line-pair/cm in FBP to 14 line-pair/cm in SDIR. Adjusting the parameters of the ASD-POCS to achieve 14 line-pair/cm caused the noise variance to be higher than the SDIR. Using these parameters for ASD-POCS, the MTF of FBP and ASD-POCS were very close and equal to 0.7 mm -1 which was increased to 1.2 mm -1 by SDIR, at half maximum.

  6. Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery

    NASA Astrophysics Data System (ADS)

    Hashemi, SayedMasoud; Song, William Y.; Sahgal, Arjun; Lee, Young; Huynh, Christopher; Grouza, Vladimir; Nordström, Håkan; Eriksson, Markus; Dorenlot, Antoine; Régis, Jean Marie; Mainprize, James G.; Ruschin, Mark

    2017-04-01

    One of the limiting factors in cone-beam CT (CBCT) image quality is system blur, caused by detector response, x-ray source focal spot size, azimuthal blurring, and reconstruction algorithm. In this work, we develop a novel iterative reconstruction algorithm that improves spatial resolution by explicitly accounting for image unsharpness caused by different factors in the reconstruction formulation. While the model-based iterative reconstruction techniques use prior information about the detector response and x-ray source, our proposed technique uses a simple measurable blurring model. In our reconstruction algorithm, denoted as simultaneous deblurring and iterative reconstruction (SDIR), the blur kernel can be estimated using the modulation transfer function (MTF) slice of the CatPhan phantom or any other MTF phantom, such as wire phantoms. The proposed image reconstruction formulation includes two regularization terms: (1) total variation (TV) and (2) nonlocal regularization, solved with a split Bregman augmented Lagrangian iterative method. The SDIR formulation preserves edges, eases the parameter adjustments to achieve both high spatial resolution and low noise variances, and reduces the staircase effect caused by regular TV-penalized iterative algorithms. The proposed algorithm is optimized for a point-of-care head CBCT unit for image-guided radiosurgery and is tested with CatPhan phantom, an anthropomorphic head phantom, and 6 clinical brain stereotactic radiosurgery cases. Our experiments indicate that SDIR outperforms the conventional filtered back projection and TV penalized simultaneous algebraic reconstruction technique methods (represented by adaptive steepest-descent POCS algorithm, ASD-POCS) in terms of MTF and line pair resolution, and retains the favorable properties of the standard TV-based iterative reconstruction algorithms in improving the contrast and reducing the reconstruction artifacts. It improves the visibility of the high contrast details in bony areas and the brain soft-tissue. For example, the results show the ventricles and some brain folds become visible in SDIR reconstructed images and the contrast of the visible lesions is effectively improved. The line-pair resolution was improved from 12 line-pair/cm in FBP to 14 line-pair/cm in SDIR. Adjusting the parameters of the ASD-POCS to achieve 14 line-pair/cm caused the noise variance to be higher than the SDIR. Using these parameters for ASD-POCS, the MTF of FBP and ASD-POCS were very close and equal to 0.7 mm-1 which was increased to 1.2 mm-1 by SDIR, at half maximum.

  7. Multiagency Urban Search Experiment Detector and Algorithm Test Bed

    NASA Astrophysics Data System (ADS)

    Nicholson, Andrew D.; Garishvili, Irakli; Peplow, Douglas E.; Archer, Daniel E.; Ray, William R.; Swinney, Mathew W.; Willis, Michael J.; Davidson, Gregory G.; Cleveland, Steven L.; Patton, Bruce W.; Hornback, Donald E.; Peltz, James J.; McLean, M. S. Lance; Plionis, Alexander A.; Quiter, Brian J.; Bandstra, Mark S.

    2017-07-01

    In order to provide benchmark data sets for radiation detector and algorithm development, a particle transport test bed has been created using experimental data as model input and validation. A detailed radiation measurement campaign at the Combined Arms Collective Training Facility in Fort Indiantown Gap, PA (FTIG), USA, provides sample background radiation levels for a variety of materials present at the site (including cinder block, gravel, asphalt, and soil) using long dwell high-purity germanium (HPGe) measurements. In addition, detailed light detection and ranging data and ground-truth measurements inform model geometry. This paper describes the collected data and the application of these data to create background and injected source synthetic data for an arbitrary gamma-ray detection system using particle transport model detector response calculations and statistical sampling. In the methodology presented here, HPGe measurements inform model source terms while detector response calculations are validated via long dwell measurements using 2"×4"×16" NaI(Tl) detectors at a variety of measurement points. A collection of responses, along with sampling methods and interpolation, can be used to create data sets to gauge radiation detector and algorithm (including detection, identification, and localization) performance under a variety of scenarios. Data collected at the FTIG site are available for query, filtering, visualization, and download at muse.lbl.gov.

  8. Neon reduction program on Cymer ArF light sources

    NASA Astrophysics Data System (ADS)

    Kanawade, Dinesh; Roman, Yzzer; Cacouris, Ted; Thornes, Josh; O'Brien, Kevin

    2016-03-01

    In response to significant neon supply constraints, Cymer has responded with a multi-part plan to support its customers. Cymer's primary objective is to ensure that reliable system performance is maintained while minimizing gas consumption. Gas algorithms were optimized to ensure stable performance across all operating conditions. The Cymer neon support plan contains four elements: 1. Gas reduction program to reduce neon by >50% while maintaining existing performance levels and availability; 2. short-term containment solutions for immediate relief. 3. qualification of additional gas suppliers; and 4. long-term recycling/reclaim opportunity. The Cymer neon reduction program has shown excellent results as demonstrated through the comparison on standard gas use versus the new >50% reduced neon performance for ArF immersion light sources. Testing included stressful conditions such as repetition rate, duty cycle and energy target changes. No performance degradation has been observed over typical gas lives.

  9. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach

    PubMed Central

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A.; Zhang, Wenbo

    2016-01-01

    Objective Combined source imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a non-invasive fashion. Source imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source imaging algorithms to both find the network nodes (regions of interest) and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Methods Source imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from inter-ictal and ictal signals recorded by EEG and/or MEG. Results Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ~20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Conclusion Our study indicates that combined source imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). Significance The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions. PMID:27740473

  10. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach.

    PubMed

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A; Zhang, Wenbo; He, Bin

    2016-12-01

    Combined source-imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a noninvasive fashion. Source-imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source-imaging algorithms to both find the network nodes [regions of interest (ROI)] and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses, and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Source-imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from interictal and ictal signals recorded by EEG and/or Magnetoencephalography (MEG). Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ∼20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Our study indicates that combined source-imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions.

  11. Development, Evaluation, and Application of a Primary Aerosol Model.

    PubMed

    Wang, I T; Chico, T; Huang, Y H; Farber, R J

    1999-09-01

    The Segmented-Plume Primary Aerosol Model (SPPAM) has been developed over the past several years. The earlier model development goals were simply to generalize the widely used Industrial Source Complex Short-Term (ISCST) model to simulate plume transport and dispersion under light wind conditions and to handle a large number of roadway or line sources. The goals have been expanded to include development of improved algorithm for effective plume transport velocity, more accurate and efficient line and area source dispersion algorithms, and recently, a more realistic and computationally efficient algorithm for plume depletion due to particle dry deposition. A performance evaluation of the SPPAM has been carried out using the 1983 PNL dual tracer experimental data. The results show the model predictions to be in good agreement with observations in both plume advection-dispersion and particulate matter (PM) depletion by dry deposition. For PM 2.5 impact analysis, the SPPAM has been applied to the Rubidoux area of California. Emission sources included in the modeling analysis are: paved road dust, diesel vehicular exhaust, gasoline vehicular exhaust, and tire wear particles from a large number of roadways in Rubidoux and surrounding areas. For the selected modeling periods, the predicted primary PM 2.5 to primary PM10 concentration ratios for the Rubidoux sampling station are in the range of 0.39-0.46. The organic fractions of the primary PM 2.5 impacts are estimated to be at least 34-41%. Detailed modeling results indicate that the relatively high organic fractions are primarily due to the proximity of heavily traveled roadways north of the sampling station. The predictions are influenced by a number of factors; principal among them are the receptor locations relative to major roadways, the volume and composition of traffic on these roadways, and the prevailing meteorological conditions.

  12. Development of an upwind, finite-volume code with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Molvik, Gregory A.

    1995-01-01

    Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques and of a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data. This report summarizes the research that took place from August 1,1994 to January 1, 1995.

  13. A gossip based information fusion protocol for distributed frequent itemset mining

    NASA Astrophysics Data System (ADS)

    Sohrabi, Mohammad Karim

    2018-07-01

    The computational complexity, huge memory space requirement, and time-consuming nature of frequent pattern mining process are the most important motivations for distribution and parallelization of this mining process. On the other hand, the emergence of distributed computational and operational environments, which causes the production and maintenance of data on different distributed data sources, makes the parallelization and distribution of the knowledge discovery process inevitable. In this paper, a gossip based distributed itemset mining (GDIM) algorithm is proposed to extract frequent itemsets, which are special types of frequent patterns, in a wireless sensor network environment. In this algorithm, local frequent itemsets of each sensor are extracted using a bit-wise horizontal approach (LHPM) from the nodes which are clustered using a leach-based protocol. Heads of clusters exploit a gossip based protocol in order to communicate each other to find the patterns which their global support is equal to or more than the specified support threshold. Experimental results show that the proposed algorithm outperforms the best existing gossip based algorithm in term of execution time.

  14. Far-field DOA estimation and source localization for different scenarios in a distributed sensor network

    NASA Astrophysics Data System (ADS)

    Asgari, Shadnaz

    Recent developments in the integrated circuits and wireless communications not only open up many possibilities but also introduce challenging issues for the collaborative processing of signals for source localization and beamforming in an energy-constrained distributed sensor network. In signal processing, various sensor array processing algorithms and concepts have been adopted, but must be further tailored to match the communication and computational constraints. Sometimes the constraints are such that none of the existing algorithms would be an efficient option for the defined problem and as the result; the necessity of developing a new algorithm becomes undeniable. In this dissertation, we present the theoretical and the practical issues of Direction-Of-Arrival (DOA) estimation and source localization using the Approximate-Maximum-Likelihood (AML) algorithm for different scenarios. We first investigate a robust algorithm design for coherent source DOA estimation in a limited reverberant environment. Then, we provide a least-square (LS) solution for source localization based on our newly proposed virtual array model. In another scenario, we consider the determination of the location of a disturbance source which emits both wideband acoustic and seismic signals. We devise an enhanced AML algorithm to process the data collected at the acoustic sensors. For processing the seismic signals, two distinct algorithms are investigated to determine the DOAs. Then, we consider a basic algorithm for fusion of the results yielded by the acoustic and seismic arrays. We also investigate the theoretical and practical issues of DOA estimation in a three-dimensional (3D) scenario. We show that the performance of the proposed 3D AML algorithm converges to the Cramer-Rao Bound. We use the concept of an isotropic array to reduce the complexity of the proposed algorithm by advocating a decoupled 3D version. We also explore a modified version of the decoupled 3D AML algorithm which can be used for DOA estimation with non-isotropic arrays. In this dissertation, for each scenario, efficient numerical implementations of the corresponding AML algorithm are derived and applied into a real-time sensor network testbed. Extensive simulations as well as experimental results are presented to verify the effectiveness of the proposed algorithms.

  15. The Day-1 GPM Combined Precipitation Algorithm: IMERG

    NASA Astrophysics Data System (ADS)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2012-12-01

    The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) algorithm will provide the at-launch combined-sensor precipitation dataset being produced by the U.S. GPM Science Team. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in three current U.S. algorithms: - the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; - the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and - the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures, and filters out some non-raining cold clouds. The goal is to provide a long-term, fine-scale record of global precipitation from the entire constellation of precipitation-relevant satellite sensors, with input from surface precipitation gauges. The record will begin January 1998 at the start of the Tropical Rainfall Measuring Mission (TRMM) and extend as GPM records additional data. Although homogeneity is considered desirable, the use of diverse and evolving data sources works against the strict long-term homogeneity that characterizes a Climate Data Record (CDR). This talk will briefly review the design requirements for IMERG, including multiple runs at different latencies (most likely around 4 hours, 12 hours, and 2 months after observation time), various intermediate data fields as part of the IMERG data file, and the plans to bring up IMERG with calibration by TRMM initially, transitioning to GPM when its individual-sensor precipitation algorithms are fully functional. Then we will present some early examples of IMERG data products and compare them with existing products to illustrate how the design of IMERG affects the overall performance of the algorithm.

  16. Effect of anisoplanatism on the measurement accuracy of an extended-source Hartmann-Shack wavefront sensor

    NASA Astrophysics Data System (ADS)

    Woeger, Friedrich; Rimmele, Thomas

    2009-10-01

    We analyze the effect of anisoplanatic atmospheric turbulence on the measurement accuracy of an extended-source Hartmann-Shack wavefront sensor (HSWFS). We have numerically simulated an extended-source HSWFS, using a scenery of the solar surface that is imaged through anisoplanatic atmospheric turbulence and imaging optics. Solar extended-source HSWFSs often use cross-correlation algorithms in combination with subpixel shift finding algorithms to estimate the wavefront gradient, two of which were tested for their effect on the measurement accuracy. We find that the measurement error of an extended-source HSWFS is governed mainly by the optical geometry of the HSWFS, employed subpixel finding algorithm, and phase anisoplanatism. Our results show that effects of scintillation anisoplanatism are negligible when cross-correlation algorithms are used.

  17. Optimal Doppler centroid estimation for SAR data from a quasi-homogeneous source

    NASA Technical Reports Server (NTRS)

    Jin, M. Y.

    1986-01-01

    This correspondence briefly describes two Doppler centroid estimation (DCE) algorithms, provides a performance summary for these algorithms, and presents the experimental results. These algorithms include that of Li et al. (1985) and a newly developed one that is optimized for quasi-homogeneous sources. The performance enhancement achieved by the optimal DCE algorithm is clearly demonstrated by the experimental results.

  18. The optimal algorithm for Multi-source RS image fusion.

    PubMed

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  19. Joint source-channel coding for motion-compensated DCT-based SNR scalable video.

    PubMed

    Kondi, Lisimachos P; Ishtiaq, Faisal; Katsaggelos, Aggelos K

    2002-01-01

    In this paper, we develop an approach toward joint source-channel coding for motion-compensated DCT-based scalable video coding and transmission. A framework for the optimal selection of the source and channel coding rates over all scalable layers is presented such that the overall distortion is minimized. The algorithm utilizes universal rate distortion characteristics which are obtained experimentally and show the sensitivity of the source encoder and decoder to channel errors. The proposed algorithm allocates the available bit rate between scalable layers and, within each layer, between source and channel coding. We present the results of this rate allocation algorithm for video transmission over a wireless channel using the H.263 Version 2 signal-to-noise ratio (SNR) scalable codec for source coding and rate-compatible punctured convolutional (RCPC) codes for channel coding. We discuss the performance of the algorithm with respect to the channel conditions, coding methodologies, layer rates, and number of layers.

  20. Short-term volcano-tectonic earthquake forecasts based on a moving mean recurrence time algorithm: the El Hierro seismo-volcanic crisis experience

    NASA Astrophysics Data System (ADS)

    García, Alicia; De la Cruz-Reyna, Servando; Marrero, José M.; Ortiz, Ramón

    2016-05-01

    Under certain conditions, volcano-tectonic (VT) earthquakes may pose significant hazards to people living in or near active volcanic regions, especially on volcanic islands; however, hazard arising from VT activity caused by localized volcanic sources is rarely addressed in the literature. The evolution of VT earthquakes resulting from a magmatic intrusion shows some orderly behaviour that may allow the occurrence and magnitude of major events to be forecast. Thus governmental decision makers can be supplied with warnings of the increased probability of larger-magnitude earthquakes on the short-term timescale. We present here a methodology for forecasting the occurrence of large-magnitude VT events during volcanic crises; it is based on a mean recurrence time (MRT) algorithm that translates the Gutenberg-Richter distribution parameter fluctuations into time windows of increased probability of a major VT earthquake. The MRT forecasting algorithm was developed after observing a repetitive pattern in the seismic swarm episodes occurring between July and November 2011 at El Hierro (Canary Islands). From then on, this methodology has been applied to the consecutive seismic crises registered at El Hierro, achieving a high success rate in the real-time forecasting, within 10-day time windows, of volcano-tectonic earthquakes.

  1. An experimental comparison of various methods of nearfield acoustic holography

    DOE PAGES

    Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.

    2017-05-19

    An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less

  2. An experimental comparison of various methods of nearfield acoustic holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.

    An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less

  3. Algorithm and program for information processing with the filin apparatus

    NASA Technical Reports Server (NTRS)

    Gurin, L. S.; Morkrov, V. S.; Moskalenko, Y. I.; Tsoy, K. A.

    1979-01-01

    The reduction of spectral radiation data from space sources is described. The algorithm and program for identifying segments of information obtained from the Film telescope-spectrometer on the Salyut-4 are presented. The information segments represent suspected X-ray sources. The proposed algorithm is an algorithm of the lowest level. Following evaluation, information free of uninformative segments is subject to further processing with algorithms of a higher level. The language used is FORTRAN 4.

  4. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    PubMed

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Design and realization of disaster assessment algorithm after forest fire

    NASA Astrophysics Data System (ADS)

    Xu, Aijun; Wang, Danfeng; Tang, Lihua

    2008-10-01

    Based on GIS technology, this paper mainly focuses on the application of disaster assessment algorithm after forest fire and studies on the design and realization of disaster assessment based on GIS. After forest fire through the analysis and processing of multi-sources and heterogeneous data, this paper integrates the foundation that the domestic and foreign scholars laid of the research on assessment for forest fire loss with the related knowledge of assessment, accounting and forest resources appraisal so as to study and approach the theory framework and assessment index of the research on assessment for forest fire loss. The technologies of extracting boundary, overlay analysis, and division processing of multi-sources spatial data are available to realize the application of the investigation method of the burnt forest area and the computation of the fire area. The assessment provides evidence for fire cleaning in burnt areas and new policy making on restoration in terms of the direct and the indirect economic loss and ecological and environmental damage caused by forest fire under the condition of different fire danger classes and different amounts of forest accumulation, thus makes forest resources protection operated in a faster, more efficient and more economical way. Finally, this paper takes Lin'an city of Zhejiang province as a test area to confirm the method mentioned in the paper in terms of key technologies.

  6. Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems

    PubMed Central

    Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao

    2016-01-01

    In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm. PMID:26985896

  7. Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems.

    PubMed

    Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao

    2016-03-12

    In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm.

  8. The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0

    NASA Technical Reports Server (NTRS)

    Gupta, Shashi K.; Kratz, David P.; Stackhouse, Paul W., Jr.; Wilber, Anne C.

    2001-01-01

    An efficient algorithm was developed during the late 1980's and early 1990's by W. F. Staylor at NASA/LaRC for the purpose of deriving shortwave surface radiation budget parameters on a global scale. While the algorithm produced results in good agreement with observations, the lack of proper documentation resulted in a weak acceptance by the science community. The primary purpose of this report is to develop detailed documentation of the algorithm. In the process, the algorithm was modified whenever discrepancies were found between the algorithm and its referenced literature sources. In some instances, assumptions made in the algorithm could not be justified and were replaced with those that were justifiable. The algorithm uses satellite and operational meteorological data for inputs. Most of the original data sources have been replaced by more recent, higher quality data sources, and fluxes are now computed on a higher spatial resolution. Many more changes to the basic radiation scheme and meteorological inputs have been proposed to improve the algorithm and make the product more useful for new research projects. Because of the many changes already in place and more planned for the future, the algorithm has been renamed the Langley Parameterized Shortwave Algorithm (LPSA).

  9. A UMLS-based spell checker for natural language processing in vaccine safety.

    PubMed

    Tolentino, Herman D; Matters, Michael D; Walop, Wikke; Law, Barbara; Tong, Wesley; Liu, Fang; Fontelo, Paul; Kohl, Katrin; Payne, Daniel C

    2007-02-12

    The Institute of Medicine has identified patient safety as a key goal for health care in the United States. Detecting vaccine adverse events is an important public health activity that contributes to patient safety. Reports about adverse events following immunization (AEFI) from surveillance systems contain free-text components that can be analyzed using natural language processing. To extract Unified Medical Language System (UMLS) concepts from free text and classify AEFI reports based on concepts they contain, we first needed to clean the text by expanding abbreviations and shortcuts and correcting spelling errors. Our objective in this paper was to create a UMLS-based spelling error correction tool as a first step in the natural language processing (NLP) pipeline for AEFI reports. We developed spell checking algorithms using open source tools. We used de-identified AEFI surveillance reports to create free-text data sets for analysis. After expansion of abbreviated clinical terms and shortcuts, we performed spelling correction in four steps: (1) error detection, (2) word list generation, (3) word list disambiguation and (4) error correction. We then measured the performance of the resulting spell checker by comparing it to manual correction. We used 12,056 words to train the spell checker and tested its performance on 8,131 words. During testing, sensitivity, specificity, and positive predictive value (PPV) for the spell checker were 74% (95% CI: 74-75), 100% (95% CI: 100-100), and 47% (95% CI: 46%-48%), respectively. We created a prototype spell checker that can be used to process AEFI reports. We used the UMLS Specialist Lexicon as the primary source of dictionary terms and the WordNet lexicon as a secondary source. We used the UMLS as a domain-specific source of dictionary terms to compare potentially misspelled words in the corpus. The prototype sensitivity was comparable to currently available tools, but the specificity was much superior. The slow processing speed may be improved by trimming it down to the most useful component algorithms. Other investigators may find the methods we developed useful for cleaning text using lexicons specific to their area of interest.

  10. A UMLS-based spell checker for natural language processing in vaccine safety

    PubMed Central

    Tolentino, Herman D; Matters, Michael D; Walop, Wikke; Law, Barbara; Tong, Wesley; Liu, Fang; Fontelo, Paul; Kohl, Katrin; Payne, Daniel C

    2007-01-01

    Background The Institute of Medicine has identified patient safety as a key goal for health care in the United States. Detecting vaccine adverse events is an important public health activity that contributes to patient safety. Reports about adverse events following immunization (AEFI) from surveillance systems contain free-text components that can be analyzed using natural language processing. To extract Unified Medical Language System (UMLS) concepts from free text and classify AEFI reports based on concepts they contain, we first needed to clean the text by expanding abbreviations and shortcuts and correcting spelling errors. Our objective in this paper was to create a UMLS-based spelling error correction tool as a first step in the natural language processing (NLP) pipeline for AEFI reports. Methods We developed spell checking algorithms using open source tools. We used de-identified AEFI surveillance reports to create free-text data sets for analysis. After expansion of abbreviated clinical terms and shortcuts, we performed spelling correction in four steps: (1) error detection, (2) word list generation, (3) word list disambiguation and (4) error correction. We then measured the performance of the resulting spell checker by comparing it to manual correction. Results We used 12,056 words to train the spell checker and tested its performance on 8,131 words. During testing, sensitivity, specificity, and positive predictive value (PPV) for the spell checker were 74% (95% CI: 74–75), 100% (95% CI: 100–100), and 47% (95% CI: 46%–48%), respectively. Conclusion We created a prototype spell checker that can be used to process AEFI reports. We used the UMLS Specialist Lexicon as the primary source of dictionary terms and the WordNet lexicon as a secondary source. We used the UMLS as a domain-specific source of dictionary terms to compare potentially misspelled words in the corpus. The prototype sensitivity was comparable to currently available tools, but the specificity was much superior. The slow processing speed may be improved by trimming it down to the most useful component algorithms. Other investigators may find the methods we developed useful for cleaning text using lexicons specific to their area of interest. PMID:17295907

  11. Uncertainty principles for inverse source problems for electromagnetic and elastic waves

    NASA Astrophysics Data System (ADS)

    Griesmaier, Roland; Sylvester, John

    2018-06-01

    In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.

  12. The circadian profile of epilepsy improves seizure forecasting.

    PubMed

    Karoly, Philippa J; Ung, Hoameng; Grayden, David B; Kuhlmann, Levin; Leyde, Kent; Cook, Mark J; Freestone, Dean R

    2017-08-01

    It is now established that epilepsy is characterized by periodic dynamics that increase seizure likelihood at certain times of day, and which are highly patient-specific. However, these dynamics are not typically incorporated into seizure prediction algorithms due to the difficulty of estimating patient-specific rhythms from relatively short-term or unreliable data sources. This work outlines a novel framework to develop and assess seizure forecasts, and demonstrates that the predictive power of forecasting models is improved by circadian information. The analyses used long-term, continuous electrocorticography from nine subjects, recorded for an average of 320 days each. We used a large amount of out-of-sample data (a total of 900 days for algorithm training, and 2879 days for testing), enabling the most extensive post hoc investigation into seizure forecasting. We compared the results of an electrocorticography-based logistic regression model, a circadian probability, and a combined electrocorticography and circadian model. For all subjects, clinically relevant seizure prediction results were significant, and the addition of circadian information (combined model) maximized performance across a range of outcome measures. These results represent a proof-of-concept for implementing a circadian forecasting framework, and provide insight into new approaches for improving seizure prediction algorithms. The circadian framework adds very little computational complexity to existing prediction algorithms, and can be implemented using current-generation implant devices, or even non-invasively via surface electrodes using a wearable application. The ability to improve seizure prediction algorithms through straightforward, patient-specific modifications provides promise for increased quality of life and improved safety for patients with epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Using Physical Models to Explain a Division Algorithm.

    ERIC Educational Resources Information Center

    Vest, Floyd

    1985-01-01

    Develops a division algorithm in terms of familiar manipulations of concrete objects and presents it with a series of questions for diagnosis of students' understanding of the algorithm in terms of the concrete model utilized. Also offers general guidelines for using concrete illustrations to explain algorithms and other mathematical principles.…

  14. User's guide for RAM. Volume II. Data preparation and listings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, D.B.; Novak, J.H.

    1978-11-01

    The information presented in this user's guide is directed to air pollution scientists having an interest in applying air quality simulation models. RAM is a method of estimating short-term dispersion using the Gaussian steady-state model. These algorithms can be used for estimating air quality concentrations of relatively nonreactive pollutants for averaging times from an hour to a day from point and area sources. The algorithms are applicable for locations with level or gently rolling terrain where a single wind vector for each hour is a good approximation to the flow over the source area considered. Calculations are performed for eachmore » hour. Hourly meteorological data required are wind direction, wind speed, temperature, stability class, and mixing height. Emission information required of point sources consists of source coordinates, emission rate, physical height, stack diameter, stack gas exit velocity, and stack gas temperature. Emission information required of area sources consists of southwest corner coordinates, source side length, total area emission rate and effective area source-height. Computation time is kept to a minimum by the manner in which concentrations from area sources are estimated using a narrow plume hypothesis and using the area source squares as given rather than breaking down all sources into an area of uniform elements. Options are available to the user to allow use of three different types of receptor locations: (1) those whose coordinates are input by the user, (2) those whose coordinates are determined by the model and are downwind of significant point and area sources where maxima are likely to occur, and (3) those whose coordinates are determined by the model to give good area coverage of a specific portion of the region. Computation time is also decreased by keeping the number of receptors to a minimum. Volume II presents RAM example outputs, typical run streams, variable glossaries, and Fortran source codes.« less

  15. Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.

    PubMed

    Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj

    2016-01-01

    The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.

  16. Performance improvement of optical CDMA networks with stochastic artificial bee colony optimization technique

    NASA Astrophysics Data System (ADS)

    Panda, Satyasen

    2018-05-01

    This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.

  17. An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes

    PubMed Central

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523

  18. An efficient pipeline wavefront phase recovery for the CAFADIS camera for extremely large telescopes.

    PubMed

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.

  19. A Fast and Accurate Sparse Continuous Signal Reconstruction by Homotopy DCD with Non-Convex Regularization

    PubMed Central

    Wang, Tianyun; Lu, Xinfei; Yu, Xiaofei; Xi, Zhendong; Chen, Weidong

    2014-01-01

    In recent years, various applications regarding sparse continuous signal recovery such as source localization, radar imaging, communication channel estimation, etc., have been addressed from the perspective of compressive sensing (CS) theory. However, there are two major defects that need to be tackled when considering any practical utilization. The first issue is off-grid problem caused by the basis mismatch between arbitrary located unknowns and the pre-specified dictionary, which would make conventional CS reconstruction methods degrade considerably. The second important issue is the urgent demand for low-complexity algorithms, especially when faced with the requirement of real-time implementation. In this paper, to deal with these two problems, we have presented three fast and accurate sparse reconstruction algorithms, termed as HR-DCD, Hlog-DCD and Hlp-DCD, which are based on homotopy, dichotomous coordinate descent (DCD) iterations and non-convex regularizations, by combining with the grid refinement technique. Experimental results are provided to demonstrate the effectiveness of the proposed algorithms and related analysis. PMID:24675758

  20. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales.

    PubMed

    Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A; Marks, Natalie C; Sheehan, Alice S; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N; Yoo, Jennie C; Judge, Luke M; Spencer, C Ian; Chukka, Anand C; Russell, Caitlin R; So, Po-Lin; Conklin, Bruce R; Healy, Kevin E

    2015-05-01

    Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering.

  1. A Robust Sound Source Localization Approach for Microphone Array with Model Errors

    NASA Astrophysics Data System (ADS)

    Xiao, Hua; Shao, Huai-Zong; Peng, Qi-Cong

    In this paper, a robust sound source localization approach is proposed. The approach retains good performance even when model errors exist. Compared with previous work in this field, the contributions of this paper are as follows. First, an improved broad-band and near-field array model is proposed. It takes array gain, phase perturbations into account and is based on the actual positions of the elements. It can be used in arbitrary planar geometry arrays. Second, a subspace model errors estimation algorithm and a Weighted 2-Dimension Multiple Signal Classification (W2D-MUSIC) algorithm are proposed. The subspace model errors estimation algorithm estimates unknown parameters of the array model, i. e., gain, phase perturbations, and positions of the elements, with high accuracy. The performance of this algorithm is improved with the increasing of SNR or number of snapshots. The W2D-MUSIC algorithm based on the improved array model is implemented to locate sound sources. These two algorithms compose the robust sound source approach. The more accurate steering vectors can be provided for further processing such as adaptive beamforming algorithm. Numerical examples confirm effectiveness of this proposed approach.

  2. Two-Microphone Spatial Filtering Improves Speech Reception for Cochlear-Implant Users in Reverberant Conditions With Multiple Noise Sources

    PubMed Central

    2014-01-01

    This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1 cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60 = 0, 270, and 540 ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0 dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources. PMID:25330772

  3. Efficient dynamic optimization of logic programs

    NASA Technical Reports Server (NTRS)

    Laird, Phil

    1992-01-01

    A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.

  4. Analytic reconstruction algorithms for triple-source CT with horizontal data truncation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ming; Yu, Hengyong, E-mail: hengyong-yu@ieee.org

    2015-10-15

    Purpose: This paper explores a triple-source imaging method with horizontal data truncation to enlarge the field of view (FOV) for big objects. Methods: The study is conducted by using theoretical analysis, mathematical deduction, and numerical simulations. The proposed algorithms are implemented in c + + and MATLAB. While the basic platform is constructed in MATLAB, the computationally intensive segments are coded in c + +, which are linked via a MEX interface. Results: A triple-source circular scanning configuration with horizontal data truncation is developed, where three pairs of x-ray sources and detectors are unevenly distributed on the same circle tomore » cover the whole imaging object. For this triple-source configuration, a fan-beam filtered backprojection-type algorithm is derived for truncated full-scan projections without data rebinning. The algorithm is also extended for horizontally truncated half-scan projections and cone-beam projections in a Feldkamp-type framework. Using their method, the FOV is enlarged twofold to threefold to scan bigger objects with high speed and quality. The numerical simulation results confirm the correctness and effectiveness of the developed algorithms. Conclusions: The triple-source scanning configuration with horizontal data truncation cannot only keep most of the advantages of a traditional multisource system but also cover a larger FOV for big imaging objects. In addition, because the filtering is shift-invariant, the proposed algorithms are very fast and easily parallelized on graphic processing units.« less

  5. Analytic reconstruction algorithms for triple-source CT with horizontal data truncation.

    PubMed

    Chen, Ming; Yu, Hengyong

    2015-10-01

    This paper explores a triple-source imaging method with horizontal data truncation to enlarge the field of view (FOV) for big objects. The study is conducted by using theoretical analysis, mathematical deduction, and numerical simulations. The proposed algorithms are implemented in c + + and matlab. While the basic platform is constructed in matlab, the computationally intensive segments are coded in c + +, which are linked via a mex interface. A triple-source circular scanning configuration with horizontal data truncation is developed, where three pairs of x-ray sources and detectors are unevenly distributed on the same circle to cover the whole imaging object. For this triple-source configuration, a fan-beam filtered backprojection-type algorithm is derived for truncated full-scan projections without data rebinning. The algorithm is also extended for horizontally truncated half-scan projections and cone-beam projections in a Feldkamp-type framework. Using their method, the FOV is enlarged twofold to threefold to scan bigger objects with high speed and quality. The numerical simulation results confirm the correctness and effectiveness of the developed algorithms. The triple-source scanning configuration with horizontal data truncation cannot only keep most of the advantages of a traditional multisource system but also cover a larger FOV for big imaging objects. In addition, because the filtering is shift-invariant, the proposed algorithms are very fast and easily parallelized on graphic processing units.

  6. Adaptive distributed source coding.

    PubMed

    Varodayan, David; Lin, Yao-Chung; Girod, Bernd

    2012-05-01

    We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.

  7. Toward detecting deception in intelligent systems

    NASA Astrophysics Data System (ADS)

    Santos, Eugene, Jr.; Johnson, Gregory, Jr.

    2004-08-01

    Contemporary decision makers often must choose a course of action using knowledge from several sources. Knowledge may be provided from many diverse sources including electronic sources such as knowledge-based diagnostic or decision support systems or through data mining techniques. As the decision maker becomes more dependent on these electronic information sources, detecting deceptive information from these sources becomes vital to making a correct, or at least more informed, decision. This applies to unintentional disinformation as well as intentional misinformation. Our ongoing research focuses on employing models of deception and deception detection from the fields of psychology and cognitive science to these systems as well as implementing deception detection algorithms for probabilistic intelligent systems. The deception detection algorithms are used to detect, classify and correct attempts at deception. Algorithms for detecting unexpected information rely upon a prediction algorithm from the collaborative filtering domain to predict agent responses in a multi-agent system.

  8. The silent base flow and the sound sources in a laminar jet.

    PubMed

    Sinayoko, Samuel; Agarwal, Anurag

    2012-03-01

    An algorithm to compute the silent base flow sources of sound in a jet is introduced. The algorithm is based on spatiotemporal filtering of the flow field and is applicable to multifrequency sources. It is applied to an axisymmetric laminar jet and the resulting sources are validated successfully. The sources are compared to those obtained from two classical acoustic analogies, based on quiescent and time-averaged base flows. The comparison demonstrates how the silent base flow sources shed light on the sound generation process. It is shown that the dominant source mechanism in the axisymmetric laminar jet is "shear-noise," which is a linear mechanism. The algorithm presented here could be applied to fully turbulent flows to understand the aerodynamic noise-generation mechanism. © 2012 Acoustical Society of America

  9. Independent component analysis algorithm FPGA design to perform real-time blind source separation

    NASA Astrophysics Data System (ADS)

    Meyer-Baese, Uwe; Odom, Crispin; Botella, Guillermo; Meyer-Baese, Anke

    2015-05-01

    The conditions that arise in the Cocktail Party Problem prevail across many fields creating a need for of Blind Source Separation. The need for BSS has become prevalent in several fields of work. These fields include array processing, communications, medical signal processing, and speech processing, wireless communication, audio, acoustics and biomedical engineering. The concept of the cocktail party problem and BSS led to the development of Independent Component Analysis (ICA) algorithms. ICA proves useful for applications needing real time signal processing. The goal of this research was to perform an extensive study on ability and efficiency of Independent Component Analysis algorithms to perform blind source separation on mixed signals in software and implementation in hardware with a Field Programmable Gate Array (FPGA). The Algebraic ICA (A-ICA), Fast ICA, and Equivariant Adaptive Separation via Independence (EASI) ICA were examined and compared. The best algorithm required the least complexity and fewest resources while effectively separating mixed sources. The best algorithm was the EASI algorithm. The EASI ICA was implemented on hardware with Field Programmable Gate Arrays (FPGA) to perform and analyze its performance in real time.

  10. A robust hypothesis test for the sensitive detection of constant speed radiation moving sources

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Kondrasovs, Vladimir; Boudergui, Karim; Moline, Yoann; Sannié, Guillaume; Gameiro, Jordan; Normand, Stéphane; Méchin, Laurence

    2015-09-01

    Radiation Portal Monitors are deployed in linear networks to detect radiological material in motion. As a complement to single and multichannel detection algorithms, inefficient under too low signal-to-noise ratios, temporal correlation algorithms have been introduced. Test hypothesis methods based on empirically estimated mean and variance of the signals delivered by the different channels have shown significant gain in terms of a tradeoff between detection sensitivity and false alarm probability. This paper discloses the concept of a new hypothesis test for temporal correlation detection methods, taking advantage of the Poisson nature of the registered counting signals, and establishes a benchmark between this test and its empirical counterpart. The simulation study validates that in the four relevant configurations of a pedestrian source carrier under respectively high and low count rate radioactive backgrounds, and a vehicle source carrier under the same respectively high and low count rate radioactive backgrounds, the newly introduced hypothesis test ensures a significantly improved compromise between sensitivity and false alarm. It also guarantees that the optimal coverage factor for this compromise remains stable regardless of signal-to-noise ratio variations between 2 and 0.8, therefore allowing the final user to parametrize the test with the sole prior knowledge of background amplitude.

  11. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  12. When Machines Think: Radiology's Next Frontier.

    PubMed

    Dreyer, Keith J; Geis, J Raymond

    2017-12-01

    Artificial intelligence (AI), machine learning, and deep learning are terms now seen frequently, all of which refer to computer algorithms that change as they are exposed to more data. Many of these algorithms are surprisingly good at recognizing objects in images. The combination of large amounts of machine-consumable digital data, increased and cheaper computing power, and increasingly sophisticated statistical models combine to enable machines to find patterns in data in ways that are not only cost-effective but also potentially beyond humans' abilities. Building an AI algorithm can be surprisingly easy. Understanding the associated data structures and statistics, on the other hand, is often difficult and obscure. Converting the algorithm into a sophisticated product that works consistently in broad, general clinical use is complex and incompletely understood. To show how these AI products reduce costs and improve outcomes will require clinical translation and industrial-grade integration into routine workflow. Radiology has the chance to leverage AI to become a center of intelligently aggregated, quantitative, diagnostic information. Centaur radiologists, formed as a synergy of human plus computer, will provide interpretations using data extracted from images by humans and image-analysis computer algorithms, as well as the electronic health record, genomics, and other disparate sources. These interpretations will form the foundation of precision health care, or care customized to an individual patient. © RSNA, 2017.

  13. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    PubMed Central

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  14. AxonPacking: An Open-Source Software to Simulate Arrangements of Axons in White Matter

    PubMed Central

    Mingasson, Tom; Duval, Tanguy; Stikov, Nikola; Cohen-Adad, Julien

    2017-01-01

    HIGHLIGHTS AxonPacking: Open-source software for simulating white matter microstructure.Validation on a theoretical disk packing problem.Reproducible and stable for various densities and diameter distributions.Can be used to study interplay between myelin/fiber density and restricted fraction. Quantitative Magnetic Resonance Imaging (MRI) can provide parameters that describe white matter microstructure, such as the fiber volume fraction (FVF), the myelin volume fraction (MVF) or the axon volume fraction (AVF) via the fraction of restricted water (fr). While already being used for clinical application, the complex interplay between these parameters requires thorough validation via simulations. These simulations required a realistic, controlled and adaptable model of the white matter axons with the surrounding myelin sheath. While there already exist useful algorithms to perform this task, none of them combine optimisation of axon packing, presence of myelin sheath and availability as free and open source software. Here, we introduce a novel disk packing algorithm that addresses these issues. The performance of the algorithm is tested in term of reproducibility over 50 runs, resulting density, and stability over iterations. This tool was then used to derive multiple values of FVF and to study the impact of this parameter on fr and MVF in light of the known microstructure based on histology sample. The standard deviation of the axon density over runs was lower than 10−3 and the expected hexagonal packing for monodisperse disks was obtained with a density close to the optimal density (obtained: 0.892, theoretical: 0.907). Using an FVF ranging within [0.58, 0.82] and a mean inter-axon gap ranging within [0.1, 1.1] μm, MVF ranged within [0.32, 0.44] and fr ranged within [0.39, 0.71], which is consistent with the histology. The proposed algorithm is implemented in the open-source software AxonPacking (https://github.com/neuropoly/axonpacking) and can be useful for validating diffusion models as well as for enabling researchers to study the interplay between microstructure parameters when evaluating qMRI methods. PMID:28197091

  15. Closed-Form 3-D Localization for Single Source in Uniform Circular Array with a Center Sensor

    NASA Astrophysics Data System (ADS)

    Bae, Eun-Hyon; Lee, Kyun-Kyung

    A novel closed-form algorithm is presented for estimating the 3-D location (azimuth angle, elevation angle, and range) of a single source in a uniform circular array (UCA) with a center sensor. Based on the centrosymmetry of the UCA and noncircularity of the source, the proposed algorithm decouples and estimates the 2-D direction of arrival (DOA), i.e. azimuth and elevation angles, and then estimates the range of the source. Notwithstanding a low computational complexity, the proposed algorithm provides an estimation performance close to that of the benchmark estimator 3-D MUSIC.

  16. Long-term Satellite Observations of Asian Dust Storm: Source, Pathway, and Interannual Variability

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina

    2008-01-01

    Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. Outbreaks of Asian dust storms occur often in the arid and semi-arid areas of northwestern China -about 1.6x10(exp 6) square kilometers including the Gobi and Taklimakan deserts- with continuous expanding of spatial coverage. These airborne dust particles, originating in desert areas far from polluted regions, interact with anthropogenic sulfate and soot aerosols emitted from Chinese megacities during their transport over the mainland. Adding the intricate effects of clouds and marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from their sources. Furthermore, these aerosols, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol properties (e.g., optical thickness, single scattering albedo) over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. This new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. Reasonable agreements have been achieved between Deep Blue retrievals of aerosol optical thickness and those directly from AERONET sunphotometers over desert and semi-desert regions. New Deep Blue products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. Long-term satellite measurements (1998 - 2007) from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with the Asian dust storm outbreaks. In addition, monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.

  17. An Algorithm to Generate Deep-Layer Temperatures from Microwave Satellite Observations for the Purpose of Monitoring Climate Change. Revised

    NASA Technical Reports Server (NTRS)

    Goldberg, Mitchell D.; Fleming, Henry E.

    1994-01-01

    An algorithm for generating deep-layer mean temperatures from satellite-observed microwave observations is presented. Unlike traditional temperature retrieval methods, this algorithm does not require a first guess temperature of the ambient atmosphere. By eliminating the first guess a potentially systematic source of error has been removed. The algorithm is expected to yield long-term records that are suitable for detecting small changes in climate. The atmospheric contribution to the deep-layer mean temperature is given by the averaging kernel. The algorithm computes the coefficients that will best approximate a desired averaging kernel from a linear combination of the satellite radiometer's weighting functions. The coefficients are then applied to the measurements to yield the deep-layer mean temperature. Three constraints were used in deriving the algorithm: (1) the sum of the coefficients must be one, (2) the noise of the product is minimized, and (3) the shape of the approximated averaging kernel is well-behaved. Note that a trade-off between constraints 2 and 3 is unavoidable. The algorithm can also be used to combine measurements from a future sensor (i.e., the 20-channel Advanced Microwave Sounding Unit (AMSU)) to yield the same averaging kernel as that based on an earlier sensor (i.e., the 4-channel Microwave Sounding Unit (MSU)). This will allow a time series of deep-layer mean temperatures based on MSU measurements to be continued with AMSU measurements. The AMSU is expected to replace the MSU in 1996.

  18. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Bowring, J. F.; Bowring, S. A.

    2011-06-01

    High-precision U-Pb geochronology by isotope dilution-thermal ionization mass spectrometry is integral to a variety of Earth science disciplines, but its ultimate resolving power is quantified by the uncertainties of calculated U-Pb dates. As analytical techniques have advanced, formerly small sources of uncertainty are increasingly important, and thus previous simplifications for data reduction and uncertainty propagation are no longer valid. Although notable previous efforts have treated propagation of correlated uncertainties for the U-Pb system, the equations, uncertainties, and correlations have been limited in number and subject to simplification during propagation through intermediary calculations. We derive and present a transparent U-Pb data reduction algorithm that transforms raw isotopic data and measured or assumed laboratory parameters into the isotopic ratios and dates geochronologists interpret without making assumptions about the relative size of sample components. To propagate uncertainties and their correlations, we describe, in detail, a linear algebraic algorithm that incorporates all input uncertainties and correlations without limiting or simplifying covariance terms to propagate them though intermediate calculations. Finally, a weighted mean algorithm is presented that utilizes matrix elements from the uncertainty propagation algorithm to propagate random and systematic uncertainties for data comparison between other U-Pb labs and other geochronometers. The linear uncertainty propagation algorithms are verified with Monte Carlo simulations of several typical analyses. We propose that our algorithms be considered by the community for implementation to improve the collaborative science envisioned by the EARTHTIME initiative.

  19. Comparison of Compressed Sensing Algorithms for Inversion of 3-D Electrical Resistivity Tomography.

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Ranjan, S.; Kbvn, D. P.

    2016-12-01

    Image reconstruction algorithms derived from electrical resistivity tomography (ERT) are highly non-linear, sparse, and ill-posed. The inverse problem is much severe, when dealing with 3-D datasets that result in large sized matrices. Conventional gradient based techniques using L2 norm minimization with some sort of regularization can impose smoothness constraint on the solution. Compressed sensing (CS) is relatively new technique that takes the advantage of inherent sparsity in parameter space in one or the other form. If favorable conditions are met, CS was proven to be an efficient image reconstruction technique that uses limited observations without losing edge sharpness. This paper deals with the development of an open source 3-D resistivity inversion tool using CS framework. The forward model was adopted from RESINVM3D (Pidlisecky et al., 2007) with CS as the inverse code. Discrete cosine transformation (DCT) function was used to induce model sparsity in orthogonal form. Two CS based algorithms viz., interior point method and two-step IST were evaluated on a synthetic layered model with surface electrode observations. The algorithms were tested (in terms of quality and convergence) under varying degrees of parameter heterogeneity, model refinement, and reduced observation data space. In comparison to conventional gradient algorithms, CS was proven to effectively reconstruct the sub-surface image with less computational cost. This was observed by a general increase in NRMSE from 0.5 in 10 iterations using gradient algorithm to 0.8 in 5 iterations using CS algorithms.

  20. Systematically biological prioritizing remediation sites based on datasets of biological investigations and heavy metals in soil

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chih; Lin, Yu-Pin; Anthony, Johnathen

    2015-04-01

    Heavy metal pollution has adverse effects on not only the focal invertebrate species of this study, such as reduction in pupa weight and increased larval mortality, but also on the higher trophic level organisms which feed on them, either directly or indirectly, through the process of biomagnification. Despite this, few studies regarding remediation prioritization take species distribution or biological conservation priorities into consideration. This study develops a novel approach for delineating sites which are both contaminated by any of 5 readily bioaccumulated heavy metal soil contaminants and are of high ecological importance for the highly mobile, low trophic level focal species. The conservation priority of each site was based on the projected distributions of 6 moth species simulated via the presence-only maximum entropy species distribution model followed by the subsequent application of a systematic conservation tool. In order to increase the number of available samples, we also integrated crowd-sourced data with professionally-collected data via a novel optimization procedure based on a simulated annealing algorithm. This integration procedure was important since while crowd-sourced data can drastically increase the number of data samples available to ecologists, still the quality or reliability of crowd-sourced data can be called into question, adding yet another source of uncertainty in projecting species distributions. The optimization method screens crowd-sourced data in terms of the environmental variables which correspond to professionally-collected data. The sample distribution data was derived from two different sources, including the EnjoyMoths project in Taiwan (crowd-sourced data) and the Global Biodiversity Information Facility (GBIF) ?eld data (professional data). The distributions of heavy metal concentrations were generated via 1000 iterations of a geostatistical co-simulation approach. The uncertainties in distributions of the heavy metals were then quantified based on the overall consistency between realizations. Finally, Information-Gap Decision Theory (IGDT) was applied to rank the remediation priorities of contaminated sites in terms of both spatial consensus of multiple heavy metal realizations and the priority of specific conservation areas. Our results show that the crowd-sourced optimization algorithm developed in this study is effective at selecting suitable data from crowd-sourced data. By using this technique the available sample data increased to a total number of 96, 162, 72, 62, 69 and 62 or, that is, 2.6, 1.6, 2.5, 1.6, 1.2 and 1.8 times that originally available through the GBIF professionally-assembled database. Additionally, for all species considered the performance of models, in terms of test-AUC values, based on the combination of both data sources exceeded those models which were based on a single data source. Furthermore, the additional optimization-selected data lowered the overall variability, and therefore uncertainty, of model outputs. Based on the projected species distributions, our results revealed that around 30% of high species hotspot areas were also identified as contaminated. The decision-making tool, IGDT, successfully yielded remediation plans in terms of specific ecological value requirements, false positive tolerance rates of contaminated areas, and expected decision robustness. The proposed approach can be applied both to identify high conservation priority sites contaminated by heavy metals, based on the combination of screened crowd-sourced and professionally-collected data, and in making robust remediation decisions.

  1. The Brera Multiscale Wavelet ROSAT HRI Source Catalog. I. The Algorithm

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide; Campana, Sergio; Rosati, Piero; Panzera, Maria Rosa; Tagliaferri, Gianpiero

    1999-10-01

    We present a new detection algorithm based on the wavelet transform for the analysis of high-energy astronomical images. The wavelet transform, because of its multiscale structure, is suited to the optimal detection of pointlike as well as extended sources, regardless of any loss of resolution with the off-axis angle. Sources are detected as significant enhancements in the wavelet space, after the subtraction of the nonflat components of the background. Detection thresholds are computed through Monte Carlo simulations in order to establish the expected number of spurious sources per field. The source characterization is performed through a multisource fitting in the wavelet space. The procedure is designed to correctly deal with very crowded fields, allowing for the simultaneous characterization of nearby sources. To obtain a fast and reliable estimate of the source parameters and related errors, we apply a novel decimation technique that, taking into account the correlation properties of the wavelet transform, extracts a subset of almost independent coefficients. We test the performance of this algorithm on synthetic fields, analyzing with particular care the characterization of sources in poor background situations, where the assumption of Gaussian statistics does not hold. In these cases, for which standard wavelet algorithms generally provide underestimated errors, we infer errors through a procedure that relies on robust basic statistics. Our algorithm is well suited to the analysis of images taken with the new generation of X-ray instruments equipped with CCD technology, which will produce images with very low background and/or high source density.

  2. A comparative intelligibility study of single-microphone noise reduction algorithms.

    PubMed

    Hu, Yi; Loizou, Philipos C

    2007-09-01

    The evaluation of intelligibility of noise reduction algorithms is reported. IEEE sentences and consonants were corrupted by four types of noise including babble, car, street and train at two signal-to-noise ratio levels (0 and 5 dB), and then processed by eight speech enhancement methods encompassing four classes of algorithms: spectral subtractive, sub-space, statistical model based and Wiener-type algorithms. The enhanced speech was presented to normal-hearing listeners for identification. With the exception of a single noise condition, no algorithm produced significant improvements in speech intelligibility. Information transmission analysis of the consonant confusion matrices indicated that no algorithm improved significantly the place feature score, significantly, which is critically important for speech recognition. The algorithms which were found in previous studies to perform the best in terms of overall quality, were not the same algorithms that performed the best in terms of speech intelligibility. The subspace algorithm, for instance, was previously found to perform the worst in terms of overall quality, but performed well in the present study in terms of preserving speech intelligibility. Overall, the analysis of consonant confusion matrices suggests that in order for noise reduction algorithms to improve speech intelligibility, they need to improve the place and manner feature scores.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.

    In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less

  4. An asymptotic-preserving Lagrangian algorithm for the time-dependent anisotropic heat transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, Luis; del-Castillo-Negrete, Diego; Hauck, Cory D.

    2014-09-01

    We propose a Lagrangian numerical algorithm for a time-dependent, anisotropic temperature transport equation in magnetized plasmas in the large guide field regime. The approach is based on an analytical integral formal solution of the parallel (i.e., along the magnetic field) transport equation with sources, and it is able to accommodate both local and non-local parallel heat flux closures. The numerical implementation is based on an operator-split formulation, with two straightforward steps: a perpendicular transport step (including sources), and a Lagrangian (field-line integral) parallel transport step. Algorithmically, the first step is amenable to the use of modern iterative methods, while themore » second step has a fixed cost per degree of freedom (and is therefore scalable). Accuracy-wise, the approach is free from the numerical pollution introduced by the discrete parallel transport term when the perpendicular to parallel transport coefficient ratio X ⊥ /X ∥ becomes arbitrarily small, and is shown to capture the correct limiting solution when ε = X⊥L 2 ∥/X1L 2 ⊥ → 0 (with L∥∙ L⊥ , the parallel and perpendicular diffusion length scales, respectively). Therefore, the approach is asymptotic-preserving. We demonstrate the capabilities of the scheme with several numerical experiments with varying magnetic field complexity in two dimensions, including the case of transport across a magnetic island.« less

  5. Inverse source problems in elastodynamics

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao

    2018-04-01

    We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.

  6. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network.

    PubMed

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead.

  7. Development and Validation of Various Phenotyping Algorithms for Diabetes Mellitus Using Data from Electronic Health Records.

    PubMed

    Esteban, Santiago; Rodríguez Tablado, Manuel; Peper, Francisco; Mahumud, Yamila S; Ricci, Ricardo I; Kopitowski, Karin; Terrasa, Sergio

    2017-01-01

    Precision medicine requires extremely large samples. Electronic health records (EHR) are thought to be a cost-effective source of data for that purpose. Phenotyping algorithms help reduce classification errors, making EHR a more reliable source of information for research. Four algorithm development strategies for classifying patients according to their diabetes status (diabetics; non-diabetics; inconclusive) were tested (one codes-only algorithm; one boolean algorithm, four statistical learning algorithms and six stacked generalization meta-learners). The best performing algorithms within each strategy were tested on the validation set. The stacked generalization algorithm yielded the highest Kappa coefficient value in the validation set (0.95 95% CI 0.91, 0.98). The implementation of these algorithms allows for the exploitation of data from thousands of patients accurately, greatly reducing the costs of constructing retrospective cohorts for research.

  8. Automatic localization of the left ventricular blood pool centroid in short axis cardiac cine MR images.

    PubMed

    Tan, Li Kuo; Liew, Yih Miin; Lim, Einly; Abdul Aziz, Yang Faridah; Chee, Kok Han; McLaughlin, Robert A

    2018-06-01

    In this paper, we develop and validate an open source, fully automatic algorithm to localize the left ventricular (LV) blood pool centroid in short axis cardiac cine MR images, enabling follow-on automated LV segmentation algorithms. The algorithm comprises four steps: (i) quantify motion to determine an initial region of interest surrounding the heart, (ii) identify potential 2D objects of interest using an intensity-based segmentation, (iii) assess contraction/expansion, circularity, and proximity to lung tissue to score all objects of interest in terms of their likelihood of constituting part of the LV, and (iv) aggregate the objects into connected groups and construct the final LV blood pool volume and centroid. This algorithm was tested against 1140 datasets from the Kaggle Second Annual Data Science Bowl, as well as 45 datasets from the STACOM 2009 Cardiac MR Left Ventricle Segmentation Challenge. Correct LV localization was confirmed in 97.3% of the datasets. The mean absolute error between the gold standard and localization centroids was 2.8 to 4.7 mm, or 12 to 22% of the average endocardial radius. Graphical abstract Fully automated localization of the left ventricular blood pool in short axis cardiac cine MR images.

  9. Aligning Biomolecular Networks Using Modular Graph Kernels

    NASA Astrophysics Data System (ADS)

    Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant

    Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

  10. EBIC: an evolutionary-based parallel biclustering algorithm for pattern discovery.

    PubMed

    Orzechowski, Patryk; Sipper, Moshe; Huang, Xiuzhen; Moore, Jason H

    2018-05-22

    Biclustering algorithms are commonly used for gene expression data analysis. However, accurate identification of meaningful structures is very challenging and state-of-the-art methods are incapable of discovering with high accuracy different patterns of high biological relevance. In this paper a novel biclustering algorithm based on evolutionary computation, a subfield of artificial intelligence (AI), is introduced. The method called EBIC aims to detect order-preserving patterns in complex data. EBIC is capable of discovering multiple complex patterns with unprecedented accuracy in real gene expression datasets. It is also one of the very few biclustering methods designed for parallel environments with multiple graphics processing units (GPUs). We demonstrate that EBIC greatly outperforms state-of-the-art biclustering methods, in terms of recovery and relevance, on both synthetic and genetic datasets. EBIC also yields results over 12 times faster than the most accurate reference algorithms. EBIC source code is available on GitHub at https://github.com/EpistasisLab/ebic. Correspondence and requests for materials should be addressed to P.O. (email: patryk.orzechowski@gmail.com) and J.H.M. (email: jhmoore@upenn.edu). Supplementary Data with results of analyses and additional information on the method is available at Bioinformatics online.

  11. Algorithmic and user study of an autocompletion algorithm on a large medical vocabulary.

    PubMed

    Sevenster, Merlijn; van Ommering, Rob; Qian, Yuechen

    2012-02-01

    Autocompletion supports human-computer interaction in software applications that let users enter textual data. We will be inspired by the use case in which medical professionals enter ontology concepts, catering the ongoing demand for structured and standardized data in medicine. Goal is to give an algorithmic analysis of one particular autocompletion algorithm, called multi-prefix matching algorithm, which suggests terms whose words' prefixes contain all words in the string typed by the user, e.g., in this sense, opt ner me matches optic nerve meningioma. Second we aim to investigate how well it supports users entering concepts from a large and comprehensive medical vocabulary (snomed ct). We give a concise description of the multi-prefix algorithm, and sketch how it can be optimized to meet required response time. Performance will be compared to a baseline algorithm, which gives suggestions that extend the string typed by the user to the right, e.g. optic nerve m gives optic nerve meningioma, but opt ner me does not. We conduct a user experiment in which 12 participants are invited to complete 40 snomed ct terms with the baseline algorithm and another set of 40 snomed ct terms with the multi-prefix algorithm. Our results show that users need significantly fewer keystrokes when supported by the multi-prefix algorithm than when supported by the baseline algorithm. The proposed algorithm is a competitive candidate for searching and retrieving terms from a large medical ontology. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Image Reconstruction in Radio Astronomy with Non-Coplanar Synthesis Arrays

    NASA Astrophysics Data System (ADS)

    Goodrick, L.

    2015-03-01

    Traditional radio astronomy imaging techniques assume that the interferometric array is coplanar, with a small field of view, and that the two-dimensional Fourier relationship between brightness and visibility remains valid, allowing the Fast Fourier Transform to be used. In practice, to acquire more accurate data, the non-coplanar baseline effects need to be incorporated, as small height variations in the array plane introduces the w spatial frequency component. This component adds an additional phase shift to the incoming signals. There are two approaches to account for the non-coplanar baseline effects: either the full three-dimensional brightness and visibility model can be used to reconstruct an image, or the non-coplanar effects can be removed, reducing the three dimensional relationship to that of the two-dimensional one. This thesis describes and implements the w-projection and w-stacking algorithms. The aim of these algorithms is to account for the phase error introduced by non-coplanar synthesis arrays configurations, making the recovered visibilities more true to the actual brightness distribution model. This is done by reducing the 3D visibilities to a 2D visibility model. The algorithms also have the added benefit of wide-field imaging, although w-stacking supports a wider field of view at the cost of more FFT bin support. For w-projection, the w-term is accounted for in the visibility domain by convolving it out of the problem with a convolution kernel, allowing the use of the two-dimensional Fast Fourier Transform. Similarly, the w-Stacking algorithm applies a phase correction in the image domain to image layers to produce an intensity model that accounts for the non-coplanar baseline effects. This project considers the KAT7 array for simulation and analysis of the limitations and advantages of both the algorithms. Additionally, a variant of the Högbom CLEAN algorithm was used which employs contour trimming for extended source emission flagging. The CLEAN algorithm is an iterative two-dimensional deconvolution method that can further improve image fidelity by removing the effects of the point spread function which can obscure source data.

  13. Efficient Geometric Sound Propagation Using Visibility Culling

    NASA Astrophysics Data System (ADS)

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying efficient audio-processing algorithms. We also present the first efficient audio-processing algorithm for scenarios with simultaneously moving source and moving receiver (MS-MR) which incurs less than 25% overhead compared to static source and moving receiver (SS-MR) or moving source and static receiver (MS-SR) scenario.

  14. 3-D CSEM data inversion algorithm based on simultaneously active multiple transmitters concept

    NASA Astrophysics Data System (ADS)

    Dehiya, Rahul; Singh, Arun; Gupta, Pravin Kumar; Israil, Mohammad

    2017-05-01

    We present an algorithm for efficient 3-D inversion of marine controlled-source electromagnetic data. The efficiency is achieved by exploiting the redundancy in data. The data redundancy is reduced by compressing the data through stacking of the response of transmitters which are in close proximity. This stacking is equivalent to synthesizing the data as if the multiple transmitters are simultaneously active. The redundancy in data, arising due to close transmitter spacing, has been studied through singular value analysis of the Jacobian formed in 1-D inversion. This study reveals that the transmitter spacing of 100 m, typically used in marine data acquisition, does result in redundancy in the data. In the proposed algorithm, the data are compressed through stacking which leads to both computational advantage and reduction in noise. The performance of the algorithm for noisy data is demonstrated through the studies on two types of noise, viz., uncorrelated additive noise and correlated non-additive noise. It is observed that in case of uncorrelated additive noise, up to a moderately high (10 percent) noise level the algorithm addresses the noise as effectively as the traditional full data inversion. However, when the noise level in the data is high (20 percent), the algorithm outperforms the traditional full data inversion in terms of data misfit. Similar results are obtained in case of correlated non-additive noise and the algorithm performs better if the level of noise is high. The inversion results of a real field data set are also presented to demonstrate the robustness of the algorithm. The significant computational advantage in all cases presented makes this algorithm a better choice.

  15. Implementing a C++ Version of the Joint Seismic-Geodetic Algorithm for Finite-Fault Detection and Slip Inversion for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Guillemot, C.; Murray, J. R.

    2015-12-01

    The earthquake early warning (EEW) systems in California and elsewhere can greatly benefit from algorithms that generate estimates of finite-fault parameters. These estimates could significantly improve real-time shaking calculations and yield important information for immediate disaster response. Minson et al. (2015) determined that combining FinDer's seismic-based algorithm (Böse et al., 2012) with BEFORES' geodetic-based algorithm (Minson et al., 2014) yields a more robust and informative joint solution than using either algorithm alone. FinDer examines the distribution of peak ground accelerations from seismic stations and determines the best finite-fault extent and strike from template matching. BEFORES employs a Bayesian framework to search for the best slip inversion over all possible fault geometries in terms of strike and dip. Using FinDer and BEFORES together generates estimates of finite-fault extent, strike, dip, preferred slip, and magnitude. To yield the quickest, most flexible, and open-source version of the joint algorithm, we translated BEFORES and FinDer from Matlab into C++. We are now developing a C++ Application Protocol Interface for these two algorithms to be connected to the seismic and geodetic data flowing from the EEW system. The interface that is being developed will also enable communication between the two algorithms to generate the joint solution of finite-fault parameters. Once this interface is developed and implemented, the next step will be to run test seismic and geodetic data through the system via the Earthworm module, Tank Player. This will allow us to examine algorithm performance on simulated data and past real events.

  16. Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI.

    PubMed

    Hu, Changwei; Qu, Xiaobo; Guo, Di; Bao, Lijun; Chen, Zhong

    2011-09-01

    Undersampling k-space is an effective way to decrease acquisition time for MRI. However, aliasing artifacts introduced by undersampling may blur the edges of magnetic resonance images, which often contain important information for clinical diagnosis. Moreover, k-space data is often contaminated by the noise signals of unknown intensity. To better preserve the edge features while suppressing the aliasing artifacts and noises, we present a new wavelet-based algorithm for undersampled MRI reconstruction. The algorithm solves the image reconstruction as a standard optimization problem including a ℓ(2) data fidelity term and ℓ(1) sparsity regularization term. Rather than manually setting the regularization parameter for the ℓ(1) term, which is directly related to the threshold, an automatic estimated threshold adaptive to noise intensity is introduced in our proposed algorithm. In addition, a prior matrix based on edge correlation in wavelet domain is incorporated into the regularization term. Compared with nonlinear conjugate gradient descent algorithm, iterative shrinkage/thresholding algorithm, fast iterative soft-thresholding algorithm and the iterative thresholding algorithm using exponentially decreasing threshold, the proposed algorithm yields reconstructions with better edge recovery and noise suppression. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    NASA Astrophysics Data System (ADS)

    Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.

    2016-08-01

    Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.

  18. An efficient algorithm for the retarded time equation for noise from rotating sources

    NASA Astrophysics Data System (ADS)

    Loiodice, S.; Drikakis, D.; Kokkalis, A.

    2018-01-01

    This study concerns modelling of noise emanating from rotating sources such as helicopter rotors. We present an accurate and efficient algorithm for the solution of the retarded time equation, which can be used both in subsonic and supersonic flow regimes. A novel approach for the search of the roots of the retarded time function was developed based on considerations of the kinematics of rotating sources and of the bifurcation analysis of the retarded time function. It is shown that the proposed algorithm is faster than the classical Newton and Brent methods, especially in the presence of sources rotating supersonically.

  19. STARBLADE: STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Knollmüller, Jakob; Frank, Philipp; Ensslin, Torsten A.

    2018-05-01

    STARBLADE (STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission) separates superimposed point-like sources from a diffuse background by imposing physically motivated models as prior knowledge. The algorithm can also be used on noisy and convolved data, though performing a proper reconstruction including a deconvolution prior to the application of the algorithm is advised; the algorithm could also be used within a denoising imaging method. STARBLADE learns the correlation structure of the diffuse emission and takes it into account to determine the occurrence and strength of a superimposed point source.

  20. Underwater Threat Source Localization: Processing Sensor Network TDOAs with a Terascale Optical Core Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barhen, Jacob; Imam, Neena

    2007-01-01

    Revolutionary computing technologies are defined in terms of technological breakthroughs, which leapfrog over near-term projected advances in conventional hardware and software to produce paradigm shifts in computational science. For underwater threat source localization using information provided by a dynamical sensor network, one of the most promising computational advances builds upon the emergence of digital optical-core devices. In this article, we present initial results of sensor network calculations that focus on the concept of signal wavefront time-difference-of-arrival (TDOA). The corresponding algorithms are implemented on the EnLight processing platform recently introduced by Lenslet Laboratories. This tera-scale digital optical core processor is optimizedmore » for array operations, which it performs in a fixed-point-arithmetic architecture. Our results (i) illustrate the ability to reach the required accuracy in the TDOA computation, and (ii) demonstrate that a considerable speed-up can be achieved when using the EnLight 64a prototype processor as compared to a dual Intel XeonTM processor.« less

  1. On recontamination and directional-bias problems in Monte Carlo simulation of PDF turbulence models

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    Turbulent combustion can not be simulated adequately by conventional moment closure turbulence models. The difficulty lies in the fact that the reaction rate is in general an exponential function of the temperature, and the higher order correlations in the conventional moment closure models of the chemical source term can not be neglected, making the applications of such models impractical. The probability density function (pdf) method offers an attractive alternative: in a pdf model, the chemical source terms are closed and do not require additional models. A grid dependent Monte Carlo scheme was studied, since it is a logical alternative, wherein the number of computer operations increases only linearly with the increase of number of independent variables, as compared to the exponential increase in a conventional finite difference scheme. A new algorithm was devised that satisfies a restriction in the case of pure diffusion or uniform flow problems. Although for nonuniform flows absolute conservation seems impossible, the present scheme has reduced the error considerably.

  2. JAMSS: proteomics mass spectrometry simulation in Java.

    PubMed

    Smith, Rob; Prince, John T

    2015-03-01

    Countless proteomics data processing algorithms have been proposed, yet few have been critically evaluated due to lack of labeled data (data with known identities and quantities). Although labeling techniques exist, they are limited in terms of confidence and accuracy. In silico simulators have recently been used to create complex data with known identities and quantities. We propose Java Mass Spectrometry Simulator (JAMSS): a fast, self-contained in silico simulator capable of generating simulated MS and LC-MS runs while providing meta information on the provenance of each generated signal. JAMSS improves upon previous in silico simulators in terms of its ease to install, minimal parameters, graphical user interface, multithreading capability, retention time shift model and reproducibility. The simulator creates mzML 1.1.0. It is open source software licensed under the GPLv3. The software and source are available at https://github.com/optimusmoose/JAMSS. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Acoustic change detection algorithm using an FM radio

    NASA Astrophysics Data System (ADS)

    Goldman, Geoffrey H.; Wolfe, Owen

    2012-06-01

    The U.S. Army is interested in developing low-cost, low-power, non-line-of-sight sensors for monitoring human activity. One modality that is often overlooked is active acoustics using sources of opportunity such as speech or music. Active acoustics can be used to detect human activity by generating acoustic images of an area at different times, then testing for changes among the imagery. A change detection algorithm was developed to detect physical changes in a building, such as a door changing positions or a large box being moved using acoustics sources of opportunity. The algorithm is based on cross correlating the acoustic signal measured from two microphones. The performance of the algorithm was shown using data generated with a hand-held FM radio as a sound source and two microphones. The algorithm could detect a door being opened in a hallway.

  4. AI-BL1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm.

    PubMed

    Xi, Shibo; Borgna, Lucas Santiago; Zheng, Lirong; Du, Yonghua; Hu, Tiandou

    2017-01-01

    In this report, AI-BL1.0, an open-source Labview-based program for automatic on-line beamline optimization, is presented. The optimization algorithms used in the program are Genetic Algorithm and Differential Evolution. Efficiency was improved by use of a strategy known as Observer Mode for Evolutionary Algorithm. The program was constructed and validated at the XAFCA beamline of the Singapore Synchrotron Light Source and 1W1B beamline of the Beijing Synchrotron Radiation Facility.

  5. Essays on Infrastructure Design and Planning for Clean Energy Systems

    NASA Astrophysics Data System (ADS)

    Kocaman, Ayse Selin

    The International Energy Agency estimates that the number of people who do not have access to electricity is nearly 1.3 billion and a billion more have only unreliable and intermittent supply. Moreover, current supply for electricity generation mostly relies on fossil fuels, which are finite and one of the greatest threats to the environment. Rising population growth rates, depleting fuel sources, environmental issues and economic developments have increased the need for mathematical optimization to provide a formal framework that enables systematic and clear decision-making in energy operations. This thesis through its methodologies and algorithms enable tools for energy generation, transmission and distribution system design and help policy makers make cost assessments in energy infrastructure planning rapidly and accurately. In Chapter 2, we focus on local-level power distribution systems planning for rural electrification using techniques from combinatorial optimization. We describe a heuristic algorithm that provides a quick solution for the partial electrification problem where the distribution network can only connect a pre-specified number of households with low voltage lines. The algorithm demonstrates the effect of household settlement patterns on the electrification cost. We also describe the first heuristic algorithm that selects the locations and service areas of transformers without requiring candidate solutions and simultaneously builds a two-level grid network in a green-field setting. The algorithms are applied to real world rural settings in Africa, where household locations digitized from satellite imagery are prescribed. In Chapter 3 and 4, we focus on power generation and transmission using clean energy sources. Here, we imagine a country in the future where hydro and solar are the dominant sources and fossil fuels are only available in minimal form. We discuss the problem of modeling hydro and solar energy production and allocation, including long-term investments and storage, capturing the stochastic nature of hourly supply and demand data. We mathematically model two hybrid energy generation and allocation systems where time variability of energy sources and demand is balanced using the water stored in the reservoirs. In Chapter 3, we use conventional hydro power stations (incoming stream flows are stored in large dams and water release is deferred until it is needed) and in Chapter 4, we use pumped hydro stations (water is pumped from lower reservoir to upper reservoir during periods of low demand to be released for generation when demand is high). Aim of the models is to determine optimal sizing of infrastructure needed to match demand and supply in a most reliable and cost effective way. An innovative contribution of this work is the establishment of a new perspective to energy modeling by including fine-grained sources of uncertainty such as stream flow and solar radiations in hourly level as well as spatial location of supply and demand and transmission network in national level. In addition, we compare the conventional and the pumped hydro power systems in terms of reliability and cost efficiency and quantitatively show the improvement provided by including pumped hydro storage. The model will be presented with a case study of India and helps to answer whether solar energy in addition to hydro power potential in Himalaya Mountains would be enough to meet growing electricity demand if fossil fuels could be almost completely phased out from electricity generation.

  6. Energy-based dosimetry of low-energy, photon-emitting brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Malin, Martha J.

    Model-based dose calculation algorithms (MBDCAs) for low-energy, photon-emitting brachytherapy sources have advanced to the point where the algorithms may be used in clinical practice. Before these algorithms can be used, a methodology must be established to verify the accuracy of the source models used by the algorithms. Additionally, the source strength metric for these algorithms must be established. This work explored the feasibility of verifying the source models used by MBDCAs by measuring the differential photon fluence emitted from the encapsulation of the source. The measured fluence could be compared to that modeled by the algorithm to validate the source model. This work examined how the differential photon fluence varied with position and angle of emission from the source, and the resolution that these measurements would require for dose computations to be accurate to within 1.5%. Both the spatial and angular resolution requirements were determined. The techniques used to determine the resolution required for measurements of the differential photon fluence were applied to determine why dose-rate constants determined using a spectroscopic technique disagreed with those computed using Monte Carlo techniques. The discrepancy between the two techniques had been previously published, but the cause of the discrepancy was not known. This work determined the impact that some of the assumptions used by the spectroscopic technique had on the accuracy of the calculation. The assumption of isotropic emission was found to cause the largest discrepancy in the spectroscopic dose-rate constant. Finally, this work improved the instrumentation used to measure the rate at which energy leaves the encapsulation of a brachytherapy source. This quantity is called emitted power (EP), and is presented as a possible source strength metric for MBDCAs. A calorimeter that measured EP was designed and built. The theoretical framework that the calorimeter relied upon to measure EP was established. Four clinically relevant 125I brachytherapy sources were measured with the instrument. The accuracy of the measured EP was compared to an air-kerma strength-derived EP to test the accuracy of the instrument. The instrument was accurate to within 10%, with three out of the four source measurements accurate to within 4%.

  7. An ensemble pulsar time

    NASA Technical Reports Server (NTRS)

    Petit, Gerard; Thomas, Claudine; Tavella, Patrizia

    1993-01-01

    Millisecond pulsars are galactic objects that exhibit a very stable spinning period. Several tens of these celestial clocks have now been discovered, which opens the possibility that an average time scale may be deduced through a long-term stability algorithm. Such an ensemble average makes it possible to reduce the level of the instabilities originating from the pulsars or from other sources of noise, which are unknown but independent. The basis for such an algorithm is presented and applied to real pulsar data. It is shown that pulsar time could shortly become more stable than the present atomic time, for averaging times of a few years. Pulsar time can also be used as a flywheel to maintain the accuracy of atomic time in case of temporary failure of the primary standards, or to transfer the improved accuracy of future standards back to the present.

  8. A Space-Time-Frequency Dictionary for Sparse Cortical Source Localization.

    PubMed

    Korats, Gundars; Le Cam, Steven; Ranta, Radu; Louis-Dorr, Valerie

    2016-09-01

    Cortical source imaging aims at identifying activated cortical areas on the surface of the cortex from the raw electroencephalogram (EEG) data. This problem is ill posed, the number of channels being very low compared to the number of possible source positions. In some realistic physiological situations, the active areas are sparse in space and of short time durations, and the amount of spatio-temporal data to carry the inversion is then limited. In this study, we propose an original data driven space-time-frequency (STF) dictionary which takes into account simultaneously both spatial and time-frequency sparseness while preserving smoothness in the time frequency (i.e., nonstationary smooth time courses in sparse locations). Based on these assumptions, we take benefit of the matching pursuit (MP) framework for selecting the most relevant atoms in this highly redundant dictionary. We apply two recent MP algorithms, single best replacement (SBR) and source deflated matching pursuit, and we compare the results using a spatial dictionary and the proposed STF dictionary to demonstrate the improvements of our multidimensional approach. We also provide comparison using well-established inversion methods, FOCUSS and RAP-MUSIC, analyzing performances under different degrees of nonstationarity and signal to noise ratio. Our STF dictionary combined with the SBR approach provides robust performances on realistic simulations. From a computational point of view, the algorithm is embedded in the wavelet domain, ensuring high efficiency in term of computation time. The proposed approach ensures fast and accurate sparse cortical localizations on highly nonstationary and noisy data.

  9. Observed ground-motion variabilities and implication for source properties

    NASA Astrophysics Data System (ADS)

    Cotton, F.; Bora, S. S.; Bindi, D.; Specht, S.; Drouet, S.; Derras, B.; Pina-Valdes, J.

    2016-12-01

    One of the key challenges of seismology is to be able to calibrate and analyse the physical factors that control earthquake and ground-motion variabilities. Within the framework of empirical ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-field records and modern regression algorithms allow to decompose these residuals into between-event and a within-event residual components. The between-event term quantify all the residual effects of the source (e.g. stress-drops) which are not accounted by magnitude term as the only source parameter of the model. Between-event residuals provide a new and rather robust way to analyse the physical factors that control earthquake source properties and associated variabilities. We first will show the correlation between classical stress-drops and between-event residuals. We will also explain why between-event residuals may be a more robust way (compared to classical stress-drop analysis) to analyse earthquake source-properties. We will finally calibrate between-events variabilities using recent high-quality global accelerometric datasets (NGA-West 2, RESORCE) and datasets from recent earthquakes sequences (Aquila, Iquique, Kunamoto). The obtained between-events variabilities will be used to evaluate the variability of earthquake stress-drops but also the variability of source properties which cannot be explained by a classical Brune stress-drop variations. We will finally use the between-event residual analysis to discuss regional variations of source properties, differences between aftershocks and mainshocks and potential magnitude dependencies of source characteristics.

  10. Locally adaptive vector quantization: Data compression with feature preservation

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Sayano, M.

    1992-01-01

    A study of a locally adaptive vector quantization (LAVQ) algorithm for data compression is presented. This algorithm provides high-speed one-pass compression and is fully adaptable to any data source and does not require a priori knowledge of the source statistics. Therefore, LAVQ is a universal data compression algorithm. The basic algorithm and several modifications to improve performance are discussed. These modifications are nonlinear quantization, coarse quantization of the codebook, and lossless compression of the output. Performance of LAVQ on various images using irreversible (lossy) coding is comparable to that of the Linde-Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has potential for real-time video compression. Unlike most other image compression algorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless data compression algorithm is comparable to that of Lempel-Ziv-based algorithms, but LAVQ uses far less memory during the coding process.

  11. Evaluation of Long-term Aerosol Data Records from SeaWiFS over Land and Ocean

    NASA Astrophysics Data System (ADS)

    Bettenhausen, C.; Hsu, C.; Jeong, M.; Huang, J.

    2010-12-01

    Deserts around the globe produce mineral dust aerosols that may then be transported over cities, across continents, or even oceans. These aerosols affect the Earth’s energy balance through direct and indirect interactions with incoming solar radiation. They also have a biogeochemical effect as they deliver scarce nutrients to remote ecosystems. Large dust storms regularly disrupt air traffic and are a general nuisance to those living in transport regions. In the past, measuring dust aerosols has been incomplete at best. Satellite retrieval algorithms were limited to oceans or vegetated surfaces and typically neglected desert regions due to their high surface reflectivity in the mid-visible and near-infrared wavelengths, which have been typically used for aerosol retrievals. The Deep Blue aerosol retrieval algorithm was developed to resolve these shortcomings by utilizing the blue channels from instruments such as the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to infer aerosol properties over these highly reflective surfaces. The surface reflectivity of desert regions is much lower in the blue channels and thus it is easier to separate the aerosol and surface signals than at the longer wavelengths used in other algorithms. More recently, the Deep Blue algorithm has been expanded to retrieve over vegetated surfaces and oceans as well. A single algorithm can now follow dust from source to sink. In this work, we introduce the SeaWiFS instrument and the Deep Blue aerosol retrieval algorithm. We have produced global aerosol data records over land and ocean from 1997 through 2009 using the Deep Blue algorithm and SeaWiFS data. We describe these data records and validate them with data from the Aerosol Robotic Network (AERONET). We also show the relative performance compared to the current MODIS Deep Blue operational aerosol data in desert regions. The current results are encouraging and this dataset will be useful to future studies in understanding the effects of dust aerosols on global processes, long-term aerosol trends, quantifying dust emissions, transport, and inter-annual variability.

  12. Model-based Bayesian signal extraction algorithm for peripheral nerves

    NASA Astrophysics Data System (ADS)

    Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.

    2017-10-01

    Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of controlling a prosthetic limb.

  13. Accuracy Assessment of Aqua-MODIS Aerosol Optical Depth Over Coastal Regions: Importance of Quality Flag and Sea Surface Wind Speed

    NASA Technical Reports Server (NTRS)

    Anderson, J. C.; Wang, J.; Zeng, J.; Petrenko, M.; Leptoukh, G. G.; Ichoku, C.

    2012-01-01

    Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from approximately 2002-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R(sup 2) is approximately equal to 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land and Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land and Ocean AOD dataset can be degraded by 30-50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD less than 0.25 and underestimates it by 0.029 for AOD greater than 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region 25 (with a mean and median value of 2.94 meters per second and 2.66 meters per second, respectively) are often slower than 6 meters per second assumed in the MODIS Ocean algorithm. As a result of high correlation (R(sup 2) greater than 0.98) between the bias in binned MODIS AOD and the corresponding binned wind speed over the coastal sea surface, an empirical scheme for correcting the bias of AOD retrieved from the MODIS Ocean algorithm is formulated and is shown to be effective over the majority of the coastal AERONET stations, and hence can be used in future analysis of AOD trend and MODIS AOD data assimilation.

  14. An implementation of the QMR method based on coupled two-term recurrences

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Nachtigal, Noeel M.

    1992-01-01

    The authors have proposed a new Krylov subspace iteration, the quasi-minimal residual algorithm (QMR), for solving non-Hermitian linear systems. In the original implementation of the QMR method, the Lanczos process with look-ahead is used to generate basis vectors for the underlying Krylov subspaces. In the Lanczos algorithm, these basis vectors are computed by means of three-term recurrences. It has been observed that, in finite precision arithmetic, vector iterations based on three-term recursions are usually less robust than mathematically equivalent coupled two-term vector recurrences. This paper presents a look-ahead algorithm that constructs the Lanczos basis vectors by means of coupled two-term recursions. Implementation details are given, and the look-ahead strategy is described. A new implementation of the QMR method, based on this coupled two-term algorithm, is described. A simplified version of the QMR algorithm without look-ahead is also presented, and the special case of QMR for complex symmetric linear systems is considered. Results of numerical experiments comparing the original and the new implementations of the QMR method are reported.

  15. Explosion localization and characterization via infrasound using numerical modeling

    NASA Astrophysics Data System (ADS)

    Fee, D.; Kim, K.; Iezzi, A. M.; Matoza, R. S.; Jolly, A. D.; De Angelis, S.; Diaz Moreno, A.; Szuberla, C.

    2017-12-01

    Numerous methods have been applied to locate, detect, and characterize volcanic and anthropogenic explosions using infrasound. Far-field localization techniques typically use back-azimuths from multiple arrays (triangulation) or Reverse Time Migration (RTM, or back-projection). At closer ranges, networks surrounding a source may use Time Difference of Arrival (TDOA), semblance, station-pair double difference, etc. However, at volcanoes and regions with topography or obstructions that block the direct path of sound, recent studies have shown that numerical modeling is necessary to provide an accurate source location. A heterogeneous and moving atmosphere (winds) may also affect the location. The time reversal mirror (TRM) application of Kim et al. (2015) back-propagates the wavefield using a Finite Difference Time Domain (FDTD) algorithm, with the source corresponding to the location of peak convergence. Although it provides high-resolution source localization and can account for complex wave propagation, TRM is computationally expensive and limited to individual events. Here we present a new technique, termed RTM-FDTD, which integrates TRM and FDTD. Travel time and transmission loss information is computed from each station to the entire potential source grid from 3-D Green's functions derived via FDTD. The wave energy is then back-projected and stacked at each grid point, with the maximum corresponding to the likely source. We apply our method to detect and characterize thousands of explosions from Yasur Volcano, Vanuatu and Etna Volcano, Italy, which both provide complex wave propagation and multiple source locations. We compare our results with those from more traditional methods (e.g. semblance), and suggest our method is preferred as it is computationally less expensive than TRM but still integrates numerical modeling. RTM-FDTD could be applied to volcanic other anthropogenic sources at a wide variety of ranges and scenarios. Kim, K., Lees, J.M., 2015. Imaging volcanic infrasound sources using time reversal mirror algorithm. Geophysical Journal International 202, 1663-1676.

  16. On epicardial potential reconstruction using regularization schemes with the L1-norm data term.

    PubMed

    Shou, Guofa; Xia, Ling; Liu, Feng; Jiang, Mingfeng; Crozier, Stuart

    2011-01-07

    The electrocardiographic (ECG) inverse problem is ill-posed and usually solved by regularization schemes. These regularization methods, such as the Tikhonov method, are often based on the L2-norm data and constraint terms. However, L2-norm-based methods inherently provide smoothed inverse solutions that are sensitive to measurement errors, and also lack the capability of localizing and distinguishing multiple proximal cardiac electrical sources. This paper presents alternative regularization schemes employing the L1-norm data term for the reconstruction of epicardial potentials (EPs) from measured body surface potentials (BSPs). During numerical implementation, the iteratively reweighted norm algorithm was applied to solve the L1-norm-related schemes, and measurement noises were considered in the BSP data. The proposed L1-norm data term-based regularization schemes (with L1 and L2 penalty terms of the normal derivative constraint (labelled as L1TV and L1L2)) were compared with the L2-norm data terms (Tikhonov with zero-order and normal derivative constraints, labelled as ZOT and FOT, and the total variation method labelled as L2TV). The studies demonstrated that, with averaged measurement noise, the inverse solutions provided by the L1L2 and FOT algorithms have less relative error values. However, when larger noise occurred in some electrodes (for example, signal lost during measurement), the L1TV and L1L2 methods can obtain more accurate EPs in a robust manner. Therefore the L1-norm data term-based solutions are generally less perturbed by measurement noises, suggesting that the new regularization scheme is promising for providing practical ECG inverse solutions.

  17. XtalOpt  version r9: An open-source evolutionary algorithm for crystal structure prediction

    DOE PAGES

    Falls, Zackary; Lonie, David C.; Avery, Patrick; ...

    2015-10-23

    This is a new version of XtalOpt, an evolutionary algorithm for crystal structure prediction available for download from the CPC library or the XtalOpt website, http://xtalopt.github.io. XtalOpt is published under the Gnu Public License (GPL), which is an open source license that is recognized by the Open Source Initiative. We have detailed the new version incorporates many bug-fixes and new features here and predict the crystal structure of a system from its stoichiometry alone, using evolutionary algorithms.

  18. Poster - Thur Eve - 06: Comparison of an open source genetic algorithm to the commercially used IPSA for generation of seed distributions in LDR prostate brachytherapy.

    PubMed

    McGeachy, P; Khan, R

    2012-07-01

    In early stage prostate cancer, low dose rate (LDR) prostate brachytherapy is a favorable treatment modality, where small radioactive seeds are permanently implanted throughout the prostate. Treatment centres currently rely on a commercial optimization algorithm, IPSA, to generate seed distributions for treatment plans. However, commercial software does not allow the user access to the source code, thus reducing the flexibility for treatment planning and impeding any implementation of new and, perhaps, improved clinical techniques. An open source genetic algorithm (GA) has been encoded in MATLAB to generate seed distributions for a simplified prostate and urethra model. To assess the quality of the seed distributions created by the GA, both the GA and IPSA were used to generate seed distributions for two clinically relevant scenarios and the quality of the GA distributions relative to IPSA distributions and clinically accepted standards for seed distributions was investigated. The first clinically relevant scenario involved generating seed distributions for three different prostate volumes (19.2 cc, 32.4 cc, and 54.7 cc). The second scenario involved generating distributions for three separate seed activities (0.397 mCi, 0.455 mCi, and 0.5 mCi). Both GA and IPSA met the clinically accepted criteria for the two scenarios, where distributions produced by the GA were comparable to IPSA in terms of full coverage of the prostate by the prescribed dose, and minimized dose to the urethra, which passed straight through the prostate. Further, the GA offered improved reduction of high dose regions (i.e hot spots) within the planned target volume. © 2012 American Association of Physicists in Medicine.

  19. Variational Iterative Refinement Source Term Estimation Algorithm Assessment for Rural and Urban Environments

    NASA Astrophysics Data System (ADS)

    Delle Monache, L.; Rodriguez, L. M.; Meech, S.; Hahn, D.; Betancourt, T.; Steinhoff, D.

    2016-12-01

    It is necessary to accurately estimate the initial source characteristics in the event of an accidental or intentional release of a Chemical, Biological, Radiological, or Nuclear (CBRN) agent into the atmosphere. The accurate estimation of the source characteristics are important because many times they are unknown and the Atmospheric Transport and Dispersion (AT&D) models rely heavily on these estimates to create hazard assessments. To correctly assess the source characteristics in an operational environment where time is critical, the National Center for Atmospheric Research (NCAR) has developed a Source Term Estimation (STE) method, known as the Variational Iterative Refinement STE algorithm (VIRSA). VIRSA consists of a combination of modeling systems. These systems include an AT&D model, its corresponding STE model, a Hybrid Lagrangian-Eulerian Plume Model (H-LEPM), and its mathematical adjoint model. In an operational scenario where we have information regarding the infrastructure of a city, the AT&D model used is the Urban Dispersion Model (UDM) and when using this model in VIRSA we refer to the system as uVIRSA. In all other scenarios where we do not have the city infrastructure information readily available, the AT&D model used is the Second-order Closure Integrated PUFF model (SCIPUFF) and the system is referred to as sVIRSA. VIRSA was originally developed using SCIPUFF 2.4 for the Defense Threat Reduction Agency and integrated into the Hazard Prediction and Assessment Capability and Joint Program for Information Systems Joint Effects Model. The results discussed here are the verification and validation of the upgraded system with SCIPUFF 3.0 and the newly implemented UDM capability. To verify uVIRSA and sVIRSA, synthetic concentration observation scenarios were created in urban and rural environments and the results of this verification are shown. Finally, we validate the STE performance of uVIRSA using scenarios from the Joint Urban 2003 (JU03) experiment, which was held in Oklahoma City and also validate the performance of sVIRSA using scenarios from the FUsing Sensor Integrated Observing Network (FUSION) Field Trial 2007 (FFT07), held at Dugway Proving Grounds in rural Utah.

  20. Numerical Algorithms for Acoustic Integrals - The Devil is in the Details

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1996-01-01

    The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.

  1. Assessment of groundwater exploitation in an aquifer using the random walk on grid method: a case study at Ordos, China

    NASA Astrophysics Data System (ADS)

    Nan, Tongchao; Li, Kaixuan; Wu, Jichun; Yin, Lihe

    2018-04-01

    Sustainability has been one of the key criteria of effective water exploitation. Groundwater exploitation and water-table decline at Haolebaoji water source site in the Ordos basin in NW China has drawn public attention due to concerns about potential threats to ecosystems and grazing land in the area. To better investigate the impact of production wells at Haolebaoji on the water table, an adapted algorithm called the random walk on grid method (WOG) is applied to simulate the hydraulic head in the unconfined and confined aquifers. This is the first attempt to apply WOG to a real groundwater problem. The method can not only evaluate the head values but also the contributions made by each source/sink term. One is allowed to analyze the impact of source/sink terms just as if one had an analytical solution. The head values evaluated by WOG match the values derived from the software Groundwater Modeling System (GMS). It suggests that WOG is effective and applicable in a heterogeneous aquifer with respect to practical problems, and the resultant information is useful for groundwater management.

  2. Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.

    PubMed

    de Groot-Hedlin, C D

    2012-08-01

    An accurate and efficient method to predict infrasound amplitudes from large explosions in the atmosphere is required for diverse source types, including bolides, volcanic eruptions, and nuclear and chemical explosions. A finite-difference, time-domain approach is developed to solve a set of nonlinear fluid dynamic equations for total pressure, temperature, and density fields rather than acoustic perturbations. Three key features for the purpose of synthesizing nonlinear infrasound propagation in realistic media are that it includes gravitational terms, it allows for acoustic absorption, including molecular vibration losses at frequencies well below the molecular vibration frequencies, and the environmental models are constrained to have axial symmetry, allowing a three-dimensional simulation to be reduced to two dimensions. Numerical experiments are performed to assess the algorithm's accuracy and the effect of source amplitudes and atmospheric variability on infrasound waveforms and shock formation. Results show that infrasound waveforms steepen and their associated spectra are shifted to higher frequencies for nonlinear sources, leading to enhanced infrasound attenuation. Results also indicate that nonlinear infrasound amplitudes depend strongly on atmospheric temperature and pressure variations. The solution for total field variables and insertion of gravitational terms also allows for the computation of other disturbances generated by explosions, including gravity waves.

  3. Kalman Filters for Time Delay of Arrival-Based Source Localization

    NASA Astrophysics Data System (ADS)

    Klee, Ulrich; Gehrig, Tobias; McDonough, John

    2006-12-01

    In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA) estimation. In earlier work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation is eliminated by employing a Kalman filter to directly update the speaker's position estimate based on the observed TDOAs. In particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker's position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques. Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time operation.

  4. Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions

    PubMed Central

    Lee, Jung Keun; Park, Edward J.; Robinovitch, Stephen N.

    2012-01-01

    This paper proposes a Kalman filter-based attitude (i.e., roll and pitch) estimation algorithm using an inertial sensor composed of a triaxial accelerometer and a triaxial gyroscope. In particular, the proposed algorithm has been developed for accurate attitude estimation during dynamic conditions, in which external acceleration is present. Although external acceleration is the main source of the attitude estimation error and despite the need for its accurate estimation in many applications, this problem that can be critical for the attitude estimation has not been addressed explicitly in the literature. Accordingly, this paper addresses the combined estimation problem of the attitude and external acceleration. Experimental tests were conducted to verify the performance of the proposed algorithm in various dynamic condition settings and to provide further insight into the variations in the estimation accuracy. Furthermore, two different approaches for dealing with the estimation problem during dynamic conditions were compared, i.e., threshold-based switching approach versus acceleration model-based approach. Based on an external acceleration model, the proposed algorithm was capable of estimating accurate attitudes and external accelerations for short accelerated periods, showing its high effectiveness during short-term fast dynamic conditions. Contrariwise, when the testing condition involved prolonged high external accelerations, the proposed algorithm exhibited gradually increasing errors. However, as soon as the condition returned to static or quasi-static conditions, the algorithm was able to stabilize the estimation error, regaining its high estimation accuracy. PMID:22977288

  5. Objective speech quality assessment and the RPE-LTP coding algorithm in different noise and language conditions.

    PubMed

    Hansen, J H; Nandkumar, S

    1995-01-01

    The formulation of reliable signal processing algorithms for speech coding and synthesis require the selection of a prior criterion of performance. Though coding efficiency (bits/second) or computational requirements can be used, a final performance measure must always include speech quality. In this paper, three objective speech quality measures are considered with respect to quality assessment for American English, noisy American English, and noise-free versions of seven languages. The purpose is to determine whether objective quality measures can be used to quantify changes in quality for a given voice coding method, with a known subjective performance level, as background noise or language conditions are changed. The speech coding algorithm chosen is regular-pulse excitation with long-term prediction (RPE-LTP), which has been chosen as the standard voice compression algorithm for the European Digital Mobile Radio system. Three areas are considered for objective quality assessment which include: (i) vocoder performance for American English in a noise-free environment, (ii) speech quality variation for three additive background noise sources, and (iii) noise-free performance for seven languages which include English, Japanese, Finnish, German, Hindi, Spanish, and French. It is suggested that although existing objective quality measures will never replace subjective testing, they can be a useful means of assessing changes in performance, identifying areas for improvement in algorithm design, and augmenting subjective quality tests for voice coding/compression algorithms in noise-free, noisy, and/or non-English applications.

  6. Broadband continuous wave source localization via pair-wise, cochleagram processing

    NASA Astrophysics Data System (ADS)

    Nosal, Eva-Marie; Frazer, L. Neil

    2005-04-01

    A pair-wise processor has been developed for the passive localization of broadband continuous-wave underwater sources. The algorithm uses sparse hydrophone arrays and does not require previous knowledge of the source signature. It is applicable in multiple source situations. A spectrogram/cochleagram version of the algorithm has been developed in order to utilize higher frequencies at longer ranges where signal incoherence, and limited computational resources, preclude the use of full waveforms. Simulations demonstrating the robustness of the algorithm with respect to noise and environmental mismatch will be presented, together with initial results from the analysis of humpback whale song recorded at the Pacific Missile Range Facility off Kauai. [Work supported by MHPCC and ONR.

  7. Sparse Bayesian Learning for Nonstationary Data Sources

    NASA Astrophysics Data System (ADS)

    Fujimaki, Ryohei; Yairi, Takehisa; Machida, Kazuo

    This paper proposes an online Sparse Bayesian Learning (SBL) algorithm for modeling nonstationary data sources. Although most learning algorithms implicitly assume that a data source does not change over time (stationary), one in the real world usually does due to such various factors as dynamically changing environments, device degradation, sudden failures, etc (nonstationary). The proposed algorithm can be made useable for stationary online SBL by setting time decay parameters to zero, and as such it can be interpreted as a single unified framework for online SBL for use with stationary and nonstationary data sources. Tests both on four types of benchmark problems and on actual stock price data have shown it to perform well.

  8. A Monte Carlo simulation study for the gamma-ray/neutron dual-particle imager using rotational modulation collimator (RMC).

    PubMed

    Kim, Hyun Suk; Choi, Hong Yeop; Lee, Gyemin; Ye, Sung-Joon; Smith, Martin B; Kim, Geehyun

    2018-03-01

    The aim of this work is to develop a gamma-ray/neutron dual-particle imager, based on rotational modulation collimators (RMCs) and pulse shape discrimination (PSD)-capable scintillators, for possible applications for radioactivity monitoring as well as nuclear security and safeguards. A Monte Carlo simulation study was performed to design an RMC system for the dual-particle imaging, and modulation patterns were obtained for gamma-ray and neutron sources in various configurations. We applied an image reconstruction algorithm utilizing the maximum-likelihood expectation-maximization method based on the analytical modeling of source-detector configurations, to the Monte Carlo simulation results. Both gamma-ray and neutron source distributions were reconstructed and evaluated in terms of signal-to-noise ratio, showing the viability of developing an RMC-based gamma-ray/neutron dual-particle imager using PSD-capable scintillators.

  9. Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation

    NASA Technical Reports Server (NTRS)

    Ryabenkii, V. S.; Tsynkov, S. V.; Turchaninov, V. I.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special non-deteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of 'non-reflecting kernels,' nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The non-deteriorating algorithm, which is the core of the new ABCs is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals, and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimension spaces, It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the non-modified scheme. In the paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABCs' algorithm.

  10. Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation

    NASA Astrophysics Data System (ADS)

    Ryaben'kii, V. S.; Tsynkov, S. V.; Turchaninov, V. I.

    2001-12-01

    We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special nondeteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of “nonreflecting kernels” nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The nondeteriorating algorithm, which is the core of the new ABCs, is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimensional spaces. It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the unmodified scheme. In this paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABC algorithm.

  11. Modeling the Volcanic Source at Long Valley, CA, Using a Genetic Algorithm Technique

    NASA Technical Reports Server (NTRS)

    Tiampo, Kristy F.

    1999-01-01

    In this project, we attempted to model the deformation pattern due to the magmatic source at Long Valley caldera using a real-value coded genetic algorithm (GA) inversion similar to that found in Michalewicz, 1992. The project has been both successful and rewarding. The genetic algorithm, coded in the C programming language, performs stable inversions over repeated trials, with varying initial and boundary conditions. The original model used a GA in which the geophysical information was coded into the fitness function through the computation of surface displacements for a Mogi point source in an elastic half-space. The program was designed to invert for a spherical magmatic source - its depth, horizontal location and volume - using the known surface deformations. It also included the capability of inverting for multiple sources.

  12. Efficient electromagnetic source imaging with adaptive standardized LORETA/FOCUSS.

    PubMed

    Schimpf, Paul H; Liu, Hesheng; Ramon, Ceon; Haueisen, Jens

    2005-05-01

    Functional brain imaging and source localization based on the scalp's potential field require a solution to an ill-posed inverse problem with many solutions. This makes it necessary to incorporate a priori knowledge in order to select a particular solution. A computational challenge for some subject-specific head models is that many inverse algorithms require a comprehensive sampling of the candidate source space at the desired resolution. In this study, we present an algorithm that can accurately reconstruct details of localized source activity from a sparse sampling of the candidate source space. Forward computations are minimized through an adaptive procedure that increases source resolution as the spatial extent is reduced. With this algorithm, we were able to compute inverses using only 6% to 11% of the full resolution lead-field, with a localization accuracy that was not significantly different than an exhaustive search through a fully-sampled source space. The technique is, therefore, applicable for use with anatomically-realistic, subject-specific forward models for applications with spatially concentrated source activity.

  13. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

    PubMed

    Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

    2013-09-01

    Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

  14. Dictionary-Based Tensor Canonical Polyadic Decomposition

    NASA Astrophysics Data System (ADS)

    Cohen, Jeremy Emile; Gillis, Nicolas

    2018-04-01

    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.

  15. Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments.

    PubMed

    Gennarelli, Gianluca; Al Khatib, Obada; Soldovieri, Francesco

    2017-10-27

    Indoor positioning of mobile devices plays a key role in many aspects of our daily life. These include real-time people tracking and monitoring, activity recognition, emergency detection, navigation, and numerous location based services. Despite many wireless technologies and data-processing algorithms have been developed in recent years, indoor positioning is still a problem subject of intensive research. This paper deals with the active radio-frequency (RF) source localization in indoor scenarios. The localization task is carried out at the physical layer thanks to receiving sensor arrays which are deployed on the border of the surveillance region to record the signal emitted by the source. The localization problem is formulated as an imaging one by taking advantage of the inverse source approach. Different measurement configurations and data-processing/fusion strategies are examined to investigate their effectiveness in terms of localization accuracy under both line-of-sight (LOS) and non-line of sight (NLOS) conditions. Numerical results based on full-wave synthetic data are reported to support the analysis.

  16. Optimization of a mirror-based neutron source using differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Yurov, D. V.; Prikhodko, V. V.

    2016-12-01

    This study is dedicated to the assessment of capabilities of gas-dynamic trap (GDT) and gas-dynamic multiple-mirror trap (GDMT) as potential neutron sources for subcritical hybrids. In mathematical terms the problem of the study has been formulated as determining the global maximum of fusion gain (Q pl), the latter represented as a function of trap parameters. A differential evolution method has been applied to perform the search. Considered in all calculations has been a configuration of the neutron source with 20 m long distance between the mirrors and 100 MW heating power. It is important to mention that the numerical study has also taken into account a number of constraints on plasma characteristics so as to provide physical credibility of searched-for trap configurations. According to the results obtained the traps considered have demonstrated fusion gain up to 0.2, depending on the constraints applied. This enables them to be used either as neutron sources within subcritical reactors for minor actinides incineration or as material-testing facilities.

  17. Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments

    PubMed Central

    Gennarelli, Gianluca; Al Khatib, Obada; Soldovieri, Francesco

    2017-01-01

    Indoor positioning of mobile devices plays a key role in many aspects of our daily life. These include real-time people tracking and monitoring, activity recognition, emergency detection, navigation, and numerous location based services. Despite many wireless technologies and data-processing algorithms have been developed in recent years, indoor positioning is still a problem subject of intensive research. This paper deals with the active radio-frequency (RF) source localization in indoor scenarios. The localization task is carried out at the physical layer thanks to receiving sensor arrays which are deployed on the border of the surveillance region to record the signal emitted by the source. The localization problem is formulated as an imaging one by taking advantage of the inverse source approach. Different measurement configurations and data-processing/fusion strategies are examined to investigate their effectiveness in terms of localization accuracy under both line-of-sight (LOS) and non-line of sight (NLOS) conditions. Numerical results based on full-wave synthetic data are reported to support the analysis. PMID:29077071

  18. ARYANA: Aligning Reads by Yet Another Approach

    PubMed Central

    2014-01-01

    Motivation Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $106 prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. Contribution We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. Availability ARYANA with complete source code can be obtained from http://github.com/aryana-aligner PMID:25252881

  19. An Energy Efficient Adaptive Sampling Algorithm in a Sensor Network for Automated Water Quality Monitoring.

    PubMed

    Shu, Tongxin; Xia, Min; Chen, Jiahong; Silva, Clarence de

    2017-11-05

    Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy.

  20. ARYANA: Aligning Reads by Yet Another Approach.

    PubMed

    Gholami, Milad; Arbabi, Aryan; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Sadeghi, Mehdi

    2014-01-01

    Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $10(6) prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. ARYANA with complete source code can be obtained from http://github.com/aryana-aligner.

  1. An Energy Efficient Adaptive Sampling Algorithm in a Sensor Network for Automated Water Quality Monitoring

    PubMed Central

    Shu, Tongxin; Xia, Min; Chen, Jiahong; de Silva, Clarence

    2017-01-01

    Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy. PMID:29113087

  2. Connectivity algorithm with depth first search (DFS) on simple graphs

    NASA Astrophysics Data System (ADS)

    Riansanti, O.; Ihsan, M.; Suhaimi, D.

    2018-01-01

    This paper discusses an algorithm to detect connectivity of a simple graph using Depth First Search (DFS). The DFS implementation in this paper differs than other research, that is, on counting the number of visited vertices. The algorithm obtains s from the number of vertices and visits source vertex, following by its adjacent vertices until the last vertex adjacent to the previous source vertex. Any simple graph is connected if s equals 0 and disconnected if s is greater than 0. The complexity of the algorithm is O(n2).

  3. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network

    PubMed Central

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead. PMID:27855165

  4. Comparison of three methods of solution to the inverse problem of groundwater hydrology for multiple pumping stimulation

    NASA Astrophysics Data System (ADS)

    Giudici, Mauro; Casabianca, Davide; Comunian, Alessandro

    2015-04-01

    The basic classical inverse problem of groundwater hydrology aims at determining aquifer transmissivity (T ) from measurements of hydraulic head (h), estimates or measures of source terms and with the least possible knowledge on hydraulic transmissivity. The theory of inverse problems shows that this is an example of ill-posed problem, for which non-uniqueness and instability (or at least ill-conditioning) might preclude the computation of a physically acceptable solution. One of the methods to reduce the problems with non-uniqueness, ill-conditioning and instability is a tomographic approach, i.e., the use of data corresponding to independent flow situations. The latter might correspond to different hydraulic stimulations of the aquifer, i.e., to different pumping schedules and flux rates. Three inverse methods have been analyzed and tested to profit from the use of multiple sets of data: the Differential System Method (DSM), the Comparison Model Method (CMM) and the Double Constraint Method (DCM). DSM and CMM need h all over the domain and thus the first step for their application is the interpolation of measurements of h at sparse points. Moreover, they also need the knowledge of the source terms (aquifer recharge, well pumping rates) all over the aquifer. DSM is intrinsically based on the use of multiple data sets, which permit to write a first-order partial differential equation for T , whereas CMM and DCM were originally proposed to invert a single data set and have been extended to work with multiple data sets in this work. CMM and DCM are based on Darcy's law, which is used to update an initial guess of the T field with formulas based on a comparison of different hydraulic gradients. In particular, the CMM algorithm corrects the T estimate with ratio of the observed hydraulic gradient and that obtained with a comparison model which shares the same boundary conditions and source terms as the model to be calibrated, but a tentative T field. On the other hand the DCM algorithm applies the ratio of the hydraulic gradients obtained for two different forward models, one with the same boundary conditions and source terms as the model to be calibrated and the other one with prescribed head at the positions where in- or out-flow is known and h is measured. For DCM and CMM, multiple stimulation is used by updating the T field separately for each data set and then combining the resulting updated fields with different possible statistics (arithmetic, geometric or harmonic mean, median, least change, etc.). The three algorithms are tested and their characteristics and results are compared with a field data set, which was provided by prof. Fritz Stauffer (ETH) and corresponding to a pumping test in a thin alluvial aquifer in northern Switzerland. Three data sets are available and correspond to the undisturbed state, to the flow field created by a single pumping well and to the situation created by an 'hydraulic dipole', i.e., an extraction and an injection wells. These data sets permit to test the three inverse methods and the different options which can be chosen for their use.

  5. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  6. Neural imaging to track mental states while using an intelligent tutoring system.

    PubMed

    Anderson, John R; Betts, Shawn; Ferris, Jennifer L; Fincham, Jon M

    2010-04-13

    Hemodynamic measures of brain activity can be used to interpret a student's mental state when they are interacting with an intelligent tutoring system. Functional magnetic resonance imaging (fMRI) data were collected while students worked with a tutoring system that taught an algebra isomorph. A cognitive model predicted the distribution of solution times from measures of problem complexity. Separately, a linear discriminant analysis used fMRI data to predict whether or not students were engaged in problem solving. A hidden Markov algorithm merged these two sources of information to predict the mental states of students during problem-solving episodes. The algorithm was trained on data from 1 day of interaction and tested with data from a later day. In terms of predicting what state a student was in during a 2-s period, the algorithm achieved 87% accuracy on the training data and 83% accuracy on the test data. The results illustrate the importance of integrating the bottom-up information from imaging data with the top-down information from a cognitive model.

  7. The successive projection algorithm as an initialization method for brain tumor segmentation using non-negative matrix factorization.

    PubMed

    Sauwen, Nicolas; Acou, Marjan; Bharath, Halandur N; Sima, Diana M; Veraart, Jelle; Maes, Frederik; Himmelreich, Uwe; Achten, Eric; Van Huffel, Sabine

    2017-01-01

    Non-negative matrix factorization (NMF) has become a widely used tool for additive parts-based analysis in a wide range of applications. As NMF is a non-convex problem, the quality of the solution will depend on the initialization of the factor matrices. In this study, the successive projection algorithm (SPA) is proposed as an initialization method for NMF. SPA builds on convex geometry and allocates endmembers based on successive orthogonal subspace projections of the input data. SPA is a fast and reproducible method, and it aligns well with the assumptions made in near-separable NMF analyses. SPA was applied to multi-parametric magnetic resonance imaging (MRI) datasets for brain tumor segmentation using different NMF algorithms. Comparison with common initialization methods shows that SPA achieves similar segmentation quality and it is competitive in terms of convergence rate. Whereas SPA was previously applied as a direct endmember extraction tool, we have shown improved segmentation results when using SPA as an initialization method, as it allows further enhancement of the sources during the NMF iterative procedure.

  8. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales

    PubMed Central

    Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A.; Marks, Natalie C.; Sheehan, Alice S.; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N.; Yoo, Jennie C.; Judge, Luke M.; Spencer, C. Ian; Chukka, Anand C.; Russell, Caitlin R.; So, Po-Lin

    2015-01-01

    Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering. PMID:25333967

  9. A Functional-Genetic Scheme for Seizure Forecasting in Canine Epilepsy.

    PubMed

    Bou Assi, Elie; Nguyen, Dang K; Rihana, Sandy; Sawan, Mohamad

    2018-06-01

    The objective of this work is the development of an accurate seizure forecasting algorithm that considers brain's functional connectivity for electrode selection. We start by proposing Kmeans-directed transfer function, an adaptive functional connectivity method intended for seizure onset zone localization in bilateral intracranial EEG recordings. Electrodes identified as seizure activity sources and sinks are then used to implement a seizure-forecasting algorithm on long-term continuous recordings in dogs with naturally-occurring epilepsy. A precision-recall genetic algorithm is proposed for feature selection in line with a probabilistic support vector machine classifier. Epileptic activity generators were focal in all dogs confirming the diagnosis of focal epilepsy in these animals while sinks spanned both hemispheres in 2 of 3 dogs. Seizure forecasting results show performance improvement compared to previous studies, achieving average sensitivity of 84.82% and time in warning of 0.1. Achieved performances highlight the feasibility of seizure forecasting in canine epilepsy. The ability to improve seizure forecasting provides promise for the development of EEG-triggered closed-loop seizure intervention systems for ambulatory implantation in patients with refractory epilepsy.

  10. Joint subchannel pairing and power control for cognitive radio networks with amplify-and-forward relaying.

    PubMed

    Shen, Yanyan; Wang, Shuqiang; Wei, Zhiming

    2014-01-01

    Dynamic spectrum sharing has drawn intensive attention in cognitive radio networks. The secondary users are allowed to use the available spectrum to transmit data if the interference to the primary users is maintained at a low level. Cooperative transmission for secondary users can reduce the transmission power and thus improve the performance further. We study the joint subchannel pairing and power allocation problem in relay-based cognitive radio networks. The objective is to maximize the sum rate of the secondary user that is helped by an amplify-and-forward relay. The individual power constraints at the source and the relay, the subchannel pairing constraints, and the interference power constraints are considered. The problem under consideration is formulated as a mixed integer programming problem. By the dual decomposition method, a joint optimal subchannel pairing and power allocation algorithm is proposed. To reduce the computational complexity, two suboptimal algorithms are developed. Simulations have been conducted to verify the performance of the proposed algorithms in terms of sum rate and average running time under different conditions.

  11. Vision-based system for the control and measurement of wastewater flow rate in sewer systems.

    PubMed

    Nguyen, L S; Schaeli, B; Sage, D; Kayal, S; Jeanbourquin, D; Barry, D A; Rossi, L

    2009-01-01

    Combined sewer overflows and stormwater discharges represent an important source of contamination to the environment. However, the harsh environment inside sewers and particular hydraulic conditions during rain events reduce the reliability of traditional flow measurement probes. In the following, we present and evaluate an in situ system for the monitoring of water flow in sewers based on video images. This paper focuses on the measurement of the water level based on image-processing techniques. The developed image-based water level algorithms identify the wall/water interface from sewer images and measure its position with respect to real world coordinates. A web-based user interface and a 3-tier system architecture enable the remote configuration of the cameras and the image-processing algorithms. Images acquired and processed by our system were found to reliably measure water levels and thereby to provide crucial information leading to better understand particular hydraulic behaviors. In terms of robustness and accuracy, the water level algorithm provided equal or better results compared to traditional water level probes in three different in situ configurations.

  12. An Algorithm for the Calculation of Exact Term Discrimination Values.

    ERIC Educational Resources Information Center

    Willett, Peter

    1985-01-01

    Reports algorithm for calculation of term discrimination values that is sufficiently fast in operation to permit use of exact values. Evidence is presented to show that relationship between term discrimination and term frequency is crucially dependent upon type of inter-document similarity measure used for calculation of discrimination values. (13…

  13. Where to search top-K biomedical ontologies?

    PubMed

    Oliveira, Daniela; Butt, Anila Sahar; Haller, Armin; Rebholz-Schuhmann, Dietrich; Sahay, Ratnesh

    2018-03-20

    Searching for precise terms and terminological definitions in the biomedical data space is problematic, as researchers find overlapping, closely related and even equivalent concepts in a single or multiple ontologies. Search engines that retrieve ontological resources often suggest an extensive list of search results for a given input term, which leads to the tedious task of selecting the best-fit ontological resource (class or property) for the input term and reduces user confidence in the retrieval engines. A systematic evaluation of these search engines is necessary to understand their strengths and weaknesses in different search requirements. We have implemented seven comparable Information Retrieval ranking algorithms to search through ontologies and compared them against four search engines for ontologies. Free-text queries have been performed, the outcomes have been judged by experts and the ranking algorithms and search engines have been evaluated against the expert-based ground truth (GT). In addition, we propose a probabilistic GT that is developed automatically to provide deeper insights and confidence to the expert-based GT as well as evaluating a broader range of search queries. The main outcome of this work is the identification of key search factors for biomedical ontologies together with search requirements and a set of recommendations that will help biomedical experts and ontology engineers to select the best-suited retrieval mechanism in their search scenarios. We expect that this evaluation will allow researchers and practitioners to apply the current search techniques more reliably and that it will help them to select the right solution for their daily work. The source code (of seven ranking algorithms), ground truths and experimental results are available at https://github.com/danielapoliveira/bioont-search-benchmark.

  14. Addressing fundamental architectural challenges of an activity-based intelligence and advanced analytics (ABIAA) system

    NASA Astrophysics Data System (ADS)

    Yager, Kevin; Albert, Thomas; Brower, Bernard V.; Pellechia, Matthew F.

    2015-06-01

    The domain of Geospatial Intelligence Analysis is rapidly shifting toward a new paradigm of Activity Based Intelligence (ABI) and information-based Tipping and Cueing. General requirements for an advanced ABIAA system present significant challenges in architectural design, computing resources, data volumes, workflow efficiency, data mining and analysis algorithms, and database structures. These sophisticated ABI software systems must include advanced algorithms that automatically flag activities of interest in less time and within larger data volumes than can be processed by human analysts. In doing this, they must also maintain the geospatial accuracy necessary for cross-correlation of multi-intelligence data sources. Historically, serial architectural workflows have been employed in ABIAA system design for tasking, collection, processing, exploitation, and dissemination. These simpler architectures may produce implementations that solve short term requirements; however, they have serious limitations that preclude them from being used effectively in an automated ABIAA system with multiple data sources. This paper discusses modern ABIAA architectural considerations providing an overview of an advanced ABIAA system and comparisons to legacy systems. It concludes with a recommended strategy and incremental approach to the research, development, and construction of a fully automated ABIAA system.

  15. System calibration method for Fourier ptychographic microscopy

    NASA Astrophysics Data System (ADS)

    Pan, An; Zhang, Yan; Zhao, Tianyu; Wang, Zhaojun; Dan, Dan; Lei, Ming; Yao, Baoli

    2017-09-01

    Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging technique with both high-resolution and wide field of view. In current FPM imaging platforms, systematic error sources come from aberrations, light-emitting diode (LED) intensity fluctuation, parameter imperfections, and noise, all of which may severely corrupt the reconstruction results with similar artifacts. Therefore, it would be unlikely to distinguish the dominating error from these degraded reconstructions without any preknowledge. In addition, systematic error is generally a mixture of various error sources in the real situation, and it cannot be separated due to their mutual restriction and conversion. To this end, we report a system calibration procedure, termed SC-FPM, to calibrate the mixed systematic errors simultaneously from an overall perspective, based on the simulated annealing algorithm, the LED intensity correction method, the nonlinear regression process, and the adaptive step-size strategy, which involves the evaluation of an error metric at each iteration step, followed by the re-estimation of accurate parameters. The performance achieved both in simulations and experiments demonstrates that the proposed method outperforms other state-of-the-art algorithms. The reported system calibration scheme improves the robustness of FPM, relaxes the experiment conditions, and does not require any preknowledge, which makes the FPM more pragmatic.

  16. Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models

    USGS Publications Warehouse

    Watling, James I.; Brandt, Laura A.; Bucklin, David N.; Fujisaki, Ikuko; Mazzotti, Frank J.; Romañach, Stephanie; Speroterra, Carolina

    2015-01-01

    Species distribution models (SDMs) are widely used in basic and applied ecology, making it important to understand sources and magnitudes of uncertainty in SDM performance and predictions. We analyzed SDM performance and partitioned variance among prediction maps for 15 rare vertebrate species in the southeastern USA using all possible combinations of seven potential sources of uncertainty in SDMs: algorithms, climate datasets, model domain, species presences, variable collinearity, CO2 emissions scenarios, and general circulation models. The choice of modeling algorithm was the greatest source of uncertainty in SDM performance and prediction maps, with some additional variation in performance associated with the comprehensiveness of the species presences used for modeling. Other sources of uncertainty that have received attention in the SDM literature such as variable collinearity and model domain contributed little to differences in SDM performance or predictions in this study. Predictions from different algorithms tended to be more variable at northern range margins for species with more northern distributions, which may complicate conservation planning at the leading edge of species' geographic ranges. The clear message emerging from this work is that researchers should use multiple algorithms for modeling rather than relying on predictions from a single algorithm, invest resources in compiling a comprehensive set of species presences, and explicitly evaluate uncertainty in SDM predictions at leading range margins.

  17. A linear recurrent kernel online learning algorithm with sparse updates.

    PubMed

    Fan, Haijin; Song, Qing

    2014-02-01

    In this paper, we propose a recurrent kernel algorithm with selectively sparse updates for online learning. The algorithm introduces a linear recurrent term in the estimation of the current output. This makes the past information reusable for updating of the algorithm in the form of a recurrent gradient term. To ensure that the reuse of this recurrent gradient indeed accelerates the convergence speed, a novel hybrid recurrent training is proposed to switch on or off learning the recurrent information according to the magnitude of the current training error. Furthermore, the algorithm includes a data-dependent adaptive learning rate which can provide guaranteed system weight convergence at each training iteration. The learning rate is set as zero when the training violates the derived convergence conditions, which makes the algorithm updating process sparse. Theoretical analyses of the weight convergence are presented and experimental results show the good performance of the proposed algorithm in terms of convergence speed and estimation accuracy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Inverse modeling of rainfall infiltration with a dual permeability approach using different matrix-fracture coupling variants.

    NASA Astrophysics Data System (ADS)

    Blöcher, Johanna; Kuraz, Michal

    2017-04-01

    In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.

  19. Biologically inspired binaural hearing aid algorithms: Design principles and effectiveness

    NASA Astrophysics Data System (ADS)

    Feng, Albert

    2002-05-01

    Despite rapid advances in the sophistication of hearing aid technology and microelectronics, listening in noise remains problematic for people with hearing impairment. To solve this problem two algorithms were designed for use in binaural hearing aid systems. The signal processing strategies are based on principles in auditory physiology and psychophysics: (a) the location/extraction (L/E) binaural computational scheme determines the directions of source locations and cancels noise by applying a simple subtraction method over every frequency band; and (b) the frequency-domain minimum-variance (FMV) scheme extracts a target sound from a known direction amidst multiple interfering sound sources. Both algorithms were evaluated using standard metrics such as signal-to-noise-ratio gain and articulation index. Results were compared with those from conventional adaptive beam-forming algorithms. In free-field tests with multiple interfering sound sources our algorithms performed better than conventional algorithms. Preliminary intelligibility and speech reception results in multitalker environments showed gains for every listener with normal or impaired hearing when the signals were processed in real time with the FMV binaural hearing aid algorithm. [Work supported by NIH-NIDCD Grant No. R21DC04840 and the Beckman Institute.

  20. A clustering algorithm for sample data based on environmental pollution characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Mei; Wang, Pengfei; Chen, Qiang; Wu, Jiadong; Chen, Xiaoyun

    2015-04-01

    Environmental pollution has become an issue of serious international concern in recent years. Among the receptor-oriented pollution models, CMB, PMF, UNMIX, and PCA are widely used as source apportionment models. To improve the accuracy of source apportionment and classify the sample data for these models, this study proposes an easy-to-use, high-dimensional EPC algorithm that not only organizes all of the sample data into different groups according to the similarities in pollution characteristics such as pollution sources and concentrations but also simultaneously detects outliers. The main clustering process consists of selecting the first unlabelled point as the cluster centre, then assigning each data point in the sample dataset to its most similar cluster centre according to both the user-defined threshold and the value of similarity function in each iteration, and finally modifying the clusters using a method similar to k-Means. The validity and accuracy of the algorithm are tested using both real and synthetic datasets, which makes the EPC algorithm practical and effective for appropriately classifying sample data for source apportionment models and helpful for better understanding and interpreting the sources of pollution.

  1. Towards Seismic Tomography Based Upon Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Tromp, J.; Liu, Q.; Tape, C.; Maggi, A.

    2006-12-01

    We outline the theory behind tomographic inversions based on 3D reference models, fully numerical 3D wave propagation, and adjoint methods. Our approach involves computing the Fréchet derivatives for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a spectral-element method (SEM) and a heterogeneous wave-speed model, and stored as synthetic seismograms at particular receivers for which there is data. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the differences between the data and the synthetics are time reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernel. These kernels may be thought of as weighted sums of measurement-specific banana-donut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, i.e., the Fréchet derivatives. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, i.e., the Fréchet derivatives. A conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. Using 2D examples for Rayleigh wave phase-speed maps of southern California, we illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions, and joint source-structure inversions. We also illustrate the characteristics of these 3D finite-frequency kernels based upon adjoint simulations for a variety of global arrivals, e.g., Pdiff, P'P', and SKS, and we illustrate how the approach may be used to investigate body- and surface-wave anisotropy. In adjoint tomography any time segment in which the data and synthetics match reasonably well is suitable for measurement, and this implies a much greater number of phases per seismogram can be used compared to classical tomography in which the sensitivity of the measurements is determined analytically for specific arrivals, e.g., P. We use an automated picking algorithm based upon short-term/long-term averages and strict phase and amplitude anomaly criteria to determine arrivals and time windows suitable for measurement. For shallow global events the algorithm typically identifies of the order of 1000~windows suitable for measurement, whereas for a deep event the number can reach 4000. For southern California earthquakes the number of phases is of the order of 100 for a magnitude 4.0 event and up to 450 for a magnitude 5.0 event. We will show examples of event kernels for both global and regional earthquakes. These event kernels form the basis of adjoint tomography.

  2. Improving oncoplastic breast tumor bed localization for radiotherapy planning using image registration algorithms

    NASA Astrophysics Data System (ADS)

    Wodzinski, Marek; Skalski, Andrzej; Ciepiela, Izabela; Kuszewski, Tomasz; Kedzierawski, Piotr; Gajda, Janusz

    2018-02-01

    Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example. A natural approach to improving tumor bed localization is the use of image registration algorithms. However, this involves two unusual aspects which are not common in typical medical image registration: the real deformation field is discontinuous, and there is no direct correspondence between the cancer and its bed in the source and the target 3D images respectively. The tumor no longer exists during radiotherapy planning. Therefore, a traditional evaluation approach based on known, smooth deformations and target registration error are not directly applicable. In this work, we propose alternative artificial deformations which model the tumor bed creation process. We perform a comprehensive evaluation of the most commonly used deformable registration algorithms: B-Splines free form deformations (B-Splines FFD), different variants of the Demons and TV-L1 optical flow. The evaluation procedure includes quantitative assessment of the dedicated artificial deformations, target registration error calculation, 3D contour propagation and medical experts visual judgment. The results demonstrate that the currently, practically applied image registration (rigid registration and B-Splines FFD) are not able to correctly reconstruct discontinuous deformation fields. We show that the symmetric Demons provide the most accurate soft tissues alignment in terms of the ability to reconstruct the deformation field, target registration error and relative tumor volume change, while B-Splines FFD and TV-L1 optical flow are not an appropriate choice for the breast tumor bed localization problem, even though the visual alignment seems to be better than for the Demons algorithm. However, no algorithm could recover the deformation field with sufficient accuracy in terms of vector length and rotation angle differences.

  3. Mining a database of single amplified genomes from Red Sea brine pool extremophiles—improving reliability of gene function prediction using a profile and pattern matching algorithm (PPMA)

    PubMed Central

    Grötzinger, Stefan W.; Alam, Intikhab; Ba Alawi, Wail; Bajic, Vladimir B.; Stingl, Ulrich; Eppinger, Jörg

    2014-01-01

    Reliable functional annotation of genomic data is the key-step in the discovery of novel enzymes. Intrinsic sequencing data quality problems of single amplified genomes (SAGs) and poor homology of novel extremophile's genomes pose significant challenges for the attribution of functions to the coding sequences identified. The anoxic deep-sea brine pools of the Red Sea are a promising source of novel enzymes with unique evolutionary adaptation. Sequencing data from Red Sea brine pool cultures and SAGs are annotated and stored in the Integrated Data Warehouse of Microbial Genomes (INDIGO) data warehouse. Low sequence homology of annotated genes (no similarity for 35% of these genes) may translate into false positives when searching for specific functions. The Profile and Pattern Matching (PPM) strategy described here was developed to eliminate false positive annotations of enzyme function before progressing to labor-intensive hyper-saline gene expression and characterization. It utilizes InterPro-derived Gene Ontology (GO)-terms (which represent enzyme function profiles) and annotated relevant PROSITE IDs (which are linked to an amino acid consensus pattern). The PPM algorithm was tested on 15 protein families, which were selected based on scientific and commercial potential. An initial list of 2577 enzyme commission (E.C.) numbers was translated into 171 GO-terms and 49 consensus patterns. A subset of INDIGO-sequences consisting of 58 SAGs from six different taxons of bacteria and archaea were selected from six different brine pool environments. Those SAGs code for 74,516 genes, which were independently scanned for the GO-terms (profile filter) and PROSITE IDs (pattern filter). Following stringent reliability filtering, the non-redundant hits (106 profile hits and 147 pattern hits) are classified as reliable, if at least two relevant descriptors (GO-terms and/or consensus patterns) are present. Scripts for annotation, as well as for the PPM algorithm, are available through the INDIGO website. PMID:24778629

  4. Some implementational issues of convection schemes for finite volume formulations

    NASA Technical Reports Server (NTRS)

    Thakur, Siddharth; Shyy, Wei

    1993-01-01

    Two higher-order upwind schemes - second-order upwind and QUICK - are examined in terms of their interpretation, implementation as well as performance for a recirculating flow in a lid-driven cavity, in the context of a control volume formulation using the SIMPLE algorithm. The present formulation of these schemes is based on a unified framework wherein the first-order upwind scheme is chosen as the basis, with the remaining terms being assigned to the source term. The performance of these schemes is contrasted with the first-order upwind and second-order central difference schemes. Also addressed in this study is the issue of boundary treatment associated with these higher-order upwind schemes. Two different boundary treatments - one that uses a two-point scheme consistently within a given control volume at the boundary, and the other that maintains consistency of flux across the interior face between the adjacent control volumes - are formulated and evaluated.

  5. Some implementational issues of convection schemes for finite-volume formulations

    NASA Technical Reports Server (NTRS)

    Thakur, Siddharth; Shyy, Wei

    1993-01-01

    Two higher-order upwind schemes - second-order upwind and QUICK - are examined in terms of their interpretation, implementations, as well as performance for a recirculating flow in a lid-driven cavity, in the context of a control-volume formulation using the SIMPLE algorithm. The present formulation of these schemes is based on a unified framework wherein the first-order upwind scheme is chosen as the basis, with the remaining terms being assigned to the source term. The performance of these schemes is contrasted with the first-order upwind and second-order central difference schemes. Also addressed in this study is the issue of boundary treatment associated with these higher-order upwind schemes. Two different boundary treatments - one that uses a two-point scheme consistently within a given control volume at the boundary, and the other that maintains consistency of flux across the interior face between the adjacent control volumes - are formulated and evaluated.

  6. Multicompare tests of the performance of different metaheuristics in EEG dipole source localization.

    PubMed

    Escalona-Vargas, Diana Irazú; Lopez-Arevalo, Ivan; Gutiérrez, David

    2014-01-01

    We study the use of nonparametric multicompare statistical tests on the performance of simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), when used for electroencephalographic (EEG) source localization. Such task can be posed as an optimization problem for which the referred metaheuristic methods are well suited. Hence, we evaluate the localization's performance in terms of metaheuristics' operational parameters and for a fixed number of evaluations of the objective function. In this way, we are able to link the efficiency of the metaheuristics with a common measure of computational cost. Our results did not show significant differences in the metaheuristics' performance for the case of single source localization. In case of localizing two correlated sources, we found that PSO (ring and tree topologies) and DE performed the worst, then they should not be considered in large-scale EEG source localization problems. Overall, the multicompare tests allowed to demonstrate the little effect that the selection of a particular metaheuristic and the variations in their operational parameters have in this optimization problem.

  7. Improving the signal subtle feature extraction performance based on dual improved fractal box dimension eigenvectors

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Li, Jingchao; Han, Hui; Ying, Yulong

    2018-05-01

    Because of the limitations of the traditional fractal box-counting dimension algorithm in subtle feature extraction of radiation source signals, a dual improved generalized fractal box-counting dimension eigenvector algorithm is proposed. First, the radiation source signal was preprocessed, and a Hilbert transform was performed to obtain the instantaneous amplitude of the signal. Then, the improved fractal box-counting dimension of the signal instantaneous amplitude was extracted as the first eigenvector. At the same time, the improved fractal box-counting dimension of the signal without the Hilbert transform was extracted as the second eigenvector. Finally, the dual improved fractal box-counting dimension eigenvectors formed the multi-dimensional eigenvectors as signal subtle features, which were used for radiation source signal recognition by the grey relation algorithm. The experimental results show that, compared with the traditional fractal box-counting dimension algorithm and the single improved fractal box-counting dimension algorithm, the proposed dual improved fractal box-counting dimension algorithm can better extract the signal subtle distribution characteristics under different reconstruction phase space, and has a better recognition effect with good real-time performance.

  8. Demonstration and Validation of the Geostatistical Temporal-Spatial Algorithm (GTS) for Optimization of Long-Term Monitoring (LTM) of Groundwater at Military and Government Sites

    DTIC Science & Technology

    2010-08-01

    Long - Term Monitoring (LTM) of Groundwater at Military and...Geostatistical Temporal-Spatial Algorithm (GTS) for Optimization of Long - Term Monitoring (LTM) of Groundwater at Military and Government Sites 5a. CONTRACT NUMBER...Council LTM long - term monitoring LTMO long - term monitoring optimization LWQR locally weighted quadratic regression LZ Lower Zone MCL

  9. Unsupervised Spatial Event Detection in Targeted Domains with Applications to Civil Unrest Modeling

    PubMed Central

    Zhao, Liang; Chen, Feng; Dai, Jing; Hua, Ting; Lu, Chang-Tien; Ramakrishnan, Naren

    2014-01-01

    Twitter has become a popular data source as a surrogate for monitoring and detecting events. Targeted domains such as crime, election, and social unrest require the creation of algorithms capable of detecting events pertinent to these domains. Due to the unstructured language, short-length messages, dynamics, and heterogeneity typical of Twitter data streams, it is technically difficult and labor-intensive to develop and maintain supervised learning systems. We present a novel unsupervised approach for detecting spatial events in targeted domains and illustrate this approach using one specific domain, viz. civil unrest modeling. Given a targeted domain, we propose a dynamic query expansion algorithm to iteratively expand domain-related terms, and generate a tweet homogeneous graph. An anomaly identification method is utilized to detect spatial events over this graph by jointly maximizing local modularity and spatial scan statistics. Extensive experiments conducted in 10 Latin American countries demonstrate the effectiveness of the proposed approach. PMID:25350136

  10. Implementation of a kappa-epsilon turbulence model to RPLUS3D code

    NASA Technical Reports Server (NTRS)

    Chitsomboon, Tawit

    1992-01-01

    The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.

  11. Implementation of a kappa-epsilon turbulence model to RPLUS3D code

    NASA Astrophysics Data System (ADS)

    Chitsomboon, Tawit

    1992-02-01

    The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.

  12. A genetic algorithm-based job scheduling model for big data analytics.

    PubMed

    Lu, Qinghua; Li, Shanshan; Zhang, Weishan; Zhang, Lei

    Big data analytics (BDA) applications are a new category of software applications that process large amounts of data using scalable parallel processing infrastructure to obtain hidden value. Hadoop is the most mature open-source big data analytics framework, which implements the MapReduce programming model to process big data with MapReduce jobs. Big data analytics jobs are often continuous and not mutually separated. The existing work mainly focuses on executing jobs in sequence, which are often inefficient and consume high energy. In this paper, we propose a genetic algorithm-based job scheduling model for big data analytics applications to improve the efficiency of big data analytics. To implement the job scheduling model, we leverage an estimation module to predict the performance of clusters when executing analytics jobs. We have evaluated the proposed job scheduling model in terms of feasibility and accuracy.

  13. Modeling Urban Scenarios & Experiments: Fort Indiantown Gap Data Collections Summary and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Daniel E.; Bandstra, Mark S.; Davidson, Gregory G.

    This report summarizes experimental radiation detector, contextual sensor, weather, and global positioning system (GPS) data collected to inform and validate a comprehensive, operational radiation transport modeling framework to evaluate radiation detector system and algorithm performance. This framework will be used to study the influence of systematic effects (such as geometry, background activity, background variability, environmental shielding, etc.) on detector responses and algorithm performance using synthetic time series data. This work consists of performing data collection campaigns at a canonical, controlled environment for complete radiological characterization to help construct and benchmark a high-fidelity model with quantified system geometries, detector response functions,more » and source terms for background and threat objects. This data also provides an archival, benchmark dataset that can be used by the radiation detection community. The data reported here spans four data collection campaigns conducted between May 2015 and September 2016.« less

  14. Intelligent energy harvesting scheme for microbial fuel cells: Maximum power point tracking and voltage overshoot avoidance

    NASA Astrophysics Data System (ADS)

    Alaraj, Muhannad; Radenkovic, Miloje; Park, Jae-Do

    2017-02-01

    Microbial fuel cells (MFCs) are renewable and sustainable energy sources that can be used for various applications. The MFC output power depends on its biochemical conditions as well as the terminal operating points in terms of output voltage and current. There exists one operating point that gives the maximum possible power from the MFC, maximum power point (MPP), for a given operating condition. However, this MPP may vary and needs to be tracked in order to maintain the maximum power extraction from the MFC. Furthermore, MFC reactors often develop voltage overshoots that cause drastic drops in the terminal voltage, current, and the output power. When the voltage overshoot happens, an additional control measure is necessary as conventional MPPT algorithms will fail because of the change in the voltage-current relationship. In this paper, the extremum seeking (ES) algorithm was used to track the varying MPP and a voltage overshoot avoidance (VOA) algorithm is developed to manage the voltage overshoot conditions. The proposed ES-MPPT with VOA algorithm was able to extract 197.2 mJ during 10-min operation avoiding voltage overshoot, while the ES MPPT-only scheme stopped harvesting after only 18.75 mJ because of the voltage overshoot happened at 0.4 min.

  15. Classifying Volcanic Activity Using an Empirical Decision Making Algorithm

    NASA Astrophysics Data System (ADS)

    Junek, W. N.; Jones, W. L.; Woods, M. T.

    2012-12-01

    Detection and classification of developing volcanic activity is vital to eruption forecasting. Timely information regarding an impending eruption would aid civil authorities in determining the proper response to a developing crisis. In this presentation, volcanic activity is characterized using an event tree classifier and a suite of empirical statistical models derived through logistic regression. Forecasts are reported in terms of the United States Geological Survey (USGS) volcano alert level system. The algorithm employs multidisciplinary data (e.g., seismic, GPS, InSAR) acquired by various volcano monitoring systems and source modeling information to forecast the likelihood that an eruption, with a volcanic explosivity index (VEI) > 1, will occur within a quantitatively constrained area. Logistic models are constructed from a sparse and geographically diverse dataset assembled from a collection of historic volcanic unrest episodes. Bootstrapping techniques are applied to the training data to allow for the estimation of robust logistic model coefficients. Cross validation produced a series of receiver operating characteristic (ROC) curves with areas ranging between 0.78-0.81, which indicates the algorithm has good predictive capabilities. The ROC curves also allowed for the determination of a false positive rate and optimum detection for each stage of the algorithm. Forecasts for historic volcanic unrest episodes in North America and Iceland were computed and are consistent with the actual outcome of the events.

  16. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  17. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation ofmore » quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.« less

  18. Blind source separation and localization using microphone arrays

    NASA Astrophysics Data System (ADS)

    Sun, Longji

    The blind source separation and localization problem for audio signals is studied using microphone arrays. Pure delay mixtures of source signals typically encountered in outdoor environments are considered. Our proposed approach utilizes the subspace methods, including multiple signal classification (MUSIC) and estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithms, to estimate the directions of arrival (DOAs) of the sources from the collected mixtures. Since audio signals are generally considered broadband, the DOA estimates at frequencies with the large sum of squared amplitude values are combined to obtain the final DOA estimates. Using the estimated DOAs, the corresponding mixing and demixing matrices are computed, and the source signals are recovered using the inverse short time Fourier transform. Subspace methods take advantage of the spatial covariance matrix of the collected mixtures to achieve robustness to noise. While the subspace methods have been studied for localizing radio frequency signals, audio signals have their special properties. For instance, they are nonstationary, naturally broadband and analog. All of these make the separation and localization for the audio signals more challenging. Moreover, our algorithm is essentially equivalent to the beamforming technique, which suppresses the signals in unwanted directions and only recovers the signals in the estimated DOAs. Several crucial issues related to our algorithm and their solutions have been discussed, including source number estimation, spatial aliasing, artifact filtering, different ways of mixture generation, and source coordinate estimation using multiple arrays. Additionally, comprehensive simulations and experiments have been conducted to examine various aspects of the algorithm. Unlike the existing blind source separation and localization methods, which are generally time consuming, our algorithm needs signal mixtures of only a short duration and therefore supports real-time implementation.

  19. Reconstruction of reflectance data using an interpolation technique.

    PubMed

    Abed, Farhad Moghareh; Amirshahi, Seyed Hossein; Abed, Mohammad Reza Moghareh

    2009-03-01

    A linear interpolation method is applied for reconstruction of reflectance spectra of Munsell as well as ColorChecker SG color chips from the corresponding colorimetric values under a given set of viewing conditions. Hence, different types of lookup tables (LUTs) have been created to connect the colorimetric and spectrophotometeric data as the source and destination spaces in this approach. To optimize the algorithm, different color spaces and light sources have been used to build different types of LUTs. The effects of applied color datasets as well as employed color spaces are investigated. Results of recovery are evaluated by the mean and the maximum color difference values under other sets of standard light sources. The mean and the maximum values of root mean square (RMS) error between the reconstructed and the actual spectra are also calculated. Since the speed of reflectance reconstruction is a key point in the LUT algorithm, the processing time spent for interpolation of spectral data has also been measured for each model. Finally, the performance of the suggested interpolation technique is compared with that of the common principal component analysis method. According to the results, using the CIEXYZ tristimulus values as a source space shows priority over the CIELAB color space. Besides, the colorimetric position of a desired sample is a key point that indicates the success of the approach. In fact, because of the nature of the interpolation technique, the colorimetric position of the desired samples should be located inside the color gamut of available samples in the dataset. The resultant spectra that have been reconstructed by this technique show considerable improvement in terms of RMS error between the actual and the reconstructed reflectance spectra as well as CIELAB color differences under the other light source in comparison with those obtained from the standard PCA technique.

  20. A source-channel coding approach to digital image protection and self-recovery.

    PubMed

    Sarreshtedari, Saeed; Akhaee, Mohammad Ali

    2015-07-01

    Watermarking algorithms have been widely applied to the field of image forensics recently. One of these very forensic applications is the protection of images against tampering. For this purpose, we need to design a watermarking algorithm fulfilling two purposes in case of image tampering: 1) detecting the tampered area of the received image and 2) recovering the lost information in the tampered zones. State-of-the-art techniques accomplish these tasks using watermarks consisting of check bits and reference bits. Check bits are used for tampering detection, whereas reference bits carry information about the whole image. The problem of recovering the lost reference bits still stands. This paper is aimed at showing that having the tampering location known, image tampering can be modeled and dealt with as an erasure error. Therefore, an appropriate design of channel code can protect the reference bits against tampering. In the present proposed method, the total watermark bit-budget is dedicated to three groups: 1) source encoder output bits; 2) channel code parity bits; and 3) check bits. In watermark embedding phase, the original image is source coded and the output bit stream is protected using appropriate channel encoder. For image recovery, erasure locations detected by check bits help channel erasure decoder to retrieve the original source encoded image. Experimental results show that our proposed scheme significantly outperforms recent techniques in terms of image quality for both watermarked and recovered image. The watermarked image quality gain is achieved through spending less bit-budget on watermark, while image recovery quality is considerably improved as a consequence of consistent performance of designed source and channel codes.

  1. Filtered-backprojection reconstruction for a cone-beam computed tomography scanner with independent source and detector rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rit, Simon, E-mail: simon.rit@creatis.insa-lyon.fr; Clackdoyle, Rolf; Keuschnigg, Peter

    Purpose: A new cone-beam CT scanner for image-guided radiotherapy (IGRT) can independently rotate the source and the detector along circular trajectories. Existing reconstruction algorithms are not suitable for this scanning geometry. The authors propose and evaluate a three-dimensional (3D) filtered-backprojection reconstruction for this situation. Methods: The source and the detector trajectories are tuned to image a field-of-view (FOV) that is offset with respect to the center-of-rotation. The new reconstruction formula is derived from the Feldkamp algorithm and results in a similar three-step algorithm: projection weighting, ramp filtering, and weighted backprojection. Simulations of a Shepp Logan digital phantom were used tomore » evaluate the new algorithm with a 10 cm-offset FOV. A real cone-beam CT image with an 8.5 cm-offset FOV was also obtained from projections of an anthropomorphic head phantom. Results: The quality of the cone-beam CT images reconstructed using the new algorithm was similar to those using the Feldkamp algorithm which is used in conventional cone-beam CT. The real image of the head phantom exhibited comparable image quality to that of existing systems. Conclusions: The authors have proposed a 3D filtered-backprojection reconstruction for scanners with independent source and detector rotations that is practical and effective. This algorithm forms the basis for exploiting the scanner’s unique capabilities in IGRT protocols.« less

  2. Subspace-based analysis of the ERT inverse problem

    NASA Astrophysics Data System (ADS)

    Ben Hadj Miled, Mohamed Khames; Miller, Eric L.

    2004-05-01

    In a previous work, we proposed a source-type formulation to the electrical resistance tomography (ERT) problem. Specifically, we showed that inhomogeneities in the medium can be viewed as secondary sources embedded in the homogeneous background medium and located at positions associated with variation in electrical conductivity. Assuming a piecewise constant conductivity distribution, the support of equivalent sources is equal to the boundary of the inhomogeneity. The estimation of the anomaly shape takes the form of an inverse source-type problem. In this paper, we explore the use of subspace methods to localize the secondary equivalent sources associated with discontinuities in the conductivity distribution. Our first alternative is the multiple signal classification (MUSIC) algorithm which is commonly used in the localization of multiple sources. The idea is to project a finite collection of plausible pole (or dipole) sources onto an estimated signal subspace and select those with largest correlations. In ERT, secondary sources are excited simultaneously but in different ways, i.e. with distinct amplitude patterns, depending on the locations and amplitudes of primary sources. If the number of receivers is "large enough", different source configurations can lead to a set of observation vectors that span the data subspace. However, since sources that are spatially close to each other have highly correlated signatures, seperation of such signals becomes very difficult in the presence of noise. To overcome this problem we consider iterative MUSIC algorithms like R-MUSIC and RAP-MUSIC. These recursive algorithms pose a computational burden as they require multiple large combinatorial searches. Results obtained with these algorithms using simulated data of different conductivity patterns are presented.

  3. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients.

    PubMed

    Solano-Altamirano, Juan Manuel; Vázquez-Otero, Alejandro; Khikhlukha, Danila; Dormido, Raquel; Duro, Natividad

    2017-11-30

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.

  4. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients

    PubMed Central

    Solano-Altamirano, Juan Manuel; Khikhlukha, Danila

    2017-01-01

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features. PMID:29189722

  5. Satellite observation of particulate organic carbon dynamics in ...

    EPA Pesticide Factsheets

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical processes that influence POC sources and sinks. Using field observations and satellite ocean color products, we developed a nw multiple regression algorithm to estimate POC on the Louisiana Continental Shelf (LCS) from satellite observations. The algorithm had reliable performance with mean relative error (MRE) of ?40% and root mean square error (RMSE) of ?50% for MODIS and SeaWiFS images for POC ranging between ?80 and ?1200 mg m23, and showed similar performance for a large estuary (Mobile Bay). Substantial spatiotemporal variability in the satellite-derived POC was observed on the LCS, with high POC found on the inner shelf (<10 m depth) and lower POC on the middle (10–50 m depth) and outer shelf (50–200 m depth), and with high POC found in winter (January–March) and lower POC in summer to fall (August–October). Correlation analysis between long-term POC time series and several potential influencing factors indicated that river discharge played a dominant role in POC dynamics on the LCS, while wind and surface currents also affected POC spatial patterns on short time scales. This study adds another example where satellite data with carefully developed algorithms can greatly increase

  6. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  7. Inverse modelling for real-time estimation of radiological consequences in the early stage of an accidental radioactivity release.

    PubMed

    Pecha, Petr; Šmídl, Václav

    2016-11-01

    A stepwise sequential assimilation algorithm is proposed based on an optimisation approach for recursive parameter estimation and tracking of radioactive plume propagation in the early stage of a radiation accident. Predictions of the radiological situation in each time step of the plume propagation are driven by an existing short-term meteorological forecast and the assimilation procedure manipulates the model parameters to match the observations incoming concurrently from the terrain. Mathematically, the task is a typical ill-posed inverse problem of estimating the parameters of the release. The proposed method is designated as a stepwise re-estimation of the source term release dynamics and an improvement of several input model parameters. It results in a more precise determination of the adversely affected areas in the terrain. The nonlinear least-squares regression methodology is applied for estimation of the unknowns. The fast and adequately accurate segmented Gaussian plume model (SGPM) is used in the first stage of direct (forward) modelling. The subsequent inverse procedure infers (re-estimates) the values of important model parameters from the actual observations. Accuracy and sensitivity of the proposed method for real-time forecasting of the accident propagation is studied. First, a twin experiment generating noiseless simulated "artificial" observations is studied to verify the minimisation algorithm. Second, the impact of the measurement noise on the re-estimated source release rate is examined. In addition, the presented method can be used as a proposal for more advanced statistical techniques using, e.g., importance sampling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Multiple sound source localization using gammatone auditory filtering and direct sound componence detection

    NASA Astrophysics Data System (ADS)

    Chen, Huaiyu; Cao, Li

    2017-06-01

    In order to research multiple sound source localization with room reverberation and background noise, we analyze the shortcomings of traditional broadband MUSIC and ordinary auditory filtering based broadband MUSIC method, then a new broadband MUSIC algorithm with gammatone auditory filtering of frequency component selection control and detection of ascending segment of direct sound componence is proposed. The proposed algorithm controls frequency component within the interested frequency band in multichannel bandpass filter stage. Detecting the direct sound componence of the sound source for suppressing room reverberation interference is also proposed, whose merits are fast calculation and avoiding using more complex de-reverberation processing algorithm. Besides, the pseudo-spectrum of different frequency channels is weighted by their maximum amplitude for every speech frame. Through the simulation and real room reverberation environment experiments, the proposed method has good performance. Dynamic multiple sound source localization experimental results indicate that the average absolute error of azimuth estimated by the proposed algorithm is less and the histogram result has higher angle resolution.

  9. Examining effective use of data sources and modeling algorithms for improving biomass estimation in a moist tropical forest of the Brazilian Amazon

    Treesearch

    Yunyun Feng; Dengsheng Lu; Qi Chen; Michael Keller; Emilio Moran; Maiza Nara dos-Santos; Edson Luis Bolfe; Mateus Batistella

    2017-01-01

    Previous research has explored the potential to integrate lidar and optical data in aboveground biomass (AGB) estimation, but how different data sources, vegetation types, and modeling algorithms influence AGB estimation is poorly understood. This research conducts a comparative analysis of different data sources and modeling approaches in improving AGB estimation....

  10. PubFocus: semantic MEDLINE/PubMed citations analytics through integration of controlled biomedical dictionaries and ranking algorithm

    PubMed Central

    Plikus, Maksim V; Zhang, Zina; Chuong, Cheng-Ming

    2006-01-01

    Background Understanding research activity within any given biomedical field is important. Search outputs generated by MEDLINE/PubMed are not well classified and require lengthy manual citation analysis. Automation of citation analytics can be very useful and timesaving for both novices and experts. Results PubFocus web server automates analysis of MEDLINE/PubMed search queries by enriching them with two widely used human factor-based bibliometric indicators of publication quality: journal impact factor and volume of forward references. In addition to providing basic volumetric statistics, PubFocus also prioritizes citations and evaluates authors' impact on the field of search. PubFocus also analyses presence and occurrence of biomedical key terms within citations by utilizing controlled vocabularies. Conclusion We have developed citations' prioritisation algorithm based on journal impact factor, forward referencing volume, referencing dynamics, and author's contribution level. It can be applied either to the primary set of PubMed search results or to the subsets of these results identified through key terms from controlled biomedical vocabularies and ontologies. NCI (National Cancer Institute) thesaurus and MGD (Mouse Genome Database) mammalian gene orthology have been implemented for key terms analytics. PubFocus provides a scalable platform for the integration of multiple available ontology databases. PubFocus analytics can be adapted for input sources of biomedical citations other than PubMed. PMID:17014720

  11. Using the Chandra Source-Finding Algorithm to Automatically Identify Solar X-ray Bright Points

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Tennant, A.; Cirtain, J. M.

    2009-01-01

    This poster details a technique of bright point identification that is used to find sources in Chandra X-ray data. The algorithm, part of a program called LEXTRCT, searches for regions of a given size that are above a minimum signal to noise ratio. The algorithm allows selected pixels to be excluded from the source-finding, thus allowing exclusion of saturated pixels (from flares and/or active regions). For Chandra data the noise is determined by photon counting statistics, whereas solar telescopes typically integrate a flux. Thus the calculated signal-to-noise ratio is incorrect, but we find we can scale the number to get reasonable results. For example, Nakakubo and Hara (1998) find 297 bright points in a September 11, 1996 Yohkoh image; with judicious selection of signal-to-noise ratio, our algorithm finds 300 sources. To further assess the efficacy of the algorithm, we analyze a SOHO/EIT image (195 Angstroms) and compare results with those published in the literature (McIntosh and Gurman, 2005). Finally, we analyze three sets of data from Hinode, representing different parts of the decline to minimum of the solar cycle.

  12. Stacked Denoising Autoencoders Applied to Star/Galaxy Classification

    NASA Astrophysics Data System (ADS)

    Qin, Hao-ran; Lin, Ji-ming; Wang, Jun-yi

    2017-04-01

    In recent years, the deep learning algorithm, with the characteristics of strong adaptability, high accuracy, and structural complexity, has become more and more popular, but it has not yet been used in astronomy. In order to solve the problem that the star/galaxy classification accuracy is high for the bright source set, but low for the faint source set of the Sloan Digital Sky Survey (SDSS) data, we introduced the new deep learning algorithm, namely the SDA (stacked denoising autoencoder) neural network and the dropout fine-tuning technique, which can greatly improve the robustness and antinoise performance. We randomly selected respectively the bright source sets and faint source sets from the SDSS DR12 and DR7 data with spectroscopic measurements, and made preprocessing on them. Then, we randomly selected respectively the training sets and testing sets without replacement from the bright source sets and faint source sets. At last, using these training sets we made the training to obtain the SDA models of the bright sources and faint sources in the SDSS DR7 and DR12, respectively. We compared the test result of the SDA model on the DR12 testing set with the test results of the Library for Support Vector Machines (LibSVM), J48 decision tree, Logistic Model Tree (LMT), Support Vector Machine (SVM), Logistic Regression, and Decision Stump algorithm, and compared the test result of the SDA model on the DR7 testing set with the test results of six kinds of decision trees. The experiments show that the SDA has a better classification accuracy than other machine learning algorithms for the faint source sets of DR7 and DR12. Especially, when the completeness function is used as the evaluation index, compared with the decision tree algorithms, the correctness rate of SDA has improved about 15% for the faint source set of SDSS-DR7.

  13. Blind Channel Equalization with Colored Source Based on Constrained Optimization Methods

    NASA Astrophysics Data System (ADS)

    Wang, Yunhua; DeBrunner, Linda; DeBrunner, Victor; Zhou, Dayong

    2008-12-01

    Tsatsanis and Xu have applied the constrained minimum output variance (CMOV) principle to directly blind equalize a linear channel—a technique that has proven effective with white inputs. It is generally assumed in the literature that their CMOV method can also effectively equalize a linear channel with a colored source. In this paper, we prove that colored inputs will cause the equalizer to incorrectly converge due to inadequate constraints. We also introduce a new blind channel equalizer algorithm that is based on the CMOV principle, but with a different constraint that will correctly handle colored sources. Our proposed algorithm works for channels with either white or colored inputs and performs equivalently to the trained minimum mean-square error (MMSE) equalizer under high SNR. Thus, our proposed algorithm may be regarded as an extension of the CMOV algorithm proposed by Tsatsanis and Xu. We also introduce several methods to improve the performance of our introduced algorithm in the low SNR condition. Simulation results show the superior performance of our proposed methods.

  14. Applying nonlinear diffusion acceleration to the neutron transport k-Eigenvalue problem with anisotropic scattering

    DOE PAGES

    Willert, Jeffrey; Park, H.; Taitano, William

    2015-11-01

    High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.

  15. Some practical universal noiseless coding techniques

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1979-01-01

    Some practical adaptive techniques for the efficient noiseless coding of a broad class of such data sources are developed and analyzed. Algorithms are designed for coding discrete memoryless sources which have a known symbol probability ordering but unknown probability values. A general applicability of these algorithms to solving practical problems is obtained because most real data sources can be simply transformed into this form by appropriate preprocessing. These algorithms have exhibited performance only slightly above all entropy values when applied to real data with stationary characteristics over the measurement span. Performance considerably under a measured average data entropy may be observed when data characteristics are changing over the measurement span.

  16. Competitive evaluation of failure detection algorithms for strapdown redundant inertial instruments

    NASA Technical Reports Server (NTRS)

    Wilcox, J. C.

    1973-01-01

    Algorithms for failure detection, isolation, and correction of redundant inertial instruments in the strapdown dodecahedron configuration are competitively evaluated in a digital computer simulation that subjects them to identical environments. Their performance is compared in terms of orientation and inertial velocity errors and in terms of missed and false alarms. The algorithms appear in the simulation program in modular form, so that they may be readily extracted for use elsewhere. The simulation program and its inputs and outputs are described. The algorithms, along with an eight algorithm that was not simulated, also compared analytically to show the relationships among them.

  17. Concept-match medical data scrubbing. How pathology text can be used in research.

    PubMed

    Berman, Jules J

    2003-06-01

    In the normal course of activity, pathologists create and archive immense data sets of scientifically valuable information. Researchers need pathology-based data sets, annotated with clinical information and linked to archived tissues, to discover and validate new diagnostic tests and therapies. Pathology records can be used for research purposes (without obtaining informed patient consent for each use of each record), provided the data are rendered harmless. Large data sets can be made harmless through 3 computational steps: (1) deidentification, the removal or modification of data fields that can be used to identify a patient (name, social security number, etc); (2) rendering the data ambiguous, ensuring that every data record in a public data set has a nonunique set of characterizing data; and (3) data scrubbing, the removal or transformation of words in free text that can be used to identify persons or that contain information that is incriminating or otherwise private. This article addresses the problem of data scrubbing. To design and implement a general algorithm that scrubs pathology free text, removing all identifying or private information. The Concept-Match algorithm steps through confidential text. When a medical term matching a standard nomenclature term is encountered, the term is replaced by a nomenclature code and a synonym for the original term. When a high-frequency "stop" word, such as a, an, the, or for, is encountered, it is left in place. When any other word is encountered, it is blocked and replaced by asterisks. This produces a scrubbed text. An open-source implementation of the algorithm is freely available. The Concept-Match scrub method transformed pathology free text into scrubbed output that preserved the sense of the original sentences, while it blocked terms that did not match terms found in the Unified Medical Language System (UMLS). The scrubbed product is safe, in the restricted sense that the output retains only standard medical terms. The software implementation scrubbed more than half a million surgical pathology report phrases in less than an hour. Computerized scrubbing can render the textual portion of a pathology report harmless for research purposes. Scrubbing and deidentification methods allow pathologists to create and use large pathology databases to conduct medical research.

  18. A dynamic data source selection system for smartwatch platform.

    PubMed

    Nemati, Ebrahim; Sideris, Konstantinos; Kalantarian, Haik; Sarrafzadeh, Majid

    2016-08-01

    A novel data source selection algorithm is proposed for ambulatory activity tracking of elderly people. The algorithm introduces the concept of dynamic switching between the data collection modules (a smartwatch and a smartphone) to improve accuracy and battery life using contextual information. We show that by making offloading decisions as a function of activity, the proposed algorithm improves power consumption and accuracy of the previous work by 7 hours and 5% respectively compared to the baseline.

  19. Multiple Solutions of Real-time Tsunami Forecasting Using Short-term Inundation Forecasting for Tsunamis Tool

    NASA Astrophysics Data System (ADS)

    Gica, E.

    2016-12-01

    The Short-term Inundation Forecasting for Tsunamis (SIFT) tool, developed by NOAA Center for Tsunami Research (NCTR) at the Pacific Marine Environmental Laboratory (PMEL), is used in forecast operations at the Tsunami Warning Centers in Alaska and Hawaii. The SIFT tool relies on a pre-computed tsunami propagation database, real-time DART buoy data, and an inversion algorithm to define the tsunami source. The tsunami propagation database is composed of 50×100km unit sources, simulated basin-wide for at least 24 hours. Different combinations of unit sources, DART buoys, and length of real-time DART buoy data can generate a wide range of results within the defined tsunami source. For an inexperienced SIFT user, the primary challenge is to determine which solution, among multiple solutions for a single tsunami event, would provide the best forecast in real time. This study investigates how the use of different tsunami sources affects simulated tsunamis at tide gauge locations. Using the tide gauge at Hilo, Hawaii, a total of 50 possible solutions for the 2011 Tohoku tsunami are considered. Maximum tsunami wave amplitude and root mean square error results are used to compare tide gauge data and the simulated tsunami time series. Results of this study will facilitate SIFT users' efforts to determine if the simulated tide gauge tsunami time series from a specific tsunami source solution would be within the range of possible solutions. This study will serve as the basis for investigating more historical tsunami events and tide gauge locations.

  20. EEG artifact removal-state-of-the-art and guidelines.

    PubMed

    Urigüen, Jose Antonio; Garcia-Zapirain, Begoña

    2015-06-01

    This paper presents an extensive review on the artifact removal algorithms used to remove the main sources of interference encountered in the electroencephalogram (EEG), specifically ocular, muscular and cardiac artifacts. We first introduce background knowledge on the characteristics of EEG activity, of the artifacts and of the EEG measurement model. Then, we present algorithms commonly employed in the literature and describe their key features. Lastly, principally on the basis of the results provided by various researchers, but also supported by our own experience, we compare the state-of-the-art methods in terms of reported performance, and provide guidelines on how to choose a suitable artifact removal algorithm for a given scenario. With this review we have concluded that, without prior knowledge of the recorded EEG signal or the contaminants, the safest approach is to correct the measured EEG using independent component analysis-to be precise, an algorithm based on second-order statistics such as second-order blind identification (SOBI). Other effective alternatives include extended information maximization (InfoMax) and an adaptive mixture of independent component analyzers (AMICA), based on higher order statistics. All of these algorithms have proved particularly effective with simulations and, more importantly, with data collected in controlled recording conditions. Moreover, whenever prior knowledge is available, then a constrained form of the chosen method should be used in order to incorporate such additional information. Finally, since which algorithm is the best performing is highly dependent on the type of the EEG signal, the artifacts and the signal to contaminant ratio, we believe that the optimal method for removing artifacts from the EEG consists in combining more than one algorithm to correct the signal using multiple processing stages, even though this is an option largely unexplored by researchers in the area.

  1. Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver

    NASA Astrophysics Data System (ADS)

    Kestener, Pierre

    2017-10-01

    RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.

  2. A multi-scalar PDF approach for LES of turbulent spray combustion

    NASA Astrophysics Data System (ADS)

    Raman, Venkat; Heye, Colin

    2011-11-01

    A comprehensive joint-scalar probability density function (PDF) approach is proposed for large eddy simulation (LES) of turbulent spray combustion and tests are conducted to analyze the validity and modeling requirements. The PDF method has the advantage that the chemical source term appears closed but requires models for the small scale mixing process. A stable and consistent numerical algorithm for the LES/PDF approach is presented. To understand the modeling issues in the PDF method, direct numerical simulation of a spray flame at three different fuel droplet Stokes numbers and an equivalent gaseous flame are carried out. Assumptions in closing the subfilter conditional diffusion term in the filtered PDF transport equation are evaluated for various model forms. In addition, the validity of evaporation rate models in high Stokes number flows is analyzed.

  3. Multidimensional FEM-FCT schemes for arbitrary time stepping

    NASA Astrophysics Data System (ADS)

    Kuzmin, D.; Möller, M.; Turek, S.

    2003-05-01

    The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.

  4. Automated treatment planning for a dedicated multi-source intracranial radiosurgery treatment unit using projected gradient and grassfire algorithms.

    PubMed

    Ghobadi, Kimia; Ghaffari, Hamid R; Aleman, Dionne M; Jaffray, David A; Ruschin, Mark

    2012-06-01

    The purpose of this work is to develop a framework to the inverse problem for radiosurgery treatment planning on the Gamma Knife(®) Perfexion™ (PFX) for intracranial targets. The approach taken in the present study consists of two parts. First, a hybrid grassfire and sphere-packing algorithm is used to obtain shot positions (isocenters) based on the geometry of the target to be treated. For the selected isocenters, a sector duration optimization (SDO) model is used to optimize the duration of radiation delivery from each collimator size from each individual source bank. The SDO model is solved using a projected gradient algorithm. This approach has been retrospectively tested on seven manually planned clinical cases (comprising 11 lesions) including acoustic neuromas and brain metastases. In terms of conformity and organ-at-risk (OAR) sparing, the quality of plans achieved with the inverse planning approach were, on average, improved compared to the manually generated plans. The mean difference in conformity index between inverse and forward plans was -0.12 (range: -0.27 to +0.03) and +0.08 (range: 0.00-0.17) for classic and Paddick definitions, respectively, favoring the inverse plans. The mean difference in volume receiving the prescribed dose (V(100)) between forward and inverse plans was 0.2% (range: -2.4% to +2.0%). After plan renormalization for equivalent coverage (i.e., V(100)), the mean difference in dose to 1 mm(3) of brainstem between forward and inverse plans was -0.24 Gy (range: -2.40 to +2.02 Gy) favoring the inverse plans. Beam-on time varied with the number of isocenters but for the most optimal plans was on average 33 min longer than manual plans (range: -17 to +91 min) when normalized to a calibration dose rate of 3.5 Gy/min. In terms of algorithm performance, the isocenter selection for all the presented plans was performed in less than 3 s, while the SDO was performed in an average of 215 min. PFX inverse planning can be performed using geometric isocenter selection and mathematical modeling and optimization techniques. The obtained treatment plans all meet or exceed clinical guidelines while displaying high conformity. © 2012 American Association of Physicists in Medicine.

  5. Adaptive Cross-correlation Algorithm and Experiment of Extended Scene Shack-Hartmann Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Morgan, Rhonda M.; Green, Joseph J.; Ohara, Catherine M.; Redding, David C.

    2007-01-01

    We have developed a new, adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels in two extended-scene images captured by a Shack-Hartmann wavefront sensor (SH-WFS). It determines the positions of all of the extended-scene image cells relative to a reference cell using an FFT-based iterative image shifting algorithm. It works with both point-source spot images as well as extended scene images. We have also set up a testbed for extended0scene SH-WFS, and tested the ACC algorithm with the measured data of both point-source and extended-scene images. In this paper we describe our algorithm and present out experimental results.

  6. Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.

    PubMed

    Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun

    2018-05-08

    Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.

  7. Human Rights Texts: Converting Human Rights Primary Source Documents into Data.

    PubMed

    Fariss, Christopher J; Linder, Fridolin J; Jones, Zachary M; Crabtree, Charles D; Biek, Megan A; Ross, Ana-Sophia M; Kaur, Taranamol; Tsai, Michael

    2015-01-01

    We introduce and make publicly available a large corpus of digitized primary source human rights documents which are published annually by monitoring agencies that include Amnesty International, Human Rights Watch, the Lawyers Committee for Human Rights, and the United States Department of State. In addition to the digitized text, we also make available and describe document-term matrices, which are datasets that systematically organize the word counts from each unique document by each unique term within the corpus of human rights documents. To contextualize the importance of this corpus, we describe the development of coding procedures in the human rights community and several existing categorical indicators that have been created by human coding of the human rights documents contained in the corpus. We then discuss how the new human rights corpus and the existing human rights datasets can be used with a variety of statistical analyses and machine learning algorithms to help scholars understand how human rights practices and reporting have evolved over time. We close with a discussion of our plans for dataset maintenance, updating, and availability.

  8. Human Rights Texts: Converting Human Rights Primary Source Documents into Data

    PubMed Central

    Fariss, Christopher J.; Linder, Fridolin J.; Jones, Zachary M.; Crabtree, Charles D.; Biek, Megan A.; Ross, Ana-Sophia M.; Kaur, Taranamol; Tsai, Michael

    2015-01-01

    We introduce and make publicly available a large corpus of digitized primary source human rights documents which are published annually by monitoring agencies that include Amnesty International, Human Rights Watch, the Lawyers Committee for Human Rights, and the United States Department of State. In addition to the digitized text, we also make available and describe document-term matrices, which are datasets that systematically organize the word counts from each unique document by each unique term within the corpus of human rights documents. To contextualize the importance of this corpus, we describe the development of coding procedures in the human rights community and several existing categorical indicators that have been created by human coding of the human rights documents contained in the corpus. We then discuss how the new human rights corpus and the existing human rights datasets can be used with a variety of statistical analyses and machine learning algorithms to help scholars understand how human rights practices and reporting have evolved over time. We close with a discussion of our plans for dataset maintenance, updating, and availability. PMID:26418817

  9. Particle Swarm Optimization of Low-Thrust, Geocentric-to-Halo-Orbit Transfers

    NASA Astrophysics Data System (ADS)

    Abraham, Andrew J.

    Missions to Lagrange points are becoming increasingly popular amongst spacecraft mission planners. Lagrange points are locations in space where the gravity force from two bodies, and the centrifugal force acting on a third body, cancel. To date, all spacecraft that have visited a Lagrange point have done so using high-thrust, chemical propulsion. Due to the increasing availability of low-thrust (high efficiency) propulsive devices, and their increasing capability in terms of fuel efficiency and instantaneous thrust, it has now become possible for a spacecraft to reach a Lagrange point orbit without the aid of chemical propellant. While at any given time there are many paths for a low-thrust trajectory to take, only one is optimal. The traditional approach to spacecraft trajectory optimization utilizes some form of gradient-based algorithm. While these algorithms offer numerous advantages, they also have a few significant shortcomings. The three most significant shortcomings are: (1) the fact that an initial guess solution is required to initialize the algorithm, (2) the radius of convergence can be quite small and can allow the algorithm to become trapped in local minima, and (3) gradient information is not always assessable nor always trustworthy for a given problem. To avoid these problems, this dissertation is focused on optimizing a low-thrust transfer trajectory from a geocentric orbit to an Earth-Moon, L1, Lagrange point orbit using the method of Particle Swarm Optimization (PSO). The PSO method is an evolutionary heuristic that was originally written to model birds swarming to locate hidden food sources. This PSO method will enable the exploration of the invariant stable manifold of the target Lagrange point orbit in an effort to optimize the spacecraft's low-thrust trajectory. Examples of these optimized trajectories are presented and contrasted with those found using traditional, gradient-based approaches. In summary, the results of this dissertation find that the PSO method does, indeed, successfully optimize the low-thrust trajectory transfer problem without the need for initial guessing. Furthermore, a two-degree-of-freedom PSO problem formulation significantly outperformed a one-degree-of-freedom formulation by at least an order of magnitude, in terms of CPU time. Finally, the PSO method is also used to solve a traditional, two-burn, impulsive transfer to a Lagrange point orbit using a hybrid optimization algorithm that incorporates a gradient-based shooting algorithm as a pre-optimizer. Surprisingly, the results of this study show that "fast" transfers outperform "slow" transfers in terms of both Deltav and time of flight.

  10. Annual global tree cover estimated by fusing optical and SAR satellite observations

    NASA Astrophysics Data System (ADS)

    Feng, M.; Sexton, J. O.; Channan, S.; Townshend, J. R.

    2017-12-01

    Tree cover defined structurally as the proportional, vertically projected area of vegetation (including leaves, stems, branches, etc.) of woody plants above a given height affects terrestrial energy and water exchanges, photosynthesis and transpiration, net primary production, and carbon and nutrient fluxes. Tree cover provides a measurable attribute upon which forest cover may be defined. Changes in tree cover over time can be used to monitor and retrieve site-specific histories of forest disturbance, succession, and degradation. Measurements of Earth's tree cover have been produced at regional, national, and global extents. However, most representations are static, and those for which multiple time periods have been produced are neither intended nor adequate for consistent, long-term monitoring. Moreover, although a substantial proportion of change has been shown to occur at resolutions below 250 m, existing long-term, Landsat-resolution datasets are either produced as static layers or with annual, five- or ten-year temporal resolution. We have developed an algorithms to retrieve seamless and consistent, sub-hectare resolution estimates of tree-canopy from optical and radar satellite data sources (e.g., Landsat, Sentinel-2, and ALOS-PALSAR). Our approach to estimation enables assimilation of multiple data sources and produces estimates of both cover and its uncertainty at the scale of pixels. It has generated the world's first Landsat-based percent tree cover dataset in 2013. Our previous algorithms are being adapted to produce prototype percent-tree and water-cover layers globally in 2000, 2005, and 2010—as well as annually over North and South America from 2010 to 2015—from passive-optical (Landsat and Sentinel-2) and SAR measurements. Generating a global, annual dataset is beyond the scope of this support; however, North and South America represent all of the world's major biomes and so offer the complete global range of environmental sources of error and uncertainty.

  11. Deadbeat Predictive Controllers

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1997-01-01

    Several new computational algorithms are presented to compute the deadbeat predictive control law. The first algorithm makes use of a multi-step-ahead output prediction to compute the control law without explicitly calculating the controllability matrix. The system identification must be performed first and then the predictive control law is designed. The second algorithm uses the input and output data directly to compute the feedback law. It combines the system identification and the predictive control law into one formulation. The third algorithm uses an observable-canonical form realization to design the predictive controller. The relationship between all three algorithms is established through the use of the state-space representation. All algorithms are applicable to multi-input, multi-output systems with disturbance inputs. In addition to the feedback terms, feed forward terms may also be added for disturbance inputs if they are measurable. Although the feedforward terms do not influence the stability of the closed-loop feedback law, they enhance the performance of the controlled system.

  12. Variational Trajectory Optimization Tool Set: Technical description and user's manual

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Queen, Eric M.; Cavanaugh, Michael D.; Wetzel, Todd A.; Moerder, Daniel D.

    1993-01-01

    The algorithms that comprise the Variational Trajectory Optimization Tool Set (VTOTS) package are briefly described. The VTOTS is a software package for solving nonlinear constrained optimal control problems from a wide range of engineering and scientific disciplines. The VTOTS package was specifically designed to minimize the amount of user programming; in fact, for problems that may be expressed in terms of analytical functions, the user needs only to define the problem in terms of symbolic variables. This version of the VTOTS does not support tabular data; thus, problems must be expressed in terms of analytical functions. The VTOTS package consists of two methods for solving nonlinear optimal control problems: a time-domain finite-element algorithm and a multiple shooting algorithm. These two algorithms, under the VTOTS package, may be run independently or jointly. The finite-element algorithm generates approximate solutions, whereas the shooting algorithm provides a more accurate solution to the optimization problem. A user's manual, some examples with results, and a brief description of the individual subroutines are included.

  13. Ambiguity Resolution for Phase-Based 3-D Source Localization under Fixed Uniform Circular Array.

    PubMed

    Chen, Xin; Liu, Zhen; Wei, Xizhang

    2017-05-11

    Under fixed uniform circular array (UCA), 3-D parameter estimation of a source whose half-wavelength is smaller than the array aperture would suffer from a serious phase ambiguity problem, which also appears in a recently proposed phase-based algorithm. In this paper, by using the centro-symmetry of UCA with an even number of sensors, the source's angles and range can be decoupled and a novel algorithm named subarray grouping and ambiguity searching (SGAS) is addressed to resolve angle ambiguity. In the SGAS algorithm, each subarray formed by two couples of centro-symmetry sensors can obtain a batch of results under different ambiguities, and by searching the nearest value among subarrays, which is always corresponding to correct ambiguity, rough angle estimation with no ambiguity is realized. Then, the unambiguous angles are employed to resolve phase ambiguity in a phase-based 3-D parameter estimation algorithm, and the source's range, as well as more precise angles, can be achieved. Moreover, to improve the practical performance of SGAS, the optimal structure of subarrays and subarray selection criteria are further investigated. Simulation results demonstrate the satisfying performance of the proposed method in 3-D source localization.

  14. On the assessment of spatial resolution of PET systems with iterative image reconstruction

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Cherry, Simon R.; Qi, Jinyi

    2016-03-01

    Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.

  15. A new method for quantifying the performance of EEG blind source separation algorithms by referencing a simultaneously recorded ECoG signal.

    PubMed

    Oosugi, Naoya; Kitajo, Keiichi; Hasegawa, Naomi; Nagasaka, Yasuo; Okanoya, Kazuo; Fujii, Naotaka

    2017-09-01

    Blind source separation (BSS) algorithms extract neural signals from electroencephalography (EEG) data. However, it is difficult to quantify source separation performance because there is no criterion to dissociate neural signals and noise in EEG signals. This study develops a method for evaluating BSS performance. The idea is neural signals in EEG can be estimated by comparison with simultaneously measured electrocorticography (ECoG). Because the ECoG electrodes cover the majority of the lateral cortical surface and should capture most of the original neural sources in the EEG signals. We measured real EEG and ECoG data and developed an algorithm for evaluating BSS performance. First, EEG signals are separated into EEG components using the BSS algorithm. Second, the EEG components are ranked using the correlation coefficients of the ECoG regression and the components are grouped into subsets based on their ranks. Third, canonical correlation analysis estimates how much information is shared between the subsets of the EEG components and the ECoG signals. We used our algorithm to compare the performance of BSS algorithms (PCA, AMUSE, SOBI, JADE, fastICA) via the EEG and ECoG data of anesthetized nonhuman primates. The results (Best case >JADE = fastICA >AMUSE = SOBI ≥ PCA >random separation) were common to the two subjects. To encourage the further development of better BSS algorithms, our EEG and ECoG data are available on our Web site (http://neurotycho.org/) as a common testing platform. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. NASA Tech Briefs, July 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Wirelessly Interrogated Wear or Temperature Sensors; Processing Nanostructured Sensors Using Microfabrication Techniques; Optical Pointing Sensor; Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging; High-Temperature Optical Sensor; Integral Battery Power Limiting Circuit for Intrinsically Safe Applications; Configurable Multi-Purpose Processor; Squeezing Alters Frequency Tuning of WGM Optical Resonator; Automated Computer Access Request System; Range Safety for an Autonomous Flight Safety System; Fast and Easy Searching of Files in Unisys 2200 Computers; Parachute Drag Model; Evolutionary Scheduler for the Deep Space Network; Modular Habitats Comprising Rigid and Inflatable Modules; More About N2O-Based Propulsion and Breathable-Gas Systems; Ultrasonic/Sonic Rotary-Hammer Drills; Miniature Piezoelectric Shaker for Distribution of Unconsolidated Samples to Instrument Cells; Lunar Soil Particle Separator; Advanced Aerobots for Scientific Exploration; Miniature Bioreactor System for Long-Term Cell Culture; Electrochemical Detection of Multiple Bioprocess Analytes; Fabrication and Modification of Nanoporous Silicon Particles; High-Altitude Hydration System; Photon Counting Using Edge-Detection Algorithm; Holographic Vortex Coronagraph; Optical Structural Health Monitoring Device; Fuel-Cell Power Source Based on Onboard Rocket Propellants; Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments; Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS; Improved Speed and Functionality of a 580-GHz Imaging Radar; Bolometric Device Based on Fluxoid Quantization; Algorithms for Learning Preferences for Sets of Objects; Model for Simulating a Spiral Software-Development Process; Algorithm That Synthesizes Other Algorithms for Hashing; Algorithms for High-Speed Noninvasive Eye-Tracking System; and Adapting ASPEN for Orbital Express.

  17. Improved detection of soma location and morphology in fluorescence microscopy images of neurons.

    PubMed

    Kayasandik, Cihan Bilge; Labate, Demetrio

    2016-12-01

    Automated detection and segmentation of somas in fluorescent images of neurons is a major goal in quantitative studies of neuronal networks, including applications of high-content-screenings where it is required to quantify multiple morphological properties of neurons. Despite recent advances in image processing targeted to neurobiological applications, existing algorithms of soma detection are often unreliable, especially when processing fluorescence image stacks of neuronal cultures. In this paper, we introduce an innovative algorithm for the detection and extraction of somas in fluorescent images of networks of cultured neurons where somas and other structures exist in the same fluorescent channel. Our method relies on a new geometrical descriptor called Directional Ratio and a collection of multiscale orientable filters to quantify the level of local isotropy in an image. To optimize the application of this approach, we introduce a new construction of multiscale anisotropic filters that is implemented by separable convolution. Extensive numerical experiments using 2D and 3D confocal images show that our automated algorithm reliably detects somas, accurately segments them, and separates contiguous ones. We include a detailed comparison with state-of-the-art existing methods to demonstrate that our algorithm is extremely competitive in terms of accuracy, reliability and computational efficiency. Our algorithm will facilitate the development of automated platforms for high content neuron image processing. A Matlab code is released open-source and freely available to the scientific community. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evaluating the Real-time and Offline Performance of the Virtual Seismologist Earthquake Early Warning Algorithm

    NASA Astrophysics Data System (ADS)

    Cua, G.; Fischer, M.; Heaton, T.; Wiemer, S.

    2009-04-01

    The Virtual Seismologist (VS) algorithm is a Bayesian approach to regional, network-based earthquake early warning (EEW). Bayes' theorem as applied in the VS algorithm states that the most probable source estimates at any given time is a combination of contributions from relatively static prior information that does not change over the timescale of earthquake rupture and a likelihood function that evolves with time to take into account incoming pick and amplitude observations from the on-going earthquake. Potentially useful types of prior information include network topology or station health status, regional hazard maps, earthquake forecasts, and the Gutenberg-Richter magnitude-frequency relationship. The VS codes provide magnitude and location estimates once picks are available at 4 stations; these source estimates are subsequently updated each second. The algorithm predicts the geographical distribution of peak ground acceleration and velocity using the estimated magnitude and location and appropriate ground motion prediction equations; the peak ground motion estimates are also updated each second. Implementation of the VS algorithm in California and Switzerland is funded by the Seismic Early Warning for Europe (SAFER) project. The VS method is one of three EEW algorithms whose real-time performance is being evaluated and tested by the California Integrated Seismic Network (CISN) EEW project. A crucial component of operational EEW algorithms is the ability to distinguish between noise and earthquake-related signals in real-time. We discuss various empirical approaches that allow the VS algorithm to operate in the presence of noise. Real-time operation of the VS codes at the Southern California Seismic Network (SCSN) began in July 2008. On average, the VS algorithm provides initial magnitude, location, origin time, and ground motion distribution estimates within 17 seconds of the earthquake origin time. These initial estimate times are dominated by the time for 4 acceptable picks to be available, and thus are heavily influenced by the station density in a given region; these initial estimate times also include the effects of telemetry delay, which ranges between 6 and 15 seconds at the SCSN, and processing time (~1 second). Other relevant performance statistics include: 95% of initial real-time location estimates are within 20 km of the actual epicenter, 97% of initial real-time magnitude estimates are within one magnitude unit of the network magnitude. Extension of real-time VS operations to networks in Northern California is an on-going effort. In Switzerland, the VS codes have been run on offline waveform data from over 125 earthquakes recorded by the Swiss Digital Seismic Network (SDSN) and the Swiss Strong Motion Network (SSMS). We discuss the performance of the VS algorithm on these datasets in terms of magnitude, location, and ground motion estimation.

  19. Glint-induced false alarm reduction in signature adaptive target detection

    NASA Astrophysics Data System (ADS)

    Crosby, Frank J.

    2002-07-01

    The signal adaptive target detection algorithm developed by Crosby and Riley uses target geometry to discern anomalies in local backgrounds. Detection is not restricted based on specific target signatures. The robustness of the algorithm is limited by an increased false alarm potential. The base algorithm is extended to eliminate one common source of false alarms in a littoral environment. This common source is glint reflected on the surface of water. The spectral and spatial transience of glint prevent straightforward characterization and complicate exclusion. However, the statistical basis of the detection algorithm and its inherent computations allow for glint discernment and the removal of its influence.

  20. CAMPAIGN: an open-source library of GPU-accelerated data clustering algorithms.

    PubMed

    Kohlhoff, Kai J; Sosnick, Marc H; Hsu, William T; Pande, Vijay S; Altman, Russ B

    2011-08-15

    Data clustering techniques are an essential component of a good data analysis toolbox. Many current bioinformatics applications are inherently compute-intense and work with very large datasets. Sequential algorithms are inadequate for providing the necessary performance. For this reason, we have created Clustering Algorithms for Massively Parallel Architectures, Including GPU Nodes (CAMPAIGN), a central resource for data clustering algorithms and tools that are implemented specifically for execution on massively parallel processing architectures. CAMPAIGN is a library of data clustering algorithms and tools, written in 'C for CUDA' for Nvidia GPUs. The library provides up to two orders of magnitude speed-up over respective CPU-based clustering algorithms and is intended as an open-source resource. New modules from the community will be accepted into the library and the layout of it is such that it can easily be extended to promising future platforms such as OpenCL. Releases of the CAMPAIGN library are freely available for download under the LGPL from https://simtk.org/home/campaign. Source code can also be obtained through anonymous subversion access as described on https://simtk.org/scm/?group_id=453. kjk33@cantab.net.

  1. A novel method for fast imaging of brain function, non-invasively, with light

    NASA Astrophysics Data System (ADS)

    Chance, Britton; Anday, Endla; Nioka, Shoko; Zhou, Shuoming; Hong, Long; Worden, Katherine; Li, C.; Murray, T.; Ovetsky, Y.; Pidikiti, D.; Thomas, R.

    1998-05-01

    Imaging of the human body by any non-invasive technique has been an appropriate goal of physics and medicine, and great success has been obtained with both Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) in brain imaging. Non-imaging responses to functional activation using near infrared spectroscopy of brain (fNIR) obtained in 1993 (Chance, et al. [1]) and in 1994 (Tamura, et al. [2]) are now complemented with images of pre-frontal and parietal stimulation in adults and pre-term neonates in this communication (see also [3]). Prior studies used continuous [4], pulsed [3] or modulated [5] light. The amplitude and phase cancellation of optical patterns as demonstrated for single source detector pairs affords remarkable sensitivity of small object detection in model systems [6]. The methods have now been elaborated with multiple source detector combinations (nine sources, four detectors). Using simple back projection algorithms it is now possible to image sensorimotor and cognitive activation of adult and pre- and full-term neonate human brain function in times < 30 sec and with two dimensional resolutions of < 1 cm in two dimensional displays. The method can be used in evaluation of adult and neonatal cerebral dysfunction in a simple, portable and affordable method that does not require immobilization, as contrasted to MRI and PET.

  2. Noniterative three-dimensional grid generation using parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1985-01-01

    A new algorithm for generating three-dimensional grids has been developed and implemented which numerically solves a parabolic partial differential equation (PDE). The solution procedure marches outward in two coordinate directions, and requires inversion of a scalar tridiagonal system in the third. Source terms have been introduced to control the spacing and angle of grid lines near the grid boundaries, and to control the outer boundary point distribution. The method has been found to generate grids about 100 times faster than comparable grids generated via solution of elliptic PDEs, and produces smooth grids for finite-difference flow calculations.

  3. Determining the perceived value of information when combining supporting and conflicting data

    NASA Astrophysics Data System (ADS)

    Hanratty, Timothy; Heilman, Eric; Richardson, John; Mittrick, Mark; Caylor, Justine

    2017-05-01

    Modern military intelligence operations involves a deluge of information from a large number of sources. A data ranking algorithm that enables the most valuable information to be reviewed first may improve timely and effective analysis. This ranking is termed the value of information (VoI) and its calculation is a current area of research within the US Army Research Laboratory (ARL). ARL has conducted an experiment to correlate the perceptions of subject matter experts with the ARL VoI model and additionally to construct a cognitive model of the ranking process and the amalgamation of supporting and conflicting information.

  4. A-Track: A new approach for detection of moving objects in FITS images

    NASA Astrophysics Data System (ADS)

    Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.

    2016-10-01

    We have developed a fast, open-source, cross-platform pipeline, called A-Track, for detecting the moving objects (asteroids and comets) in sequential telescope images in FITS format. The pipeline is coded in Python 3. The moving objects are detected using a modified line detection algorithm, called MILD. We tested the pipeline on astronomical data acquired by an SI-1100 CCD with a 1-meter telescope. We found that A-Track performs very well in terms of detection efficiency, stability, and processing time. The code is hosted on GitHub under the GNU GPL v3 license.

  5. Modeling Scramjet Flows with Variable Turbulent Prandtl and Schmidt Numbers

    NASA Technical Reports Server (NTRS)

    Xiao, X.; Hassan, H. A.; Baurle, R. A.

    2006-01-01

    A complete turbulence model, where the turbulent Prandtl and Schmidt numbers are calculated as part of the solution and where averages involving chemical source terms are modeled, is presented. The ability of avoiding the use of assumed or evolution Probability Distribution Functions (PDF's) results in a highly efficient algorithm for reacting flows. The predictions of the model are compared with two sets of experiments involving supersonic mixing and one involving supersonic combustion. The results demonstrate the need for consideration of turbulence/chemistry interactions in supersonic combustion. In general, good agreement with experiment is indicated.

  6. Algae Biofuels Co-Location Assessment Tool for Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.

  7. Multitaper scan-free spectrum estimation using a rotational shear interferometer.

    PubMed

    Lepage, Kyle; Thomson, David J; Kraut, Shawn; Brady, David J

    2006-05-01

    Multitaper methods for a scan-free spectrum estimation that uses a rotational shear interferometer are investigated. Before source spectra can be estimated the sources must be detected. A source detection algorithm based upon the multitaper F-test is proposed. The algorithm is simulated, with additive, white Gaussian detector noise. A source with a signal-to-noise ratio (SNR) of 0.71 is detected 2.9 degrees from a source with a SNR of 70.1, with a significance level of 10(-4), approximately 4 orders of magnitude more significant than the source detection obtained with a standard detection algorithm. Interpolation and the use of prewhitening filters are investigated in the context of rotational shear interferometer (RSI) source spectra estimation. Finally, a multitaper spectrum estimator is proposed, simulated, and compared with untapered estimates. The multitaper estimate is found via simulation to distinguish a spectral feature with a SNR of 1.6 near a large spectral feature. The SNR of 1.6 spectral feature is not distinguished by the untapered spectrum estimate. The findings are consistent with the strong capability of the multitaper estimate to reduce out-of-band spectral leakage.

  8. Multitaper scan-free spectrum estimation using a rotational shear interferometer

    NASA Astrophysics Data System (ADS)

    Lepage, Kyle; Thomson, David J.; Kraut, Shawn; Brady, David J.

    2006-05-01

    Multitaper methods for a scan-free spectrum estimation that uses a rotational shear interferometer are investigated. Before source spectra can be estimated the sources must be detected. A source detection algorithm based upon the multitaper F-test is proposed. The algorithm is simulated, with additive, white Gaussian detector noise. A source with a signal-to-noise ratio (SNR) of 0.71 is detected 2.9° from a source with a SNR of 70.1, with a significance level of 10-4, ˜4 orders of magnitude more significant than the source detection obtained with a standard detection algorithm. Interpolation and the use of prewhitening filters are investigated in the context of rotational shear interferometer (RSI) source spectra estimation. Finally, a multitaper spectrum estimator is proposed, simulated, and compared with untapered estimates. The multitaper estimate is found via simulation to distinguish a spectral feature with a SNR of 1.6 near a large spectral feature. The SNR of 1.6 spectral feature is not distinguished by the untapered spectrum estimate. The findings are consistent with the strong capability of the multitaper estimate to reduce out-of-band spectral leakage.

  9. Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region

    PubMed Central

    Naser, Mohamed A.; Patterson, Michael S.

    2011-01-01

    Reconstruction algorithms are presented for two-step solutions of the bioluminescence tomography (BLT) and the fluorescence tomography (FT) problems. In the first step, a continuous wave (cw) diffuse optical tomography (DOT) algorithm is used to reconstruct the tissue optical properties assuming known anatomical information provided by x-ray computed tomography or other methods. Minimization problems are formed based on L1 norm objective functions, where normalized values for the light fluence rates and the corresponding Green’s functions are used. Then an iterative minimization solution shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. Throughout this process the permissible region shrinks from the entire object to just a few points. The optimum reconstructed bioluminescence and fluorescence distributions are chosen to be the results of the iteration corresponding to the permissible region where the objective function has its global minimum This provides efficient BLT and FT reconstruction algorithms without the need for a priori information about the bioluminescence sources or the fluorophore concentration. Multiple small sources and large distributed sources can be reconstructed with good accuracy for the location and the total source power for BLT and the total number of fluorophore molecules for the FT. For non-uniform distributed sources, the size and magnitude become degenerate due to the degrees of freedom available for possible solutions. However, increasing the number of data points by increasing the number of excitation sources can improve the accuracy of reconstruction for non-uniform fluorophore distributions. PMID:21326647

  10. A recursive algorithm for Zernike polynomials

    NASA Technical Reports Server (NTRS)

    Davenport, J. W.

    1982-01-01

    The analysis of a function defined on a rotationally symmetric system, with either a circular or annular pupil is discussed. In order to numerically analyze such systems it is typical to expand the given function in terms of a class of orthogonal polynomials. Because of their particular properties, the Zernike polynomials are especially suited for numerical calculations. Developed is a recursive algorithm that can be used to generate the Zernike polynomials up to a given order. The algorithm is recursively defined over J where R(J,N) is the Zernike polynomial of degree N obtained by orthogonalizing the sequence R(J), R(J+2), ..., R(J+2N) over (epsilon, 1). The terms in the preceding row - the (J-1) row - up to the N+1 term is needed for generating the (J,N)th term. Thus, the algorith generates an upper left-triangular table. This algorithm was placed in the computer with the necessary support program also included.

  11. Efficient image enhancement using sparse source separation in the Retinex theory

    NASA Astrophysics Data System (ADS)

    Yoon, Jongsu; Choi, Jangwon; Choe, Yoonsik

    2017-11-01

    Color constancy is the feature of the human vision system (HVS) that ensures the relative constancy of the perceived color of objects under varying illumination conditions. The Retinex theory of machine vision systems is based on the HVS. Among Retinex algorithms, the physics-based algorithms are efficient; however, they generally do not satisfy the local characteristics of the original Retinex theory because they eliminate global illumination from their optimization. We apply the sparse source separation technique to the Retinex theory to present a physics-based algorithm that satisfies the locality characteristic of the original Retinex theory. Previous Retinex algorithms have limited use in image enhancement because the total variation Retinex results in an overly enhanced image and the sparse source separation Retinex cannot completely restore the original image. In contrast, our proposed method preserves the image edge and can very nearly replicate the original image without any special operation.

  12. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa

    2018-02-01

    Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.

  13. A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models

    NASA Astrophysics Data System (ADS)

    Li, Qia; Micchelli, Charles A.; Shen, Lixin; Xu, Yuesheng

    2012-09-01

    Our goal in this paper is to improve the computational performance of the proximity algorithms for the L1/TV denoising model. This leads us to a new characterization of all solutions to the L1/TV model via fixed-point equations expressed in terms of the proximity operators. Based upon this observation we develop an algorithm for solving the model and establish its convergence. Furthermore, we demonstrate that the proposed algorithm can be accelerated through the use of the componentwise Gauss-Seidel iteration so that the CPU time consumed is significantly reduced. Numerical experiments using the proposed algorithm for impulsive noise removal are included, with a comparison to three recently developed algorithms. The numerical results show that while the proposed algorithm enjoys a high quality of the restored images, as the other three known algorithms do, it performs significantly better in terms of computational efficiency measured in the CPU time consumed.

  14. Screen and clean: a tool for identifying interactions in genome-wide association studies.

    PubMed

    Wu, Jing; Devlin, Bernie; Ringquist, Steven; Trucco, Massimo; Roeder, Kathryn

    2010-04-01

    Epistasis could be an important source of risk for disease. How interacting loci might be discovered is an open question for genome-wide association studies (GWAS). Most researchers limit their statistical analyses to testing individual pairwise interactions (i.e., marginal tests for association). A more effective means of identifying important predictors is to fit models that include many predictors simultaneously (i.e., higher-dimensional models). We explore a procedure called screen and clean (SC) for identifying liability loci, including interactions, by using the lasso procedure, which is a model selection tool for high-dimensional regression. We approach the problem by using a varying dictionary consisting of terms to include in the model. In the first step the lasso dictionary includes only main effects. The most promising single-nucleotide polymorphisms (SNPs) are identified using a screening procedure. Next the lasso dictionary is adjusted to include these main effects and the corresponding interaction terms. Again, promising terms are identified using lasso screening. Then significant terms are identified through the cleaning process. Implementation of SC for GWAS requires algorithms to explore the complex model space induced by the many SNPs genotyped and their interactions. We propose and explore a set of algorithms and find that SC successfully controls Type I error while yielding good power to identify risk loci and their interactions. When the method is applied to data obtained from the Wellcome Trust Case Control Consortium study of Type 1 Diabetes it uncovers evidence supporting interaction within the HLA class II region as well as within Chromosome 12q24.

  15. Algorithms and Application of Sparse Matrix Assembly and Equation Solvers for Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Nguyen, D. T.; Reddy, C. J.; Vatsa, V. N.; Tang, W. H.

    2001-01-01

    An algorithm for symmetric sparse equation solutions on an unstructured grid is described. Efficient, sequential sparse algorithms for degree-of-freedom reordering, supernodes, symbolic/numerical factorization, and forward backward solution phases are reviewed. Three sparse algorithms for the generation and assembly of symmetric systems of matrix equations are presented. The accuracy and numerical performance of the sequential version of the sparse algorithms are evaluated over the frequency range of interest in a three-dimensional aeroacoustics application. Results show that the solver solutions are accurate using a discretization of 12 points per wavelength. Results also show that the first assembly algorithm is impractical for high-frequency noise calculations. The second and third assembly algorithms have nearly equal performance at low values of source frequencies, but at higher values of source frequencies the third algorithm saves CPU time and RAM. The CPU time and the RAM required by the second and third assembly algorithms are two orders of magnitude smaller than that required by the sparse equation solver. A sequential version of these sparse algorithms can, therefore, be conveniently incorporated into a substructuring for domain decomposition formulation to achieve parallel computation, where different substructures are handles by different parallel processors.

  16. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  17. Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Tsay, Si-Cee; King, Michael D.; Herman, Jay R.

    2006-01-01

    During the ACE-Asia field campaign, unprecedented amounts of aerosol property data in East Asia during springtime were collected from an array of aircraft, shipboard, and surface instruments. However, most of the observations were obtained in areas downwind of the source regions. In this paper, the newly developed satellite aerosol algorithm called "Deep Blue" was employed to characterize the properties of aerosols over source regions using radiance measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS). Based upon the ngstr m exponent derived from the Deep Blue algorithm, it was demonstrated that this new algorithm is able to distinguish dust plumes from fine-mode pollution particles even in complex aerosol environments such as the one over Beijing. Furthermore, these results were validated by comparing them with observations from AERONET sites in China and Mongolia during spring 2001. These comparisons show that the values of satellite-retrieved aerosol optical thickness from Deep Blue are generally within 20%-30% of those measured by sunphotometers. The analyses also indicate that the roles of mineral dust and anthropogenic particles are comparable in contributing to the overall aerosol distributions during spring in northern China, while fine-mode particles are dominant over southern China. The spring season in East Asia consists of one of the most complex environments in terms of frequent cloudiness and wide ranges of aerosol loadings and types. This paper will discuss how the factors contributing to this complexity influence the resulting aerosol monthly averages from various satellite sensors and, thus, the synergy among satellite aerosol products.

  18. Improving the space surveillance telescope's performance using multi-hypothesis testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chris Zingarelli, J.; Cain, Stephen; Pearce, Eric

    2014-05-01

    The Space Surveillance Telescope (SST) is a Defense Advanced Research Projects Agency program designed to detect objects in space like near Earth asteroids and space debris in the geosynchronous Earth orbit (GEO) belt. Binary hypothesis test (BHT) methods have historically been used to facilitate the detection of new objects in space. In this paper a multi-hypothesis detection strategy is introduced to improve the detection performance of SST. In this context, the multi-hypothesis testing (MHT) determines if an unresolvable point source is in either the center, a corner, or a side of a pixel in contrast to BHT, which only testsmore » whether an object is in the pixel or not. The images recorded by SST are undersampled such as to cause aliasing, which degrades the performance of traditional detection schemes. The equations for the MHT are derived in terms of signal-to-noise ratio (S/N), which is computed by subtracting the background light level around the pixel being tested and dividing by the standard deviation of the noise. A new method for determining the local noise statistics that rejects outliers is introduced in combination with the MHT. An experiment using observations of a known GEO satellite are used to demonstrate the improved detection performance of the new algorithm over algorithms previously reported in the literature. The results show a significant improvement in the probability of detection by as much as 50% over existing algorithms. In addition to detection, the S/N results prove to be linearly related to the least-squares estimates of point source irradiance, thus improving photometric accuracy.« less

  19. Plagiarism Detection Algorithm for Source Code in Computer Science Education

    ERIC Educational Resources Information Center

    Liu, Xin; Xu, Chan; Ouyang, Boyu

    2015-01-01

    Nowadays, computer programming is getting more necessary in the course of program design in college education. However, the trick of plagiarizing plus a little modification exists among some students' home works. It's not easy for teachers to judge if there's plagiarizing in source code or not. Traditional detection algorithms cannot fit this…

  20. A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.

    1996-02-01

    The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.

  1. The Seismicity of the Central Apennines Region Studied by Means of a Physics-Based Earthquake Simulator

    NASA Astrophysics Data System (ADS)

    Console, R.; Vannoli, P.; Carluccio, R.

    2016-12-01

    The application of a physics-based earthquake simulation algorithm to the central Apennines region, where the 24 August 2016 Amatrice earthquake occurred, allowed the compilation of a synthetic seismic catalog lasting 100 ky, and containing more than 500,000 M ≥ 4.0 events, without the limitations that real catalogs suffer in terms of completeness, homogeneity and time duration. The algorithm on which this simulator is based is constrained by several physical elements as: (a) an average slip rate for every single fault in the investigated fault systems, (b) the process of rupture growth and termination, leading to a self-organized earthquake magnitude distribution, and (c) interaction between earthquake sources, including small magnitude events. Events nucleated in one fault are allowed to expand into neighboring faults, even belonging to a different fault system, if they are separated by less than a given maximum distance. The seismogenic model upon which we applied the simulator code, was derived from the DISS 3.2.0 database (http://diss.rm.ingv.it/diss/), selecting all the fault systems that are recognized in the central Apennines region, for a total of 24 fault systems. The application of our simulation algorithm provides typical features in time, space and magnitude behavior of the seismicity, which are comparable with those of real observations. These features include long-term periodicity and clustering of strong earthquakes, and a realistic earthquake magnitude distribution departing from the linear Gutenberg-Richter distribution in the moderate and higher magnitude range. The statistical distribution of earthquakes with M ≥ 6.0 on single faults exhibits a fairly clear pseudo-periodic behavior, with a coefficient of variation Cv of the order of 0.3-0.6. We found in our synthetic catalog a clear trend of long-term acceleration of seismic activity preceding M ≥ 6.0 earthquakes and quiescence following those earthquakes. Lastly, as an example of a possible use of synthetic catalogs, an attenuation law was applied to all the events reported in the synthetic catalog for the production of maps showing the exceedence probability of given values of peak acceleration (PGA) on the territory under investigation. The application of a physics-based earthquake simulation algorithm to the central Apennines region, where the 24 August 2016 Amatrice earthquake occurred, allowed the compilation of a synthetic seismic catalog lasting 100 ky, and containing more than 500,000 M ≥ 4.0 events, without the limitations that real catalogs suffer in terms of completeness, homogeneity and time duration. The algorithm on which this simulator is based is constrained by several physical elements as: (a) an average slip rate for every single fault in the investigated fault systems, (b) the process of rupture growth and termination, leading to a self-organized earthquake magnitude distribution, and (c) interaction between earthquake sources, including small magnitude events. Events nucleated in one fault are allowed to expand into neighboring faults, even belonging to a different fault system, if they are separated by less than a given maximum distance. The seismogenic model upon which we applied the simulator code, was derived from the DISS 3.2.0 database (http://diss.rm.ingv.it/diss/), selecting all the fault systems that are recognized in the central Apennines region, for a total of 24 fault systems. The application of our simulation algorithm provides typical features in time, space and magnitude behavior of the seismicity, which are comparable with those of real observations. These features include long-term periodicity and clustering of strong earthquakes, and a realistic earthquake magnitude distribution departing from the linear Gutenberg-Richter distribution in the moderate and higher magnitude range. The statistical distribution of earthquakes with M ≥ 6.0 on single faults exhibits a fairly clear pseudo-periodic behavior, with a coefficient of variation Cv of the order of 0.3-0.6. We found in our synthetic catalog a clear trend of long-term acceleration of seismic activity preceding M ≥ 6.0 earthquakes and quiescence following those earthquakes. Lastly, as an example of a possible use of synthetic catalogs, an attenuation law was applied to all the events reported in the synthetic catalog for the production of maps showing the exceedence probability of given values of peak acceleration (PGA) on the territory under investigation.

  2. Backward renormalization-group inference of cortical dipole sources and neural connectivity efficacy

    NASA Astrophysics Data System (ADS)

    Amaral, Selene da Rocha; Baccalá, Luiz A.; Barbosa, Leonardo S.; Caticha, Nestor

    2017-06-01

    Proper neural connectivity inference has become essential for understanding cognitive processes associated with human brain function. Its efficacy is often hampered by the curse of dimensionality. In the electroencephalogram case, which is a noninvasive electrophysiological monitoring technique to record electrical activity of the brain, a possible way around this is to replace multichannel electrode information with dipole reconstructed data. We use a method based on maximum entropy and the renormalization group to infer the position of the sources, whose success hinges on transmitting information from low- to high-resolution representations of the cortex. The performance of this method compares favorably to other available source inference algorithms, which are ranked here in terms of their performance with respect to directed connectivity inference by using artificially generated dynamic data. We examine some representative scenarios comprising different numbers of dynamically connected dipoles over distinct cortical surface positions and under different sensor noise impairment levels. The overall conclusion is that inverse problem solutions do not affect the correct inference of the direction of the flow of information as long as the equivalent dipole sources are correctly found.

  3. Strawberry: Fast and accurate genome-guided transcript reconstruction and quantification from RNA-Seq.

    PubMed

    Liu, Ruolin; Dickerson, Julie

    2017-11-01

    We propose a novel method and software tool, Strawberry, for transcript reconstruction and quantification from RNA-Seq data under the guidance of genome alignment and independent of gene annotation. Strawberry consists of two modules: assembly and quantification. The novelty of Strawberry is that the two modules use different optimization frameworks but utilize the same data graph structure, which allows a highly efficient, expandable and accurate algorithm for dealing large data. The assembly module parses aligned reads into splicing graphs, and uses network flow algorithms to select the most likely transcripts. The quantification module uses a latent class model to assign read counts from the nodes of splicing graphs to transcripts. Strawberry simultaneously estimates the transcript abundances and corrects for sequencing bias through an EM algorithm. Based on simulations, Strawberry outperforms Cufflinks and StringTie in terms of both assembly and quantification accuracies. Under the evaluation of a real data set, the estimated transcript expression by Strawberry has the highest correlation with Nanostring probe counts, an independent experiment measure for transcript expression. Strawberry is written in C++14, and is available as open source software at https://github.com/ruolin/strawberry under the MIT license.

  4. Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel

    NASA Technical Reports Server (NTRS)

    Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.

    2004-01-01

    The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.

  5. Tuning of Kalman filter parameters via genetic algorithm for state-of-charge estimation in battery management system.

    PubMed

    Ting, T O; Man, Ka Lok; Lim, Eng Gee; Leach, Mark

    2014-01-01

    In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Wei-Kuo; Takayabu, Yukari N.; Lang, Steve

    Yanai et al. (1973) utilized the meteorological data collected from a sounding network to present a pioneering work on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Latent heating (LH) is one of the most dominant terms in Q1. Yanai’s paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables in Tropical Rainfall Measuring Mission (TRMM) LH algorithms. A set of algorithms developed for retrievingmore » LH profiles from TRMM-based rainfall profiles are described and evaluated, including details concerning their intrinsic space-time resolutions. Included in the paper are results from a variety of validation analyses that define the uncertainty of the LH profile estimates. Also, examples of how TRMM-retrieved LH profiles have been used to understand the lifecycle of the MJO and improve the predictions of global weather and climate models as well as comparisons with large-scale analyses are provided. Areas for further improvement of the TRMM products are discussed.« less

  7. Tuning of Kalman Filter Parameters via Genetic Algorithm for State-of-Charge Estimation in Battery Management System

    PubMed Central

    Ting, T. O.; Lim, Eng Gee

    2014-01-01

    In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area. PMID:25162041

  8. Semantic similarity analysis of protein data: assessment with biological features and issues.

    PubMed

    Guzzi, Pietro H; Mina, Marco; Guerra, Concettina; Cannataro, Mario

    2012-09-01

    The integration of proteomics data with biological knowledge is a recent trend in bioinformatics. A lot of biological information is available and is spread on different sources and encoded in different ontologies (e.g. Gene Ontology). Annotating existing protein data with biological information may enable the use (and the development) of algorithms that use biological ontologies as framework to mine annotated data. Recently many methodologies and algorithms that use ontologies to extract knowledge from data, as well as to analyse ontologies themselves have been proposed and applied to other fields. Conversely, the use of such annotations for the analysis of protein data is a relatively novel research area that is currently becoming more and more central in research. Existing approaches span from the definition of the similarity among genes and proteins on the basis of the annotating terms, to the definition of novel algorithms that use such similarities for mining protein data on a proteome-wide scale. This work, after the definition of main concept of such analysis, presents a systematic discussion and comparison of main approaches. Finally, remaining challenges, as well as possible future directions of research are presented.

  9. Exploring equivalence domain in nonlinear inverse problems using Covariance Matrix Adaption Evolution Strategy (CMAES) and random sampling

    NASA Astrophysics Data System (ADS)

    Grayver, Alexander V.; Kuvshinov, Alexey V.

    2016-05-01

    This paper presents a methodology to sample equivalence domain (ED) in nonlinear partial differential equation (PDE)-constrained inverse problems. For this purpose, we first applied state-of-the-art stochastic optimization algorithm called Covariance Matrix Adaptation Evolution Strategy (CMAES) to identify low-misfit regions of the model space. These regions were then randomly sampled to create an ensemble of equivalent models and quantify uncertainty. CMAES is aimed at exploring model space globally and is robust on very ill-conditioned problems. We show that the number of iterations required to converge grows at a moderate rate with respect to number of unknowns and the algorithm is embarrassingly parallel. We formulated the problem by using the generalized Gaussian distribution. This enabled us to seamlessly use arbitrary norms for residual and regularization terms. We show that various regularization norms facilitate studying different classes of equivalent solutions. We further show how performance of the standard Metropolis-Hastings Markov chain Monte Carlo algorithm can be substantially improved by using information CMAES provides. This methodology was tested by using individual and joint inversions of magneotelluric, controlled-source electromagnetic (EM) and global EM induction data.

  10. New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation

    NASA Astrophysics Data System (ADS)

    Liu, Jianzhou; Wang, Li; Zhang, Juan

    2017-11-01

    The discrete coupled algebraic Riccati equation (DCARE) has wide applications in control theory and linear system. In general, for the DCARE, one discusses every term of the coupled term, respectively. In this paper, we consider the coupled term as a whole, which is different from the recent results. When applying eigenvalue inequalities to discuss the coupled term, our method has less error. In terms of the properties of special matrices and eigenvalue inequalities, we propose several upper and lower matrix bounds for the solution of DCARE. Further, we discuss the iterative algorithms for the solution of the DCARE. In the fixed point iterative algorithms, the scope of Lipschitz factor is wider than the recent results. Finally, we offer corresponding numerical examples to illustrate the effectiveness of the derived results.

  11. NWRA AVOSS Wake Vortex Prediction Algorithm. 3.1.1

    NASA Technical Reports Server (NTRS)

    Robins, R. E.; Delisi, D. P.; Hinton, David (Technical Monitor)

    2002-01-01

    This report provides a detailed description of the wake vortex prediction algorithm used in the Demonstration Version of NASA's Aircraft Vortex Spacing System (AVOSS). The report includes all equations used in the algorithm, an explanation of how to run the algorithm, and a discussion of how the source code for the algorithm is organized. Several appendices contain important supplementary information, including suggestions for enhancing the algorithm and results from test cases.

  12. System calibration method for Fourier ptychographic microscopy.

    PubMed

    Pan, An; Zhang, Yan; Zhao, Tianyu; Wang, Zhaojun; Dan, Dan; Lei, Ming; Yao, Baoli

    2017-09-01

    Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging technique with both high-resolution and wide field of view. In current FPM imaging platforms, systematic error sources come from aberrations, light-emitting diode (LED) intensity fluctuation, parameter imperfections, and noise, all of which may severely corrupt the reconstruction results with similar artifacts. Therefore, it would be unlikely to distinguish the dominating error from these degraded reconstructions without any preknowledge. In addition, systematic error is generally a mixture of various error sources in the real situation, and it cannot be separated due to their mutual restriction and conversion. To this end, we report a system calibration procedure, termed SC-FPM, to calibrate the mixed systematic errors simultaneously from an overall perspective, based on the simulated annealing algorithm, the LED intensity correction method, the nonlinear regression process, and the adaptive step-size strategy, which involves the evaluation of an error metric at each iteration step, followed by the re-estimation of accurate parameters. The performance achieved both in simulations and experiments demonstrates that the proposed method outperforms other state-of-the-art algorithms. The reported system calibration scheme improves the robustness of FPM, relaxes the experiment conditions, and does not require any preknowledge, which makes the FPM more pragmatic. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  13. Investigation of active structural intensity control in finite beams: theory and experiment

    PubMed

    Audrain; Masson; Berry

    2000-08-01

    An investigation of structural intensity control is presented in this paper. As opposed to previous work, the instantaneous intensity is completely taken into account in the control algorithm, i.e., all the terms are considered in the real-time control process and, in particular, the evanescent waves are considered in this approach. A finite difference approach using five accelerometers is used as the sensing scheme. A feedforward filtered-X least mean square algorithm is adapted to this energy-based control problem, involving a nonpositive definite quadratic form in general. In this respect, the approach is limited to cases where the geometry is such that the intensity component will have the same sign for the control source and the primary disturbance. Results from numerical simulations are first presented to illustrate the benefit of using a cost function based on structural intensity. Experimental validation of the approach is conducted on a free-free beam covered with viscoelastic material. A comparison is made between classical acceleration control and structural intensity control and the performance of both approaches is presented. These results confirm that using intensity control allows the error sensors to be placed closer to the control source and the primary disturbance, while preserving a good control performance.

  14. Fast clustering algorithm for large ECG data sets based on CS theory in combination with PCA and K-NN methods.

    PubMed

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2014-01-01

    Long-term recording of Electrocardiogram (ECG) signals plays an important role in health care systems for diagnostic and treatment purposes of heart diseases. Clustering and classification of collecting data are essential parts for detecting concealed information of P-QRS-T waves in the long-term ECG recording. Currently used algorithms do have their share of drawbacks: 1) clustering and classification cannot be done in real time; 2) they suffer from huge energy consumption and load of sampling. These drawbacks motivated us in developing novel optimized clustering algorithm which could easily scan large ECG datasets for establishing low power long-term ECG recording. In this paper, we present an advanced K-means clustering algorithm based on Compressed Sensing (CS) theory as a random sampling procedure. Then, two dimensionality reduction methods: Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) followed by sorting the data using the K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers are applied to the proposed algorithm. We show our algorithm based on PCA features in combination with K-NN classifier shows better performance than other methods. The proposed algorithm outperforms existing algorithms by increasing 11% classification accuracy. In addition, the proposed algorithm illustrates classification accuracy for K-NN and PNN classifiers, and a Receiver Operating Characteristics (ROC) area of 99.98%, 99.83%, and 99.75% respectively.

  15. On-line node fault injection training algorithm for MLP networks: objective function and convergence analysis.

    PubMed

    Sum, John Pui-Fai; Leung, Chi-Sing; Ho, Kevin I-J

    2012-02-01

    Improving fault tolerance of a neural network has been studied for more than two decades. Various training algorithms have been proposed in sequel. The on-line node fault injection-based algorithm is one of these algorithms, in which hidden nodes randomly output zeros during training. While the idea is simple, theoretical analyses on this algorithm are far from complete. This paper presents its objective function and the convergence proof. We consider three cases for multilayer perceptrons (MLPs). They are: (1) MLPs with single linear output node; (2) MLPs with multiple linear output nodes; and (3) MLPs with single sigmoid output node. For the convergence proof, we show that the algorithm converges with probability one. For the objective function, we show that the corresponding objective functions of cases (1) and (2) are of the same form. They both consist of a mean square errors term, a regularizer term, and a weight decay term. For case (3), the objective function is slight different from that of cases (1) and (2). With the objective functions derived, we can compare the similarities and differences among various algorithms and various cases.

  16. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI

    PubMed Central

    Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao

    2016-01-01

    Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning. PMID:27007379

  17. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI.

    PubMed

    Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao

    2016-03-19

    Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning.

  18. A 3D reconstruction algorithm for magneto-acoustic tomography with magnetic induction based on ultrasound transducer characteristics.

    PubMed

    Ma, Ren; Zhou, Xiaoqing; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng

    2016-12-21

    In this study we present a three-dimensional (3D) reconstruction algorithm for magneto-acoustic tomography with magnetic induction (MAT-MI) based on the characteristics of the ultrasound transducer. The algorithm is investigated to solve the blur problem of the MAT-MI acoustic source image, which is caused by the ultrasound transducer and the scanning geometry. First, we established a transducer model matrix using measured data from the real transducer. With reference to the S-L model used in the computed tomography algorithm, a 3D phantom model of electrical conductivity is set up. Both sphere scanning and cylinder scanning geometries are adopted in the computer simulation. Then, using finite element analysis, the distribution of the eddy current and the acoustic source as well as the acoustic pressure can be obtained with the transducer model matrix. Next, using singular value decomposition, the inverse transducer model matrix together with the reconstruction algorithm are worked out. The acoustic source and the conductivity images are reconstructed using the proposed algorithm. Comparisons between an ideal point transducer and the realistic transducer are made to evaluate the algorithms. Finally, an experiment is performed using a graphite phantom. We found that images of the acoustic source reconstructed using the proposed algorithm are a better match than those using the previous one, the correlation coefficient of sphere scanning geometry is 98.49% and that of cylinder scanning geometry is 94.96%. Comparison between the ideal point transducer and the realistic transducer shows that the correlation coefficients are 90.2% in sphere scanning geometry and 86.35% in cylinder scanning geometry. The reconstruction of the graphite phantom experiment also shows a higher resolution using the proposed algorithm. We conclude that the proposed reconstruction algorithm, which considers the characteristics of the transducer, can obviously improve the resolution of the reconstructed image. This study can be applied to analyse the effect of the position of the transducer and the scanning geometry on imaging. It may provide a more precise method to reconstruct the conductivity distribution in MAT-MI.

  19. Multiscale equation-free algorithms for molecular dynamics

    NASA Astrophysics Data System (ADS)

    Abi Mansour, Andrew

    Molecular dynamics is a physics-based computational tool that has been widely employed to study the dynamics and structure of macromolecules and their assemblies at the atomic scale. However, the efficiency of molecular dynamics simulation is limited because of the broad spectrum of timescales involved. To overcome this limitation, an equation-free algorithm is presented for simulating these systems using a multiscale model cast in terms of atomistic and coarse-grained variables. Both variables are evolved in time in such a way that the cross-talk between short and long scales is preserved. In this way, the coarse-grained variables guide the evolution of the atom-resolved states, while the latter provide the Newtonian physics for the former. While the atomistic variables are evolved using short molecular dynamics runs, time advancement at the coarse-grained level is achieved with a scheme that uses information from past and future states of the system while accounting for both the stochastic and deterministic features of the coarse-grained dynamics. To complete the multiscale cycle, an atom-resolved state consistent with the updated coarse-grained variables is recovered using algorithms from mathematical optimization. This multiscale paradigm is extended to nanofluidics using concepts from hydrodynamics, and it is demonstrated for macromolecular and nanofluidic systems. A toolkit is developed for prototyping these algorithms, which are then implemented within the GROMACS simulation package and released as an open source multiscale simulator.

  20. Data Continuity of Aerosol Index from Suomi NPP/OMPS Observations

    NASA Astrophysics Data System (ADS)

    Ahn, C.; Torres, O.; Tiruchirapalli, R.; Taylor, S.; Jethva, H. T.

    2017-12-01

    Since the development of the Aerosol Index (AI) concept from Nimubs-7 TOMS near-UV measurements, the AI product has been widely used by the aerosol community in a variety of applications including monitoring of the sources and sinks of carbonaceous and desert dust aerosols. The AI uses a pair of near-UV radiances to detect the presence of absorbing particles even over bright backgrounds such as clouds and snow/ice covered areas. Since its inception in the mid 90's, the AI has been available as a by-product of the total ozone product. Due to the implementation of a new total ozone algorithm, the standard AI product will no longer be available starting in 2018. To assure the continuity of the AI record, we have developed an improved AI algorithm that uses a better forward modeling method of the top of atmosphere radiances. The enhanced modelling capability accounts for the scattering of clouds using Mie theory, and includes the effect of wavelength and angle dependent surface reflectance effects. By doing this, we have significantly reduced angular dependent false AI signals such as sun glint over the ocean. We will discuss the improved AI algorithm and present the long term AI record from various UV space borne sensors including TOMS, OMI, OMPS, and EPIC with consistent AI algorithms, followed by future plans for near-real time processing and operational production of a new OMPS AI product.

  1. A novel algorithm for fully automated mapping of geospatial ontologies

    NASA Astrophysics Data System (ADS)

    Chaabane, Sana; Jaziri, Wassim

    2018-01-01

    Geospatial information is collected from different sources thus making spatial ontologies, built for the same geographic domain, heterogeneous; therefore, different and heterogeneous conceptualizations may coexist. Ontology integrating helps creating a common repository of the geospatial ontology and allows removing the heterogeneities between the existing ontologies. Ontology mapping is a process used in ontologies integrating and consists in finding correspondences between the source ontologies. This paper deals with the "mapping" process of geospatial ontologies which consist in applying an automated algorithm in finding the correspondences between concepts referring to the definitions of matching relationships. The proposed algorithm called "geographic ontologies mapping algorithm" defines three types of mapping: semantic, topological and spatial.

  2. External Threat Risk Assessment Algorithm (ExTRAA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Troy C.

    Two risk assessment algorithms and philosophies have been augmented and combined to form a new algorit hm, the External Threat Risk Assessment Algorithm (ExTRAA), that allows for effective and statistically sound analysis of external threat sources in relation to individual attack methods . In addition to the attack method use probability and the attack method employment consequence, t he concept of defining threat sources is added to the risk assessment process. Sample data is tabulated and depicted in radar plots and bar graphs for algorithm demonstration purposes. The largest success of ExTRAA is its ability to visualize the kind ofmore » r isk posed in a given situation using the radar plot method.« less

  3. Estimation of multiple sound sources with data and model uncertainties using the EM and evidential EM algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Xun; Quost, Benjamin; Chazot, Jean-Daniel; Antoni, Jérôme

    2016-01-01

    This paper considers the problem of identifying multiple sound sources from acoustical measurements obtained by an array of microphones. The problem is solved via maximum likelihood. In particular, an expectation-maximization (EM) approach is used to estimate the sound source locations and strengths, the pressure measured by a microphone being interpreted as a mixture of latent signals emitted by the sources. This work also considers two kinds of uncertainties pervading the sound propagation and measurement process: uncertain microphone locations and uncertain wavenumber. These uncertainties are transposed to the data in the belief functions framework. Then, the source locations and strengths can be estimated using a variant of the EM algorithm, known as the Evidential EM (E2M) algorithm. Eventually, both simulation and real experiments are shown to illustrate the advantage of using the EM in the case without uncertainty and the E2M in the case of uncertain measurement.

  4. Localization of incipient tip vortex cavitation using ray based matched field inversion method

    NASA Astrophysics Data System (ADS)

    Kim, Dongho; Seong, Woojae; Choo, Youngmin; Lee, Jeunghoon

    2015-10-01

    Cavitation of marine propeller is one of the main contributing factors of broadband radiated ship noise. In this research, an algorithm for the source localization of incipient vortex cavitation is suggested. Incipient cavitation is modeled as monopole type source and matched-field inversion method is applied to find the source position by comparing the spatial correlation between measured and replicated pressure fields at the receiver array. The accuracy of source localization is improved by broadband matched-field inversion technique that enhances correlation by incoherently averaging correlations of individual frequencies. Suggested localization algorithm is verified through known virtual source and model test conducted in Samsung ship model basin cavitation tunnel. It is found that suggested localization algorithm enables efficient localization of incipient tip vortex cavitation using a few pressure data measured on the outer hull above the propeller and practically applicable to the typically performed model scale experiment in a cavitation tunnel at the early design stage.

  5. TaDb: A time-aware diffusion-based recommender algorithm

    NASA Astrophysics Data System (ADS)

    Li, Wen-Jun; Xu, Yuan-Yuan; Dong, Qiang; Zhou, Jun-Lin; Fu, Yan

    2015-02-01

    Traditional recommender algorithms usually employ the early and recent records indiscriminately, which overlooks the change of user interests over time. In this paper, we show that the interests of a user remain stable in a short-term interval and drift during a long-term period. Based on this observation, we propose a time-aware diffusion-based (TaDb) recommender algorithm, which assigns different temporal weights to the leading links existing before the target user's collection and the following links appearing after that in the diffusion process. Experiments on four real datasets, Netflix, MovieLens, FriendFeed and Delicious show that TaDb algorithm significantly improves the prediction accuracy compared with the algorithms not considering temporal effects.

  6. Long-term optical flux and colour variability in quasars

    NASA Astrophysics Data System (ADS)

    Sukanya, N.; Stalin, C. S.; Jeyakumar, S.; Praveen, D.; Dhani, Arnab; Damle, R.

    2016-02-01

    We have used optical V and R band observations from the Massive Compact Halo Object (MACHO) project on a sample of 59 quasars behind the Magellanic clouds to study their long term optical flux and colour variations. These quasars, lying in the redshift range of 0.2 < z < 2.8 and having apparent V band magnitudes between 16.6 and 20.1 mag, have observations ranging from 49 to 1353 epochs spanning over 7.5 yr with frequency of sampling between 2 to 10 days. All the quasars show variability during the observing period. The normalised excess variance (Fvar) in V and R bands are in the range 0.2% < FVvar < 1.6% and 0.1% < FRvar < 1.5% respectively. In a large fraction of the sources, Fvar is larger in the V band compared to the R band. From the z-transformed discrete cross-correlation function analysis, we find that there is no lag between the V and R band variations. Adopting the Markov Chain Monte Carlo (MCMC) approach, and properly taking into account the correlation between the errors in colours and magnitudes, it is found that the majority of sources show a bluer when brighter trend, while a minor fraction of quasars show the opposite behaviour. This is similar to the results obtained from another two independent algorithms, namely the weighted linear least squares fit (FITEXY) and the bivariate correlated errors and intrinsic scatter regression (BCES). However, the ordinary least squares (OLS) fit, normally used in the colour variability studies of quasars, indicates that all the quasars studied here show a bluer when brighter trend. It is therefore very clear that the OLS algorithm cannot be used for the study of colour variability in quasars.

  7. North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solakiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J.; Bailey, J.; Krider, E. P.; Bateman, M. G.; Boccippio, D.

    2003-01-01

    Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA Marshall Space Flight Center (MSFC) and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix Theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50 ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results. However, for many source locations, the Curvature Matrix Theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.

  8. Application of the Approximate Bayesian Computation methods in the stochastic estimation of atmospheric contamination parameters for mobile sources

    NASA Astrophysics Data System (ADS)

    Kopka, Piotr; Wawrzynczak, Anna; Borysiewicz, Mieczyslaw

    2016-11-01

    In this paper the Bayesian methodology, known as Approximate Bayesian Computation (ABC), is applied to the problem of the atmospheric contamination source identification. The algorithm input data are on-line arriving concentrations of the released substance registered by the distributed sensors network. This paper presents the Sequential ABC algorithm in detail and tests its efficiency in estimation of probabilistic distributions of atmospheric release parameters of a mobile contamination source. The developed algorithms are tested using the data from Over-Land Atmospheric Diffusion (OLAD) field tracer experiment. The paper demonstrates estimation of seven parameters characterizing the contamination source, i.e.: contamination source starting position (x,y), the direction of the motion of the source (d), its velocity (v), release rate (q), start time of release (ts) and its duration (td). The online-arriving new concentrations dynamically update the probability distributions of search parameters. The atmospheric dispersion Second-order Closure Integrated PUFF (SCIPUFF) Model is used as the forward model to predict the concentrations at the sensors locations.

  9. Microseismic source locations with deconvolution migration

    NASA Astrophysics Data System (ADS)

    Wu, Shaojiang; Wang, Yibo; Zheng, Yikang; Chang, Xu

    2018-03-01

    Identifying and locating microseismic events are critical problems in hydraulic fracturing monitoring for unconventional resources exploration. In contrast to active seismic data, microseismic data are usually recorded with unknown source excitation time and source location. In this study, we introduce deconvolution migration by combining deconvolution interferometry with interferometric cross-correlation migration (CCM). This method avoids the need for the source excitation time and enhances both the spatial resolution and robustness by eliminating the square term of the source wavelets from CCM. The proposed algorithm is divided into the following three steps: (1) generate the virtual gathers by deconvolving the master trace with all other traces in the microseismic gather to remove the unknown excitation time; (2) migrate the virtual gather to obtain a single image of the source location and (3) stack all of these images together to get the final estimation image of the source location. We test the proposed method on complex synthetic and field data set from the surface hydraulic fracturing monitoring, and compare the results with those obtained by interferometric CCM. The results demonstrate that the proposed method can obtain a 50 per cent higher spatial resolution image of the source location, and more robust estimation with smaller errors of the localization especially in the presence of velocity model errors. This method is also beneficial for source mechanism inversion and global seismology applications.

  10. The Chandra Source Catalog 2.0: Estimating Source Fluxes

    NASA Astrophysics Data System (ADS)

    Primini, Francis Anthony; Allen, Christopher E.; Miller, Joseph; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    The Second Chandra Source Catalog (CSC2.0) will provide information on approximately 316,000 point or compact extended x-ray sources, derived from over 10,000 ACIS and HRC-I imaging observations available in the public archive at the end of 2014. As in the previous catalog release (CSC1.1), fluxes for these sources will be determined separately from source detection, using a Bayesian formalism that accounts for background, spatial resolution effects, and contamination from nearby sources. However, the CSC2.0 procedure differs from that used in CSC1.1 in three important aspects. First, for sources in crowded regions in which photometric apertures overlap, fluxes are determined jointly, using an extension of the CSC1.1 algorithm, as discussed in Primini & Kashyap (2014ApJ...796…24P). Second, an MCMC procedure is used to estimate marginalized posterior probability distributions for source fluxes. Finally, for sources observed in multiple observations, a Bayesian Blocks algorithm (Scargle, et al. 2013ApJ...764..167S) is used to group observations into blocks of constant source flux.In this poster we present details of the CSC2.0 photometry algorithms and illustrate their performance in actual CSC2.0 datasets.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  11. Cognitive Nonlinear Radar

    DTIC Science & Technology

    2013-01-01

    intelligently selecting waveform parameters using adaptive algorithms. The adaptive algorithms optimize the waveform parameters based on (1) the EM...the environment. 15. SUBJECT TERMS cognitive radar, adaptive sensing, spectrum sensing, multi-objective optimization, genetic algorithms, machine...detection and classification block diagram. .........................................................6 Figure 5. Genetic algorithm block diagram

  12. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2014-10-01

    In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.

  13. Temporal high-pass non-uniformity correction algorithm based on grayscale mapping and hardware implementation

    NASA Astrophysics Data System (ADS)

    Jin, Minglei; Jin, Weiqi; Li, Yiyang; Li, Shuo

    2015-08-01

    In this paper, we propose a novel scene-based non-uniformity correction algorithm for infrared image processing-temporal high-pass non-uniformity correction algorithm based on grayscale mapping (THP and GM). The main sources of non-uniformity are: (1) detector fabrication inaccuracies; (2) non-linearity and variations in the read-out electronics and (3) optical path effects. The non-uniformity will be reduced by non-uniformity correction (NUC) algorithms. The NUC algorithms are often divided into calibration-based non-uniformity correction (CBNUC) algorithms and scene-based non-uniformity correction (SBNUC) algorithms. As non-uniformity drifts temporally, CBNUC algorithms must be repeated by inserting a uniform radiation source which SBNUC algorithms do not need into the view, so the SBNUC algorithm becomes an essential part of infrared imaging system. The SBNUC algorithms' poor robustness often leads two defects: artifacts and over-correction, meanwhile due to complicated calculation process and large storage consumption, hardware implementation of the SBNUC algorithms is difficult, especially in Field Programmable Gate Array (FPGA) platform. The THP and GM algorithm proposed in this paper can eliminate the non-uniformity without causing defects. The hardware implementation of the algorithm only based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay: less than 20 lines, it can be transplanted to a variety of infrared detectors equipped with FPGA image processing module, it can reduce the stripe non-uniformity and the ripple non-uniformity.

  14. Efficient algorithms for fast integration on large data sets from multiple sources.

    PubMed

    Mi, Tian; Rajasekaran, Sanguthevar; Aseltine, Robert

    2012-06-28

    Recent large scale deployments of health information technology have created opportunities for the integration of patient medical records with disparate public health, human service, and educational databases to provide comprehensive information related to health and development. Data integration techniques, which identify records belonging to the same individual that reside in multiple data sets, are essential to these efforts. Several algorithms have been proposed in the literatures that are adept in integrating records from two different datasets. Our algorithms are aimed at integrating multiple (in particular more than two) datasets efficiently. Hierarchical clustering based solutions are used to integrate multiple (in particular more than two) datasets. Edit distance is used as the basic distance calculation, while distance calculation of common input errors is also studied. Several techniques have been applied to improve the algorithms in terms of both time and space: 1) Partial Construction of the Dendrogram (PCD) that ignores the level above the threshold; 2) Ignoring the Dendrogram Structure (IDS); 3) Faster Computation of the Edit Distance (FCED) that predicts the distance with the threshold by upper bounds on edit distance; and 4) A pre-processing blocking phase that limits dynamic computation within each block. We have experimentally validated our algorithms on large simulated as well as real data. Accuracy and completeness are defined stringently to show the performance of our algorithms. In addition, we employ a four-category analysis. Comparison with FEBRL shows the robustness of our approach. In the experiments we conducted, the accuracy we observed exceeded 90% for the simulated data in most cases. 97.7% and 98.1% accuracy were achieved for the constant and proportional threshold, respectively, in a real dataset of 1,083,878 records.

  15. Extended reactance domain algorithms for DoA estimation onto an ESPAR antennas

    NASA Astrophysics Data System (ADS)

    Harabi, F.; Akkar, S.; Gharsallah, A.

    2016-07-01

    Based on an extended reactance domain (RD) covariance matrix, this article proposes new alternatives for directions of arrival (DoAs) estimation of narrowband sources through an electronically steerable parasitic array radiator (ESPAR) antennas. Because of the centro symmetry of the classic ESPAR antennas, an unitary transformation is applied to the collected data that allow an important reduction in both computational cost and processing time and, also, an enhancement of the resolution capabilities of the proposed algorithms. Moreover, this article proposes a new approach for eigenvalues estimation through only some linear operations. The developed DoAs estimation algorithms based on this new approach has illustrated a good behaviour with less calculation cost and processing time as compared to other schemes based on the classic eigenvalues approach. The conducted simulations demonstrate that high-precision and high-resolution DoAs estimation can be reached especially in very closely sources situation and low sources power as compared to the RD-MUSIC algorithm and the RD-PM algorithm. The asymptotic behaviours of the proposed DoAs estimators are analysed in various scenarios and compared with the Cramer-Rao bound (CRB). The conducted simulations testify the high-resolution of the developed algorithms and prove the efficiently of the proposed approach.

  16. Wideband RELAX and wideband CLEAN for aeroacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Li, Jian; Stoica, Petre; Sheplak, Mark; Nishida, Toshikazu

    2004-02-01

    Microphone arrays can be used for acoustic source localization and characterization in wind tunnel testing. In this paper, the wideband RELAX (WB-RELAX) and the wideband CLEAN (WB-CLEAN) algorithms are presented for aeroacoustic imaging using an acoustic array. WB-RELAX is a parametric approach that can be used efficiently for point source imaging without the sidelobe problems suffered by the delay-and-sum beamforming approaches. WB-CLEAN does not have sidelobe problems either, but it behaves more like a nonparametric approach and can be used for both point source and distributed source imaging. Moreover, neither of the algorithms suffers from the severe performance degradations encountered by the adaptive beamforming methods when the number of snapshots is small and/or the sources are highly correlated or coherent with each other. A two-step optimization procedure is used to implement the WB-RELAX and WB-CLEAN algorithms efficiently. The performance of WB-RELAX and WB-CLEAN is demonstrated by applying them to measured data obtained at the NASA Langley Quiet Flow Facility using a small aperture directional array (SADA). Somewhat surprisingly, using these approaches, not only were the parameters of the dominant source accurately determined, but a highly correlated multipath of the dominant source was also discovered.

  17. Locating hazardous gas leaks in the atmosphere via modified genetic, MCMC and particle swarm optimization algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Zhang, Ru; Yan, Yuting; Dong, Xiaoqiang; Li, Jun Ming

    2017-05-01

    Hazardous gas leaks in the atmosphere can cause significant economic losses in addition to environmental hazards, such as fires and explosions. A three-stage hazardous gas leak source localization method was developed that uses movable and stationary gas concentration sensors. The method calculates a preliminary source inversion with a modified genetic algorithm (MGA) and has the potential to crossover with eliminated individuals from the population, following the selection of the best candidate. The method then determines a search zone using Markov Chain Monte Carlo (MCMC) sampling, utilizing a partial evaluation strategy. The leak source is then accurately localized using a modified guaranteed convergence particle swarm optimization algorithm with several bad-performing individuals, following selection of the most successful individual with dynamic updates. The first two stages are based on data collected by motionless sensors, and the last stage is based on data from movable robots with sensors. The measurement error adaptability and the effect of the leak source location were analyzed. The test results showed that this three-stage localization process can localize a leak source within 1.0 m of the source for different leak source locations, with measurement error standard deviation smaller than 2.0.

  18. Constrained Null Space Component Analysis for Semiblind Source Separation Problem.

    PubMed

    Hwang, Wen-Liang; Lu, Keng-Shih; Ho, Jinn

    2018-02-01

    The blind source separation (BSS) problem extracts unknown sources from observations of their unknown mixtures. A current trend in BSS is the semiblind approach, which incorporates prior information on sources or how the sources are mixed. The constrained independent component analysis (ICA) approach has been studied to impose constraints on the famous ICA framework. We introduced an alternative approach based on the null space component (NCA) framework and referred to the approach as the c-NCA approach. We also presented the c-NCA algorithm that uses signal-dependent semidefinite operators, which is a bilinear mapping, as signatures for operator design in the c-NCA approach. Theoretically, we showed that the source estimation of the c-NCA algorithm converges with a convergence rate dependent on the decay of the sequence, obtained by applying the estimated operators on corresponding sources. The c-NCA can be formulated as a deterministic constrained optimization method, and thus, it can take advantage of solvers developed in optimization society for solving the BSS problem. As examples, we demonstrated electroencephalogram interference rejection problems can be solved by the c-NCA with proximal splitting algorithms by incorporating a sparsity-enforcing separation model and considering the case when reference signals are available.

  19. Wideband RELAX and wideband CLEAN for aeroacoustic imaging.

    PubMed

    Wang, Yanwei; Li, Jian; Stoica, Petre; Sheplak, Mark; Nishida, Toshikazu

    2004-02-01

    Microphone arrays can be used for acoustic source localization and characterization in wind tunnel testing. In this paper, the wideband RELAX (WB-RELAX) and the wideband CLEAN (WB-CLEAN) algorithms are presented for aeroacoustic imaging using an acoustic array. WB-RELAX is a parametric approach that can be used efficiently for point source imaging without the sidelobe problems suffered by the delay-and-sum beamforming approaches. WB-CLEAN does not have sidelobe problems either, but it behaves more like a nonparametric approach and can be used for both point source and distributed source imaging. Moreover, neither of the algorithms suffers from the severe performance degradations encountered by the adaptive beamforming methods when the number of snapshots is small and/or the sources are highly correlated or coherent with each other. A two-step optimization procedure is used to implement the WB-RELAX and WB-CLEAN algorithms efficiently. The performance of WB-RELAX and WB-CLEAN is demonstrated by applying them to measured data obtained at the NASA Langley Quiet Flow Facility using a small aperture directional array (SADA). Somewhat surprisingly, using these approaches, not only were the parameters of the dominant source accurately determined, but a highly correlated multipath of the dominant source was also discovered.

  20. Intelligent power management in a vehicular system with multiple power sources

    NASA Astrophysics Data System (ADS)

    Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul

    This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.

  1. Image authentication using distributed source coding.

    PubMed

    Lin, Yao-Chung; Varodayan, David; Girod, Bernd

    2012-01-01

    We present a novel approach using distributed source coding for image authentication. The key idea is to provide a Slepian-Wolf encoded quantized image projection as authentication data. This version can be correctly decoded with the help of an authentic image as side information. Distributed source coding provides the desired robustness against legitimate variations while detecting illegitimate modification. The decoder incorporating expectation maximization algorithms can authenticate images which have undergone contrast, brightness, and affine warping adjustments. Our authentication system also offers tampering localization by using the sum-product algorithm.

  2. Two Meanings of Algorithmic Mathematics.

    ERIC Educational Resources Information Center

    Maurer, Stephen B.

    1984-01-01

    Two mathematical topics are interpreted from the viewpoints of traditional (performing algorithms) and contemporary (creating algorithms and thinking in terms of them for solving problems and developing theory) algorithmic mathematics. The two topics are Horner's method for evaluating polynomials and Gauss's method for solving systems of linear…

  3. Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV

    NASA Astrophysics Data System (ADS)

    Fahringer, Timothy W.; Thurow, Brian S.

    2016-09-01

    A new algorithm for reconstruction of 3D particle fields from plenoptic image data is presented. The algorithm is based on the technique of computational refocusing with the addition of a post reconstruction filter to remove the out of focus particles. This new algorithm is tested in terms of reconstruction quality on synthetic particle fields as well as a synthetically generated 3D Gaussian ring vortex. Preliminary results indicate that the new algorithm performs as well as the MART algorithm (used in previous work) in terms of the reconstructed particle position accuracy, but produces more elongated particles. The major advantage to the new algorithm is the dramatic reduction in the computational cost required to reconstruct a volume. It is shown that the new algorithm takes 1/9th the time to reconstruct the same volume as MART while using minimal resources. Experimental results are presented in the form of the wake behind a cylinder at a Reynolds number of 185.

  4. Explicit symplectic algorithms based on generating functions for charged particle dynamics.

    PubMed

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H(x,p)=p_{i}f(x) or H(x,p)=x_{i}g(p). Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  5. Explicit symplectic algorithms based on generating functions for charged particle dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  6. A review of classification algorithms for EEG-based brain-computer interfaces.

    PubMed

    Lotte, F; Congedo, M; Lécuyer, A; Lamarche, F; Arnaldi, B

    2007-06-01

    In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.

  7. Metabolic Flux Analysis in Isotope Labeling Experiments Using the Adjoint Approach.

    PubMed

    Mottelet, Stephane; Gaullier, Gil; Sadaka, Georges

    2017-01-01

    Comprehension of metabolic pathways is considerably enhanced by metabolic flux analysis (MFA-ILE) in isotope labeling experiments. The balance equations are given by hundreds of algebraic (stationary MFA) or ordinary differential equations (nonstationary MFA), and reducing the number of operations is therefore a crucial part of reducing the computation cost. The main bottleneck for deterministic algorithms is the computation of derivatives, particularly for nonstationary MFA. In this article, we explain how the overall identification process may be speeded up by using the adjoint approach to compute the gradient of the residual sum of squares. The proposed approach shows significant improvements in terms of complexity and computation time when it is compared with the usual (direct) approach. Numerical results are obtained for the central metabolic pathways of Escherichia coli and are validated against reference software in the stationary case. The methods and algorithms described in this paper are included in the sysmetab software package distributed under an Open Source license at http://forge.scilab.org/index.php/p/sysmetab/.

  8. Application of Fourier-wavelet regularized deconvolution for improving image quality of free space propagation x-ray phase contrast imaging.

    PubMed

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2012-11-21

    New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.

  9. Shadow Detection from Very High Resoluton Satellite Image Using Grabcut Segmentation and Ratio-Band Algorithms

    NASA Astrophysics Data System (ADS)

    Kadhim, N. M. S. M.; Mourshed, M.; Bray, M. T.

    2015-03-01

    Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour), the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates significant performance of the ratio algorithm. The differences in the characteristics of the two satellite imageries in terms of spatial and spectral resolution can play an important role in the estimation and detection of the shadow of urban objects.

  10. Stable Extraction of Threshold Voltage Using Transconductance Change Method for CMOS Modeling, Simulation and Characterization

    NASA Astrophysics Data System (ADS)

    Choi, Woo Young; Woo, Dong-Soo; Choi, Byung Yong; Lee, Jong Duk; Park, Byung-Gook

    2004-04-01

    We proposed a stable extraction algorithm for threshold voltage using transconductance change method by optimizing node interval. With the algorithm, noise-free gm2 (=dgm/dVGS) profiles can be extracted within one-percent error, which leads to more physically-meaningful threshold voltage calculation by the transconductance change method. The extracted threshold voltage predicts the gate-to-source voltage at which the surface potential is within kT/q of φs=2φf+VSB. Our algorithm makes the transconductance change method more practical by overcoming noise problem. This threshold voltage extraction algorithm yields the threshold roll-off behavior of nanoscale metal oxide semiconductor field effect transistor (MOSFETs) accurately and makes it possible to calculate the surface potential φs at any other point on the drain-to-source current (IDS) versus gate-to-source voltage (VGS) curve. It will provide us with a useful analysis tool in the field of device modeling, simulation and characterization.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Sen, Satyabrata; Berry, M. L..

    Domestic Nuclear Detection Office s (DNDO) Intelligence Radiation Sensors Systems (IRSS) program supported the development of networks of commercial-off-the-shelf (COTS) radiation counters for detecting, localizing, and identifying low-level radiation sources. Under this program, a series of indoor and outdoor tests were conducted with multiple source strengths and types, different background profiles, and various types of source and detector movements. Following the tests, network algorithms were replayed in various re-constructed scenarios using sub-networks. These measurements and algorithm traces together provide a rich collection of highly valuable datasets for testing the current and next generation radiation network algorithms, including the ones (tomore » be) developed by broader R&D communities such as distributed detection, information fusion, and sensor networks. From this multiple TeraByte IRSS database, we distilled out and packaged the first batch of canonical datasets for public release. They include measurements from ten indoor and two outdoor tests which represent increasingly challenging baseline scenarios for robustly testing radiation network algorithms.« less

  12. Modified automatic R-peak detection algorithm for patients with epilepsy using a portable electrocardiogram recorder.

    PubMed

    Jeppesen, J; Beniczky, S; Fuglsang Frederiksen, A; Sidenius, P; Johansen, P

    2017-07-01

    Earlier studies have shown that short term heart rate variability (HRV) analysis of ECG seems promising for detection of epileptic seizures. A precise and accurate automatic R-peak detection algorithm is a necessity in a real-time, continuous measurement of HRV, in a portable ECG device. We used the portable CE marked ePatch® heart monitor to record the ECG of 14 patients, who were enrolled in the videoEEG long term monitoring unit for clinical workup of epilepsy. Recordings of the first 7 patients were used as training set of data for the R-peak detection algorithm and the recordings of the last 7 patients (467.6 recording hours) were used to test the performance of the algorithm. We aimed to modify an existing QRS-detection algorithm to a more precise R-peak detection algorithm to avoid the possible jitter Qand S-peaks can create in the tachogram, which causes error in short-term HRVanalysis. The proposed R-peak detection algorithm showed a high sensitivity (Se = 99.979%) and positive predictive value (P+ = 99.976%), which was comparable with a previously published QRS-detection algorithm for the ePatch® ECG device, when testing the same dataset. The novel R-peak detection algorithm designed to avoid jitter has very high sensitivity and specificity and thus is a suitable tool for a robust, fast, real-time HRV-analysis in patients with epilepsy, creating the possibility for real-time seizure detection for these patients.

  13. Robust Bayesian Algorithm for Targeted Compound Screening in Forensic Toxicology.

    PubMed

    Woldegebriel, Michael; Gonsalves, John; van Asten, Arian; Vivó-Truyols, Gabriel

    2016-02-16

    As part of forensic toxicological investigation of cases involving unexpected death of an individual, targeted or untargeted xenobiotic screening of post-mortem samples is normally conducted. To this end, liquid chromatography (LC) coupled to high-resolution mass spectrometry (MS) is typically employed. For data analysis, almost all commonly applied algorithms are threshold-based (frequentist). These algorithms examine the value of a certain measurement (e.g., peak height) to decide whether a certain xenobiotic of interest (XOI) is present/absent, yielding a binary output. Frequentist methods pose a problem when several sources of information [e.g., shape of the chromatographic peak, isotopic distribution, estimated mass-to-charge ratio (m/z), adduct, etc.] need to be combined, requiring the approach to make arbitrary decisions at substep levels of data analysis. We hereby introduce a novel Bayesian probabilistic algorithm for toxicological screening. The method tackles the problem with a different strategy. It is not aimed at reaching a final conclusion regarding the presence of the XOI, but it estimates its probability. The algorithm effectively and efficiently combines all possible pieces of evidence from the chromatogram and calculates the posterior probability of the presence/absence of XOI features. This way, the model can accommodate more information by updating the probability if extra evidence is acquired. The final probabilistic result assists the end user to make a final decision with respect to the presence/absence of the xenobiotic. The Bayesian method was validated and found to perform better (in terms of false positives and false negatives) than the vendor-supplied software package.

  14. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu

    2016-12-01

    Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.

  15. Multiple Component Event-Related Potential (mcERP) Estimation

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Clanton, S. T.; Shah, A. S.; Truccolo, W. A.; Ding, M.; Bressler, S. L.; Trejo, L. J.; Schroeder, C. E.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We show how model-based estimation of the neural sources responsible for transient neuroelectric signals can be improved by the analysis of single trial data. Previously, we showed that a multiple component event-related potential (mcERP) algorithm can extract the responses of individual sources from recordings of a mixture of multiple, possibly interacting, neural ensembles. McERP also estimated single-trial amplitudes and onset latencies, thus allowing more accurate estimation of ongoing neural activity during an experimental trial. The mcERP algorithm is related to informax independent component analysis (ICA); however, the underlying signal model is more physiologically realistic in that a component is modeled as a stereotypic waveshape varying both in amplitude and onset latency from trial to trial. The result is a model that reflects quantities of interest to the neuroscientist. Here we demonstrate that the mcERP algorithm provides more accurate results than more traditional methods such as factor analysis and the more recent ICA. Whereas factor analysis assumes the sources are orthogonal and ICA assumes the sources are statistically independent, the mcERP algorithm makes no such assumptions thus allowing investigators to examine interactions among components by estimating the properties of single-trial responses.

  16. Quantifying the Contributions of Environmental Parameters to Ceres Surface Net Radiation Error in China

    NASA Astrophysics Data System (ADS)

    Pan, X.; Yang, Y.; Liu, Y.; Fan, X.; Shan, L.; Zhang, X.

    2018-04-01

    Error source analyses are critical for the satellite-retrieved surface net radiation (Rn) products. In this study, we evaluate the Rn error sources in the Clouds and the Earth's Radiant Energy System (CERES) project at 43 sites from July in 2007 to December in 2007 in China. The results show that cloud fraction (CF), land surface temperature (LST), atmospheric temperature (AT) and algorithm error dominate the Rn error, with error contributions of -20, 15, 10 and 10 W/m2 (net shortwave (NSW)/longwave (NLW) radiation), respectively. For NSW, the dominant error source is algorithm error (more than 10 W/m2), particularly in spring and summer with abundant cloud. For NLW, due to the high sensitivity of algorithm and large LST/CF error, LST and CF are the largest error sources, especially in northern China. The AT influences the NLW error large in southern China because of the large AT error in there. The total precipitable water has weak influence on Rn error even with the high sensitivity of algorithm. In order to improve Rn quality, CF and LST (AT) error in northern (southern) China should be decreased.

  17. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline.

    PubMed

    Zhang, Jie; Li, Qingyang; Caselli, Richard J; Thompson, Paul M; Ye, Jieping; Wang, Yalin

    2017-06-01

    Alzheimer's Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms.

  18. Benchmarking for Bayesian Reinforcement Learning

    PubMed Central

    Ernst, Damien; Couëtoux, Adrien

    2016-01-01

    In the Bayesian Reinforcement Learning (BRL) setting, agents try to maximise the collected rewards while interacting with their environment while using some prior knowledge that is accessed beforehand. Many BRL algorithms have already been proposed, but the benchmarks used to compare them are only relevant for specific cases. The paper addresses this problem, and provides a new BRL comparison methodology along with the corresponding open source library. In this methodology, a comparison criterion that measures the performance of algorithms on large sets of Markov Decision Processes (MDPs) drawn from some probability distributions is defined. In order to enable the comparison of non-anytime algorithms, our methodology also includes a detailed analysis of the computation time requirement of each algorithm. Our library is released with all source code and documentation: it includes three test problems, each of which has two different prior distributions, and seven state-of-the-art RL algorithms. Finally, our library is illustrated by comparing all the available algorithms and the results are discussed. PMID:27304891

  19. Benchmarking for Bayesian Reinforcement Learning.

    PubMed

    Castronovo, Michael; Ernst, Damien; Couëtoux, Adrien; Fonteneau, Raphael

    2016-01-01

    In the Bayesian Reinforcement Learning (BRL) setting, agents try to maximise the collected rewards while interacting with their environment while using some prior knowledge that is accessed beforehand. Many BRL algorithms have already been proposed, but the benchmarks used to compare them are only relevant for specific cases. The paper addresses this problem, and provides a new BRL comparison methodology along with the corresponding open source library. In this methodology, a comparison criterion that measures the performance of algorithms on large sets of Markov Decision Processes (MDPs) drawn from some probability distributions is defined. In order to enable the comparison of non-anytime algorithms, our methodology also includes a detailed analysis of the computation time requirement of each algorithm. Our library is released with all source code and documentation: it includes three test problems, each of which has two different prior distributions, and seven state-of-the-art RL algorithms. Finally, our library is illustrated by comparing all the available algorithms and the results are discussed.

  20. Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms

    PubMed Central

    Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon

    2011-01-01

    Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532

  1. Informed Source Separation: A Bayesian Tutorial

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2005-01-01

    Source separation problems are ubiquitous in the physical sciences; any situation where signals are superimposed calls for source separation to estimate the original signals. In h s tutorial I will discuss the Bayesian approach to the source separation problem. This approach has a specific advantage in that it requires the designer to explicitly describe the signal model in addition to any other information or assumptions that go into the problem description. This leads naturally to the idea of informed source separation, where the algorithm design incorporates relevant information about the specific problem. This approach promises to enable researchers to design their own high-quality algorithms that are specifically tailored to the problem at hand.

  2. Reynolds-averaged Navier-Stokes based ice accretion for aircraft wings

    NASA Astrophysics Data System (ADS)

    Lashkajani, Kazem Hasanzadeh

    This thesis addresses one of the current issues in flight safety towards increasing icing simulation capabilities for prediction of complex 2D and 3D glaze ice shapes over aircraft surfaces. During the 1980's and 1990's, the field of aero-icing was established to support design and certification of aircraft flying in icing conditions. The multidisciplinary technologies used in such codes were: aerodynamics (panel method), droplet trajectory calculations (Lagrangian framework), thermodynamic module (Messinger model) and geometry module (ice accretion). These are embedded in a quasi-steady module to simulate the time-dependent ice accretion process (multi-step procedure). The objectives of the present research are to upgrade the aerodynamic module from Laplace to Reynolds-Average Navier-Stokes equations solver. The advantages are many. First, the physical model allows accounting for viscous effects in the aerodynamic module. Second, the solution of the aero-icing module directly provides the means for characterizing the aerodynamic effects of icing, such as loss of lift and increased drag. Third, the use of a finite volume approach to solving the Partial Differential Equations allows rigorous mesh and time convergence analysis. Finally, the approaches developed in 2D can be easily transposed to 3D problems. The research was performed in three major steps, each providing insights into the overall numerical approaches. The most important realization comes from the need to develop specific mesh generation algorithms to ensure feasible solutions in very complex multi-step aero-icing calculations. The contributions are presented in chronological order of their realization. First, a new framework for RANS based two-dimensional ice accretion code, CANICE2D-NS, is developed. A multi-block RANS code from U. of Liverpool (named PMB) is providing the aerodynamic field using the Spalart-Allmaras turbulence model. The ICEM-CFD commercial tool is used for the iced airfoil remeshing and field smoothing. The new coupling is fully automated and capable of multi-step ice accretion simulations via a quasi-steady approach. In addition, the framework allows for flow analysis and aerodynamic performance prediction of the iced airfoils. The convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multi-time steps in icing simulations to achieve solver independent solutions. Second, a Multi-Block Navier-Stokes code, NSMB, is coupled with the CANICE2D icing framework. Attention is paid to the roughness implementation of the ONERA roughness model within the Spalart-Allmaras turbulence model, and to the convergence of the steady and quasi-steady iterative procedure. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results of CANICE2D-NS show good agreement with experimental data both in terms of predicted ice shapes as well as aerodynamic analysis of predicted and experimental ice shapes. Third, an efficient single-block structured Navier-Stokes CFD code, NSCODE, is coupled with the CANICE2D-NS icing framework. Attention is paid to the roughness implementation of the Boeing model within the Spalart-Allmaras turbulence model, and to acceleration of the convergence of the steady and quasi-steady iterative procedures. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases, including code to code comparisons with the same framework coupled with the NSMB Navier-Stokes solver. The efficiency of the J-multigrid approach to solve the flow equations on complex iced geometries is demonstrated. Since it was noted in all these calculations that the ICEM-CFD grid generation package produced a number of issues such as inefficient mesh quality and smoothing deficiencies (notably grid shocks), a fourth study proposes a new mesh generation algorithm. A PDE based multi-block structured grid generation code, NSGRID, is developed for this purpose. The study includes the developments of novel mesh generation algorithms over complex glaze ice shapes containing multi-curvature ice accretion geometries, such as single/double ice horns. The twofold approaches tackle surface geometry discretization as well as field mesh generation. An adaptive curvilinear curvature control algorithm is constructed solving a 1D elliptic PDE equation with periodic source terms. This method controls the arclength grid spacing so that high convex and concave curvature regions around ice horns are appropriately captured and is shown to effectively treat the grid shock problem. Then, a novel blended method is developed by defining combinations of source terms with 2D elliptic equations. The source terms include two common control functions, Sorenson and Spekreijse, and an additional third source term to improve orthogonality. This blended method is shown to be very effective for improving grid quality metrics for complex glaze ice meshes with RANS resolution. The performance in terms of residual reduction per non-linear iteration of several solution algorithms (Point-Jacobi, Gauss-Seidel, ADI, Point and Line SOR) are discussed within the context of a full Multi-grid operator. Details are given on the various formulations used in the linearization process. It is shown that the performance of the solution algorithm depends on the type of control function used. Finally, the algorithms are validated on standard complex experimental ice shapes, demonstrating the applicability of the methods. Finally, the automated framework of RANS based two-dimensional multi-step ice accretion, CANICE2D-NS is developed, coupled with a Multi-Block Navier-Stokes CFD code, NSCODE2D, a Multi-Block elliptic grid generation code, NSGRID2D, and a Multi-Block Eulerian droplet solver, NSDROP2D (developed at Polytechnique Montreal). The framework allows Lagrangian and Eulerian droplet computations within a chimera approach treating multi-elements geometries. The code was tested on public and confidential validation test cases including standard NATO cases. In addition, up to 10 times speedup is observed in the mesh generation procedure by using the implicit line SOR and ADI smoothers within a multigrid procedure. The results demonstrate the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters.

  3. Computationally Efficient Radio Frequency Source Localization for Radio Interferometric Arrays

    NASA Astrophysics Data System (ADS)

    Steeb, J.-W.; Davidson, David B.; Wijnholds, Stefan J.

    2018-03-01

    Radio frequency interference (RFI) is an ever-increasing problem for remote sensing and radio astronomy, with radio telescope arrays especially vulnerable to RFI. Localizing the RFI source is the first step to dealing with the culprit system. In this paper, a new localization algorithm for interferometric arrays with low array beam sidelobes is presented. The algorithm has been adapted to work both in the near field and far field (only the direction of arrival can be recovered when the source is in the far field). In the near field the computational complexity of the algorithm is linear with search grid size compared to cubic scaling of the state-of-the-art 3-D MUltiple SIgnal Classification (MUSIC) method. The new method is as accurate as 3-D MUSIC. The trade-off is that the proposed algorithm requires a once-off a priori calculation and storing of weighting matrices. The accuracy of the algorithm is validated using data generated by low-frequency array while a hexacopter was flying around it and broadcasting a continuous-wave signal. For the flight, the mean distance between the differential GPS positions and the corresponding estimated positions of the hexacopter is 2 m at a wavelength of 6.7 m.

  4. The Observation of Bahasa Indonesia Official Computer Terms Implementation in Scientific Publication

    NASA Astrophysics Data System (ADS)

    Gunawan, D.; Amalia, A.; Lydia, M. S.; Muthaqin, M. I.

    2018-03-01

    The government of the Republic of Indonesia had issued a regulation to substitute computer terms in foreign language that have been used earlier into official computer terms in Bahasa Indonesia. This regulation was stipulated in Presidential Decree No. 2 of 2001 concerning the introduction of official computer terms in Bahasa Indonesia (known as Senarai Padanan Istilah/SPI). After sixteen years, people of Indonesia, particularly for academics, should have implemented the official computer terms in their official publications. This observation is conducted to discover the implementation of official computer terms usage in scientific publications which are written in Bahasa Indonesia. The data source used in this observation are the publications by the academics, particularly in computer science field. The method used in the observation is divided into four stages. The first stage is metadata harvesting by using Open Archive Initiative - Protocol for Metadata Harvesting (OAI-PMH). Second, converting the harvested document (in pdf format) to plain text. The third stage is text-preprocessing as the preparation of string matching. Then the final stage is searching the official computer terms based on 629 SPI terms by using Boyer-Moore algorithm. We observed that there are 240,781 foreign computer terms in 1,156 scientific publications from six universities. This result shows that the foreign computer terms are still widely used by the academics.

  5. VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.; Panda Collaboration

    2012-02-01

    A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.

  6. Implementation details of the coupled QMR algorithm

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Nachtigal, Noel M.

    1992-01-01

    The original quasi-minimal residual method (QMR) relies on the three-term look-ahead Lanczos process, to generate basis vectors for the underlying Krylov subspaces. However, empirical observations indicate that, in finite precision arithmetic, three-term vector recurrences are less robust than mathematically equivalent coupled two-term recurrences. Therefore, we recently proposed a new implementation of the QMR method based on a coupled two-term look-ahead Lanczos procedure. In this paper, we describe implementation details of this coupled QMR algorithm, and we present results of numerical experiments.

  7. Water cycle algorithm: A detailed standard code

    NASA Astrophysics Data System (ADS)

    Sadollah, Ali; Eskandar, Hadi; Lee, Ho Min; Yoo, Do Guen; Kim, Joong Hoon

    Inspired by the observation of the water cycle process and movements of rivers and streams toward the sea, a population-based metaheuristic algorithm, the water cycle algorithm (WCA) has recently been proposed. Lately, an increasing number of WCA applications have appeared and the WCA has been utilized in different optimization fields. This paper provides detailed open source code for the WCA, of which the performance and efficiency has been demonstrated for solving optimization problems. The WCA has an interesting and simple concept and this paper aims to use its source code to provide a step-by-step explanation of the process it follows.

  8. A digital combining-weight estimation algorithm for broadband sources with the array feed compensation system

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Rodemich, E. R.

    1994-01-01

    An algorithm for estimating the optimum combining weights for the Ka-band (33.7-GHz) array feed compensation system was developed and analyzed. The input signal is assumed to be broadband radiation of thermal origin, generated by a distant radio source. Currently, seven video converters operating in conjunction with the real-time correlator are used to obtain these weight estimates. The algorithm described here requires only simple operations that can be implemented on a PC-based combining system, greatly reducing the amount of hardware. Therefore, system reliability and portability will be improved.

  9. Real-time implementation of logo detection on open source BeagleBoard

    NASA Astrophysics Data System (ADS)

    George, M.; Kehtarnavaz, N.; Estevez, L.

    2011-03-01

    This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.

  10. Optimal Design for Placements of Tsunami Observing Systems to Accurately Characterize the Inducing Earthquake

    NASA Astrophysics Data System (ADS)

    Mulia, Iyan E.; Gusman, Aditya Riadi; Satake, Kenji

    2017-12-01

    Recently, there are numerous tsunami observation networks deployed in several major tsunamigenic regions. However, guidance on where to optimally place the measurement devices is limited. This study presents a methodological approach to select strategic observation locations for the purpose of tsunami source characterizations, particularly in terms of the fault slip distribution. Initially, we identify favorable locations and determine the initial number of observations. These locations are selected based on extrema of empirical orthogonal function (EOF) spatial modes. To further improve the accuracy, we apply an optimization algorithm called a mesh adaptive direct search to remove redundant measurement locations from the EOF-generated points. We test the proposed approach using multiple hypothetical tsunami sources around the Nankai Trough, Japan. The results suggest that the optimized observation points can produce more accurate fault slip estimates with considerably less number of observations compared to the existing tsunami observation networks.

  11. Infrared and visible image fusion method based on saliency detection in sparse domain

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Qi, Y.; Ding, W. R.

    2017-06-01

    Infrared and visible image fusion is a key problem in the field of multi-sensor image fusion. To better preserve the significant information of the infrared and visible images in the final fused image, the saliency maps of the source images is introduced into the fusion procedure. Firstly, under the framework of the joint sparse representation (JSR) model, the global and local saliency maps of the source images are obtained based on sparse coefficients. Then, a saliency detection model is proposed, which combines the global and local saliency maps to generate an integrated saliency map. Finally, a weighted fusion algorithm based on the integrated saliency map is developed to achieve the fusion progress. The experimental results show that our method is superior to the state-of-the-art methods in terms of several universal quality evaluation indexes, as well as in the visual quality.

  12. Point focusing using loudspeaker arrays from the perspective of optimal beamforming.

    PubMed

    Bai, Mingsian R; Hsieh, Yu-Hao

    2015-06-01

    Sound focusing is to create a concentrated acoustic field in the region surrounded by a loudspeaker array. This problem was tackled in the previous research via the Helmholtz integral approach, brightness control, acoustic contrast control, etc. In this paper, the same problem was revisited from the perspective of beamforming. A source array model is reformulated in terms of the steering matrix between the source and the field points, which lends itself to the use of beamforming algorithms such as minimum variance distortionless response (MVDR) and linearly constrained minimum variance (LCMV) originally intended for sensor arrays. The beamforming methods are compared with the conventional methods in terms of beam pattern, directional index, and control effort. Objective tests are conducted to assess the audio quality by using perceptual evaluation of audio quality (PEAQ). Experiments of produced sound field and listening tests are conducted in a listening room, with results processed using analysis of variance and regression analysis. In contrast to the conventional energy-based methods, the results have shown that the proposed methods are phase-sensitive in light of the distortionless constraint in formulating the array filters, which helps enhance audio quality and focusing performance.

  13. Surveillance system for air pollutants by combination of the decision support system COMPAS and optical remote sensing systems

    NASA Astrophysics Data System (ADS)

    Flassak, Thomas; de Witt, Helmut; Hahnfeld, Peter; Knaup, Andreas; Kramer, Lothar

    1995-09-01

    COMPAS is a decision support system designed to assist in the assessment of the consequences of accidental releases of toxic and flammable substances. One of the key elements of COMPAS is a feedback algorithm which allows us to calculate the source term with the aid of concentration measurements. Up to now the feedback technique is applied to concentration measurements done with test tubes or conventional point sensors. In this paper the extension of the actual method is presented which is the combination of COMPAS and an optical remote sensing system like the KAYSER-THREDE K300 FTIR system. Active remote sensing methods based on FTIR are, among other applications, ideal for the so-called fence line monitoring of the diffuse emissions and accidental releases from industrial facilities, since from the FTIR spectra averaged concentration levels along the measurement path can be achieved. The line-averaged concentrations are ideally suited as on-line input for COMPAS' feedback technique. Uncertainties in the assessment of the source term related with both shortcomings of the dispersion model itself and also problems of a feedback strategy based on point measurements are reduced.

  14. Improving the Space Surveillance Telescope's Performance Using Multi-Hypothesis Testing

    NASA Astrophysics Data System (ADS)

    Zingarelli, J. Chris; Pearce, Eric; Lambour, Richard; Blake, Travis; Peterson, Curtis J. R.; Cain, Stephen

    2014-05-01

    The Space Surveillance Telescope (SST) is a Defense Advanced Research Projects Agency program designed to detect objects in space like near Earth asteroids and space debris in the geosynchronous Earth orbit (GEO) belt. Binary hypothesis test (BHT) methods have historically been used to facilitate the detection of new objects in space. In this paper a multi-hypothesis detection strategy is introduced to improve the detection performance of SST. In this context, the multi-hypothesis testing (MHT) determines if an unresolvable point source is in either the center, a corner, or a side of a pixel in contrast to BHT, which only tests whether an object is in the pixel or not. The images recorded by SST are undersampled such as to cause aliasing, which degrades the performance of traditional detection schemes. The equations for the MHT are derived in terms of signal-to-noise ratio (S/N), which is computed by subtracting the background light level around the pixel being tested and dividing by the standard deviation of the noise. A new method for determining the local noise statistics that rejects outliers is introduced in combination with the MHT. An experiment using observations of a known GEO satellite are used to demonstrate the improved detection performance of the new algorithm over algorithms previously reported in the literature. The results show a significant improvement in the probability of detection by as much as 50% over existing algorithms. In addition to detection, the S/N results prove to be linearly related to the least-squares estimates of point source irradiance, thus improving photometric accuracy. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  15. An Automated Algorithm for Producing Land Cover Information from Landsat Surface Reflectance Data Acquired Between 1984 and Present

    NASA Astrophysics Data System (ADS)

    Rover, J.; Goldhaber, M. B.; Holen, C.; Dittmeier, R.; Wika, S.; Steinwand, D.; Dahal, D.; Tolk, B.; Quenzer, R.; Nelson, K.; Wylie, B. K.; Coan, M.

    2015-12-01

    Multi-year land cover mapping from remotely sensed data poses challenges. Producing land cover products at spatial and temporal scales required for assessing longer-term trends in land cover change are typically a resource-limited process. A recently developed approach utilizes open source software libraries to automatically generate datasets, decision tree classifications, and data products while requiring minimal user interaction. Users are only required to supply coordinates for an area of interest, land cover from an existing source such as National Land Cover Database and percent slope from a digital terrain model for the same area of interest, two target acquisition year-day windows, and the years of interest between 1984 and present. The algorithm queries the Landsat archive for Landsat data intersecting the area and dates of interest. Cloud-free pixels meeting the user's criteria are mosaicked to create composite images for training the classifiers and applying the classifiers. Stratification of training data is determined by the user and redefined during an iterative process of reviewing classifiers and resulting predictions. The algorithm outputs include yearly land cover raster format data, graphics, and supporting databases for further analysis. Additional analytical tools are also incorporated into the automated land cover system and enable statistical analysis after data are generated. Applications tested include the impact of land cover change and water permanence. For example, land cover conversions in areas where shrubland and grassland were replaced by shale oil pads during hydrofracking of the Bakken Formation were quantified. Analytical analysis of spatial and temporal changes in surface water included identifying wetlands in the Prairie Pothole Region of North Dakota with potential connectivity to ground water, indicating subsurface permeability and geochemistry.

  16. Short-term prediction of solar energy in Saudi Arabia using automated-design fuzzy logic systems

    PubMed Central

    2017-01-01

    Solar energy is considered as one of the main sources for renewable energy in the near future. However, solar energy and other renewable energy sources have a drawback related to the difficulty in predicting their availability in the near future. This problem affects optimal exploitation of solar energy, especially in connection with other resources. Therefore, reliable solar energy prediction models are essential to solar energy management and economics. This paper presents work aimed at designing reliable models to predict the global horizontal irradiance (GHI) for the next day in 8 stations in Saudi Arabia. The designed models are based on computational intelligence methods of automated-design fuzzy logic systems. The fuzzy logic systems are designed and optimized with two models using fuzzy c-means clustering (FCM) and simulated annealing (SA) algorithms. The first model uses FCM based on the subtractive clustering algorithm to automatically design the predictor fuzzy rules from data. The second model is using FCM followed by simulated annealing algorithm to enhance the prediction accuracy of the fuzzy logic system. The objective of the predictor is to accurately predict next-day global horizontal irradiance (GHI) using previous-day meteorological and solar radiation observations. The proposed models use observations of 10 variables of measured meteorological and solar radiation data to build the model. The experimentation and results of the prediction are detailed where the root mean square error of the prediction was approximately 88% for the second model tuned by simulated annealing compared to 79.75% accuracy using the first model. This results demonstrate a good modeling accuracy of the second model despite that the training and testing of the proposed models were carried out using spatially and temporally independent data. PMID:28806754

  17. Short-term prediction of solar energy in Saudi Arabia using automated-design fuzzy logic systems.

    PubMed

    Almaraashi, Majid

    2017-01-01

    Solar energy is considered as one of the main sources for renewable energy in the near future. However, solar energy and other renewable energy sources have a drawback related to the difficulty in predicting their availability in the near future. This problem affects optimal exploitation of solar energy, especially in connection with other resources. Therefore, reliable solar energy prediction models are essential to solar energy management and economics. This paper presents work aimed at designing reliable models to predict the global horizontal irradiance (GHI) for the next day in 8 stations in Saudi Arabia. The designed models are based on computational intelligence methods of automated-design fuzzy logic systems. The fuzzy logic systems are designed and optimized with two models using fuzzy c-means clustering (FCM) and simulated annealing (SA) algorithms. The first model uses FCM based on the subtractive clustering algorithm to automatically design the predictor fuzzy rules from data. The second model is using FCM followed by simulated annealing algorithm to enhance the prediction accuracy of the fuzzy logic system. The objective of the predictor is to accurately predict next-day global horizontal irradiance (GHI) using previous-day meteorological and solar radiation observations. The proposed models use observations of 10 variables of measured meteorological and solar radiation data to build the model. The experimentation and results of the prediction are detailed where the root mean square error of the prediction was approximately 88% for the second model tuned by simulated annealing compared to 79.75% accuracy using the first model. This results demonstrate a good modeling accuracy of the second model despite that the training and testing of the proposed models were carried out using spatially and temporally independent data.

  18. An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength

    NASA Astrophysics Data System (ADS)

    Millard, R. C.; Seaver, G.

    1990-12-01

    A 27-term index of refraction algorithm for pure and sea waters has been developed using four experimental data sets of differing accuracies. They cover the range 500-700 nm in wavelength, 0-30°C in temperature, 0-40 psu in salinity, and 0-11,000 db in pressure. The index of refraction algorithm has an accuracy that varies from 0.4 ppm for pure water at atmospheric pressure to 80 ppm at high pressures, but preserves the accuracy of each original data set. This algorithm is a significant improvement over existing descriptions as it is in analytical form with a better and more carefully defined accuracy. A salinometer algorithm with the same uncertainty has been created by numerically inverting the index algorithm using the Newton-Raphson method. The 27-term index algorithm was used to generate a pseudo-data set at the sodium D wavelength (589.26 nm) from which a 6-term densitometer algorithm was constructed. The densitometer algorithm also produces salinity as an intermediate step in the salinity inversion. The densitometer residuals have a standard deviation of 0.049 kg m -3 which is not accurate enough for most oceanographic applications. However, the densitometer algorithm was used to explore the sensitivity of density from this technique to temperature and pressure uncertainties. To achieve a deep ocean densitometer of 0.001 kg m -3 accuracy would require the index of refraction to have an accuracy of 0.3 ppm, the temperature an accuracy of 0.01°C and the pressure 1 db. Our assessment of the currently available index of refraction measurements finds that only the data for fresh water at atmospheric pressure produce an algorithm satisfactory for oceanographic use (density to 0.4 ppm). The data base for the algorithm at higher pressures and various salinities requires an order of magnitude or better improvement in index measurement accuracy before the resultant density accuracy will be comparable to the currently available oceanographic algorithm.

  19. Modeling of light distribution in the brain for topographical imaging

    NASA Astrophysics Data System (ADS)

    Okada, Eiji; Hayashi, Toshiyuki; Kawaguchi, Hiroshi

    2004-07-01

    Multi-channel optical imaging system can obtain a topographical distribution of the activated region in the brain cortex by a simple mapping algorithm. Near-infrared light is strongly scattered in the head and the volume of tissue that contributes to the change in the optical signal detected with source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. We report theoretical investigations on the spatial resolution of the topographic imaging of the brain activity. The head model for the theoretical study consists of five layers that imitate the scalp, skull, subarachnoid space, gray matter and white matter. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The source-detector pairs are one dimensionally arranged on the surface of the model and the distance between the adjoining source-detector pairs are varied from 4 mm to 32 mm. The change in detected intensity caused by the absorption change is obtained by Monte Carlo simulation. The position of absorption change is reconstructed by the conventional mapping algorithm and the reconstruction algorithm using the spatial sensitivity profiles. We discuss the effective interval between the source-detector pairs and the choice of reconstruction algorithms to improve the topographic images of brain activity.

  20. Implicit treatment of diffusion terms in lower-upper algorithms

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Steinthorsson, E.; Chyu, W. J.

    1993-01-01

    A method is presented which allows diffusion terms to be treated implicitly in the lower-upper (LU) algorithm (which is a commonly used method for solving 'compressible' Euler and Navier-Stokes equations) so that the algorithm's good stability properties will not be impaired. The new method generalizes the concept of LU factorization from that associated with the sign of eigenvalues to that associated with backward- and forward-difference operators without regard to eigenvalues. The method is verified in a turbulent boundary layer study.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowder, Jeff; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109; Cornish, Neil J.

    Low frequency gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA), will have to contend with large foregrounds produced by millions of compact galactic binaries in our galaxy. While these galactic signals are interesting in their own right, the unresolved component can obscure other sources. The science yield for the LISA mission can be improved if the brighter and more isolated foreground sources can be identified and regressed from the data. Since the signals overlap with one another, we are faced with a 'cocktail party' problem of picking out individual conversations in a crowded room. Here we presentmore » and implement an end-to-end solution to the galactic foreground problem that is able to resolve tens of thousands of sources from across the LISA band. Our algorithm employs a variant of the Markov chain Monte Carlo (MCMC) method, which we call the blocked annealed Metropolis-Hastings (BAM) algorithm. Following a description of the algorithm and its implementation, we give several examples ranging from searches for a single source to searches for hundreds of overlapping sources. Our examples include data sets from the first round of mock LISA data challenges.« less

  2. MODIS. Volume 2: MODIS level 1 geolocation, characterization and calibration algorithm theoretical basis document, version 1

    NASA Technical Reports Server (NTRS)

    Barker, John L.; Harnden, Joann M. K.; Montgomery, Harry; Anuta, Paul; Kvaran, Geir; Knight, ED; Bryant, Tom; Mckay, AL; Smid, Jon; Knowles, Dan, Jr.

    1994-01-01

    The EOS Moderate Resolution Imaging Spectrometer (MODIS) is being developed by NASA for flight on the Earth Observing System (EOS) series of satellites, the first of which (EOS-AM-1) is scheduled for launch in 1998. This document describes the algorithms and their theoretical basis for the MODIS Level 1B characterization, calibration, and geolocation algorithms which must produce radiometrically, spectrally, and spatially calibrated data with sufficient accuracy so that Global change research programs can detect minute changes in biogeophysical parameters. The document first describes the geolocation algorithm which determines geodetic latitude, longitude, and elevation of each MODIS pixel and the determination of geometric parameters for each observation (satellite zenith angle, satellite azimuth, range to the satellite, solar zenith angle, and solar azimuth). Next, the utilization of the MODIS onboard calibration sources, which consist of the Spectroradiometric Calibration Assembly (SRCA), Solar Diffuser (SD), Solar Diffuser Stability Monitor (SDSM), and the Blackbody (BB), is treated. Characterization of these sources and integration of measurements into the calibration process is described. Finally, the use of external sources, including the Moon, instrumented sites on the Earth (called vicarious calibration), and unsupervised normalization sites having invariant reflectance and emissive properties is treated. Finally, algorithms for generating utility masks needed for scene-based calibration are discussed. Eight appendices are provided, covering instrument design and additional algorithm details.

  3. Blind separation of positive sources by globally convergent gradient search.

    PubMed

    Oja, Erkki; Plumbley, Mark

    2004-09-01

    The instantaneous noise-free linear mixing model in independent component analysis is largely a solved problem under the usual assumption of independent nongaussian sources and full column rank mixing matrix. However, with some prior information on the sources, like positivity, new analysis and perhaps simplified solution methods may yet become possible. In this letter, we consider the task of independent component analysis when the independent sources are known to be nonnegative and well grounded, which means that they have a nonzero pdf in the region of zero. It can be shown that in this case, the solution method is basically very simple: an orthogonal rotation of the whitened observation vector into nonnegative outputs will give a positive permutation of the original sources. We propose a cost function whose minimum coincides with nonnegativity and derive the gradient algorithm under the whitening constraint, under which the separating matrix is orthogonal. We further prove that in the Stiefel manifold of orthogonal matrices, the cost function is a Lyapunov function for the matrix gradient flow, implying global convergence. Thus, this algorithm is guaranteed to find the nonnegative well-grounded independent sources. The analysis is complemented by a numerical simulation, which illustrates the algorithm.

  4. Single-channel mixed signal blind source separation algorithm based on multiple ICA processing

    NASA Astrophysics Data System (ADS)

    Cheng, Xiefeng; Li, Ji

    2017-01-01

    Take separating the fetal heart sound signal from the mixed signal that get from the electronic stethoscope as the research background, the paper puts forward a single-channel mixed signal blind source separation algorithm based on multiple ICA processing. Firstly, according to the empirical mode decomposition (EMD), the single-channel mixed signal get multiple orthogonal signal components which are processed by ICA. The multiple independent signal components are called independent sub component of the mixed signal. Then by combining with the multiple independent sub component into single-channel mixed signal, the single-channel signal is expanded to multipath signals, which turns the under-determined blind source separation problem into a well-posed blind source separation problem. Further, the estimate signal of source signal is get by doing the ICA processing. Finally, if the separation effect is not very ideal, combined with the last time's separation effect to the single-channel mixed signal, and keep doing the ICA processing for more times until the desired estimated signal of source signal is get. The simulation results show that the algorithm has good separation effect for the single-channel mixed physiological signals.

  5. Using a Search Engine-Based Mutually Reinforcing Approach to Assess the Semantic Relatedness of Biomedical Terms

    PubMed Central

    Hsu, Yi-Yu; Chen, Hung-Yu; Kao, Hung-Yu

    2013-01-01

    Background Determining the semantic relatedness of two biomedical terms is an important task for many text-mining applications in the biomedical field. Previous studies, such as those using ontology-based and corpus-based approaches, measured semantic relatedness by using information from the structure of biomedical literature, but these methods are limited by the small size of training resources. To increase the size of training datasets, the outputs of search engines have been used extensively to analyze the lexical patterns of biomedical terms. Methodology/Principal Findings In this work, we propose the Mutually Reinforcing Lexical Pattern Ranking (ReLPR) algorithm for learning and exploring the lexical patterns of synonym pairs in biomedical text. ReLPR employs lexical patterns and their pattern containers to assess the semantic relatedness of biomedical terms. By combining sentence structures and the linking activities between containers and lexical patterns, our algorithm can explore the correlation between two biomedical terms. Conclusions/Significance The average correlation coefficient of the ReLPR algorithm was 0.82 for various datasets. The results of the ReLPR algorithm were significantly superior to those of previous methods. PMID:24348899

  6. Sparse Representation for Color Image Restoration (PREPRINT)

    DTIC Science & Technology

    2006-10-01

    as a universal denoiser of images, which learns the posterior from the given image in a way inspired by the Lempel - Ziv universal compression ...such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data . In...describe the data source. Such a model becomes paramount when developing algorithms for processing these signals. In this context, Markov-Random-Field

  7. The Brera Multiscale Wavelet ROSAT HRI Source Catalog. II. Application to the HRI and First Results

    NASA Astrophysics Data System (ADS)

    Campana, Sergio; Lazzati, Davide; Panzera, Maria Rosa; Tagliaferri, Gianpiero

    1999-10-01

    The wavelet detection algorithm (WDA) described in the accompanying paper by Lazzati et al. is suited to a fast and efficient analysis of images taken with the High-Resolution Imager (HRI) instrument on board the ROSAT satellite. An extensive testing is carried out on the detection pipeline: HRI fields with different exposure times are simulated and analyzed in the same fashion as the real data. Positions are recovered with errors of a few arcseconds, whereas fluxes are within a factor of 2 from their input values in more than 90% of the cases in the deepest images. Unlike the ``sliding-box'' detection algorithms, the WDA also provides a reliable description of the source extension, allowing for a complete search of, e.g., supernova remnants or clusters of galaxies in the HRI fields. A completeness analysis on simulated fields shows that for the deepest exposures considered (~120 ks) a limiting flux of ~3×10-15 ergs s-1 cm-2 can be reached over the entire field of view. We test the algorithm on real HRI fields selected for their crowding and/or the presence of extended or bright sources (e.g., clusters of galaxies and stars, supernova remnants). We show that our algorithm compares favorably with other X-ray detection algorithms, such as XIMAGE and EXSAS. Analysis with the WDA of the large set of HRI data will allow us to survey ~400 deg2 down to a limiting flux of ~10-13 ergs s-1 cm-2, and ~0.3 deg2 down to ~3×10-15 ergs s-1 cm-2. A complete catalog will result from our analysis, consisting of the Brera Multiscale Wavelet Bright Source Catalog (BMW-BSC), with sources detected with a significance of >~4.5 σ, and the Faint Source Catalog (BMW-FSC), with sources at >~3.5 σ. A conservative estimate based on the extragalactic log N-log S indicates that at least 16,000 sources will be revealed in the complete analysis of the entire HRI data set.

  8. Short-term Power Load Forecasting Based on Balanced KNN

    NASA Astrophysics Data System (ADS)

    Lv, Xianlong; Cheng, Xingong; YanShuang; Tang, Yan-mei

    2018-03-01

    To improve the accuracy of load forecasting, a short-term load forecasting model based on balanced KNN algorithm is proposed; According to the load characteristics, the historical data of massive power load are divided into scenes by the K-means algorithm; In view of unbalanced load scenes, the balanced KNN algorithm is proposed to classify the scene accurately; The local weighted linear regression algorithm is used to fitting and predict the load; Adopting the Apache Hadoop programming framework of cloud computing, the proposed algorithm model is parallelized and improved to enhance its ability of dealing with massive and high-dimension data. The analysis of the household electricity consumption data for a residential district is done by 23-nodes cloud computing cluster, and experimental results show that the load forecasting accuracy and execution time by the proposed model are the better than those of traditional forecasting algorithm.

  9. Competitive learning with pairwise constraints.

    PubMed

    Covões, Thiago F; Hruschka, Eduardo R; Ghosh, Joydeep

    2013-01-01

    Constrained clustering has been an active research topic since the last decade. Most studies focus on batch-mode algorithms. This brief introduces two algorithms for on-line constrained learning, named on-line linear constrained vector quantization error (O-LCVQE) and constrained rival penalized competitive learning (C-RPCL). The former is a variant of the LCVQE algorithm for on-line settings, whereas the latter is an adaptation of the (on-line) RPCL algorithm to deal with constrained clustering. The accuracy results--in terms of the normalized mutual information (NMI)--from experiments with nine datasets show that the partitions induced by O-LCVQE are competitive with those found by the (batch-mode) LCVQE. Compared with this formidable baseline algorithm, it is surprising that C-RPCL can provide better partitions (in terms of the NMI) for most of the datasets. Also, experiments on a large dataset show that on-line algorithms for constrained clustering can significantly reduce the computational time.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, Stephen

    The Sandia hyperspectral upper-bound spectrum algorithm (hyper-UBS) is a cosmic ray despiking algorithm for hyperspectral data sets. When naturally-occurring, high-energy (gigaelectronvolt) cosmic rays impact the earth’s atmosphere, they create an avalanche of secondary particles which will register as a large, positive spike on any spectroscopic detector they hit. Cosmic ray spikes are therefore an unavoidable spectroscopic contaminant which can interfere with subsequent analysis. A variety of cosmic ray despiking algorithms already exist and can potentially be applied to hyperspectral data matrices, most notably the upper-bound spectrum data matrices (UBS-DM) algorithm by Dongmao Zhang and Dor Ben-Amotz which served as themore » basis for the hyper-UBS algorithm. However, the existing algorithms either cannot be applied to hyperspectral data, require information that is not always available, introduce undesired spectral bias, or have otherwise limited effectiveness for some experimentally relevant conditions. Hyper-UBS is more effective at removing a wider variety of cosmic ray spikes from hyperspectral data without introducing undesired spectral bias. In addition to the core algorithm the Sandia hyper-UBS software package includes additional source code useful in evaluating the effectiveness of the hyper-UBS algorithm. The accompanying source code includes code to generate simulated hyperspectral data contaminated by cosmic ray spikes, several existing despiking algorithms, and code to evaluate the performance of the despiking algorithms on simulated data.« less

  11. An integral conservative gridding--algorithm using Hermitian curve interpolation.

    PubMed

    Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K

    2008-11-07

    The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).

  12. Theory of the amplitude-phase retrieval in any linear-transform system and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Guozhen; Gu, Ben-Yuan; Dong, Bi-Zhen

    1992-12-01

    This paper is a summary of the theory of the amplitude-phase retrieval problem in any linear transform system and its applications based on our previous works in the past decade. We describe the general statement on the amplitude-phase retrieval problem in an imaging system and derive a set of equations governing the amplitude-phase distribution in terms of the rigorous mathematical derivation. We then show that, by using these equations and an iterative algorithm, a variety of amplitude-phase problems can be successfully handled. We carry out the systematic investigations and comprehensive numerical calculations to demonstrate the utilization of this new algorithm in various transform systems. For instance, we have achieved the phase retrieval from two intensity measurements in an imaging system with diffraction loss (non-unitary transform), both theoretically and experimentally, and the recovery of model real image from its Hartley-transform modulus only in one and two dimensional cases. We discuss the achievement of the phase retrieval problem from a single intensity only based on the sampling theorem and our algorithm. We also apply this algorithm to provide an optimal design of the phase-adjusted plate for a phase-adjustment focusing laser accelerator and a design approach of single phase-only element for implementing optical interconnect. In order to closely simulate the really measured data, we examine the reconstruction of image from its spectral modulus corrupted by a random noise in detail. The results show that the convergent solution can always be obtained and the quality of the recovered image is satisfactory. We also indicated the relationship and distinction between our algorithm and the original Gerchberg- Saxton algorithm. From these studies, we conclude that our algorithm shows great capability to deal with the comprehensive phase-retrieval problems in the imaging system and the inverse problem in solid state physics. It may open a new way to solve important inverse source problems extensively appearing in physics.

  13. Phase-Retrieval Uncertainty Estimation and Algorithm Comparison for the JWST-ISIM Test Campaign

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott

    2016-01-01

    Phase retrieval, the process of determining the exitpupil wavefront of an optical instrument from image-plane intensity measurements, is the baseline methodology for characterizing the wavefront for the suite of science instruments (SIs) in the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST). JWST is a large, infrared space telescope with a 6.5-meter diameter primary mirror. JWST is currently NASA's flagship mission and will be the premier space observatory of the next decade. ISIM contains four optical benches with nine unique instruments, including redundancies. ISIM was characterized at the Goddard Space Flight Center (GSFC) in Greenbelt, MD in a series of cryogenic vacuum tests using a telescope simulator. During these tests, phase-retrieval algorithms were used to characterize the instruments. The objective of this paper is to describe the Monte-Carlo simulations that were used to establish uncertainties (i.e., error bars) for the wavefronts of the various instruments in ISIM. Multiple retrieval algorithms were used in the analysis of ISIM phase-retrieval focus-sweep data, including an iterativetransform algorithm and a nonlinear optimization algorithm. These algorithms emphasize the recovery of numerous optical parameters, including low-order wavefront composition described by Zernike polynomial terms and high-order wavefront described by a point-by-point map, location of instrument best focus, focal ratio, exit-pupil amplitude, the morphology of any extended object, and optical jitter. The secondary objective of this paper is to report on the relative accuracies of these algorithms for the ISIM instrument tests, and a comparison of their computational complexity and their performance on central and graphical processing unit clusters. From a phase-retrieval perspective, the ISIM test campaign includes a variety of source illumination bandwidths, various image-plane sampling criteria above and below the Nyquist- Shannon critical sampling value, various extended object sizes, and several other impactful effects.

  14. An analysis of the effect of defect structures on catalytic surfaces by the boundary element technique

    NASA Astrophysics Data System (ADS)

    Peirce, Anthony P.; Rabitz, Herschel

    1988-08-01

    The boundary element (BE) technique is used to analyze the effect of defects on one-dimensional chemically active surfaces. The standard BE algorithm for diffusion is modified to include the effects of bulk desorption by making use of an asymptotic expansion technique to evaluate influences near boundaries and defect sites. An explicit time evolution scheme is proposed to treat the non-linear equations associated with defect sites. The proposed BE algorithm is shown to provide an efficient and convergent algorithm for modelling localized non-linear behavior. Since it exploits the actual Green's function of the linear diffusion-desorption process that takes place on the surface, the BE algorithm is extremely stable. The BE algorithm is applied to a number of interesting physical problems in which non-linear reactions occur at localized defects. The Lotka-Volterra system is considered in which the source, sink and predator-prey interaction terms are distributed at different defect sites in the domain and in which the defects are coupled by diffusion. This example provides a stringent test of the stability of the numerical algorithm. Marginal stability oscillations are analyzed for the Prigogine-Lefever reaction that occurs on a lattice of defects. Dissipative effects are observed for large perturbations to the marginal stability state, and rapid spatial reorganization of uniformly distributed initial perturbations is seen to take place. In another series of examples the effect of defect locations on the balance between desorptive processes on chemically active surfaces is considered. The effect of dynamic pulsing at various time-scales is considered for a one species reactive trapping model. Similar competitive behavior between neighboring defects previously observed for static adsorption levels is shown to persist for dynamic loading of the surface. The analysis of a more complex three species reaction process also provides evidence of competitive behavior between neighboring defect sites. The proposed BE algorithm is shown to provide a useful technique for analyzing the effect of defect sites on chemically active surfaces.

  15. Spacecraft Angular State Estimation After Sensor Failure

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); BarItzhack, Itzhack Y.; Harman, Richard R.

    2002-01-01

    This work describes two algorithms for computing the angular rate and attitude in case of a gyro failure in a spacecraft (SC) with a special mission profile. The source of the problem is presented, two algorithms are suggested, an observability study is carried out, and the efficiency of the algorithms is demonstrated.

  16. Psychophysical Comparisons in Image Compression Algorithms.

    DTIC Science & Technology

    1999-03-01

    Leister, M., "Lossy Lempel - Ziv Algorithm for Large Alphabet Sources and Applications to Image Compression ," IEEE Proceedings, v.I, pp. 225-228, September...1623-1642, September 1990. Sanford, M.A., An Analysis of Data Compression Algorithms used in the Transmission of Imagery, Master’s Thesis, Naval...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS PSYCHOPHYSICAL COMPARISONS IN IMAGE COMPRESSION ALGORITHMS by % Christopher J. Bodine • March

  17. Comment on “Symplectic integration of magnetic systems”: A proof that the Boris algorithm is not variational

    DOE PAGES

    Ellison, C. L.; Burby, J. W.; Qin, H.

    2015-11-01

    One popular technique for the numerical time advance of charged particles interacting with electric and magnetic fields according to the Lorentz force law [1], [2], [3] and [4] is the Boris algorithm. Its popularity stems from simple implementation, rapid iteration, and excellent long-term numerical fidelity [1] and [5]. Excellent long-term behavior strongly suggests the numerical dynamics exhibit conservation laws analogous to those governing the continuous Lorentz force system [6]. Moreover, without conserved quantities to constrain the numerical dynamics, algorithms typically dissipate or accumulate important observables such as energy and momentum over long periods of simulated time [6]. Identification of themore » conservative properties of an algorithm is important for establishing rigorous expectations on the long-term behavior; energy-preserving, symplectic, and volume-preserving methods each have particular implications for the qualitative numerical behavior [6], [7], [8], [9], [10] and [11].« less

  18. Trust index based fault tolerant multiple event localization algorithm for WSNs.

    PubMed

    Xu, Xianghua; Gao, Xueyong; Wan, Jian; Xiong, Naixue

    2011-01-01

    This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms.

  19. Trust Index Based Fault Tolerant Multiple Event Localization Algorithm for WSNs

    PubMed Central

    Xu, Xianghua; Gao, Xueyong; Wan, Jian; Xiong, Naixue

    2011-01-01

    This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms. PMID:22163972

  20. Polynomial-interpolation algorithm for van der Pauw Hall measurement in a metal hydride film

    NASA Astrophysics Data System (ADS)

    Koon, D. W.; Ares, J. R.; Leardini, F.; Fernández, J. F.; Ferrer, I. J.

    2008-10-01

    We apply a four-term polynomial-interpolation extension of the van der Pauw Hall measurement technique to a 330 nm Mg-Pd bilayer during both absorption and desorption of hydrogen at room temperature. We show that standard versions of the van der Pauw DC Hall measurement technique produce an error of over 100% due to a drifting offset signal and can lead to unphysical interpretations of the physical processes occurring in this film. The four-term technique effectively removes this source of error, even when the offset signal is drifting by an amount larger than the Hall signal in the time interval between successive measurements. This technique can be used to increase the resolution of transport studies of any material in which the resistivity is rapidly changing, particularly when the material is changing from metallic to insulating behavior.

  1. Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software.

    PubMed

    Moon, Andres; Smith, Geoffrey H; Kong, Jun; Rogers, Thomas E; Ellis, Carla L; Farris, Alton B Brad

    2018-02-01

    Renal allograft rejection diagnosis depends on assessment of parameters such as interstitial inflammation; however, studies have shown interobserver variability regarding interstitial inflammation assessment. Since automated image analysis quantitation can be reproducible, we devised customized analysis methods for CD3+ T-cell staining density as a measure of rejection severity and compared them with established commercial methods along with visual assessment. Renal biopsy CD3 immunohistochemistry slides (n = 45), including renal allografts with various degrees of acute cellular rejection (ACR) were scanned for whole slide images (WSIs). Inflammation was quantitated in the WSIs using pathologist visual assessment, commercial algorithms (Aperio nuclear algorithm for CD3+ cells/mm 2 and Aperio positive pixel count algorithm), and customized open source algorithms developed in ImageJ with thresholding/positive pixel counting (custom CD3+%) and identification of pixels fulfilling "maxima" criteria for CD3 expression (custom CD3+ cells/mm 2 ). Based on visual inspections of "markup" images, CD3 quantitation algorithms produced adequate accuracy. Additionally, CD3 quantitation algorithms correlated between each other and also with visual assessment in a statistically significant manner (r = 0.44 to 0.94, p = 0.003 to < 0.0001). Methods for assessing inflammation suggested a progression through the tubulointerstitial ACR grades, with statistically different results in borderline versus other ACR types, in all but the custom methods. Assessment of CD3-stained slides using various open source image analysis algorithms presents salient correlations with established methods of CD3 quantitation. These analysis techniques are promising and highly customizable, providing a form of on-slide "flow cytometry" that can facilitate additional diagnostic accuracy in tissue-based assessments.

  2. Characterizing open and non-uniform vertical heat sources: towards the identification of real vertical cracks in vibrothermography experiments

    NASA Astrophysics Data System (ADS)

    Castelo, A.; Mendioroz, A.; Celorrio, R.; Salazar, A.; López de Uralde, P.; Gorosmendi, I.; Gorostegui-Colinas, E.

    2017-05-01

    Lock-in vibrothermography is used to characterize vertical kissing and open cracks in metals. In this technique the crack heats up during ultrasound excitation due mainly to friction between the defect's faces. We have solved the inverse problem, consisting in determining the heat source distribution produced at cracks under amplitude modulated ultrasound excitation, which is an ill-posed inverse problem. As a consequence the minimization of the residual is unstable. We have stabilized the algorithm introducing a penalty term based on Total Variation functional. In the inversion, we combine amplitude and phase surface temperature data obtained at several modulation frequencies. Inversions of synthetic data with added noise indicate that compact heat sources are characterized accurately and that the particular upper contours can be retrieved for shallow heat sources. The overall shape of open and homogeneous semicircular strip-shaped heat sources representing open half-penny cracks can also be retrieved but the reconstruction of the deeper end of the heat source loses contrast. Angle-, radius- and depth-dependent inhomogeneous heat flux distributions within these semicircular strips can also be qualitatively characterized. Reconstructions of experimental data taken on samples containing calibrated heat sources confirm the predictions from reconstructions of synthetic data. We also present inversions of experimental data obtained from a real welded Inconel 718 specimen. The results are in good qualitative agreement with the results of liquids penetrants testing.

  3. Agent-Based Chemical Plume Tracing Using Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Zarzhitsky, Dimitri; Spears, Diana; Thayer, David; Spears, William

    2004-01-01

    This paper presents a rigorous evaluation of a novel, distributed chemical plume tracing algorithm. The algorithm is a combination of the best aspects of the two most popular predecessors for this task. Furthermore, it is based on solid, formal principles from the field of fluid mechanics. The algorithm is applied by a network of mobile sensing agents (e.g., robots or micro-air vehicles) that sense the ambient fluid velocity and chemical concentration, and calculate derivatives. The algorithm drives the robotic network to the source of the toxic plume, where measures can be taken to disable the source emitter. This work is part of a much larger effort in research and development of a physics-based approach to developing networks of mobile sensing agents for monitoring, tracking, reporting and responding to hazardous conditions.

  4. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.

    PubMed

    Ge, Ruiyang; Wang, Yubao; Zhang, Jipeng; Yao, Li; Zhang, Hang; Long, Zhiying

    2016-04-01

    As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints. In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA. The source sparsity is estimated through a smoothed ℓ0 norm method. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of SparseFastICA and made a performance comparison between SparseFastICA, FastICA and Infomax ICA. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of SparseFastICA for the source separation in fMRI data. Both the simulated and real fMRI experimental results showed that SparseFastICA has better robustness to noise and better spatial detection power than FastICA. Although the spatial detection power of SparseFastICA and Infomax did not show significant difference, SparseFastICA had faster computation speed than Infomax. SparseFastICA was comparable to the Infomax algorithm with a faster computation speed. More importantly, SparseFastICA outperformed FastICA in robustness and spatial detection power and can be used to identify more accurate brain networks than FastICA algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment

    PubMed Central

    2011-01-01

    Background Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. Results This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. Conclusions AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements. PMID:21798025

  6. AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment.

    PubMed

    Stålring, Jonna C; Carlsson, Lars A; Almeida, Pedro; Boyer, Scott

    2011-07-28

    Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements.

  7. ECG Sensor Card with Evolving RBP Algorithms for Human Verification.

    PubMed

    Tseng, Kuo-Kun; Huang, Huang-Nan; Zeng, Fufu; Tu, Shu-Yi

    2015-08-21

    It is known that cardiac and respiratory rhythms in electrocardiograms (ECGs) are highly nonlinear and non-stationary. As a result, most traditional time-domain algorithms are inadequate for characterizing the complex dynamics of the ECG. This paper proposes a new ECG sensor card and a statistical-based ECG algorithm, with the aid of a reduced binary pattern (RBP), with the aim of achieving faster ECG human identity recognition with high accuracy. The proposed algorithm has one advantage that previous ECG algorithms lack-the waveform complex information and de-noising preprocessing can be bypassed; therefore, it is more suitable for non-stationary ECG signals. Experimental results tested on two public ECG databases (MIT-BIH) from MIT University confirm that the proposed scheme is feasible with excellent accuracy, low complexity, and speedy processing. To be more specific, the advanced RBP algorithm achieves high accuracy in human identity recognition and is executed at least nine times faster than previous algorithms. Moreover, based on the test results from a long-term ECG database, the evolving RBP algorithm also demonstrates superior capability in handling long-term and non-stationary ECG signals.

  8. Alignment of leading-edge and peak-picking time of arrival methods to obtain accurate source locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roussel-Dupre, R.; Symbalisty, E.; Fox, C.

    2009-08-01

    The location of a radiating source can be determined by time-tagging the arrival of the radiated signal at a network of spatially distributed sensors. The accuracy of this approach depends strongly on the particular time-tagging algorithm employed at each of the sensors. If different techniques are used across the network, then the time tags must be referenced to a common fiducial for maximum location accuracy. In this report we derive the time corrections needed to temporally align leading-edge, time-tagging techniques with peak-picking algorithms. We focus on broadband radio frequency (RF) sources, an ionospheric propagation channel, and narrowband receivers, but themore » final results can be generalized to apply to any source, propagation environment, and sensor. Our analytic results are checked against numerical simulations for a number of representative cases and agree with the specific leading-edge algorithm studied independently by Kim and Eng (1995) and Pongratz (2005 and 2007).« less

  9. Direction of Arrival Estimation Using a Reconfigurable Array

    DTIC Science & Technology

    2005-05-06

    civilian world. Keywords: Direction-of-arrival Estimation MUSIC algorithm Reconfigurable Array Experimental Created by Neevia Personal...14. SUBJECT TERMS: Direction-of-arrival ; Estimation ; MUSIC algorithm ; Reconfigurable ; Array ; Experimental 16. PRICE CODE 17...9 1.5 MuSiC Algorithm

  10. Gossip-based solutions for discrete rendezvous in populations of communicating agents.

    PubMed

    Hollander, Christopher D; Wu, Annie S

    2014-01-01

    The objective of the rendezvous problem is to construct a method that enables a population of agents to agree on a spatial (and possibly temporal) meeting location. We introduce the buffered gossip algorithm as a general solution to the rendezvous problem in a discrete domain with direct communication between decentralized agents. We compare the performance of the buffered gossip algorithm against the well known uniform gossip algorithm. We believe that a buffered solution is preferable to an unbuffered solution, such as the uniform gossip algorithm, because the use of a buffer allows an agent to use multiple information sources when determining its desired rendezvous point, and that access to multiple information sources may improve agent decision making by reinforcing or contradicting an initial choice. To show that the buffered gossip algorithm is an actual solution for the rendezvous problem, we construct a theoretical proof of convergence and derive the conditions under which the buffered gossip algorithm is guaranteed to produce a consensus on rendezvous location. We use these results to verify that the uniform gossip algorithm also solves the rendezvous problem. We then use a multi-agent simulation to conduct a series of simulation experiments to compare the performance between the buffered and uniform gossip algorithms. Our results suggest that the buffered gossip algorithm can solve the rendezvous problem faster than the uniform gossip algorithm; however, the relative performance between these two solutions depends on the specific constraints of the problem and the parameters of the buffered gossip algorithm.

  11. Gossip-Based Solutions for Discrete Rendezvous in Populations of Communicating Agents

    PubMed Central

    Hollander, Christopher D.; Wu, Annie S.

    2014-01-01

    The objective of the rendezvous problem is to construct a method that enables a population of agents to agree on a spatial (and possibly temporal) meeting location. We introduce the buffered gossip algorithm as a general solution to the rendezvous problem in a discrete domain with direct communication between decentralized agents. We compare the performance of the buffered gossip algorithm against the well known uniform gossip algorithm. We believe that a buffered solution is preferable to an unbuffered solution, such as the uniform gossip algorithm, because the use of a buffer allows an agent to use multiple information sources when determining its desired rendezvous point, and that access to multiple information sources may improve agent decision making by reinforcing or contradicting an initial choice. To show that the buffered gossip algorithm is an actual solution for the rendezvous problem, we construct a theoretical proof of convergence and derive the conditions under which the buffered gossip algorithm is guaranteed to produce a consensus on rendezvous location. We use these results to verify that the uniform gossip algorithm also solves the rendezvous problem. We then use a multi-agent simulation to conduct a series of simulation experiments to compare the performance between the buffered and uniform gossip algorithms. Our results suggest that the buffered gossip algorithm can solve the rendezvous problem faster than the uniform gossip algorithm; however, the relative performance between these two solutions depends on the specific constraints of the problem and the parameters of the buffered gossip algorithm. PMID:25397882

  12. ContextD: an algorithm to identify contextual properties of medical terms in a Dutch clinical corpus.

    PubMed

    Afzal, Zubair; Pons, Ewoud; Kang, Ning; Sturkenboom, Miriam C J M; Schuemie, Martijn J; Kors, Jan A

    2014-11-29

    In order to extract meaningful information from electronic medical records, such as signs and symptoms, diagnoses, and treatments, it is important to take into account the contextual properties of the identified information: negation, temporality, and experiencer. Most work on automatic identification of these contextual properties has been done on English clinical text. This study presents ContextD, an adaptation of the English ConText algorithm to the Dutch language, and a Dutch clinical corpus. We created a Dutch clinical corpus containing four types of anonymized clinical documents: entries from general practitioners, specialists' letters, radiology reports, and discharge letters. Using a Dutch list of medical terms extracted from the Unified Medical Language System, we identified medical terms in the corpus with exact matching. The identified terms were annotated for negation, temporality, and experiencer properties. To adapt the ConText algorithm, we translated English trigger terms to Dutch and added several general and document specific enhancements, such as negation rules for general practitioners' entries and a regular expression based temporality module. The ContextD algorithm utilized 41 unique triggers to identify the contextual properties in the clinical corpus. For the negation property, the algorithm obtained an F-score from 87% to 93% for the different document types. For the experiencer property, the F-score was 99% to 100%. For the historical and hypothetical values of the temporality property, F-scores ranged from 26% to 54% and from 13% to 44%, respectively. The ContextD showed good performance in identifying negation and experiencer property values across all Dutch clinical document types. Accurate identification of the temporality property proved to be difficult and requires further work. The anonymized and annotated Dutch clinical corpus can serve as a useful resource for further algorithm development.

  13. FIR filters for hardware-based real-time multi-band image blending

    NASA Astrophysics Data System (ADS)

    Popovic, Vladan; Leblebici, Yusuf

    2015-02-01

    Creating panoramic images has become a popular feature in modern smart phones, tablets, and digital cameras. A user can create a 360 degree field-of-view photograph from only several images. Quality of the resulting image is related to the number of source images, their brightness, and the used algorithm for their stitching and blending. One of the algorithms that provides excellent results in terms of background color uniformity and reduction of ghosting artifacts is the multi-band blending. The algorithm relies on decomposition of image into multiple frequency bands using dyadic filter bank. Hence, the results are also highly dependant on the used filter bank. In this paper we analyze performance of the FIR filters used for multi-band blending. We present a set of five filters that showed the best results in both literature and our experiments. The set includes Gaussian filter, biorthogonal wavelets, and custom-designed maximally flat and equiripple FIR filters. The presented results of filter comparison are based on several no-reference metrics for image quality. We conclude that 5/3 biorthogonal wavelet produces the best result in average, especially when its short length is considered. Furthermore, we propose a real-time FPGA implementation of the blending algorithm, using 2D non-separable systolic filtering scheme. Its pipeline architecture does not require hardware multipliers and it is able to achieve very high operating frequencies. The implemented system is able to process 91 fps for 1080p (1920×1080) image resolution.

  14. BiPACE 2D--graph-based multiple alignment for comprehensive 2D gas chromatography-mass spectrometry.

    PubMed

    Hoffmann, Nils; Wilhelm, Mathias; Doebbe, Anja; Niehaus, Karsten; Stoye, Jens

    2014-04-01

    Comprehensive 2D gas chromatography-mass spectrometry is an established method for the analysis of complex mixtures in analytical chemistry and metabolomics. It produces large amounts of data that require semiautomatic, but preferably automatic handling. This involves the location of significant signals (peaks) and their matching and alignment across different measurements. To date, there exist only a few openly available algorithms for the retention time alignment of peaks originating from such experiments that scale well with increasing sample and peak numbers, while providing reliable alignment results. We describe BiPACE 2D, an automated algorithm for retention time alignment of peaks from 2D gas chromatography-mass spectrometry experiments and evaluate it on three previously published datasets against the mSPA, SWPA and Guineu algorithms. We also provide a fourth dataset from an experiment studying the H2 production of two different strains of Chlamydomonas reinhardtii that is available from the MetaboLights database together with the experimental protocol, peak-detection results and manually curated multiple peak alignment for future comparability with newly developed algorithms. BiPACE 2D is contained in the freely available Maltcms framework, version 1.3, hosted at http://maltcms.sf.net, under the terms of the L-GPL v3 or Eclipse Open Source licenses. The software used for the evaluation along with the underlying datasets is available at the same location. The C.reinhardtii dataset is freely available at http://www.ebi.ac.uk/metabolights/MTBLS37.

  15. Constrained-transport Magnetohydrodynamics with Adaptive Mesh Refinement in CHARM

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Martin, Daniel F.

    2011-07-01

    We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.

  16. Chapter 13. Exploring Use of the Reserved Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmen, John; Humphrey, Alan; Berzins, Martin

    2015-07-29

    In this chapter, we illustrate benefits of thinking in terms of thread management techniques when using a centralized scheduler model along with interoperability of MPI and PThread. This is facilitated through an exploration of thread placement strategies for an algorithm modeling radiative heat transfer with special attention to the 61st core. This algorithm plays a key role within the Uintah Computational Framework (UCF) and current efforts taking place at the University of Utah to model next-generation, large-scale clean coal boilers. In such simulations, this algorithm models the dominant form of heat transfer and consumes a large portion of compute time.more » Exemplified by a real-world example, this chapter presents our early efforts in porting a key portion of a scalability-centric codebase to the Intel Xeon Phi coprocessor. Specifically, this chapter presents results from our experiments profiling the native execution of a reverse Monte-Carlo ray tracing-based radiation model on a single coprocessor. These results demonstrate that our fastest run configurations utilized the 61st core and that performance was not profoundly impacted when explicitly oversubscribing the coprocessor operating system thread. Additionally, this chapter presents a portion of radiation model source code, a MIC-centric UCF cross-compilation example, and less conventional thread management technique for developers utilizing the PThreads threading model.« less

  17. Detection of Partial Discharge Sources Using UHF Sensors and Blind Signal Separation

    PubMed Central

    Boya, Carlos; Parrado-Hernández, Emilio

    2017-01-01

    The measurement of the emitted electromagnetic energy in the UHF region of the spectrum allows the detection of partial discharges and, thus, the on-line monitoring of the condition of the insulation of electrical equipment. Unfortunately, determining the affected asset is difficult when there are several simultaneous insulation defects. This paper proposes the use of an independent component analysis (ICA) algorithm to separate the signals coming from different partial discharge (PD) sources. The performance of the algorithm has been tested using UHF signals generated by test objects. The results are validated by two automatic classification techniques: support vector machines and similarity with class mean. Both methods corroborate the suitability of the algorithm to separate the signals emitted by each PD source even when they are generated by the same type of insulation defect. PMID:29140267

  18. Recent Progress on Deep Blue Aerosol Algorithm as Applied TO MODIS, SEA WIFS, and VIIRS, and Their Intercomparisons with Ground Based and Other Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Bettenhausen, Corey; Sawyer, Andrew; Tsay, Si-Chee

    2012-01-01

    The impact of natural and anthropogenic sources of aerosols has gained increasing attention from scientific communities in recent years. Indeed, tropospheric aerosols not only perturb radiative energy balance by interacting with solar and terrestrial radiation, but also by changing cloud properties and lifetime. Furthermore, these anthropogenic and natural air particles, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across oceans and continents resulting in important biogeochemical impacts on the ecosystem. With the launch of SeaWiFS in 1997, Terra/MODIS in 1999, and Aqua/MODIS in 2002, high quality comprehensive aerosol climatology is becoming feasible for the first time. As a result of these unprecedented data records, studies of the radiative and biogeochemical effects due to tropospheric aerosols are now possible. In this talk, we will demonstrate how this newly available SeaWiFS/MODIS aerosol climatology can provide an important piece of puzzles in reducing the uncertainty of estimated climatic forcing due to aerosols. We will start with the global distribution of aerosol loading and their variabilities over both land and ocean on short- and long-term temporal scales observed over the last decade. The recent progress made in Deep Blue aerosol algorithm on improving accuracy of these Sea WiFS / MODIS aerosol products in particular over land will be discussed. The impacts on quantifying physical and optical processes of aerosols over source regions of adding the Deep Blue products of aerosol properties over bright-reflecting surfaces into Sea WiFS / MODIS as well as VIIRS data suite will also be addressed. We will also show the intercomparison results of SeaWiFS/MODIS retrieved aerosol optical thickness with data from ground based AERONET sunphotometers over land and ocean as well as with other satellite measurements. The trends observed in global aerosol loadings of both natural and anthropogenic sources based upon more than a decade of combined MODIS/SeaWiFS data (1997-2011) will be discussed. We will also address the importance of various key issues such as differences in spatial-temporal sampling rates and observation time between different satellite measurements could potentially impact these intercomparisons results, especially for using the monthly mean data, and thus on estimates of long-term aerosol trends.

  19. A modified three-term PRP conjugate gradient algorithm for optimization models.

    PubMed

    Wu, Yanlin

    2017-01-01

    The nonlinear conjugate gradient (CG) algorithm is a very effective method for optimization, especially for large-scale problems, because of its low memory requirement and simplicity. Zhang et al. (IMA J. Numer. Anal. 26:629-649, 2006) firstly propose a three-term CG algorithm based on the well known Polak-Ribière-Polyak (PRP) formula for unconstrained optimization, where their method has the sufficient descent property without any line search technique. They proved the global convergence of the Armijo line search but this fails for the Wolfe line search technique. Inspired by their method, we will make a further study and give a modified three-term PRP CG algorithm. The presented method possesses the following features: (1) The sufficient descent property also holds without any line search technique; (2) the trust region property of the search direction is automatically satisfied; (3) the steplengh is bounded from below; (4) the global convergence will be established under the Wolfe line search. Numerical results show that the new algorithm is more effective than that of the normal method.

  20. Investigation of automated feature extraction using multiple data sources

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Perkins, Simon J.; Pope, Paul A.; Theiler, James P.; David, Nancy A.; Porter, Reid B.

    2003-04-01

    An increasing number and variety of platforms are now capable of collecting remote sensing data over a particular scene. For many applications, the information available from any individual sensor may be incomplete, inconsistent or imprecise. However, other sources may provide complementary and/or additional data. Thus, for an application such as image feature extraction or classification, it may be that fusing the mulitple data sources can lead to more consistent and reliable results. Unfortunately, with the increased complexity of the fused data, the search space of feature-extraction or classification algorithms also greatly increases. With a single data source, the determination of a suitable algorithm may be a significant challenge for an image analyst. With the fused data, the search for suitable algorithms can go far beyond the capabilities of a human in a realistic time frame, and becomes the realm of machine learning, where the computational power of modern computers can be harnessed to the task at hand. We describe experiments in which we investigate the ability of a suite of automated feature extraction tools developed at Los Alamos National Laboratory to make use of multiple data sources for various feature extraction tasks. We compare and contrast this software's capabilities on 1) individual data sets from different data sources 2) fused data sets from multiple data sources and 3) fusion of results from multiple individual data sources.

Top