Amplitude loss of sonic waveform due to source coupling to the medium
NASA Astrophysics Data System (ADS)
Lee, Myung W.; Waite, William F.
2007-03-01
In contrast to hydrate-free sediments, sonic waveforms acquired in gas hydrate-bearing sediments indicate strong amplitude attenuation associated with a sonic velocity increase. The amplitude attenuation increase has been used to quantify pore-space hydrate content by attributing observed attenuation to the hydrate-bearing sediment's intrinsic attenuation. A second attenuation mechanism must be considered, however. Theoretically, energy radiation from sources inside fluid-filled boreholes strongly depends on the elastic parameters of materials surrounding the borehole. It is therefore plausible to interpret amplitude loss in terms of source coupling to the surrounding medium as well as to intrinsic attenuation. Analyses of sonic waveforms from the Mallik 5L-38 well, Northwest Territories, Canada, indicate a significant component of sonic waveform amplitude loss is due to source coupling. Accordingly, all sonic waveform amplitude analyses should include the effect of source coupling to accurately characterize a formation's intrinsic attenuation.
Amplitude loss of sonic waveform due to source coupling to the medium
Lee, Myung W.; Waite, William F.
2007-01-01
In contrast to hydrate-free sediments, sonic waveforms acquired in gas hydrate-bearing sediments indicate strong amplitude attenuation associated with a sonic velocity increase. The amplitude attenuation increase has been used to quantify pore-space hydrate content by attributing observed attenuation to the hydrate-bearing sediment's intrinsic attenuation. A second attenuation mechanism must be considered, however. Theoretically, energy radiation from sources inside fluid-filled boreholes strongly depends on the elastic parameters of materials surrounding the borehole. It is therefore plausible to interpret amplitude loss in terms of source coupling to the surrounding medium as well as to intrinsic attenuation. Analyses of sonic waveforms from the Mallik 5L-38 well, Northwest Territories, Canada, indicate a significant component of sonic waveform amplitude loss is due to source coupling. Accordingly, all sonic waveform amplitude analyses should include the effect of source coupling to accurately characterize a formation's intrinsic attenuation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, S R; Dreger, D S; Phillips, W S
2008-07-16
Inversions for regional attenuation (1/Q) of Lg are performed in two different regions. The path attenuation component of the Lg spectrum is isolated using the coda-source normalization method, which corrects the Lg spectral amplitude for the source using the stable, coda-derived source spectra. Tomographic images of Northern California agree well with one-dimensional (1-D) Lg Q estimated from five different methods. We note there is some tendency for tomographic smoothing to increase Q relative to targeted 1-D methods. For example in the San Francisco Bay Area, which contains high attenuation relative to the rest of it's region, Q is over-estimated bymore » {approx}30. Coda-source normalized attenuation tomography is also carried out for the Yellow Sea/Korean Peninsula (YSKP) where output parameters (site, source, and path terms) are compared with those from the amplitude tomography method of Phillips et al. (2005) as well as a new method that ties the source term to the MDAC formulation (Walter and Taylor, 2001). The source terms show similar scatter between coda-source corrected and MDAC source perturbation methods, whereas the amplitude method has the greatest correlation with estimated true source magnitude. The coda-source better represents the source spectra compared to the estimated magnitude and could be the cause of the scatter. The similarity in the source terms between the coda-source and MDAC-linked methods shows that the latter method may approximate the effect of the former, and therefore could be useful in regions without coda-derived sources. The site terms from the MDAC-linked method correlate slightly with global Vs30 measurements. While the coda-source and amplitude ratio methods do not correlate with Vs30 measurements, they do correlate with one another, which provides confidence that the two methods are consistent. The path Q{sup -1} values are very similar between the coda-source and amplitude ratio methods except for small differences in the Da-xin-anling Mountains, in the northern YSKP. However there is one large difference between the MDAC-linked method and the others in the region near stations TJN and INCN, which point to site-effect as the cause for the difference.« less
NASA Astrophysics Data System (ADS)
Klimasewski, A.; Sahakian, V. J.; Baltay, A.; Boatwright, J.; Fletcher, J. B.; Baker, L. M.
2017-12-01
A large source of epistemic uncertainty in Ground Motion Prediction Equations (GMPEs) is derived from the path term, currently represented as a simple geometric spreading and intrinsic attenuation term. Including additional physical relationships between the path properties and predicted ground motions would produce more accurate and precise, region-specific GMPEs by reclassifying some of the random, aleatory uncertainty as epistemic. This study focuses on regions of Southern California, using data from the Anza network and Southern California Seismic network to create a catalog of events magnitude 2.5 and larger from 1998 to 2016. The catalog encompasses regions of varying geology and therefore varying path and site attenuation. Within this catalog of events, we investigate several collections of event region-to-station pairs, each of which share similar origin locations and stations so that all events have similar paths. Compared with a simple regional GMPE, these paths consistently have high or low residuals. By working with events that have the same path, we can isolate source and site effects, and focus on the remaining residual as path effects. We decompose the recordings into source and site spectra for each unique event and site in our greater Southern California regional database using the inversion method of Andrews (1986). This model represents each natural log record spectra as the sum of its natural log event and site spectra, while constraining each record to a reference site or Brune source spectrum. We estimate a regional, path-specific anelastic attenuation (Q) and site attenuation (t*) from the inversion site spectra and corner frequency from the inversion event spectra. We then compute the residuals between the observed record data, and the inversion model prediction (event*site spectra). This residual is representative of path effects, likely anelastic attenuation along the path that varies from the regional median attenuation. We examine the residuals for our different sets independently to see how path terms differ between event-to-station collections. The path-specific information gained from this can inform development of terms for regional GMPEs, through understanding of these seismological phenomena.
Impact of errors in short wave radiation and its attenuation on modeled upper ocean heat content
Photosynthetically available radiation (PAR) and its attenuation with the depth represent a forcing (source) term in the governing equation for the...and vertical attenuation of PAR have on the upper ocean model heat content. In the Monterey Bay area, we show that with a decrease in water clarity...attenuation coefficient. For Jerlov’s type IA water (attenuation coefficient is 0.049 m1), the relative error in surface PAR introduces an error
Measurement of attenuation coefficients of the fundamental and second harmonic waves in water
NASA Astrophysics Data System (ADS)
Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing
2016-02-01
Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.
Widdowson, M.A.; Chapelle, F.H.; Brauner, J.S.; ,
2003-01-01
A method is developed for optimizing monitored natural attenuation (MNA) and the reduction in the aqueous source zone concentration (??C) required to meet a site-specific regulatory target concentration. The mathematical model consists of two one-dimensional equations of mass balance for the aqueous phase contaminant, to coincide with up to two distinct zones of transformation, and appropriate boundary and intermediate conditions. The solution is written in terms of zone-dependent Peclet and Damko??hler numbers. The model is illustrated at a chlorinated solvent site where MNA was implemented following source treatment using in-situ chemical oxidation. The results demonstrate that by not taking into account a variable natural attenuation capacity (NAC), a lower target ??C is predicted, resulting in unnecessary source concentration reduction and cost with little benefit to achieving site-specific remediation goals.
Is amplitude loss of sonic waveforms due to intrinsic attenuation or source coupling to the medium?
Lee, Myung W.
2006-01-01
Sonic waveforms acquired in gas-hydrate-bearing sediments indicate strong amplitude loss associated with an increase in sonic velocity. Because the gas hydrate increases sonic velocities, the amplitude loss has been interpreted as due to intrinsic attenuation caused by the gas hydrate in the pore space, which apparently contradicts conventional wave propagation theory. For a sonic source in a fluid-filled borehole, the signal amplitude transmitted into the formation depends on the physical properties of the formation, including any pore contents, in the immediate vicinity of the source. A signal in acoustically fast material, such as gas-hydrate-bearing sediments, has a smaller amplitude than a signal in acoustically slower material. Therefore, it is reasonable to interpret the amplitude loss in the gas-hydrate-bearing sediments in terms of source coupling to the surrounding medium as well as intrinsic attenuation. An analysis of sonic waveforms measured at the Mallik 5L-38 well, Northwest Territories, Canada, indicates that a significant part of the sonic waveform's amplitude loss is due to a source-coupling effect. All amplitude analyses of sonic waveforms should include the effect of source coupling in order to accurately characterize the formation's intrinsic attenuation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyle, Moira L.; Walter, William R.; Pasyanos, Michael E.
Here, we develop high–resolution, laterally varying attenuation models for the regional crustal phases of Pg and Lg in the area surrounding the Basin and Range Province in the western United States. The models are part of the characterization effort for the Source Physics Experiment (SPE), a series of chemical explosions at the Nevada National Security Site designed to improve our understanding of explosion source phenomenology. To aid in SPE modeling efforts, we focus on improving our ability to accurately predict amplitudes in a set of narrow frequency bands ranging from 0.5 to 16.0 Hz. To explore constraints at higher frequenciesmore » where data become more sparse, we test the robustness of the empirically observed power–law relationship between quality factor Q and frequency (Q=Q 0f γ). Our methodology uses a staged approach to consider attenuation, physics–based source terms, site terms, and geometrical spreading contributions to amplitude measurements. Tomographic inversion results indicate that the frequency dependence is a reasonable assumption as attenuation varies laterally for this region through all frequency bands considered. Our 2D Pg and Lg attenuation models correlate with underlying physiographic provinces, with the highest Q located in the Sierra Nevada Mountains and the Colorado plateau. Compared to a best–fitting 1D model for the region, the 2D model provides an 81% variance reduction overall for Lg residuals and a 75% reduction for Pg. These detailed attenuation maps at high frequencies will facilitate further study of local and regional distance P/S amplitude discriminants that are typically used to distinguish between earthquakes and underground explosions.« less
Pyle, Moira L.; Walter, William R.; Pasyanos, Michael E.
2017-10-24
Here, we develop high–resolution, laterally varying attenuation models for the regional crustal phases of Pg and Lg in the area surrounding the Basin and Range Province in the western United States. The models are part of the characterization effort for the Source Physics Experiment (SPE), a series of chemical explosions at the Nevada National Security Site designed to improve our understanding of explosion source phenomenology. To aid in SPE modeling efforts, we focus on improving our ability to accurately predict amplitudes in a set of narrow frequency bands ranging from 0.5 to 16.0 Hz. To explore constraints at higher frequenciesmore » where data become more sparse, we test the robustness of the empirically observed power–law relationship between quality factor Q and frequency (Q=Q 0f γ). Our methodology uses a staged approach to consider attenuation, physics–based source terms, site terms, and geometrical spreading contributions to amplitude measurements. Tomographic inversion results indicate that the frequency dependence is a reasonable assumption as attenuation varies laterally for this region through all frequency bands considered. Our 2D Pg and Lg attenuation models correlate with underlying physiographic provinces, with the highest Q located in the Sierra Nevada Mountains and the Colorado plateau. Compared to a best–fitting 1D model for the region, the 2D model provides an 81% variance reduction overall for Lg residuals and a 75% reduction for Pg. These detailed attenuation maps at high frequencies will facilitate further study of local and regional distance P/S amplitude discriminants that are typically used to distinguish between earthquakes and underground explosions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyle, Moira L.; Walter, William R.; Pasyanos, Michael E.
2017-10-24
Here, we develop high–resolution, laterally varying attenuation models for the regional crustal phases of Pg and Lg in the area surrounding the Basin and Range Province in the western United States. The models are part of the characterization effort for the Source Physics Experiment (SPE), a series of chemical explosions at the Nevada National Security Site designed to improve our understanding of explosion source phenomenology. To aid in SPE modeling efforts, we focus on improving our ability to accurately predict amplitudes in a set of narrow frequency bands ranging from 0.5 to 16.0 Hz. To explore constraints at higher frequenciesmore » where data become more sparse, we test the robustness of the empirically observed power–law relationship between quality factor Q and frequency (Q=Q 0f γ). Our methodology uses a staged approach to consider attenuation, physics–based source terms, site terms, and geometrical spreading contributions to amplitude measurements. Tomographic inversion results indicate that the frequency dependence is a reasonable assumption as attenuation varies laterally for this region through all frequency bands considered. Our 2D Pg and Lg attenuation models correlate with underlying physiographic provinces, with the highest Q located in the Sierra Nevada Mountains and the Colorado plateau. Compared to a best–fitting 1D model for the region, the 2D model provides an 81% variance reduction overall for Lg residuals and a 75% reduction for Pg. These detailed attenuation maps at high frequencies will facilitate further study of local and regional distance P/S amplitude discriminants that are typically used to distinguish between earthquakes and underground explosions.« less
NASA Astrophysics Data System (ADS)
Weatherill, Graeme; Burton, Paul W.
2010-09-01
The Aegean is the most seismically active and tectonically complex region in Europe. Damaging earthquakes have occurred here throughout recorded history, often resulting in considerable loss of life. The Monte Carlo method of probabilistic seismic hazard analysis (PSHA) is used to determine the level of ground motion likely to be exceeded in a given time period. Multiple random simulations of seismicity are generated to calculate, directly, the ground motion for a given site. Within the seismic hazard analysis we explore the impact of different seismic source models, incorporating both uniform zones and distributed seismicity. A new, simplified, seismic source model, derived from seismotectonic interpretation, is presented for the Aegean region. This is combined into the epistemic uncertainty analysis alongside existing source models for the region, and models derived by a K-means cluster analysis approach. Seismic source models derived using the K-means approach offer a degree of objectivity and reproducibility into the otherwise subjective approach of delineating seismic sources using expert judgment. Similar review and analysis is undertaken for the selection of peak ground acceleration (PGA) attenuation models, incorporating into the epistemic analysis Greek-specific models, European models and a Next Generation Attenuation model. Hazard maps for PGA on a "rock" site with a 10% probability of being exceeded in 50 years are produced and different source and attenuation models are compared. These indicate that Greek-specific attenuation models, with their smaller aleatory variability terms, produce lower PGA hazard, whilst recent European models and Next Generation Attenuation (NGA) model produce similar results. The Monte Carlo method is extended further to assimilate epistemic uncertainty into the hazard calculation, thus integrating across several appropriate source and PGA attenuation models. Site condition and fault-type are also integrated into the hazard mapping calculations. These hazard maps are in general agreement with previous maps for the Aegean, recognising the highest hazard in the Ionian Islands, Gulf of Corinth and Hellenic Arc. Peak Ground Accelerations for some sites in these regions reach as high as 500-600 cm s -2 using European/NGA attenuation models, and 400-500 cm s -2 using Greek attenuation models.
Mitchell, Karen J; Mather, Mara; Johnson, Marcia K; Raye, Carol L; Greene, Erich J
2006-10-02
We investigated the hypothesis that arousal recruits attention to item information, thereby disrupting working memory processes that help bind items to context. Using functional magnetic resonance imaging, we compared brain activity when participants remembered negative or neutral picture-location conjunctions (source memory) versus pictures only. Behaviorally, negative trials showed disruption of short-term source, but not picture, memory; long-term picture recognition memory was better for negative than for neutral pictures. Activity in areas involved in working memory and feature integration (precentral gyrus and its intersect with superior temporal gyrus) was attenuated on negative compared with neutral source trials relative to picture-only trials. Visual processing areas (middle occipital and lingual gyri) showed greater activity for negative than for neutral trials, especially on picture-only trials.
Localization of sound sources in a room with one microphone
NASA Astrophysics Data System (ADS)
Peić Tukuljac, Helena; Lissek, Hervé; Vandergheynst, Pierre
2017-08-01
Estimation of the location of sound sources is usually done using microphone arrays. Such settings provide an environment where we know the difference between the received signals among different microphones in the terms of phase or attenuation, which enables localization of the sound sources. In our solution we exploit the properties of the room transfer function in order to localize a sound source inside a room with only one microphone. The shape of the room and the position of the microphone are assumed to be known. The design guidelines and limitations of the sensing matrix are given. Implementation is based on the sparsity in the terms of voxels in a room that are occupied by a source. What is especially interesting about our solution is that we provide localization of the sound sources not only in the horizontal plane, but in the terms of the 3D coordinates inside the room.
A Source Term for Wave Attenuation by Sea Ice in WAVEWATCH III(registered trademark): IC4
2017-06-07
energy in the high frequency face of the spectrum, which highlights the fact that frequency dependent attenuation in necessary to replicate the low-pass... frequency space ; M6) and an expanded version of M5 with up to 10 steps. The remainder of this report is structured as follows: a note about the...function period, T = 1/f. Measurements have shown that ice preferentially damps high frequency waves and in this way ice acts as a low pass filter
The attenuation of Fourier amplitudes for rock sites in eastern North America
Atkinson, Gail M.; Boore, David M.
2014-01-01
We develop an empirical model of the decay of Fourier amplitudes for earthquakes of M 3–6 recorded on rock sites in eastern North America and discuss its implications for source parameters. Attenuation at distances from 10 to 500 km may be adequately described using a bilinear model with a geometric spreading of 1/R1.3 to a transition distance of 50 km, with a geometric spreading of 1/R0.5 at greater distances. For low frequencies and distances less than 50 km, the effective geometric spreading given by the model is perturbed using a frequency‐ and hypocentral depth‐dependent factor defined in such a way as to increase amplitudes at lower frequencies near the epicenter but leave the 1 km source amplitudes unchanged. The associated anelastic attenuation is determined for each event, with an average value being given by a regional quality factor of Q=525f 0.45. This model provides a match, on average, between the known seismic moment of events and the inferred low‐frequency spectral amplitudes at R=1 km (obtained by correcting for the attenuation model). The inferred Brune stress parameters from the high‐frequency source terms are about 600 bars (60 MPa), on average, for events of M>4.5.
Polyquant CT: direct electron and mass density reconstruction from a single polyenergetic source
NASA Astrophysics Data System (ADS)
Mason, Jonathan H.; Perelli, Alessandro; Nailon, William H.; Davies, Mike E.
2017-11-01
Quantifying material mass and electron density from computed tomography (CT) reconstructions can be highly valuable in certain medical practices, such as radiation therapy planning. However, uniquely parameterising the x-ray attenuation in terms of mass or electron density is an ill-posed problem when a single polyenergetic source is used with a spectrally indiscriminate detector. Existing approaches to single source polyenergetic modelling often impose consistency with a physical model, such as water-bone or photoelectric-Compton decompositions, which will either require detailed prior segmentation or restrictive energy dependencies, and may require further calibration to the quantity of interest. In this work, we introduce a data centric approach to fitting the attenuation with piecewise-linear functions directly to mass or electron density, and present a segmentation-free statistical reconstruction algorithm for exploiting it, with the same order of complexity as other iterative methods. We show how this allows both higher accuracy in attenuation modelling, and demonstrate its superior quantitative imaging, with numerical chest and metal implant data, and validate it with real cone-beam CT measurements.
NASA Astrophysics Data System (ADS)
D'Amico, Sebastiano; Akinci, Aybige; Pischiutta, Marta
2018-03-01
In this paper we characterize the high frequency (1.0 - 10 Hz) seismic wave crustal attenuation and the source excitation in the Sicily Channel and surrounding regions using background seismicity from weak-motion database. The data set includes 15995 waveforms related to earthquakes having local magnitude ranging from 2.0 to 4.5 recorded between 2006 and 2012. The observed and predicted ground motions form the weak-motion data are evaluated in several narrow frequency bands from 0.25 to 20.0 Hz. The filtered observed peaks are regressed to specify a proper functional form for the regional attenuation, excitation and site specific term separately. The results are then used to calibrate effective theoretical attenuation and source excitation models using the Random Vibration Theory (RVT). In the log-log domain, the regional seismic wave attenuation and the geometrical spreading coefficient are modeled together. The geometrical spreading coefficient, g (r), modeled with a bilinear piecewise functional form and given as g (r) ∝ r-1.0 for the short distances (r < 50 km) and as g (r) ∝ r-0.8 for the larger distances (r < 50 km). A frequency-dependent quality factor, inverse of the seismic attenuation parameter, Q(f) = 160 f/fref 0. 35 (where fref = 1.0 Hz), is combined to the geometrical spreading. The source excitation terms are defined at a selected reference distance with a magnitude independent roll-off spectral parameter, κ 0.04 s and with a Brune stress drop parameter increasing with moment magnitude, from Δσ = 2 MPa for Mw = 2.0 to Δσ = 13 MPa for Mw = 4.5. For events M≤4.5 (being Mwmax = 4.5 available in the dataset) the stress parameters are obtained by correlating the empirical/excitation source spectra with the Brune spectral model as function of magnitude. For the larger magnitudes (Mw>4.5) outside the range available in the calibration dataset where we do not have recorded data, we extrapolate our results through the calibration of the stress parameters of the Brune source spectrum over the Bindi et al. (2011) ground motion prediction equation (GMPE) selected as a reference model (hereafter also ITA10).
EVALUATING THE POTENTIAL FOR CHLORINATED SOLVENT DEGRADATION FROM HYDROGEN CONCENTRATIONS
Long-term monitoring of a large trichioroethylene (TCE) and 1,1,1-trichloroethane (TCA) ground water plume in Minnesota indicated that these contaminants attenuated with distance from the source. Mathematical modelling indicated that sufficient time had passed for the plume to fu...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almeida, G. L.; Silvani, M. I.; Lopes, R. T.
Two main parameters rule the performance of an Image Acquisition System, namely, spatial resolution and contrast. For radiographic systems using cone beam arrangements, the farther the source, the better the resolution, but the contrast would diminish due to the lower statistics. A closer source would yield a higher contrast but it would no longer reproduce the attenuation map of the object, as the incoming beam flux would be reduced by unequal large divergences and attenuation factors. This work proposes a procedure to correct these effects when the object is comprised of a hull - or encased in it - possessingmore » a shape capable to be described in analytical geometry terms. Such a description allows the construction of a matrix containing the attenuation factors undergone by the beam from the source until its final destination at each coordinate on the 2D detector. Each matrix element incorporates the attenuation suffered by the beam after its travel through the hull wall, as well as its reduction due to the square of distance to the source and the angle it hits the detector surface. When the pixel intensities of the original image are corrected by these factors, the image contrast, reduced by the overall attenuation in the exposure phase, are recovered, allowing one to see details otherwise concealed due to the low contrast. In order to verify the soundness of this approach, synthetic images of objects of different shapes, such as plates and tubes, incorporating defects and statistical fluctuation, have been generated, recorded for further comparison and afterwards processed to improve their contrast. The developed algorithm which, generates processes and plots the images has been written in Fortran 90 language. As the resulting final images exhibit the expected improvements, it therefore seemed worthwhile to carry out further tests with actual experimental radiographies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooten, Gwendolyn; Cato, Rebecca; Looney, Brian
2015-03-01
Operable Unit 1 (OU-1) soil and groundwater have been affected by volatile organic compounds (VOC) Present groundwater remedy is collection, treatment, and disposal (pump and treat [P&T]) Several combinations of technologies were used to address soil and groundwater contamination Monitored natural attenuation (MNA) is a viable alternative Majority of source term has been excavated VOC concentrations in groundwater have decreased Attenuation mechanisms have been observed in the subsurface at OU-1
LIGHT NONAQUEOUS-PHASE LIQUID HYDROCARBON WEATHERING AT SOME JP-4 FUEL RELEASE SITES
A fuel weathering study was conducted for database entries to estimate natural light, nonaqueousphase
liquid weathering and source-term reduction rates for use in natural attenuation models. A range of BTEX
weathering rates from mobile LNAPL plumes at eight field sites with...
On estimating attenuation from the amplitude of the spectrally whitened ambient seismic field
NASA Astrophysics Data System (ADS)
Weemstra, Cornelis; Westra, Willem; Snieder, Roel; Boschi, Lapo
2014-06-01
Measuring attenuation on the basis of interferometric, receiver-receiver surface waves is a non-trivial task: the amplitude, more than the phase, of ensemble-averaged cross-correlations is strongly affected by non-uniformities in the ambient wavefield. In addition, ambient noise data are typically pre-processed in ways that affect the amplitude itself. Some authors have recently attempted to measure attenuation in receiver-receiver cross-correlations obtained after the usual pre-processing of seismic ambient-noise records, including, most notably, spectral whitening. Spectral whitening replaces the cross-spectrum with a unit amplitude spectrum. It is generally assumed that cross-terms have cancelled each other prior to spectral whitening. Cross-terms are peaks in the cross-correlation due to simultaneously acting noise sources, that is, spurious traveltime delays due to constructive interference of signal coming from different sources. Cancellation of these cross-terms is a requirement for the successful retrieval of interferometric receiver-receiver signal and results from ensemble averaging. In practice, ensemble averaging is replaced by integrating over sufficiently long time or averaging over several cross-correlation windows. Contrary to the general assumption, we show in this study that cross-terms are not required to cancel each other prior to spectral whitening, but may also cancel each other after the whitening procedure. Specifically, we derive an analytic approximation for the amplitude difference associated with the reversed order of cancellation and normalization. Our approximation shows that an amplitude decrease results from the reversed order. This decrease is predominantly non-linear at small receiver-receiver distances: at distances smaller than approximately two wavelengths, whitening prior to ensemble averaging causes a significantly stronger decay of the cross-spectrum.
Impact of Landfill Closure Designs on Long-Term Natural Attenuation of Chlorinated Hydrocarbons
2008-10-01
Parsons, 2004). The bioreactor provides a source of leachable organic material for the CAH-contaminated aquifer, which is used by native microorganisms ...bioreactor concept is not new. “Bioreactor” is a generic term for a system that degrades contaminants using microorganisms . Bioreactors have been used in a...of CAHs (USEPA, 1998) and using prior experience monitoring enhanced bioremediation sites. The bioreactor was sampled to monitor the chemical and
Computation of nonlinear ultrasound fields using a linearized contrast source method.
Verweij, Martin D; Demi, Libertario; van Dongen, Koen W A
2013-08-01
Nonlinear ultrasound is important in medical diagnostics because imaging of the higher harmonics improves resolution and reduces scattering artifacts. Second harmonic imaging is currently standard, and higher harmonic imaging is under investigation. The efficient development of novel imaging modalities and equipment requires accurate simulations of nonlinear wave fields in large volumes of realistic (lossy, inhomogeneous) media. The Iterative Nonlinear Contrast Source (INCS) method has been developed to deal with spatiotemporal domains measuring hundreds of wavelengths and periods. This full wave method considers the nonlinear term of the Westervelt equation as a nonlinear contrast source, and solves the equivalent integral equation via the Neumann iterative solution. Recently, the method has been extended with a contrast source that accounts for spatially varying attenuation. The current paper addresses the problem that the Neumann iterative solution converges badly for strong contrast sources. The remedy is linearization of the nonlinear contrast source, combined with application of more advanced methods for solving the resulting integral equation. Numerical results show that linearization in combination with a Bi-Conjugate Gradient Stabilized method allows the INCS method to deal with fairly strong, inhomogeneous attenuation, while the error due to the linearization can be eliminated by restarting the iterative scheme.
Baehr, Arthur L.; Charles, Emmanuel G.; Baker, Ronald J.
2001-01-01
Atmospheric methyl tert‐butyl ether (MTBE) concentrations in southern New Jersey generally exceeded concentrations in samples taken from the unsaturated zone. A simple unsaturated zone transport model indicates that MTBE degradation can explain the attenuation with half‐lives from a few months to a couple of years. Tert‐butyl alcohol (TBA), a possible degradation product of MTBE, was detected in unsaturated‐zone samples at concentrations exceeding atmospheric levels at some sites, suggesting the possible conversion of MTBE to TBA. At sites where MTBE was detected in shallow groundwater, the concentration was typically higher than the overlying unsaturated‐zone concentration. This observation is consistent with outgassing from the aquifer and combined with the unsaturated‐zone attenuation suggests some of the MTBE detections in shallow groundwater are nonatmospheric in origin, coming from leaking tanks, road runoff, or other sources. The identification of sources of MTBE in groundwater and attenuation mechanisms through the hydrologic cycle is critical in developing an understanding of the long‐term effect of MTBE releases.
NASA Astrophysics Data System (ADS)
Cahill, Mark D.; Humphrey, Victor F.; Doody, Claire
2000-07-01
Thermal safety indices for diagnostic ultrasound beams are calculated under the assumption that the sound propagates under linear conditions. A non-axisymmetric finite difference model is used to solve the KZK equation, and so to model the beam of a diagnostic scanner in pulsed Doppler mode. Beams from both a uniform focused rectangular source and a linear array are considered. Calculations are performed in water, and in attenuating media with tissue-like characteristics. Attenuating media are found to exhibit significant nonlinear effects for finite-amplitude beams. The resulting loss of intensity by the beam is then used as the source term in a model of tissue heating to estimate the maximum temperature rises. These are compared with the thermal indices, derived from the properties of the water-propagated beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jia; Christner, Jodie A.; Duan Xinhui
2012-11-15
Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w},more » the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.« less
NASA Astrophysics Data System (ADS)
Panin, V. Y.; Aykac, M.; Casey, M. E.
2013-06-01
The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction.
Developing a Short-Period, Fundamental-Mode Rayleigh-Wave Attenuation Model for Asia
NASA Astrophysics Data System (ADS)
Yang, X.; Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.
2008-12-01
We are developing a 2D, short-period (12 - 22 s), fundamental-mode Rayleigh-wave attenuation model for Asia. This model can be used to invert for a 3D attenuation model of the Earth's crust and upper mantle as well as to implement more accurate path corrections in regional surface-wave magnitude calculations. The prerequisite for developing a reliable Rayleigh-wave attenuation model is the availability of accurate fundamental-mode Rayleigh-wave amplitude measurements. Fundamental-mode Rayleigh-wave amplitudes could be contaminated by a variety of sources such as multipathing, focusing and defocusing, body wave, higher-mode surface wave, and other noise sources. These contaminations must be reduced to the largest extent possible. To achieve this, we designed a procedure by taking advantage of certain Rayleigh-wave characteristics, such as dispersion and elliptical particle motion, for accurate amplitude measurements. We first analyze the dispersion of the surface-wave data using a spectrogram. Based on the characteristics of the data dispersion, we design a phase-matched filter by using either a manually picked dispersion curve, or a group-velocity-model predicted dispersion curve, or the dispersion of the data, and apply the filter to the seismogram. Intelligent filtering of the seismogram and windowing of the resulting cross-correlation based on the spectrogram analysis and the comparison between the phase-match filtered data spectrum, the raw-data spectrum and the theoretical source spectrum effectively reduces amplitude contaminations and results in reliable amplitude measurements in many cases. We implemented these measuring techniques in a graphic-user-interface tool called Surface Wave Amplitude Measurement Tool (SWAMTOOL). Using the tool, we collected and processed waveform data for 200 earthquakes occurring throughout 2003-2006 inside and around Eurasia. The records from 135 broadband stations were used. After obtaining the Rayleigh-wave amplitude measurements, we analyzed the attenuation behavior of the amplitudes using source- and receiver-specific terms calculated from a 3D velocity model of the region. Based on the results, we removed amplitudes that yielded negative average attenuation coefficients, and included an additional parameter in the inversion to account for the possible bias of the CMT moments. Using the high-quality amplitude measurements in a tomographic inversion, we obtained a fundamental-mode Rayleigh-wave attenuation- coefficient model for periods between 12 and 22 s for Asia and surrounding regions. The inverted attenuation model is consistent with the geological features of Asia. We observe low attenuation in stable regions such as eastern Europe, the Siberian platforms, the Indian shield, the Arabian platform, the Yangtze craton, and others. High attenuation is observed in tectonically active regions such as the Himalayas, the Tian Shan, Pamir and Zagros mountains.
Ultrasound attenuation estimation using backscattered echoes from multiple sources.
Bigelow, Timothy A
2008-08-01
The objective of this study was to devise an algorithm that can accurately estimate the attenuation along the propagation path (i.e., the total attenuation) from backscattered echoes. It was shown that the downshift in the center frequency of the backscattered ultrasound echoes compared to echoes obtained in a water bath was calculated to have the form Deltaf=mf(o)+b after normalizing with respect to the source bandwidth where m depends on the correlation length, b depends on the total attenuation, and f(o) is the center frequency of the source as measured from a reference echo. Therefore, the total attenuation can be determined independent of the scatterer correlation length by measuring the downshift in center frequency from multiple sources (i.e., different f(o)) and fitting a line to the measured shifts versus f(o). The intercept of the line gives the total attenuation along the propagation path. The calculations were verified using computer simulations of five spherically focused sources with 50% bandwidths and center frequencies of 6, 8, 10, 12, and 14 MHz. The simulated tissue had Gaussian scattering structures with effective radii of 25 mum placed at a density of 250 mm(3). The attenuation of the tissue was varied from 0.1 to 0.9 dB / cm-MHz. The error in the attenuation along the propagation path ranged from -3.5+/-14.7% for a tissue attenuation of 0.1 dB / cm-MHz to -7.0+/-3.1% for a tissue attenuation of 0.9 dB / cm-MHz demonstrating that the attenuation along the propagation path could be accurately determined using backscattered echoes from multiple sources using the derived algorithm.
NASA Astrophysics Data System (ADS)
D'Amico, Sebastiano; Akinci, Aybige; Pischiutta, Marta
2018-07-01
In this paper we characterize the high-frequency (1.0-10 Hz) seismic wave crustal attenuation and the source excitation in the Sicily Channel and surrounding regions using background seismicity from weak-motion database. The data set includes 15 995 waveforms related to earthquakes having local magnitude ranging from 2.0 to 4.5 recorded between 2006 and 2012. The observed and predicted ground motions form the weak-motion data are evaluated in several narrow frequency bands from 0.25 to 20.0 Hz. The filtered observed peaks are regressed to specify a proper functional form for the regional attenuation, excitation and site specific term separately. The results are then used to calibrate effective theoretical attenuation and source excitation models using the random vibration theory. In the log-log domain, the regional seismic wave attenuation and the geometrical spreading coefficient are modelled together. The geometrical spreading coefficient, g(r), modelled with a bilinear piecewise functional form and given as g(r) ∝ r-1.0 for the short distances (r < 50 km) and as g(r) ∝ r-0.8 for the larger distances (r < 50 km). A frequency-dependent quality factor, inverse of the seismic attenuation parameter, Q(f)=160f/fref0. 35 (where fref = 1.0 Hz), is combined to the geometrical spreading. The source excitation terms are defined at a selected reference distance with a magnitude-independent roll-off spectral parameter, κ 0.04 s and with a Brune stress drop parameter increasing with moment magnitude, from Δσ = 2 MPa for Mw = 2.0 to Δσ = 13 MPa for Mw = 4.5. For events M ≤ 4.5 (being Mwmax = 4.5 available in the data set) the stress parameters are obtained by correlating the empirical/excitation source spectra with the Brune spectral model as function of magnitude. For the larger magnitudes (Mw>4.5) outside the range available in the calibration data set where we do not have recorded data, we extrapolate our results through the calibration of the stress parameters of the Brune source spectrum over the Bindi et al.ground-motion prediction equation selected as a reference model (hereafter also ITA10). Finally, the weak-motion-based model parameters are used through a stochastic approach in order to predict a set of region specific spectral ground-motion parameters (peak ground acceleration, peak ground velocity, and 0.3 and 1.0 Hz spectral acceleration) relative to the generic rock site as a function of distance between 10 and 250 km and magnitude between M 2.0 and M 7.0.
NASA Astrophysics Data System (ADS)
Ogiso, M.
2017-12-01
Heterogeneous attenuation structure is important for not only understanding the earth structure and seismotectonics, but also ground motion prediction. Attenuation of ground motion in high frequency range is often characterized by the distribution of intrinsic and scattering attenuation parameters (intrinsic Q and scattering coefficient). From the viewpoint of ground motion prediction, both intrinsic and scattering attenuation affect the maximum amplitude of ground motion while scattering attenuation also affect the duration time of ground motion. Hence, estimation of both attenuation parameters will lead to sophisticate the ground motion prediction. In this study, we try to estimate both parameters in southwestern Japan in a tomographic manner. We will conduct envelope fitting of seismic coda since coda has sensitivity to both intrinsic attenuation and scattering coefficients. Recently, Takeuchi (2016) successfully calculated differential envelope when these parameters have fluctuations. We adopted his equations to calculate partial derivatives of these parameters since we did not need to assume homogeneous velocity structure. Matrix for inversion of structural parameters would become too huge to solve in a straightforward manner. Hence, we adopted ART-type Bayesian Reconstruction Method (Hirahara, 1998) to project the difference of envelopes to structural parameters iteratively. We conducted checkerboard reconstruction test. We assumed checkerboard pattern of 0.4 degree interval in horizontal direction and 20 km in depth direction. Reconstructed structures well reproduced the assumed pattern in shallower part while not in deeper part. Since the inversion kernel has large sensitivity around source and stations, resolution in deeper part would be limited due to the sparse distribution of earthquakes. To apply the inversion method which described above to actual waveforms, we have to correct the effects of source and site amplification term. We consider these issues to estimate the actual intrinsic and scattering structures of the target region.Acknowledgment We used the waveforms of Hi-net, NIED. This study was supported by the Earthquake Research Institute of the University of Tokyo cooperative research program.
NASA Astrophysics Data System (ADS)
Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia
2011-01-01
Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.
NASA Astrophysics Data System (ADS)
Courdurier, M.; Monard, F.; Osses, A.; Romero, F.
2015-09-01
In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.
Numerical Modelling of the Sound Fields in Urban Streets with Diffusely Reflecting Boundaries
NASA Astrophysics Data System (ADS)
KANG, J.
2002-12-01
A radiosity-based theoretical/computer model has been developed to study the fundamental characteristics of the sound fields in urban streets resulting from diffusely reflecting boundaries, and to investigate the effectiveness of architectural changes and urban design options on noise reduction. Comparison between the theoretical prediction and the measurement in a scale model of an urban street shows very good agreement. Computations using the model in hypothetical rectangular streets demonstrate that though the boundaries are diffusely reflective, the sound attenuation along the length is significant, typically at 20-30 dB/100 m. The sound distribution in a cross-section is generally even unless the cross-section is very close to the source. In terms of the effectiveness of architectural changes and urban design options, it has been shown that over 2-4 dB extra attenuation can be obtained either by increasing boundary absorption evenly or by adding absorbent patches on the façades or the ground. Reducing building height has a similar effect. A gap between buildings can provide about 2-3 dB extra sound attenuation, especially in the vicinity of the gap. The effectiveness of air absorption on increasing sound attenuation along the length could be 3-9 dB at high frequencies. If a treatment is effective with a single source, it is also effective with multiple sources. In addition, it has been demonstrated that if the façades in a street are diffusely reflective, the sound field of the street does not change significantly whether the ground is diffusely or geometrically reflective.
Explosion Source Characteristics in Frozen and Unfrozen Rock
2008-09-30
Alaska in August 2006 to provide empirical data on seismically -estimated yield from explosions it frozen rock Iaboratory studies have demonstrated that...can alter seismic yield. Central Alaska has abrupt lateral boundaries in discontinuous permafrost, and we detonated 3 shots in frozen, saturated rock...SUBJECT TERMS Seismic attenuation, Seismic propagation, Seismic characterization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME
Preparing aircraft propulsion for a new era in energy and the environment
NASA Technical Reports Server (NTRS)
Stewart, W. L.; Nored, D. L.; Grobman, J. S.; Feiler, C. E.; Petrash, D. A.
1980-01-01
Improving fuel efficiency, new sources of jet fuel, and noise and emission control are subjects of NASA's aeronautics program. Projects aimed at attaining a 5% fuel savings for existing engines and a 13-22% savings for the next generation of turbofan engines using advanced components, and establishing a basis for turboprop-powered commercial air transports with 30-40% savings over conventional turbofan aircraft at comparable speeds and altitudes, are discussed. Fuel sources are considered in terms of reduced hydrogen and higher aromatic contents and resultant higher liner temperatures, and attention is given to lean burning, improved fuel atomization, higher freezing-point fuel, and deriving jet fuel from shale oil or coal. Noise sources including the fan, turbine, combustion process, and flow over internal struts, and attenuation using acoustic treatment, are discussed, while near-term reduction of polluting gaseous emissions at both low and high power, and far-term defining of the minimum gaseous-pollutant levels possible from turbine engines are also under study.
Uncertainty, variability, and earthquake physics in ground‐motion prediction equations
Baltay, Annemarie S.; Hanks, Thomas C.; Abrahamson, Norm A.
2017-01-01
Residuals between ground‐motion data and ground‐motion prediction equations (GMPEs) can be decomposed into terms representing earthquake source, path, and site effects. These terms can be cast in terms of repeatable (epistemic) residuals and the random (aleatory) components. Identifying the repeatable residuals leads to a GMPE with reduced uncertainty for a specific source, site, or path location, which in turn can yield a lower hazard level at small probabilities of exceedance. We illustrate a schematic framework for this residual partitioning with a dataset from the ANZA network, which straddles the central San Jacinto fault in southern California. The dataset consists of more than 3200 1.15≤M≤3 earthquakes and their peak ground accelerations (PGAs), recorded at close distances (R≤20 km). We construct a small‐magnitude GMPE for these PGA data, incorporating VS30 site conditions and geometrical spreading. Identification and removal of the repeatable source, path, and site terms yield an overall reduction in the standard deviation from 0.97 (in ln units) to 0.44, for a nonergodic assumption, that is, for a single‐source location, single site, and single path. We give examples of relationships between independent seismological observables and the repeatable terms. We find a correlation between location‐based source terms and stress drops in the San Jacinto fault zone region; an explanation of the site term as a function of kappa, the near‐site attenuation parameter; and a suggestion that the path component can be related directly to elastic structure. These correlations allow the repeatable source location, site, and path terms to be determined a priori using independent geophysical relationships. Those terms could be incorporated into location‐specific GMPEs for more accurate and precise ground‐motion prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos-Mendez, J; Faddegon, B; Paganetti, H
2015-06-15
Purpose: We used TOPAS (TOPAS wraps and extends Geant4 for medical physicists) to compare Geant4 physics models with published data for neutron shielding calculations. Subsequently, we calculated the source terms and attenuation lengths (shielding data) of the total ambient dose equivalent (TADE) in concrete for neutrons produced by protons in brass. Methods: Stage1: The Bertini and Binary nuclear models available in Geant4 were compared with published attenuation at depth of the TADE in concrete and iron. Stage2: Shielding data of the TADE in concrete was calculated for 50– 200 MeV proton beams on brass. Stage3: Shielding data from Stage2 wasmore » extrapolated for 235 MeV proton beams. This data was used in a point-line-source analytical model to calculate the ambient dose per unit therapeutic dose at two locations inside one treatment room at the Francis H Burr Proton Therapy Center. Finally, we compared these results with experimental data and full TOPAS simulations. Results: At larger angles (∼130o) the TADE in concrete calculated with the Bertini model was about 9 times larger than that calculated with the Binary model. The attenuation length in concrete calculated with the Binary model agreed with published data within 7%±0.4% (statistical uncertainty) for the deepest regions and 5%±0.1% for shallower regions. For iron the agreement was within 3%±0.1%. The ambient dose per therapeutic dose calculated with the Binary model, relative to the experimental data, was a ratio of 0.93±0.16 and 1.23±0.24 for two locations. The analytical model overestimated the dose by four orders of magnitude. These differences are attributed to the complexity of the geometry. Conclusion: The Binary and Bertini models gave comparable results, with the Binary model giving the best agreement with published data at large angle. Shielding data we calculated using the Binary model is useful for fast shielding calculations with other analytical models. This work was supported by National Cancer Institute Grant R01CA140735.« less
Calibration of semi-stochastic procedure for simulating high-frequency ground motions
Seyhan, Emel; Stewart, Jonathan P.; Graves, Robert
2013-01-01
Broadband ground motion simulation procedures typically utilize physics-based modeling at low frequencies, coupled with semi-stochastic procedures at high frequencies. The high-frequency procedure considered here combines deterministic Fourier amplitude spectra (dependent on source, path, and site models) with random phase. Previous work showed that high-frequency intensity measures from this simulation methodology attenuate faster with distance and have lower intra-event dispersion than in empirical equations. We address these issues by increasing crustal damping (Q) to reduce distance attenuation bias and by introducing random site-to-site variations to Fourier amplitudes using a lognormal standard deviation ranging from 0.45 for Mw < 7 to zero for Mw 8. Ground motions simulated with the updated parameterization exhibit significantly reduced distance attenuation bias and revised dispersion terms are more compatible with those from empirical models but remain lower at large distances (e.g., > 100 km).
NASA Astrophysics Data System (ADS)
Canion, Andy; MacIntyre, Hugh L.; Phipps, Scott
2013-10-01
The inputs of primary productivity models may be highly variable on short timescales (hourly to daily) in turbid estuaries, but modeling of productivity in these environments is often implemented with data collected over longer timescales. Daily, seasonal, and spatial variability in primary productivity model parameters: chlorophyll a concentration (Chla), the downwelling light attenuation coefficient (kd), and photosynthesis-irradiance response parameters (Pmchl, αChl) were characterized in Weeks Bay, a nitrogen-impacted shallow estuary in the northern Gulf of Mexico. Variability in primary productivity model parameters in response to environmental forcing, nutrients, and microalgal taxonomic marker pigments were analysed in monthly and short-term datasets. Microalgal biomass (as Chla) was strongly related to total phosphorus concentration on seasonal scales. Hourly data support wind-driven resuspension as a major source of short-term variability in Chla and light attenuation (kd). The empirical relationship between areal primary productivity and a combined variable of biomass and light attenuation showed that variability in the photosynthesis-irradiance response contributed little to the overall variability in primary productivity, and Chla alone could account for 53-86% of the variability in primary productivity. Efforts to model productivity in similar shallow systems with highly variable microalgal biomass may benefit the most by investing resources in improving spatial and temporal resolution of chlorophyll a measurements before increasing the complexity of models used in productivity modeling.
Ground Motion Relations for the Upper Rhine Graben
NASA Astrophysics Data System (ADS)
Calbini, V.; Granet, M.; Camelbeeck, T.
2006-12-01
Earthquake in Europe are primarily located within the Euro-Mediterranean domain. However, the Upper Rhine Graben (URG) region regularly suffers earthquakes which are felt physically by inhabitants and cause damage to private property and the industrial infrastructure. In 1356, a major earthquake (I0 = X) destroyed part of the city of Basel. Recently, several events having M > 5 have shaken this area. In the framework of an INTERREG III project funded by the European community, a microzonation study has been achieved across the "three borders" area including the cities of Basel and Mulhouse. In particular, the ground motion was studied. The URG, which belongs to the ECRIS (European Cenozoic Rift System), is characterized by rift-related sedimentary basins with several hundreds meters of tertiary sediments overlaying the basement. Such a subsurface geology leads to strong site effects. Predictive attenuation laws and their related uncertainties are evaluated considering strong motions records and velocimetric records from small to moderate local events (Magnitude ranging 3
Laser induced heat source distribution in bio-tissues
NASA Astrophysics Data System (ADS)
Li, Xiaoxia; Fan, Shifu; Zhao, Youquan
2006-09-01
During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.
NASA Astrophysics Data System (ADS)
Karaoǧlu, Haydar; Romanowicz, Barbara
2018-06-01
We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the spectral element method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton-type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of eight iterations (six for attenuation and two for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high-resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three-component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high-attenuation zone present in the depth range 80-200 km. The final 3-D model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200-250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and backarcs. Below 250 km, we observe strong attenuation in the southwestern Pacific and eastern Africa, while low attenuation zones fade beneath most of the cratons. The strong negative correlation of Q^{-1}_μ and VS anomalies at shallow upper-mantle depths points to a common dominant origin for the two, likely due to variations in thermal structure. A comparison with two other global upper-mantle attenuation models shows promising consistency. As we updated the elastic 3-D model in alternate iterations, we found that the VS part of the model was stable, while the ξ structure evolution was more pronounced, indicating that it may be important to include 3-D attenuation effects when inverting for ξ, possibly due to the influence of dispersion corrections on this less well-constrained parameter.
Medalie, Laura; Chalmers, Ann T.; Kiah, Richard G.; Copans, Benjamin
2014-01-01
The U.S. Geological Survey, in cooperation with the Vermont Department of Environmental Conservation, investigated the use of acoustic backscatter to estimate concentrations of suspended sediment and total phosphorus at the Barton River near Coventry, Vermont. The hypothesis was that acoustic backscatter—the reflection of sound waves off objects back to the source from which they came—measured by an acoustic Doppler profiler (ADP) and recorded as ancillary data for the calculation of discharge, also could be used to generate a continuous concentration record of suspended sediment and phosphorus at the streamgage, thereby deriving added value from the instrument. Suspended-sediment and phosphorus concentrations are of particular interest in Vermont, where impairment of surface waters by suspended sediments and phosphorus is a major concern. Regression models for estimating suspended-sediment concentrations (SSCs) and total phosphorus concentrations evaluated several independent variables: measured backscatter (MB), water-corrected backscatter (WCB), sediment-corrected backscatter (SCB), discharge, fluid-absorption coefficient, sediment-driven acoustic attenuation coefficient, and discharge hysteresis. The best regression equations for estimating SSC used backscatter as the predictor, reflecting the direct relation between acoustic backscatter and SSC. Backscatter was a better predictor of SSC than discharge in part because hysteresis between SSC and backscatter was less than for SSC and discharge. All three backscatter variables—MB, WCB, and SCB—performed equally as predictors of SSC and phosphorus concentrations at the Barton River site. The similar abilities to predict SSC among backscatter terms may partially be attributed to the low values and narrow range of the sediment-driven acoustic attenuation in the Barton River. The regression based on SCB was selected for estimating SSC because it removes potential bias caused by attenuation and temperature fluctuations. The best regression model for estimating phosphorus concentrations included terms for discharge and discharge hysteresis. The finding that discharge hysteresis was a significant predictor of phosphorus concentrations might be related to preferential sorption of phosphorus to fine-grained sediments, which have been found to be particularly sensitive to hysteresis. Regression models designed to estimate phosphorus concentrations had less predictive power than the models for SSCs. Data from the Barton River did not fully support one of the study’s hypotheses—that backscatter is mostly caused by sands, and attenuation is mostly caused by fines. Sands, fines, and total SSCs in the Barton River all related better to backscatter than to sediment-driven acoustic attenuation. The weak relation between SSC and sediment-driven acoustic attenuation may be related to the low values and narrow range of SSCs and sediment attenuations observed at Barton River. A weak relation between SSC and sediment-driven acoustic attenuation also suggests that the diameters of the fine-sized suspended sediments in the Barton River may be predominantly greater than 20 micrometers (μm). Long-term changes in the particle-size distribution (PSD) were not observed in Barton River; however, some degree of within-storm changes in sediment source and possibly PSD were inferred from the hysteresis between SSC and SCB.
Verification of Methods for Assessing the Sustainability of Monitored Natural Attenuation (MNA)
2013-01-01
sugars TOC total organic carbon TSR thermal source removal USACE U.S. Army Corps of Engineers USEPA U.S. Environmental Protection Agency USGS...the SZD function for long-term DNAPL dissolution simulations. However, the sustainability assessment was easily implemented using an alternative...neutral sugars [THNS]). Chapelle et al. (2009) suggested THAA and THNS as measures of the bioavailability of organic carbon based on an analysis of
Constraining Source Terms, Regional Attenuation Models, and Site Effects (Postprint)
2012-03-22
YAK ZRNK 10245 10831 11116 11346 12278...MDJ KAR NIL PDG QIZ RAYN SSE TATO TKM2TLG TLY UCHULHL ULN USP VOS WMQ WUS XAN YAK ZRNK 10245 10831 11116 11346 12278 12376 12574 12937 1311713130...LSA LZH MAKZUZ MDJ KAR NIL PDG QIZ RAYN SSE TATO TKM2TLG TLY UCHULHL ULN USP VOS WMQ WUS XAN YAK ZRNK 10245 10831 11116 11346 12278 12376 12574
A Source Term for Wave Attenuation by Sea Ice in WAVEWATCH III (registered trademark): IC4
2017-06-07
by ANSI Std. Z39.18 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for... time . Diamonds indicate active, moored AWACs. Circle indicates location of R/V Sikuliaq. Thick magenta and white lines indicate path of R/V Sikuliaq...past and future ship position, respectively). .................................................................. 15 Figure 10 Time series of
NASA Astrophysics Data System (ADS)
Malagnini, L.; Akinci, A.; Mayeda, K. M.; Munafo', I.; Herrmann, R. B.; Mercuri, A.
2010-12-01
Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data (Peak Ground Acceleration, PGA, Peak Ground Velocity, PGV, and Spectral Acceleration, SA) gathered during the Mw 6.15 L’Aquila earthquake (April 6, 2009, 01:32 UTC). The L’Aquila main-shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12,777 high-quality, high-gain waveforms with excellent S/N ratios (4,259 vertical, and 8,518 horizontal time histories). Seismograms were selected from the recordings of 170 fore-shocks and after-shocks of the sequence (the complete set of all earthquakes with ML ≥ 3.0, from October 1, 2008, to May 10, 2010). All waveforms were downloaded from the ISIDe web page (http://iside.rm.ingv.it/iside/standard/index.jsp), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L’Aquila sequence (2.8 ≤ Mw ≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-98 recently described by Malagnini et al. (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ~ 80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.
Repert, D.A.; Barber, L.B.; Hess, K.M.; Keefe, S.H.; Kent, D.B.; LeBlanc, D.R.; Smith, R.L.
2006-01-01
Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m-2) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m-2) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.
Comparison of Predicted and Measured Attenuation of Turbine Noise from a Static Engine Test
NASA Technical Reports Server (NTRS)
Chien, Eugene W.; Ruiz, Marta; Yu, Jia; Morin, Bruce L.; Cicon, Dennis; Schwieger, Paul S.; Nark, Douglas M.
2007-01-01
Aircraft noise has become an increasing concern for commercial airlines. Worldwide demand for quieter aircraft is increasing, making the prediction of engine noise suppression one of the most important fields of research. The Low-Pressure Turbine (LPT) can be an important noise source during the approach condition for commercial aircraft. The National Aeronautics and Space Administration (NASA), Pratt & Whitney (P&W), and Goodrich Aerostructures (Goodrich) conducted a joint program to validate a method for predicting turbine noise attenuation. The method includes noise-source estimation, acoustic treatment impedance prediction, and in-duct noise propagation analysis. Two noise propagation prediction codes, Eversman Finite Element Method (FEM) code [1] and the CDUCT-LaRC [2] code, were used in this study to compare the predicted and the measured turbine noise attenuation from a static engine test. In this paper, the test setup, test configurations and test results are detailed in Section II. A description of the input parameters, including estimated noise modal content (in terms of acoustic potential), and acoustic treatment impedance values are provided in Section III. The prediction-to-test correlation study results are illustrated and discussed in Section IV and V for the FEM and the CDUCT-LaRC codes, respectively, and a summary of the results is presented in Section VI.
Source and dynamics of a volcanic caldera unrest: Campi Flegrei, 1983-84.
De Siena, Luca; Chiodini, Giovanni; Vilardo, Giuseppe; Del Pezzo, Edoardo; Castellano, Mario; Colombelli, Simona; Tisato, Nicola; Ventura, Guido
2017-08-14
Despite their importance for eruption forecasting the causes of seismic rupture processes during caldera unrest are still poorly reconstructed from seismic images. Seismic source locations and waveform attenuation analyses of earthquakes in the Campi Flegrei area (Southern Italy) during the 1983-1984 unrest have revealed a 4-4.5 km deep NW-SE striking aseismic zone of high attenuation offshore Pozzuoli. The lateral features and the principal axis of the attenuation anomaly correspond to the main source of ground uplift during the unrest. Seismic swarms correlate in space and time with fluid injections from a deep hot source, inferred to represent geochemical and temperature variations at Solfatara. These swarms struck a high-attenuation 3-4 km deep reservoir of supercritical fluids under Pozzuoli and migrated towards a shallower aseismic deformation source under Solfatara. The reservoir became aseismic for two months just after the main seismic swarm (April 1, 1984) due to a SE-to-NW directed input from the high-attenuation domain, possibly a dyke emplacement. The unrest ended after fluids migrated from Pozzuoli to the location of the last caldera eruption (Mt. Nuovo, 1538 AD). The results show that the high attenuation domain controls the largest monitored seismic, deformation, and geochemical unrest at the caldera.
The use of an active controlled enclosure to attenuate sound radiation from a heavy radiator
NASA Astrophysics Data System (ADS)
Sun, Yao; Yang, Tiejun; Zhu, Minggang; Pan, Jie
2017-03-01
Active structural acoustical control usually experiences difficulty in the control of heavy sources or sources where direct applications of control forces are not practical. To overcome this difficulty, an active controlled enclosure, which forms a cavity with both flexible and open boundary, is employed. This configuration permits indirect implementation of active control in which the control inputs can be applied to subsidiary structures other than the sources. To determine the control effectiveness of the configuration, the vibro-acoustic behavior of the system, which consists of a top plate with an open, a sound cavity and a source panel, is investigated in this paper. A complete mathematical model of the system is formulated involving modified Fourier series formulations and the governing equations are solved using the Rayleigh-Ritz method. The coupling mechanisms of a partly opened cavity and a plate are analysed in terms of modal responses and directivity patterns. Furthermore, to attenuate sound power radiated from both the top panel and the open, two strategies are studied: minimizing the total radiated power and the cancellation of volume velocity. Moreover, three control configurations are compared, using a point force on the control panel (structural control), using a sound source in the cavity (acoustical control) and applying hybrid structural-acoustical control. In addition, the effects of boundary condition of the control panel on the sound radiation and control performance are discussed.
Nuclear Explosion Monitoring Advances and Challenges
NASA Astrophysics Data System (ADS)
Baker, G. E.
2015-12-01
We address the state-of-the-art in areas important to monitoring, current challenges, specific efforts that illustrate approaches addressing shortcomings in capabilities, and additional approaches that might be helpful. The exponential increase in the number of events that must be screened as magnitude thresholds decrease presents one of the greatest challenges. Ongoing efforts to exploit repeat seismic events using waveform correlation, subspace methods, and empirical matched field processing holds as much "game-changing" promise as anything being done, and further efforts to develop and apply such methods efficiently are critical. Greater accuracy of travel time, signal loss, and full waveform predictions are still needed to better locate and discriminate seismic events. Important developments include methods to model velocities using multiple types of data; to model attenuation with better separation of source, path, and site effects; and to model focusing and defocusing of surface waves. Current efforts to model higher frequency full waveforms are likely to improve source characterization while more effective estimation of attenuation from ambient noise holds promise for filling in gaps. Censoring in attenuation modeling is a critical problem to address. Quantifying uncertainty of discriminants is key to their operational use. Efforts to do so for moment tensor (MT) inversion are particularly important, and fundamental progress on the statistics of MT distributions is the most important advance needed in the near term in this area. Source physics is seeing great progress through theoretical, experimental, and simulation studies. The biggest need is to accurately predict the effects of source conditions on seismic generation. Uniqueness is the challenge here. Progress will depend on studies that probe what distinguishes mechanisms, rather than whether one of many possible mechanisms is consistent with some set of observations.
Diffusive transport in the presence of stochastically gated absorption
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; Karamched, Bhargav R.; Lawley, Sean D.; Levien, Ethan
2017-08-01
We analyze a population of Brownian particles moving in a spatially uniform environment with stochastically gated absorption. The state of the environment at time t is represented by a discrete stochastic variable k (t )∈{0 ,1 } such that the rate of absorption is γ [1 -k (t )] , with γ a positive constant. The variable k (t ) evolves according to a two-state Markov chain. We focus on how stochastic gating affects the attenuation of particle absorption with distance from a localized source in a one-dimensional domain. In the static case (no gating), the steady-state attenuation is given by an exponential with length constant √{D /γ }, where D is the diffusivity. We show that gating leads to slower, nonexponential attenuation. We also explore statistical correlations between particles due to the fact that they all diffuse in the same switching environment. Such correlations can be determined in terms of moments of the solution to a corresponding stochastic Fokker-Planck equation.
Patient position alters attenuation effects in multipinhole cardiac SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmins, Rachel; Ruddy, Terrence D.; Wells, R. Glenn, E-mail: gwells@ottawaheart.ca
2015-03-15
Purpose: Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Methods: Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic andmore » a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Results: Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of <1.5 for the water phantom but up to 4.2 in the anthropomorphic phantom. Changes were larger for axial than for transverse translations. These results were supported by SPS changes of up to six seen in the physical anthropomorphic phantom for axial translations. Defect width was also seen to significantly increase. The position-dependent changes were removed with attenuation correction. Conclusions: Translation of a source relative to a multipinhole camera caused only small changes in homogeneous phantoms with SPS changing <1.5. Inhomogeneous attenuating media cause much larger changes to occur when the source is translated. Changes in SPS of up to six were seen in an anthropomorphic phantom for axial translations. Attenuation correction removes the position-dependent changes in attenuation.« less
NASA Technical Reports Server (NTRS)
Shyy, W.; Thakur, S.; Udaykumar, H. S.
1993-01-01
A high accuracy convection scheme using a sequential solution technique has been developed and applied to simulate the longitudinal combustion instability and its active control. The scheme has been devised in the spirit of the Total Variation Diminishing (TVD) concept with special source term treatment. Due to the substantial heat release effect, a clear delineation of the key elements employed by the scheme, i.e., the adjustable damping factor and the source term treatment has been made. By comparing with the first-order upwind scheme previously utilized, the present results exhibit less damping and are free from spurious oscillations, offering improved quantitative accuracy while confirming the spectral analysis reported earlier. A simple feedback type of active control has been found to be capable of enhancing or attenuating the magnitude of the combustion instability.
Villalobos-Escobar, Gina P; Castro, Raúl R
2014-01-01
We used a new data set of relocated earthquakes recorded by the Seismic Network of Northeastern Sonora, Mexico (RESNES) to characterize the attenuation of S-waves in the fault zone of the 1887 Sonora earthquake (M w 7.5). We determined spectral attenuation functions for hypocentral distances (r) between 10 and 140 km using a nonparametric approach and found that in this fault zone the spectral amplitudes decay slower with distance at low frequencies (f < 4 Hz) compared to those reported in previous studies in the region using more distant recordings. The attenuation functions obtained for 23 frequencies (0.4 ≤ f ≤ 63.1 Hz) permit us estimating the average quality factor Q S = (141 ± 1.1 )f ((0.74 ± 0.04)) and a geometrical spreading term G(r) = 1/r (0.21). The values of Q estimated for S-wave paths traveling along the fault system that rupture during the 1887 event, in the north-south direction, are considerably lower than the average Q estimated using source-station paths from multiple stations and directions. These results indicate that near the fault zone S waves attenuate considerably more than at regional scale, particularly at low frequencies. This may be the result of strong scattering near the faults due to the fractured upper crust and higher intrinsic attenuation due to stress concentration near the faults.
Demi, L; van Dongen, K W A; Verweij, M D
2011-03-01
Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation. © 2011 Acoustical Society of America
Attenuation Model Using the Large-N Array from the Source Physics Experiment
NASA Astrophysics Data System (ADS)
Atterholt, J.; Chen, T.; Snelson, C. M.; Mellors, R. J.
2017-12-01
The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. SPE seeks to better characterize the influence of subsurface heterogeneities on seismic wave propagation and energy dissipation from explosions. As a part of this experiment, SPE-5, a 5000 kg TNT equivalent chemical explosion, was detonated in 2016. During the SPE-5 experiment, a Large-N array of 996 geophones (half 3-component and half z-component) was deployed. This array covered an area that includes loosely consolidated alluvium (weak rock) and weathered granite (hard rock), and recorded the SPE-5 explosion as well as 53 weight drops. We use these Large-N recordings to develop an attenuation model of the area to better characterize how geologic structures influence source energy partitioning. We found a clear variation in seismic attenuation for different rock types: high attenuation (low Q) for alluvium and low attenuation (high Q) for granite. The attenuation structure correlates well with local geology, and will be incorporated into the large simulation effort of the SPE program to validate predictive models. (LA-UR-17-26382)
NASA Technical Reports Server (NTRS)
Manning, R. M.
1994-01-01
The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal antenna required to establish a link with the satellite, the statistical parameters that characterize the rainrate process at the terminal site, the length of the propagation path within the potential rain region, and its projected length onto the local horizontal. The IBM PC version of LeRC-SLAM (LEW-14979) is written in Microsoft QuickBASIC for an IBM PC compatible computer with a monitor and printer capable of supporting an 80-column format. The IBM PC version is available on a 5.25 inch MS-DOS format diskette. The program requires about 30K RAM. The source code and executable are included. The Macintosh version of LeRC-SLAM (LEW-14977) is written in Microsoft Basic, Binary (b) v2.00 for Macintosh II series computers running MacOS. This version requires 400K RAM and is available on a 3.5 inch 800K Macintosh format diskette, which includes source code only. The Macintosh version was developed in 1987 and the IBM PC version was developed in 1989. IBM PC is a trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. Macintosh is a registered trademark of Apple Computer, Inc.
LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (IBM PC VERSION)
NASA Technical Reports Server (NTRS)
Manning, R. M.
1994-01-01
The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal antenna required to establish a link with the satellite, the statistical parameters that characterize the rainrate process at the terminal site, the length of the propagation path within the potential rain region, and its projected length onto the local horizontal. The IBM PC version of LeRC-SLAM (LEW-14979) is written in Microsoft QuickBASIC for an IBM PC compatible computer with a monitor and printer capable of supporting an 80-column format. The IBM PC version is available on a 5.25 inch MS-DOS format diskette. The program requires about 30K RAM. The source code and executable are included. The Macintosh version of LeRC-SLAM (LEW-14977) is written in Microsoft Basic, Binary (b) v2.00 for Macintosh II series computers running MacOS. This version requires 400K RAM and is available on a 3.5 inch 800K Macintosh format diskette, which includes source code only. The Macintosh version was developed in 1987 and the IBM PC version was developed in 1989. IBM PC is a trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. Macintosh is a registered trademark of Apple Computer, Inc.
Attenuation correction for the large non-human primate brain imaging using microPET.
Naidoo-Variawa, S; Lehnert, W; Kassiou, M; Banati, R; Meikle, S R
2010-04-21
Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a (57)Co transmission point source with a 4% energy window. The optimal energy window for a (68)Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for (57)Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [(18)F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass (57)Co (4% energy window) or (68)Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.
Attenuation correction for the large non-human primate brain imaging using microPET
NASA Astrophysics Data System (ADS)
Naidoo-Variawa, S.; Lehnert, W.; Kassiou, M.; Banati, R.; Meikle, S. R.
2010-04-01
Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a 57Co transmission point source with a 4% energy window. The optimal energy window for a 68Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for 57Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [18F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass 57Co (4% energy window) or 68Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.
Crustal Seismic Attenuation in Germany Measured with Acoustic Radiative Transfer Theory
NASA Astrophysics Data System (ADS)
Gaebler, Peter J.; Eulenfeld, Tom; Wegler, Ulrich
2017-04-01
This work is carried out in the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty a verification regime was introduced to detect, locate and characterize nuclear explosion testings. The study of seismology can provide essential information in the form of broadband waveform recordings for the identification and verification of these critical events. A profound knowledge of the Earth's subsurface between source and receiver is required for a detailed description of the seismic wave field. In addition to underground parameters such as seismic velocity or anisotropy, information about seismic attenuation values of the medium are required. Goal of this study is the creation of a comprehensive model of crustal seismic attenuation in Germany and adjacent areas. Over 20 years of earthquake data from the German Central Seismological Observatory data archive is used to estimate the spatial dependent distribution of seismic intrinsic and scattering attenuation of S-waves for frequencies between 0.5 and 20 Hz. The attenuation models are estimated by fitting synthetic seismogram envelopes calculated with acoustic radiative transfer theory to observed seismogram envelopes. This theory describes the propagation of seismic S-energy under the assumption of multiple isotropic scattering, the crustal structure of the scattering medium is hereby represented by a half-space model. We present preliminary results of the spatial distribution of intrinsic attenuation represented by the absorption path length, as well as of scattering attenuation in terms of the mean free path and compare the outcomes to results from previous studies. Furthermore catalog magnitudes are compared to moment magnitudes estimated during the inversion process. Additionally site amplification factors of the stations are presented.
Observation and parametrization of wave attenuation through the MIZ
NASA Astrophysics Data System (ADS)
Ardhuin, F.; Stopa, J.; Dumont, D.; Sévigny, C.; Collard, F.; Boutin, G.
2016-02-01
Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated. The intensity of the backscatter modulation with a single swell can also be used to retrieve swell height as it is found that the constructive velocity bunching is very sensitive to wave height. Using a novel algorithm to invert the wave directional spectrum, we investigate several cases of attenuation in the Arctic and southern ocean. On this basis we have adjusted an empirical wave-ice dissipation source term in the WAVEWATCH III model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W R; Mayeda, K; Malagnini, L
2007-02-01
We develop a new methodology to determine apparent attenuation for the regional seismic phases Pn, Pg, Sn, and Lg using coda-derived source spectra. The local-to-regional coda methodology (Mayeda, 1993; Mayeda and Walter, 1996; Mayeda et al., 2003) is a very stable way to obtain source spectra from sparse networks using as few as one station, even if direct waves are clipped. We develop a two-step process to isolate the frequency-dependent Q. First, we correct the observed direct wave amplitudes for an assumed geometrical spreading. Next, an apparent Q, combining path and site attenuation, is determined from the difference between themore » spreading-corrected amplitude and the independently determined source spectra derived from the coda methodology. We apply the technique to 50 earthquakes with magnitudes greater than 4.0 in central Italy as recorded by MEDNET broadband stations around the Mediterranean at local-to-regional distances. This is an ideal test region due to its high attenuation, complex propagation, and availability of many moderate sized earthquakes. We find that a power law attenuation of the form Q(f) = Q{sub 0}f{sup Y} fit all the phases quite well over the 0.5 to 8 Hz band. At most stations, the measured apparent Q values are quite repeatable from event to event. Finding the attenuation function in this manner guarantees a close match between inferred source spectra from direct waves and coda techniques. This is important if coda and direct wave amplitudes are to produce consistent seismic results.« less
Mass attenuation coefficient of chromium and manganese compounds around absorption edge.
Sharanabasappa; Kaginelli, S B; Kerur, B R; Anilkumar, S; Hanumaiah, B
2009-01-01
The total mass attenuation coefficient for Potassium dichromate, Potassium chromate and Manganese acetate compounds are measured at different photon energies 5.895, 6.404, 6.490, 7.058, 8.041 and 14.390 keV using Fe-55, Co-57 and 241Am source with Copper target, radioactive sources. The photon intensity is analyzed using a high resolution HPGe detector system coupled to MCA under good geometrical arrangement. The obtained values of mass attenuation coefficient values are compared with theoretical values. This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 5-28%.
1980-11-01
finite aperture size 5. A. E. Siegman , "Unstable optical resonators for laser of the YAG rod, applications," Proc. IEEE 53, 217-287 (1965); "Unstable...Pumped LiNbO3 Tunable Source Radial Birefringent Element Computer Controlled Laser Attenuator Slab Configuration Laser Source 20. ABSTRACT (Continue on...have invented and demonstrated a computer controlled laser attenu- ator. .... Cont inued DD Il 7 1473 EDITION OF I NOV 01 IS OBSOLETE UNCLASSIFIEDAN
NASA Astrophysics Data System (ADS)
García-Mayordomo, J.; Gaspar-Escribano, J. M.; Benito, B.
2007-10-01
A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA( T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA( T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silvani, M. I.; Almeida, G. L.; Lopes, R. T.
Radiographic images acquired with point-like gamma-ray sources exhibit a desirable low penumbra effects specially when positioned far away from the set object-detector. Such an arrangement frequently is not affordable due to the limited flux provided by a distant source. A closer source, however, has two main drawbacks, namely the degradation of the spatial resolution - as actual sources are only approximately punctual - and the non-homogeneity of the beam hitting the detector, which creates a false attenuation map of the object being inspected. This non-homogeneity is caused by the beam divergence itself and by the different thicknesses traversed the beammore » even if the object were an homogeneous flat plate. In this work, radiographic images of objects with different geometries, such as flat plates and pipes have undergone a correction of beam divergence and attenuation addressing the experimental verification of the capability and soundness of an algorithm formerly developed to generate and process synthetic images. The impact of other parameters, including source-detector gap, attenuation coefficient, ratio defective-to-main hull thickness and counting statistics have been assessed for specifically tailored test-objects aiming at the evaluation of the ability of the proposed method to deal with different boundary conditions. All experiments have been carried out with an X-ray sensitive Imaging Plate and reactor-produced {sup 198}Au and {sup 165}Dy sources. The results have been compared with other technique showing a better capability to correct the attenuation map of inspected objects unveiling their inner structure otherwise concealed by the poor contrast caused by the beam divergence and attenuation, in particular for those regions far apart from the vertical of the source.« less
Walton-Day, Katherine; Runkel, Robert L.; Kimball, Briant A.
2012-01-01
Spatially detailed mass-loading studies and solute-transport modeling using OTIS (One-dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass-loading data collected during low-flow from Cement Creek (a low-pH, metal-rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL-recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53-63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse-source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse-source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.
A depolarization and attenuation experiment using the COMSTAR and CTS satellites
NASA Technical Reports Server (NTRS)
Bostian, C. W.; Manus, E. A.; Marshall, R. E.; Overstreet, W. P.; Persinger, R. R.; Powell, J. D.; Santago, P.; Stutzman, W. L.; Wiley, P. H.
1978-01-01
Monthly statistical data are presented on ground rainfall rate and attenuation of satellite downlinks at 11.7 GHz, 19.04 GHz, and 28.56 GHz and on cross-polarization isolation at 11.7 GHz. Regression equations for relating isolation to attenuation, attenuation to rain rate, and attenuation at one frequency to attenuation at another frequency are also included. Longer-term statistics are also presented and discussed.
Evaluation of the communications impact of a low power arcjet thruster
NASA Technical Reports Server (NTRS)
Carney, Lynnette M.
1988-01-01
The interaction of a 1 kW arcjet thruster plume with a communications signal is evaluated. A two-parameter, source flow equation has been used to represent the far flow field distribution of the arcjet plume in a realistic spacecraft configuration. Modelling the plume as a plasma slab, the interaction of the plume with a 4 GHz communications signal is then evaluated in terms of signal attenuation and phase shift between transmitting and receiving antennas. Except for propagation paths which pass very near the arcjet source, the impacts to transmission appear to be negligible. The dominant signal loss mechanism is refraction of the beam rather than absorption losses due to collisions. However, significant reflection of the signal at the sharp vacuum-plasma boundary may also occur for propagation paths which pass near the source.
Synthetic Lg Attenuation on Moho Structure and Group Velocity on Source Depth
NASA Astrophysics Data System (ADS)
Hui, H.; Sandvol, E. A.; Ku, W.
2016-12-01
The regional phase Lg has been the subject of many studies due to its ability to reliably estimate source magnitude and to characterize crustal attenuation, however, the relationship between effective Lg Q and the true intrinsic attenuation of the crust is not well understood. We are working to investigate this relationship by conducting a number of numerical experiments to better understand the nature of Lg scattering attenuation for different type of crustal models. We have partitioned our models by 8-nodes hexahedral meshes with SPECFEM3D-Cartesian which is based on the Spectral Element Method. We have used a time step of 0.01 s to make the simulation stable at high frequencies sufficient enough for our study (about 1.0 Hz). It takes about 50 hours for each model running with 324 processors to generate the waveforms. Then we calculate the effective Lg Q with a Two-Station Method. In order to test our method, we have calculated effective Lg Q tomography for a 2-D model with laterally varying intrinsic attenuation and layered velocity. The tomography result matches the input attenuation model very well. We studied effective Lg Q of models with different Moho structures (flat and with a step) and found that Moho step would lead to lower effective Lg Q than that of flat Moho. Furthermore, we have studied the effective Lg Q tomography of model with 3-D Moho structure and found that effective Lg Q is lower at the area of Moho depth changing than that of flat Moho. This is likely caused by scattering attenuation. We have also modeled the group velocity delay of high frequency (1.0 Hz) Lg, which appears to be dependent on source depth (6km, 10km, 15km and 30km). We have found that the Lg energy arrives later for shallow sources than that of deeper sources which is consistent with prior studies. In the future, we plan to conduct more 3-D attenuation models to investigate azimuthally dependent effective Lg Q.
Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R
2018-04-01
Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a region of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to be viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously reported in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically derived shear wave data and shear wave data generated using finite-element method models. Shear wave dispersion and attenuation bias (up to 15% for dispersion and 41% for attenuation) is greater for more tightly focused acoustic radiation force sources with smaller depths of field relative to their lateral extent (height-to-width ratios <16). Dispersion and attenuation errors associated with assuming a cylindrical geometric shear wave decay in SWEI can be appreciable and should be considered when analyzing the viscoelastic properties of tissues with acoustic radiation force source distributions with limited depths of field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Nachweis von Natural Attenuation mittels Isotopenuntersuchungen an einem ehemaligen Kokereistandort
NASA Astrophysics Data System (ADS)
Nagel, Aglaia; Strauss, Harald; Stephan, Manuel; Achten, Christine
2011-12-01
Natural attenuation of mono- (BTEX) and polycyclic aromatic hydrocarbons (PAHs) was studied in groundwater at a former gas plant site over a distance of about 500 m. The contamination source was located within a 4-6 m thick succession of interbedded silt and sand ( K f =1,4ṡ10-7 m/s) at a depth of about 5-6 m below the surface. Groundwater flow times between source and the receiving surface waters were determined on the order of a few hundred years. The main contaminants were found to be benzene and naphthalene with concentrations up to 200,000 and 8,500 μg/l, respectively. Over the past 9 years, concentrations within the contaminant plume have decreased and degradation of benzene was proven by compound specific carbon isotope analyses. In addition, sulphur isotope studies revealed that sulphate reduction has played a significant role. This was supported by ambient sulphate concentrations of 300-1,800 μg/l at the site that are sufficient to sustain a long-term perspective for this process. In agreement with these physico-chemical conditions, no transfer of BTEX or PAHs from the plume into the nearby river has been observed.
2008-02-01
1994, Chiou and Kile (USGS, 2000) 3.2.2 Source Characteristics The source area was based on estimates of the locations where contaminants were...values for Koc and solubility for some of the SVOC’s appear in published literature (Chiou and Kile , 2000), which suggests a larger range of...Monitored Natural Attenuation. United States Geological Survey Water Resources Investigations Report 03-4057. Chiou, C.T. and Kile , D.E., 2000
DOT National Transportation Integrated Search
1971-06-01
Attenuation statistics resulting from a twelve month observation program are presented. The sun is used as a source of microwave radiation. The dynamic range of atmospheric attenuation measurement capability is in excess of 30 dB. Solar radiation cha...
NASA Technical Reports Server (NTRS)
Menietti, J. D.; Gurnett, D. A.; Kurth, W. S.; Groene, J. B.
1999-01-01
The Galileo plasma wave instrument has identified a narrow (in frequency) attenuation band in the hectometric emission that varies in frequency with system 3 longitude. It is possible to model this emission band assuming a high-latitude cyclotron source region with emission that is efficiently attenuated when the ray path is nearly tangent to an L shell that is close to the Io flux tube. The data suggest that the mechanism for attenuating the emission is very efficient, with the ratio of attenuated to unattenuated emission I/I(sub o) < 0.02, and not a strong function of frequency. In this paper we demonstrate that incoherent scattering alone cannot explain the attenuation lane, which does not preclude coherent scattering by uncertain processes. We find rather that the source of attenuation is consistent with near-grazing incidence reflection of emission from an L shell that is near the Io flux tube (a caustic surface).
Attenuation - The Ugly Stepsister of Velocity in the Noise Correlation Family
NASA Astrophysics Data System (ADS)
Lawrence, J. F.; Prieto, G.; Denolle, M.; Seats, K. J.
2012-12-01
Noise correlation functions and noise transfer functions have shown in practice to preserve the relative amplitude information, despite the challenge to reliably resolve it compared to phase information. Yet amplitude contains important information about wavefield interactions with the subsurface structure, including focusing/defocusing and seismic attenuation. To focus on the anelastic effects, or attenuation, we measure amplitude decay with increased station separation (distance). We present numerical results showing that the noise correlation functions (NCFs) preserve the relative amplitude information and properly retrieve seismic attenuation for sufficient noise source distribution and appropriate processing. Attenuation is only preserved through the relative decay of distinct waves from multiple simultaneous source locations. With appropriate whitening (and no time domain normalization), the coherency preserves correlation amplitudes proportional to the relative decay expected with all the inter-station spacing. We present new attenuation results for the United States, and particularly the Yellowstone region that illustrate lateral variations that strongly correlate with known geological features such as sedimentary basins, crustal blocks and active volcanism.
NASA Astrophysics Data System (ADS)
Park, Junghyun; Hayward, Chris; Stump, Brian W.
2018-06-01
Ground truth sources in Utah during 2003-2013 are used to assess the contribution of temporal atmospheric conditions to infrasound detection and the predictive capabilities of atmospheric models. Ground truth sources consist of 28 long duration static rocket motor burn tests and 28 impulsive rocket body demolitions. Automated infrasound detections from a hybrid of regional seismometers and infrasound arrays use a combination of short-term time average/long-term time average ratios and spectral analyses. These detections are grouped into station triads using a Delaunay triangulation network and then associated to estimate phase velocity and azimuth to filter signals associated with a particular source location. The resulting range and azimuth distribution from sources to detecting stations varies seasonally and is consistent with predictions based on seasonal atmospheric models. Impulsive signals from rocket body detonations are observed at greater distances (>700 km) than the extended duration signals generated by the rocket burn test (up to 600 km). Infrasound energy attenuation associated with the two source types is quantified as a function of range and azimuth from infrasound amplitude measurements. Ray-tracing results using Ground-to-Space atmospheric specifications are compared to these observations and illustrate the degree to which the time variations in characteristics of the observations can be predicted over a multiple year time period.
Xu, Zijian; Wang, Wenjie; Jiang, Kaiju; Yu, Zhou; Huang, Huanwei; Wang, Fengchao; Zhou, Bin; Chen, Ting
2015-01-01
Long-term adult stem cells sustain tissue regeneration throughout the lifetime of an organism. They were hypothesized to originate from embryonic progenitor cells that acquire long-term self-renewal ability and multipotency at the end of organogenesis. The process through which this is achieved often remains unclear. Here, we discovered that long-term hair follicle stem cells arise from embryonic progenitor cells occupying a niche location that is defined by attenuated Wnt/β-catenin signaling. Hair follicle initiation is marked by placode formation, which depends on the activation of Wnt/β-catenin signaling. Soon afterwards, a region with attenuated Wnt/β-catenin signaling emerges in the upper follicle. Embryonic progenitor cells residing in this region gain expression of adult stem cell markers and become definitive long-term hair follicle stem cells at the end of organogenesis. Attenuation of Wnt/β-catenin signaling is a prerequisite for hair follicle stem cell specification because it suppresses Sox9, which is required for stem cell formation. DOI: http://dx.doi.org/10.7554/eLife.10567.001 PMID:26653852
INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION
The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...
X-ray and gamma-ray computed tomography for industrial nondestructive testing and evaluation
NASA Astrophysics Data System (ADS)
Costello, Ian; Wells, Peter; Davis, John R.; Benci, Nino; Skerrett, David; Davies, D. R.
1994-03-01
This paper presents an overview of two recently constructed computed tomography (CT) scanners that have been designed to provide structural information for industrially relevant materials and components. CT enables cross-sectional slices of an object to be nondestructively imaged and represented as a map of linear attenuation coefficient. As linear attenuation is the product of mass attenuation and density, this usually enables a straightforward interpretation of the image in terms of density. The two instruments are a transportable scanner using a 160 kV(peak) powered x-ray tube for the inspection of wooden power poles up to 450 mm in diameter, and an industrial scanning system designed around an Ir-192 gamma-ray source for materials characterization and the testing and evaluation of castings, ceramics, and composites. The images presented in this paper have generally been reconstructed using the summation convolution back-projection (SCBP) method, and this technique is outlined. Direct Fourier reconstruction is also used and compared with the SCBP method. A brief discussion is offered on incorporating edge detection methods into the image reconstruction process for the improved identification of defects such as cracks and voids.
Volatile hydrocarbons and fuel oxygenates: Chapter 12
Cozzarelli, Isabelle M.
2014-01-01
Petroleum hydrocarbons and fuel oxygenates are among the most commonly occurring and widely distributed contaminants in the environment. This chapter presents a summary of the sources, transport, fate, and remediation of volatile fuel hydrocarbons and fuel additives in the environment. Much research has focused on the transport and transformation processes of petroleum hydrocarbons and fuel oxygenates, such as benzene, toluene, ethylbenzene, and xylenes and methyl tert‐butyl ether, in groundwater following release from underground storage tanks. Natural attenuation from biodegradation limits the movement of these contaminants and has received considerable attention as an environmental restoration option. This chapter summarizes approaches to environmental restoration, including those that rely on natural attenuation, and also engineered or enhanced remediation. Researchers are increasingly combining several microbial and molecular-based methods to give a complete picture of biodegradation potential and occurrence at contaminated field sites. New insights into the fate of petroleum hydrocarbons and fuel additives have been gained by recent advances in analytical tools and approaches, including stable isotope fractionation, analysis of metabolic intermediates, and direct microbial evidence. However, development of long-term detailed monitoring programs is required to further develop conceptual models of natural attenuation and increase our understanding of the behavior of contaminant mixtures in the subsurface.
A Requirements-Driven Optimization Method for Acoustic Treatment Design
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.
2016-01-01
Acoustic treatment designers have long been able to target specific noise sources inside turbofan engines. Facesheet porosity and cavity depth are key design variables of perforate-over-honeycomb liners that determine levels of noise suppression as well as the frequencies at which suppression occurs. Layers of these structures can be combined to create a robust attenuation spectrum that covers a wide range of frequencies. Looking to the future, rapidly-emerging additive manufacturing technologies are enabling new liners with multiple degrees of freedom, and new adaptive liners with variable impedance are showing promise. More than ever, there is greater flexibility and freedom in liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. The subject of this paper is an analytical method that derives the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground.
Monitored Natural Attenuation of ino9rganic Contaminants Treatability Study Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crapse, K
2004-05-19
The identification and quantification of key natural attenuation processes for inorganic contaminants at D-Area is detailed herein. Two overarching goals of this evaluation of monitored natural attenuation (MNA) as a remediation strategy were (1) to better define the availability of inorganic contaminants as potential sources for transport to groundwater and uptake by environmental receptors and (2) to understand the site-specific mechanisms controlling attenuation of these inorganic contaminants through tandem geochemical and biological characterization. Data collected in this study provides input for more appropriate site groundwater transport models. Significant natural attenuation is occurring at D-Area as evidenced by relatively low aqueousmore » concentrations of constituents of concern (COCs) (Be, Ni, U, and As) at all locations characterized and the decrease in groundwater concentrations with increasing distance from the source. The observed magnitude of decrease in groundwater concentrations of COCs with distance from the D-Area Coal Pile Runoff Basin (DCPRB) could not be accounted for by the modeled physical attenuation processes of dilution/dispersion. This additional attenuation, i.e., the observed difference between the groundwater concentrations of COCs and the modeled physical attenuation, is due to biogeochemical processes occurring at the D-Area. In tandem geochemical and microbiological characterization studies designed to evaluate the mechanisms contributing to natural attenuation, pH was the single parameter found to be most predictive of contaminant attenuation. The increasing pH with distance from the source is likely responsible for increased sorption of COCs to soil surfaces within the aquifer at D-Area. Importantly, because the sediments appear to have a high buffering capacity, the acid emanating from the DCPRB has been neutralized by the soil, and these conditions have led to large Kd values at the site. Two major types of soils are present at D-Area and were evaluated in this study: upland subsurface soils associated with a low pH/high sulfate/metals plume down-gradient of the D-Area Coal Pile Runoff Basin (DCPRB) and surface ash material discharged to the wetland from the D-Area Ash Basin (488-D). Sequential extraction studies were carried out to better define the availability of inorganic contaminant sources at D-Area.« less
Determining Source Attenuation History to Support Closure by Natural Attenuation
2013-11-01
of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering...and maintaining the data needed, and completing and reviewing the collection of information . Send comments regarding this burden estimate or any other...aspect of this collection of information , including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
Enhanced Attenuation: Chlorinated Organics
2008-04-01
attenuation capacity of the aquifer downgradient from the source (e.g., permeable reactive barriers or phytoremediation ) Selection of EA remedies should be...ranging from very aggressive source destruction and removal methods to less energy-intensive methods, such as phytoremediation . In many cases, it...plumes that include chlorinated organics. The flux of organic-rich leachate to underlying aquifers can create favorable conditions for the natural
Bradley, Paul M.; Singletary , Michael A.; Chapelle, Francis H.
2007-01-01
A sulfuric acid leak in 1988 at a chloroethene-contaminated groundwater site at the Naval Air Station Pensacola has resulted in a long-term record of the behavior of chloroethene contaminants at low pH and a unique opportunity to assess the potential impact of source area treatment technologies, which involve acidification of the groundwater environment (e.g., Fenton's-based in situ chemical oxidation), on downgradient natural attenuation processes. The greater than 75 percent decrease in trichloroethene (TCE) concentrations and the shift in contaminant composition toward predominantly reduced daughter products (dichloroethene [DCE] and vinyl chloride [VC]) that were observed along a 30-m groundwater flow path characterized by highly acidic conditions (pH = 3.5 ± 0.4) demonstrated that chloroethene reductive dechlorination can continue to be efficient under persistent acidic conditions. The detection of Dehalococcoides-type bacteria within the sulfuric acid/chloroethene co-contaminant plume was consistent with biotic chloroethene reductive dechlorination. Microcosm studies conducted with 14C-TCE and 14C-VC confirmed biotic reductive dechlorination in sediment collected from within the sulfuric acid/chloroethene co-contaminant plume. Microcosms prepared with sediment from two other locations within the acid plume, however, demonstrated only a limited mineralization to 14CO2 and 14CO, which was attributed to abiotic degradation because no significant differences were observed between experimental and autoclaved control treatments. These results indicated that biotic and abiotic mechanisms contributed to chloroethene attenuation in the acid plume at NAS Pensacola and that remediation techniques involving acidification of the groundwater environment (e.g., Fenton's-based source area treatment) do not necessarily preclude efficient chloroethene degradation.
Matsumoto, Keiichi; Kitamura, Keishi; Mizuta, Tetsuro; Shimizu, Keiji; Murase, Kenya; Senda, Michio
2006-02-20
Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR(+) (Siemens/CTI) , were used. For the transmission scanning, the SET-3000 G/X and ECAT HR(+) were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR(+) was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm(2) to 314 cm(2) to 628 cm(2) (apposition of the two 20 cm diameter phantoms) and 943 cm(2) (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation coefficients was stable with all phantoms. We evaluated the accuracy of attenuation coefficients of Cs-137 single-transmission scans. The results for Cs-137 suggest that scattered photons depend on object size. Although Cs-137 single-transmission scans contained scattered photons, attenuation coefficient error could be reduced using by the segmentation method.
Strain sensing using optical fibers
NASA Technical Reports Server (NTRS)
Houghton, Richard; Hiles, Steven
1994-01-01
The main source of attenuation which will be studied is the optical fiber's sensitivity to bending at radii that are much larger than the radius of the fiber. This type of environmental attenuation causes losses that are a function of the severity of the bend. The average attenuation caused by bending varies exponentially with the bend radius. There are many different fibers, sources, and testing equipment available. This thesis describes tests that were performed to evaluate the variables that effect bending related attenuation and will discuss the consistency of the results. Descriptions and comparisons will be made between single mode and multimode fibers as well as instrumentation comparisons between detection equipment. Detailed analysis of the effects of the whispering gallery mode will be performed along with theorized methods for characterization of these modes.
Computational Modeling of Micro-Crack Induced Attenuation in CFRP Composites
NASA Technical Reports Server (NTRS)
Roberts, R. A.; Leckey, C. A. C.
2012-01-01
A computational study is performed to determine the contribution to ultrasound attenuation in carbon fiber reinforced polymer composite laminates of linear elastic scattering by matrix micro-cracking. Multiple scattering approximations are benchmarked against exact computational approaches. Results support linear scattering as the source of observed increased attenuation in the presence of micro-cracking.
Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.
de Groot-Hedlin, C D
2012-08-01
An accurate and efficient method to predict infrasound amplitudes from large explosions in the atmosphere is required for diverse source types, including bolides, volcanic eruptions, and nuclear and chemical explosions. A finite-difference, time-domain approach is developed to solve a set of nonlinear fluid dynamic equations for total pressure, temperature, and density fields rather than acoustic perturbations. Three key features for the purpose of synthesizing nonlinear infrasound propagation in realistic media are that it includes gravitational terms, it allows for acoustic absorption, including molecular vibration losses at frequencies well below the molecular vibration frequencies, and the environmental models are constrained to have axial symmetry, allowing a three-dimensional simulation to be reduced to two dimensions. Numerical experiments are performed to assess the algorithm's accuracy and the effect of source amplitudes and atmospheric variability on infrasound waveforms and shock formation. Results show that infrasound waveforms steepen and their associated spectra are shifted to higher frequencies for nonlinear sources, leading to enhanced infrasound attenuation. Results also indicate that nonlinear infrasound amplitudes depend strongly on atmospheric temperature and pressure variations. The solution for total field variables and insertion of gravitational terms also allows for the computation of other disturbances generated by explosions, including gravity waves.
Influence of Musical Enculturation on Brain Responses to Metric Deviants.
Haumann, Niels T; Vuust, Peter; Bertelsen, Freja; Garza-Villarreal, Eduardo A
2018-01-01
The ability to recognize metric accents is fundamental in both music and language perception. It has been suggested that music listeners prefer rhythms that follow simple binary meters, which are common in Western music. This means that listeners expect odd-numbered beats to be strong and even-numbered beats to be weak. In support of this, studies have shown that listeners exposed to Western music show stronger novelty and incongruity related P3 and irregularity detection related mismatch negativity (MMN) brain responses to attenuated odd- than attenuated even-numbered metric positions. Furthermore, behavioral evidence suggests that music listeners' preferences can be changed by long-term exposure to non-Western rhythms and meters, e.g., by listening to African or Balkan music. In our study, we investigated whether it might be possible to measure effects of music enculturation on neural responses to attenuated tones on specific metric positions. We compared the magnetic mismatch negativity (MMNm) to attenuated beats in a "Western group" of listeners ( n = 12) mainly exposed to Western music and a "Bicultural group" of listeners ( n = 13) exposed for at least 1 year to both Sub-Saharan African music in addition to Western music. We found that in the "Western group" the MMNm was higher in amplitude to deviant tones on odd compared to even metric positions, but not in the "Bicultural group." In support of this finding, there was also a trend of the "Western group" to rate omitted beats as more surprising on odd than even metric positions, whereas the "Bicultural group" seemed to discriminate less between metric positions in terms of surprise ratings. Also, we observed that the overall latency of the MMNm was significantly shorter in the Bicultural group compared to the Western group. These effects were not biased by possible differences in rhythm perception ability or music training, measured with the Musical Ear Test (MET). Furthermore, source localization analyses suggest that auditory, inferior temporal, sensory-motor, superior frontal, and parahippocampal regions might be involved in eliciting the MMNm to the metric deviants. These findings suggest that effects of music enculturation can be measured on MMNm responses to attenuated tones on specific metric positions.
LONG TERM MONITORING FOR NATURAL ATTENUATION
We have good statistical methods to: (1) determine whether concentrations of a contaminant are attenuating over time, (2) determine the rate of attenuation and confidence interval on the rate, and (3) determine whether concentrations have met a particular clean up goal. We do no...
Brooks, P.D.; O'Reilly, C. M.; Diamond, S.A.; Campbell, D.H.; Knapp, R.; Bradford, D.; Corn, P.S.; Hossack, B.; Tonnessen, K.
2005-01-01
The amount, chemical composition, and source of dissolved organic carbon (DOC), together with in situ ultraviolet (UV-B) attenuation, were measured at 1–2 week intervals throughout the summers of 1999, 2000, and 2001 at four sites in Rocky Mountain National Park (Colorado). Eight additional sites, four in Sequoia and Kings Canyon National Park/John Muir Wilderness (California) and four in Glacier National Park (Montana), were sampled during the summer of 2000. Attenuation of UV-B was significantly related to DOC concentrations over the three years in Rocky Mountain (R2 = 0.39, F = 25.71, P < 0.0001) and across all parks in 2000 (R2 = 0.44, F = 38.25, P < 0.0001). The relatively low R2 values, however, reflect significant temporal and spatial variability in the specific attenuation per unit DOC. Fluorescence analysis of the fulvic acid DOC fraction (roughly 600–2,000 Daltons) indicated that the source of DOC significantly affected the attenuation of UV-B. Sites in Sequoia–Kings Canyon were characterized by DOC derived primarily from algal sources and showed much deeper UV-B penetration, whereas sites in Glacier and Rocky Mountain contained a mix of algal and terrestrial DOC-dominated sites, with more terrestrially dominated sites characterized by greater UV-B attenuation per unit DOC. In general, site characteristics that promoted the accumulation of terrestrially derived DOC showed greater attenuation of UV-B per unit DOC; however, catchment vegetation and soil characteristics, precipitation, and local hydrology interacted to make it difficult to predict potential exposure from DOC concentrations.
Apparatus and method for detecting gamma radiation
Sigg, Raymond A.
1994-01-01
A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.
NASA Astrophysics Data System (ADS)
Kurudirek, M.; Medhat, M. E.
2014-07-01
An alternative approach is used to measure normalized mass attenuation coefficients (μ/ρ) of materials with unknown thickness and density. The adopted procedure is based on the use of simultaneous emission of Kα and Kβ X-ray lines as well as gamma peaks from radioactive sources in transmission geometry. 109Cd and 60Co radioactive sources were used for the purpose of the investigation. It has been observed that using the simultaneous X- and/or gamma rays of different energy allows accurate determination of relative mass attenuation coefficients by eliminating the dependence of μ/ρ on thickness and density of the material.
THE ROLE OF NATURAL BIOLOGICAL PROCESSES IN THE NATURAL ATTENUATION OF CONTAMINANTS IN GROUND WATER
As a practical matter, the time required for a site to reach cleanup goals is controlled by the rate of natural attenuation of the source of contamination, not the rate of natural attenuation of the contaminants once they are in the ground. As a consequence, in the USA the most ...
Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee
2018-01-01
The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.
Measurement of wood/plant cell or composite material attributes with computer assisted tomography
West, Darrell C.; Paulus, Michael J.; Tuskan, Gerald A.; Wimmer, Rupert
2004-06-08
A method for obtaining wood-cell attributes from cellulose containing samples includes the steps of radiating a cellulose containing sample with a beam of radiation. Radiation attenuation information is collected from radiation which passes through the sample. The source is rotated relative to the sample and the radiation and collecting steps repeated. A projected image of the sample is formed from the collected radiation attenuation information, the projected image including resolvable features of the cellulose containing sample. Cell wall thickness, cell diameter (length) and cell vacoule diameter can be determined. A system for obtaining physical measures from cellulose containing samples includes a radiation source, a radiation detector, and structure for rotating the source relative to said sample. The system forms an image of the sample from the radiation attenuation information, the image including resolvable features of the sample.
Radiative transfer of X-rays in the solar corona
NASA Technical Reports Server (NTRS)
Acton, L. W.
1978-01-01
The problem of resonance scattering of X-ray emission lines in the solar corona is investigated. For the resonance lines of some helium-like ions, significant optical depths are reached over distances small compared with the size of typical coronal features. A general integral equation for the transfer of resonance-line radiation under solar coronal conditions is derived. This expression is in a form useful for modeling the complex three-dimensional temperature and density structure of coronal active regions. The transfer equation is then cast in a form illustrating the terms which give rise to the attenuation or enhancement of the resonance-line intensity. The source function for helium-like oxygen (O VII) under coronal conditions is computed and discussed in terms of the relative importance of scattering.
Barbaro, Jeffrey R.
2002-01-01
Water-quality, aquifer-sediment, and hydro-logic data were used to assess the effectiveness of natural attenuation of ground-water contamination at Fire Training Area Three, the Rubble Area Landfill, the Liquid Waste Disposal Landfill, and the Receiver Station Landfill in the East Management Unit of Dover Air Force Base, Delaware. These sites, which are contaminated with chlorinated solvents and fuel hydrocarbons, are under-going long-term monitoring to determine if natural attenuation continues to sufficiently reduce contaminant concentrations to meet regulatory requirements. This report is the first assessment of the effectiveness of natural attenuation at these sites since long-term monitoring began in 1999, and follows a preliminary investigation done in 1995?96. This assessment was done by the U.S. Geological Survey in cooperation with the U.S. Air Force.Since 1995?96, additional information has been collected and used in the current assessment. The conclusions in this report are based primarily on ground-water samples collected from January through March 2000. Previous analytical results from selected wells, available geologic and geo-physical well logs, and newly acquired information such as sediment organic-carbon measurements, hydraulic-conductivity measurements determined from slug tests on wells in the natural attenuation study area, and water-level measurements from surficial-aquifer wells also were used in this assessment. This information was used to: (1) calculate retardation factors and estimate contaminant migration velocities, (2) improve estimates of ground-water flow directions and inferred contaminant migration pathways, (3) better define the areal extent of contamination and the proximity of contaminants to discharge areas and the Base boundary, (4) develop a better under-standing of the vertical variability of contaminant concentrations and redox conditions, (5) evaluate the effects of temporal changes on concentrations in the plumes and source areas, and (6) determine whether intrinsic biodegradation is occurring at these sites.The water-quality data indicate that intrinsic biodegradation is occurring at all three sites. The strongest indication of intrinsic biodegradation is the detection of tetrachloroethene and trichloroethene breakdown products within and down-gradient of the source areas. The patterns of electron acceptors and metabolic by-products indicate that contaminant biodegradation has changed the prevailing geochemistry of the surficial aquifer, creating the strongly reducing conditions necessary for chlorinated solvent bio-degradation. Geochemical changes include depleted dissolved oxygen and elevated ferrous iron and methane levels relative to concentrations in uncontaminated zones of the surficial aquifer. At Fire Training Area Three and the Rubble Area Landfill sites, natural attenuation appears to be adequate for controlling the migration of the contaminant plumes. At the third site, the Liquid Waste Disposal and Receiver Station Landfills, the plume is larger and the uncertainty about the effectiveness of natural attenuation in reducing contaminant concentrations and controlling plume migration is greater. Ground-water data indicate, however, that U.S. Environmental Protection Agency maximum contaminant levels were not exceeded in any point-of-compliance wells located along the Base boundary.The information presented in this report led to the development of improved conceptual models for these sites, and to the recognition of four issues that are currently unclear and may need further study. These issues include delineating the areal and vertical extent of the contaminant plumes in greater detail, determining the extent of intrinsic biodegradation downgradient of the Liquid Waste Disposal and Receiver Station Landfills, deter-mining the fate of contaminants in the ground-water discharge areas, and determining the effect of temporal variability in source concentrations and ground-water
Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J
2008-09-01
Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.
Attenuation of X and Gamma Rays in Personal Radiation Shielding Protective Clothing.
Kozlovska, Michaela; Cerny, Radek; Otahal, Petr
2015-11-01
A collection of personal radiation shielding protective clothing, suitable for use in case of accidents in nuclear facilities or radiological emergency situations involving radioactive agents, was gathered and tested at the Nuclear Protection Department of the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. Attenuating qualities of shielding layers in individual protective clothing were tested via spectra measurement of x and gamma rays, penetrating them. The rays originated from different radionuclide point sources, the gamma ray energies of which cover a broad energy range. The spectra were measured by handheld spectrometers, both scintillation and High Purity Germanium. Different narrow beam geometries were adjusted using a special testing bench and a set of various collimators. The main experimentally determined quantity for individual samples of personal radiation shielding protective clothing was x and gamma rays attenuation for significant energies of the spectra. The attenuation was assessed comparing net peak areas (after background subtraction) in spectra, where a tested sample was placed between the source and the detector, and corresponding net peak areas in spectra, measured without the sample. Mass attenuation coefficients, which describe attenuating qualities of shielding layers materials in individual samples, together with corresponding lead equivalents, were determined as well. Experimentally assessed mass attenuation coefficients of the samples were compared to the referred ones for individual heavy metals.
Spectral solar attenuation due to aerosol loading over an urban area in India
NASA Astrophysics Data System (ADS)
Latha, K. Madhavi; Badarinath, K. V. S.
2005-06-01
Anthropogenic activities in urban areas are sources for atmospheric aerosols and are increasing due to population explosion and migration. Many large cities in the developing world are presently plagued by high levels of atmospheric pollution and long-term effect of urban aerosol on climate is an important topic. In the present study, ground-based measurements of solar irradiance, aerosol loading and black carbon (BC) aerosol concentration have been analyzed during different aerosol loading conditions during 2003 over an urban environment. BC aerosols concentration has been observed to be enhanced during high aerosol optical depth day suggesting influence of local anthropogenic activities. The analysis of wind fields over the study area during the measurement period is from north with continental air mass prevailing over the region. Spectral measurements of solar irradiance exhibited variations based on aerosol loading in urban atmosphere. Relative attenuations caused by aerosols have been found to be of the order of 21% and 17% on the irradiance on visible and near infrared respectively.
MONITORED NATURAL ATTENUATION AND RISK MANAGEMENT OF MTBE IN GROUND WATER
Monitored natural attenuation (as U.S. EPA defines the term) is a remedy, where natural processes bring the concentration of MTBE to an acceptable level in a reasonable period of time. The longevity of the plume is its critical property. The rate of attenuation is typically con...
McCaffrey, J P; Mainegra-Hing, E; Kawrakow, I; Shortt, K R; Rogers, D W O
2004-06-21
The basic equation for establishing a 60Co air-kerma standard based on a cavity ionization chamber includes a wall correction term that corrects for the attenuation and scatter of photons in the chamber wall. For over a decade, the validity of the wall correction terms determined by extrapolation methods (K(w)K(cep)) has been strongly challenged by Monte Carlo (MC) calculation methods (K(wall)). Using the linear extrapolation method with experimental data, K(w)K(cep) was determined in this study for three different styles of primary-standard-grade graphite ionization chamber: cylindrical, spherical and plane-parallel. For measurements taken with the same 60Co source, the air-kerma rates for these three chambers, determined using extrapolated K(w)K(cep) values, differed by up to 2%. The MC code 'EGSnrc' was used to calculate the values of K(wall) for these three chambers. Use of the calculated K(wall) values gave air-kerma rates that agreed within 0.3%. The accuracy of this code was affirmed by its reliability in modelling the complex structure of the response curve obtained by rotation of the non-rotationally symmetric plane-parallel chamber. These results demonstrate that the linear extrapolation technique leads to errors in the determination of air-kerma.
FATE 5: A natural attenuation calibration tool for groundwater fate and transport modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nevin, J.P.; Connor, J.A.; Newell, C.J.
1997-12-31
A new groundwater attenuation modeling tool (FATE 5) has been developed to assist users with determining site-specific natural attenuation rates for organic constituents dissolved in groundwater. FATE 5 is based on and represents an enhancement to the Domenico analytical groundwater transport model. These enhancements include use of an optimization routine to match results from the Domenico model to actual measured site concentrations, an extensive database of chemical property data, and calculation of an estimate of the length of time needed for a plume to reach steady state conditions. FATE 5 was developed in Microsoft{reg_sign} Excel and is controlled by meansmore » of a simple, user-friendly graphical interface. Using the Solver routine built into Excel, FATE 5 is able to calibrate the attenuation rate used by the Domenico model to match site-specific data. By calibrating the decay rate to site-specific measurements, FATE 5 can yield accurate predictions of long-term natural attenuation processes within a groundwater within a groundwater plume. In addition, FATE 5 includes a formulation of the transient Domenico solution used to help the user determine if the steady-state assumptions employed by the model are appropriate. The calibrated groundwater flow model can then be used either to (i) predict upper-bound constituent concentrations in groundwater, based on an observed source zone concentration, or (ii) back-calculate a lower-bound SSTL value, based on a user-specified exposure point concentration at the groundwater point of exposure (POE). This paper reviews the major elements of the FATE 5 model - and gives results for real-world applications. Key modeling assumptions and summary guidelines regarding calculation procedures and input parameter selection are also addressed.« less
A rack-mounted precision waveguide-below-cutoff attenuator with an absolute electronic readout
NASA Technical Reports Server (NTRS)
Cook, C. C.
1974-01-01
A coaxial precision waveguide-below-cutoff attenuator is described which uses an absolute (unambiguous) electronic digital readout of displacement in inches in addition to the usual gear driven mechanical counter-dial readout in decibels. The attenuator is rack-mountable and has the input and output RF connectors in a fixed position. The attenuation rate for 55, 50, and 30 MHz operation is given along with a discussion of sources of errors. In addition, information is included to aid the user in making adjustments on the attenuator should it be damaged or disassembled for any reason.
Selecting remediation goals by assessing the natural attenuation capacity of groundwater systems
Chapelle, Francis H.; Bradley, Paul M.
1998-01-01
Remediation goals for the source areas of a chlorinated ethene‐contaminated groundwater plume were identified by assessing the natural attenuation capacity of the aquifer system. The redox chemistry of the site indicates that sulfate‐reducing (H2 ∼ 2 nanomoles [nM]) per liter conditions near the contaminant source grade to Fe(III)‐reducing conditions (H2 ∼ 0.5 nM) downgradient of the source. Sulfate‐reducing conditions facilitate the initial reduction of perchloroethene (PCE) to trichloroethene (TCE), cis‐dichloroethene (cis‐DCE), and vinyl chloride (VC). Subsequently, the Fe(III)‐reducing conditions drive the oxidation of cis‐DCE and VC to carbon dioxide and chloride. This sequence gives the aquifer a substantial capacity for biodegrading chlorinated ethenes. Natural attenuation capacity (the slope of the steady‐state contaminant concentration profile along a groundwater flowpath) is a function of biodegradation rates, aquifer dispersive characteristics, and groundwater flow velocity. The natural attenuation capacity at the Kings Bay, Georgia site was assessed by estimating groundwater flowrates (∼0.23 ± 0.12 m/d) and aquifer dispersivity (∼1 m) from hydrologic and scale considerations. Apparent biodegradation rate constants (PCE and TCE ∼ 0.01 d−1; cis‐DCE and VC ∼ 0.025 d−1) were estimated from observed contaminant concentration changes along aquifer flowpaths. A boundary‐value problem approach was used to estimate levels to which contaminant concentrations in the source areas must be lowered (by engineered removal), or groundwater flow velocities lowered (by pumping) for the natural attenuation capacity to achieve maximum concentration limits (MCLs) prior to reaching a predetermined regulatory point of compliance.
A sensitivity-based approach to optimize the surface treatment of a low-height tramway noise barrier
NASA Astrophysics Data System (ADS)
Jolibois, Alexandre
Transportation noise has become a main nuisance in urban areas, in the industrialized world and across the world, to the point that according to the World Health Organization 65% of the European population is exposed to excessive noise and 20% to night-time levels that may harm their health. There is therefore a need to find new ways to mitigate transportation noise in urban areas. In this work, a possible device to achieve this goal is studied: a low-height noise barrier. It consists of a barrier typically less than one meter high placed close to the source, designed to decrease significantly the noise level for nearby pedestrians and cyclists. A numerical method which optimizes the surface treatment of a low-height barrier in order to increase its insertion loss is presented. Tramway noise barriers are especially studied since the noise sources are in this case close to the ground and would be attenuated more by the barrier. The acoustic behavior of the surface treatment is modeled via its admittance. It can be itself described by a few parameters (flow resistivity, geometrical dimensions...), which can then be optimized. It is proposed to couple porous layers and micro-perforated panel (MPP) resonators in order to take advantage of their different acoustic properties. Moreover, the optimization is achieved using a sensitivity-based method, since in this framework the gradient of the attenuation can be evaluated accurately and efficiently. Several shapes are considered: half-cylinder, quarter-cylinder, straight wall, T-shape and square shape. In the case of a half-cylindrical geometry, a semi-analytical solution for the sound field in terms of a series of cylindrical waves is derived, which simplifies the sensitivity calculation and optimization process. The boundary element method (BEM) is used to evaluate the attenuation for the remaining shapes, and in this case the sensitivity is evaluated using the adjoint state approach. For all considered geometries, it is found that placing an absorbing treatment close to the source is indeed necessary to attenuate the multiple re ections happening between the tramway and the barrier, and that a tuned MPP resonator on the top of the barrier can yield better performance than a uniform absorbent treatment. More advanced numerical modeling and scale model measurements seem to confirm these results.
Apparatus and method for detecting gamma radiation
Sigg, R.A.
1994-12-13
A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.
The effect of light direction and suspended cell concentrations on algal biofilm growth rates.
Schnurr, Peter J; Espie, George S; Allen, D Grant
2014-10-01
Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.
NASA Astrophysics Data System (ADS)
Portmann, A. C.; Halpin, B. N.; Herzog, S.; Higgins, C.; McCray, J. E.
2017-12-01
The hyporheic zone (HZ) is a natural bioreactor that can provide in-stream attenuation of various nonpoint source contaminants. Main contributions of nonpoint source pollution are coming from urban stormwater and agricultural runoff, which both adversely impact aquatic life. Stormwater pollutants of concern commonly include nutrients, metals, pathogens, and trace organic contaminants (TOrCs). Despite substantial water quality challenges, current stormwater management typically focuses on water quantity issues rather than pollutant removal. Furthermore, current HZ restoration best management practices do not explicitly control HZ residence times, and generally only induce localized effects. To increase hyporheic exchange and therefore improving water quality, we introduced engineered streambeds featuring modifications to subsurface hydraulic conductivity (K) and reactivity - termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST modifications comprise subsurface modules that employ 1) low-permeability sediments to drive hyporheic exchange and control subsurface residence times, and 2) permeable reactive geomedia to change reaction rates within the HZ. Here we present performance data collected in constructed stream experiments, comparing an all-sand control condition with a stream containing BEST modules and a mixture of 70/30 sand/woodchips (v/v). We evaluated the attenuation of a suite of TOrCs in the BEST versus the control system for two different streambed media: a coarse sand with K = 0.48 cm/s and a fine sand with K = 0.16 cm/s. The range of TOrCs investigated comprises urban pesticides and other stormwater relevant TOrCs. Benefits of applying BEST include increased exchange between streamwater and HZ water, leading to diverse redox conditions that are beneficial for aquatic organisms and will facilitate in-stream pollutant transformation. Future work will focus on tailoring the BEST design for specific pollutants, thereby controlling HZ residence times to match reaction timescales and conditions of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez-Beltran, M; Fernandez Gonzalez, F
2014-06-15
Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less
Bradley, Paul M; Barber, Larry B; Clark, Jimmy M; Duris, Joseph W; Foreman, William T; Furlong, Edward T; Givens, Carrie E; Hubbard, Laura E; Hutchinson, Kasey J; Journey, Celeste A; Keefe, Steffanie H; Kolpin, Dana W
2016-10-15
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem. Published by Elsevier B.V.
Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.
2016-01-01
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.
Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M
2013-08-01
Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.
Full Waveform Inversion for Seismic Velocity And Anelastic Losses in Heterogeneous Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askan, A.; /Carnegie Mellon U.; Akcelik, V.
2009-04-30
We present a least-squares optimization method for solving the nonlinear full waveform inverse problem of determining the crustal velocity and intrinsic attenuation properties of sedimentary valleys in earthquake-prone regions. Given a known earthquake source and a set of seismograms generated by the source, the inverse problem is to reconstruct the anelastic properties of a heterogeneous medium with possibly discontinuous wave velocities. The inverse problem is formulated as a constrained optimization problem, where the constraints are the partial and ordinary differential equations governing the anelastic wave propagation from the source to the receivers in the time domain. This leads to amore » variational formulation in terms of the material model plus the state variables and their adjoints. We employ a wave propagation model in which the intrinsic energy-dissipating nature of the soil medium is modeled by a set of standard linear solids. The least-squares optimization approach to inverse wave propagation presents the well-known difficulties of ill posedness and multiple minima. To overcome ill posedness, we include a total variation regularization functional in the objective function, which annihilates highly oscillatory material property components while preserving discontinuities in the medium. To treat multiple minima, we use a multilevel algorithm that solves a sequence of subproblems on increasingly finer grids with increasingly higher frequency source components to remain within the basin of attraction of the global minimum. We illustrate the methodology with high-resolution inversions for two-dimensional sedimentary models of the San Fernando Valley, under SH-wave excitation. We perform inversions for both the seismic velocity and the intrinsic attenuation using synthetic waveforms at the observer locations as pseudoobserved data.« less
MONITORED NATURAL ATTENUATION AND RISK MANAGEMENT OF MTBE AND TBA IN GROUND WATER
Monitored natural attenuation (as U.S. EPA defines the term) is a remedy, where natural processes bring the concentration of MTBE or TBA to an acceptable level in a reasonable period of time. The longevity of the plume is its critical property. The rate of attenuation is typica...
Observation-Based Dissipation and Input Terms for Spectral Wave Models, with End-User Testing
2014-09-30
scale influence of the Great barrier reef matrix on wave attenuation, Coral Reefs [published, refereed] Ghantous, M., and A.V. Babanin, 2014: One...Observation-Based Dissipation and Input Terms for Spectral Wave Models...functions, based on advanced understanding of physics of air-sea interactions, wave breaking and swell attenuation, in wave - forecast models. OBJECTIVES The
Graizer, Vladimir;; Kalkan, Erol
2016-01-01
We present a revised ground‐motion prediction equation (GMPE) for computing medians and standard deviations of peak ground acceleration (PGA) and 5% damped pseudospectral acceleration (PSA) response ordinates of the horizontal component of randomly oriented ground motions to be used for seismic‐hazard analyses and engineering applications. This GMPE is derived from the expanded Next Generation Attenuation (NGA)‐West 1 database (see Data and Resources; Chiou et al., 2008). The revised model includes an anelastic attenuation term as a function of quality factor (Q0) to capture regional differences in far‐source (beyond 150 km) attenuation, and a new frequency‐dependent sedimentary‐basin scaling term as a function of depth to the 1.5 km/s shear‐wave velocity isosurface to improve ground‐motion predictions at sites located on deep sedimentary basins. The new Graizer–Kalkan 2015 (GK15) model, developed to be simple, is applicable for the western United States and other similar shallow crustal continental regions in active tectonic environments for earthquakes with moment magnitudes (M) 5.0–8.0, distances 0–250 km, average shear‐wave velocities in the upper 30 m (VS30) 200–1300 m/s, and spectral periods (T) 0.01–5 s. Our aleatory variability model captures interevent (between‐event) variability, which decreases with magnitude and increases with distance. The mixed‐effect residuals analysis reveals that the GK15 has no trend with respect to the independent predictor parameters. Compared to our 2007–2009 GMPE, the PGA values are very similar, whereas spectral ordinates predicted are larger at T<0.2 s and they are smaller at longer periods.
Experimental Study of Radiation Efficiency from an Ingested Source inside a Human Body Model*.
Chan, Yawen; -H Meng, Max; Wu, K-L; Wang, Xiaona
2005-01-01
The attenuation of human body trunk at frequency range of 100MHz to 6GHz from an internal source was estimated using a simplified experimental model. Antennas were placed in the model which was filled with distilled water, 0.9% NaCl saline solution, and porcine body tissue alternately to determine the attenuation of the system. Saline has greater attenuation than water due to its higher conductivity, while porcine body tissue has attenuation bounded by saline solution and water. Estimated attenuation at the four ISM bands, 434MHz, 915MHz, 2.45GHz and 5.8GHz were given and all of these bands satisfied the safety and sensitivity requirements of a biomedical telemetry system. 915MHz and 2.45GHz are good choices for the wireless link because of their relatively larger electrical size of RF components such as antenna. In addition, with the growth in wireless LAN and Bluetooth technology, miniaturized antennas, camera modules, and other RF devices have been developed which can be employed in biomedical ingested or implanted devices. This paper gives a reference of attenuation values of a human body trunk of average size. It should be noted that the attenuation values can be different for different body size and different body composition, and therefore the values in this paper serves as a reference only.
NASA Technical Reports Server (NTRS)
Olsen, W. A.; Krejsa, E. A.; Coats, J. W.
1972-01-01
Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.
NASA Astrophysics Data System (ADS)
Diallo, M. S.; Holschneider, M.; Kulesh, M.; Scherbaum, F.; Ohrnberger, M.; Lück, E.
2004-05-01
This contribution is concerned with the estimate of attenuation and dispersion characteristics of surface waves observed on a shallow seismic record. The analysis is based on a initial parameterization of the phase and attenuation functions which are then estimated by minimizing a properly defined merit function. To minimize the effect of random noise on the estimates of dispersion and attenuation we use cross-correlations (in Fourier domain) of preselected traces from some region of interest along the survey line. These cross-correlations are then expressed in terms of the parameterized attenuation and phase functions and the auto-correlation of the so-called source trace or reference trace. Cross-corelation that enter the optimization are selected so as to provide an average estimate of both the attenuation function and the phase (group) velocity of the area under investigation. The advantage of the method over the standard two stations method using Fourier technique is that uncertainties related to the phase unwrapping and the estimate of the number of 2π cycle skip in the phase phase are eliminated. However when mutliple modes arrival are observed, its become merely impossible to obtain reliable estimate the dipsersion curves for the different modes using optimization method alone. To circumvent this limitations we using the presented approach in conjunction with the wavelet propagation operator (Kulesh et al., 2003) which allows the application of band pass filtering in (ω -t) domain, to select a particular mode for the minimization. Also by expressing the cost function in the wavelet domain the optimization can be performed either with respect to the phase, the modulus of the transform or a combination of both. This flexibility in the design of the cost function provides an additional mean of constraining the optimization results. Results from the application of this dispersion and attenuation analysis method are shown for both synthetic and real 2D shallow seismic data sets. M. Kulesh, M. Holschneider, M. S. Diallo, Q. Xie and F. Scherbaum, Modeling of Wave Dispersion Using Wavelet Transfrom (Submitted to Pure and Applied Geophysics).
Verginelli, Iason; Pecoraro, Roberto; Baciocchi, Renato
2018-04-01
In this work, we introduce a screening method for the evaluation of the natural attenuation rates in the subsurface at sites contaminated by petroleum hydrocarbons. The method is based on the combination of the data obtained from standard source characterization with dynamic flux chambers measurements. The natural attenuation rates are calculated as difference between the flux of contaminants estimated with a non-reactive diffusive model starting from the concentrations of the contaminants detected in the source (soil and/or groundwater) and the effective emission rate of the contaminants measured using dynamic flux chambers installed at ground level. The reliability of this approach was tested in a contaminated site characterized by the presence of BTEX in soil and groundwater. Namely, the BTEX emission rates from the subsurface were measured in 4 seasonal campaigns using dynamic flux chambers installed in 14 sampling points. The comparison of measured fluxes with those predicted using a non-reactive diffusive model, starting from the source concentrations, showed that, in line with other recent studies, the modelling approach can overestimate the expected outdoor concentration of petroleum hydrocarbons even up to 4 orders of magnitude. On the other hand, by coupling the measured data with the fluxes estimated with the diffusive non-reactive model, it was possible to perform a mass balance to evaluate the natural attenuation loss rates of petroleum hydrocarbons during the migration from the source to ground level. Based on this comparison, the estimated BTEX loss rates in the test site were up to almost 0.5kg/year/m 2 . These rates are in line with the values reported in the recent literature for natural source zone depletion. In short, the method presented in this work can represent an easy-to-use and cost-effective option that can provide a further line of evidence of natural attenuation rates expected at contaminated sites. Copyright © 2017 Elsevier B.V. All rights reserved.
Long term attenuation statistics at 11.6 GHz in the three Italian Main Stations
NASA Astrophysics Data System (ADS)
Carassa, Francesco; Mauri, Mario; Paraboni, Aldo
1987-04-01
Results are presented from the 5-year attenuation-measurement campaign conducted with the SIRIO satellite at 11.6 and 17.8, which used near-continuous measurements at the lower frequency from the Italian ground stations at Fucino, Lario, and Spino d'Adda, and fewer measurements at the higher frequency from Fucino and Lario. The long-term statistics thus obtained have been applied in the design of the Italian domestic satellite system Italsat, which is to begin operating in 1989. Attention is presently given to annual worst month, time-of-day dependence, rain rate attenuation correlation, and frequency scaling statistics.
NASA Astrophysics Data System (ADS)
Bray, E. N.; Chen, X.; Keller, A. A.
2010-12-01
Non-point source inputs of total nitrogen (TN) and total phosphorus (TP) in rivers are the leading causes of water quality degradation in the United States (Turner and Rabalais, 2003; Broussard and Turner, 2009). Yet it remains a challenge to adequately quantify the relative role and influence of physical hydrological processes versus biogeochemical processes on the attenuation of TN and TP for individual river reaches. A watershed-scale study of instream dynamics and attenuation of TN and TP in northeastern U.S. headwater streams demonstrates that physical and hydrological processes exert greater control over nutrient removal than biogeochemical processes. To explore these interactions under various attenuation scenarios, we developed the watershed-scale model (WARMF) for 97 catchments to simulate watershed processes, hydrology, and diffuse source loads of nutrients. We simulated a hypothetical nutrient release at a rate of 1 kg/d of TN (50% as ammonium and 50% as nitrate) and TP (100% as phosphate) to predict response lengths of downstream catchments. Resulting attenuation factors are presented as the change in mean load at a given location, normalized to the change in the catchment in which the load is applied. Results indicate that for most catchments, the TN and TP load increase is attenuated from the stream within a few tens of kilometers. Fifty percent attenuation occurs across length scales ranging from a few hundreds of meters to kilometers if the load is introduced in the headwaters, indicating the most rapid nutrient removal occurs in the smallest headwater streams but generally decreases with distance downstream. There are some differences in the attenuation factors for TN and TP, although the pattern of attenuation is the same. Sensitivity analyses highlight five hydrological parameters of paramount importance to concentrations of N and P, namely precipitation, evaporation coefficients (magnitude and skewness), soil layer thickness, soil saturated moisture and soil hydraulic conductivity. These model parameters have a significant effect on the concentrations of nutrients, with TN exhibiting greater sensitivity. Further, attenuation results suggest that stream depth, flow regime, and density of agriculture in small headwater streams are potentially important controls to nutrient uptake and removal; i.e. during periods of low flow, dilution is reduced, attenuation length increases, and removal processes may be dominated by settling as opposed to biogeochemistry. Instream attenuation and model results can be used to assess 1) the scale and nature of best management practices which must be adopted to result in nutrient reductions, 2) the downstream distance at which load reductions will be effective, and 3) the hydrological characteristics of the river network which exert considerable influence on attenuation lengths and nutrient removal.
Baladi, Michelle G.; Newman, Amy H.; Nielsen, Shannon M.; Hanson, Glen R.; Fleckenstein, Annette E.
2014-01-01
Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. PMID:24685638
Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E
2014-06-05
Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Leng, Shuai; Zhou, Wei; Yu, Zhicong; Halaweish, Ahmed; Krauss, Bernhard; Schmidt, Bernhard; Yu, Lifeng; Kappler, Steffen; McCollough, Cynthia
2017-09-01
Photon-counting computed tomography (PCCT) uses a photon counting detector to count individual photons and allocate them to specific energy bins by comparing photon energy to preset thresholds. This enables simultaneous multi-energy CT with a single source and detector. Phantom studies were performed to assess the spectral performance of a research PCCT scanner by assessing the accuracy of derived images sets. Specifically, we assessed the accuracy of iodine quantification in iodine map images and of CT number accuracy in virtual monoenergetic images (VMI). Vials containing iodine with five known concentrations were scanned on the PCCT scanner after being placed in phantoms representing the attenuation of different size patients. For comparison, the same vials and phantoms were also scanned on 2nd and 3rd generation dual-source, dual-energy scanners. After material decomposition, iodine maps were generated, from which iodine concentration was measured for each vial and phantom size and compared with the known concentration. Additionally, VMIs were generated and CT number accuracy was compared to the reference standard, which was calculated based on known iodine concentration and attenuation coefficients at each keV obtained from the U.S. National Institute of Standards and Technology (NIST). Results showed accurate iodine quantification (root mean square error of 0.5 mgI/cc) and accurate CT number of VMIs (percentage error of 8.9%) using the PCCT scanner. The overall performance of the PCCT scanner, in terms of iodine quantification and VMI CT number accuracy, was comparable to that of EID-based dual-source, dual-energy scanners.
Biodegradation of Petroleum Hydrocarbon in the Vadose Zone
There are two major impediments to a better understanding of the influence of biodegradation on the risk of intrusion of petroleum vapors. We describe the contribution of biodegradation as an attenuation factor between the source and the receptor. The use of attenuation factors...
NASA Astrophysics Data System (ADS)
Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.
2016-02-01
Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.
Influence of Musical Enculturation on Brain Responses to Metric Deviants
Haumann, Niels T.; Vuust, Peter; Bertelsen, Freja; Garza-Villarreal, Eduardo A.
2018-01-01
The ability to recognize metric accents is fundamental in both music and language perception. It has been suggested that music listeners prefer rhythms that follow simple binary meters, which are common in Western music. This means that listeners expect odd-numbered beats to be strong and even-numbered beats to be weak. In support of this, studies have shown that listeners exposed to Western music show stronger novelty and incongruity related P3 and irregularity detection related mismatch negativity (MMN) brain responses to attenuated odd- than attenuated even-numbered metric positions. Furthermore, behavioral evidence suggests that music listeners' preferences can be changed by long-term exposure to non-Western rhythms and meters, e.g., by listening to African or Balkan music. In our study, we investigated whether it might be possible to measure effects of music enculturation on neural responses to attenuated tones on specific metric positions. We compared the magnetic mismatch negativity (MMNm) to attenuated beats in a “Western group” of listeners (n = 12) mainly exposed to Western music and a “Bicultural group” of listeners (n = 13) exposed for at least 1 year to both Sub-Saharan African music in addition to Western music. We found that in the “Western group” the MMNm was higher in amplitude to deviant tones on odd compared to even metric positions, but not in the “Bicultural group.” In support of this finding, there was also a trend of the “Western group” to rate omitted beats as more surprising on odd than even metric positions, whereas the “Bicultural group” seemed to discriminate less between metric positions in terms of surprise ratings. Also, we observed that the overall latency of the MMNm was significantly shorter in the Bicultural group compared to the Western group. These effects were not biased by possible differences in rhythm perception ability or music training, measured with the Musical Ear Test (MET). Furthermore, source localization analyses suggest that auditory, inferior temporal, sensory-motor, superior frontal, and parahippocampal regions might be involved in eliciting the MMNm to the metric deviants. These findings suggest that effects of music enculturation can be measured on MMNm responses to attenuated tones on specific metric positions. PMID:29720932
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, K; Araki, F; Ohno, T
Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photonmore » and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.« less
Jha, Jay C.; Gray, Stephen P.; Barit, David; Okabe, Jun; El-Osta, Assam; Namikoshi, Tamehachi; Thallas-Bonke, Vicki; Wingler, Kirstin; Szyndralewiez, Cedric; Heitz, Freddy; Touyz, Rhian M.; Cooper, Mark E.; Schmidt, Harald H.H.W.
2014-01-01
Diabetic nephropathy may occur, in part, as a result of intrarenal oxidative stress. NADPH oxidases comprise the only known dedicated reactive oxygen species (ROS)–forming enzyme family. In the rodent kidney, three isoforms of the catalytic subunit of NADPH oxidase are expressed (Nox1, Nox2, and Nox4). Here we show that Nox4 is the main source of renal ROS in a mouse model of diabetic nephropathy induced by streptozotocin administration in ApoE−/− mice. Deletion of Nox4, but not of Nox1, resulted in renal protection from glomerular injury as evidenced by attenuated albuminuria, preserved structure, reduced glomerular accumulation of extracellular matrix proteins, attenuated glomerular macrophage infiltration, and reduced renal expression of monocyte chemoattractant protein-1 and NF-κB in streptozotocin-induced diabetic ApoE−/− mice. Importantly, administration of the most specific Nox1/4 inhibitor, GKT137831, replicated these renoprotective effects of Nox4 deletion. In human podocytes, silencing of the Nox4 gene resulted in reduced production of ROS and downregulation of proinflammatory and profibrotic markers that are implicated in diabetic nephropathy. Collectively, these results identify Nox4 as a key source of ROS responsible for kidney injury in diabetes and provide proof of principle for an innovative small molecule approach to treat and/or prevent chronic kidney failure. PMID:24511132
PET attenuation correction for rigid MR Tx/Rx coils from 176Lu background activity
NASA Astrophysics Data System (ADS)
Lerche, Christoph W.; Kaltsas, Theodoris; Caldeira, Liliana; Scheins, Jürgen; Rota Kops, Elena; Tellmann, Lutz; Pietrzyk, Uwe; Herzog, Hans; Shah, N. Jon
2018-02-01
One challenge for PET-MR hybrid imaging is the correction for attenuation of the 511 keV annihilation radiation by the required RF transmit and/or RF receive coils. Although there are strategies for building PET transparent Tx/Rx coils, such optimised coils still cause significant attenuation of the annihilation radiation leading to artefacts and biases in the reconstructed activity concentrations. We present a straightforward method to measure the attenuation of Tx/Rx coils in simultaneous MR-PET imaging based on the natural 176Lu background contained in the scintillator of the PET detector without the requirement of an external CT scanner or PET scanner with transmission source. The method was evaluated on a prototype 3T MR-BrainPET produced by Siemens Healthcare GmbH, both with phantom studies and with true emission images from patient/volunteer examinations. Furthermore, the count rate stability of the PET scanner and the x-ray properties of the Tx/Rx head coil were investigated. Even without energy extrapolation from the two dominant γ energies of 176Lu to 511 keV, the presented method for attenuation correction, based on the measurement of 176Lu background attenuation, shows slightly better performance than the coil attenuation correction currently used. The coil attenuation correction currently used is based on an external transmission scan with rotating 68Ge sources acquired on a Siemens ECAT HR + PET scanner. However, the main advantage of the presented approach is its straightforwardness and ready availability without the need for additional accessories.
1989-07-31
may be expressed as a combination of geometrical spreading and anelastic attenuation as, A = e -a I rn where: A = attenuation as a function of...of the source parameter estimates. Similar consistent results are obtained for the vertical component records. 26 . E .- .0 ~ Ub C>2 a) o 0~ M- PC oa -0...U - V9suu) apl)dr F.p LO. ______ ___2 - a. 4) 440 44~ 0 A* 0 4-4 0 uu 14 E 0. 0 w a- .6aa w ad 0 IV E E 28 UCZ 40 F.) o .*L 101 V- z Z. Ica 29 0 Long
Neves, Ben-Hur; Menezes, Jefferson; Souza, Mauren Assis; Mello-Carpes, Pâmela B
2015-12-01
It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.
NASA Astrophysics Data System (ADS)
Rivett, Michael O.; Wealthall, Gary P.; Dearden, Rachel A.; McAlary, Todd A.
2011-04-01
Reliable prediction of the unsaturated zone transport and attenuation of dissolved-phase VOC (volatile organic compound) plumes leached from shallow source zones is a complex, multi-process, environmental problem. It is an important problem as sources, which include solid-waste landfills, aqueous-phase liquid discharge lagoons and NAPL releases partially penetrating the unsaturated zone, may persist for decades. Natural attenuation processes operating in the unsaturated zone that, uniquely for VOCs includes volatilisation, may, however, serve to protect underlying groundwater and potentially reduce the need for expensive remedial actions. Review of the literature indicates that only a few studies have focused upon the overall leached VOC source and plume scenario as a whole. These are mostly modelling studies that often involve high strength, non-aqueous phase liquid (NAPL) sources for which density-induced and diffusive vapour transport is significant. Occasional dissolved-phase aromatic hydrocarbon controlled infiltration field studies also exist. Despite this lack of focus on the overall problem, a wide range of process-based unsaturated zone — VOC research has been conducted that may be collated to build good conceptual model understanding of the scenario, particularly for the much studied aromatic hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs). In general, the former group is likely to be attenuated in the unsaturated zone due to their ready aerobic biodegradation, albeit with rate variability across the literature, whereas the fate of the latter is far less likely to be dominated by a single mechanism and dependent upon the relative importance of the various attenuation processes within individual site — VOC scenarios. Analytical and numerical modelling tools permit effective process representation of the whole scenario, albeit with potential for inclusion of additional processes — e.g., multi-mechanistic sorption phase partitioning, and provide good opportunity for further sensitivity analysis and development to practitioner use. There remains a significant need to obtain intermediate laboratory-scale and particularly field-scale (actual site and controlled release) datasets that address the scenario as a whole and permit validation of the available models. Integrated assessment of the range of simultaneous processes that combine to influence leached plume generation, transport and attenuation in the unsaturated zone is required. Component process research needs are required across the problem scenario and include: the simultaneous volatilisation and dissolution of source zones; development of appropriate field-scale dispersion estimates for the unsaturated zone; assessment of transient VOC exchanges between aqueous, vapour and sorbed phases and their influence upon plume attenuation; development of improved field methods to recognise and quantify biodegradation of CAHs; establishment of the influence of co-contaminants; and, finally, translation of research findings into more robust practitioner practice.
Accoustic waveform logging--Advances in theory and application
Paillet, F.L.; Cheng, C.H.; Pennington , W.D.
1992-01-01
Full-waveform acoustic logging has made significant advances in both theory and application in recent years, and these advances have greatly increased the capability of log analysts to measure the physical properties of formations. Advances in theory provide the analytical tools required to understand the properties of measured seismic waves, and to relate those properties to such quantities as shear and compressional velocity and attenuation, and primary and fracture porosity and permeability of potential reservoir rocks. The theory demonstrates that all parts of recorded waveforms are related to various modes of propagation, even in the case of dipole and quadrupole source logging. However, the theory also indicates that these mode properties can be used to design velocity and attenuation picking schemes, and shows how source frequency spectra can be selected to optimize results in specific applications. Synthetic microseismogram computations are an effective tool in waveform interpretation theory; they demonstrate how shear arrival picks and mode attenuation can be used to compute shear velocity and intrinsic attenuation, and formation permeability for monopole, dipole and quadrupole sources. Array processing of multi-receiver data offers the opportunity to apply even more sophisticated analysis techniques. Synthetic microseismogram data is used to illustrate the application of the maximum-likelihood method, semblance cross-correlation, and Prony's method analysis techniques to determine seismic velocities and attenuations. The interpretation of acoustic waveform logs is illustrated by reviews of various practical applications, including synthetic seismogram generation, lithology determination, estimation of geomechanical properties in situ, permeability estimation, and design of hydraulic fracture operations.
Restoring primacy in amnesic free recall: evidence for the recency theory of primacy.
Dewar, Michaela; Brown, Gordon D A; Della Sala, Sergio
2011-09-01
Primacy and recency effects at immediate recall are thought to reflect the independent functioning of a long-term memory store (primacy) and a short-term memory store (recency). Key evidence for this theory comes from amnesic patients who show severe long-term memory storage deficits, coupled with profoundly attenuated primacy. Here we challenge this dominant dual-store theory of immediate recall by demonstrating that attenuated primacy in amnesic patients can reflect abnormal working memory rehearsal processes. D.A., a patient with severe amnesia, presented with profoundly attenuated primacy when using her preferred atypical noncumulative rehearsal strategy. In contrast, despite her severe amnesia, she showed normal primacy when her rehearsal was matched with that of controls via an externalized cumulative rehearsal schedule. Our data are in keeping with the "recency theory of primacy" and suggest that primacy at immediate recall is dependent upon medial temporal lobe involvement in cumulative rehearsal rather than long-term memory storage.
Drug and tobacco detection using neutron transmission/attenuation
NASA Astrophysics Data System (ADS)
Miller, Thomas G.
1994-10-01
A neutron transmission/attenuation spectrometer has been used to obtain the neutron attenuation signature of cocaine, heroin, hashish, methamphetamine, pipe tobacco and chewing tobacco. A pulsed `white neutron' source was created by bombarding a thick beryllium target with a 5 MeV pulsed deuteron beam. The neutron intensity was measured from about 0.75 MeV to about 4 MeV with the suitcase in and out of the neutron beam to determine the neutron attenuation. Experiments were performed for drugs and tobacco alone and when imbedded in an `average suitcase'. The experimentally determined neutron attenuation curves were used to determine the atomic ratios C/O, N/O, and H/C through the samples using measured neutron cross sections.
Frequency-dependent Lg-wave attenuation in northern Morocco
NASA Astrophysics Data System (ADS)
Noriega, Raquel; Ugalde, Arantza; Villaseñor, Antonio; Harnafi, Mimoun
2015-11-01
Frequency-dependent attenuation (Q- 1) in the crust of northern Morocco is estimated from Lg-wave spectral amplitude measurements every quarter octave in the frequency band 0.8 to 8 Hz. This study takes advantage of the improved broadband data coverage in the region provided by the deployment of the IberArray seismic network. Earthquake data consist of 71 crustal events with magnitudes 4 ≤ mb ≤ 5.5 recorded on 110 permanent and temporary seismic stations between January 2008 and December 2013 with hypocentral distances between 100 and 900 km. 1274 high-quality Lg waveforms provide dense path coverage of northern Morocco, crossing a region with a complex structure and heterogeneous tectonic setting as a result of continuous interactions between the African and Eurasian plates. We use two different methods: the coda normalization (CN) analysis, that allows removal of the source and site effects from the Lg spectra, and the spectral amplitude decay (SAD) method, that simultaneously inverts for source, site, and path attenuation terms. The CN and SAD methods return similar results, indicating that the Lg Q models are robust to differences in the methodologies. Larger errors and no significant frequency dependence are observed for frequencies lower than 1.5 Hz. For distances up to 400 km and the frequency band 1.5 ≤ ƒ (Hz) ≤ 4.5, the model functions Q(f) = (529- 22+ 23)(f/1.5)0.23 ± 0.06 and Q(f) = (457- 7+ 7)(f/1.5)0.44 ± 0.02 are obtained using the CN and SAD methods, respectively. A change in the frequency dependence is observed above 4.5 Hz for both methods which may be related to the influence of the Sn energy on the Lg window. The frequency-dependent Q- 1 estimates represent an average attenuation beneath a broad region including the Rif and Tell mountains, the Moroccan and Algerian mesetas, the Atlas Mountains and the Sahara Platform structural domains, and correlate well with areas of moderate seismicity where intermediate Q values have been obtained.
USSR and Eastern Europe Scientific Abstracts No. 75
1977-08-17
source] The antigenic identity of attenuated tick-borne encephalitis (TBE) and Langat virus variatns with their initial parental strains was...established by means of a complex of sensitive serological reactions. The immunogenic activity of one of the most attenuated variants of the Langat virus, Tp
Temporal and frequency characteristics of a narrow light beam in sea water.
Luchinin, Alexander G; Kirillin, Mikhail Yu
2016-09-20
The structure of a light field in sea water excited by a unidirectional point-sized pulsed source is studied by Monte Carlo technique. The pulse shape registered at the distances up to 120 m from the source on the beam axis and in its axial region is calculated with a time resolution of 1 ps. It is shown that with the increase of the distance from the source the pulse splits into two parts formed by components of various scattering orders. Frequency and phase responses of the beam are calculated by means of the fast Fourier transform. It is also shown that for higher frequencies, the attenuation of harmonic components of the field is larger. In the range of parameters corresponding to pulse splitting on the beam axis, the attenuation of harmonic components in particular spectral ranges exceeds the attenuation predicted by Bouguer law. In this case, the transverse distribution of the amplitudes of these harmonics is minimal on the beam axis.
Mollet, Pieter; Keereman, Vincent; Bini, Jason; Izquierdo-Garcia, David; Fayad, Zahi A; Vandenberghe, Stefaan
2014-02-01
Quantitative PET imaging relies on accurate attenuation correction. Recently, there has been growing interest in combining state-of-the-art PET systems with MR imaging in a sequential or fully integrated setup. As CT becomes unavailable for these systems, an alternative approach to the CT-based reconstruction of attenuation coefficients (μ values) at 511 keV must be found. Deriving μ values directly from MR images is difficult because MR signals are related to the proton density and relaxation properties of tissue. Therefore, most research groups focus on segmentation or atlas registration techniques. Although studies have shown that these methods provide viable solutions in particular applications, some major drawbacks limit their use in whole-body PET/MR. Previously, we used an annulus-shaped PET transmission source inside the field of view of a PET scanner to measure attenuation coefficients at 511 keV. In this work, we describe the use of this method in studies of patients with the sequential time-of-flight (TOF) PET/MR scanner installed at the Icahn School of Medicine at Mount Sinai, New York, NY. Five human PET/MR and CT datasets were acquired. The transmission-based attenuation correction method was compared with conventional CT-based attenuation correction and the 3-segment, MR-based attenuation correction available on the TOF PET/MR imaging scanner. The transmission-based method overcame most problems related to the MR-based technique, such as truncation artifacts of the arms, segmentation artifacts in the lungs, and imaging of cortical bone. Additionally, the TOF capabilities of the PET detectors allowed the simultaneous acquisition of transmission and emission data. Compared with the MR-based approach, the transmission-based method provided average improvements in PET quantification of 6.4%, 2.4%, and 18.7% in volumes of interest inside the lung, soft tissue, and bone tissue, respectively. In conclusion, a transmission-based technique with an annulus-shaped transmission source will be more accurate than a conventional MR-based technique for measuring attenuation coefficients at 511 keV in future whole-body PET/MR studies.
Ishizawa, Yoshiki; Dobashi, Suguru; Kadoya, Noriyuki; Ito, Kengo; Chiba, Takahito; Takayama, Yoshiki; Sato, Kiyokazu; Takeda, Ken
2018-05-17
An accurate source model of a medical linear accelerator is essential for Monte Carlo (MC) dose calculations. This study aims to propose an analytical photon source model based on particle transport in parameterized accelerator structures, focusing on a more realistic determination of linac photon spectra compared to existing approaches. We designed the primary and secondary photon sources based on the photons attenuated and scattered by a parameterized flattening filter. The primary photons were derived by attenuating bremsstrahlung photons based on the path length in the filter. Conversely, the secondary photons were derived from the decrement of the primary photons in the attenuation process. This design facilitates these sources to share the free parameters of the filter shape and be related to each other through the photon interaction in the filter. We introduced two other parameters of the primary photon source to describe the particle fluence in penumbral regions. All the parameters are optimized based on calculated dose curves in water using the pencil-beam-based algorithm. To verify the modeling accuracy, we compared the proposed model with the phase space data (PSD) of the Varian TrueBeam 6 and 15 MV accelerators in terms of the beam characteristics and the dose distributions. The EGS5 Monte Carlo code was used to calculate the dose distributions associated with the optimized model and reference PSD in a homogeneous water phantom and a heterogeneous lung phantom. We calculated the percentage of points passing 1D and 2D gamma analysis with 1%/1 mm criteria for the dose curves and lateral dose distributions, respectively. The optimized model accurately reproduced the spectral curves of the reference PSD both on- and off-axis. The depth dose and lateral dose profiles of the optimized model also showed good agreement with those of the reference PSD. The passing rates of the 1D gamma analysis with 1%/1 mm criteria between the model and PSD were 100% for 4 × 4, 10 × 10, and 20 × 20 cm 2 fields at multiple depths. For the 2D dose distributions calculated in the heterogeneous lung phantom, the 2D gamma pass rate was 100% for 6 and 15 MV beams. The model optimization time was less than 4 min. The proposed source model optimization process accurately produces photon fluence spectra from a linac using valid physical properties, without detailed knowledge of the geometry of the linac head, and with minimal optimization time. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Jia, Mingchun; Gong, Junjun; Xia, Wenming
2017-08-01
The linear attenuation coefficient, mass attenuation coefficient and mean free path of various Lead-Boron Polyethylene (PbBPE) samples which can be used as the photon shielding materials in marine reactor have been simulated using the Monte Carlo N-Particle (MCNP)-5 code. The MCNP simulation results are in good agreement with the XCOM values and the reported experimental data for source Cesium-137 and Cobalt-60. Thus, this method based on MCNP can be used to simulate the photon attenuation characteristics of various types of PbBPE materials.
Variable-Depth Liner Evaluation Using Two NASA Flow Ducts
NASA Technical Reports Server (NTRS)
Jones, M. G.; Nark, D. M.; Watson, W. R.; Howerton, B. M.
2017-01-01
Four liners are investigated experimentally via tests in the NASA Langley Grazing Flow Impedance Tube. These include an axially-segmented liner and three liners that use reordering of the chambers. Chamber reordering is shown to have a strong effect on the axial sound pressure level profiles, but a limited effect on the overall attenuation. It is also shown that bent chambers can be used to reduce the liner depth with minimal effects on the attenuation. A numerical study is also conducted to explore the effects of a planar and three higher-order mode sources based on the NASA Langley Curved Duct Test Rig geometry. A four-segment liner is designed using the NASA Langley CDL code with a Python-based optimizer. Five additional liner designs, four with rearrangements of the first liner segments and one with a redistribution of the individual chambers, are evaluated for each of the four sources. The liner configuration affects the sound pressure level profile much more than the attenuation spectra for the planar and first two higher-order mode sources, but has a much larger effect on the SPL profiles and attenuation spectra for the last higher-order mode source. Overall, axially variable-depth liners offer the potential to provide improved fan noise reduction, regardless of whether the axially variable depths are achieved via a distributed array of chambers (depths vary from chamber to chamber) or a group of zones (groups of chambers for which the depth is constant).
Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verst, C.
2015-10-12
The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a functionmore » of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.« less
High Attenuation Rate for Shallow, Small Earthquakes in Japan
NASA Astrophysics Data System (ADS)
Si, Hongjun; Koketsu, Kazuki; Miyake, Hiroe
2017-09-01
We compared the attenuation characteristics of peak ground accelerations (PGAs) and velocities (PGVs) of strong motion from shallow, small earthquakes that occurred in Japan with those predicted by the equations of Si and Midorikawa (J Struct Constr Eng 523:63-70, 1999). The observed PGAs and PGVs at stations far from the seismic source decayed more rapidly than the predicted ones. The same tendencies have been reported for deep, moderate, and large earthquakes, but not for shallow, moderate, and large earthquakes. This indicates that the peak values of ground motion from shallow, small earthquakes attenuate more steeply than those from shallow, moderate or large earthquakes. To investigate the reason for this difference, we numerically simulated strong ground motion for point sources of M w 4 and 6 earthquakes using a 2D finite difference method. The analyses of the synthetic waveforms suggested that the above differences are caused by surface waves, which are predominant at stations far from the seismic source for shallow, moderate earthquakes but not for shallow, small earthquakes. Thus, although loss due to reflection at the boundaries of the discontinuous Earth structure occurs in all shallow earthquakes, the apparent attenuation rate for a moderate or large earthquake is essentially the same as that of body waves propagating in a homogeneous medium due to the dominance of surface waves.
Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K
2009-06-07
Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.
NASA Astrophysics Data System (ADS)
Xie, J.; Ni, S.; Chu, R.; Xia, Y.
2017-12-01
Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 second, especially in early days of global seismic network. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC/TS in southern California, USA as an example, the 26 s PL signal can be easily observed in the ambient Noise Cross-correlation Function (NCF) between GSC/TS and a remote station. The variation of travel-time of this 26 s signal in the NCF is used to infer clock error. A drastic clock error is detected during June, 1992. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of ±25 s. Using 26 s PL source, the clock can be validated for historical records of sparsely distributed stations, where usual NCF of short period microseism (<20 s) might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. The location change of the 26 s PL source may influence the measured clock drift, using regional stations with stable clock, we estimate the possible location change of the source.
Accuracy of assessing the level of impulse sound from distant sources.
Wszołek, Tadeusz; Kłaczyński, Maciej
2007-01-01
Impulse sound events are characterised by ultra high pressures and low frequencies. Lower frequency sounds are generally less attenuated over a given distance in the atmosphere than higher frequencies. Thus, impulse sounds can be heard over greater distances and will be more affected by the environment. To calculate a long-term average immission level it is necessary to apply weighting factors like the probability of the occurrence of each weather condition during the relevant time period. This means that when measuring impulse noise at a long distance it is necessary to follow environmental parameters in many points along the way sound travels and also to have a database of sound transfer functions in the long term. The paper analyses the uncertainty of immission measurement results of impulse sound from cladding and destroying explosive materials. The influence of environmental conditions on the way sound travels is the focus of this paper.
NASA Astrophysics Data System (ADS)
Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang
2017-12-01
The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.
Su, Qi; Li, Yang; Meng, Fanfeng; Cui, Zhizhong; Chang, Shuang; Zhao, Peng
2018-05-01
Inclusion body hepatitis-hydropericardium syndrome (IBH-HPS) induced by fowl adenovirus type 4 (FAdV-4) has caused huge economic losses to the poultry industry of China, but the source of infection for different flocks, especially flocks with high biological safety conditions, has remained unclear. This study tested the pathogenicity of Newcastle disease virus (NDV)-attenuated vaccine from a large-scale poultry farm in China where IBH-HPS had appeared with high mortality. Analysis revealed that the NDV-attenuated vaccine in use from the abovementioned poultry farm was simultaneously contaminated with FAdV-4 and chicken infectious anemia virus (CIAV). The FAdV and CIAV isolated from the vaccine were purified for the artificial preparation of an NDV-attenuated vaccine singly contaminated with FAdV or CIAV, or simultaneously contaminated with both of them. Seven-day-old specific pathogen-free chicks were inoculated with the artificially prepared contaminated vaccines and tested for corresponding indices. The experiments showed that no hydropericardium syndrome (HPS) and corresponding death occurred after administering the NDV-attenuated vaccine singly contaminated with FAdV or CIAV, but a mortality of 75% with IBH-HPS was commonly found in birds after administering the NDV-attenuated vaccine co-contaminated with FAdV and CIAV. In conclusion, this study found the co-contamination of FAdV-4 and CIAV in the same attenuated vaccine and confirmed that such a contaminated attenuated vaccine was a significant source of infection for outbreaks of IBH-HPS in some flocks. Copyright © 2018 Elsevier B.V. All rights reserved.
A finite element simulation of sound attenuation in a finite duct with a peripherally variable liner
NASA Technical Reports Server (NTRS)
Watson, W. R.
1977-01-01
Using multimodal analysis, a variational finite element method is presented for analyzing sound attenuation in a three-dimensional finite duct with a peripherally variable liner in the absence of flow. A rectangular element, with cubic shaped functions, is employed. Once a small portion of a peripheral liner is removed, the attenuation rate near the frequency where maximum attenuation occurs drops significantly. The positioning of the liner segments affects the attenuation characteristics of the liner. Effects of the duct termination are important in the low frequency ranges. The main effect of peripheral variation of the liner is a broadening of the attenuation characteristics in the midfrequency range. Because of matrix size limitations of the presently available computer program, the eigenvalue equations should be solved out of core in order to handle realistic sources.
Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.
2016-01-01
Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.
NASA Astrophysics Data System (ADS)
Rogers, A. M.; Harmsen, S. C.; Herrmann, R. B.; Meremonte, M. E.
1987-04-01
As a first step in the assessment of the earthquake hazard in the southern Great Basin of Nevada-California, this study evaluates the attenuation of peak vertical ground motions using a number of different regression models applied to unfiltered and band-pass-filtered ground motion data. These data are concentrated in the distance range 10-250 km. The regression models include parameters to account for geometric spreading, anelastic attenuation with a power law frequency dependence, source size, and station site effects. We find that the data are most consistent with an essentially frequency-independent Q and a geometric spreading coefficient less than 1.0. Regressions are also performed on vertical component peak amplitudes reexpressed as pseudo-Wood-Anderson peak amplitude estimates (PWA), permitting comparison with earlier work that used Wood-Anderson (WA) data from California. Both of these results show that Q values in this region are high relative to California, having values in the range 700-900 over the frequency band 1-10 Hz. Comparison of ML magnitudes from stations BRK and PAS for earthquakes in the southern Great Basin shows that these two stations report magnitudes with differences that are distance dependent. This bias suggests that the Richter log A0 curve appropriate to California is too steep for earthquakes occurring in southern Nevada, a result implicitly supporting our finding that Q values are higher than those in California. The PWA attenuation functions derived from our data also indicate that local magnitudes reported by California observatories for earthquakes in this region may be overestimated by as much as 0.8 magnitude units in some cases. Both of these results will have an effect on the assessment of the earthquake hazard in this region. The robustness of our regression technique to extract the correct geometric spreading coefficient n and anelastic attenuation Q is tested by applying the technique to simulated data computed with given n and Q values. Using a stochastic modeling technique, we generate suites of seismograms for the distance range 10-200 km and for both WA and short-period vertical component seismometers. Regressions on the peak amplitudes from these records show that our regression model extracts values of n and Q approximately equal to the input values for either low-Q California attenuation or high-Q southern Nevada attenuation. Regressions on stochastically modeled WA and PWA amplitudes also provides a method of evaluating differences in magnitudes from WA and PWA amplitudes due to recording instrument response characteristics alone. These results indicate a difference between MLWA and MLPWA equal to 0.15 magnitude units, which we term the residual instrument correction. In contrast to the peak amplitude results, coda Q determinations using the single scatterer theory indicate that Qc values are dependent on source type and are proportional to ƒp, where p = 0.8 to 1.0. This result suggests that a difference exists between attenuation mechanisms for direct waves and backscattered waves in this region.
Glick, S J; Hawkins, W G; King, M A; Penney, B C; Soares, E J; Byrne, C L
1992-01-01
The application of stationary restoration techniques to SPECT images assumes that the modulation transfer function (MTF) of the imaging system is shift invariant. It was hypothesized that using intrinsic attenuation correction (i.e., methods which explicitly invert the exponential radon transform) would yield a three-dimensional (3-D) MTF which varies less with position within the transverse slices than the combined conjugate view two-dimensional (2-D) MTF varies with depth. Thus the assumption of shift invariance would become less of an approximation for 3-D post- than for 2-D pre-reconstruction restoration filtering. SPECT acquisitions were obtained from point sources located at various positions in three differently shaped, water-filled phantoms. The data were reconstructed with intrinsic attenuation correction, and 3-D MTFs were calculated. Four different intrinsic attenuation correction methods were compared: (1) exponentially weighted backprojection, (2) a modified exponentially weighted backprojection as described by Tanaka et al. [Phys. Med. Biol. 29, 1489-1500 (1984)], (3) a Fourier domain technique as described by Bellini et al. [IEEE Trans. ASSP 27, 213-218 (1979)], and (4) the circular harmonic transform (CHT) method as described by Hawkins et al. [IEEE Trans. Med. Imag. 7, 135-148 (1988)]. The dependence of the 3-D MTF obtained with these methods, on point source location within an attenuator, and on shape of the attenuator, was studied. These 3-D MTFs were compared to: (1) those MTFs obtained with no attenuation correction, and (2) the depth dependence of the arithmetic mean combined conjugate view 2-D MTFs.(ABSTRACT TRUNCATED AT 250 WORDS)
Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones
Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.
2014-01-01
Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8 Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.
1985-05-01
Source level in decibels SBL Sub-bottom loss TL Transmission loss of signal going through the water/sediment interface -- 4 - • .’ I.. zL...explained in the legend to figure 3-1. ’-4 RLb - S-BL-2Oog2D-2aD (3.1) RL8b S- TLb- SBL -TLW-2az-2Olog(D+z)-2aD (3.2) jZ h -57- OCEAN SURFACE...RLb -RLab= SBL + [TL,+TL,-BL-201og2D" + 2az + 20log(D+z). (3.3) Assuming that the term within the bracket remains constant for the entire wedge, we
Ueguchi, Takashi; Ogihara, Ryota; Yamada, Sachiko
2018-03-21
To investigate the accuracy of dual-energy virtual monochromatic computed tomography (CT) numbers obtained by two typical hardware and software implementations: the single-source projection-based method and the dual-source image-based method. A phantom with different tissue equivalent inserts was scanned with both single-source and dual-source scanners. A fast kVp-switching feature was used on the single-source scanner, whereas a tin filter was used on the dual-source scanner. Virtual monochromatic CT images of the phantom at energy levels of 60, 100, and 140 keV were obtained by both projection-based (on the single-source scanner) and image-based (on the dual-source scanner) methods. The accuracy of virtual monochromatic CT numbers for all inserts was assessed by comparing measured values to their corresponding true values. Linear regression analysis was performed to evaluate the dependency of measured CT numbers on tissue attenuation, method, and their interaction. Root mean square values of systematic error over all inserts at 60, 100, and 140 keV were approximately 53, 21, and 29 Hounsfield unit (HU) with the single-source projection-based method, and 46, 7, and 6 HU with the dual-source image-based method, respectively. Linear regression analysis revealed that the interaction between the attenuation and the method had a statistically significant effect on the measured CT numbers at 100 and 140 keV. There were attenuation-, method-, and energy level-dependent systematic errors in the measured virtual monochromatic CT numbers. CT number reproducibility was comparable between the two scanners, and CT numbers had better accuracy with the dual-source image-based method at 100 and 140 keV. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Derycke, Virginie; Coftier, Aline; Zornig, Clément; Léprond, Hubert; Scamps, Mathilde; Gilbert, Dominique
2018-06-01
One of the goals of the French national campaign called "Etablissements Sensibles (Sensitive Establishments)" is to evaluate indoor air degradation in schools because of vapor intrusion of volatile compounds from soil gases towards the indoor air, related to the presence of former industrial sites on or near the establishment. During this campaign, as recommended by the United States of Environmental Protection Agency (US EPA), indoor air quality was evaluated from soil gas concentrations using generic attenuation factors, and extra investigations into soil gases and indoor air were performed when the estimated values exceeded target indoor air concentrations. This study exploits matched data on subsurface soil gases and indoor air that came from the "Sensitive Establishments" campaign. It aims to consolidate and refine the use of attenuation factors as a function of environmental variables acquired routinely during environmental assessments. We have been able to select the measured environmental variables that have the most influence on vapor intrusion using Principal Components Analysis and hypotheses tests. Since the collected data are mainly related to weak sources (only 15% schools required risk management measures related to vapor intrusion), halogenated volatile organic compounds (HVOC) were selected as tracer compounds for vapor intrusion for this study. This choice enables the exclusion or minimization of background sources contributions. From the results we have calculated the descriptive statistics of the attenuation factors distribution for the subslab-to-indoor air pathway and refined the attenuation factors for this pathway through an easily obtained parameter, building age. Qualitative comparison of attenuation factors according to the building age shows that attenuation factors observed for building less than 50 years are lower than attenuation factors for buildings 50 years old and above. These results show the utility of creating databases for consolidating and refining attenuation factors and therefore improving their use. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Attenuation and source properties at the Coso Geothermal area, California
Hough, S.E.; Lees, J.M.; Monastero, F.
1999-01-01
We use a multiple-empirical Green's function method to determine source properties of small (M -0.4 to 1.3) earthquakes and P- and S-wave attenuation at the Coso Geothermal Field, California. Source properties of a previously identified set of clustered events from the Coso geothermal region are first analyzed using an empirical Green's function (EGF) method. Stress-drop values of at least 0.5-1 MPa are inferred for all of the events; in many cases, the corner frequency is outside the usable bandwidth, and the stress drop can only be constrained as being higher than 3 MPa. P- and S-wave stress-drop estimates are identical to the resolution limits of the data. These results are indistinguishable from numerous EGF studies of M 2-5 earthquakes, suggesting a similarity in rupture processes that extends to events that are both tiny and induced, providing further support for Byerlee's Law. Whole-path Q estimates for P and S waves are determined using the multiple-empirical Green's function (MEGF) method of Hough (1997), whereby spectra from clusters of colocated events at a given station are inverted for a single attenuation parameter, ??, with source parameters constrained from EGF analysis. The ?? estimates, which we infer to be resolved to within 0.01 sec or better, exhibit almost as much scatter as a function of hypocentral distance as do values from previous single-spectrum studies for which much higher uncertainties in individual ?? estimates are expected. The variability in ?? estimates determined here therefore suggests real lateral variability in Q structure. Although the ray-path coverage is too sparse to yield a complete three-dimensional attenuation tomographic image, we invert the inferred ?? value for three-dimensional structure using a damped least-squares method, and the results do reveal significant lateral variability in Q structure. The inferred attenuation variability corresponds to the heat-flow variations within the geothermal region. A central low-Q region corresponds well with the central high-heat flow region; additional detailed structure is also suggested.
We investigated the geophysical response to subsurface hydrocarbon contamination source removal. Source removal by natural attenuation or by engineered bioremediation is expected to change the biological, chemical, and physical environment associated with the contaminated matrix....
NASA Astrophysics Data System (ADS)
Walsh, Braden; Jolly, Arthur; Procter, Jonathan
2017-04-01
Using active seismic sources on Tongariro Volcano, New Zealand, the amplitude source location (ASL) method is calibrated and optimized through a series of sensitivity tests. By applying a geologic medium velocity of 1500 m/s and an attenuation value of Q=60 for surface waves along with amplification factors computed from regional earthquakes, the ASL produced location discrepancies larger than 1.0 km horizontally and up to 0.5 km in depth. Through the use of sensitivity tests on input parameters, we show that velocity and attenuation models have moderate to strong influences on the location results, but can be easily constrained. Changes in locations are accommodated through either lateral or depth movements. Station corrections (amplification factors) and station geometry strongly affect the ASL locations laterally, horizontally and in depth. Calibrating the amplification factors through the exploitation of the active seismic source events reduced location errors for the sources by up to 50%.
Comparison of W-VC-C composites against Co-60, Se-75 and Sb-125 for gamma radioisotope sources
NASA Astrophysics Data System (ADS)
Demir, Ertugrul; Tugrul, A. Beril; Buyuk, Bulent; Yilmaz, Ozan; Ovecoglu, Lutfi
2018-02-01
Tungsten based materials are considered to be the promising materials for nuclear applications due to the good properties. The tungsten composite materials have so many advantages in nuclear technological applications especially fusion reactor systems. In this paper, Tungsten-Vanadium carbide-Graphite (W-VC-C) which include 93% tungsten (W), 6% vanadium carbide (VC) and 1% graphite (C) also which has three different alloying time (6-12-24 hours) were produced by mechanical alloying method. Co-60, Se-75 and Sb-125 gamma radioisotopeswere used as a gamma sources in order to determine behavior of gamma attenuation properties of the composite materials. The experimental results were compared with each other to clarify effects of varying gamma energies on the tungsten based composite materials. The mass attenuation coefficients of the samples were obtained by using XCOM computer code and compared with experimental data. The gamma linear attenuation, the mass attenuation coefficients and half value thickness (HVL) of the samples were evaluated and compared with Co-60, Se-75 and Sb-125 for gamma radioisotopes. Results showed that gamma attenuation coefficients of the samples depend on gamma energies and mechanical alloying time has negatively effect on the gamma shielding properties for the all studied W-VC-C.
Amplification and Attenuation Across USArray Using Ambient Noise Wavefront Tracking
NASA Astrophysics Data System (ADS)
Bowden, Daniel C.; Tsai, Victor C.; Lin, Fan-Chi
2017-12-01
As seismic traveltime tomography continues to be refined using data from the vast USArray data set, it is advantageous to also exploit the amplitude information carried by seismic waves. We use ambient noise cross correlation to make observations of surface wave amplification and attenuation at shorter periods (8-32 s) than can be observed with only traditional teleseismic earthquake sources. We show that the wavefront tracking approach can be successfully applied to ambient noise correlations, yielding results quite similar to those from earthquake observations at periods of overlap. This consistency indicates that the wavefront tracking approach is viable for use with ambient noise correlations, despite concerns of the inhomogeneous and unknown distribution of noise sources. The resulting amplification and attenuation maps correlate well with known tectonic and crustal structure; at the shortest periods, our amplification and attenuation maps correlate well with surface geology and known sedimentary basins, while our longest period amplitudes are controlled by crustal thickness and begin to probe upper mantle materials. These amplification and attenuation observations are sensitive to crustal materials in different ways than traveltime observations and may be used to better constrain temperature or density variations. We also value them as an independent means of describing the lateral variability of observed Rayleigh wave amplitudes without the need for 3-D tomographic inversions.
LINES OF EVIDENCE FOR NA FOR ORGANIC COMPOUNDS AND THE USE OF COMPOUND SPECIFIC ISOTOPE ANALYSIS
The strongest line of evidence is a reduction in concentration over time. However, this only provides evidence of natural attenuation of the source area. It is difficult to determine the rate of natural attenuation through biodegradation with distance along a flow path in the a...
NASA Technical Reports Server (NTRS)
Kuzin, Alexander V.; Holmes, Michael L.; Behrouzjou, Roxana; Trumper, David L.
1994-01-01
The results of the analysis of the achievable disturbance attenuation to get an Angstrom motion control resolution and macroscopic travel in a precision magnetically-suspended motion control system are presented in this paper. Noise sources in the transducers, electronics, and mechanical vibrations are used to develop the control design.
Rollover of Apparent Wave Attenuation in Ice Covered Seas
NASA Astrophysics Data System (ADS)
Li, Jingkai; Kohout, Alison L.; Doble, Martin J.; Wadhams, Peter; Guan, Changlong; Shen, Hayley H.
2017-11-01
Wave attenuation from two field experiments in the ice-covered Southern Ocean is examined. Instead of monotonically increasing with shorter waves, the measured apparent attenuation rate peaks at an intermediate wave period. This "rollover" phenomenon has been postulated as the result of wind input and nonlinear energy transfer between wave frequencies. Using WAVEWATCH III®, we first validate the model results with available buoy data, then use the model data to analyze the apparent wave attenuation. With the choice of source parameterizations used in this study, it is shown that rollover of the apparent attenuation exists when wind input and nonlinear transfer are present, independent of the different wave attenuation models used. The period of rollover increases with increasing distance between buoys. Furthermore, the apparent attenuation for shorter waves drops with increasing separation between buoys or increasing wind input. These phenomena are direct consequences of the wind input and nonlinear energy transfer, which offset the damping caused by the intervening ice.
NASA Astrophysics Data System (ADS)
Cozzarelli, I. M.; Esaid, H. I.; Bekins, B. A.; Eganhouse, R. P.; Baedecker, M.
2002-05-01
Assessment of natural attenuation as a remedial option requires understanding the long-term fate of contaminant compounds. The development of correct conceptual models of biodegradation requires observations at spatial and temporal scales appropriate for the reactions being measured. For example, the availability of electron acceptors such as solid-phase iron oxides may vary at the cm scale due to aquifer heterogeneities. Characterizing the distribution of these oxides may require small-scale measurements over time scales of tens of years in order to assess their impact on the fate of contaminants. The long-term study of natural attenuation of hydrocarbons in a contaminant plume near Bemidji, MN provides insight into how natural attenuation of hydrocarbons evolves over time. The sandy glacial-outwash aquifer at this USGS Toxic Substances Hydrology research site was contaminated by crude oil in 1979. During the 16 years that data have been collected the shape and extent of the contaminant plume changed as redox reactions, most notably iron reduction, progressed over time. Investigation of the controlling microbial reactions in this system required a systematic and multi-scaled approach. Early indications of plume shrinkage were observed over a time scale of a few years, based on observation well data. These changes were associated with iron reduction near the crude-oil source. The depletion of Fe (III) oxides near the contaminant source caused the dissolved iron concentrations to increase and spread downgradient at a rate of approximately 3 m/year. The zone of maximum benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations has also spread within the anoxic plume. Subsequent analyses of sediment and water, collected at small-scale cm intervals from cores in the contaminant plume, provided insight into the evolution of redox zones at smaller scales. Contaminants, such as ortho-xylene, that appeared to be contained near the oil source based on the larger-scale observation well data, were observed to be migrating in thin layers as the aquifer evolved to methanogenic conditions in narrow zones. The impact of adequately identifying the microbially mediated redox reactions was illustrated with a novel inverse modeling effort (using both the USGS solute transport and biodegradation code BIOMOC and the USGS universal inverse modeling code UCODE) to quantify field-scale hydrocarbon dissolution and biodegradation at the Bemidji site. Extensive historical data compiled at the Bemidji site were used, including 1352 concentration observations from 30 wells and 66 core sections. The simulations reproduced the general large-scale evolution of the plume, but the percent BTEX mass removed from the oil body after 18 years varied significantly, depending on which biodegradation conceptual model was used. The best fit was obtained for the iron-reduction conceptual model, which incorporated the finite availability of Fe (III) in the aquifer and reproduced the field observation that depletion of solid-phase iron resulted in increased downgradient transport of BTEX compounds. The predicted benzene plume 50 years after the spill showed significantly higher concentrations of benzene for the iron-reduction model compared to other conceptual models tested. This study demonstrates that the long-term sustainability of the electron acceptors is key to predicting the ultimate fate of the hydrocarbons. Assessing this evolution of redox processes and developing an adequate conceptual model required observations on multiple spatial scales over the course of many years.
Ultrasonic Studies of Composites Undergoing Thermal and Fatigue Loading
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Winfree, William P.; Johnston, Patrick H.
1997-01-01
New composite materials possess attractive properties for use in advanced aircraft. A necessary requirement for their introduction into aeronautic use is an accurate understanding of their long term aging processes so that proper design criteria can be established. In order to understand those properties, these composites must be exposed to thermal and load cycles that are characteristic of flight conditions. Additionally, airline companies will require nondestructive evaluation (NDE) methods that can be used in the field to assess the condition of these new materials as they age. As part of an effort to obtain the required information about new composites for aviation use, we are performing ultrasonic measurements both in the NDE laboratory and in the materials testing laboratory at NASA. The materials testing laboratory is equipped with environmental chambers mounted on load frames so that composite samples can be exposed to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This study reports on our initial ultrasonic attenuation results from thermoset and thermoplastic composite samples. Ultrasonic attenuation measurements have been used reliably to assess the effects of material degradation. For example, recently, researchers have shown that by using frequencies of ultrasound on the order of 24 MHz, they could obtain adequate contrast in the evaluation of thermal degradation in these composites. This paper will present data that shows results at a lower frequency range. In addition, we report results on the frequency dependence of attenuation as the slope of attenuation with respect to frequency, beta = delta alpha (f) / delta f. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation measurements. This is a consequence of the assumption that interface correction terms are frequently independent. Uncertainty in those corrections terms compromises the value of conventional quantitative attenuation data.
Fermi Large Area Telescope Constraints On The Gamma-Ray Opacity Of The Universe
Abdo, A. A.
2010-10-19
The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the γ-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of γ-ray blazars with redshift up to z ~ 3, and GRBs with redshift up to z ~ 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for thesemore » sources, we investigate the effect of γ-ray flux attenuation by the EBL. We place upper limits on the γ-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. can be ruled out with high confidence.« less
Shen, Xiaohan; Lu, Zonghuan; Timalsina, Yukta P; Lu, Toh-Ming; Washington, Morris; Yamaguchi, Masashi
2018-05-04
We experimentally demonstrated a narrowband acoustic phonon source with simultaneous tunabilities of the centre frequency and the spectral bandwidth in the GHz-sub THz frequency range based on photoacoustic excitation using intensity-modulated optical pulses. The centre frequency and bandwidth are tunable from 65 to 381 GHz and 17 to 73 GHz, respectively. The dispersion of the sound velocity and the attenuation of acoustic phonons in silicon dioxide (SiO 2 ) and indium tin oxide (ITO) thin films were investigated using the acoustic phonon source. The sound velocities of SiO 2 and ITO films were frequency-independent in the measured frequency range. On the other hand, the phonon attenuations of both of SiO 2 and ITO films showed quadratic frequency dependences, and polycrystalline ITO showed several times larger attenuation than those in amorphous SiO 2 . In addition, the selective excitation of mechanical resonance modes was demonstrated in nanoscale tungsten (W) film using acoustic pulses with various centre frequencies and spectral widths.
Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site.
Lv, Hang; Su, Xiaosi; Wang, Yan; Dai, Zhenxue; Liu, Mingyao
2018-05-07
This study applied an integrated method for evaluating the effectiveness and mechanism of natural attenuation (NA) of petroleum-hydrocarbon contaminated groundwater. Site groundwater and soil samples were analysed to characterize spatial and temporal variations in petroleum hydrocarbons, geochemical indicators, microbial diversity and isotopes. The results showed that the area of petroleum hydrocarbon contamination plume decreased almost 60% in four years, indicating the presence of natural attenuation. The 14 C content and sequence analysis indicate that there are more relatively 'old' HCO 3 - that have been produced from petroleum hydrocarbons in the upgradient portion of the contaminated plume, confirming that intrinsic biodegradation was the major factor limiting spread of the contaminated plume. The main degradation mechanisms were identified as sulfate reduction and methanogenesis based on the following: (1) more SO 4 2- have been consumed in the contamination source than downgradient, and the δ 34 S values in the resident SO 4 2- were also more enriched in the contamination source, (2) production of more CH 4 in the contamination source with the δ 13 C values for CH 4 was much lower than that of CO 2 , and the fractionation factor was 1.030-1.046. The results of this study provide significant insight for applying natural attenuation and enhanced bioremediation as alternative options for remediation of petroleum-hydrocarbon contaminated sites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lateral Attenuation of Aircraft Flight Noise.
1985-03-01
levels with elevation angle. Comparisons of different Imodels are made in terms of the differences in A - levels for a flyover with the observer directly...attenuation adjustment to be applied to the basic noise data is the same when applied to maximum levels (maximum A - levels for example) or to integrated...attenuation values were applied to sets of one-third octave band spectra for different aircraft The resulting differences in A - levels for these noise spectra
Investigation of photon attenuation coefficient of some building materials used in Turkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogan, B.; Altinsoy, N.
In this study, some building materials regularly used in Turkey, such as concrete, gas concrete, pumice and brick have been investigated in terms of mass attenuation coefficient at different gamma-ray energies. Measurements were carried out by gamma spectrometry containing NaI(Tl) detector. Narrow beam gamma-ray transmission geometry was used for the attenuation measurements. The results are in good agreement with the theoretical calculation of XCOM code.
Yield Determination of Underground and Near Surface Explosions
NASA Astrophysics Data System (ADS)
Pasyanos, M.
2015-12-01
As seismic coverage of the earth's surface continues to improve, we are faced with signals from a wide variety of explosions from various sources ranging from oil train and ordnance explosions to military and terrorist attacks, as well as underground nuclear tests. We present on a method for determining the yield of underground and near surface explosions, which should be applicable for many of these. We first review the regional envelope method that was developed for underground explosions (Pasyanos et al., 2012) and more recently modified for near surface explosions (Pasyanos and Ford, 2015). The technique models the waveform envelope templates as a product of source, propagation (geometrical spreading and attenuation), and site terms, while near surface explosions include an additional surface effect. Yields and depths are determined by comparing the observed envelopes to the templates and minimizing the misfit. We then apply the method to nuclear and chemical explosions for a range of yields, depths, and distances. We will review some results from previous work, and show new examples from ordnance explosions in Scandinavia, nuclear explosions in Eurasia, and chemical explosions in Nevada associated with the Source Physics Experiments (SPE).
The electromagnetic radiation from simple sources in the presence of a homogeneous dielectric sphere
NASA Technical Reports Server (NTRS)
Mason, V. B.
1973-01-01
In this research, the effect of a homogeneous dielectric sphere on the electromagnetic radiation from simple sources is treated as a boundary value problem, and the solution is obtained by the technique of dyadic Green's functions. Exact representations of the electric fields in the various regions due to a source located inside, outside, or on the surface of a dielectric sphere are formulated. Particular attention is given to the effect of sphere size, source location, dielectric constant, and dielectric loss on the radiation patterns and directivity of small spheres (less than 5 wavelengths in diameter) using the Huygens' source excitation. The computed results are found to closely agree with those measured for waveguide-excited plexiglas spheres. Radiation patterns for an extended Huygens' source and for curved electric dipoles located on the sphere's surface are also presented. The resonance phenomenon associated with the dielectric sphere is studied in terms of the modal representation of the radiated fields. It is found that when the sphere is excited at certain frequencies, much of the energy is radiated into the sidelobes. The addition of a moderate amount of dielectric loss, however, quickly attenuates this resonance effect. A computer program which may be used to calculate the directivity and radiation pattern of a Huygens' source located inside or on the surface of a lossy dielectric sphere is listed.
NASA Astrophysics Data System (ADS)
Dujardin, Alain; Courboulex, Françoise; Causse, Matthieu; Traversa, Paola; Monfret, Tony
2013-04-01
Ground motion decay with distance presents a clear magnitude dependence, PGA values of small events decreasing faster than those of larger events. This observation is now widely accepted and often taken into account in recent ground motion prediction equations (Anderson 2005, Akkar & Bommer 2010). The aim of this study is to investigate the origin of this dependence, which has not been clearly identified yet. Two main hypotheses are considered. On one hand the difference of ground motion decay is related to an attenuation effect, on the other hand the difference is related to an effect of extended fault (Anderson 2000). To study the role of attenuation, we realized synthetic tests using the stochastic simulation program SMSIM from Boore (2005). We build a set of simulations from several magnitudes and epicentral distances, and observe that the decay in PGA values is strongly dependent on the spectral shape of the Fourier spectra, which in turn strongly depends on the attenuation factor (Q(f) or kappa). We found that, for a point source approximation and an infinite value of Q (no attenuation) there is no difference between small and large events and that this difference increases when Q decreases. Theses results show that the influence of attenuation on spectral shape is different for earthquakes of different magnitude. In fact the influence of attenuation, which is more important at higher frequency, is larger for small earthquakes, whose Fourier acceleration spectrum has predominantly higher frequencies. We then study the effect of extended source using complete waveform simulations in a 1D model. We find that when the duration of the source time function increases, there is a larger probability to obtain large PGA values at equivalent distances. This effect could also play an important role in the PGA decay with magnitude and distance. Finally we compare these results with real datasets from the Japanese accelerometric network KIK-net.
Leib, Kenneth J.; Mast, M. Alisa; Wright, Winfield G.
2003-01-01
One of the important types of information needed to characterize water quality in streams affected by historical mining is the seasonal pattern of toxic trace-metal concentrations and loads. Seasonal patterns in water quality are estimated in this report using a technique called water-quality profiling. Water-quality profiling allows land managers and scientists to assess priority areas to be targeted for characterization and(or) remediation by quantifying the timing and magnitude of contaminant occurrence. Streamflow and water-quality data collected at 15 sites in the upper Animas River Basin during water years 1991?99 were used to develop water-quality profiles. Data collected at each sampling site were used to develop ordinary least-squares regression models for streamflow and constituent concentrations. Streamflow was estimated by correlating instantaneous streamflow measured at ungaged sites with continuous streamflow records from streamflow-gaging stations in the subbasin. Water-quality regression models were developed to estimate hardness and dissolved cadmium, copper, and zinc concentrations based on streamflow and seasonal terms. Results from the regression models were used to calculate water-quality profiles for streamflow, constituent concentrations, and loads. Quantification of cadmium, copper, and zinc loads in a stream segment in Mineral Creek (sites M27 to M34) was presented as an example application of water-quality profiling. The application used a method of mass accounting to quantify the portion of metal loading in the segment derived from uncharacterized sources during different seasonal periods. During May, uncharacterized sources contributed nearly 95 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 85 percent of the zinc load at M34. During September, uncharacterized sources contributed about 86 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 52 percent of the zinc load at M34. Characterized sources accounted for more of the loading gains estimated in the example reach during September, possibly indicating the presence of diffuse inputs during snowmelt runoff. The results indicate that metal sources in the upper Animas River Basin may change substantially with season, regardless of the source.
Plasma Parameters From Reentry Signal Attenuation
Statom, T. K.
2018-02-27
This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less
Plasma Parameters From Reentry Signal Attenuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Statom, T. K.
This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less
NASA Technical Reports Server (NTRS)
Madaras, Eric I.
1998-01-01
As part of an effort to obtain the required information about new composites for aviation use, materials and NDE researchers at NASA are jointly performing mechanical and NDE measurements on new composite materials. The materials testing laboratory at NASA is equipped with environmental chambers mounted on load frames that can expose composite materials to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This report highlights our initial ultrasonic attenuation results from thermoplastic composite samples that have undergone over 4000 flight cycles to date. Ultrasonic attenuation measurements are a standard method used to assess the effects of material degradation. Recently, researchers have shown that they could obtain adequate contrast in the evaluation of thermal degradation in thermoplastic composites by using frequencies of ultrasound on the order of 24 MHz. In this study, we address the relationship of attenuation measured at lower frequencies in thermoplastic composites undergoing both thermal and mechanical loading. We also compare these thermoplastic results with some data from thermoset composites undergoing similar protocols. The composite s attenuation is reported as the slope of attenuation with respect to frequency, defined as b = Da(f)/Df. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation measurements. This latter feature is a consequence of the assumption that interface correction terms are frequency independent. Uncertainty in those correction terms can compromise the value of conventional quantitative attenuation data. Furthermore, the slope of the attenuation more directly utilizes the bandwidth information and in addition, the bandwidth can be adjusted in the post processing stage to compensate for the loss of dynamic range of the signal as the composites age.
Harnish, Roy; Prevrhal, Sven; Alavi, Abass; Zaidi, Habib; Lang, Thomas F
2014-07-01
To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of (18)F-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom hip prosthesis phantom with a lesion-sized cavity filled with 0.2 ml (18)F-FDG solution having an activity of 3.367 MBq adjacent to a prosthesis bore was imaged twice with a chrome-cobalt steel hip prosthesis and a plastic replica, respectively. Scanning was performed on a clinical hybrid PET/CT system equipped with an additional external (137)Cs transmission source. PET emission images were reconstructed from both phantom configurations with CT-based attenuation correction (CTAC) and with CT-based attenuation correction using MAR (MARCTAC). To compare results with the attenuation-correction method extant prior to the advent of PET/CT, we also carried out attenuation correction with (137)Cs transmission-based attenuation correction (TXAC). CTAC and MARCTAC images were scaled to attenuation coefficients at 511 keV using a trilinear function that mapped the highest CT values to the prosthesis alloy attenuation coefficient. Accuracy and spatial distribution of the lesion activity was compared between the three reconstruction schemes. Compared to the reference activity of 3.37 MBq, the estimated activity quantified from the PET image corrected by TXAC was 3.41 MBq. The activity estimated from PET images corrected by MARCTAC was similar in accuracy at 3.32 MBq. CTAC corrected PET images resulted in nearly 40 % overestimation of lesion activity at 4.70 MBq. Comparison of PET images obtained with the plastic and metal prostheses in place showed that CTAC resulted in a marked distortion of the (18)F-FDG distribution within the lesion, whereas application of MARCTAC and TXAC resulted in lesion distributions similar to those observed with the plastic replica. MAR combined with a trilinear CT number mapping for PET attenuation correction resulted in estimates of lesion activity comparable in accuracy to that obtained with (137)Cs transmission-based attenuation correction, and far superior to estimates made without attenuation correction or with a standard CT attenuation map. The ability to use CT images for attenuation correction is a potentially important development because it obviates the need for a (137)Cs transmission source, which entails extra scan time, logistical complexity and expense.
NASA Astrophysics Data System (ADS)
Mori, K.; Tada, K.; Tawara, Y.; Tosaka, H.; Ohno, K.; Asami, M.; Kosaka, K.
2015-12-01
Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, intensive monitoring and modeling works on radionuclide transfer in environment have been carried out. Although Cesium (Cs) concentration has been attenuating due to both physical and environmental half-life (i.e., wash-off by water and sediment), the attenuation rate depends clearly on the type of land use and land cover. In the Fukushima case, studying the migration in forest land use is important for predicting the long-term behavior of Cs because most of the contaminated region is covered by forests. Atmospheric fallout is characterized by complicated behavior in biogeochemical cycle in forests which can be described by biotic/abiotic interactions between many components. In developing conceptual and mathematical model on Cs transfer in forest ecosystem, defining the dominant components and their interactions are crucial issues (BIOMASS, 1997-2001). However, the modeling of fate and transport in geosphere after Cs exports from the forest ecosystem is often ignored. An integrated watershed modeling for simulating spatiotemporal redistribution of Cs that includes the entire region from source to mouth and surface to subsurface, has been recently developed. Since the deposited Cs can migrate due to water and sediment movement, the different species (i.e., dissolved and suspended) and their interactions are key issues in the modeling. However, the initial inventory as source-term was simplified to be homogeneous and time-independent, and biogeochemical cycle in forests was not explicitly considered. Consequently, it was difficult to evaluate the regionally-inherent characteristics which differ according to land uses, even if the model was well calibrated. In this study, we combine the different advantages in modeling of forest ecosystem and watershed. This enable to include more realistic Cs deposition and time series of inventory can be forced over the land surface. These processes are integrated into the watershed simulator GETFLOWS coupled with biogeochemical cycling in forests. We present brief a overview of the simulator and an application for reservoir basin.
Spectral analysis of hearing protector impulsive insertion loss.
Fackler, Cameron J; Berger, Elliott H; Murphy, William J; Stergar, Michael E
2017-01-01
To characterise the performance of hearing protection devices (HPDs) in impulsive-noise conditions and to compare various protection metrics between impulsive and steady-state noise sources with different characteristics. HPDs were measured per the impulsive test methods of ANSI/ASA S12.42- 2010 . Protectors were measured with impulses generated by both an acoustic shock tube and an AR-15 rifle. The measured data were analysed for impulse peak insertion loss (IPIL) and impulsive spectral insertion loss (ISIL). These impulsive measurements were compared to insertion loss measured with steady-state noise and with real-ear attenuation at threshold (REAT). Tested HPDs included a foam earplug, a level-dependent earplug and an electronic sound-restoration earmuff. IPIL for a given protector varied between measurements with the two impulse noise sources, but ISIL agreed between the two sources. The level-dependent earplug demonstrated level-dependent effects both in IPIL and ISIL. Steady-state insertion loss and REAT measurements tended to provide a conservative estimate of the impulsively-measured attenuation. Measurements of IPIL depend strongly on the source used to measure them, especially for HPDs with less attenuation at low frequencies. ISIL provides an alternative measurement of impulse protection and appears to be a more complete description of an HPD's performance.
Spectral analysis of hearing protector impulsive insertion loss
Fackler, Cameron J.; Berger, Elliott H.; Murphy, William J.; Stergar, Michael E.
2017-01-01
Objective To characterize the performance of hearing protection devices in impulsive-noise conditions and to compare various protection metrics between impulsive and steady-state noise sources with different characteristics. Design Hearing protectors were measured per the impulsive test methods of ANSI/ASA S12.42-2010. Protectors were measured with impulses generated by both an acoustic shock tube and an AR-15 rifle. The measured data were analyzed for impulse peak insertion loss (IPIL) and impulsive spectral insertion loss (ISIL). These impulsive measurements were compared to insertion loss measured with steady-state noise and with real-ear attenuation at threshold (REAT). Study Sample Tested devices included a foam earplug, a level-dependent earplug, and an electronic sound-restoration earmuff. Results IPIL for a given protector varied between measurements with the two impulse noise sources, but ISIL agreed between the two sources. The level-dependent earplug demonstrated level-dependent effects both in IPIL and ISIL. Steady-state insertion loss and REAT measurements tended to provide a conservative estimate of the impulsively-measured attenuation. Conclusions Measurements of IPIL depend strongly on the source used to measure them, especially for hearing protectors with less attenuation at low frequencies. ISIL provides an alternative measurement of impulse protection and appears to be a more complete description of an HPD’s performance. PMID:27885881
Modeling the blockage of Lg waves from 3-D variations in crustal structure
NASA Astrophysics Data System (ADS)
Sanborn, Christopher J.; Cormier, Vernon F.
2018-05-01
Comprised of S waves trapped in Earth's crust, the high frequency (2-10 Hz) Lg wave is important to discriminating earthquakes from explosions by comparing its amplitude and waveform to those of Pg and Pn waves. Lateral variations in crustal structure, including variations in crustal thickness, intrinsic attenuation, and scattering, affect the efficiency of Lg propagation and its consistency as a source discriminant at regional (200-1500 km) distances. To investigate the effects of laterally varying Earth structure on the efficiency of propagation of Lg and Pg, we apply a radiative transport algorithm to model complete, high-frequency (2-4 Hz), regional coda envelopes. The algorithm propagates packets of energy with ray theory through large-scale 3-D structure, and includes stochastic effects of multiple-scattering by small-scale heterogeneities within the large-scale structure. Source-radiation patterns are described by moment tensors. Seismograms of explosion and earthquake sources are synthesized in canonical models to predict effects on waveforms of paths crossing regions of crustal thinning (pull-apart basins and ocean/continent transitions) and thickening (collisional mountain belts), For paths crossing crustal thinning regions, Lg is amplified at receivers within the thinned region but strongly disrupted and attenuated at receivers beyond the thinned region. For paths crossing regions of crustal thickening, Lg amplitude is attenuated at receivers within the thickened region, but experiences little or no reduction in amplitude at receivers beyond the thickened region. The length of the Lg propagation within a thickened region and the complexity of over- and under-thrust crustal layers, can produce localized zones of Lg amplification or attenuation. Regions of intense scattering within laterally homogeneous models of the crust increase Lg attenuation but do not disrupt its coda shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riha, B.; Looney, B.; Noonkester, J.
Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions tomore » alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via cometabolism). For TArea, the enhanced attenuation development process proved to be a powerful tool in developing a strategy that provides a high degree of performance while minimizing adverse collateral impacts of the remediation (e.g., energy use and wetland damage) and minimizing life-cycle costs. As depicted in Figure 1, Edible oil deployment results in the development of structured geochemical zones and serves to decrease chlorinated compound concentrations in two ways: (1) physical sequestration, which reduces effective aqueous concentration and mobility; and (2) stimulation of anaerobic, abiotic and cometabolic degradation processes. In the central deployment area, contaminant initially partitions into the added oil phase. Biodegradation of the added organic substrate depletes the aquifer of oxygen and other terminal electron acceptors and creates conditions conducive to anaerobic degradation processes. The organic substrate is fermented to produce hydrogen, which is used as an electron donor for anaerobic dechlorination by organisms such as Dehalococcoides. Daughter products leaving the central treatment zone are amenable to aerobic oxidation. Further, the organic compounds leaving the central deployment zone (e.g., methane and propane) stimulate and enhance down gradient aerobic cometabolism which degrades both daughter compounds and several parent cVOCs. Figure 1 depicts TCE concentration reduction processes (labeled in green) along with their corresponding breakdown products in a structured geochemical zone scenario. A consortium of bacteria with the same net effect of Dehalococcoides may be present in the structured geochemical zones leading to the degradation of TCE and daughter products. Figure 2 shows a schematic of the documented cVOC degradation processes in both the anaerobic and aerobic structured geochemical zones. Specific aerobic and anaerobic bacteria and their degradation pathways are also listed in the diagram and have either been confirmed in the field or the laboratory. See references in the bibliography in Section 11.« less
The collective processes that constitute the broadly used term Anatural attenuation,@ as it relates to subsurface remediation of contaminants, refer to the physical, chemical, and biological interactions that, without human intervention, reduce or contain contaminants in the sub...
Measurement of acoustic attenuation in South Pole ice
NASA Astrophysics Data System (ADS)
IceCube Collaboration; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Gustafsson, L.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration
2011-01-01
Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient α = 3.20 ± 0.57 km-1 between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for λ ≡ 1/α of ˜300 m with 20% uncertainty. No significant depth or frequency dependence has been found.
NASA Technical Reports Server (NTRS)
Goldhirsh, J.
1977-01-01
Disdrometer measurements and radar reflectivity measurements were injected into a computer program to estimate the path attenuation of the signal. Predicted attenuations when compared with the directly measured ones showed generally good correlation on a case by case basis and very good agreement statistically. The utility of using radar in conjunction with disdrometer measurements for predicting fade events and long term fade distributions associated with earth-satellite telecommunications is demonstrated.
Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors
Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David Kicklighter
2009-01-01
Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...
Direct Reconstruction of CT-Based Attenuation Correction Images for PET With Cluster-Based Penalties
NASA Astrophysics Data System (ADS)
Kim, Soo Mee; Alessio, Adam M.; De Man, Bruno; Kinahan, Paul E.
2017-03-01
Extremely low-dose (LD) CT acquisitions used for PET attenuation correction have high levels of noise and potential bias artifacts due to photon starvation. This paper explores the use of a priori knowledge for iterative image reconstruction of the CT-based attenuation map. We investigate a maximum a posteriori framework with cluster-based multinomial penalty for direct iterative coordinate decent (dICD) reconstruction of the PET attenuation map. The objective function for direct iterative attenuation map reconstruction used a Poisson log-likelihood data fit term and evaluated two image penalty terms of spatial and mixture distributions. The spatial regularization is based on a quadratic penalty. For the mixture penalty, we assumed that the attenuation map may consist of four material clusters: air + background, lung, soft tissue, and bone. Using simulated noisy sinogram data, dICD reconstruction was performed with different strengths of the spatial and mixture penalties. The combined spatial and mixture penalties reduced the root mean squared error (RMSE) by roughly two times compared with a weighted least square and filtered backprojection reconstruction of CT images. The combined spatial and mixture penalties resulted in only slightly lower RMSE compared with a spatial quadratic penalty alone. For direct PET attenuation map reconstruction from ultra-LD CT acquisitions, the combination of spatial and mixture penalties offers regularization of both variance and bias and is a potential method to reconstruct attenuation maps with negligible patient dose. The presented results, using a best-case histogram suggest that the mixture penalty does not offer a substantive benefit over conventional quadratic regularization and diminishes enthusiasm for exploring future application of the mixture penalty.
Zhu, Zhi-Lin; Sun, Xiao-Min; Yu, Gui-Rui; Wen, Xue-Fa; Zhang, Yi-Ping; Han, Shi-Jie; Yan, Jun-Hua; Wang, Hui-Min
2011-11-01
Based on the total radiation and photosynthetically active radiation (PAR) observations with net radiometer (CNR1) and quantum sensor (Li-190SB) in 4 ChinaFLUX forest sites (Changbaishan, Qianyanzhou, Dinghushan, and Xishuangbanna) in 2003-2008, this paper analyzed the uncertainties and the radiometers performance changes in long-term and continuous field observation. The results showed that the 98% accuracy of the total radiation measured with CNR1 (Q(cNR1)) could satisfy the technical criterion for the sites except Xishuangbanna where the Q(CNR1) was averagely about 7% lower than Q(CM11), the radiation measured with high accuracy pyranometer CM11. For most sites, though the temperature had definite effects on the performance of CNR1, the effects were still within the allowable range of the accuracy of the instrument. Besides temperature, the seasonal fog often occurred in tropical rain forests in Xishuangbanna also had effects on the performance of CNR1. Based on the long-term variations of PAR, especially its ratio to total radiation in the 4 sites, it was found that quantum sensor (Li-190SB) had obvious performance attenuation, with the mean annual attenuation rate being about 4%. To correct the observation error caused by Li-190SB, an attempt was made to give a post-correction of the PAR observations, which could basically eliminate the quantum sensor's performance attenuation due to long-term field measurement.
Sawaraba, Ian; Rao, B K Rajashekhar
2015-01-01
Cyanide (CN) pollution was reported in the downstream areas of Watut and Markham Rivers due to effluent discharges from gold mining and processing activities of Hidden Valley mines in Morobe province of Papua New Guinea. We monitored free cyanide levels in Watut and Markham River waters randomly three times in years for 2 years (2012 and 2013). Besides, a short-term static laboratory study was conducted to evaluate the potential of river sediment to attenuate externally added cyanide, with and without the presence of biochar material. Results indicated that the free cyanide content ranged between 0.17 and 1.32 μg L(-1) in the river waters. The free cyanide content were found to be significantly (p < 0.05) greater in June (0.87 μg L(-1)) and May (0.77 μg L(-1)) months of 2012 and 2013, respectively, than the rest of the months. However, free cyanide levels in all four monitoring sites across three sampling intervals were lower than 0.20 mg L(-1) which is the maximum contaminant level (MCL) permitted according to US Environmental Protection Agency. Under laboratory conditions, the biochar-impregnated sediment showed ∼3 times more attenuation capacity for cyanide than non-amended sediment, thus indicating possibility of using biochar to cleanse cyanide from spills or other sources of pollution.
Topical Modulation of the Burn Wound Inflammatory Response to Improve Short and Long Term Outcomes
2016-10-01
Duroc pig. We hypothesize that topical p38MAPK inhibition will attenuate the depth of the burn by preventing hair -follicle cell apoptosis, attenuate...Intracellular MAPK Hair -Follicle Apoptosis Local/Dermal Inflammatory Cell Activation SIRS End-Organ Failure Topical MAPK Inhibitors Production of
Reference Production: Production-Internal and Addressee-Oriented Processes
ERIC Educational Resources Information Center
Arnold, Jennifer
2008-01-01
This paper reviews research on the production of referential expressions, examining the choice between explicit and attenuated lexical forms (e.g., pronouns vs. names), and between acoustically prominent and attenuated pronunciations. Both choices can be explained in terms of addressee-design, in that explicit expressions tend to be used in…
Improved Modeling and Prediction of Surface Wave Amplitudes
2017-05-31
structures and derived attenuation coefficients from the Eurasian Q inversion study. 15. SUBJECT TERMS nuclear explosion monitoring, surface waves, membrane...24 4.6 Inversion of Eurasian Attenuation Data for Q Structure ........................................ 31 4.6.1 Data used in the Q Inversion ...33 4.6.2 Q Inversion Results
When and where in aging: the role of music on source monitoring.
Palumbo, Rocco; Mammarella, Nicola; Di Domenico, Alberto; Fairfield, Beth
2018-06-01
Difficulties in source monitoring (SM) tasks observed in healthy older adults may be linked to associative memory deficits since SM requires individuals to correctly bind and later remember these bound features to discriminate the origin of a memory. Therefore, focusing attention on discriminating factors that may attenuate older adults' difficulties in attributing contextual information to memories is necessary. We investigated the effect of affective information on source monitoring in younger and older adults by manipulating the type of affective information (pictures and music) and assessing the ability to remember spatial and temporal source details for affective pictures encoded while listening to classical music. Older and younger adults viewed a series of affective IAPS pictures presented on the left or right side of the computer screen in two different lists. At test, participants were asked to remember if the picture was seen (right/left), in which list (list1/list2) or whether it was new. Results showed that spatial information was attributed better than temporal information and emotional pictures were attributed better than neutral pictures in both younger and older adults. In addition, although music significantly increased source memory performance in both younger and older participants compared to the white noise condition, the pleasantness of music differentially affected memory for source details. The authors discuss findings in terms of an interaction between music, emotion and cognition in aging.
NASA Astrophysics Data System (ADS)
Jones, J. L.; Sterbentz, J. W.; Yoon, W. Y.; Norman, D. R.
2009-12-01
Energetic photon sources with energies greater than 6 MeV continue to be recognized as viable source for various types of inspection applications, especially those related to nuclear and/or explosive material detection. These energetic photons can be produced as a continuum of energies (i.e., bremsstrahlung) or as a set of one or more discrete photon energies (i.e., monoenergetic). This paper will provide a follow-on extension of the photon dose comparison presented at the 9th International Conference on Applications of Nuclear Techniques (June 2008). Our previous paper showed the comparative advantages and disadvantages of the photon doses provided by these two energetic interrogation sources and highlighted the higher energy advantage of the bremsstrahlung source, especially at long standoff distances (i.e., distance from source to the inspected object). This paper will pursue higher energy photon inspection advantage (up to 100 MeV) by providing dose and stimulated photonuclear interaction predictions in air and for an infinitely dilute interrogated material (used for comparative interaction rate assessments since it excludes material self-shielding) as the interrogation object positioned forward on the inspection beam axis at increasing standoff distances. In addition to the direct energetic photon-induced stimulation, the predictions will identify the importance of secondary downscattered/attenuated source-term effects arising from the photon transport in the intervening air environment.
Puig, Roger; Soler, Albert; Widory, David; Mas-Pla, Josep; Domènech, Cristina; Otero, Neus
2017-02-15
Nitrate pollution is a widespread issue affecting global water resources with significant economic and health effects. Knowledge of both the corresponding pollution sources and of processes naturally attenuating them is thus of crucial importance in assessing water management policies and the impact of anthropogenic activities. In this study, an approach combining hydrodynamic, hydrochemical and multi-isotope systematics (8 isotopes) is used to characterize the sources of nitrate pollution and potential natural attenuation processes in a polluted basin of NE Spain. δ 2 H and δ 18 O isotopes were used to further characterize the sources of recharge of the aquifers. Results show that NO 3 - is not homogeneously distributed and presents a large range of concentrations, from no NO 3 - to up to 480mgL -1 . δ 15 N and δ 18 O of dissolved NO 3 - identified manure as the main source of nitrate, although sewage and mineral fertilizers can also be isotopically detected using boron isotopes (δ 11 B) and δ 34 S and δ 18 O of dissolved sulphate, respectively. The multi-isotope approach proved that natural denitrification is occurring, especially in near-river environments or in areas hydrologically related to fault zones. δ 34 S and δ 18 O indicated that denitrification is not driven by pyrite oxidation but rather by the oxidation of organic matter. This could not be confirmed by the study of δ 13 C HCO3 that was buffered by the entanglement of other processes and sources. Copyright © 2016 Elsevier B.V. All rights reserved.
Computer program to predict aircraft noise levels
NASA Technical Reports Server (NTRS)
Clark, B. J.
1981-01-01
Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.
Method and apparatus for shadow aperture backscatter radiography (SABR) system and protocol
NASA Technical Reports Server (NTRS)
Shedlock, Daniel (Inventor); Jacobs, Alan M. (Inventor); Jacobs, Sharon Auerback (Inventor); Dugan, Edward (Inventor)
2010-01-01
A shadow aperture backscatter radiography (SABR) system includes at least one penetrating radiation source for providing a penetrating radiation field, and at least one partially transmissive radiation detector, wherein the partially transmissive radiation detector is interposed between an object region to be interrogated and the radiation source. The partially transmissive radiation detector transmits a portion of the illumination radiation field. A shadow aperture having a plurality of radiation attenuating regions having apertures therebetween is disposed between the radiation source and the detector. The apertures provide illumination regions for the illumination radiation field to reach the object region, wherein backscattered radiation from the object is detected and generates an image by the detector in regions of the detector that are shadowed by the radiation attenuation regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr; Cho, Sungjong; Zhang, Shuzeng
2016-04-15
In recent studies with nonlinear Rayleigh surface waves, harmonic generation measurements have been successfully employed to characterize material damage and microstructural changes, and found to be sensitive to early stages of damage process. A nonlinearity parameter of Rayleigh surface waves was derived and frequently measured to quantify the level of damage. The accurate measurement of the nonlinearity parameter generally requires making corrections for beam diffraction and medium attenuation. These effects are not generally known for nonlinear Rayleigh waves, and therefore not properly considered in most of previous studies. In this paper, the nonlinearity parameter for a Rayleigh surface wave ismore » defined from the plane wave displacement solutions. We explicitly define the attenuation and diffraction corrections for fundamental and second harmonic Rayleigh wave beams radiated from a uniform line source. Attenuation corrections are obtained from the quasilinear theory of plane Rayleigh wave equations. To obtain closed-form expressions for diffraction corrections, multi-Gaussian beam (MGB) models are employed to represent the integral solutions derived from the quasilinear theory of the full two-dimensional wave equation without parabolic approximation. Diffraction corrections are presented for a couple of transmitter-receiver geometries, and the effects of making attenuation and diffraction corrections are examined through the simulation of nonlinearity parameter determination in a solid sample.« less
NASA Astrophysics Data System (ADS)
Aim-O, P.; Wongsawaeng, D.; Phruksarojanakun, P.; Tancharakorn, S.
2017-06-01
High-density concrete exhibits high strength and can perform an important role of gamma ray attenuation. In order to upgrade this material’s radiation-shielding performance, hydrogen-rich material can be incorporated. Waste rubber from vehicles has high hydrogen content which is the prominent characteristic to attenuate neutron. The objective of this work was to evaluate the radiation-shielding properties of this composite material against neutron and photon radiations. Monte Carlo transport simulation was conducted to simulate radiation through the composite material. Am-241/Be was utilized for neutron source and Co-60 for photon source. Parameters of the study included volume percentages of waste rubber, lead and boron carbide and thickness of the shielding material. These designs were also fabricated and the radiation shielding properties were experimentally evaluated. The best neutron and gamma ray shielding material was determined to be high-density concrete mixed with 5 vol% crumb rubber and 5 vol% lead powder. This shielding material increased the neutron attenuation by 64% and photon attenuation by 68% compared to ordinary concrete. Also, increasing the waste rubber content to greater than 5% resulted in a decrease in the radiation attenuation. This innovative composite radiation shielding material not only benefits nuclear science and engineering applications, but also helps solve the environmental issue of waste rubber.
NASA Astrophysics Data System (ADS)
de Figueiredo, J. J. S.; Schleicher, J.; Stewart, R. R.; Dayur, N.; Omoboya, B.; Wiley, R.; William, A.
2013-04-01
To understand their influence on elastic wave propagation, anisotropic cracked media have been widely investigated in many theoretical and experimental studies. In this work, we report on laboratory ultrasound measurements carried out to investigate the effect of source frequency on the elastic parameters (wave velocities and the Thomsen parameter γ) and shear wave attenuation) of fractured anisotropic media. Under controlled conditions, we prepared anisotropic model samples containing penny-shaped rubber inclusions in a solid epoxy resin matrix with crack densities ranging from 0 to 6.2 per cent. Two of the three cracked samples have 10 layers and one has 17 layers. The number of uniform rubber inclusions per layer ranges from 0 to 100. S-wave splitting measurements have shown that scattering effects are more prominent in samples where the seismic wavelength to crack aperture ratio ranges from 1.6 to 1.64 than in others where the ratio varied from 2.72 to 2.85. The sample with the largest cracks showed a magnitude of scattering attenuation three times higher compared with another sample that had small inclusions. Our S-wave ultrasound results demonstrate that elastic scattering, scattering and anelastic attenuation, velocity dispersion and crack size interfere directly in shear wave splitting in a source-frequency dependent manner, resulting in an increase of scattering attenuation and a reduction of shear wave anisotropy with increasing frequency.
Time vs. Money: A Quantitative Evaluation of Monitoring Frequency vs. Monitoring Duration.
McHugh, Thomas E; Kulkarni, Poonam R; Newell, Charles J
2016-09-01
The National Research Council has estimated that over 126,000 contaminated groundwater sites are unlikely to achieve low ug/L clean-up goals in the foreseeable future. At these sites, cost-effective, long-term monitoring schemes are needed in order to understand the long-term changes in contaminant concentrations. Current monitoring optimization schemes rely on site-specific evaluations to optimize groundwater monitoring frequency. However, when using linear regression to estimate the long-term zero-order or first-order contaminant attenuation rate, the effect of monitoring frequency and monitoring duration on the accuracy and confidence for the estimated attenuation rate is not site-specific. For a fixed number of monitoring events, doubling the time between monitoring events (e.g., changing from quarterly monitoring to semi-annual monitoring) will double the accuracy of estimated attenuation rate. For a fixed monitoring frequency (e.g., semi-annual monitoring), increasing the number of monitoring events by 60% will double the accuracy of the estimated attenuation rate. Combining these two factors, doubling the time between monitoring events (e.g., quarterly monitoring to semi-annual monitoring) while decreasing the total number of monitoring events by 38% will result in no change in the accuracy of the estimated attenuation rate. However, the time required to collect this dataset will increase by 25%. Understanding that the trade-off between monitoring frequency and monitoring duration is not site-specific should simplify the process of optimizing groundwater monitoring frequency at contaminated groundwater sites. © 2016 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.
NASA Astrophysics Data System (ADS)
Edwards, Benjamin
2016-04-01
The determination of near-surface attenuation for hard rock sites is an important issue in a wide range of seismological applications, particularly seismic hazard analysis. In this article we choose six hard to very-hard rock sites (Vs30 1030 to 3000 m/s) and apply a range of analysis methods to measure the observed attenuation at distance based on a simple exponential decay model with whole-path attenuation operator κ. The κ values are subsequently decoupled from path attenuation (Q) so as to obtain estimates of near-surface attenuation (κ0). Five methods are employed to measure κ which can be split into two groups: broadband methods and high-frequency methods. Each of the applied methods has advantages and disadvantages, which are explored and discussed through the comparison of results from common datasets. In our first step we examine the variability of the individual measured κ values. Some variation between methods is expected due to simplifications of source, path, and site effects. However, we find that significant differences arise between attenuation measured on individual recordings, depending on the method employed or the modelling decisions made during a particular approach. Some of the differences can be explained through site amplification effects: although usually weak at rock sites, amplification may still lead to bias of the measured κ due to the chosen fitting frequency bandwidth, which often varies between methods. At some sites the observed high-frequency spectral shape was clearly different to the typical κ attenuation model, with curved or bi-linear rather than linear decay at high frequencies. In addition to amplification effects this could be related to frequency-dependent attenuation effects (e.g., Q(f)): since the κ model is implicitly frequency independent, κ will in this case be dependent on the selected analysis bandwidth. In our second step, using the whole-path κ datasets from the five approaches, we investigate the robustness of the near-surface attenuation parameter κ0 and the influence of constraints, such as assuming a value for the regional crustal attenuation (Q). We do this by using a variety of fitting methods: least-squares, absolute amplitude, and regressions with and without fixing Q to an a priori value. We find that the value to which we fix Q strongly influences the near-surface attenuation term κ0. Differences in Q derived from the data at the six sites under investigation could not be reconciled with the average values found previously over the wider Swiss region. This led to starkly different κ0 values, depending on whether we allowed for a data-driven Q, or whether we forced Q to be consistent with existing simulation models or GMPEs valid for the wider region. Considering all the possible approaches we found that the contribution to epistemic uncertainty for κ0 determination at the six hard-rock sites in Switzerland could be represented by a normal distribution with standard deviation σκ0=0.0083±0.0014 s.
McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Taylor, Howard E.
2010-01-01
The Gibbon River in Yellowstone National Park receives inflows from several geothermal areas, and consequently the concentrations of many trace elements are elevated compared to rivers in non-geothermal watersheds. Water samples and discharge measurements were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006 allowing for the identification of solute sources and their downstream fate. Norris Geyser Basin, and in particular Tantalus Creek, is the largest source of many trace elements (Al, As, B, Ba, Br, Cs, Hg, Li, Sb, Tl, W, and REEs) to the Gibbon River. The Chocolate Pots area is a major source of Fe and Mn, and the lower Gibbon River near Terrace Spring is the major source of Be and Mo. Some of the elevated trace elements are aquatic health concerns (As, Sb, and Hg) and knowing their fate is important. Most solutes in the Gibbon River, including As and Sb, behave conservatively or are minimally attenuated over 29 km of fluvial transport. Some small attenuation of Al, Fe, Hg, and REEs occurs but primarily there is a transformation from the dissolved state to suspended particles, with most of these elements still being transported to the Madison River. Dissolved Hg and REEs loads decrease where the particulate Fe increases, suggesting sorption onto suspended particulate material. Attenuation from the water column is substantial for Mn, with little formation of Mn as suspended particulates.
Study of transmission line attenuation in broad band millimeter wave frequency range.
Pandya, Hitesh Kumar B; Austin, M E; Ellis, R F
2013-10-01
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.
NASA Astrophysics Data System (ADS)
Chand, Shyam; Minshull, Tim A.
2004-07-01
Observations of velocities in sediments containing gas hydrates show that the strength of sediments increases with hydrate saturation. Hence it is expected that the attenuation of these sediments will decrease with increasing hydrate saturation. However, sonic log measurements in the Mallik 2L-38 well and cross hole tomography measurements in the Mallik field have shown that attenuation increases with hydrate saturation. We studied a range of mechanisms by which increasing hydrate saturation could cause increased attenuation. We found that a difference in permeability between the host sediment and the newly formed hydrate can produce the observed effect. We modelled attenuation in terms of Biot and squirt flow mechanisms in composite media. We have used our model to predict observed attenuations in the Mallik 2L-38 well, Mackenzie Delta, Canada.
NASA Astrophysics Data System (ADS)
Che-Alota, V.; Atekwana, E. A.; Sauck, W. A.; Nolan, J. T.; Slater, L. D.
2007-12-01
Previous geophysical investigations (1996, 1997, 2003, and 2004) conducted at the decommissioned Wurtsmith Air Force Base former Fire Training Cell (FT-02) showed a clearly defined high conductivity anomaly associated with hydrocarbon contaminants in the vadose zone and ground water near the source area. The source of the geophysical anomalies was attributed to biogeochemical modifications of the contaminated zone resulting from intrinsic bioremediation. During these previous surveys, ground penetrating radar (GPR) data showed a zone of attenuated GPR reflections extending from the vadose zone to below the water table. Self potential data (SP) data defined a positive anomaly coincident with the hydrochemically defined plume, while electrical resistivity data showed anomalously high conductivity within the zone of impact. In 2007, another integrated geophysical study of the site was conducted. GPR, SP, electrical resistivity, and induced polarization surveys were conducted with expectations of achieving similar results as the past surveys. However, preliminary assessment of the data shows a marked decrease in electrical conductivity and SP response over the plume. GPR data still showed the attenuated signals, but the zone of attenuation was only observed below the water table. We attribute the attenuation of the observed geophysical anomalies to ongoing soil vapor extraction initiated in 2003. Significant removal of the contaminant mass by the vapor extraction system has altered the subsurface biogeochemical conditions and these changes were documented by the 2007 geophysical and geochemical data. The results of this study show that the attenuation of the contaminant plume is detectable with geophysical methods.
Assessing the associative deficit of older adults in long-term and short-term/working memory.
Chen, Tina; Naveh-Benjamin, Moshe
2012-09-01
Older adults exhibit a deficit in associative long-term memory relative to younger adults. However, the literature is inconclusive regarding whether this deficit is attenuated in short-term/working memory. To elucidate the issue, three experiments assessed younger and older adults' item and interitem associative memory and the effects of several variables that might potentially contribute to the inconsistent pattern of results in previous studies. In Experiment 1, participants were tested on item and associative recognition memory with both long-term and short-term retention intervals in a single, continuous recognition paradigm. There was an associative deficit for older adults in the short-term and long-term intervals. Using only short-term intervals, Experiment 2 utilized mixed and blocked test designs to examine the effect of test event salience. Blocking the test did not attenuate the age-related associative deficit seen in the mixed test blocks. Finally, an age-related associative deficit was found in Experiment 3, under both sequential and simultaneous presentation conditions. Even while accounting for some methodological issues, the associative deficit of older adults is evident in short-term/working memory.
Laboratory tests for mumps vaccines.
Minor, P D
1997-03-01
The action of live attenuated vaccines against mumps is poorly understood although their clinical efficacy is beyond doubt. The attenuated character of the vaccine is assured by consistency of production related to clinical trials, and limited studies of vaccine seeds in primates. Potency is assessed by infectivity in vitro and is subject to poorly understood sources of variation. Molecular biological studies are at an early stage.
Propagation of noise over and through a forest stand
Lee P. Herrington; C. Brock
1977-01-01
Measurements of the two-dimensional acoustic field in a forest resulting from a source located outside the forest indicated that the attenuation pattern near the ground is significantly different from the pattern higher up in the forest. The patterns of attenuation support the recent theory that the forest floor is the main absorber of acoustic energy in the forest....
Retarding field energy analyzer for high energy pulsed electron beam measurements.
Hu, Jing; Rovey, Joshua L; Zhao, Wansheng
2017-01-01
A retarding field energy analyzer (RFEA) designed specifically for high energy pulsed electron beam measurements is described in this work. By proper design of the entrance grid, attenuation grid, and beam collector, this RFEA is capable of determining the time-resolved energy distribution of high energy pulsed electron beams normally generated under "soft vacuum" environment. The performance of the RFEA is validated by multiple tests of the leakage current, attenuation coefficient, and response time. The test results show that the retarding potential in the RFEA can go up to the same voltage as the electron beam source, which is 20 kV for the maximum in this work. Additionally, an attenuation coefficient of 4.2 is obtained in the RFEA while the percent difference of the rise time of the electron beam pulse before and after attenuation is lower than 10%. When compared with a reference source, the percent difference of the RFEA response time is less than 10% for fall times greater than 35 ns. Finally, the test results of the 10 kV pseudospark-based pulsed electron beam currents collected under varying retarding potentials are presented in this paper.
A Requirements-Driven Optimization Method for Acoustic Liners Using Analytic Derivatives
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.; Lopes, Leonard V.
2017-01-01
More than ever, there is flexibility and freedom in acoustic liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. In a previous paper on this subject, a method deriving the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground was described. A simple code-wrapping approach was used to evaluate a community noise objective function for an external optimizer. Gradients were evaluated using a finite difference formula. The subject of this paper is an application of analytic derivatives that supply precise gradients to an optimization process. Analytic derivatives improve the efficiency and accuracy of gradient-based optimization methods and allow consideration of more design variables. In addition, the benefit of variable impedance liners is explored using a multi-objective optimization.
Natural attenuation software (NAS): Assessing remedial strategies and estimating timeframes
Mendez, E.; Widdowson, M.; Chapelle, F.; Casey, C.
2005-01-01
Natural Attenuation Software (NAS) is a screening tool to estimate remediation timeframes for monitored natural attenuation (MNA) and to assist in decision-making on the level of source zone treatment in conjunction with MNA using site-specific remediation objectives. Natural attenuation processes that NAS models include are advection, dispersion, sorption, non-aqueous phase liquid (NAPL) dissolution, and biodegradation of either petroleum hydrocarbons or chlorinated ethylenes. Newly-implemented enhancements to NAS designed to maximize the utility of NAS for site managers were observed. NAS has expanded source contaminant specification options to include chlorinated ethanes and chlorinated methanes, and to allow for the analysis of any other user-defined contaminants that may be subject to microbially-mediated transformations (heavy metals, radioisotopes, etc.). Included is the capability to model co-mingled plumes, with constituents from multiple contaminant categories. To enable comparison of remediation timeframe estimates between MNA and specific engineered remedial actions , NAS was modified to incorporate an estimation technique for timeframes associated with pump-and-treat remediation technology for comparison to MNA. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).
NASA Astrophysics Data System (ADS)
Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin
2018-04-01
We present an analysis for measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Numerical results show that the results here can greatly improve the key rate especially with large intensity fluctuations and channel attenuation compared with prior results if the intensity fluctuations of different sources are correlated.
Point-source stochastic-method simulations of ground motions for the PEER NGA-East Project
Boore, David
2015-01-01
Ground-motions for the PEER NGA-East project were simulated using a point-source stochastic method. The simulated motions are provided for distances between of 0 and 1200 km, M from 4 to 8, and 25 ground-motion intensity measures: peak ground velocity (PGV), peak ground acceleration (PGA), and 5%-damped pseudoabsolute response spectral acceleration (PSA) for 23 periods ranging from 0.01 s to 10.0 s. Tables of motions are provided for each of six attenuation models. The attenuation-model-dependent stress parameters used in the stochastic-method simulations were derived from inversion of PSA data from eight earthquakes in eastern North America.
NASA Astrophysics Data System (ADS)
Nazifah, A.; Norhanna, S.; Shah, S. I.; Zakaria, A.
2014-11-01
This study aimed to investigate the effects of material filter technique on Tc-99m spectra and performance parameters of Philip ADAC forte dual head gamma camera. Thickness of material filter was selected on the basis of percentage attenuation of various gamma ray energies by different thicknesses of zinc material. A cylindrical source tank of NEMA single photon emission computed tomography (SPECT) Triple Line Source Phantom filled with water and Tc-99m radionuclide injected was used for spectra, uniformity and sensitivity measurements. Vinyl plastic tube was used as a line source for spatial resolution. Images for uniformity were reconstructed by filtered back projection method. Butterworth filter of order 5 and cut off frequency 0.35 cycles/cm was selected. Chang's attenuation correction method was applied by selecting 0.13/cm linear attenuation coefficient. Count rate was decreased with material filter from the compton region of Tc-99m energy spectrum, also from the photopeak region. Spatial resolution was improved. However, uniformity of tomographic image was equivocal, and system volume sensitivity was reduced by material filter. Material filter improved system's spatial resolution. Therefore, the technique may be used for phantom studies to improve the image quality.
Looking Down Through the Clouds – Optical Attenuation through Real-Time Clouds
NASA Astrophysics Data System (ADS)
Burley, J.; Lazarewicz, A.; Dean, D.; Heath, N.
Detecting and identifying nuclear explosions in the atmosphere and on the surface of the Earth is critical for the Air Force Technical Applications Center (AFTAC) treaty monitoring mission. Optical signals, from surface or atmospheric nuclear explosions detected by satellite sensors, are attenuated by the atmosphere and clouds. Clouds present a particularly complex challenge as they cover up to seventy percent of the earth's surface. Moreover, their highly variable and diverse nature requires physics-based modeling. Determining the attenuation for each optical ray-path is uniquely dependent on the source geolocation, the specific optical transmission characteristics along that ray path, and sensor detection capabilities. This research details a collaborative AFTAC and AFIT effort to fuse worldwide weather data, from a variety of sources, to provide near-real-time profiles of atmospheric and cloud conditions and the resulting radiative transfer analysis for virtually any wavelength(s) of interest from source to satellite. AFIT has developed a means to model global clouds using the U.S. Air Force’s World Wide Merged Cloud Analysis (WWMCA) cloud data in a new toolset that enables radiance calculations through clouds from UV to RF wavelengths.
How Big Was It? Getting at Yield
NASA Astrophysics Data System (ADS)
Pasyanos, M.; Walter, W. R.; Ford, S. R.
2013-12-01
One of the most coveted pieces of information in the wake of a nuclear test is the explosive yield. Determining the yield from remote observations, however, is not necessarily a trivial thing. For instance, recorded observations of seismic amplitudes, used to estimate the yield, are significantly modified by the intervening media, which varies widely, and needs to be properly accounted for. Even after correcting for propagation effects such as geometrical spreading, attenuation, and station site terms, getting from the resulting source term to a yield depends on the specifics of the explosion source model, including material properties, and depth. Some formulas are based on assumptions of the explosion having a standard depth-of-burial and observed amplitudes can vary if the actual test is either significantly overburied or underburied. We will consider the complications and challenges of making these determinations using a number of standard, more traditional methods and a more recent method that we have developed using regional waveform envelopes. We will do this comparison for recent declared nuclear tests from the DPRK. We will also compare the methods using older explosions at the Nevada Test Site with announced yields, material and depths, so that actual performance can be measured. In all cases, we also strive to quantify realistic uncertainties on the yield estimation.
RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphreys, S.L.; Miller, L.A.; Monroe, D.K.
1998-04-01
This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in themore » quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.« less
Phase Imaging using Focusing Polycapillary Optics
NASA Astrophysics Data System (ADS)
Bashir, Sajid
The interaction of X rays in diagnostic energy range with soft tissues can be described by Compton scattering and by the complex refractive index, which together characterize the attenuation properties of the tissue and the phase imparted to X rays passing through it. Many soft tissues exhibit extremely similar attenuation, so that their discrimination using conventional radiography, which generates contrast in an image through differential attenuation, is challenging. However, these tissues will impart phase differences significantly greater than attenuation differences to the X rays passing through them, so that phase-contrast imaging techniques can enable their discrimination. A major limitation to the widespread adoption of phase-contrast techniques is that phase contrast requires significant spatial coherence of the X-ray beam, which in turn requires specialized sources. For tabletop sources, this often requires a small (usually in the range of 10-50 micron) X-ray source. In this work, polycapillary optics were employed to create a small secondary source from a large spot rotating anode. Polycapillary optics consist of arrays of small hollow glass tubes through which X rays can be guided by total internal reflection from the tube walls. By tapering the tubes to guide the X rays to a point, they can be focused to a small spot which can be used as a secondary source. The polycapillary optic was first aligned with the X-ray source. The spot size was measured using a computed radiography image plate. Images were taken at a variety of optic-to-object and object-to-detector distances and phase-contrast edge enhancement was observed. Conventional absorption images were also acquired at a small object-to detector distances for comparison. Background division was performed to remove strong non-uniformity due to the optics. Differential phase contrast reconstruction demonstrates promising preliminary results. This manuscript is divided into six chapters. The second chapter describes the limitations of conventional imaging methods and benefits of the phase imaging. Chapter three covers different types of X-ray photon interactions with matter. Chapter four describes the experimental set-up and different types of images acquired along with their analysis. Chapter five summarizes the findings in this project and describes future work as well.
Effect of agmatine on long-term potentiation in morphine-treated rats.
Lu, Wei; Dong, Hua-Jin; Bi, Guo-Hua; Zhao, Yong-Qi; Yang, Zheng; Su, Rui-Bin; Li, Jin
2010-08-01
Agmatine is an endogenous amine derived from l-arginine that potentiates morphine analgesia and inhibits naloxone precipitated abstinent symptoms in morphine dependent rats. In this study, the effects of agmatine on long-term potentiation (LTP) in the lateral perforant path (LPP)-granule cell synapse of the rat dentate gyrus (DG) on saline or morphine-treated rats were investigated. Population spikes (PS), evoked by stimulation of the LPP, was recorded from DG region. Acute agmatine (2.5-10mg/kg, s.c.) treatment facilitated hippocampal LTP. Acute morphine (30mg/kg, s.c.) treatment significantly attenuated hippocampal LTP and agmatine (10mg/kg, s.c.) restored the amplitude of PS that was attenuated by morphine. Chronic morphine treatment resulted in the enhancement of hippocampal LTP, agmatine co-administered with morphine significantly attenuated the enhancement of morphine on hippocampal LTP. Imidazoline receptor antagonist idazoxan (5mg/kg, i.p.) reversed the effect of agmatine. These results suggest that agmatine attenuated the effect of morphine on hippocampal LTP, possibly through activation of imidazoline receptor. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.
Turbidite carbon distribution by Ramped PyrOx, Astoria Canyon
NASA Astrophysics Data System (ADS)
Childress, L. B.; Galy, V.; McNichol, A. P.
2017-12-01
The magnitude and nature of carbon preserved in marine sediments can be affected by long-term processes such as climate change and tectonic transport; preservation of carbon can also be affected by short-term, episodic disturbances such as storm events, landslides, and earthquakes. In margins with active canyons, these systems can be efficient burial networks for carbon. The downslope displacement and reorganization of sediment and associated organic carbon (OC) during turbidite formation alters oxygen diffusion and the potential for aerobic oxidation, thereby modifying the redox geochemistry of the sediment package. Generally termed as a `burn-down', reactions at the subsurface oxidation front are linked to a loss of OC preservation within turbidite sequences. Still debated is the source of the OC residual within `burn-down' events, primarily whether the preserved material is dominated by terrestrial or marine components. To better understand the significance of canyon systems and turbidite deposits in the transport, preservation, and `burn-down' of organic carbon, samples from these systems can be studied using the Ramped PyrOx (RPO) technique. Whereas bulk radiocarbon measurements are unsuitable within turbidite deposits, RPO is well suited for characterizing the distribution of carbon sources within a turbidite interval. To complement RPO analyses, OC and N content, stable carbon isotope composition, gamma ray attenuation bulk density, computerized tomography, and magnetic susceptibility were determined. The turbidite systems of the Cascadia Subduction Zone have been extensively studied in relation to the Holocene paleoseismic record. Gravity cores collected in 2011 aboard the R/V Wecoma capture turbidite deposits in Astoria Canyon and demonstrate characteristics of `burn down' intervals. RPO data from within a 15 cm turbidite interval indicate minimal variation in reactivity structure, stable carbon isotope values and radiocarbon age, suggesting a shared source of sediment input. Such similarities imply minimal source-selective OC alteration and are consistent with a singular event (e.g. - flood) associated with late Holocene warm interval influence on the Columbia River Basin.
Role of natural attenuation in modeling the leaching of contaminants in the risk analysis framework.
Verginelli, Iason; Baciocchi, Renato
2013-01-15
Natural attenuation (NA) processes occurring in the subsurface can significantly affect the impact on groundwater from contamination sources located in the vadose zone, especially when mobile and readily biodegradable compounds, such as BTEX, are present. Besides, in the last decades several studies have shown natural attenuation to take place also for more persistent compounds, such as Polycyclic Aromatic Hydrocarbons (PAHs). Nevertheless, common risk analysis frameworks, based on the ASTM RBCA (Risk Based Corrective Action) approach, do not include NA pathways in the fate and transport models, thus possibly leading to an overestimation of the calculated risk. The aim of this study was to provide an insight on the relevance of the different key natural attenuation processes usually taking place in the subsurface and to highlight for which contamination scenarios their inclusion in the risk-analysis framework could provide a more realistic risk assessment. To this end, an analytical model accounting for source depletion and biodegradation, dispersion and diffusion during leaching was developed and applied to several contamination scenarios. These scenarios included contamination by BTEX, characterized by relatively high mobility and biodegradation rate, and PAHs, i.e. a more persistent class of compounds. The obtained results showed that BTEX are likely to be attenuated in the source zone due to their mobility and ready biodegradation (assuming biodegradation constant rates in the order of 0.01-1 d(-1)). Instead, attenuation along transport through the vadose zone was found to be less important, as the residence time of the contaminant in the unsaturated zone is often too low with respect to the time required to get a relevant biodegradation of BTEX. On the other hand, heavier compounds such as PAHs, were found to be attenuated during leaching since the residence time in the vadose zone can reach values up to thousands of years. In these cases, even with the relatively slow biodegradation rate of PAHs, in the order of 0.0001-0.001 d(-1), attenuation can result significant. These conclusions were also confirmed by comparing the model results with experimental data collected at an hydrocarbon-contaminated site. The proposed model, that neglects the transport of NAPLs, could be easily included in the risk-analysis framework, allowing to get a more realistic assessment of risks, while keeping the intrinsic simplicity of the ASTM-RBCA approach. Copyright © 2012 Elsevier Ltd. All rights reserved.
Using Spectral Losses to Map a Damage Zone for the Source Physics Experiments (SPE)
NASA Astrophysics Data System (ADS)
Knox, H. A.; Abbott, R. E.; Bonal, N.; Preston, L. A.
2013-12-01
We performed a series of cross-borehole seismic experiments in support of the Source Physics Experiments (SPE). These surveys, which were conducted in a granitic body using a sparker source and hydrophone string, were designed to image the damage zone from two underground explosions (SPE2 and SPE3). We present results here from a total of six boreholes (the explosive shot emplacement hole and 5 satellite holes, 20-35 meters away) where we found a marked loss of high frequency energy in ray paths traversing the region near the SPE explosions. Specifically, the frequencies above ~400 Hz were lost in a region centered around 45 meters depth, coincident with SPE2 and SPE3 shots. We further quantified these spectral losses, developed a map of where they occur, and evaluated the attenuation effects of raypath length (i.e. source-receiver offset). We attribute this severe attenuation to the inelastic damage (i.e. cracking and pulverizing) caused by the large chemical explosions and propose that frequency attenuation of this magnitude provides yet another tool for detecting the damage due to large underground explosions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Technical Reports Server (NTRS)
Davis, Don D , Jr; Stevens, George L , Jr; Moore, Dewey; Stokes, George M
1953-01-01
Equations are presented for the attenuation characteristics of several types of mufflers. Experimental curves of attenuation plotted against frequency are presented for 77 different mufflers and the results are compared with theory. The experiments were made at room temperature without flow and the sound source was a loud-speaker. A method is given for including the tail pipe in the calculations. The application of the theory to the design of engine-exhaust mufflers is discussed, and charts have been included for the assistance of the designer.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1990-01-01
A static and dynamic rain-attenuation model is presented which describes the statistics of attenuation on an arbitrarily specified satellite link for any location for which there are long-term rainfall statistics. The model may be used in the design of the optimal stochastic control algorithms to mitigate the effects of attenuation and maintain link reliability. A rain-statistics data base is compiled, which makes it possible to apply the model to any location in the continental U.S. with a resolution of 0-5 degrees in latitude and longitude. The model predictions are compared with experimental observations, showing good agreement.
Effect of rain on Ku-band scatterometer wind measurements
NASA Technical Reports Server (NTRS)
Spencer, Michael; Shimada, Masanobu
1991-01-01
The impact of precipitation on scatterometer wind measurements is investigated. A model is developed which includes the effects of rain attenuation, rain backscatter, and storm horizontal structure. Rain attenuation is found to be the dominant error source at low radar incidence angles and high wind speeds. Volume backscatter from the rain-loaded atmosphere, however, is found to dominate for high incidence angles and low wind speeds.
Cavity Attenuated Phase Shift (CAPS) Monitor Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedlacek, Arthur J.
2016-04-01
The CAPS PMex monitor is a cavity attenuated phase shift extinction instrument. It operates as an optical extinction spectrometer, using a visible-light-emitting diode (LED) as the light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector. Its efficacy is based on the fact that aerosols are broadband scatterers and absorbers of light.
Zinc-mediated attenuation of hippocampal mossy fiber long-term potentiation induced by forskolin.
Ando, Masaki; Oku, Naoto; Takeda, Atsushi
2010-11-01
The rise in presynaptic calcium induced by high-frequency stimulation activates the calcium-calmodulin-sensitive adenylyl cyclase (AC) 1 followed by the induction of long-term potentiation (LTP) at the hippocampal mossy fiber-CA3 synapse. Zinc is released with glutamate from mossy fiber terminals. However, the role of the zinc in mossy fiber LTP is controversial. In the present study, the mechanism of zinc-mediated attenuation of mossy fiber LTP was examined in that induced by forskolin, an AC activator. Mossy fiber LTP induced by tetanic stimulation (100 Hz for 1 s) was attenuated in the presence of 5 microM ZnCl(2), whereas that induced by forskolin under test stimulation (0.1 Hz) was not attenuated. Forskolin-induced mossy fiber LTP was attenuated by perfusion with 100 microM ZnCl(2) prior to the induction. However, the zinc (100 microM) pre-perfusion did not attenuate mossy fiber LTP induced by Sp-cAMPS, an activator of protein kinase A, under test stimulation. Zinc is necessary to be taken up into mossy fiber boutons for effectively inhibiting AC activity. In hippocampal slices labeled with ZnAF-2 DA, a membrane-permeable zinc indicator, intracellular ZnAF-2 signal was increased during tetanic stimulation in the presence of 5 microM ZnCl(2), but not under test stimulation. Intracellular ZnAF-2 signal was increased under test stimulation in the presence of 100 microM ZnCl(2). These results suggest that zinc taken up into mossy fibers attenuates forskolin-induced mossy fiber LTP via inhibition of AC activity. The significance of endogenous zinc uptake by mossy fibers is discussed focused on tetanus-induced mossy fiber LTP. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Shepherd, Kevin P. (Inventor); Grosveld, Ferdinand M. W. A. (Inventor)
1991-01-01
An apparatus is disclosed for reducing acoustic transmission from mechanical or acoustic sources by means of a double wall partition, within which an acoustic pressure field is generated by at least one secondary acoustic source. The secondary acoustic source is advantageously placed within the partition, around its edges, or it may be an integral part of a wall of the partition.
NASA Astrophysics Data System (ADS)
Novakovic, M.; Atkinson, G. M.
2015-12-01
We use a generalized inversion to solve for site response, regional source and attenuation parameters, in order to define a region-specific ground-motion prediction equation (GMPE) from ground motion observations in Alberta, following the method of Atkinson et al. (2015 BSSA). The database is compiled from over 200 small to moderate seismic events (M 1 to 4.2) recorded at ~50 regional stations (distances from 30 to 500 km), over the last few years; almost all of the events have been identified as being induced by oil and gas activity. We remove magnitude scaling and geometric spreading functions from observed ground motions and invert for stress parameter, regional attenuation and site amplification. Resolving these parameters allows for the derivation of a regionally-calibrated GMPE that can be used to accurately predict amplitudes across the region in real time, which is useful for ground-motion-based alerting systems and traffic light protocols. The derived GMPE has further applications for the evaluation of hazards from induced seismicity.
Regional Lg attenuation for the continental United States
Benz, H.M.; Frankel, A.; Boore, D.M.
1997-01-01
Measurements of the Fourier amplitude spectra of Lg phases recorded at high frequency (0.5 to 14.0 Hz) by broadband seismic stations are used to determine regional attenuation relationships for southern California, the Basin and Range Province, the central United States, and the northeastern United States and southeastern Canada. Fourier spectral amplitudes were measured every quarter octave from Lg phases windowed between 3.0 and 3.7 km sec-1 and recorded in the distance range of 150 to 1000 km. Attenuation at each frequency is determined by assuming a geometrical spreading exponent of 0.5 and inverting for Q and source and receiver terms. Both southern California and the Basin and Range Province are well described by low Lg Q and frequency-dependent attenuation. Lg spectral amplitudes in southern California are fit at low frequencies (0.625 to 0.875 Hz) by a constant Lg Q of 224 and by a frequency-dependent Lg Q function Q = 187-7+7 f0.55(??0.03) in the frequency band 1.0 to 7.0 Hz. The Basin and Range Province is characterized by a constant Lg Q of 192 for frequencies of 0.5 to 0.875 Hz and by the frequency-dependent Lg Q function Q = 235-11+11 f0.56(??0.04) in the frequency band 1.0 to 5.0 Hz. A change in frequency dependence above 5.0 Hz is possible due to contamination of the Lg window by Pn and Sn phases. Lg spectral amplitudes in the central United States are fit by a mean frequency-independent Lg Q of 1291 for frequencies of 1.5 to 7.0 Hz, while a frequency-dependent Lg Q of Q = 1052-83+91(f/1.5)0.22(??0.06) fits the Lg spectral amplitudes for the northeastern United States and southeastern Canada over the passband 1.5 to 14.0 Hz. Attenuation measurements for these areas were restricted to frequencies >1.5 Hz due to larger microseismic noise levels at the lower frequencies.
A two-dimensional analytical model of vapor intrusion involving vertical heterogeneity.
Yao, Yijun; Verginelli, Iason; Suuberg, Eric M
2017-05-01
In this work, we present an analytical chlorinated vapor intrusion (CVI) model that can estimate source-to-indoor air concentration attenuation by simulating two-dimensional (2-D) vapor concentration profile in vertically heterogeneous soils overlying a homogenous vapor source. The analytical solution describing the 2-D soil gas transport was obtained by applying a modified Schwarz-Christoffel mapping method. A partial field validation showed that the developed model provides results (especially in terms of indoor emission rates) in line with the measured data from a case involving a building overlying a layered soil. In further testing, it was found that the new analytical model can very closely replicate the results of three-dimensional (3-D) numerical models at steady state in scenarios involving layered soils overlying homogenous groundwater sources. By contrast, by adopting a two-layer approach (capillary fringe and vadose zone) as employed in the EPA implementation of the Johnson and Ettinger model, the spatially and temporally averaged indoor concentrations in the case of groundwater sources can be higher than the ones estimated by the numerical model up to two orders of magnitude. In short, the model proposed in this work can represent an easy-to-use tool that can simulate the subsurface soil gas concentration in layered soils overlying a homogenous vapor source while keeping the simplicity of an analytical approach that requires much less computational effort.
Mantini, D; Franciotti, R; Romani, G L; Pizzella, V
2008-03-01
The major limitation for the acquisition of high-quality magnetoencephalography (MEG) recordings is the presence of disturbances of physiological and technical origins: eye movements, cardiac signals, muscular contractions, and environmental noise are serious problems for MEG signal analysis. In the last years, multi-channel MEG systems have undergone rapid technological developments in terms of noise reduction, and many processing methods have been proposed for artifact rejection. Independent component analysis (ICA) has already shown to be an effective and generally applicable technique for concurrently removing artifacts and noise from the MEG recordings. However, no standardized automated system based on ICA has become available so far, because of the intrinsic difficulty in the reliable categorization of the source signals obtained with this technique. In this work, approximate entropy (ApEn), a measure of data regularity, is successfully used for the classification of the signals produced by ICA, allowing for an automated artifact rejection. The proposed method has been tested using MEG data sets collected during somatosensory, auditory and visual stimulation. It was demonstrated to be effective in attenuating both biological artifacts and environmental noise, in order to reconstruct clear signals that can be used for improving brain source localizations.
Yang, Lei; He, Jiang-Tao; Su, Si-Hui; Cui, Ya-Feng; Huang, De-Liang; Wang, Guang-Cai
2017-06-01
This study investigated the occurrence, seasonal-spatial distribution characteristics, and attenuation process of 15 pharmaceuticals and personal care products (PPCPs) in riverside sections of Beiyun River of Beijing. The overall PPCP levels both in surface water and riverside groundwater were moderate on the global scale, and showed higher concentrations in the dry season mainly caused by water temperature variation. Caffeine (CF), carbamazepine (CBZ), metoprolol (MTP), N,N-diethyl-meta-toluamide (DEET), diclofenac (DF), bezafibrate (BF), and gemfibrozil (GF) were seven representative PPCPs, because the rest eight studied compounds occurred in low concentrations and less than 15% of the total concentration of PPCPs. Caffeine and bezafibrate, respectively, was the most abundant compound in surface water and riverside groundwater, with median concentrations of 3020.0 and 125.0 ng L -1 . Total concentrations of PPCPs in surface water were much higher than those in the riverside groundwater spatially. Attenuation of PPCPs during riverbank filtration was largely depending on the sources, site hydrogeological conditions, and physical-chemical properties of PPCPs, also was influenced by dissolved organic matter and environmental physicochemical parameters. CF, MTP, DEET, and CBZ were potential groundwater attenuation contaminants; DF, BF, and GF were groundwater-enriched contaminants based on their removal rates. Predominant removal mechanism of PPCPs like CF was biodegradation. Attenuation simulation showed that the one-way supply between Beiyun River and riverside groundwater, and further confirmed Beiyun River, was the main source of pharmaceutical compounds in the riverside groundwater.
Impact of Aerosols on Atmospheric Attenuation Loss in Central Receiver Systems: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, M.; Wagner, M. J.
2011-08-01
Atmospheric attenuation loss between the heliostat field and receiver has been recognized as a significant source of loss in Central Receiver Systems. In clear sky situations, extinction of Direct Normal Irradiance (DNI) is primarily by aerosols in the atmosphere. When aerosol loading is high close to the surface the attenuation loss between heliostat and receivers is significantly influenced by the amount of aerosols present on a particular day. This study relates measured DNI to aerosol optical depths close to the surface of the earth. The model developed in the paper uses only measured DNI to estimate the attenuation between heliostatmore » and receiver in a central receiver system. The requirement that only a DNI measurement is available potentially makes the model a candidate for widespread use.« less
Sadeghi, Mohammad Hosein; Sina, Sedigheh; Mehdizadeh, Amir; Faghihi, Reza; Moharramzadeh, Vahed; Meigooni, Ali Soleimani
2018-02-01
The dosimetry procedure by simple superposition accounts only for the self-shielding of the source and does not take into account the attenuation of photons by the applicators. The purpose of this investigation is an estimation of the effects of the tandem and ovoid applicator on dose distribution inside the phantom by MCNP5 Monte Carlo simulations. In this study, the superposition method is used for obtaining the dose distribution in the phantom without using the applicator for a typical gynecological brachytherapy (superposition-1). Then, the sources are simulated inside the tandem and ovoid applicator to identify the effect of applicator attenuation (superposition-2), and the dose at points A, B, bladder, and rectum were compared with the results of superposition. The exact dwell positions, times of the source, and positions of the dosimetry points were determined in images of a patient and treatment data of an adult woman patient from a cancer center. The MCNP5 Monte Carlo (MC) code was used for simulation of the phantoms, applicators, and the sources. The results of this study showed no significant differences between the results of superposition method and the MC simulations for different dosimetry points. The difference in all important dosimetry points was found to be less than 5%. According to the results, applicator attenuation has no significant effect on the calculated points dose, the superposition method, adding the dose of each source obtained by the MC simulation, can estimate the dose to points A, B, bladder, and rectum with good accuracy.
NASA Astrophysics Data System (ADS)
Singh, Chandrani; Biswas, Rahul; Srijayanthi, G.; Ravi Kumar, M.
2017-10-01
The attenuation characteristics of seismic waves traversing the Andaman Nicobar subduction zone (ANSZ) are investigated using high quality data from a network of broadband stations operational since 2009. We initially studied the Coda wave attenuation (Qc-1) under the assumption of a single isotropic scattering model. Subsequently, following the multiple isotropic scattering hypothesis, we isolated the relative contributions of intrinsic (Qi-1) and scattering (Qsc-1) attenuation employing the Multiple Lapse Time Window Analysis (MLTWA) method within a frequency range 1.5-18 Hz. Results reveal a highly attenuative nature of the crust, with the values of Qc being frequency dependent. The intrinsic absorption is mostly found to be predominant compared to scattering attenuation. The dominance of Qi-1 in the crust may be attributed to the presence of fluids associated with the subducted slab. Our results are consistent with the low velocity zone reported for the region. A comparison of our results with those from other regions of the globe shows that the ANSZ falls under the category of high intrinsic attenuation zone. Interestingly, the character of ANSZ is identical to that of eastern Himalaya and southern Tibet, but entirely different from the Garhwal-Kumaun Himalaya and the source zone of Chamoli earthquake, due to the underlying mechanisms causing high attenuation.
Thavorn, K; Coyle, D
2015-01-01
Background Liver fibrosis is characterized by a buildup of connective tissue due to chronic liver damage. Steatosis is the collection of excessive amounts of fat inside liver cells. Liver biopsy remains the gold standard for the diagnosis of liver fibrosis and steatosis, but its use as a diagnostic tool is limited by its invasive nature and high cost. Objectives To evaluate the cost-effectiveness and budget impact of transient elastography (TE) with and without controlled attenuation parameter (CAP) for the diagnosis of liver fibrosis or steatosis in patients with hepatitis B, hepatitis C, alcoholic liver disease, and nonalcoholic fatty liver disease. Data Sources An economic literature search was performed using computerized databases. For primary economic and budget impact analyses, we obtained data from various sources, such as the Health Quality Ontario evidence-based analysis, published literature, and the Institute for Clinical Evaluative Sciences. Review Methods A systematic review of existing TE cost-effectiveness studies was conducted, and a primary economic evaluation was undertaken from the perspective of the Ontario Ministry of Health and Long-Term Care. Decision analytic models were used to compare short-term costs and outcomes of TE compared to liver biopsy. Outcomes were expressed as incremental cost per correctly diagnosed cases gained. A budget impact analysis was also conducted. Results We included 10 relevant studies that evaluated the cost-effectiveness of TE compared to other noninvasive tests and to liver biopsy; no cost-effectiveness studies of TE with CAP were identified. All studies showed that TE was less expensive but associated with a decrease in the number of correctly diagnosed cases. TE also improved quality-adjusted life-years in patients with hepatitis B and hepatitis C. Our primary economic analysis suggested that TE led to cost savings but was less effective than liver biopsy in the diagnosis of liver fibrosis. TE became more economically attractive with a higher degree of liver fibrosis. TE with CAP was also less expensive and less accurate than liver biopsy. Limitations The model did not take into account long-term costs and consequences associated with TE and liver biopsy and did not include costs to patients and their families, or patient preferences related to diagnostic information. Conclusions TE showed potential cost savings compared to liver biopsy. Further investigation is needed to determine the long-term impacts of TE on morbidity and mortality in Canada and the optimal diagnostic modality for liver fibrosis and steatosis. PMID:26664666
Low pass filter for plasma discharge
Miller, Paul A.
1994-01-01
An isolator is disposed between a plasma reactor and its electrical energy source in order to isolate the reactor from the electrical energy source. The isolator operates as a filter to attenuate the transmission of harmonics of a fundamental frequency of the electrical energy source generated by the reactor from interacting with the energy source. By preventing harmonic interaction with the energy source, plasma conditions can be readily reproduced independent of the electrical characteristics of the electrical energy source and/or its associated coupling network.
Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K
2002-07-01
The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.
West, Phillip B.; Haefner, Daryl
2004-08-17
Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.
West, Phillip B.; Haefner, Daryl
2005-12-13
Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.
NASA Astrophysics Data System (ADS)
Zhao, L.; Boehmer, H.; Edrich, D.; Heidbrink, W.; McWilliams, R.; Zimmerman, D.; Leneman, D.
2003-10-01
To study fast-ion transport, a 3-cm diameter, 17 MHZ, ˜80W, ˜3 mA argon source launches ˜500 eV ions in the LArge Plasma Device (LAPD). The beam is diagnosed with a gridded analyzer and, on a test stand at Irvine, laser-induced fluorescence (LIF). Neutral scattering is important near the source. The measured beam energy can be more than 100 eV larger than the accelerating voltage applied to the extraction grids. In LAPD the profile of the pulsed ion beam is measured at various axial locations between z=0.3-6.0 m from the source. When the beam velocity is parallel to the solenoidal field (0^o) evidence of peristaltic focusing, beam attenuation, and radial scattering is observed. At an angle of 22^o with respect to the field the beam follows the expected helical trajectory. Three meters axially from the source strong attenuation and elongation of the beam in the direction of the gyro-angle are observed. The data are compared with classical Coulomb and neutral scattering theory.
Analytical investigation of adaptive control of radiated inlet noise from turbofan engines
NASA Technical Reports Server (NTRS)
Risi, John D.; Burdisso, Ricardo A.
1994-01-01
An analytical model has been developed to predict the resulting far field radiation from a turbofan engine inlet. A feedforward control algorithm was simulated to predict the controlled far field radiation from the destructive combination of fan noise and secondary control sources. Numerical results were developed for two system configurations, with the resulting controlled far field radiation patterns showing varying degrees of attenuation and spillover. With one axial station of twelve control sources and error sensors with equal relative angular positions, nearly global attenuation is achieved. Shifting the angular position of one error sensor resulted in an increase of spillover to the extreme sidelines. The complex control inputs for each configuration was investigated to identify the structure of the wave pattern created by the control sources, giving an indication of performance of the system configuration. It is deduced that the locations of the error sensors and the control source configuration are equally critical to the operation of the active noise control system.
Virus and bacteria transport in a sandy aquifer, Cape Cod, MA
Bales, Roger C.; Li, Shimin; Maguire, Kimberly M.; Yahya, Moyasar T.; Gerba, Charles P.; Harvey, Ronald W.
1995-01-01
Transport of the bacteriophage PRD-1, bacteria, and latex microspheres was studied in a sandy aquifer under natural-gradient conditions. The field injection was carried out at the U.S. Geological Survey's Toxic Substances Hydrology research site on Cape Cod. The three colloids and a salt tracer (Br−) moved along the same path. There was significant attenuation of the phage, with PRD-1 peak concentrations less than 0.001 percent of Br− peaks 6 m from the source; but the low detection limit (one per ml) enabled tracking movement of the PRD-1 plume for 12 m downgradient over the 25-day experiment. Attenuation of phage was apparently due to retention on soil particles (adsorption). Attenuation of bacteria and microspheres was less, with peak concentrations 6 m from the source on the order of 10 and 0.4 percent of Br−, respectively. Injection of a high-pH pulse of water 20 days into the experiment resulted in significant remobilization of retained phage, demonstrating that attached phage remained viable, and that PRD-1 attachment to and detachment from the sandy soil particles was highly pH dependent. Phage behavior in this experiment, i.e. attenuation at pH 5.7 and rapid resuspension at pH 6–8, was consistent with that observed previously in laboratory column studies. Results illustrate that biocolloids travel in a fairly narrow plume in sandy (relatively homogeneous) media, with virus concentrations dropping below detection limit several meters away from the source; bacteria concentrations above detection limits can persist over longer distances.
NASA Astrophysics Data System (ADS)
Xie, Jun; Ni, Sidao; Chu, Risheng; Xia, Yingjie
2018-01-01
Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 s (e.g. GSC in 1992), especially in early days of global seismic networks. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC, PAS and PFO in the TERRAscope network as an example, the 26 s PL signal can be easily observed in the ambient noise cross-correlation function between these stations and a remote station OBN with interstation distance about 9700 km. The travel-time variation of this 26 s signal in the ambient noise cross-correlation function is used to infer clock error. A drastic clock error is detected during June 1992 for station GSC, but not found for station PAS and PFO. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of 25 s. Averaged over the three stations, the accuracy of the ambient noise cross-correlation function method with the 26 s source is about 0.3-0.5 s. Using this PL source, the clock can be validated for historical records of sparsely distributed stations, where the usual ambient noise cross-correlation function of short-period (<20 s) ambient noise might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. Further studies are also needed to investigate whether the 26 s source moves spatially and its effects on clock drift detection.
Study of transmission line attenuation in broad band millimeter wave frequency range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.
2013-10-15
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmosphericmore » water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.« less
NASA Astrophysics Data System (ADS)
Herzog, S.; McCray, J. E.; Higgins, C. P.
2015-12-01
The hyporheic zone is a hotspot for biogeochemical processing that can attenuate a variety of nonpoint source contaminants in streamwater. However, hyporheic zones in urban and agricultural streams are often degraded and poorly connected with surface water. In order to increase hyporheic exchange and improve water quality, we introduced engineered streambeds as a stormwater and restoration best management practice. Modifications to streambed hydraulic conductivity and reactivity are termed Biohydrochemical Enhancement structures for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low- and high-permeability sediments to drive efficient hyporheic exchange, and reactive geomedia to increase reaction rates within the hyporheic zone. This work presents the first physical performance data of BEST modules at the pilot scale. BEST modules were installed in a constructed stream facility at the Colorado School of Mines in Golden, CO. This facility features two 15m artificial streams, which included an all sand control condition alongside the BEST test condition. Streams were continuously operated at a discharge of 1 L/s using recycled water. Time-lapse electrical resistivity surveys demonstrated that BEST modules provided substantially greater hyporheic exchange than the control condition. Water quality samples at the hyporheic and reach scales also revealed greater attenuation of nitrogen, coliforms, and select metals and trace organics by BEST modules relative to the control condition. These experimental results were also compared to previous numerical model simulations to evaluate model accuracy. Together, these results show that BEST may be an effective best management practice for improving streamwater quality in urban and agricultural settings.
Bradley, Paul M.; Journey, Celeste A.; Clark, Jimmy M.
2016-01-01
Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insight into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The U.S. Geological Survey assessed the fate of select endocrine disrupting chemicals (EDC) in surface water and streambed sediment one year before and one year after closure of a long-term WWTF located within the Spirit Creek watershed at Fort Gordon, Georgia. Sample sites included a WWTF-effluent control located upstream from the outfall, three downstream effluent-impacted sites located between the outfall and Spirit Lake, and one downstream from the lake's outfall. Prior to closure, the 2.2-km stream segment downstream from the WWTF outfall was characterized by EDC concentrations significantly higher (α = 0.05) than at the control site; indicating substantial downstream transport and limited in-stream attenuation of EDC, including pharmaceuticals, estrogens, alkylphenol ethoxylate (APE) metabolites, and organophosphate flame retardants (OPFR). Wastewater-derived pharmaceutical, APE metabolites, and OPFR compounds were also detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon under effluent discharge conditions. After the WWTF closure, no significant differences in concentrations or numbers of detected EDC compounds were observed between control and downstream locations. The results indicated EDC pseudo-persistence under preclosure, continuous supply conditions, with rapid attenuation following WWTF closure. Low concentrations of EDC at the control site throughout the study and comparable concentrations in downstream locations after WWTF closure indicated additional, continuing, upstream contaminant sources within the Spirit Creek watershed.
Parsai, E Ishmael; Zhang, Zhengdong; Feldmeier, John J
2009-01-01
The commercially available brachytherapy treatment-planning systems today, usually neglects the attenuation effect from stainless steel (SS) tube when Fletcher-Suit-Delclos (FSD) is used in treatment of cervical and endometrial cancers. This could lead to potential inaccuracies in computing dwell times and dose distribution. A more accurate analysis quantifying the level of attenuation for high-dose-rate (HDR) iridium 192 radionuclide ((192)Ir) source is presented through Monte Carlo simulation verified by measurement. In this investigation a general Monte Carlo N-Particles (MCNP) transport code was used to construct a typical geometry of FSD through simulation and compare the doses delivered to point A in Manchester System with and without the SS tubing. A quantitative assessment of inaccuracies in delivered dose vs. the computed dose is presented. In addition, this investigation expanded to examine the attenuation-corrected radial and anisotropy dose functions in a form parallel to the updated AAPM Task Group No. 43 Report (AAPM TG-43) formalism. This will delineate quantitatively the inaccuracies in dose distributions in three-dimensional space. The changes in dose deposition and distribution caused by increased attenuation coefficient resulted from presence of SS are quantified using MCNP Monte Carlo simulations in coupled photon/electron transport. The source geometry was that of the Vari Source wire model VS2000. The FSD was that of the Varian medical system. In this model, the bending angles of tandem and colpostats are 15 degrees and 120 degrees , respectively. We assigned 10 dwell positions to the tandem and 4 dwell positions to right and left colpostats or ovoids to represent a typical treatment case. Typical dose delivered to point A was determined according to Manchester dosimetry system. Based on our computations, the reduction of dose to point A was shown to be at least 3%. So this effect presented by SS-FSD systems on patient dose is of concern.
Ribolsi, Michele; Lin, Ashleigh; Wardenaar, Klaas J; Pontillo, Maria; Mazzone, Luigi; Vicari, Stefano; Armando, Marco
2017-06-01
There is limited research on clinical features related to age of presentation of the Attenuated Psychosis Syndrome in children and adolescents (CAD). Based on findings in CAD with psychosis, we hypothesized that an older age at presentation of Attenuated Psychosis Syndrome would be associated with less severe symptoms and better psychosocial functioning than presentation in childhood or younger adolescence. Ninety-four CAD (age 9-18) meeting Attenuated Psychosis Syndrome criteria participated in the study. The sample was divided and compared according to the age of presentation of Attenuated Psychosis Syndrome (9-14 vs 15-18 years). The predictive value of age of Attenuated Psychosis Syndrome presentation was investigated using receiver operating characteristic (ROC)-curve calculations. The two Attenuated Psychosis Syndrome groups were homogeneous in terms of gender distribution, IQ scores and comorbid diagnoses. Older Attenuated Psychosis Syndrome patients showed better functioning and lower depressive scores. ROC curves revealed that severity of functional impairment was best predicted using an age of presentation cut-off of 14.9 years for social functioning and 15.9 years for role functioning. This study partially confirmed our hypothesis; older age at presentation of Attenuated Psychosis Syndrome was associated with less functional impairment, but age was not associated with psychotic symptoms. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Jiang, Jian; Baik, Kyungmin; Leighton, Timothy G
2011-08-01
This paper uses a finite element method (FEM) to compare predictions of the attenuation and sound speeds of acoustic modes in a fluid-filled pipe with those of the analytical model presented in the first paper in this series. It explains why, when the predictions of the earlier paper were compared with experimental data from a water-filled PMMA pipe, the uncertainties and agreement for attenuation data were worse than those for sound speed data. Having validated the FEM approach in this way, the versatility of FEM is thereafter demonstrated by modeling two practical applications which are beyond the analysis of the earlier paper. These applications model propagation in the mercury-filled steel pipework of the Spallation Neutron Source at the Oak Ridge National Laboratory (Tennessee), and in a long-standing design for acoustic sensors for use on planetary probes. The results show that strong coupling between the fluid and the solid walls means that erroneous interpretations are made of the data if they assume that the sound speed and attenuation in the fluid in the pipe are the same as those that would be measured in an infinite volume of identical fluid, assumptions which are common when such data have previously been interpreted.
NASA Astrophysics Data System (ADS)
Liao, Hengpei; Zheng, Jun; Jin, Liwei; Huang, Huan; Deng, Zigang; Shi, Yunhua; Zhou, Difan; Cardwell, David A.
2018-07-01
We report that the dynamic levitation force of bulk high temperature superconductors (HTS) in motion attenuates when exposed to an inhomogeneous magnetic field. This phenomenon has significant potential implications for the long-term stability and running performance of HTS in maglev applications. In order to suppress the attenuation of the levitation force associated with fluctuations in magnetic field, we compare the dynamic levitation performance of single grain Y-Ba-Cu-O (YBCO) and Gd-Ba-Cu-O (GdBCO) bulk superconductors with relatively high critical current densities. A bespoke HTS maglev dynamic measurement system (SCML-03) incorporating a rotating circular permanent magnet guideway was employed to simulate the movement of HTS in a varying magnetic field at different frequencies (i.e. speed of rotation). The attenuation of the levitation force during dynamic operation, which is key parameter for effective maglev operation, has been evaluated experimentally. It is found that GdBCO bulk superconductors that exhibit superior levitation force properties are more able to resist the attenuation of levitation force compared with YBCO bulk materials under the same operating conditions. This investigation indicates clearly that GdBCO bulk superconductors can play an important role in suppressing attenuation of the levitation force, therefore improving the long-term levitation performance under dynamic operating conditions. This result is potentially significant in the design and application of HTS in maglev systems.
Ouvrard, Stéphanie; Chenot, Elodie-Denise; Masfaraud, Jean-François; Schwartz, Christophe
2013-07-01
Natural attenuation processes valorization for PAH-contaminated soil remediation has gained increasing interest from site owners. A misunderstanding of this method and a small amount of data available does not encourage its development. However, monitored natural attenuation (MNA) offers a valuable, cheaper and environmentally friendly alternative to more classical options such as physico-chemical treatments (e.g., chemical oxidation, thermal desorption). The present work proposes the results obtained during a long-term natural attenuation assessment of historically contaminated industrial soils under real climatic conditions. This study was performed after a 10 year natural attenuation period on 60 off-ground lysimeters filled with contaminated soils from different former industrial sites (coking industry, manufactured gas plants) whose initial concentration of PAH varied between 380 and 2,077 mg kg(-1). The analysed parameters included leached water characterization, soil PAH concentrations, evaluation of vegetation cover quality and quantity. Results showed a good efficiency of the PAH dissipation and limited transfer of contaminants to the environment. It also highlighted the importance of the fine soil fractions in controlling PAH reactivity. PAH dissipation through water leaching was limited and did not present a significant risk for the environment. This PAH water concentration appeared however as a good indicator of overall dissipation rate, thereby illustrating the importance of pollutant availability in predicting its degradation potential.
Takeda, Atsushi; Kanno, Shingo; Sakurada, Naomi; Ando, Masaki; Oku, Naoto
2008-10-01
The role of zinc in long-term potentiation (LTP) at hippocampal mossy fiber synapses is controversial because of the contrary results obtained when using zinc chelators. On the basis of the postulation that exogenous zinc enhances the action of zinc released from mossy fibers, mossy fiber LTP after tetanic stimulation (100 Hz, 1 sec) was checked in the presence of exogenous zinc at low micromolar concentrations. Mossy fiber LTP was significantly attenuated in the presence of 5-30 microM ZnCl(2), and the amplitude of field excitatory postsynaptic potentials 60 min after tetanic stimulation was decreased to almost the basal level. Mossy fiber LTP was also attenuated in the presence of 5 microM ZnCl(2) 5 min after tetanic stimulation. The present study is the first to demonstrate that low micromolar concentrations of zinc attenuate mossy fiber LTP. When mossy fiber LTP was induced in the presence of CaEDTA and ZnAF-2 DA, a membrane-impermeable and a membrane-permeable zinc chelator, respectively, extracellular and intracellular chelation of zinc enhanced a transient posttetanic potentiation (PTP) without altering LTP. It is likely that zinc released by tetanic stimulation is immediately taken up into the mossy fibers and attenuates mossy fiber PTP. These results suggest that attenuation of PTP rather than LTP at mossy fiber synapses is a more physiological role for endogenous zinc. Targeting molecules of zinc in mossy fiber LTP seem to be different between during and after LTP induction because of the differential synaptic activity between them. (c) 2008 Wiley-Liss, Inc.
Shi, Hongli; Yang, Zhi; Luo, Shuqian
2017-01-01
The beam hardening artifact is one of most important modalities of metal artifact for polychromatic X-ray computed tomography (CT), which can impair the image quality seriously. An iterative approach is proposed to reduce beam hardening artifact caused by metallic components in polychromatic X-ray CT. According to Lambert-Beer law, the (detected) projections can be expressed as monotonic nonlinear functions of element geometry projections, which are the theoretical projections produced only by the pixel intensities (image grayscale) of certain element (component). With help of a prior knowledge on spectrum distribution of X-ray beam source and energy-dependent attenuation coefficients, the functions have explicit expressions. Newton-Raphson algorithm is employed to solve the functions. The solutions are named as the synthetical geometry projections, which are the nearly linear weighted sum of element geometry projections with respect to mean of each attenuation coefficient. In this process, the attenuation coefficients are modified to make Newton-Raphson iterative functions satisfy the convergence conditions of fixed pointed iteration(FPI) so that the solutions will approach the true synthetical geometry projections stably. The underlying images are obtained using the projections by general reconstruction algorithms such as the filtered back projection (FBP). The image gray values are adjusted according to the attenuation coefficient means to obtain proper CT numbers. Several examples demonstrate the proposed approach is efficient in reducing beam hardening artifacts and has satisfactory performance in the term of some general criteria. In a simulation example, the normalized root mean square difference (NRMSD) can be reduced 17.52% compared to a newest algorithm. Since the element geometry projections are free from the effect of beam hardening, the nearly linear weighted sum of them, the synthetical geometry projections, are almost free from the effect of beam hardening. By working out the synthetical geometry projections, the proposed approach becomes quite efficient in reducing beam hardening artifacts.
Surface motion of a fluid planet induced by impacts
NASA Astrophysics Data System (ADS)
Ni, Sidao; Ahrens, Thomas J.
2006-10-01
In order to approximate the free-surface motion of an Earth-sized planet subjected to a giant impact, we have described the excitation of body and surface waves in a spherical compressible fluid planet without gravity or intrinsic material attenuation for a buried explosion source. Using the mode summation method, we obtained an analytical solution for the surface motion of the fluid planet in terms of an infinite series involving the products of spherical Bessel functions and Legendre polynomials. We established a closed form expression for the mode summation excitation coefficient for a spherical buried explosion source, and then calculated the surface motion for different spherical explosion source radii a (for cases of a/R = 0.001 to 0.035, R is the radius of the Earth) We also studied the effect of placing the explosion source at different radii r0 (for cases of r0/R = 0.90 to 0.96) from the centre of the planet. The amplitude of the quasi-surface waves depends substantially on a/R, and slightly on r0/R. For example, in our base-line case, a/R = 0.03, r0/R = 0.96, the free-surface velocity above the source is 0.26c, whereas antipodal to the source, the peak free surface velocity is 0.19c. Here c is the acoustic velocity of the fluid planet. These results can then be applied to studies of atmosphere erosion via blow-off caused by asteroid impacts.
Prompt radiation, shielding and induced radioactivity in a high-power 160 MeV proton linac
NASA Astrophysics Data System (ADS)
Magistris, Matteo; Silari, Marco
2006-06-01
CERN is designing a 160 MeV proton linear accelerator, both for a future intensity upgrade of the LHC and as a possible first stage of a 2.2 GeV superconducting proton linac. A first estimate of the required shielding was obtained by means of a simple analytical model. The source terms and the attenuation lengths used in the present study were calculated with the Monte Carlo cascade code FLUKA. Detailed FLUKA simulations were performed to investigate the contribution of neutron skyshine and backscattering to the expected dose rate in the areas around the linac tunnel. An estimate of the induced radioactivity in the magnets, vacuum chamber, the cooling system and the concrete shield was performed. A preliminary thermal study of the beam dump is also discussed.
Prediction of aircraft sideline noise attenuation
NASA Technical Reports Server (NTRS)
Zorumski, W. E.
1978-01-01
A computational study is made using the recommended ground effect theory by Pao, Wenzel, and Oncley. It is shown that this theory adequately predicts the measured ground attenuation data by Parkin and Scholes, which is the only available large data set. It is also shown, however, that the ground effect theory does not predict the measured lateral attenuations from actual aircraft flyovers. There remain one or more important lateral effects on aircraft noise, such as sideline shielding of sources, which must be incorporated in the prediction methods. Experiments at low elevation angles (0 deg to 10 deg) and low-to-intermediate frequencies are recommended to further validate the ground effect theory.
Role of the source to building lateral separation distance in petroleum vapor intrusion.
Verginelli, Iason; Capobianco, Oriana; Baciocchi, Renato
2016-06-01
The adoption of source to building separation distances to screen sites that need further field investigation is becoming a common practice for the evaluation of the vapor intrusion pathway at sites contaminated by petroleum hydrocarbons. Namely, for the source to building vertical distance, the screening criteria for petroleum vapor intrusion have been deeply investigated in the recent literature and fully addressed in the recent guidelines issued by ITRC and U.S.EPA. Conversely, due to the lack of field and modeling studies, the source to building lateral distance received relatively low attention. To address this issue, in this work we present a steady-state vapor intrusion analytical model incorporating a piecewise first-order aerobic biodegradation limited by oxygen availability that accounts for lateral source to building separation. The developed model can be used to evaluate the role and relevance of lateral vapor attenuation as well as to provide a site-specific assessment of the lateral screening distances needed to attenuate vapor concentrations to risk-based values. The simulation outcomes showed to be consistent with field data and 3-D numerical modeling results reported in previous studies and, for shallow sources, with the screening criteria recommended by U.S.EPA for the vertical separation distance. Indeed, although petroleum vapors can cover maximum lateral distances up to 25-30m, as highlighted by the comparison of model outputs with field evidences of vapor migration in the subsurface, simulation results by this new model indicated that, regardless of the source concentration and depth, 6m and 7m lateral distances are sufficient to attenuate petroleum vapors below risk-based values for groundwater and soil sources, respectively. However, for deep sources (>5m) and for low to moderate source concentrations (benzene concentrations lower than 5mg/L in groundwater and 0.5mg/kg in soil) the above criteria were found extremely conservative as the model results indicated that for such scenarios the lateral screening distance may be set equal to zero. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lutz, Stefanie; Van Breukelen, Boris
2014-05-01
Natural attenuation can represent a complementary or alternative approach to engineered remediation of polluted sites. In this context, compound specific stable isotope analysis (CSIA) has proven a useful tool, as it can provide evidence of natural attenuation and assess the extent of in-situ degradation based on changes in isotope ratios of pollutants. Moreover, CSIA can allow for source identification and apportionment, which might help to identify major emission sources in complex contamination scenarios. However, degradation and mixing processes in aquifers can lead to changes in isotopic compositions, such that their simultaneous occurrence might complicate combined source apportionment (SA) and assessment of the extent of degradation (ED). We developed a mathematical model (stable isotope sources and sinks model; SISS model) based on the linear stable isotope mixing model and the Rayleigh equation that allows for simultaneous SA and quantification of the ED in a scenario of two emission sources and degradation via one reaction pathway. It was shown that the SISS model with CSIA of at least two elements contained in the pollutant (e.g., C and H in benzene) allows for unequivocal SA even in the presence of degradation-induced isotope fractionation. In addition, the model enables precise quantification of the ED provided degradation follows instantaneous mixing of two sources. If mixing occurs after two sources have degraded separately, the model can still yield a conservative estimate of the overall extent of degradation. The SISS model was validated against virtual data from a two-dimensional reactive transport model. The model results for SA and ED were in good agreement with the simulation results. The application of the SISS model to field data of benzene contamination was, however, challenged by large uncertainties in measured isotope data. Nonetheless, the use of the SISS model provided a better insight into the interplay of mixing and degradation processes at the field site, as it revealed the prevailing contribution of one emission source and a low overall ED. The model can be extended to a larger number of sources and sinks. It may aid in forensics and natural attenuation assessment of soil, groundwater, surface water, or atmospheric pollution.
Transistor biased amplifier minimizes diode discriminator threshold attenuation
NASA Technical Reports Server (NTRS)
Larsen, R. N.
1967-01-01
Transistor biased amplifier has a biased diode discriminator driven by a high impedance /several megohms/ current source, rather than a voltage source with several hundred ohms output impedance. This high impedance input arrangement makes the incremental impedance of the threshold diode negligible relative to the input impedance.
Narsale, Aditi A; Puppa, Melissa J; Hardee, Justin P; VanderVeen, Brandon N; Enos, Reilly T; Murphy, E Angela; Carson, James A
2016-09-13
Cancer cachexia is a complex wasting condition characterized by chronic inflammation, disrupted energy metabolism, and severe muscle wasting. While evidence in pre-clinical cancer cachexia models have determined that different systemic inflammatory inhibitors can attenuate several characteristics of cachexia, there is a limited understanding of their effects after cachexia has developed, and whether short-term administration is sufficient to reverse cachexia-induced signaling in distinctive target tissues. Pyrrolidine dithiocarbamate (PDTC) is a thiol compound having anti-inflammatory and antioxidant properties which can inhibit STAT3 and nuclear factor κB (NF-κB) signaling in mice. This study examined the effect of short-term PDTC administration to ApcMin/+ mice on cachexia-induced disruption of skeletal muscle protein turnover and liver metabolic function. At 16 weeks of age ApcMin/+ mice initiating cachexia (7% BW loss) were administered PDTC (10mg/kg bw/d) for 2 weeks. Control ApcMin/+ mice continued to lose body weight during the treatment period, while mice receiving PDTC had no further body weight decrease. PDTC had no effect on either intestinal tumor burden or circulating IL-6. In muscle, PDTC rescued signaling disrupting protein turnover regulation. PDTC suppressed the cachexia induction of STAT3, increased mTORC1 signaling and protein synthesis, and suppressed the induction of Atrogin-1 protein expression. Related to cachectic liver metabolic function, PDTC treatment attenuated glycogen and lipid content depletion independent to the activation of STAT3 and mTORC1 signaling. Overall, these results demonstrate short-term PDTC treatment to cachectic mice attenuated cancer-induced disruptions to muscle and liver signaling, and these changes were independent to altered tumor burden and circulating IL-6.
VanderVeen, Brandon N.; Enos, Reilly T.; Murphy, E. Angela; Carson, James A.
2016-01-01
Cancer cachexia is a complex wasting condition characterized by chronic inflammation, disrupted energy metabolism, and severe muscle wasting. While evidence in pre-clinical cancer cachexia models have determined that different systemic inflammatory inhibitors can attenuate several characteristics of cachexia, there is a limited understanding of their effects after cachexia has developed, and whether short-term administration is sufficient to reverse cachexia-induced signaling in distinctive target tissues. Pyrrolidine dithiocarbamate (PDTC) is a thiol compound having anti-inflammatory and antioxidant properties which can inhibit STAT3 and nuclear factor κB (NF-κB) signaling in mice. This study examined the effect of short-term PDTC administration to ApcMin/+ mice on cachexia-induced disruption of skeletal muscle protein turnover and liver metabolic function. At 16 weeks of age ApcMin/+ mice initiating cachexia (7% BW loss) were administered PDTC (10mg/kg bw/d) for 2 weeks. Control ApcMin/+ mice continued to lose body weight during the treatment period, while mice receiving PDTC had no further body weight decrease. PDTC had no effect on either intestinal tumor burden or circulating IL-6. In muscle, PDTC rescued signaling disrupting protein turnover regulation. PDTC suppressed the cachexia induction of STAT3, increased mTORC1 signaling and protein synthesis, and suppressed the induction of Atrogin-1 protein expression. Related to cachectic liver metabolic function, PDTC treatment attenuated glycogen and lipid content depletion independent to the activation of STAT3 and mTORC1 signaling. Overall, these results demonstrate short-term PDTC treatment to cachectic mice attenuated cancer-induced disruptions to muscle and liver signaling, and these changes were independent to altered tumor burden and circulating IL-6. PMID:27449092
Pinton, Gianmarco F.; Trahey, Gregg E.; Dahl, Jeremy J.
2015-01-01
A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain. This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-and-sum beamforming is used to generate point spread functions (PSFs) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is due to reverberation from near-field structures. Compared with fundamental imaging, reverberation clutter in harmonic imaging is 27.1 dB lower. Simulated tissue with uniform velocity but unchanged impedance characteristics indicates that for harmonic imaging, the primary source of degradation is phase aberration. PMID:21693410
New shielding material development for compact accelerator-driven neutron source
NASA Astrophysics Data System (ADS)
Hu, Guang; Hu, Huasi; Wang, Sheng; Han, Hetong; Otake, Y.; Pan, Ziheng; Taketani, A.; Ota, H.; Hashiguchi, Takao; Yan, Mingfei
2017-04-01
The Compact Accelerator-driven Neutron Source (CANS), especially the transportable neutron source is longing for high effectiveness shielding material. For this reason, new shielding material is researched in this investigation. The component of shielding material is designed and many samples are manufactured. Then the attenuation detection experiments were carried out. In the detections, the dead time of the detector appeases when the proton beam is too strong. To grasp the linear range and nonlinear range of the detector, two currents of proton are employed in Pb attenuation detections. The transmission ratio of new shielding material, polyethylene (PE), PE + Pb, BPE + Pb is detected under suitable current of proton. Since the results of experimental neutrons and γ-rays appear as together, the MCNP and PHITS simulations are applied to assisting the analysis. The new shielding material could reduce of the weight and volume compared with BPE + Pb and PE + Pb.
ATS-5 millimeter wave propagation measurements
NASA Technical Reports Server (NTRS)
Ippolito, L. J.
1973-01-01
Long term experimental measurements to determine the propagation characteristics of 15 and 32 GHz earth-space links and to evaluate performance characteristics of operational millimeter wave systems are reported. The ATS 5 millimeter wave experimental link experienced attenuation and fading characteristics as a function of rainfall rate and other meteorological parameters. A method of site selection for the lowest attenuation rainfall rate improved reception tremendously.
Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
de Groot-Hedlin, C
2008-09-01
Equations applicable to finite-difference time-domain (FDTD) computation of infrasound propagation through an absorbing atmosphere are derived and examined in this paper. It is shown that over altitudes up to 160 km, and at frequencies relevant to global infrasound propagation, i.e., 0.02-5 Hz, the acoustic absorption in dB/m varies approximately as the square of the propagation frequency plus a small constant term. A second-order differential equation is presented for an atmosphere modeled as a compressible Newtonian fluid with low shear viscosity, acted on by a small external damping force. It is shown that the solution to this equation represents pressure fluctuations with the attenuation indicated above. Increased dispersion is predicted at altitudes over 100 km at infrasound frequencies. The governing propagation equation is separated into two partial differential equations that are first order in time for FDTD implementation. A numerical analysis of errors inherent to this FDTD method shows that the attenuation term imposes additional stability constraints on the FDTD algorithm. Comparison of FDTD results for models with and without attenuation shows that the predicted transmission losses for the attenuating media agree with those computed from synthesized waveforms.
A mass balance approach to investigate arsenic cycling in a petroleum plume.
Ziegler, Brady A; Schreiber, Madeline E; Cozzarelli, Isabelle M; Crystal Ng, G-H
2017-12-01
Natural attenuation of organic contaminants in groundwater can give rise to a series of complex biogeochemical reactions that release secondary contaminants to groundwater. In a crude oil contaminated aquifer, biodegradation of petroleum hydrocarbons is coupled with the reduction of ferric iron (Fe(III)) hydroxides in aquifer sediments. As a result, naturally occurring arsenic (As) adsorbed to Fe(III) hydroxides in the aquifer sediment is mobilized from sediment into groundwater. However, Fe(III) in sediment of other zones of the aquifer has the capacity to attenuate dissolved As via resorption. In order to better evaluate how long-term biodegradation coupled with Fe-reduction and As mobilization can redistribute As mass in contaminated aquifer, we quantified mass partitioning of Fe and As in the aquifer based on field observation data. Results show that Fe and As are spatially correlated in both groundwater and aquifer sediments. Mass partitioning calculations demonstrate that 99.9% of Fe and 99.5% of As are associated with aquifer sediment. The sediments act as both sources and sinks for As, depending on the redox conditions in the aquifer. Calculations reveal that at least 78% of the original As in sediment near the oil has been mobilized into groundwater over the 35-year lifespan of the plume. However, the calculations also show that only a small percentage of As (∼0.5%) remains in groundwater, due to resorption onto sediment. At the leading edge of the plume, where groundwater is suboxic, sediments sequester Fe and As, causing As to accumulate to concentrations 5.6 times greater than background concentrations. Current As sinks can serve as future sources of As as the plume evolves over time. The mass balance approach used in this study can be applied to As cycling in other aquifers where groundwater As results from biodegradation of an organic carbon point source coupled with Fe reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
A mass balance approach to investigate arsenic cycling in a petroleum plume
Ziegler, Brady A.; Schreiber, Madeline E.; Cozzarelli, Isabelle M.; Ng. G.-H. Crystal,
2017-01-01
Natural attenuation of organic contaminants in groundwater can give rise to a series of complex biogeochemical reactions that release secondary contaminants to groundwater. In a crude oil contaminated aquifer, biodegradation of petroleum hydrocarbons is coupled with the reduction of ferric iron (Fe(III)) hydroxides in aquifer sediments. As a result, naturally occurring arsenic (As) adsorbed to Fe(III) hydroxides in the aquifer sediment is mobilized from sediment into groundwater. However, Fe(III) in sediment of other zones of the aquifer has the capacity to attenuate dissolved As via resorption. In order to better evaluate how long-term biodegradation coupled with Fe-reduction and As mobilization can redistribute As mass in contaminated aquifer, we quantified mass partitioning of Fe and As in the aquifer based on field observation data. Results show that Fe and As are spatially correlated in both groundwater and aquifer sediments. Mass partitioning calculations demonstrate that 99.9% of Fe and 99.5% of As are associated with aquifer sediment. The sediments act as both sources and sinks for As, depending on the redox conditions in the aquifer. Calculations reveal that at least 78% of the original As in sediment near the oil has been mobilized into groundwater over the 35-year lifespan of the plume. However, the calculations also show that only a small percentage of As (∼0.5%) remains in groundwater, due to resorption onto sediment. At the leading edge of the plume, where groundwater is suboxic, sediments sequester Fe and As, causing As to accumulate to concentrations 5.6 times greater than background concentrations. Current As sinks can serve as future sources of As as the plume evolves over time. The mass balance approach used in this study can be applied to As cycling in other aquifers where groundwater As results from biodegradation of an organic carbon point source coupled with Fe reduction.
Quantitative optical coherence tomography analysis for late in-stent restenotic lesions.
Fu, Qiang; Suzuki, Nobuaki; Kozuma, Ken; Miyagawa, Mutsuki; Nomura, Takahiro; Kawashima, Hideyuki; Shiratori, Yoshitaka; Ishikawa, Shuichi; Kyono, Hiroyuki; Isshiki, Takaaki
2015-01-01
Coronary optical coherence tomography (OCT) has the potential to identify in-stent neoatherosclerosis, which is a possible risk factor for late acute coronary events after drug-eluting stent implantation. The purpose of this study was to investigate differences between mid-term and late in-stent restenosis after stent implantation by quantitative and semiautomated tissue property analysis using OCT. In total, 1063 OCT image frames of 16 lesions in 15 patients were analyzed. This included 346 frames of 6 lesions in late in-stent restenosis, which was defined as restenosis that was not detected at 6 to 12 months but ≥ 12 months after follow-up coronary angiography. Signal attenuation was circumferentially analyzed using a dedicated semiautomated software. Attenuation was assessed along 200 lines delineated radially for analysis of the in-stent restenotic lesions (between the lumen and stent contours). All lines were anchored by the image wire to avoid artifacts resulting from wire location. Stronger signal attenuation at the frame level (2.46 ± 0.78 versus 1.47 ± 0.32, P < 0.001) and higher maximum signal intensity at the lesion level (9.19 ± 0.19 versus 8.84 ± 0.32, P = 0.018) were observed in late in-stent restenotic lesions than in mid-term in-stent restenotic lesions. OCT demonstrated stronger signal attenuation and higher maximum signal intensity in late in-stent restenotic lesions than in mid-term in-stent restenotic lesions, indicating the possibility of neoatherosclerosis.
Quantitative computed tomography of the lungs and airways in healthy nonsmoking adults.
Zach, Jordan Alexander; Newell, John D; Schroeder, Joyce; Murphy, James R; Curran-Everett, Douglas; Hoffman, Eric A; Westgate, Philip M; Han, MeiLan K; Silverman, Edwin K; Crapo, James D; Lynch, David A
2012-10-01
The purposes of this study were to evaluate the reference range of quantitative computed tomography (QCT) measures of lung attenuation and airway parameter measurements in healthy nonsmoking adults and to identify sources of variation in those measures and possible means to adjust for them. Within the COPDGene study, 92 healthy non-Hispanic white nonsmokers (29 men, 63 women; mean [SD] age, 62.7 [9.0] years; mean [SD] body mass index [BMI], 28.1 [5.1] kg/m(2)) underwent volumetric computed tomography (CT) at full inspiration and at the end of a normal expiration. On QCT analysis (Pulmonary Workstation 2, VIDA Diagnostics), inspiratory low-attenuation areas were defined as lung tissue with attenuation values -950 Hounsfield units or less on inspiratory CT (LAA(I-950)). Expiratory low-attenuation areas were defined as lung tissue -856 Hounsfield units or less on expiratory CT (LAA(E-856)). We used simple linear regression to determine the impact of age and sex on QCT parameters and multiple regression to assess the additional impact of total lung capacity and functional residual capacity measured by CT (TLC(CT) and FRC(CT)), scanner type, and mean tracheal air attenuation. Airways were evaluated using measures of airway wall thickness, inner luminal area, wall area percentage (WA%), and standardized thickness of an airway with inner perimeter of 10 mm (Pi10). Mean (SD) %LAA(I-950) was 2.0% (2.7%), and mean (SD) %LAA(E-856) was 9.2% (6.8%). Mean (SD) %LAA(I-950) was 3.6% (3.2%) in men, compared with 1.3% (2.0%) in women (P < 0.001). The %LAA(I-950) did not change significantly with age (P = 0.08) or BMI (P = 0.52). %LAA(E-856) did not show any independent relationship with age (P = 0.33), sex (P = 0.70), or BMI (P = 0.32). On multivariate analysis, %LAA(I-950) showed a direct relationship to TLC(CT) (P = 0.002) and an inverse relationship to mean tracheal air attenuation (P = 0.003), and %LAA(E-856) was related to age (P = 0.001), FRC(CT) (P = 0.007), and scanner type (P < 0.001). Multivariate analysis of segmental airways showed that inner luminal area and WA% were significantly related to TLC(CT) (P < 0.001) and age (0.006). Moreover, WA% was associated with sex (P = 0.05), axial pixel size (P = 0.03), and slice interval (P = 0.04). Lastly, airway wall thickness was strongly influenced by axial pixel size (P < 0.001). Although the attenuation characteristics of normal lung differ by age and sex, these differences do not persist on multivariate analysis. Potential sources of variation in measurement of attenuation-based QCT parameters include depth of inspiration/expiration and scanner type. Tracheal air attenuation may partially correct variation because of scanner type. Sources of variation in QCT airway measurements may include age, sex, BMI, depth of inspiration, and spatial resolution.
Du, Yao; Ma, Teng; Deng, Yamin; Shen, Shuai; Lu, Zongjie
2017-02-22
High levels of ammonium from anthropogenic sources threaten the quality of surface waters and groundwaters in some areas worldwide, but elevated ammonium levels of natural sources also have been identified. High levels of ammonium have been detected in both surface water and shallow groundwater of the Jianghan Plain, an alluvial plain of the Yangtze River. This study used N isotopes coupled with ancillary chemistry to identify ammonium in this region. Ammonium in the Tongshun River (up to 10.25 mg L -1 ) showed a sharp accumulation in the upstream and gradual attenuation in the downstream. The δ 15 N values of ammonium in the TSR were high and ranged narrowly from +12.5 to +15.4‰, suggesting an anthropogenic source that was septic effluent from industrial waste discharge. Sorption and nitrification were likely to respectively serve as the principal processes contributing to ammonium attenuation in different reaches of the downstream TSR. In shallow groundwater, high levels of ammonium (up to 14.10 mg L -1 ) occurred in a reducing environment. The narrow δ 15 N variation with low values (+2.3 to +4.5‰) in the lower aquifer suggested a natural source that was organic N mineralization. The δ 15 N values in the shallow aquitard exhibited a wide range from -1.8 to +9.4‰, owing to various sources. Two types of water in the shallow aquitard could be identified: (1) type-1 water with relatively longer residence time was similar to those in the aquifer where ammonium was mainly sourced from organic N mineralization; (2) type-2 water with shorter residence time was jointly affected by surface input, chemical attenuation and mineralization of organic N. The aquitard prevents prompt ammonium exchange between the surface and aquifer, and the shallower part of the aquitard provides a sufficient reaction time and an active reaction rate for ammonium removal.
Pulse transducer with artifact signal attenuator. [heart rate sensors
NASA Technical Reports Server (NTRS)
Cash, W. H., Jr.; Polhemus, J. T. (Inventor)
1980-01-01
An artifact signal attenuator for a pulse rate sensor is described. The circuit for attenuating background noise signals is connected with a pulse rate transducer which has a light source and a detector for light reflected from blood vessels of a living body. The heart signal provided consists of a modulated dc signal voltage indicative of pulse rate. The artifact signal resulting from light reflected from the skin of the body comprises both a constant dc signal voltage and a modulated dc signal voltage. The amplitude of the artifact signal is greater and the frequency less than that of the heart signal. The signal attenuator circuit includes an operational amplifier for canceling the artifact signal from the output signal of the transducer and has the capability of meeting packaging requirements for wrist-watch-size packages.
Effect of an external magnetic field on the mass attenuation coefficients of p-Si and n-Si
NASA Astrophysics Data System (ADS)
Yılmaz, D.; Önder, P.
2018-05-01
In this study, the mass attenuation coefficients of p-Si and n-Si semiconductor samples have been determined in an external magnetic field. The semiconductor samples were located to the external magnetic field of intensities 0.2 T, 0.4 T, 0.6 T and 0.8 T. The samples were bombarded by 59.5 keV, 80.1 keV, 121.8 keV and 244.7 keV gamma-rays emitted from Am241, Ba133 and Eu152 radioactive sources. The transmitted photons were detected by a CdTe detector. It was observed that the mass attenuation coefficients of p-Si and n-Si semiconductor samples decrease with increasing gamma-ray energy. Also, the mass attenuation coefficients of the samples increase with applying magnetic field intensity.
Goodman, Julia M; Karasek, Deborah; Anderson, Elizabeth; Catalano, Ralph A
2013-07-01
Natural selection conserves mechanisms allowing women to spontaneously abort gestations least likely to yield fit offspring. Small gestational size has been proposed as an indicator of fitness observable by maternal biology. Previous research suggests that exposure to ambient stress in utero results in more "culling" of small fetuses and therefore lower rates of small-for-gestational-age (SGA). However, African American women persistently have higher rates of SGA than non-Hispanic white women, despite experiencing more ambient stress. This paper tests whether attenuation of the stress response among highly stressed African American women, as suggested by the weathering hypothesis, may help to explain this apparent inconsistency. We apply time-series modeling to over 2 million African American and non-Hispanic white male term births in California over the period of January 1989 through December 2010. We test for the parabolic (i.e., "U" shaped) relationship, implied by an attenuated stress response, between unusually strong labor market contraction and the rate of SGA among African American term male infants, and a linear relationship among non-Hispanic whites. We find the hypothesized parabolic relationship among term male African American infants. As expected, we find a linear relationship between unexpected layoffs and the rate of SGA among term male non-Hispanic whites. These results are robust to sensitivity analyses. These results may help to explain the high rates of SGA among term male African American infants, despite greater maternal exposure to ambient stress during pregnancy. Copyright © 2013 Elsevier Ltd. All rights reserved.
COMPLETE NATURAL ATTENUATION OF A PCE AND TCE PLUME AFTER SOURCE REMOVAL
Disposal of the chlorinated solvents PCE and TCE at the Twin Cities Army Ammunition Plant (TCAAP) resulted in the contamination of groundwater in a shallow, unconsolidated sand aquifer. The resulting plume had moved over 1000 feet from the disposal source area and had impacted p...
Optical Attenuation Coefficient Meter
2016-06-22
detector 43 is measured and recorded at the Pico Scope 80 to validate the laser pulse strength (which is proportional to the output and time wave shape ...unusable. [0004] As such, there is a need for a meter, recognizing back scattering by a pulsed laser source, that would allow a propagation path which...an attenuation meter with a transmitter and receiver is provided in which the transmitter produces a laser pulse of a duration and water
Suleiman, M-S; Zacharowski, K; Angelini, G D
2008-01-01
Open-heart surgery triggers an inflammatory response that is largely the result of surgical trauma, cardiopulmonary bypass, and organ reperfusion injury (e.g. heart). The heart sustains injury triggered by ischaemia and reperfusion and also as a result of the effects of systemic inflammatory mediators. In addition, the heart itself is a source of inflammatory mediators and reactive oxygen species that are likely to contribute to the impairment of cardiac pump function. Formulating strategies to protect the heart during open heart surgery by attenuating reperfusion injury and systemic inflammatory response is essential to reduce morbidity. Although many anaesthetic drugs have cardioprotective actions, the diversity of the proposed mechanisms for protection (e.g. attenuating Ca(2+) overload, anti-inflammatory and antioxidant effects, pre- and post-conditioning-like protection) may have contributed to the slow adoption of anaesthetics as cardioprotective agents during open heart surgery. Clinical trials have suggested at least some cardioprotective effects of volatile anaesthetics. Whether these benefits are relevant in terms of morbidity and mortality is unclear and needs further investigation. This review describes the main mediators of myocardial injury during open heart surgery, explores available evidence of anaesthetics induced cardioprotection and addresses the efforts made to translate bench work into clinical practice.
Multiple Detector Optimization for Hidden Radiation Source Detection
2015-03-26
important in achieving operationally useful methods for optimizing detector emplacement, the 2-D attenuation model approach promises to speed up the...process of hidden source detection significantly. The model focused on detection of the full energy peak of a radiation source. Methods to optimize... radioisotope identification is possible without using a computationally intensive stochastic model such as the Monte Carlo n-Particle (MCNP) code
Treeby, Bradley E; Zhang, Edward Z; Thomas, Alison S; Cox, Ben T
2011-02-01
The ultrasound attenuation coefficient and dispersion from 0-70 MHz in whole human blood and its components (red blood cells and plasma) at 37°C is reported. The measurements are made using a fixed path substitution technique that exploits optical mechanisms for the generation and detection of ultrasound. This allows the measurements to cover a broad frequency range with a single source and receiver. The measured attenuation coefficient and dispersion in solutions of red blood cells and physiological saline for total haemoglobin concentrations of 10, 15 and 20 g/dL are presented. The attenuation coefficient and dispersion in whole human blood taken from four healthy volunteers by venipuncture is also reported. The power law dependence of the attenuation coefficient is shown to vary across the measured frequency range. This is due to the varying frequency dependence of the different mechanisms responsible for the attenuation. The attenuation coefficient measured at high frequencies is found to be significantly higher than that predicted by historical power law parameters. A review of the attenuation mechanisms in blood along with previously reported experimental measurements is given. Values for the sound speed and density in the tested samples are also presented. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Tieyuan; Ajo-Franklin, Jonathan B.; Daley, Thomas M.
2017-09-01
A continuous active source seismic monitoring data set was collected with crosswell geometry during CO2 injection at the Frio-II brine pilot, near Liberty, TX. Previous studies have shown that spatiotemporal changes in the P wave first arrival time reveal the movement of the injected CO2 plume in the storage zone. To further constrain the CO2 saturation, particularly at higher saturation levels, we investigate spatial-temporal changes in the seismic attenuation of the first arrivals. The attenuation changes over the injection period are estimated by the amount of the centroid frequency shift computed by local time-frequency analysis. We observe that (1) at receivers above the injection zone seismic attenuation does not change in a physical trend; (2) at receivers in the injection zone attenuation sharply increases following injection and peaks at specific points varying with distributed receivers, which is consistent with observations from time delays of first arrivals; then, (3) attenuation decreases over the injection time. The attenuation change exhibits a bell-shaped pattern during CO2 injection. Under Frio-II field reservoir conditions, White's patchy saturation model can quantitatively explain both the P wave velocity and attenuation response observed. We have combined the velocity and attenuation change data in a crossplot format that is useful for model-data comparison and determining patch size. Our analysis suggests that spatial-temporal attenuation change is not only an indicator of the movement and saturation of CO2 plumes, even at large saturations, but also can quantitatively constrain CO2 plume saturation when used jointly with seismic velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chibani, Omar; Williamson, Jeffrey F.; Todor, Dorin
2005-08-15
A Monte Carlo study is carried out to quantify the effects of seed anisotropy and interseed attenuation for {sup 103}Pd and {sup 125}I prostate implants. Two idealized and two real prostate implants are considered. Full Monte Carlo simulation (FMCS) of implants (seeds are physically and simultaneously simulated) is compared with isotropic point-source dose-kernel superposition (PSKS) and line-source dose-kernel superposition (LSKS) methods. For clinical pre- and post-procedure implants, the dose to the different structures (prostate, rectum wall, and urethra) is calculated. The discretized volumes of these structures are reconstructed using transrectal ultrasound contours. Local dose differences (PSKS versus FMCS and LSKSmore » versus FMCS) are investigated. The dose contributions from primary versus scattered photons are calculated separately. For {sup 103}Pd, the average absolute total dose difference between FMCS and PSKS can be as high as 7.4% for the idealized model and 6.1% for the clinical preprocedure implant. Similarly, the total dose difference is lower for the case of {sup 125}I: 4.4% for the idealized model and 4.6% for a clinical post-procedure implant. Average absolute dose differences between LSKS and FMCS are less significant for both seed models: 3 to 3.6% for the idealized models and 2.9 to 3.2% for the clinical plans. Dose differences between PSKS and FMCS are due to the absence of both seed anisotropy and interseed attenuation modeling in the PSKS approach. LSKS accounts for seed anisotropy but not for the interseed effect, leading to systematically overestimated dose values in comparison with the more accurate FMCS method. For both idealized and clinical implants the dose from scattered photons represent less than 1/3 of the total dose. For all studied cases, LSKS prostate DVHs overestimate D{sub 90} by 2 to 5% because of the missing interseed attenuation effect. PSKS and LSKS predictions of V{sub 150} and V{sub 200} are overestimated by up to 9% in comparison with the FMCS results. Finally, effects of seed anisotropy and interseed attenuation must be viewed in the context of other significant sources of dose uncertainty, namely seed orientation, source misplacement, prostate morphological changes and tissue heterogeneity.« less
NASA Astrophysics Data System (ADS)
Wellen, Christopher; Arhonditsis, George B.; Labencki, Tanya; Boyd, Duncan
2012-10-01
Regression-type, hybrid empirical/process-based models (e.g., SPARROW, PolFlow) have assumed a prominent role in efforts to estimate the sources and transport of nutrient pollution at river basin scales. However, almost no attempts have been made to explicitly accommodate interannual nutrient loading variability in their structure, despite empirical and theoretical evidence indicating that the associated source/sink processes are quite variable at annual timescales. In this study, we present two methodological approaches to accommodate interannual variability with the Spatially Referenced Regressions on Watershed attributes (SPARROW) nonlinear regression model. The first strategy uses the SPARROW model to estimate a static baseline load and climatic variables (e.g., precipitation) to drive the interannual variability. The second approach allows the source/sink processes within the SPARROW model to vary at annual timescales using dynamic parameter estimation techniques akin to those used in dynamic linear models. Model parameterization is founded upon Bayesian inference techniques that explicitly consider calibration data and model uncertainty. Our case study is the Hamilton Harbor watershed, a mixed agricultural and urban residential area located at the western end of Lake Ontario, Canada. Our analysis suggests that dynamic parameter estimation is the more parsimonious of the two strategies tested and can offer insights into the temporal structural changes associated with watershed functioning. Consistent with empirical and theoretical work, model estimated annual in-stream attenuation rates varied inversely with annual discharge. Estimated phosphorus source areas were concentrated near the receiving water body during years of high in-stream attenuation and dispersed along the main stems of the streams during years of low attenuation, suggesting that nutrient source areas are subject to interannual variability.
Sadeghi, Mohammad Hosein; Mehdizadeh, Amir; Faghihi, Reza; Moharramzadeh, Vahed; Meigooni, Ali Soleimani
2018-01-01
Purpose The dosimetry procedure by simple superposition accounts only for the self-shielding of the source and does not take into account the attenuation of photons by the applicators. The purpose of this investigation is an estimation of the effects of the tandem and ovoid applicator on dose distribution inside the phantom by MCNP5 Monte Carlo simulations. Material and methods In this study, the superposition method is used for obtaining the dose distribution in the phantom without using the applicator for a typical gynecological brachytherapy (superposition-1). Then, the sources are simulated inside the tandem and ovoid applicator to identify the effect of applicator attenuation (superposition-2), and the dose at points A, B, bladder, and rectum were compared with the results of superposition. The exact dwell positions, times of the source, and positions of the dosimetry points were determined in images of a patient and treatment data of an adult woman patient from a cancer center. The MCNP5 Monte Carlo (MC) code was used for simulation of the phantoms, applicators, and the sources. Results The results of this study showed no significant differences between the results of superposition method and the MC simulations for different dosimetry points. The difference in all important dosimetry points was found to be less than 5%. Conclusions According to the results, applicator attenuation has no significant effect on the calculated points dose, the superposition method, adding the dose of each source obtained by the MC simulation, can estimate the dose to points A, B, bladder, and rectum with good accuracy. PMID:29619061
Ficaro, E P; Fessler, J A; Rogers, W L; Schwaiger, M
1994-04-01
This study compares the ability of 241Am and 99mTc to estimate 201Tl attenuation maps while minimizing the loss in the precision of the emission data. A triple-head SPECT system with either an 241Am or 99mTc line source opposite a fan-beam collimator was used to estimate attenuation maps of the thorax of an anthropomorphic phantom. Linear attenuation values at 75 keV for 201Tl were obtained by linear extrapolation of the measured values from 241Am and 99mTc. Lung and soft-tissue estimates from both isotopes showed excellent agreement to within 3% of the measured values for 201Tl. Linear extrapolation did not yield satisfactory estimates for bone from either 241Am (+11.7%) or 99mTc (-15.3%). Patient data were used to estimate the dependence of crosstalk on patient size. Contamination from 201Tl in the transmission window was 5-6 times greater for 241Am compared to 99mTc, while the contamination in the 201Tl data in the transmission-emission detector head (head 1) was 4-5 times greater for 99mTc compared to 241Am. No contamination was detected in the 201Tl emission data of heads 2 and 3 from 241Am, whereas the 99mTc produced a small crosstalk component giving a signal-to-crosstalk ratio near 20:1. Measurements with a fillable chest phantom estimated the mean error introduced into the data from the removal of the crosstalk. Based on the measured data, 241Am is a suitable transmission source for simultaneous transmission-emission tomography for 201Tl cardiac studies.
McPherson, B.F.; Miller, R.L.
1987-01-01
The relative contribution of different components to the attenuation of photosynthetically active radiation was determined in the Charlotte Harbor estuarine system based on laboratory and in situ measurements. Agreement between laboratory and in situ measurements of the attenuation coefficient (kt) was good (r2 = 0??92). For all in situ measurements (n = 100), suspended, non-chlorophyll matter accounted for an average of 72% of kt, dissolved matter accounted for 21%, suspended chlorophyll for 4%, and water for the remaining 3%. For individual determinations, suspended non-chlorophyll matter, dissolved matter, suspended chlorophyll, and water, each accounted for as much as 99%, 79%, 21%, and 18% of kt. Attenuation by suspended matter was greatest near the mouth of the northern tidal rivers and was variable over the rest of the estuarine system. Attenuation by dissolved matter was greatest in the brackish tidal rivers and decreased with increasing salinity. Attenuation due to dissolved matter was positively correlated with water color. The source of the color was basin runoff. Wavelength transmittance changed along the salinity gradient. Maximum transmittance shifted from 500 to 600 nm in gulf waters to 650 to 700 nm in colored, brackish waters. Dissolved matter was primarily responsible for the large attenuation at short wavelengths (400-500 nm). ?? 1987.
Regional Earthquake Shaking and Loss Estimation
NASA Astrophysics Data System (ADS)
Sesetyan, K.; Demircioglu, M. B.; Zulfikar, C.; Durukal, E.; Erdik, M.
2009-04-01
This study, conducted under the JRA-3 component of the EU NERIES Project, develops a methodology and software (ELER) for the rapid estimation of earthquake shaking and losses in the Euro-Mediterranean region. This multi-level methodology developed together with researchers from Imperial College, NORSAR and ETH-Zurich is capable of incorporating regional variability and sources of uncertainty stemming from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. GRM Risk Management, Inc. of Istanbul serves as sub-contractor tor the coding of the ELER software. The methodology encompasses the following general steps: 1. Finding of the most likely location of the source of the earthquake using regional seismotectonic data base and basic source parameters, and if and when possible, by the estimation of fault rupture parameters from rapid inversion of data from on-line stations. 2. Estimation of the spatial distribution of selected ground motion parameters through region specific ground motion attenuation relationships and using shear wave velocity distributions.(Shake Mapping) 4. Incorporation of strong ground motion and other empirical macroseismic data for the improvement of Shake Map 5. Estimation of the losses (damage, casualty and economic) at different levels of sophistication (0, 1 and 2) that commensurate with the availability of inventory of human built environment (Loss Mapping) Both Level 0 (similar to PAGER system of USGS) and Level 1 analyses of the ELER routine are based on obtaining intensity distributions analytically and estimating total number of casualties and their geographic distribution either using regionally adjusted intensity-casualty or magnitude-casualty correlations (Level 0) of using regional building inventory data bases (Level 1). Level 0 analysis is similar to the PAGER system being developed by USGS. For given basis source parameters the intensity distributions can be computed using: a)Regional intensity attenuation relationships, b)Intensity correlations with attenuation relationship based PGV, PGA, and Spectral Amplitudes and, c)Intensity correlations with synthetic Fourier Amplitude Spectrum. In Level 1 analysis EMS98 based building vulnerability relationships are used for regional estimates of building damage and the casualty distributions. Results obtained from pilot applications of the Level 0 and Level 1 analysis modes of the ELER software to the 1999 M 7.4 Kocaeli, 1995 M 6.1 Dinar, and 2007 M 5.4 Bingol earthquakes in terms of ground shaking and losses are presented and comparisons with the observed losses are made. The regional earthquake shaking and loss information is intented for dissemination in a timely manner to related agencies for the planning and coordination of the post-earthquake emergency response. However the same software can also be used for scenario earthquake loss estimation and related Monte-Carlo type simulations.
Impact Of Landfill Closure Designs On Long-Term Natural Attenuation Of Chlorinated Hydrocarbons
2002-03-01
chlorinated aliphatic hydrocarbons (CAHs) (i.e., chlorinated solvents) in landfills and landfill- leachate -contaminated groundwater. The project was divided...attenuation rather than expensive leachate collection and treatment systems. At some landfills, surface infiltration may accelerate the leaching of...the “source” and reduce the time required for biological stabilization of the landfilled waste. Recirculation of landfill leachate could also be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, P.V.; Borns, D.J.
1997-11-01
Natural attenuation is increasingly applied to remediate contaminated soils and ground waters. Roughly 25% of Superfund groundwater remedies in 1995 involved some type of monitored natural attenuation, compared to almost none 5 years ago. Remediation by natural attenuation (RNA) requires clear evidence that contaminant levels are decreasing sufficiently over time, a defensible explanation of the attenuation mechanism, long-term monitoring, and a contingency plan at the very least. Although the primary focus of implementation has to date been the biodegradation of organic contaminants, there is a wealth of scientific evidence that natural processes reduce the bioavailability of contaminant metals and radionuclides.more » Natural attenuation of metals and radionuclides is likely to revolve around sorption, solubility, biologic uptake and dilution controls over contaminant availability. Some of these processes can be applied to actively remediate sites. Others, such as phytoremediation, are likely to be ineffective. RNA of metals and radionuclides is likely to require specialized site characterization to construct contaminant and site-specific conceptual models of contaminant behavior. Ideally, conceptual models should be refined such that contaminant attenuation can be confidently predicted into the future. The technical approach to RNA of metals and radionuclides is explored here.« less
NASA Astrophysics Data System (ADS)
García-Yeguas, A.; Sánchez-Alzola, A.; De Siena, L.; Prudencio, J.; Díaz-Moreno, A.; Ibáñez, J. M.
2018-03-01
We present a P-wave scattering image of the volcanic structures under Tenerife Island using the autocorrelation functions of P-wave vertical velocity fluctuations. We have applied a cluster analysis to total quality factor attenuation ( {Q}_t^{-1} ) and scattering quality factor attenuation ( {Q}_{PSc}^{-1} ) images to interpret the structures in terms of intrinsic and scattering attenuation variations on a 2D plane, corresponding to a depth of 2000 m, and check the robustness of the scattering imaging. The results show that scattering patterns are similar to total attenuation patterns in the south of the island. There are two main areas where patterns differ: at Cañadas-Teide-Pico Viejo Complex, high total attenuation and average-to-low scattering values are observed. We interpret the difference as induced by intrinsic attenuation. In the Santiago Ridge Zone (SRZ) region, high scattering values correspond to average total attenuation. In our interpretation, the anomaly is induced by an extended scatterer, geometrically related to the surficial traces of Garachico and El Chinyero historical eruptions and the area of highest seismic activity during the 2004-2008 seismic crises.
NASA Astrophysics Data System (ADS)
Rengarajan, Rajagopalan
Moderate resolution remote sensing data offers the potential to monitor the long and short term trends in the condition of the Earth's resources at finer spatial scales and over longer time periods. While improved calibration (radiometric and geometric), free access (Landsat, Sentinel, CBERS), and higher level products in reflectance units have made it easier for the science community to derive the biophysical parameters from these remotely sensed data, a number of issues still affect the analysis of multi-temporal datasets. These are primarily due to sources that are inherent in the process of imaging from single or multiple sensors. Some of these undesired or uncompensated sources of variation include variation in the view angles, illumination angles, atmospheric effects, and sensor effects such as Relative Spectral Response (RSR) variation between different sensors. The complex interaction of these sources of variation would make their study extremely difficult if not impossible with real data, and therefore, a simulated analysis approach is used in this study. A synthetic forest canopy is produced using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model and its measured BRDFs are modeled using the RossLi canopy BRDF model. The simulated BRDF matches the real data to within 2% of the reflectance in the red and the NIR spectral bands studied. The BRDF modeling process is extended to model and characterize the defoliation of a forest, which is used in factor sensitivity studies to estimate the effect of each factor for varying environment and sensor conditions. Finally, a factorial experiment is designed to understand the significance of the sources of variation, and regression based analysis are performed to understand the relative importance of the factors. The design of experiment and the sensitivity analysis conclude that the atmospheric attenuation and variations due to the illumination angles are the dominant sources impacting the at-sensor radiance.
NASA Astrophysics Data System (ADS)
Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato
2017-02-01
In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a second-order reaction rate constant. Furthermore, the model accounts for the HPRB lifetime as a function of the oxidant consumption by reaction with upward vapors and its progressive dissolution and leaching by infiltrating water. Simulation results by this new model closely replicate previous lab-scale tests carried out on trichloroethylene (TCE) using a HPRB containing a mixture of potassium permanganate, water and sand. In view of field applications, design criteria, in terms of the minimum HPRB thickness required to attenuate vapors at acceptable risk-based levels and the expected HPRB lifetime, are determined from site-specific conditions such as vapor source concentration, water infiltration rate and HPRB mixture. The results clearly show the field-scale feasibility of this alternative vapor mitigation system for the treatment of chlorinated solvents. Depending on the oxidation kinetic of the target contaminant, a 1 m thick HPRB can ensure an attenuation of vapor concentrations of orders of magnitude up to 20 years, even for vapor source concentrations up to 10 g/m3. A demonstrative application for representative contaminated site conditions also shows the feasibility of this mitigation system from an economical point of view with capital costs potentially somewhat lower than those of other remediation options, such as soil vapor extraction systems. Overall, based on the experimental and theoretical evaluation thus far, field-scale tests are warranted to verify the potential and cost-effectiveness of HPRBs for vapor mitigation control under various conditions of application.
Natural Remediation at Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, C. M.; Van Pelt, R.
2002-02-25
Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With propermore » precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are underway.« less
Controlled Source 4D Seismic Imaging
NASA Astrophysics Data System (ADS)
Luo, Y.; Morency, C.; Tromp, J.
2009-12-01
Earth's material properties may change after significant tectonic events, e.g., volcanic eruptions, earthquake ruptures, landslides, and hydrocarbon migration. While many studies focus on how to interpret observations in terms of changes in wavespeeds and attenuation, the oil industry is more interested in how we can identify and locate such temporal changes using seismic waves generated by controlled sources. 4D seismic analysis is indeed an important tool to monitor fluid movement in hydrocarbon reservoirs during production, improving fields management. Classic 4D seismic imaging involves comparing images obtained from two subsequent seismic surveys. Differences between the two images tell us where temporal changes occurred. However, when the temporal changes are small, it may be quite hard to reliably identify and characterize the differences between the two images. We propose to back-project residual seismograms between two subsequent surveys using adjoint methods, which results in images highlighting temporal changes. We use the SEG/EAGE salt dome model to illustrate our approach. In two subsequent surveys, the wavespeeds and density within a target region are changed, mimicking possible fluid migration. Due to changes in material properties induced by fluid migration, seismograms recorded in the two surveys differ. By back propagating these residuals, the adjoint images identify the location of the affected region. An important issue involves the nature of model. For instance, are we characterizing only changes in wavespeed, or do we also consider density and attenuation? How many model parameters characterize the model, e.g., is our model isotropic or anisotropic? Is acoustic wave propagation accurate enough or do we need to consider elastic or poroelastic effects? We will investigate how imaging strategies based upon acoustic, elastic and poroelastic simulations affect our imaging capabilities.
Shallow bedrock limits groundwater seepage-based headwater climate refugia
Briggs, Martin A.; Lane, John W.; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.
2018-01-01
Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger-scale climate refugia for cold water fish species, even with strong groundwater discharge.
MR Imaging-Guided Attenuation Correction of PET Data in PET/MR Imaging.
Izquierdo-Garcia, David; Catana, Ciprian
2016-04-01
Attenuation correction (AC) is one of the most important challenges in the recently introduced combined PET/magnetic resonance (MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients of the tissues and other components located in the PET field of view. MR-AC methods can be divided into 3 categories: segmentation, atlas, and PET based. This review provides a comprehensive list of the state-of-the-art MR-AC approaches and their pros and cons. The main sources of artifacts are presented. Finally, this review discusses the current status of MR-AC approaches for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J. Michael; Hanson, Glen R; Fleckenstein, Annette E
2015-01-01
Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats 1): attenuates short-term dopaminergic damage induced by methamphetamine and 2) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4 × 7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration. PMID:26871405
Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J Michael; Hanson, Glen R; Fleckenstein, Annette E
2016-08-01
Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats (a) attenuates short-term dopaminergic damage induced by methamphetamine and (b) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4×7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration.
NASA Astrophysics Data System (ADS)
Sakala, E.; Fourie, F.; Gomo, M.; Coetzee, H.
2018-01-01
In the last 20 years, the popular mineral systems approach has been used successfully for the exploration of various mineral commodities at various scales owing to its scientific soundness, cost effectiveness and simplicity in mapping the critical processes required for the formation of deposits. In the present study this approach was modified for the assessment of groundwater vulnerability. In terms of the modified approach, water drives the pollution migration processes, with various analogies having been derived from the mineral systems approach. The modified approach is illustrated here by the discussion of a case study of acid mine drainage (AMD) pollution in the Witbank, Ermelo and Highveld coalfields of the Mpumalanga and KwaZulu-Natal Provinces in South Africa. Many AMD cases have been reported in these provinces in recent years and are a cause of concern for local municipalities, mining and environmental agencies. In the Witbank, Ermelo and Highveld coalfields, several areas have been mined out while mining has not yet started in others, hence the need to identify groundwater regions prone to AMD pollution in order to avoid further impacts on the groundwater resources. A knowledge-based fuzzy expert system was built using vulnerability factors (energy sources, ligands sources, pollutant sources, transportation pathways and traps) to generate a groundwater vulnerability model of the coalfields. Highly vulnerable areas were identified in Witbank coalfield and the eastern part of the Ermelo coalfield which are characterised by the presence of AMD sources, good subsurface transport coupled with poor AMD pollution trapping properties. The results from the analysis indicate significant correlations between model values and both groundwater sulphate concentrations as well as pH. This shows that the proposed approach can indeed be used as an alternative to traditional methods of groundwater vulnerability assessment. The methodology only considers the AMD pollution attenuation and migration at a regional scale and does not account for local-scale sources of pollution and attenuation. Further research to refine the approach may include the incorporation of groundwater flow direction, rock-pollution reaction time, and temporal datasets for the future prediction of groundwater vulnerability. The approach may be applied to other coalfields to assess its robustness to changing hydrogeological conditions.
Design and Development of a Single Channel RSNS Direction Finder
2009-03-01
CH2 12VDC 2.5A, and CH3 -12VDC 0.2A Cable 19 Pasternek Cable RG-306 Variable Attenuator 1 Telonic Altair Attenuation Model 8140S Demodulator Board...information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and...Reduction Project (0704-0188) Washington DC 20503. 1 . AGENCY USE ONLY (Leave blank) 2. REPORT DATE March 2009 3. REPORT TYPE AND DATES COVERED
A Method for Optimizing Non-Axisymmetric Liners for Multimodal Sound Sources
NASA Technical Reports Server (NTRS)
Watson, W. R.; Jones, M. G.; Parrott, T. L.; Sobieski, J.
2002-01-01
Central processor unit times and memory requirements for a commonly used solver are compared to that of a state-of-the-art, parallel, sparse solver. The sparse solver is then used in conjunction with three constrained optimization methodologies to assess the relative merits of non-axisymmetric versus axisymmetric liner concepts for improving liner acoustic suppression. This assessment is performed with a multimodal noise source (with equal mode amplitudes and phases) in a finite-length rectangular duct without flow. The sparse solver is found to reduce memory requirements by a factor of five and central processing time by a factor of eleven when compared with the commonly used solver. Results show that the optimum impedance of the uniform liner is dominated by the least attenuated mode, whose attenuation is maximized by the Cremer optimum impedance. An optimized, four-segmented liner with impedance segments in a checkerboard arrangement is found to be inferior to an optimized spanwise segmented liner. This optimized spanwise segmented liner is shown to attenuate substantially more sound than the optimized uniform liner and tends to be more effective at the higher frequencies. The most important result of this study is the discovery that when optimized, a spanwise segmented liner with two segments gives attenuations equal to or substantially greater than an optimized axially segmented liner with the same number of segments.
Inferring the thermal structure of the Panama Basin by seismic attenuation
NASA Astrophysics Data System (ADS)
Vargas-Jimenez, C. A.; Pulido, J. E.; Hobbs, R. W.
2017-12-01
Using recordings of earthquakes on Oceanic Bottom Seismographs and onshore stations on the coastal margins of Colombia, Panama, and Ecuador, we discriminate intrinsic and scattering attenuation processes in the upper lithosphere of the Panama Basin. The tomographic images of the derived coda-Q values are correlated with estimates of Curie Point Depth and measured and theoretical heat flow. Our study reveals three tectonic domains where magmatic/hydrothermal activity or lateral variations of the lithologic composition in the upper lithosphere can account for the modelled thermal structure and the anelasticity. We find that the Costa Rica Ridge and the Panama Fracture Zone are significant tectonic features in the study area. We interpret a large and deep intrinsic attenuation anomaly as related to the heat source at this ocean spreading center and show how interactions with regional fault systems cause contrasting attenuation anomalies.
Thermal structure of the Panama Basin by analysis of seismic attenuation
NASA Astrophysics Data System (ADS)
Vargas, Carlos A.; Pulido, José E.; Hobbs, Richard W.
2018-04-01
Using recordings of earthquakes on Oceanic Bottom Seismographs and onshore stations on the coastal margins of Colombia, Panama, and Ecuador, we estimate attenuation parameters in the upper lithosphere of the Panama Basin. The tomographic images of the derived coda-Q values are correlated with estimates of Curie Point Depth and measured and theoretical heat flow. Our study reveals three tectonic domains where magmatic/hydrothermal activity or lateral variations of the lithologic composition in the upper lithosphere can account for the modeled thermal structure and the anelasticity. We find that the Costa Rica Ridge and the Panama Fracture Zone are significant tectonic features probably related to thermal anomalies detected in the study area. We interpret a large and deep intrinsic attenuation anomaly as related to the heat source at the Costa Rica Ridge and show how interactions with regional fault systems cause contrasting attenuation anomalies.
Nep-Akari Evolution with Redshift of Dust Attenuation in 8 ㎛ Selected Galaxies
NASA Astrophysics Data System (ADS)
Buat, V.; Oi, N.; Burgarella, D.; Malek, K.; Matsuhara, H.; Murata, K.; Serjeant, S.; Takeuchi, T. T.; Malkan, M.; Pearson, C.; Wada, T.
2017-03-01
We built a 8um selected sample of galaxies in the NEP-AKARI field by defining 4 redshift bins with the four AKARI bands at 11, 15, 18 and 24 microns (0.15
NASA Astrophysics Data System (ADS)
Klaessens, John H. G. M.; Hopman, Jeroen C. W.; Liem, K. Djien; de Roode, Rowland; Verdaasdonk, Rudolf M.; Thijssen, Johan M.
2008-02-01
Continuous wave Near Infrared Spectroscopy is a well known non invasive technique for measuring changes in tissue oxygenation. Absorption changes (ΔO2Hb and ΔHHb) are calculated from the light attenuations using the modified Lambert Beer equation. Generally, the concentration changes are calculated relative to the concentration at a starting point in time (delta time method). It is also possible, under certain assumptions, to calculate the concentrations by subtracting the equations at different wavelengths (delta wavelength method). We derived a new algorithm and will show the possibilities and limitations. In the delta wavelength method, the assumption is that the oxygen independent attenuation term will be eliminated from the formula even if its value changes in time, we verified the results with the classical delta time method using extinction coefficients from different literature sources for the wavelengths 767nm, 850nm and 905nm. The different methods of calculating concentration changes were applied to the data collected from animal experiments. The animals (lambs) were in a stable normoxic condition; stepwise they were made hypoxic and thereafter they returned to normoxic condition. The two algorithms were also applied for measuring two dimensional blood oxygen saturation changes in human skin tissue. The different oxygen saturation levels were induced by alterations in the respiration and by temporary arm clamping. The new delta wavelength method yielded in a steady state measurement the same changes in oxy and deoxy hemoglobin as the classical delta time method. The advantage of the new method is the independence of eventual variation of the oxygen independent attenuations in time.
Representative Elementary Length to Measure Soil Mass Attenuation Coefficient
Borges, J. A. R.; Pires, L. F.; Costa, J. C.
2014-01-01
With increasing demand for better yield in agricultural areas, soil physical property representative measurements are more and more essential. Nuclear techniques such as computerized tomography (CT) and gamma-ray attenuation (GAT) have been widely employed with this purpose. The soil mass attenuation coefficient (μ s) is an important parameter for CT and GAT analysis. When experimentally determined (μ es), the use of suitable sized samples enable to evaluate it precisely, as well as to reduce measurement time and costs. This study investigated the representative elementary length (REL) of sandy and clayey soils for μ es measurements. Two radioactive sources were employed (241Am and 137Cs), three collimators (2–4 mm diameters), and 14 thickness (x) samples (2–15 cm). Results indicated ideal thickness intervals of 12–15 and 2–4 cm for the sources 137Cs and 241Am, respectively. The application of such results in representative elementary area (REA) evaluations in clayey soil clods via CT indicated that μ es average values obtained for x > 4 cm and source 241Am might induce to the use of samples which are not large enough for soil bulk density evaluations (ρ s). As a consequence, ρ s might be under- or overestimated, generating inaccurate conclusions about the physical quality of the soil under study. PMID:24672338
Pressure fluctuations and time scales in turbulent channel flow
NASA Astrophysics Data System (ADS)
Septham, Kamthon; Morrison, Jonathan; Diwan, Sourabh
2015-11-01
Pressure fluctuations in turbulent channel flow subjected to globally stabilising linear feedback control are investigated at Reτ = 400 . The passivity-based control is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al. Phys. Fluids 2011). The linear control operates via vU' ; the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The responses of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control are investigated using the Green's function representations. It demonstrates that the linear control operates via the linear source terms of the Poisson equation for pressure fluctuations. Landahl's timescales of the minimal flow unit (MFU) in turbulent channel flow are examined at y+ = 20 . It shows that the timescales of MFU agree well with the theoretical values proposed by Landahl (1993). Therefore, the effectiveness of the linear control to attenuate wall turbulence is explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is significantly shorter than both the nonlinear and viscous timescales.
Cooling of the North Atlantic by Saharan Dust
NASA Technical Reports Server (NTRS)
Lau, K. M.; Kim, K. M.
2007-01-01
Using aerosol optical depth, sea surface temperature, top-of-the-atmosphere solar radiation flux, and oceanic mixed-layer depth from diverse data sources that include NASA satellites, NCEP reanalysis, in situ observations, as well as long-term dust records from Barbados, we examine the possible relationships between Saharan dust and Atlantic sea surface temperature. Results show that the estimated anomalous cooling pattern of the Atlantic during June 2006 relative to June 2005 due to attenuation of surface solar radiation by Saharan dust remarkably resemble observations, accounting for approximately 30-40% of the observed change in sea surface temperature. Historical data analysis show that there is a robust negative correlation between atmospheric dust loading and Atlantic SST consistent with the notion that increased (decreased) Saharan dust is associated with cooling (warming) of the Atlantic during the early hurricane season (July- August-September).
A study of neutron leakage through an Fe shield at an accelerator.
Elwyn, A J; Cossairt, J D
1986-12-01
The spectrum of neutrons, produced in the interactions of hadrons with energies up to several hundred GeV, that are emitted through a large Fe electro magnet has been determined by use of a multisphere spectrometer both before and after the shielding was augmented with concrete. The existence of leakage neutrons at energies of approximately 0.005-1.0 MeV was verified in the initial configuration, and found to be completely eliminated in the spectrum obtained after the concrete was added. The quality factor of the radiation field was measured; the values are reduced from about six to three with the extra shielding. Additional fluence measurements in the environs of the magnet can be interpreted in terms of a skyshine mechanism with source and attenuation parameters consistent with the energies and intensity of the leakage neutrons.
Samiksha, Shilpi; Sunder Raman, Ramya; Nirmalkar, Jayant; Kumar, Samresh; Sirvaiya, Rohit
2017-03-01
Size classified (PM 10 and PM 2.5 ) paved and unpaved road dust chemical source profiles, optical attenuation and potential health risk from exposure to these sources are reported in this study. A total of 45 samples from 9 paved road and 6 unpaved road sites located in and around Bhopal were re-suspended in the laboratory, collected onto filter substrates and subjected to a variety of chemical analyses. In general, road dust was enriched (compared to upper continental crustal abundance) in anthropogenic pollutants including Sb, Cu, Zn, Co, and Pb. Organic and elemental carbon (OC/EC) in PM 10 and PM 2.5 size fractions were 50-75% higher in paved road dust compared to their counterparts in unpaved road dust. Further, the results suggest that when it is not possible to include carbon fractions in source profiles, the inclusion of optical attenuation is likely to enhance the source resolution of receptor models. Additionally, profiles obtained in this study were not very similar to the US EPA SPECIATE composite profiles for PM 10 and PM 2.5 , for both sources. Specifically, the mass fractions of Si, Fe, OC, and EC were most different between SPECIATE composite profiles and Bhopal composite profiles. An estimate of health indicators for Bhopal road dust revealed that although Cr was only marginally enriched, its inhalation may pose a health risk. The estimates of potential lifetime incremental cancer risk induced by the inhalation of Cr in paved and unpaved road dust (PM 10 and PM 2.5 ) for both adults and children were higher than the baseline values of acceptable risk. These results suggest that road dust Cr induced carcinogenic risk should be further investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prediction of slant path rain attenuation statistics at various locations
NASA Technical Reports Server (NTRS)
Goldhirsh, J.
1977-01-01
The paper describes a method for predicting slant path attenuation statistics at arbitrary locations for variable frequencies and path elevation angles. The method involves the use of median reflectivity factor-height profiles measured with radar as well as the use of long-term point rain rate data and assumed or measured drop size distributions. The attenuation coefficient due to cloud liquid water in the presence of rain is also considered. Absolute probability fade distributions are compared for eight cases: Maryland (15 GHz), Texas (30 GHz), Slough, England (19 and 37 GHz), Fayetteville, North Carolina (13 and 18 GHz), and Cambridge, Massachusetts (13 and 18 GHz).
Analysis of Neural Systems Involved in Modulation of Memory Storage
1990-01-01
modulating effects of oxotremorine and scopolomine (a cholinergic agonist and antagonist, respec- tively) are blocked by lesions of the ST (Introini-Collison...Introini-Collison, I.B., Arai, Y. and McGaugh, J.L. Stria terminalis lesions attenuate the effects of posttraining oxotremorine and atropine on reten- tion...McGaugh, J.L. and Izquierdo, I. Amnesia induced by short-term treatment with ethanol: Attenuation by pre-test oxotremorine . Pharmacol- ogy
Siles, José A; Margesin, Rosa
2018-05-01
The study of microbial communities involved in soil bioremediation is important to identify the specific microbial characteristics that determine improved decontamination rates. Here, we characterized bacterial, archaeal, and fungal communities in terms of (i) abundance (using quantitative PCR) and (ii) taxonomic diversity and structure (using Illumina amplicon sequencing) during the bioremediation of long-term hydrocarbon-contaminated soil from an Alpine former military site during 15 weeks comparing biostimulation (inorganic NPK fertilization) vs. natural attenuation and considering the effect of temperature (10 vs. 20 °C). Although a considerable amount of total petroleum hydrocarbon (TPH) loss could be attributed to natural attenuation, significantly higher TPH removal rates were obtained with NPK fertilization and at increased temperature, which were related to the stimulation of the activities of indigenous soil microorganisms. Changing structures of bacterial and fungal communities significantly explained shifts in TPH contents in both natural attenuation and biostimulation treatments at 10 and 20 °C. However, archaeal communities, in general, and changing abundances and diversities in bacterial and fungal communities did not play a decisive role on the effectiveness of soil bioremediation. Gammaproteobacteria and Bacteroidia classes, within bacterial community, and undescribed/novel groups, within fungal community, proved to be actively involved in TPH removal in natural attenuation and biostimulation at both temperatures.
Batool, Zehra; Agha, Faiza; Ahmad, Saara; Liaquat, Laraib; Tabassum, Saiqa; Khaliq, Saima; Anis, Lubna; Sajid, Irfan; Emad, Shaista; Perveen, Tahira; Haider, Saida
2017-01-01
Excessive exposure of cadmium which is regarded as a neurotoxin can stimulate aging process by inducing abnormality in neuronal function. It has been reported that supplementation of almond and walnut attenuate age-related memory loss. Present study was designed to investigate the weekly administration of cadmium for one month on learning and memory function with relation to cholinergic activity. Cadmium was administered at the dose of 50 mg/kg/week. Whereas, almond and walnut was supplemented at the dose of 400 mg/kg/day along with cadmium administration to separate set of rats. At the end of experiment, memory function was assessed by Morris water maze, open field test and novel object recognition test. Results of the present study showed that cadmium administration significantly reduced memory retention. Reduced acetylcholine levels and elevated acetyl cholinesterase activity were also observed in frontal cortex and hippocampus of cadmium treated rats. Malondialdehyde levels were also significantly increased following the administration of cadmium. Daily supplementation of almond and walnut for 28 days significantly attenuated cadmium-induced memory impairment in rats. Results of the present study are discussed in term of cholinergic activity in cadmium-induced memory loss and its attenuation by nuts supplementation in rats.
2008-09-01
method correlate slightly with global Vs30 measurements . While the coda-source and amplitude ratio methods do not correlate with Vs30 measurements ...Ford et al., 2008), we compared 1-D methods to measure QLg and attempted to assess the error associated with the results. The assessment showed the...reverse two-station (RTS), source-pair/receiver-pair (SPRP), and the new coda-source normalization (CS) methods to measure Q of the regional phase, Lg
Ranalli, Anthony J.; Macalady, Donald L.
2010-01-01
We reviewed published studies from primarily glaciated regions in the United States, Canada, and Europe of the (1) transport of nitrate from terrestrial ecosystems to aquatic ecosystems, (2) attenuation of nitrate in the riparian zone of undisturbed and agricultural watersheds, (3) processes contributing to nitrate attenuation in riparian zones, (4) variation in the attenuation of nitrate in the riparian zone, and (5) importance of in-stream and hyporheic processes for nitrate attenuation in the stream channel. Our objectives were to synthesize the results of these studies and suggest methodologies to (1) monitor regional trends in nitrate concentration in undisturbed 1st order watersheds and (2) reduce nitrate loads in streams draining agricultural watersheds. Our review reveals that undisturbed headwater watersheds have been shown to be very retentive of nitrogen, but the importance of biogeochemical and hydrological riparian zone processes in retaining nitrogen in these watersheds has not been demonstrated as it has for agricultural watersheds. An understanding of the role of the riparian zone in nitrate attenuation in undisturbed watersheds is crucial because these watersheds are increasingly subject to stressors, such as changes in land use and climate, wildfire, and increases in atmospheric nitrogen deposition. In general, understanding processes controlling the concentration and flux of nitrate is critical to identifying and mapping the vulnerability of watersheds to water quality changes due to a variety of stressors. In undisturbed and agricultural watersheds we propose that understanding the importance of riparian zone processes in 2nd order and larger watersheds is critical. Research is needed that addresses the relative importance of how the following sources of nitrate along any given stream reach might change as watersheds increase in size and with flow: (1) inputs upstream from the reach, (2) tributary inflow, (3) water derived from the riparian zone, (4) groundwater from outside the riparian zone (intermediate or regional sources), and (5) in-stream (hyporheic) processes.
NASA Astrophysics Data System (ADS)
Zhu, T.; Ajo Franklin, J. B.; Daley, T. M.
2015-12-01
Continuous active source seismic measurements (CASSM) were collected in the crosswell geometry during scCO2 injection at the Frio-II brine pilot (Liberty, TX). Previous studies (Daley et.al. 2007, 2011) have demonstrated that spatial-temporal changes in the picked first arrival time after CO2 injection constrain the movement of the CO2 plume in the storage interval. To improve the quantitative constraints on plume saturation using this dataset, we investigate spatial-temporal changes in the seismic attenuation of the first arrivals. The attenuation changes over the injection period (~60 h) are estimated by the amount of the centroid frequency shift computed by the local time-frequency analysis. Our observations include: at receivers above the packer seismic attenuation does not change in a physical trend; at receivers below the packer attenuation sharply increases as the amount of CO2 plume increase at the first few hours and peaks at specific points varying with distributed receivers, which are consistent with observations from time delays of first arrivals. Then, attenuation decreases over the injection time with increased amount of CO2 plume. This bell-shaped attenuation response as a function of time in the experiment is consistent with White's patchy saturation model which predicts an attenuation peak at intermediate CO2 saturations. Our analysis suggests that spatial-temporal attenuation change is an indicator of the movement/saturation of CO2 plume at high saturations, a system state for which seismic measurements are typically only weakly sensitive to.
Ugalde, A.; Pujades, L.G.; Canas, J.A.; Villasenor, A.
1998-01-01
Northeastern Venezuela has been studied in terms of coda wave attenuation using seismograms from local earthquakes recorded by a temporary short-period seismic network. The studied area has been separated into two subregions in order to investigate lateral variations in the attenuation parameters. Coda-Q-1 (Q(c)-1) has been obtained using the single-scattering theory. The contribution of the intrinsic absorption (Q(i)-1) and scattering (Q(s)-1) to total attenuation (Q(t)-1) has been estimated by means of a multiple lapse time window method, based on the hypothesis of multiple isotropic scattering with uniform distribution of scatterers. Results show significant spatial variations of attenuation: the estimates for intermediate depth events and for shallow events present major differences. This fact may be related to different tectonic characteristics that may be due to the presence of the Lesser Antilles subduction zone, because the intermediate depth seismic zone may be coincident with the southern continuation of the subducting slab under the arc.
NASA Astrophysics Data System (ADS)
Chu, Zhigang; Yang, Yang; Shen, Linbang
2017-05-01
Functional delay and sum (FDAS) is a novel beamforming algorithm introduced for the three-dimensional (3D) acoustic source identification with solid spherical microphone arrays. Being capable of offering significantly attenuated sidelobes with a fast speed, the algorithm promises to play an important role in interior acoustic source identification. However, it presents some intrinsic imperfections, specifically poor spatial resolution and low quantification accuracy. This paper focuses on conquering these imperfections by ridge detection (RD) and deconvolution approach for the mapping of acoustic sources (DAMAS). The suggested methods are referred to as FDAS+RD and FDAS+RD+DAMAS. Both computer simulations and experiments are utilized to validate their effects. Several interesting conclusions have emerged: (1) FDAS+RD and FDAS+RD+DAMAS both can dramatically ameliorate FDAS's spatial resolution and at the same time inherit its advantages. (2) Compared to the conventional DAMAS, FDAS+RD+DAMAS enjoys the same super spatial resolution, stronger sidelobe attenuation capability and more than two hundred times faster speed. (3) FDAS+RD+DAMAS can effectively conquer FDAS's low quantification accuracy. Whether the focus distance is equal to the distance from the source to the array center or not, it can quantify the source average pressure contribution accurately. This study will be of great significance to the accurate and quick localization and quantification of acoustic sources in cabin environments.
Effective atomic numbers and electron density of dosimetric material
Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.
2009-01-01
A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566
Investigation of Flow Conditioners for Compact Jet Engine Simulator Rig Noise Reduction
NASA Technical Reports Server (NTRS)
Doty, Michael J.; Haskin, Henry H.
2011-01-01
The design requirements for two new Compact Jet Engine Simulator (CJES) units for upcoming wind tunnel testing lead to the distinct possibility of rig noise contamination. The acoustic and aerodynamic properties of several flow conditioner devices are investigated over a range of operating conditions relevant to the CJES units to mitigate the risk of rig noise. An impinging jet broadband noise source is placed in the upstream plenum of the test facility permitting measurements of not only flow conditioner self-noise, but also noise attenuation characteristics. Several perforated plate and honeycomb samples of high porosity show minimal self-noise but also minimal attenuation capability. Conversely, low porosity perforated plate and sintered wire mesh conditioners exhibit noticeable attenuation but also unacceptable self-noise. One fine wire mesh sample (DP450661) shows minimal selfnoise and reasonable attenuation, particularly when combined in series with a 15.6 percent open area (POA) perforated plate upstream. This configuration is the preferred flow conditioner system for the CJES, providing up to 20 dB of broadband attenuation capability with minimal self-noise.
Ground effects on aircraft noise. [near grazing incidence
NASA Technical Reports Server (NTRS)
Willshire, W. L., Jr.; Hilton, D. A.
1979-01-01
A flight experiment was conducted to investigate air-to-ground propagation of sound near grazing incidence. A turbojet-powered aircraft was flown at low altitudes over the ends of two microphone arrays. An eight-microphone array was positioned along a 1850 m concrete runway. The second array consisted of 12 microphones positioned parallel to the runway over grass. Twenty-eight flights were flown at altitudes ranging from 10 m to 160 m. The acoustic data recorded in the field reduced to one-third-octave band spectra and time correlated with the flight and weather information. A small portion of the data was further reduced to values of ground attenuation as a function of frequency and incidence angle by two different methods. In both methods, the acoustic signals compared originated from identical sources. Attenuation results obtained by using the two methods were in general agreement. The measured ground attenuation was largest in the frequency range of 200 to 400 Hz. A strong dependence was found between ground attenuation and incidence angle with little attenuation measured for angles of incidence greater than 10 to 15 degrees.
Molecular dynamics simulations of classical sound absorption in a monatomic gas
NASA Astrophysics Data System (ADS)
Ayub, M.; Zander, A. C.; Huang, D. M.; Cazzolato, B. S.; Howard, C. Q.
2018-05-01
Sound wave propagation in argon gas is simulated using molecular dynamics (MD) in order to determine the attenuation of acoustic energy due to classical (viscous and thermal) losses at high frequencies. In addition, a method is described to estimate attenuation of acoustic energy using the thermodynamic concept of exergy. The results are compared against standing wave theory and the predictions of the theory of continuum mechanics. Acoustic energy losses are studied by evaluating various attenuation parameters and by comparing the changes in behavior at three different frequencies. This study demonstrates acoustic absorption effects in a gas simulated in a thermostatted molecular simulation and quantifies the classical losses in terms of the sound attenuation constant. The approach can be extended to further understanding of acoustic loss mechanisms in the presence of nanoscale porous materials in the simulation domain.
Reproducing 2D breast mammography images with 3D printed phantoms
NASA Astrophysics Data System (ADS)
Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu
2016-03-01
Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.
A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta
NASA Astrophysics Data System (ADS)
Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.
2015-12-01
Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.
Ruiz, Antonio; Muñoz, María Carmen; Molina, José Manuel; Hermosilla, Carlos; Andrada, Marisa; Lara, Pedro; Bordón, Elisa; Pérez, Davinia; López, Adassa María; Matos, Lorena; Guedes, Aránzazu Carmen; Falcón, Soraya; Falcón, Yaiza; Martín, Sergio; Taubert, Anja
2014-01-17
Caprine coccidiosis, affecting mainly young goat kids around the weaning period, is worldwide the most important disease in the goat industry. Control of caprine coccidiosis is increasingly hampered by resistances developed against coccidiostatic drugs leading to an enhanced need for anticoccidial vaccines. In the current study we conducted an oral immunization trial with live attenuated sporulated Eimeria ninakohlyakimovae oocysts. Sporulated E. ninakohlyakimovae oocysts were attenuated by X-irradiation technique. The experimental design included a total of 18 goat kids divided into the following groups: (i) animals immunized with attenuated E. ninakohlyakimovae oocysts at 5 weeks of age and challenged 3 weeks later with non-irradiated homologous oocysts (group 1); (ii) animals infected with non-attenuated E. ninakohlyakimovae oocysts at 5 weeks of age and challenged 3 weeks later with non-attenuated homologous oocysts (group 2); (iii) animals primary-infected with untreated E. ninakohlyakimovae oocysts at 8 weeks of age (control of the challenge infection, group 3); (iv) non-infected control animals (group 4). Goat kids immunized with live attenuated E. ninakohlyakimovae oocysts (group 1) excreted significantly less oocysts in the faeces (95.3% reduction) than kids infected with non-attenuated ones (group 2). Furthermore, immunization with live but attenuated oocysts resulted in ameliorated clinical coccidiosis compared to goat kids infected with untreated oocysts (group 2) and resulted in equally reduced signs of coccidiosis after challenge infection compared to acquired immunity driven by non-attenuated oocysts. Overall, the present study demonstrates for the first time that live attenuated E. ninakohlyakimovae oocysts orally administered showed almost no pathogenicity but enough immunogenicity in terms of immunoprotection. Importantly, vaccinated animals still shed low amounts of oocysts, guaranteeing environmental contamination and consecutive booster infections to sustain ongoing immunity. Copyright © 2013 Elsevier B.V. All rights reserved.
Determining Source Attenuation History to Support Closure by Natural Attenuation
2013-09-01
SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S...Tortuosity Factor Exponent Bulk Density of Low-k Zone DistriDutlon Coemctent or FractiOn Organic Carbon In Low-k Zone o rgaric CarDon Pa-tnioning...Organic Carbon In Low-k Zone orgaric CarDon Pa-tnioning coemctent Constrtuent Half-Life in Low-k Zone 3. GEN ERA L Year Core sample Collected fran
NASA Astrophysics Data System (ADS)
Rivard, M. J.; Evans, K. E.; Leal, L. C.; Kirk, B. L.
2004-01-01
Californium-252 ( 252Cf) brachytherapy sources emit both neutrons and photons, and have the potential to vastly improve the current standard-of-practice for brachytherapy. While hydrogenous materials readily attenuate the 252Cf fission energy neutrons, high- Z materials are utilized to attenuate the 252Cf gamma-rays. These differences in shielding materials may be exploited when treating with a vaginal applicator to possibly improve patient survival through perturbation of the in vivo linear energy transfer radiation.
Crustal structure of the Alps as seen by attenuation tomography
NASA Astrophysics Data System (ADS)
Mayor, Jessie; Calvet, Marie; Margerin, Ludovic; Vanderhaeghe, Olivier; Traversa, Paola
2016-04-01
We develop a simple tomographic approach exploiting the decay rate of coda waves to map the absorption properties of the crust in a region delimited approximately by the Rhine Graben to the North, the Apennines to the South, the Massif Central to the West and the Dinarides to the East. Our dataset comprises 40 000 coda records of about 2000 weak to moderate crustal earthquakes, with magnitude ranging from 2.8 to 6 and recorded by broad-band, accelerometric and short-period stations. After proper choice of a coda window minimizing the effects of variable epicentral distances, we measure the coda quality factor Qc in five non-overlapping frequency windows covering the 1-32 Hz band for all available source station pairs. These measurements are subsequently converted into maps of absorption quality factor (Qi) using a linearized, approximate relation between Qc and Qi. In practice the following procedure is applied in each frequency band: (1) we divide the target region into 40 × 40 km cells; (2) for each source-station pair, we assign the measured Qc value to each pixel intercepted by the direct ray path; (3) the results are averaged over all paths and subsequently smoothed with a 3 × 3 pixels moving window. Our approach is consistent with the high sensitivity of Qc to the value of Qi between source and station. Our tomographic approach reveals strong lateral variations of absorption with length scales ranging from 100 km to 1000 km. At low frequency (∼ 1 Hz), the correlation with the surface geology is clear, Cenozoic and Mesozoic sedimentary basins (resp. crystalline massifs) being recognized as high (resp. low)-absorption regions. Furthermore the Qi map delineates finer geological features such as the Ivrea Body, the Rhône Valley, or felsic intrusions in the central Alps. At high-frequency (>16 Hz), only the thickest Cenozoic sedimentary deposits show up as high-attenuation regions and a north/south dichotomy is apparent in the absorption structure. The limit between low-attenuation regions to the North and high-attenuation region to the South correlates geographically with the location of the Periadriatic Lineament (PL), a major late-alpine crustal- to lithospheric-scale structure. Furthermore, the attenuation structure seems to prolong the PL to the West along a line marked by large historical earthquakes. The Apennines orogenic belts exhibit a distinct frequency behavior, with high attenuation at low-frequency and low-attenuation at high-frequency. Low-frequency absorption may likely be explained by the relatively thick cover of Cenozoic sedimentary materials, as well as by shallow geothermal activity. We hypothesize that the frequency dependence of the attenuation structure, in particular in the Apennines, is caused by a change of the wavefield composition which accentuates the sensitivity of the coda to the deeper parts of the medium as the frequency increases.
NASA Astrophysics Data System (ADS)
Murshid, Syed H.; Chakravarty, Abhijit
2011-06-01
Spatial domain multiplexing (SDM) utilizes co-propagation of exactly the same wavelength in optical fibers to increase the bandwidth by integer multiples. Input signals from multiple independent single mode pigtail laser sources are launched at different input angles into a single multimode carrier fiber. The SDM channels follow helical paths and traverse through the carrier fiber without interfering with each other. The optical energy from the different sources is spatially distributed and takes the form of concentric circular donut shaped rings, where each ring corresponds to an independent laser source. At the output end of the fiber these donut shaped independent channels can be separated either with the help of bulk optics or integrated concentric optical detectors. This presents the experimental setup and results for a four channel SDM system. The attenuation and bit error rate for individual channels of such a system is also presented.
Frequency-dependent Lg Q within the continental United States
Erickson, D.; McNamara, D.E.; Benz, H.M.
2004-01-01
Frequency-dependent crustal attenuation (1/Q) is determined for seven distinct physiographic/tectonic regions of the continental United States using high-quality Lg waveforms recorded on broadband stations in the frequency band 0.5 to 16 Hz. Lg attenuation is determined from time-domain amplitude measurements in one-octave frequency bands centered on the frequencies 0.75, 1.0, 3.0, 6.0, and 12.0 Hz. Modeling errors are determined using a delete-j jackknife resampling technique. The frequency-dependent quality factor is modeled in the form of Q = Q0 fη. Regions were initially selected based on tectonic provinces but were eventually limited and adjusted to maximize ray path coverage in each area. Earthquake data was recorded on several different networks and constrained to events occurring within the crust (<40 km depth) and at least mb 3.5 in size. A singular value decomposition inversion technique was applied to the data to simultaneously solve for source and receiver terms along with Q for each region at specific frequencies. The lowest crustal Q was observed in northern and southern California where Q is described by the functions Q = 152(±37)f0.72(±0.16) and Q = 105(±26)f0.67(±0.16), respectively. The Basin and Range Province, Pacific Northwest, and Rocky Mountain states also display lower Q and a strong frequency dependence characterized by the functions Q = 200(±40)f0.68(±0.12), Q = 152(±49)f0.76(±0.18), and Q = 166(±37)f0.61(±0.14), respectively. In contrast, in the central and northeast United States Q functions are Q = 640(±225)f0.344(±0.22) and Q = 650(±143)f0.36(±0.14), respectively, show a high crustal Q and a weaker frequency dependence. These results improve upon previous Lg modeling by subdividing the United States into smaller, distinct tectonic regions and using significantly more data that provide improved constraints on frequency-dependent attenuation and errors. A detailed attenuation map of the continental United States can provide significant input into hazard map mitigation. Both scattering and intrinsic attenuation mechanisms are likely to play a comparable role in the frequency range considered in the study.
Lammeier, Carmen; Li, YuPing; Lunos, Scott; Fok, Alex; Rudney, Joel
2012-01-01
Abstract. The purpose of this study was to investigate cross-polarization-optical coherence tomography (CP-OCT) signal attenuation through different resin material compositions. Four distinct composite systems were used: Filtek supreme ultra (FSU) (3M ESPE), IPS empress direct (EMD) (Ivoclar Vivadent), estelite sigma quick (SQK) (Tokuyama Dental), and Z100 (3M ESPE). Cross-sectional images of different composite-demineralized phantoms (n=108) were collected using a 1310-nm intraoral cross-polarization swept source OCT (CP-OCT) imaging system. %T quantified the CP-OCT signal attenuation. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectrometer chemical analysis was utilized to determine how different matrix/filler compositions affected attenuation of the near infrared (NIR) signal. CP-OCT imaging of dental resin composites showed enormous variation in signal attenuation. For each of our composite systems, there was not a consistent attenuation difference in the NIR signal for A to D shades. The four composites had similar measured backscattering values but attenuated the overall signal to different degrees. When comparing the A2 shades between the four different composite systems, the order of highest to lowest of %T was EMD>Z100, FSU>SQK (ANOVA, Tukey, p<0.0001). As a result, we demonstrate the importance of understanding how the constituents of composite materials affect CP-OCT signal attenuation. PMID:23224001
NASA Astrophysics Data System (ADS)
Diederich, M.; Ryzhkov, A.; Simmer, C.; Mühlbauer, K.
2011-12-01
The amplitude a of radar wave reflected by meteorological targets can be misjudged due to several factors. At X band wavelength, attenuation of the radar beam by hydro meteors reduces the signal strength enough to be a significant source of error for quantitative precipitation estimation. Depending on the surrounding orography, the radar beam may be partially blocked when scanning at low elevation angles, and the knowledge of the exact amount of signal loss through beam blockage becomes necessary. The phase shift between the radar signals at horizontal and vertical polarizations is affected by the hydrometeors that the beam travels through, but remains unaffected by variations in signal strength. This has allowed for several ways of compensating for the attenuation of the signal, and for consistency checks between these variables. In this study, we make use of several weather radars and gauge network measuring in the same area to examine the effectiveness of several methods of attenuation and beam blockage corrections. The methods include consistency checks of radar reflectivity and specific differential phase, calculation of beam blockage using a topography map, estimating attenuation using differential propagation phase, and the ZPHI method proposed by Testud et al. in 2000. Results show the high effectiveness of differential phase in estimating attenuation, and potential of the ZPHI method to compensate attenuation, beam blockage, and calibration errors.
NASA Astrophysics Data System (ADS)
Lammeier, Carmen; Li, YuPing; Lunos, Scott; Fok, Alex; Rudney, Joel; Jones, Robert S.
2012-10-01
The purpose of this study was to investigate cross-polarization-optical coherence tomography (CP-OCT) signal attenuation through different resin material compositions. Four distinct composite systems were used: Filtek supreme ultra (FSU) (3M ESPE), IPS empress direct (EMD) (Ivoclar Vivadent), estelite sigma quick (SQK) (Tokuyama Dental), and Z100 (3M ESPE). Cross-sectional images of different composite-demineralized phantoms (n=108) were collected using a 1310-nm intraoral cross-polarization swept source OCT (CP-OCT) imaging system. %T quantified the CP-OCT signal attenuation. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectrometer chemical analysis was utilized to determine how different matrix/filler compositions affected attenuation of the near infrared (NIR) signal. CP-OCT imaging of dental resin composites showed enormous variation in signal attenuation. For each of our composite systems, there was not a consistent attenuation difference in the NIR signal for A to D shades. The four composites had similar measured backscattering values but attenuated the overall signal to different degrees. When comparing the A2 shades between the four different composite systems, the order of highest to lowest of %T was EMD>Z100, FSU>SQK (ANOVA, Tukey, p<0.0001). As a result, we demonstrate the importance of understanding how the constituents of composite materials affect CP-OCT signal attenuation.
Photon interaction studies using 241Am g-rays
NASA Astrophysics Data System (ADS)
Ramachandran, N.; Karunakaran Nair, K.; Abdullah, K. K.; Varier, K. M.
2006-09-01
We have carried out some photon interaction measurements using 59.54 keV γ-rays from a ^{241}Am source. These include γ attenuation studies as well as photoelectric absorption studies in various samples. The attenuation studies have been made using leaf and wood samples, samples like sand, sugar etc., which contain particles of varying sizes as well as pellets and aqueous solutions of rare earth compounds. In the case of the leaf and wood samples, we have used the γ-ray attenuation technique for the determination of the water content in fresh and dried samples. The variation of the attenuation coefficient with particle size has been investigated for sand and sugar samples. The attenuation studies as well as the photoelectric studies in the case of rare earth elements have been carried out on samples containing such elements whose K-absorption edge energies lie below and close to the γ-energy used. Suitable compounds of the rare earth elements have been chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. A well-shielded scattering geometry was used for the photoelectric measurements. The mixture rule was invoked to extract the values of the mass attenuation coefficients for the elements from those of the corresponding compounds. The results are consistent with theoretical values derived from the XCOM package.
The amount, chemical composition, and source of dissolved organic carbon (DOC), together with in situ ultraviolet-B radiation (UV -B; 280 to 320 nm) attenuation, were measured at one to two week intervals throughout the summers of 1999,2000, and 2001 at four sites in Rocky Mounta...
2013-11-15
was conducted. As expected, a cylinder was formed similar to the one shown in Figure 5.9 using potassium permanganate , with slight elongation in the...clean water injections at 400 mg/L. This was not necessary during the ISCO disturbance test, as potassium permanganate (KMnO4), which forms a deep
NASA Astrophysics Data System (ADS)
Buesseler, K. O.; Trull, T. W.; Steinberg, D. K.; Silver, M. W.; Siegel, D. A.; Saitoh, S.-I.; Lamborg, C. H.; Lam, P. J.; Karl, D. M.; Jiao, N. Z.; Honda, M. C.; Elskens, M.; Dehairs, F.; Brown, S. L.; Boyd, P. W.; Bishop, J. K. B.; Bidigare, R. R.
2008-07-01
The VERtical Transport In the Global Ocean (VERTIGO) study examined particle sources and fluxes through the ocean's "twilight zone" (defined here as depths below the euphotic zone to 1000 m). Interdisciplinary process studies were conducted at contrasting sites off Hawaii (ALOHA) and in the NW Pacific (K2) during 3-week occupations in 2004 and 2005, respectively. We examine in this overview paper the contrasting physical, chemical and biological settings and how these conditions impact the source characteristics of the sinking material and the transport efficiency through the twilight zone. A major finding in VERTIGO is the considerably lower transfer efficiency ( Teff) of particulate organic carbon (POC), POC flux 500/150 m, at ALOHA (20%) vs. K2 (50%). This efficiency is higher in the diatom-dominated setting at K2 where silica-rich particles dominate the flux at the end of a diatom bloom, and where zooplankton and their pellets are larger. At K2, the drawdown of macronutrients is used to assess export and suggests that shallow remineralization above our 150-m trap is significant, especially for N relative to Si. We explore here also surface export ratios (POC flux/primary production) and possible reasons why this ratio is higher at K2, especially during the first trap deployment. When we compare the 500-m fluxes to deep moored traps, both sites lose about half of the sinking POC by >4000 m, but this comparison is limited in that fluxes at depth may have both a local and distant component. Certainly, the greatest difference in particle flux attenuation is in the mesopelagic, and we highlight other VERTIGO papers that provide a more detailed examination of the particle sources, flux and processes that attenuate the flux of sinking particles. Ultimately, we contend that at least three types of processes need to be considered: heterotrophic degradation of sinking particles, zooplankton migration and surface feeding, and lateral sources of suspended and sinking materials. We have evidence that all of these processes impacted the net attenuation of particle flux vs. depth measured in VERTIGO and would therefore need to be considered and quantified in order to understand the magnitude and efficiency of the ocean's biological pump.
Long-Term Biological Consequences of Nuclear War.
ERIC Educational Resources Information Center
Ehrlich, Paul R.; And Others
1983-01-01
Presents evidence suggesting that the longer-term biological effects resulting from climactic changes may be at least as serious as the immediate ones. Primarily considers results of a nuclear war in which sufficient dust/soot are injected into the atmosphere to attenuate most incident solar radiation. (JN)
O'Connor, W T; Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H; Ungerstedt, U
1991-07-08
In vivo microdialysis and in situ hybridization were combined to study dopaminergic regulation of gamma-amino butyric acid (GABA) neurons in rat caudate-putamen (CPu). Potassium-stimulated GABA release in CPu was elevated following a dopamine deafferentation. Local perfusion with exogenous dopamine (50 microM) for 3 h via the microdialysis probe attenuated the potassium-stimulated increase in extracellular GABA in CPu. Expression of glutamic acid decarboxylase (GAD) mRNA was also increased in the dopamine deafferented CPu. However, local perfusion with dopamine had no significant attenuating effect on the increased GAD mRNA expression. These findings indicate that dopaminergic regulation of GABA neurons in the dopamine deafferented CPu includes both a short-term effect at the level of GABA release independent of changes in GAD mRNA expression and a long-term modulation at the level of GAD gene expression.
Neuroprotective effect of antioxidants on ischaemia and reperfusion-induced cerebral injury.
Gupta, Ram; Singh, Manjeet; Sharma, Ajay
2003-08-01
The present study is designed to investigate the effect of dietary flavanoid rutin, micronutrient selenium and garlic oil on ischaemia and reperfusion-induced cerebral injury. Global cerebral ischaemia was induced by occluding right and left common carotid arteries for 10min followed by reperfusion for 24h. Cerebral infarct size was estimated using triphenyltetrazolium chloride staining. Elevated plus maze was employed to estimate short-term memory. Degree of motor incoordination was evaluated using inclined beam-walking test and lateral push test. Mitochondrial thiobarbituric acid reactive substances (TBARS) assay was employed as an index of oxidative stress. Global cerebral ischaemia followed by reperfusion produced a significant impairment in short-term memory and motor coordination and produced a notable increase in mitochondrial TBARS. Administration of rutin and garlic oil before global cerebral ischaemia markedly reduced cerebral infarct size and attenuated impairment in short-term memory and motor coordination. Administration of sodium selenite either before or after global cerebral ischaemia markedly reduced cerebral infarct size and attenuated impairment in short-term memory and motor coordination. The protective effect of rutin, sodium selenite and garlic oil was accompanied by a marked decrease in mitochondrial TBARS. On the basis of these results, it may be suggested that rutin and garlic oil administrated before cerebral ischaemia may scavenge reactive oxygen species and consequently attenuate global cerebral ischaemia and reperfusion-induced cerebral injury. Sodium selenite administrated before and after cerebral ischaemia may be neuroprotective due to its antioxidant effect.
A unifying fractional wave equation for compressional and shear waves.
Holm, Sverre; Sinkus, Ralph
2010-01-01
This study has been motivated by the observed difference in the range of the power-law attenuation exponent for compressional and shear waves. Usually compressional attenuation increases with frequency to a power between 1 and 2, while shear wave attenuation often is described with powers less than 1. Another motivation is the apparent lack of partial differential equations with desirable properties such as causality that describe such wave propagation. Starting with a constitutive equation which is a generalized Hooke's law with a loss term containing a fractional derivative, one can derive a causal fractional wave equation previously given by Caputo [Geophys J. R. Astron. Soc. 13, 529-539 (1967)] and Wismer [J. Acoust. Soc. Am. 120, 3493-3502 (2006)]. In the low omegatau (low-frequency) case, this equation has an attenuation with a power-law in the range from 1 to 2. This is consistent with, e.g., attenuation in tissue. In the often neglected high omegatau (high-frequency) case, it describes attenuation with a power-law between 0 and 1, consistent with what is observed in, e.g., dynamic elastography. Thus a unifying wave equation derived properly from constitutive equations can describe both cases.
Contaminant Dynamics and Trends in Hyperalkaline Urban Streams
NASA Astrophysics Data System (ADS)
Riley, Alex; Mayes, William
2015-04-01
Streams in post-industrial urban areas can have multiple contemporary and historic pressures impacting upon their chemical and ecological status. This paper presents analysis of long term data series (up to 36 years in length) from two small streams in northern England (catchment areas 0.5-0.6km2). Around 3.5 million m3 of steel making slags and other wastes were deposited in the headwater areas of the Howden Burn and Dene Burn in northeast England up to the closure of the workings in the early 1980s. This has led to streams draining from the former workings which have a hyperalkaline ambient pH (mean of 10.3 in both streams), elevated alkalinity (up to 487 mg/L as CaCO3) from leaching of lime and other calcium oxides / silicates within the slag, and enrichment of some trace elements (e.g. aluminium (Al), lithium (Li) and zinc (Zn)) including those which form oxyanions mobile at high pH such as vanadium (V). The high ionic strength of the waters and calcium enrichment also leads to waters highly supersaturated with calcium carbonate. Trace contaminant concentrations are strongly positively correlated, and concentrations generally diminish with increased flow rate suggesting the key source of metals in the system is the highly alkaline groundwater draining from the slag mounds. Some contaminants (notably Cr and ammonium) increase with high flow suggesting sources related to urban runoff and drainage from combined sewer overflows into one of the catchments. Loading estimates instream show that many of the contaminants (e.g. Al, V and Zn) are rapidly attenuated in secondary calcium carbonate-dominated deposits that precipitate vigorously on the streambeds with rates of up to 250 g CaCO3/m2/day. These secondary sinks limit the mobility of many contaminants in the water column, while concentrations in secondary deposits are relatively low given the rapid rates at which Ca is also attenuated. Long-term trend analysis showed modest declines in calcium and alkalinity over the monitoring period and these are not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible. The data show the value of long-term water quality datasets in managing post-industrial catchments where there may be multiple pressures on water quality.
Li, Lian; Li, Yan; Feng, Danyang; Xu, Linghua; Yin, Fengxin; Zang, Hengchang; Liu, Chunhui; Wang, Fengshan
2016-10-11
Chondroitin sulfate (CS) plays important roles in the complement system. However, the CS structure is complicated due to different sources and the number and positions of sulfate groups. The objective of this study was to prepare different low molecular weight chondroitin sulfates (LMWCSs) and to investigate the biological activity in anti-complement capacity. A series of LMWCSs was prepared from different sources and characterized by ultraviolet-visible (UV) spectroscopy, high-performance liquid chromatography (HPLC), size exclusion chromatography-multiangle laser light scattering (SEC-MALLS) and nuclear magnetic resonance (NMR) spectroscopy. Hemolytic, anti-complement 3 deposition capacity and cell viability assays were carried out to investigate the biological activities in vitro. The results showed that LMWCS prepared from shark cartilage with the oxidative degradation method (LMWCS-S-O) had the best anti-complement capacity. LMWCS-S-O could inhibit the alternative pathway of the complement system and protect chondrocytes from cell death. The attenuating effect of LMWCS-S-O on Osteoarthritis (OA) was investigated by destabilization of the medial meniscus (DMM) model in vivo. Functional wind-up, histological and C5b-9 analyses were used to evaluate the treatment effect on the OA model. In vivo results showed that LMWCS-S-O could attenuate OA. LMWCS-S-O with a high content of ΔDi-2,6diS and ΔDi-6S could be used for attenuating OA through regulating the complement system.
Assimilation of attenuated data from X-band network radars using ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Cheng, Jing
To use reflectivity data from X-band radars for quantitative precipitation estimation and storm-scale data assimilation, the effect of attenuation must be properly accounted for. Traditional approaches try to make correction to the attenuated reflectivity first before using the data. An alternative, theoretically more attractive approach builds the attenuation effect into the reflectivity observation operator of a data assimilation system, such as an ensemble Kalman filter (EnKF), allowing direct assimilation of the attenuated reflectivity and taking advantage of microphysical state estimation using EnKF methods for a potentially more accurate solution. This study first tests the approach for the CASA (Center for Collaborative Adaptive Sensing of the Atmosphere) X-band radar network configuration through observing system simulation experiments (OSSE) for a quasi-linear convective system (QLCS) that has more significant attenuation than isolated storms. To avoid the problem of potentially giving too much weight to fully attenuated reflectivity, an analytical, echo-intensity-dependent model for the observation error (AEM) is developed and is found to improve the performance of the filter. By building the attenuation into the forward observation operator and combining it with the application of AEM, the assimilation of attenuated CASA observations is able to produce a reasonably accurate analysis of the QLCS inside CASA radar network coverage. Compared with foregoing assimilation of radar data with weak radar reflectivity or assimilating only radial velocity data, our method can suppress the growth of spurious echoes while obtaining a more accurate analysis in the terms of root-mean-square (RMS) error. Sensitivity experiments are designed to examine the effectiveness of AEM by introducing multiple sources of observation errors into the simulated observations. The performance of such an approach in the presence of resolution-induced model error is also evaluated and good results are obtained. The same EnKF framework with attenuation correction is used to test different possible configurations of 2 hypothetical radars added to the existing network of 4 CASA radars through OSSEs. Though plans to expand the CASA radar network did not materialize, such experiments can provide guidance in the site selection of future X-band or other short-wavelength radar networks, as well as examining the benefit of X-band radar networks that consist of a much larger number of radars. Two QLCSs with different propagation speeds are generated and serve as the truth for our OSSEs. Assimilation and forecast results are compared among the OSSEs, assimilating only X-band or short-wavelength radar data. Overall, radar networks with larger downstream spatial coverage tend to provide overall the best analyses and 1-hour forecasts. The best analyses and forecasts of convective scale structure, however, are obtained when Dual- or Multi-Doppler coverage is preferred, even at the expense of minor loss in spatial coverage. Built-in attenuation correction is then applied, for the first time, to a real case (the 24 May 2011 tornadic storm near Chickasha, Oklahoma), using data from the X-band CASA radars. The attenuation correction procedure is found to be very effective---the analyses obtained using attenuated data are better than those obtained using pre-corrected data when all the values of reflectivity observations are assimilated. The effectiveness of the procedure is further examined by comparing the deterministic and ensemble forecasts started from the analysis of each experiment. The deterministic forecast experiment results indicate that assimilating un-corrected observations directly actually retains some information that might be lost in the pre-corrected CASA observations by forecasting a longer-lasting trailing line, similar to that observed in WSR-88D data. In the ensemble forecasts, assimilating un-corrected observations directly, using our attenuation-correcting EnKF, results in a forecast with a more intense tornado track than the experiment that assimilates all values of pre-corrected CASA data. This work is the first to assimilate attenuated observations from a radar network in OSSEs, as well as the first attempt to directly assimilate real, uncorrected CASA data into a numerical weather prediction (NWP) model using EnKF.
Active noise attenuation in ventilation windows.
Huang, Huahua; Qiu, Xiaojun; Kang, Jian
2011-07-01
The feasibility of applying active noise control techniques to attenuate low frequency noise transmission through a natural ventilation window into a room is investigated analytically and experimentally. The window system is constructed by staggering the opening sashes of a spaced double glazing window to allow ventilation and natural light. An analytical model based on the modal expansion method is developed to calculate the low frequency sound field inside the window and the room and to be used in the active noise control simulations. The effectiveness of the proposed analytical model is validated by using the finite element method. The performance of the active control system for a window with different source and receiver configurations are compared, and it is found that the numerical and experimental results are in good agreement and the best result is achieved when the secondary sources are placed in the center at the bottom of the staggered window. The extra attenuation at the observation points in the optimized window system is almost equivalent to the noise reduction at the error sensor and the frequency range of effective control is up to 390 Hz in the case of a single channel active noise control system. © 2011 Acoustical Society of America
Evaluation of a scale-model experiment to investigate long-range acoustic propagation
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Mcaninch, Gerry L.; Carlberg, Ingrid A.
1987-01-01
Tests were conducted to evaluate the feasibility of using a scale-model experiment situated in an anechoic facility to investigate long-range sound propagation over ground terrain. For a nominal scale factor of 100:1, attenuations along a linear array of six microphones colinear with a continuous-wave type of sound source were measured over a wavelength range from 10 to 160 for a nominal test frequency of 10 kHz. Most tests were made for a hard model surface (plywood), but limited tests were also made for a soft model surface (plywood with felt). For grazing-incidence propagation over the hard surface, measured and predicted attenuation trends were consistent for microphone locations out to between 40 and 80 wavelengths. Beyond 80 wavelengths, significant variability was observed that was caused by disturbances in the propagation medium. Also, there was evidence of extraneous propagation-path contributions to data irregularities at more remote microphones. Sensitivity studies for the hard-surface and microphone indicated a 2.5 dB change in the relative excess attenuation for a systematic error in source and microphone elevations on the order of 1 mm. For the soft-surface model, no comparable sensitivity was found.
Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E
2015-01-01
Acute restraint stress (ARS) for 3 h causes corticosterone (CORT) elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following 7-day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1-deficient mice. However, longer periods of daily restraint (14-21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of ARS and short-term (<7 days) CRS on the hypothalamo-pituitary-adrenal (HPA) axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) CRS.
Sihota, Natasha J; Singurindy, Olga; Mayer, K Ulrich
2011-01-15
In order to gain regulatory approval for source zone natural attenuation (SZNA) at hydrocarbon-contaminated sites, knowledge regarding the extent of the contamination, its tendency to spread, and its longevity is required. However, reliable quantification of biodegradation rates, an important component of SZNA, remains a challenge. If the rate of CO(2) gas generation associated with contaminant degradation can be determined, it may be used as a proxy for the overall rate of subsurface biodegradation. Here, the CO(2)-efflux at the ground surface is measured using a dynamic closed chamber (DCC) method to evaluate whether this technique can be used to assess the areal extent of the contaminant source zone and the depth-integrated rate of contaminant mineralization. To this end, a field test was conducted at the Bemidji, MN, crude oil spill site. Results indicate that at the Bemidji site the CO(2)-efflux method is able to both delineate the source zone and distinguish between the rates of natural soil respiration and contaminant mineralization. The average CO(2)-efflux associated with contaminant degradation in the source zone is estimated at 2.6 μmol m(-2) s(-1), corresponding to a total petroleum hydrocarbon mineralization rate (expressed as C(10)H(22)) of 3.3 g m(-2) day(-1).
Phase 9 Fiber Optic Cable Microbending and Temperature Cycling Tests
NASA Technical Reports Server (NTRS)
Abushagur, Mustafa A.G.; Huang, Po T.; Hand, Larry
1996-01-01
Optical fibers represent the back bone of the current communications networks. Their performance in the field lacks long term testing data because of the continuous evolution of the manufacturing of fibers and cables. An optical fiber cable that is installed in NASA's KSC has experienced a dramatic increase in attenuation after three years of use from 0.7 dB/km to 7 dB/km in some fibers. A thorough study is presented to assess the causes of such an attenuation increase. Material and chemical decomposition testing showed that there are no changes in the composition of the fiber which might have caused the increase in attenuation. Microbending and heat cycling tests were performed on the cable and individual fibers. It was found that the increase in attenuation is due to microbending caused by excessive stress exerted on the fibers. This was the result of manufacturing and installation irregularities.
Range safety signal attenuation by the Space Shuttle main engine exhaust plumes
NASA Technical Reports Server (NTRS)
Pearce, B. E.
1983-01-01
An analysis of attenuation of the range safety signal at 416.5 MHz observed after SRB separation and ending at hand over to Bermuda, during which transmission must pass through the LOX/H2 propelled main engine exhaust plumes, is summarized. Absorption by free electrons in the exhaust plume can account for the nearly constant magnitude of the observed attenuation during this period; it does not explain the short term transient increases that occur at one or more times during this portion of the flight. It is necessary to assume that a trace amount (about 0.5 ppm) of easily ionizable impurity must be present in the exhaust flow. Other mechanisms of attenuation, such as scattering by turbulent fluctuations of both free and bound electrons and absorption by water vapor, were examined but found to be inadequate to explain the observations.
Nakata, T; Fujiwara, M
1975-08-01
Ethanol-insoluble components were extracted from fresh garlic with 0.9% NaCl solution containing streptomycin and penicillin. This extract, containing approximately 10% sugar, 0.3% nitrogen, and 0.4% ash, was termed garlic sugar solution. This garlic sugar solution (Medium 1) was used as the suspending medium for Ehrlich ascites tumor cells attenuated with allicin, the main principle of garlic, and 0.9% NaCl solution containing streptomycin and penicillin (Medium 2) was also used as the suspending medium. Mice of DDD strain were immunized with the attenuated tumor cells suspended in Medium 1 or 2. After immunization, the immunized and control mice were challenged intraperitoneally with viable Ehrlich ascites tumorcells. Animals immunized with the attenuated tumor cells suspended in Medium 1 acquired significantly stronger resistance against the tumor cells than animals immunized with those suspended in Medium 2.
An electromechanical attenuator/actuator for Space Station docking
NASA Technical Reports Server (NTRS)
Stokes, Lebarian; Glenn, Dean; Carroll, Monty B.
1987-01-01
The development of a docking system for aerospace vehicles has identified the need for reusable and variably controlled attenuators/actuators for energy absorption and compliance. One approach to providing both the attenuator and the actuator functions is by way of an electromechanical attenuator/actuator (EMAA) as opposed to a hydraulic system. The use of the electromechanical devices is considered to be more suitable for a space environment because of the absence of contamination from hydraulic fluid leaks and because of the cost effectiveness of maintenance. A smart EMAA that uses range/rate/attitude sensor information to preadjust a docking interface to eliminate misalignments and to minimize contact and stroking forces is described. A prototype EMAA was fabricated and is being tested and evaluated. Results of preliminary testing and analysis already performed have established confidence that this concept is feasible and will provide the desired reliability and low maintenance for repetitive long term operation typical of Space Station requirements.
Live Attenuated Influenza Vaccines by Computer-Aided Rational Design
Mueller, Steffen; Coleman, J. Robert; Papamichail, Dimitris; Ward, Charles B.; Nimnual, Anjaruwee; Futcher, Bruce; Skiena, Steven; Wimmer, Eckard
2010-01-01
Influenza claims 250,000 - 500,000 lives annually worldwide. Despite existing vaccines and enormous efforts in biomedical research, these staggering numbers have not changed significantly over the last two decades1, motivating the search for new, more effective, vaccines that can be rapidly designed and easily produced. Using influenza virus strain A/PR/8/34, we describe a systematic, rational approach, termed Synthetic Attenuated Virus Engineering (SAVE), to develop new, efficacious live attenuated influenza virus vaccine candidates through genome-scale changes in codon pair bias. Attenuation is based on many hundreds of nucleotide changes across the viral genome, offering high genetic stability and a wide margin of safety. The method can be applied rapidly to any emerging influenza virus in its entirety, an advantage that is significant for dealing with seasonal epidemics and pandemic threats, such as H5N1- or 2009-H1N1 influenza. PMID:20543832
Evaluation of volatilization as a natural attenuation pathway for MTBE
Lahvis, Matthew A.; Baehr, Arthur L.; Baker, Ronald J.
2004-01-01
Volatilization and diffusion through the unsaturated zone can be an important pathway for natural attenuation remediation of methyl tert-butyl ether (MTBE) at gasoline spill sites. The significance of this pathway depends primarily on the distribution of immiscible product within the unsaturated zone and the relative magnitude of aqueous-phase advection (ground water recharge) to gaseous-phase diffusion. At a gasoline spill site in Laurel Bay, South Carolina, rates of MTBE volatilization from ground water downgradient from the source are estimated by analyzing the distribution of MTBE in the unsaturated zone above a solute plume. Volatilization rates of MTBE from ground water determined by transport modeling ranged from 0.0020 to 0.0042 g m-2/year, depending on the assumed rate of ground water recharge. Although diffusive conditions at the Laurel Bay site are favorable for volatilization, mass loss of MTBE is insignificant over the length (230 m) of the solute plume. Based on this analysis, significant volatilization of MTBE from ground water downgradient from source areas at other sites is not likely. In contrast, model results indicate that volatilization coupled with diffusion to the atmosphere could be a significant mass loss pathway for MTBE in source areas where residual product resides above the capillary zone. Although not documented, mass loss of MTBE at the Laurel Bay site due to volatilization and diffusion to the atmosphere are predicted to be two to three times greater than mass loading of MTBE to ground water due to dissolution and recharge. This result would imply that volatilization in the source zone may be the critical natural attenuation pathway for MTBE at gasoline spill sites, especially when considering capillary zone limitations on volatilization of MTBE from ground water and the relative recalcitrance of MTBE to biodegradation.
NASA Astrophysics Data System (ADS)
Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.
2014-12-01
Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.
Li, Mengyan; Van Orden, E Tess; DeVries, David J; Xiong, Zhong; Hinchee, Rob; Alvarez, Pedro J
2015-02-01
1,4-Dioxane (dioxane) is relatively recalcitrant to biodegradation, and its physicochemical properties preclude effective removal from contaminated groundwater by volatilization or adsorption. Through this microcosm study, we assessed the biodegradation potential of dioxane for three sites in California. Groundwater and sediment samples were collected at various locations at each site, including the presumed source zone, middle and leading edge of the plume. A total of 16 monitoring wells were sampled to prepare the microcosms. Biodegradation of dioxane was observed in 12 of 16 microcosms mimicking natural attenuation within 28 weeks. Rates varied from as high as 3,449 ± 459 µg/L/week in source-zone microcosms to a low of 0.3 ± 0.1 µg/L/week in microcosms with trace level of dioxane (<10 µg/L as initial concentration). The microcosms were spiked with (14)C-labeled dioxane to assess the fate of dioxane. Biological oxidizer-liquid scintillation analysis of bound residue infers that 14C-dioxane was assimilated into cell material only in microcosms exhibiting significant dioxane biodegradation. Mineralization was also observed per (14)CO2 recovery (up to 44% of the amount degraded in 28 weeks of incubation). Degradation and mineralization activity significantly decreased with increasing distance from the contaminant source area (p < 0.05), possibly due to less acclimation. Furthermore, both respiked and repeated microcosms prepared with source-zone samples from Site 1 confirmed relatively rapid dioxane degradation (i.e., 100 % removal by 20 weeks). These results show that indigenous microorganisms capable of degrading dioxane are present at these three sites, and suggest that monitored natural attenuation should be considered as a remedial response.
Empirical Green's function analysis: Taking the next step
Hough, S.E.
1997-01-01
An extension of the empirical Green's function (EGF) method is presented that involves determination of source parameters using standard EGF deconvolution, followed by inversion for a common attenuation parameter for a set of colocated events. Recordings of three or more colocated events can thus be used to constrain a single path attenuation estimate. I apply this method to recordings from the 1995-1996 Ridgecrest, California, earthquake sequence; I analyze four clusters consisting of 13 total events with magnitudes between 2.6 and 4.9. I first obtain corner frequencies, which are used to infer Brune stress drop estimates. I obtain stress drop values of 0.3-53 MPa (with all but one between 0.3 and 11 MPa), with no resolved increase of stress drop with moment. With the corner frequencies constrained, the inferred attenuation parameters are very consistent; they imply an average shear wave quality factor of approximately 20-25 for alluvial sediments within the Indian Wells Valley. Although the resultant spectral fitting (using corner frequency and ??) is good, the residuals are consistent among the clusters analyzed. Their spectral shape is similar to the the theoretical one-dimensional response of a layered low-velocity structure in the valley (an absolute site response cannot be determined by this method, because of an ambiguity between absolute response and source spectral amplitudes). I show that even this subtle site response can significantly bias estimates of corner frequency and ??, if it is ignored in an inversion for only source and path effects. The multiple-EGF method presented in this paper is analogous to a joint inversion for source, path, and site effects; the use of colocated sets of earthquakes appears to offer significant advantages in improving resolution of all three estimates, especially if data are from a single site or sites with similar site response.
Novel Sensor for the In Situ Measurement of Uranium Fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatfield, Kirk
2015-02-10
The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction withmore » DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under controlled field conditions. In the third and fourth year a suite of larger field studies were conducted. For these studies, the uranium flux sensor was used with uranium speciation measurements and molecular-biological tools to characterize microbial community and active biomass at synonymous wells distributed in a large grid. These field efforts quantified spatial changes in uranium flux and field-scale rates of uranium attenuation (ambient and stimulated), uranium stability, and quantitatively assessed how fluxes and effective reaction rates were coupled to spatial variations in microbial community and active biomass. Analyses of data from these field experiments were used to generate estimates of Monod kinetic parameters that are ‘effective’ in nature and optimal for modeling uranium fate and transport at the field-scale. This project provided the opportunity to develop the first sensor that provides direct measures of both uranium (VI) and groundwater flux. A multidisciplinary team was assembled to include two geochemists, a microbiologist, and two quantitative contaminant hydrologists. Now that the project is complete, the sensor can be deployed at DOE sites to evaluate field-scale uranium attenuation, source behavior, the efficacy of remediation, and off-site risk. Because the sensor requires no power, it can be deployed at remote sites for periods of days to months. The fundamental science derived from this project can be used to advance the development of predictive models for various transport and attenuation processes in aquifers. Proper development of these models is critical for long-term stewardship of contaminated sites in the context of predicting uranium source behavior, remediation performance, and off-site risk.« less
Borrok, D.M.; Wanty, R.B.; Ian, Ridley W.; Lamothe, P.J.; Kimball, B.A.; Verplanck, P.L.; Runkel, R.L.
2009-01-01
Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, ??56Fe and ??66Zn isotopic signatures of filtered stream water samples varied by ???3.5??? and 0.4???, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in ??56Fe were linked to redox and precipitation reactions occurring in the stream, while changes in ??66Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (<-2.0???) and isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4???). Acidic drainage from mine wastes contributed heavier dissolved Fe (???+0.5???) and lighter Zn (???+0.2???) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe (??56Fe ??? 0???) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds. ?? 2009 Elsevier Ltd.
Transmit beamforming for optimal second-harmonic generation.
Hoilund-Kaupang, Halvard; Masoy, Svein-Erik
2011-08-01
A simulation study of transmit ultrasound beams from several transducer configurations is conducted to compare second-harmonic imaging at 3.5 MHz and 11 MHz. Second- harmonic generation and the ability to suppress near field echoes are compared. Each transducer configuration is defined by a chosen f-number and focal depth, and the transmit pressure is estimated to not exceed a mechanical index of 1.2. The medium resembles homogeneous muscle tissue with nonlinear elasticity and power-law attenuation. To improve computational efficiency, the KZK equation is utilized, and all transducers are circular-symmetric. Previous literature shows that second-harmonic generation is proportional to the square of the transmit pressure, and that transducer configurations with different transmit frequencies, but equal aperture and focal depth in terms of wavelengths, generate identical second-harmonic fields in terms of shape. Results verify this for a medium with attenuation f1. For attenuation f1.1, deviations are found, and the high frequency subsequently performs worse than the low frequency. The results suggest that high frequencies are less able to suppress near-field echoes in the presence of a heterogeneous body wall than low frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1989-01-01
The pre-exposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride, and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired pre-exposures to lithium chloride blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiationmore » or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.« less
Investigating the origin of acoustic attenuation in liquid foams.
Pierre, Juliette; Gaulon, Camille; Derec, Caroline; Elias, Florence; Leroy, Valentin
2017-08-01
Liquid foams are known to be highly efficient to absorb acoustic waves but the origin of the sound dissipation remains unknown. In this paper, we present low frequency (0.5-4kHz) experimental results measured with an impedance tube and we confront the recorded attenuations with a simple model that considers the foam as a concentrate bubbly liquid. In order to identify the influence of the different parameters constituting the foams we probe samples with different gases, and various liquid fractions and bubble size distributions. We demonstrate that the intrinsic acoustic attenuation in the liquid foam is due to both thermal and viscous losses. The physical mechanism of the viscous term is not elucidated but the microscopic effective viscosity evidenced here can be described by a phenomenological law scaling with the bubble size and the gas density. In our experimental configuration a third dissipation term occurs. It comes from the viscous friction on the wall of the impedance tube and it is well described by the Kirchhoff law considering the macroscopic effective viscosity classically measured in rheology experiments.
The effect of respiratory oscillations in heart rate on detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Govindan, Rathinaswamy B.; Kota, Srinivas; Al-Shargabi, Tareq; Swisher, Christopher B.; du Plessis, Adre
2017-10-01
Characterization of heart rate using detrended fluctuation analysis (DFA) is impeded by respiratory oscillations. In particular, the short-term exponent measured from 15 to 30 beats is compromised in the DFA. We reconstruct respiratory signal from electrocardiograms and attenuate the respiratory oscillation in the heart rate using a frequency-dependent subtraction approach. We validate this method by applying it to an electrocardiogram signal simulated using a coupled differential equation with the respiratory oscillation modelled using a sine function. The exponent estimated using the proposed approach agreed with the exponent incorporated in the model within a narrow range. In contrast, the exponent obtained from the raw data deviated from the expected value. Furthermore, the exponents obtained for the raw heart rate are smaller than the exponents obtained for the respiration oscillation attenuated heart rate. We apply this approach to heart rate measured from 12 preterm infants that were being treated for prematurity related complications. As observed in the simulated data, we show that compared to the raw heart rate, the respiratory oscillation attenuated heart rate shows higher short-term exponent (p < 0.001).
Analytical time-domain Green’s functions for power-law media
Kelly, James F.; McGough, Robert J.; Meerschaert, Mark M.
2008-01-01
Frequency-dependent loss and dispersion are typically modeled with a power-law attenuation coefficient, where the power-law exponent ranges from 0 to 2. To facilitate analytical solution, a fractional partial differential equation is derived that exactly describes power-law attenuation and the Szabo wave equation [“Time domain wave-equations for lossy media obeying a frequency power-law,” J. Acoust. Soc. Am. 96, 491–500 (1994)] is an approximation to this equation. This paper derives analytical time-domain Green’s functions in power-law media for exponents in this range. To construct solutions, stable law probability distributions are utilized. For exponents equal to 0, 1∕3, 1∕2, 2∕3, 3∕2, and 2, the Green’s function is expressed in terms of Dirac delta, exponential, Airy, hypergeometric, and Gaussian functions. For exponents strictly less than 1, the Green’s functions are expressed as Fox functions and are causal. For exponents greater than or equal than 1, the Green’s functions are expressed as Fox and Wright functions and are noncausal. However, numerical computations demonstrate that for observation points only one wavelength from the radiating source, the Green’s function is effectively causal for power-law exponents greater than or equal to 1. The analytical time-domain Green’s function is numerically verified against the material impulse response function, and the results demonstrate excellent agreement. PMID:19045774
Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee
2008-07-01
In a false killer whale Pseudorca crassidens, echo perception thresholds were measured using a go/no-go psychophysical paradigm and one-up-one-down staircase procedure. Computer controlled echoes were electronically synthesized pulses that were played back through a transducer and triggered by whale emitted biosonar pulses. The echo amplitudes were proportional to biosonar pulse amplitudes; echo levels were specified in terms of the attenuation of the echo sound pressure level near the animal's head relative to the source level of the biosonar pulses. With increasing echo delay, the thresholds (echo attenuation factor) decreased from -49.3 dB at 2 ms to -79.5 dB at 16 ms, with a regression slope of -9.5 dB per delay doubling (-31.5 dB per delay decade). At the longer delays, the threshold remained nearly constant around -80.4 dB. Levels of emitted pulses slightly increased with delay prolongation (threshold decrease), with a regression slope of 3.2 dB per delay doubling (10.7 dB per delay decade). The echo threshold dependence on delay is interpreted as a release from forward masking by the preceding emitted pulse. This release may compensate for the echo level decrease with distance, thus keeping the echo sensation level for the animal near constant within a certain distance range.
A correlation between hard gamma-ray sources and cosmic voids along the line of sight
Furniss, A.; Sutter, P. M.; Primack, J. R.; ...
2014-11-25
We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as “VHE-like” sources) are distributed along underdense lines of sight at the 2.4σ level. There is a less suggestive correlation for the Fermi hard source population (1.7σ). A correlation between 10-500 GeV fluxmore » and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4σ and 2.6σ, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity τ(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.« less
Broadband Liner Optimization for the Source Diagnostic Test Fan
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Jones, Michael G.
2012-01-01
The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more appealing. This paper describes a broadband acoustic liner optimization study for the scale model Source Diagnostic Test fan. Specifically, in-duct attenuation predictions with a statistical fan source model are used to obtain optimum impedance spectra over a number of flow conditions for three liner locations in the bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Typical tonal liner designs targeting single frequencies at one operating condition are first produced to provide baseline performance information. These are followed by multiple broadband design approaches culminating in a broadband liner targeting the full range of frequencies and operating conditions. The broadband liner is found to satisfy the optimum impedance objectives much better than the tonal liner designs. In addition, the broadband liner is found to provide better attenuation than the tonal designs over the full range of frequencies and operating conditions considered. Thus, the current study successfully establishes a process for the initial design and evaluation of novel broadband liner concepts for complex engine configurations.
NASA Astrophysics Data System (ADS)
Alssabbagh, Moayyad; Tajuddin, Abd Aziz; Abdulmanap, Mahayuddin; Zainon, Rafidah
2017-06-01
Recently, the three-dimensional printer has started to be utilized strongly in medical industries. In the human body, many parts or organs can be printed from 3D images to meet accurate organ geometries. In this study, five common 3D printing materials were evaluated in terms of their elementary composition and the mass attenuation coefficients. The online version of XCOM photon cross-section database was used to obtain the attenuation values of each material. The results were compared with the attenuation values of the thyroid listed in the International Commission on Radiation Units and Measurements - ICRU 44. Two original thyroid models (hollow-inside and solid-inside) were designed from scratch to be used in nuclear medicine, diagnostic radiology and radiotherapy for dosimetry and image quality purposes. Both designs have three holes for installation of radiation dosimeters. The hollow-inside model has more two holes in the top for injection the radioactive materials. The attenuation properties of the Polylactic Acid (PLA) material showed a very good match with the thyroid tissue, which it was selected to 3D print the phantom using open source RepRap, Prusa i3 3D printer. The scintigraphy images show that the phantom simulates a real healthy thyroid gland and thus it can be used for image quality purposes. The measured CT numbers of the PA material after the 3D printing show a close match with the human thyroid CT numbers. Furthermore, the phantom shows a good accommodation of the TLD dosimeters inside the holes. The 3D fabricated thyroid phantom simulates the real shape of the human thyroid gland with a changeable geometrical shape-size feature to fit different age groups. By using 3D printing technology, the time required to fabricate the 3D phantom was considerably shortened compared to the longer conventional methods, where it took only 30 min to print out the model. The 3D printing material used in this study is commercially available and cost-effective compared to current commercial tissue-equivalent materials.
X-ray attenuation properties of stainless steel (u)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lily L; Berry, Phillip C
2009-01-01
Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainlessmore » steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.« less
Haloperidol Disrupts Opioid-Antinociceptive Tolerance and Physical Dependence
Yang, Cheng; Chen, Yan; Tang, Lei
2011-01-01
Previous studies from our laboratory and others have implicated a critical role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in opioid tolerance and dependence. Translational research targeting the CaMKII pathway is challenging, if not impossible, because of a lack of selective inhibitors. We discovered in a preliminary study that haloperidol, a butyrophenone antipsychotic drug, inhibited CaMKII, which led us to hypothesize that haloperidol can attenuate opioid tolerance and dependence by inhibiting CaMKII. The hypothesis was tested in two rodent models of opioid tolerance and dependence. Pretreatment with haloperidol (0.2–1.0 mg/kg i.p.) prevented the development of morphine tolerance and dependence in a dose-dependent manner. Short-term treatment with haloperidol (0.06–0.60 mg/kg i.p.) dose-dependently reversed the established morphine-antinociceptive tolerance and physical dependence. Correlating with behavioral effects, pretreatment or short-term treatment with haloperidol dose-dependently inhibited morphine-induced up-regulation of supraspinal and spinal CaMKIIα activity. Moreover, haloperidol given orally was also effective in attenuating morphine-induced CaMKIIα activity, antinociceptive tolerance, and physical dependence. Taken together, these data suggest that haloperidol attenuates opioid tolerance and dependence by suppressing CaMKII activity. Because haloperidol is a clinically used drug that can be taken orally, we propose that the drug may be of use in attenuating opioid tolerance and dependence. PMID:21436292
NASA Astrophysics Data System (ADS)
Zhang, L.; Jia, M. C.; Gong, J. J.; Xia, W. M.
2017-12-01
The mass attenuation coefficient of various Lead-Boron Polyethylene samples which can be used as the photon shielding materials in marine reactor, have been simulated using the MCNP-5 code, and compared with the theoretical values at the photon energy range 0.001MeV—20MeV. A good agreement has been observed. The variations of mass attenuation coefficient, linear attenuation coefficient and mean free path with photon energy between 0.001MeV to 100MeV have been plotted. The result shows that all the coefficients strongly depends on the photon energy, material atomic composition and density. The dose transmission factors for source Cesium-137 and Cobalt-60 have been worked out and their variations with the thickness of various sample materials have also been plotted. The variations show that with the increase of materials thickness the dose transmission factors decrease continuously. The results of this paper can provide some reference for the use of the high effective shielding material Lead-Boron Polyethyene.
Optical properties of tissue, experimental results
NASA Astrophysics Data System (ADS)
Beek, Johan F.
1993-08-01
The effective attenuation coefficient of piglet lung was measured in vitro at 632.8 nm. Interstial fibres with isotropic tips were used to measure the fluence rate as a function of the distance from an isotropic light source. In vitro measurements at 632.8 nm on a lung that was insufflated with oxygen from 50 to 150 ml showed that the effective attenuation coefficient decreases as a function of the volume of air in the lung (at 50 ml /Jeff = 0.297 + 0.011 mnf1, at 100 ml lice 0.150 ± 0.007 mm-1, and at 150 ml /Jeff= 0.1136 + 0.015 mm-1). A single in vitro measurement at 790 nm at an insufflated lung volume of 100 ml gave a comparable result (ii ie = 0.175 + 0.004 mm-1). A ff decrease in effective attenuation coefficient with an ncrease in lung volume was explained by Mie-theory. The effective attenuation coefficient, calculated with 11, and g from Mie-theory, showed a deviation < 22% from the measured in vitro values.
Attenuation and velocity dispersion in the exploration seismic frequency band
NASA Astrophysics Data System (ADS)
Sun, Langqiu
In an anelastic medium, seismic waves are distorted by attenuation and velocity dispersion, which depend on petrophysical properties of reservoir rocks. The effective attenuation and velocity dispersion is a combination of intrinsic attenuation and apparent attenuation due to scattering, transmission response, and data acquisition system. Velocity dispersion is usually neglected in seismic data processing partly because of insufficient observations in the exploration seismic frequency band. This thesis investigates the methods of measuring velocity dispersion in the exploration seismic frequency band and interprets the velocity dispersion data in terms of petrophysical properties. Broadband, uncorrelated vibrator data are suitable for measuring velocity dispersion in the exploration seismic frequency band, and a broad bandwidth optimizes the observability of velocity dispersion. Four methods of measuring velocity dispersion in uncorrelated vibrator VSP data are investigated, which are the sliding window crosscorrelation (SWCC) method, the instantaneous phase method, the spectral decomposition method, and the cross spectrum method. Among them, the SWCC method is a new method and has satisfactory robustness, accuracy, and efficiency. Using the SWCC method, velocity dispersion is measured in the uncorrelated vibrator VSP data from three areas with different geological settings, i.e., Mallik gas hydrate zone, McArthur River uranium mines, and Outokumpu crystalline rocks. The observed velocity dispersion is fitted to a straight line with respect to log frequency for a constant (frequency-independent) Q value. This provides an alternative method for calculating Q. A constant Q value does not directly link to petrophysical properties. A modeling study is implemented for the Mallik and McArthur River data to interpret the velocity dispersion observations in terms of petrophysical properties. The detailed multi-parameter petrophysical reservoir models are built according to the well logs; the models' parameters are adjusted by fitting the synthetic data to the observed data. In this way, seismic attenuation and velocity dispersion provide new insight into petrophysics properties at the Mallik and McArthur River sites. Potentially, observations of attenuation and velocity dispersion in the exploration seismic frequency band can improve the deconvolution process for vibrator data, Q-compensation, near-surface analysis, and first break picking for seismic data.
Behavior of a chlorinated ethene plume following source-area treatment with Fenton's reagent
Chapelle, F.H.; Bradley, P.M.; Casey, C.C.
2005-01-01
Monitoring data collected over a 6-year period show that a plume of chlorinated ethene-contaminated ground water has contracted significantly following treatment of the contaminant source area using in situ oxidation. Prior to treatment (1998), concentrations of perchloroethene (PCE) exceeded 4500 ??g/L in a contaminant source area associated with a municipal landfill in Kings Bay, Georgia. The plume emanating from this source area was characterized by vinyl chloride (VC) concentrations exceeding 800 ??g/L. In situ oxidation using Fenton's reagent lowered PCE concentrations in the source area below 100 ??g/L, and PCE concentrations have not rebounded above this level since treatment. In the 6 years following treatment, VC concentrations in the plume have decreased significantly. These concentration declines can be attributed to the movement of Fenton's reagent-treated water downgradient through the system, the cessation of a previously installed pump-and-treat system, and the significant natural attenuation capacity of this anoxic aquifer. While in situ oxidation briefly decreased the abundance and activity of microorganisms in the source area, this activity rebounded in <6 months. Nevertheless, the shift from sulfate-reducing to Fe(III)-reducing conditions induced by Fenton's treatment may have decreased the efficiency of reductive dechlorination in the injection zone. The results of this study indicate that source-area removal actions, particularly when applied to ground water systems that have significant natural attenuation capacity, can be effective in decreasing the areal extent and contaminant concentrations of chlorinated ethene plumes. Copyright ?? 2005 National Ground Water Association.
NASA Astrophysics Data System (ADS)
Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder; Anand, Vikas; Kaur, Parminder; Singh, Prabhjot; Bajwa, B. S.
2018-03-01
In the present study, quaternary system of the composition (0.45 + x) Bi2O3-(0.25 - x) BaO-0.15 B2O3-0.15 Na2O (where 0 ≤ x ≤ 0.2 mol fraction) has been prepared by using melt-quenching technique for investigation of gamma ray shielding properties. Mass attenuation coefficients and half value layer parameters have been determined experimentally at 662 keV by using 137Cs source. It has been found that experimental results of these parameters hold good agreement with theoretical values. The density, molar volume, XRD, FTIR, Raman and UV-visible studies have been used to determine structural properties of the prepared glass samples. Dissolution rate of the samples has also been measured to check their utility as long term durable glasses.
Distillation of mixed-state continuous-variable entanglement by photon subtraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Shengli; Loock, Peter van
2010-12-15
We present a detailed theoretical analysis for the distillation of one copy of a mixed two-mode continuous-variable entangled state using beam splitters and coherent photon-detection techniques, including conventional on-off detectors and photon-number-resolving detectors. The initial Gaussian mixed-entangled states are generated by transmitting a two-mode squeezed state through a lossy bosonic channel, corresponding to the primary source of errors in current approaches to optical quantum communication. We provide explicit formulas to calculate the entanglement in terms of logarithmic negativity before and after distillation, including losses in the channel and the photon detection, and show that one-copy distillation is still possible evenmore » for losses near the typical fiber channel attenuation length. A lower bound for the transmission coefficient of the photon-subtraction beam splitter is derived, representing the minimal value that still allows to enhance the entanglement.« less
NASA Astrophysics Data System (ADS)
Marashdeh, Mohammad W.; Al-Hamarneh, Ibrahim F.; Abdel Munem, Eid M.; Tajuddin, A. A.; Ariffin, Alawiah; Al-Omari, Saleh
Rhizophora spp. wood has the potential to serve as a solid water or tissue equivalent phantom for photon and electron beam dosimetry. In this study, the effective atomic number (Zeff) and effective electron density (Neff) of raw wood and binderless Rhizophora spp. particleboards in four different particle sizes were determined in the 10-60 keV energy region. The mass attenuation coefficients used in the calculations were obtained using the Monte Carlo N-Particle (MCNP5) simulation code. The MCNP5 calculations of the attenuation parameters for the Rhizophora spp. samples were plotted graphically against photon energy and discussed in terms of their relative differences compared with those of water and breast tissue. Moreover, the validity of the MCNP5 code was examined by comparing the calculated attenuation parameters with the theoretical values obtained by the XCOM program based on the mixture rule. The results indicated that the MCNP5 process can be followed to determine the attenuation of gamma rays with several photon energies in other materials.
Microwave Backscatter and Attenuation Dependence of Leaf Area Index for Flooded Rice Fields
NASA Technical Reports Server (NTRS)
Durden, Stephen L.; Morrissey, Leslie A.; Livingston, Gerald P.
1995-01-01
Wetlands are important for their role in global climate as a source of methane and other reduced trace gases. As part of an effort to determine whether radar is suitable for wetland vegetation monitoring, we have studied the dependence of microwave backscatter and attenuation on leaf area index (LAI) for flooded rice fields. We find that the radar return from a flooded rice field does show dependence on LAI. In particular, the C-band VV cross section per unit area decreases with increasing LAI. A simple model for scattering from rice fields is derived and fit to the observed HH and VV data. The model fit provides insight into the relation of backscatter to LAI and is also used to calculate the canopy path attenuation as a function of LAI.
NASA Technical Reports Server (NTRS)
Davis, Don D , Jr; Stokes, George M; Moore, Dewey; Stevens, George L , Jr
1954-01-01
Equations are presented for the attenuation characteristics of single-chamber and multiple-chamber mufflers of both the expansion-chamber and resonator types, for tuned side-branch tubes, and for the combination of an expansion chamber with a resonator. Experimental curves of attenuation plotted against frequency are presented for 77 different mufflers with a reflection-free tailpipe termination. The experiments were made at room temperature without flow; the sound source was a loud-speaker. A method is given for including the tailpipe reflections in the calculations. Experimental attenuation curves are presented for four different muffler-tailpipe combinations, and the results are compared with the theory. The application of the theory to the design of engine-exhaust mufflers is discussed, and charts are included for the assistance of the designer.
On the attenuation of sound by three-dimensionally segmented acoustic liners in a rectangular duct
NASA Technical Reports Server (NTRS)
Koch, W.
1979-01-01
Axial segmentation of acoustically absorbing liners in rectangular, circular or annual duct configurations is a very useful concept for obtaining higher noise attenuation with respect to the bandwidth of absorption as well as the maximum attenuation. As a consequence, advanced liner concepts are proposed which induce a modal energy transfer in both cross-sectional directions to further reduce the noise radiated from turbofan engines. However, these advanced liner concepts require three-dimensional geometries which are difficult to treat theoretically. A very simple three-dimensional problem is investigated analytically. The results show a strong dependence on the positioning of the liner for some incident source modes while the effect of three-dimensional segmentation appears to be negligible over the frequency range considered.
NASA Astrophysics Data System (ADS)
Buat, V.; Giovannoli, E.; Burgarella, D.; Altieri, B.; Amblard, A.; Arumugam, V.; Aussel, H.; Babbedge, T.; Blain, A.; Bock, J.; Boselli, A.; Castro-Rodríguez, N.; Cava, A.; Chanial, P.; Clements, D. L.; Conley, A.; Conversi, L.; Cooray, A.; Dowell, C. D.; Dwek, E.; Eales, S.; Elbaz, D.; Fox, M.; Franceschini, A.; Gear, W.; Glenn, J.; Griffin, M.; Halpern, M.; Hatziminaoglou, E.; Heinis, S.; Ibar, E.; Isaak, K.; Ivison, R. J.; Lagache, G.; Levenson, L.; Lonsdale, C. J.; Lu, N.; Madden, S.; Maffei, B.; Magdis, G.; Mainetti, G.; Marchetti, L.; Morrison, G. E.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Omont, A.; Owen, F. N.; Page, M. J.; Pannella, M.; Panuzzo, P.; Papageorgiou, A.; Pearson, C. P.; Pérez-Fournon, I.; Pohlen, M.; Rigopoulou, D.; Rizzo, D.; Roseboom, I. G.; Rowan-Robinson, M.; Sánchez Portal, M.; Schulz, B.; Seymour, N.; Shupe, D. L.; Smith, A. J.; Stevens, J. A.; Strazzullo, V.; Symeonidis, M.; Trichas, M.; Tugwell, K. E.; Vaccari, M.; Valiante, E.; Valtchanov, I.; Vigroux, L.; Wang, L.; Ward, R.; Wright, G.; Xu, C. K.; Zemcov, M.
2010-11-01
The reliability of infrared (IR) and ultraviolet (UV) emissions to measure star formation rates (SFRs) in galaxies is investigated for a large sample of galaxies observed with the Spectral and Photometric Imaging Receiver (SPIRE) and the Photodetector Array Camera and Spectrometer (PACS) instruments on Herschel as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES) project. We build flux-limited 250-μm samples of sources at redshift z < 1, cross-matched with the Spitzer/MIPS and GALEX catalogues. About 60 per cent of the Herschel sources are detected in UV. The total IR luminosities, LIR, of the sources are estimated using a spectral energy distribution (SED) fitting code that fits to fluxes between 24 and 500 μm. Dust attenuation is discussed on the basis of commonly used diagnostics: the LIR/LUV ratio and the slope, β, of the UV continuum. A mean dust attenuation AUV of mag is measured in the samples. LIR/LUV is found to correlate with LIR. Galaxies with and 0.5 < z < 1 exhibit a mean dust attenuation AUV of about 0.7 mag lower than that found for their local counterparts, although with a large dispersion. Our galaxy samples span a large range of β and LIR/LUV values which, for the most part, are distributed between the ranges defined by the relations found locally for starburst and normal star-forming galaxies. As a consequence the recipe commonly applied to local starbursts is found to overestimate the dust attenuation correction in our galaxy sample by a factor of ~2-3. The SFRs deduced from LIR are found to account for about 90 per cent of the total SFR; this percentage drops to 71 per cent for galaxies with (or ). For these faint objects, one needs to combine UV and IR emissions to obtain an accurate measure of the SFR.
Light attenuation in estuarine mangrove lakes
NASA Astrophysics Data System (ADS)
Frankovich, Thomas A.; Rudnick, David T.; Fourqurean, James W.
2017-01-01
Submerged aquatic vegetation (SAV) cover has declined in brackish lakes in the southern Everglades characterized by low water transparencies, emphasizing the need to evaluate the suitability of the aquatic medium for SAV growth and to identify the light attenuating components that contribute most to light attenuation. Underwater attenuation of downwards irradiance of photosynthetically active radiation (PAR) was determined over a three year period at 42 sites in shallow (<2 m depth) mangrove-surrounded lakes in two sub-estuaries in the coastal Everglades, Florida USA. Turbidity, chromophoric dissolved organic matter (CDOM), and phytoplankton chlorophyll a (chl a) were measured concurrently and their respective contributions to the light attenuation rate were estimated. Light transmission to the benthos relative to literature estimates of minimum requirements for SAV growth indicated that the underwater light environment was often unsuitable for SAV. Light attenuation rates (n = 417) corrected for solar elevation angles ranged from 0.16 m-1 to 9.83 m-1 with a mean of 1.73 m-1. High concentrations of CDOM with high specific light absorption contributed the most to light attenuation followed by turbidity and chl a. CDOM alone sufficiently reduces light transmission beyond the estimated limits for SAV growth, making it difficult for ecosystem managers to increase SAV abundance by management activities. Light limitation of SAV in these areas may be a persistent feature because of their proximity to CDOM source materials from the surrounding mangrove swamp. Increasing freshwater flow into these areas may dilute CDOM concentrations and improve the salinity and light climate for SAV communities.
Stuart, Marianne E; Lapworth, Dan J; Thomas, Jenny; Edwards, Laura
2014-01-15
Evaluating the occurrence of microorganics helps to understand sources and processes which may be controlling the transport and fate of emerging contaminants (ECs). A study was carried out at the contrasting instrumented environmental observatory sites at Oxford, on the peri-urban floodplain gravel aquifer of the River Thames and Boxford, in the rural valley of the River Lambourn on the chalk aquifer, in Southern England to explore the use of ECs to fingerprint contaminant sources and flow pathways in groundwater. At Oxford compounds were typical of a local waste tip plume (not only plasticisers and solvents but also barbiturates and N,N-diethyl-m-toluamide (DEET)) and of the urban area (plasticisers and mood-enhancing drugs such as carbamazepine). At Boxford the results were different with widespread occurrence of agricultural pesticides, their metabolites and the solvent trichloroethene, as well as plasticisers, caffeine, butylated food additives, DEET, parabens and trace polyaromatic hydrocarbons (PAHs). Groups of compounds used in pharmaceuticals and personal care products of different provenance in the environment could be distinguished, i) historical household and medical waste, ii) long-term household usage persistent in groundwater and iii) current usage and contamination from surface water. Co-contaminant and degradation products can also indicate the likely source of contaminants. A cocktail of contaminants can be used as tracers to provide information on catchment pathways and groundwater/surface water interactions. A prominent feature in this study is the attenuation of many EC compounds in the hyporheic zone. © 2013.
Rain attenuation studies from radiometric and rain DSD measurements at two tropical locations
NASA Astrophysics Data System (ADS)
Halder, Tuhina; Adhikari, Arpita; Maitra, Animesh
2018-05-01
Efficient use of satellite communication in tropical regions demands proper characterization of rain attenuation, particularly, in view of the available popular propagation models which are mostly based on temperate climatic data. Thus rain attenuations at frequencies 22.234, 23.834 and 31.4/30 GHz over two tropical locations Kolkata (22.57°N, 88.36°E, India) and Belem (1.45°S, 48.49° W, Brazil), have been estimated for the year 2010 and 2011, respectively. The estimation has been done utilizing ground-based disdrometer observations and radiometric measurements over Earth-space path. The results show that rain attenuation estimations from radiometric data are reliable only at low rain rates (<30 mm/h). However, the rain attenuation estimations from disdrometer measurements show good agreement with the ITU-R model, even at high rain rates (upto100 mm/h). Despite having significant variability in terms of drop size distribution (DSD), the attenuation values calculated from DSD data (disdrometer measurements) at Kolkata and Belem differ a little for the rain rates below 30 mm/h. However, the attenuation values, obtained from radiometric measurements at the two places, show significant deviations ranging from 0.54 dB to 3.2 dB up to a rain rate of 30 mm/h, on account of different rain heights, mean atmospheric temperatures and climatology of the two locations.
Seismic attenuation structure beneath Nazca Plate subduction zone in southern Peru
NASA Astrophysics Data System (ADS)
Jang, H.; Kim, Y.; Clayton, R. W.
2017-12-01
We estimate seismic attenuation in terms of quality factors, QP and QS using P and S phases, respectively, beneath Nazca Plate subduction zone between 10°S and 18.5°S latitude in southern Peru. We first relocate 298 earthquakes with magnitude ranges of 4.0-6.5 and depth ranges of 20-280 km. We measure t*, which is an integrated attenuation through the seismic raypath between the regional earthquakes and stations. The measured t* are inverted to construct three-dimensional attenuation structures of southern Peru. Checkerboard test results for both QP and QS structures ensure good resolution in the slab-dip transition zone between flat and normal slab subduction down to a depth of 200 km. Both QP and QS results show higher attenuation continued down to a depth of 50 km beneath volcanic arc and also beneath the Quimsachata volcano, the northernmost young volcano, located far east of the main volcanic front. We also observe high attenuation in mantle wedge especially beneath the normal subduction region in both QP and QS (100-130 in QP and 100-125 in QS) and slightly higher QP and QS beneath the flat-subduction and slab-dip transition regions. We plan to relate measured attenuation in the mantle wedge to material properties such as viscosity to understand the subduction zone dynamics.
Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency
NASA Technical Reports Server (NTRS)
Dean, L. W.
1975-01-01
An analytical and test program was conducted to evaluate means for increasing the effectiveness of low frequency sound absorbing liners for aircraft turbine engines. Three schemes for coupling low frequency absorber elements were considered. These schemes were analytically modeled and their impedance was predicted over a frequency range of 50 to 1,000 Hz. An optimum and two off-optimum designs of the most promising, a parallel coupled scheme, were fabricated and tested in a flow duct facility. Impedance measurements were in good agreement with predicted values and validated the procedure used to transform modeled parameters to hardware designs. Measurements of attenuation for panels of coupled resonators were consistent with predictions based on measured impedance. All coupled resonator panels tested showed an increase in peak attenuation of about 50% and an increase in attenuation bandwidth of one one-third octave band over that measured for an uncoupled panel. These attenuation characteristics equate to about 35% greater reduction in source perceived noise level (PNL), relative to the uncoupled panel, or a reduction in treatment length of about 24% for constant PNL reduction. The increased effectiveness of the coupled resonator concept for attenuation of low frequency broad spectrum noise is demonstrated.
NASA Astrophysics Data System (ADS)
Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde
2017-03-01
Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery.
Noise Pollution Aspects of Barge, Railroad, and Truck Transportation,
1975-04-01
attenuation alone. (f) Commins, et al, conclude that: (1) a lush vegetative cover will reduce dB( A ) levels by a factor of 4.5 - 4.8dB(A) instead of 3dB...prevailed (Figure lOc). Visual evidence of how much lapse rates affect dB( A ) levels experienced at varying distances from a line source of sound is made...possible by comparing the dB( A ) levels shown in Figures 9a, b and c at varying distances that would occur based solely on geometric attenuation (Figure 11
X-ray transmissive debris shield
Spielman, R.B.
1996-05-21
An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.
X-ray transmissive debris shield
Spielman, Rick B.
1996-01-01
An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.
NASA Astrophysics Data System (ADS)
Chu, Wei-Han; Yuan, Ming-Chen; Lee, Jeng-Hung; Lin, Yi-Chun
2017-11-01
Ir-192 sources are widely used in brachytherapy and the number of treatments is around seven thousand for the use of the high dose rate (HDR) Ir-192 brachytherapy source per year in Taiwan. Due to its physical half-life of 73.8 days, the source should be replaced four times per year to maintain the HDR treatment mode (DDEP, 2005; Coursey et al., 1992). When doing this work, it must perform the source dose trace to assure the dose accuracy. To establish the primary measurement standard of reference air kerma rate(RAKR) for the HDR Ir-192 brachytherapy sources in Taiwan, the Institute of Nuclear Energy Research (INER) fabricated a dual spherical graphite-walled cavity ionization chambers system to directly measure the RAKR of the Ir-192 brachytherapy source. In this system, the ion-charge was accumulated by the two ionization chambers and after correction for the ion recombination, temperature, atmosphere pressure, room scattering, graphite-wall attenuation, air attenuation, source decay, stem effect, and so on. The RAKR of the Ir-192 source was obtained in the ambient conditions of 22 °C and one atmosphere. The measurement uncertainty of the system was around 0.92% in 96% confidence level (k=2.0). To verify the accuracy of the result, the source calibration comparison has been made at the National Radiation Standard Laboratory (NRSL) of INER and Physikalisch-Technische Bundesanstalt (PTB, Germany) in 2015. The ratio of the measurement results between INER and PTB, INER/PTB, was 0.998±0.027 (k=2) which showed good consistency and the performance of the system was verified.
Mullan, B F; Madsen, M T; Messerle, L; Kolesnichenko, V; Kruger, J
2000-04-01
The purpose of this study was to examine the radiologic attenuation properties of the parent cluster compounds, particularly attenuation as a function of discrete photon energy, before investigating ligand substitutions, which are necessary to improve cluster biocompatibility and to impart desirable physicochemical properties. The linear attenuation coefficients for solutions of the cluster compounds Ta6Br14, K8Ta6O19, and (H3O)2W6Cl14 were determined at 60, 80, 103, 122, and 140 keV from gamma-ray transmission measurements with americium-241, xenon-133, gadolinium-153, cobalt-57, and technetium-99m radioactive sources. Transmission measurements were obtained for a fixed time interval that ensured a statistically accurate count distribution exceeding 20,000 counts through the sample for each trial. On a strictly mole per liter basis, a 0.075 mol/L aqueous solution of K8Ta6O19 showed 1.08 times the attenuation of 0.063 mol/L aqueous iohexol at 60 keV and 3.30 times the attenuation at 80 keV. Similarly, a 0.05 mol/L methanolic solution of (H3O)2W6Cl4 showed 0.96 times (96%) the attenuation of 0.063 mol/L aqueous iohexol at 60 keV but 3.09 times the attenuation of the iohexol solution at 80 keV. Attenuations of 0.063 mol/L aqueous iohexol and 0.0125 mol/L Ta6Br14 (ie, at approximately one-fifth the iohexol concentration) were comparable at greater than 60 keV. These results confirm the theoretic potential for use of early transition metal cluster compounds as radiographic contrast agents. At higher x-ray energies, cluster compounds demonstrate multiplied x-ray attenuation relative to iodinated contrast agents.
NASA Astrophysics Data System (ADS)
Ichinose, G.; Woods, M.; Dwyer, J.
2014-03-01
We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580-600 km) earthquakes (4.8 < M w < 5.5) in the Jilin-Heilongjiang, China region that borders with Russia and North Korea. These earthquakes are 200-300 km from the NKTS, within 200 km of the Global Seismic Network seismic station in Mudanjiang, China (MDJ) and the International Monitoring System primary arrays at Ussuriysk, Russia (USRK) and Wonju, Republic of Korea (KSRS). With the deep earthquakes, we split the t*(total) ray path into two segments: a t*(u), that represents the attenuation of the up-going ray from the deep hypocenters to the local-regional receivers, and t*(d), that represents the attenuation along the down-going ray to teleseismic receivers. The sum of t*(u) and t*(d) should be equal to t*(total), because they both share coincident ray paths. We estimated the upper-mantle attenuation t*(u) of 0.1 s at stations MDJ, USRK, and KSRS from individual and stacks of normalized P-wave spectra. We then estimated the average lower-mantle attenuation t*(d) of 0.4 s using stacked teleseismic P-wave spectra. We finally estimated a network average t*(total) of 0.5 s from the stacked teleseismic P-wave spectra from the 2009 nuclear test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ω2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5-2 Hz range.
Apparatus And Methods For Launching And Receiving A Broad Wavelength Range Source
Von Drasek, William A.; Sonnenfroh, David; Allen, Mark G.; Stafford-Evans, Joy
2006-02-28
An apparatus and method for simultaneous detection of N gas species through laser radiation attenuation techniques is disclosed. Each of the N species has a spectral absorption band. N laser sources operate at a wavelength ?N in a spectral absorption band separated by the cutoff wavelength for single-mode transmission. Each laser source corresponds to a gas species and transmits radiation through an optical fiber constructed and arranged to provide single-mode transmission with minimal power loss.
Solana, José Carlos; Ramírez, Laura; Corvo, Laura; de Oliveira, Camila Indiani; Barral-Netto, Manoel; Requena, José María
2017-01-01
Background The immunization with genetically attenuated Leishmania cell lines has been associated to the induction of memory and effector T cell responses against Leishmania able to control subsequent challenges. A Leishmania infantum null mutant for the HSP70-II genes has been described, possessing a non-virulent phenotype. Methodology/Principal findings The L. infantum attenuated parasites (LiΔHSP70-II) were inoculated in BALB/c (intravenously and subcutaneously) and C57BL/6 (subcutaneously) mice. An asymptomatic infection was generated and parasites diminished progressively to become undetectable in most of the analyzed organs. However, inoculation resulted in the long-term induction of parasite specific IFN-γ responses able to control the disease caused by a challenge of L. major infective promastigotes. BALB/c susceptible mice showed very low lesion development and a drastic decrease in parasite burdens in the lymph nodes draining the site of infection and internal organs. C57BL/6 mice did not show clinical manifestation of disease, correlated to the rapid migration of Leishmania specific IFN-γ producing T cells to the site of infection. Conclusion/Significance Inoculation of the LiΔHSP70-II attenuated line activates mammalian immune system for inducing moderate pro-inflammatory responses. These responses are able to confer long-term protection in mice against the infection of L. major virulent parasites. PMID:28558043
Ultrasonic investigation of the superconducting properties of the Nb-Mo system
NASA Technical Reports Server (NTRS)
Lacy, L. L.
1972-01-01
The superconducting properties of single crystals of Nb and two alloys of Nb with Mo were investigated by ultrasonic techniques. The results of measurements of the ultrasonic attenuation and velocities as a function of temperature, Mo composition, crystallographic direction, and ultrasonic frequency are reported. The attenuation and small velocity changes associated with the superconductivity of the samples are shown to be dependent on the sample resistivity ratio which varied from 4.3 for Nb-9% Mo to 6500 for pure Nb. The ultrasonic attenuation data are analyzed in terms of the superconducting energy gap term of the BCS theory. A new model is proposed for the analysis of ultrasonic attenuation in pure superconductors with two partially decoupled energy bands. To analyze the attenuation in pure superconducting Nb, the existence of two energy gaps was assumed to be associated with the two partially decoupled energy bands. One of the gaps was found to have the normal BCS value of 3.4 and the other gap was found to have the anomalously large value of 10. No experimental evidence was found to suggest that the second energy gap had a different transition temperature. The interpretation of the results for the Nb-Mo alloys is shown to be complicated by the possible existence of a second superconducting phase in Nb-Mo alloys with a transition temperature of 0.35 of the transition temperature of the first phase. The elastic constants of Nb and Nb-Mo alloys are shown to be approximately independent of Mo composition to nine atomic percent Mo. These results do not agree with the current microscopic theory of transition temperature for the transition elements.
NASA Astrophysics Data System (ADS)
Sakakibara, Kai; Hagiwara, Masafumi
In this paper, we propose a 3-dimensional self-organizing memory and describe its application to knowledge extraction from natural language. First, the proposed system extracts a relation between words by JUMAN (morpheme analysis system) and KNP (syntax analysis system), and stores it in short-term memory. In the short-term memory, the relations are attenuated with the passage of processing. However, the relations with high frequency of appearance are stored in the long-term memory without attenuation. The relations in the long-term memory are placed to the proposed 3-dimensional self-organizing memory. We used a new learning algorithm called ``Potential Firing'' in the learning phase. In the recall phase, the proposed system recalls relational knowledge from the learned knowledge based on the input sentence. We used a new recall algorithm called ``Waterfall Recall'' in the recall phase. We added a function to respond to questions in natural language with ``yes/no'' in order to confirm the validity of proposed system by evaluating the quantity of correct answers.
Simulations of acoustic waves in channels and phonation in glottal ducts
NASA Astrophysics Data System (ADS)
Yang, Jubiao; Krane, Michael; Zhang, Lucy
2014-11-01
Numerical simulations of acoustic wave propagation were performed by solving compressible Navier-Stokes equations using finite element method. To avoid numerical contamination of acoustic field induced by non-physical reflections at computational boundaries, a Perfectly Matched Layer (PML) scheme was implemented to attenuate the acoustic waves and their reflections near these boundaries. The acoustic simulation was further combined with the simulation of interaction of vocal fold vibration and glottal flow, using our fully-coupled Immersed Finite Element Method (IFEM) approach, to study phonation in the glottal channel. In order to decouple the aeroelastic and aeroacoustic aspects of phonation, the airway duct used has a uniform cross section with PML properly applied. The dynamics of phonation were then studied by computing the terms of the equations of motion for a control volume comprised of the fluid in the vicinity of the vocal folds. It is shown that the principal dynamics is comprised of the near cancellation of the pressure force driving the flow through the glottis, and the aerodynamic drag on the vocal folds. Aeroacoustic source strengths are also presented, estimated from integral quantities computed in the source region, as well as from the radiated acoustic field.
Akbarzadeh, A; Ay, M R; Ahmadian, A; Alam, N Riahi; Zaidi, H
2013-02-01
Hybrid PET/MRI presents many advantages in comparison with its counterpart PET/CT in terms of improved soft-tissue contrast, decrease in radiation exposure, and truly simultaneous and multi-parametric imaging capabilities. However, the lack of well-established methodology for MR-based attenuation correction is hampering further development and wider acceptance of this technology. We assess the impact of ignoring bone attenuation and using different tissue classes for generation of the attenuation map on the accuracy of attenuation correction of PET data. This work was performed using simulation studies based on the XCAT phantom and clinical input data. For the latter, PET and CT images of patients were used as input for the analytic simulation model using realistic activity distributions where CT-based attenuation correction was utilized as reference for comparison. For both phantom and clinical studies, the reference attenuation map was classified into various numbers of tissue classes to produce three (air, soft tissue and lung), four (air, lungs, soft tissue and cortical bones) and five (air, lungs, soft tissue, cortical bones and spongeous bones) class attenuation maps. The phantom studies demonstrated that ignoring bone increases the relative error by up to 6.8% in the body and up to 31.0% for bony regions. Likewise, the simulated clinical studies showed that the mean relative error reached 15% for lesions located in the body and 30.7% for lesions located in bones, when neglecting bones. These results demonstrate an underestimation of about 30% of tracer uptake when neglecting bone, which in turn imposes substantial loss of quantitative accuracy for PET images produced by hybrid PET/MRI systems. Considering bones in the attenuation map will considerably improve the accuracy of MR-guided attenuation correction in hybrid PET/MR to enable quantitative PET imaging on hybrid PET/MR technologies.
2009-01-01
complementary description of CDOM photodegradation and, importantly, CDOM biomass and light absorption. As part of this work, we setup and run the new high...related loss terms from the ECOSIM 2.0 formulation (Bissett 2005 and FERI 2004) and included diffuse light attenuation in the water column based on...Huang, pers. comm.), c) we improved the photolysis rate equations and included light attenuation in the water column, and d) we expanded the limited
2005-01-21
integrated moving average ( ARIMA ) model [15,19]. Fore- casted values for the postexposure time periods were based on the training model extrapolated...Smith JF. Genetically engineered, live attenuated vaccines or Venezuelan equine encephalitis: testing in animal models . Vaccine 2003;21(25–26):3854–62...encephalitis: testing in animal models . Vaccine 2003;21(25-26):3854-62] and IE strains of VEE viruses. 15. SUBJECT TERMS Venezuelan equine
2015-10-15
Munsell Color • Light Attenuation and Turbidity • Sea turtle nesting • Conclusions • Traditional vs. Cross Shore Swash Zone Placement • Acknowledgments...Light Attenuation Long-term Monitoring Dredging 19 Nov. – 28 Dec. Dredging 21 Jan. – 6 Mar. BUILDING STRONG® Sea Turtle Nesting 2015 Traditional...Traditional Placement • Less linear feet of beach impacted for equivalent volume • Reduced environmental Impacts • Turtle nest relocations • Ponding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, A; Peterson, T; Johnson, L
2015-06-15
Purpose: To evaluate the impact of the exceptional energy resolution of germanium detectors for preclinical SPECT in comparison to conventional detectors. Methods: A cylindrical water phantom was created in GATE with a spherical Tc-99m source in the center. Sixty-four projections over 360 degrees using a pinhole collimator were simulated. The same phantom was simulated using air instead of water to establish the true reconstructed voxel intensity without attenuation. Attenuation correction based on the Chang method was performed on MLEM reconstructed images from the water phantom to determine a quantitative measure of the effectiveness of the attenuation correction. Similarly, a NEMAmore » phantom was simulated, and the effectiveness of the attenuation correction was evaluated. Both simulations were carried out using both NaI detectors with an energy resolution of 10% FWHM and Ge detectors with an energy resolution of 1%. Results: Analysis shows that attenuation correction without scatter correction using germanium detectors can reconstruct a small spherical source to within 3.5%. Scatter analysis showed that for standard sized objects in a preclinical scanner, a NaI detector has a scatter-to-primary ratio between 7% and 12.5% compared to between 0.8% and 1.5% for a Ge detector. Preliminary results from line profiles through the NEMA phantom suggest that applying attenuation correction without scatter correction provides acceptable results for the Ge detectors but overestimates the phantom activity using NaI detectors. Due to the decreased scatter, we believe that the spillover ratio for the air and water cylinders in the NEMA phantom will be lower using germanium detectors compared to NaI detectors. Conclusion: This work indicates that the superior energy resolution of germanium detectors allows for less scattered photons to be included within the energy window compared to traditional SPECT detectors. This may allow for quantitative SPECT without implementing scatter correction, reducing uncertainties introduced by scatter correction algorithms. Funding provided by NIH/NIBIB grant R01EB013677; Todd Peterson, Ph.D., has had a research contract with PHDs Co., Knoxville, TN.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooten, Gwendolyn; Cato, Rebecca; Looney, Brian
At the US Department of Energy (DOE), Office of Legacy Management, Mound, Ohio, Site, chlorinated organic contaminants (cVOCs) originating from the former solid-waste landfill have impacted groundwater in Operable Unit 1 (OU-1). The baseline groundwater remedy was groundwater pump and treat (P&T). Since the source materials have been removed from the landfill, the Mound core team, which consists of DOE, US Environmental Protection Agency (US EPA), Ohio EPA, and other stakeholders, is assessing the feasibility of switching from the active P&T remedy to a passive attenuation-based remedy. Toward this end, an enhanced attenuation (EA) strategy based on the creation ofmore » structured geochemical zones was developed. This EA strategy addresses the residual areas of elevated cVOCs in soil and groundwater while minimizing the rebound of groundwater concentrations above regulatory targets (e.g., maximum contaminant levels [MCLs]) and avoiding plume expansion while the P&T system is turned off. The EA strategy has improved confidence and reduced risk on the OU-1 groundwater transition path to monitored natural attenuation (MNA). To better evaluate the EA strategy, DOE is conducting a field demonstration to evaluate the use of edible oils to enhance the natural attenuation processes. The field demonstration is designed to determine whether structured geochemical zones can be established that expedite the attenuation of cVOCs in the OU-1 groundwater. The EA approach at OU-1 was designed based on “structured geochemical zones” and relies on groundwater flow through a succession of anaerobic and aerobic zones. The anaerobic zones stimulate relatively rapid degradation of the original solvent source compounds (e.g., cVOCs such as tetrachloroethene [PCE] and trichloroethene [TCE]). The surrounding aerobic areas encourage relatively rapid degradation of daughter products (such as dichloroethene [DCE] and vinyl chloride [VC]) as well as enhanced cometabolism of TCE resulting from the utilization of methane and other reduced hydrocarbons that are formed and released from the anaerobic zones.« less
USDA-ARS?s Scientific Manuscript database
High protein diets may attenuate bone loss during energy restriction (ER). The objective of the current study was to determine whether high protein diets suppress bone turnover and improve bone quality in rats during ER and whether dietary protein source affects this relationship. Eighty 12-week o...
ATTENUATION OF COBALT-60 RADIATION FROM A SOURCE DISTRIBUTED AROUND A CONCRETE BLOCKHOUSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batter, J.F.; Starbird, A.W.
1961-06-15
Two radiation-shielding experiments were performed upon a simple blockhouse structure. The blockhouse was exposed to a simulated fallout field, and the radiation penetrating the structure was measured. The radiation field was produced by circulating a sealed cobalt-60 source through polyethylene tubing predistributed over an octant centered on the test building. Experimental details are described and results tabulated. (auth)
NASA Astrophysics Data System (ADS)
Singh, Rakesh; Paul, Ajay; Kumar, Arjun; Kumar, Parveen; Sundriyal, Y. P.
2018-06-01
Source parameters of the small to moderate earthquakes are significant for understanding the dynamic rupture process, the scaling relations of the earthquakes and for assessment of seismic hazard potential of a region. In this study, the source parameters were determined for 58 small to moderate size earthquakes (3.0 ≤ Mw ≤ 5.0) occurred during 2007-2015 in the Garhwal-Kumaun region. The estimated shear wave quality factor (Qβ(f)) values for each station at different frequencies have been applied to eliminate any bias in the determination of source parameters. The Qβ(f) values have been estimated by using coda wave normalization method in the frequency range 1.5-16 Hz. A frequency-dependent S wave quality factor relation is obtained as Qβ(f) = (152.9 ± 7) f(0.82±0.005) by fitting a power-law frequency dependence model for the estimated values over the whole study region. The spectral (low-frequency spectral level and corner frequency) and source (static stress drop, seismic moment, apparent stress and radiated energy) parameters are obtained assuming ω-2 source model. The displacement spectra are corrected for estimated frequency-dependent attenuation, site effect using spectral decay parameter "Kappa". The frequency resolution limit was resolved by quantifying the bias in corner frequencies, stress drop and radiated energy estimates due to finite-bandwidth effect. The data of the region shows shallow focused earthquakes with low stress drop. The estimation of Zúñiga parameter (ε) suggests the partial stress drop mechanism in the region. The observed low stress drop and apparent stress can be explained by partial stress drop and low effective stress model. Presence of subsurface fluid at seismogenic depth certainly manipulates the dynamics of the region. However, the limited event selection may strongly bias the scaling relation even after taking as much as possible precaution in considering effects of finite bandwidth, attenuation and site corrections. Although, the scaling can be improved further with the integration of large dataset of microearthquakes and use of a stable and robust approach.
NASA Technical Reports Server (NTRS)
Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)
2001-01-01
Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.
W. J. Massman
2004-01-01
Atmospheric trace gas fluxes measured with an eddy covariance sensor that detects a constituent's density fluctuations within the in situ air need to include terms resulting from concurrent heat and moisture fluxes, the so called 'density' or 'WPL corrections' (Webb et al. 1980). The theory behind these additional terms is well established. But...
Long-term prognostic impact of the attenuated plaque in patients with acute coronary syndrome.
Okura, Hiroyuki; Kataoka, Toru; Yoshiyama, Minoru; Yoshikawa, Junichi; Yoshida, Kiyoshi
2016-01-01
Several intravascular ultrasound studies have reported that culprit lesion-attenuated plaque (AP) is related to slow flow/no reflow after percutaneous coronary intervention (PCI). Long-term prognostic impact of the AP is unknown. The aim of this study was to investigate acute and long-term clinical impact of the AP in patients with acute coronary syndrome (ACS). A total of 110 ACS patients who underwent successful PCI were enrolled. Acute and long-term clinical outcomes were compared between patients with AP (AP group: n = 73) and those without AP (non-AP group: n = 37). Long-term cardiac event was defined as a composite of death and ACS. Baseline characteristics in 2 groups were similar. AP was associated with higher TIMI frame count immediately after the first balloon inflation. After thrombectomy and intracoronary drug administration, final TIMI frame count became similar between AP and non-AP group. Although AP was associated with higher incidence of fatal arrhythmia during hospitalization, in-hospital mortality did not differ between the 2 groups. During follow-up (median 6.2 years), cardiac event-free survival did not differ between the 2 groups. Despite the initial unfavorable effect on coronary reflow, presence of AP did not affect acute as well as long-term clinical outcome in patients with ACS.
Ankle fractures have features of an osteoporotic fracture.
Lee, K M; Chung, C Y; Kwon, S S; Won, S H; Lee, S Y; Chung, M K; Park, M S
2013-11-01
We report the bone attenuation of ankle joint measured on computed tomography (CT) and the cause of injury in patients with ankle fractures. The results showed age- and gender-dependent low bone attenuation and low-energy trauma in elderly females, which suggest the osteoporotic features of ankle fractures. This study was performed to investigate the osteoporotic features of ankle fracture in terms of bone attenuation and cause of injury. One hundred ninety-four patients (mean age 51.0 years, standard deviation 15.8 years; 98 males and 96 females) with ankle fracture were included. All patients underwent CT examination, and causes of injury (high/low-energy trauma) were recorded. Mean bone attenuations of the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis were measured on CT images. Patients were divided into younger age (<50 years) and older age (≥50 years) groups, and mean bone attenuation and causes of injury were compared between the two groups in each gender. Proportion of low-energy trauma was higher in the older age group than in the younger age group, but the difference was only significant in female gender (p = 0.011). The older age group showed significantly lower bone attenuation in the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis than the younger age group in both genders. The older age group showed more complex pattern of fractures than the younger age group. With increasing age, bone attenuations tended to decrease and the difference of bone attenuation between the genders tended to increase in the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis. Ankle fracture had features of osteoporotic fracture that is characterized by age- and gender-dependent low bone attenuation. Ankle fracture should not be excluded from the clinical and research interest as well as from the benefit of osteoporosis management.
Development of an ultra-compact mid-infrared attenuated total reflectance spectrophotometer
NASA Astrophysics Data System (ADS)
Kim, Dong Soo; Lee, Tae-Ro; Yoon, Gilwon
2014-07-01
Mid-infrared spectroscopy has been an important tool widely used for qualitative analysis in various fields. However, portable or personal use is size and cost prohibitive for either Fourier transform infrared or attenuated total reflectance (ATR) spectrophotometers. In this study, we developed an ultra-compact ATR spectrophotometer whose frequency band was 5.5-11.0 μm. We used miniature components, such as a light source fabricated by semiconductor technology, a linear variable filter, and a pyro-electric array detector. There were no moving parts. Optimal design based on two light sources, a zippered configuration of the array detector and ATR optics could produce absorption spectra that might be used for qualitative analysis. A microprocessor synchronized the pulsed light sources and detector, and all the signals were processed digitally. The size was 13.5×8.5×3.5 cm3 and the weight was 300 grams. Due to its low cost, our spectrophotometer can replace many online monitoring devices. Another application could be for a u-healthcare system installed in the bathroom or attached to a smartphone for monitoring substances in body fluids.
Long-range propagation of nonlinear infrasound waves through an absorbing atmosphere.
de Groot-Hedlin, C D
2016-04-01
The Navier-Stokes equations are solved using a finite-difference, time-domain (FDTD) approach for axi-symmetric environmental models, allowing three-dimensional acoustic propagation to be simulated using a two-dimensional Cylindrical coordinate system. A method to stabilize the FDTD algorithm in a viscous medium at atmospheric densities characteristic of the lower thermosphere is described. The stabilization scheme slightly alters the governing equations but results in quantifiable dispersion characteristics. It is shown that this method leaves sound speeds and attenuation unchanged at frequencies that are well resolved by the temporal sampling rate but strongly attenuates higher frequencies. Numerical experiments are performed to assess the effect of source strength on the amplitudes and spectral content of signals recorded at ground level at a range of distances from the source. It is shown that the source amplitudes have a stronger effect on a signal's dominant frequency than on its amplitude. Applying the stabilized code to infrasound propagation through realistic atmospheric profiles shows that nonlinear propagation alters the spectral content of low amplitude thermospheric signals, demonstrating that nonlinear effects are significant for all detectable thermospheric returns.
Azeez, Ali Basheer; Mohammed, Kahtan S; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul
2013-10-23
Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137 Cs and ⁶⁰Co radioactive elements with photon energies of 0.662 MeV for 137 Cs and two energy levels of 1.17 and 1.33 MeV for the ⁶⁰Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10 -3 for 137 Cs and 0.92 ± 1.57 × 10 -3 for ⁶⁰Co. Substantial improvement in attenuation performance by 20%-25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%-30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.
Continuous light absorption photometer for long-term studies
NASA Astrophysics Data System (ADS)
Ogren, John A.; Wendell, Jim; Andrews, Elisabeth; Sheridan, Patrick J.
2017-12-01
A new photometer is described for continuous determination of the aerosol light absorption coefficient, optimized for long-term studies of the climate-forcing properties of aerosols. Measurements of the light attenuation coefficient are made at blue, green, and red wavelengths, with a detection limit of 0.02 Mm-1 and a precision of 4 % for hourly averages. The uncertainty of the light absorption coefficient is primarily determined by the uncertainty of the correction scheme commonly used to convert the measured light attenuation to light absorption coefficient and ranges from about 20 % at sites with high loadings of strongly absorbing aerosols up to 100 % or more at sites with low loadings of weakly absorbing aerosols. Much lower uncertainties (ca. 40 %) for the latter case can be achieved with an advanced correction scheme.
NASA Astrophysics Data System (ADS)
Wang, J.
2013-12-01
Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only recycle wastewater, but can also increase the likelihood of denitrification. Thus the farmer essentially can choose whether, and to which extent, to install capture wells and take advantage of the ecosystem attenuation services. Decision rules from the dynamic optimization model demonstrate best management practices for the farm to improve its economic and environmental performance. I further use an economic valuation technique to value these services. Under the Millennium Ecosystem Assessment framework, nitrate attenuation in the unsaturated and saturated zone provides regulatory ecosystem services to humans, mainly nutrient regulation and waste treatment. With the integrated farm model, the production function approach is adopted to get the economic value of these regulatory services. The results highlight the significant role the environment can play in nitrate pollution control and potential benefits from designing policies that acknowledge this role. The most desirable policies are those that create incentive for farmers to use potential ecosystem services, which significantly reduce environmental compliance costs and increase social welfare.
Considering potential seismic sources in earthquake hazard assessment for Northern Iran
NASA Astrophysics Data System (ADS)
Abdollahzadeh, Gholamreza; Sazjini, Mohammad; Shahaky, Mohsen; Tajrishi, Fatemeh Zahedi; Khanmohammadi, Leila
2014-07-01
Located on the Alpine-Himalayan earthquake belt, Iran is one of the seismically active regions of the world. Northern Iran, south of Caspian Basin, a hazardous subduction zone, is a densely populated and developing area of the country. Historical and instrumental documented seismicity indicates the occurrence of severe earthquakes leading to many deaths and large losses in the region. With growth of seismological and tectonic data, updated seismic hazard assessment is a worthwhile issue in emergency management programs and long-term developing plans in urban and rural areas of this region. In the present study, being armed with up-to-date information required for seismic hazard assessment including geological data and active tectonic setting for thorough investigation of the active and potential seismogenic sources, and historical and instrumental events for compiling the earthquake catalogue, probabilistic seismic hazard assessment is carried out for the region using three recent ground motion prediction equations. The logic tree method is utilized to capture epistemic uncertainty of the seismic hazard assessment in delineation of the seismic sources and selection of attenuation relations. The results are compared to a recent practice in code-prescribed seismic hazard of the region and are discussed in detail to explore their variation in each branch of logic tree approach. Also, seismic hazard maps of peak ground acceleration in rock site for 475- and 2,475-year return periods are provided for the region.
Noise abatement in a pine plantation
R. E. Leonard; L. P. Herrington
1971-01-01
Observations on sound propagation were made in two red pine plantations. Measurements were taken of attenuation of prerecorded frequencies at various distances from the sound source. Sound absorption was strongly dependent on frequencies. Peak absorption was at 500 Hz.
Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere
NASA Astrophysics Data System (ADS)
Ata, Yalçın; Baykal, Yahya
2017-10-01
Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.
Feasibility of a nuclear gauge for fuel quantity measurement aboard aircraft
NASA Technical Reports Server (NTRS)
Signh, J. J.; Mall, G. H.; Sprinkle, D. R.; Chegini, H.
1986-01-01
Capacitance fuel gauges have served as the basis for fuel quantity indicating systems in aircraft for several decades. However, there have been persistent reports by the airlines that these gauges often give faulty indications due to microbial growth and other contaminants in the fuel tanks. This report describes the results of a feasibility study of using gamma ray attenuation as the basis for measuring fuel quantity in the tanks. Studies with a weak Am-241 59.5-keV radiation source indicate that it is possible to continuously monitor the fuel quantity in the tanks to an accuracy of better than 1 percent. These measurements also indicate that there are easily measurable differences in the physical properties and resultant attenuation characteristics of JP-4, JP-5, and Jet A fuels. The experimental results, along with a suggested source-detector geometrical configuration are described.
Akman, F; Durak, R; Turhan, M F; Kaçal, M R
2015-07-01
The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. Copyright © 2015 Elsevier Ltd. All rights reserved.
Direct numerical simulation of turbulent flow with an impedance condition
NASA Astrophysics Data System (ADS)
Olivetti, Simone; Sandberg, Richard D.; Tester, Brian J.
2015-05-01
DNS solutions for a pipe/jet configuration are re-computed with the pipe alone to investigate suppression of previously identified internal noise source(s) with an acoustic liner, using a time domain acoustic liner model developed by Tam and Auriault (AIAA Journal, 34 (1996) 913-917). Liner design parameters are chosen to achieve up to 30 dB attenuation of the broadband pressure field over the pipe length without affecting the velocity field statistics. To understand the effect of the liner on the acoustic and turbulent components of the unsteady wall pressure, an azimuthal/axial Fourier transform is applied and the acoustic and turbulent wavenumber regimes clearly identified. It is found that the spectral component occupying the turbulent wavenumber range is unaffected by the liner whereas the acoustic wavenumber components are strongly attenuated, with individual radial modes being evident as each cuts on with increasing Strouhal number.
NASA Astrophysics Data System (ADS)
Ménesguen, Y.; Lépy, M.-C.
2010-08-01
This work presents new measurements of mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K-absorption jump-ratios, Kα and Kβ fluorescence yields for Ti, V, Fe, Co, Ni, Cu and Zn. We use the experimental facility SOLEX, a tunable monochromatic X-ray source combined with an energy-dispersive high-purity germanium detector. The results are compared with theoretical values as well as with other experimental data and show a relatively good agreement. However, the derived K-jump-ratios appear larger than those widely used in the XCOM database. The Kα and Kβ fluorescence yields and the corresponding relative emission rates Kβ/Kα are also derived, which was made possible by the use of energy-dispersive detectors with good spectral resolution.
Radiation protection for an intra-operative X-ray device
Eaton, D J; Gonzalez, R; Duck, S; Keshtgar, M
2011-01-01
Objectives Therapeutic partial breast irradiation can be delivered intra-operatively using the Intrabeam 50 kVp compact X-ray device. Spherical applicators are added to the source to give an isotropic radiation dose. The low energy of this unit leads to rapid attenuation with distance, but dose rates are much greater than for diagnostic procedures. Methods To investigate the shielding requirements for this unit, attenuation measurements were carried out with manufacturer-provided tungsten–rubber sheets, lead, plasterboard and bricks. A prospective environmental dose rate survey was also conducted in the designated theatre. Results As a result of isotropic geometry, the scattered dose around shielding can be 1% of primary and thus often dominates measured dose rates compared with transmission. The absorbed dose rate of the unshielded source at 1 m was 11.6 mGy h−1 but this was reduced by 95% with the shielding sheets. Measured values for the common shielding materials were similar to reference data for the attenuation of a 50 kVp diagnostic X-ray beam. Two lead screens were constructed to shield operators remaining in the theatre and an air vent into a service corridor. A lead apron would also provide suitable attenuation, although a screen allows greater flexibility for treatment operators. With these measures, staff doses were reduced to negligible quantities. Survey measurements taken during patient treatments confirmed no additional measures were required, but the theatre should be a controlled area and access restricted. Conclusion Results from this study and reference data can be used for planning other facilities. PMID:21304003
Li, Lian; Li, Yan; Feng, Danyang; Xu, Linghua; Yin, Fengxin; Zang, Hengchang; Liu, Chunhui; Wang, Fengshan
2016-01-01
Chondroitin sulfate (CS) plays important roles in the complement system. However, the CS structure is complicated due to different sources and the number and positions of sulfate groups. The objective of this study was to prepare different low molecular weight chondroitin sulfates (LMWCSs) and to investigate the biological activity in anti-complement capacity. A series of LMWCSs was prepared from different sources and characterized by ultraviolet-visible (UV) spectroscopy, high-performance liquid chromatography (HPLC), size exclusion chromatography-multiangle laser light scattering (SEC-MALLS) and nuclear magnetic resonance (NMR) spectroscopy. Hemolytic, anti-complement 3 deposition capacity and cell viability assays were carried out to investigate the biological activities in vitro. The results showed that LMWCS prepared from shark cartilage with the oxidative degradation method (LMWCS-S-O) had the best anti-complement capacity. LMWCS-S-O could inhibit the alternative pathway of the complement system and protect chondrocytes from cell death. The attenuating effect of LMWCS-S-O on Osteoarthritis (OA) was investigated by destabilization of the medial meniscus (DMM) model in vivo. Functional wind-up, histological and C5b-9 analyses were used to evaluate the treatment effect on the OA model. In vivo results showed that LMWCS-S-O could attenuate OA. LMWCS-S-O with a high content of ΔDi-2,6diS and ΔDi-6S could be used for attenuating OA through regulating the complement system. PMID:27727159
Long-Term Memories Bias Sensitivity and Target Selection in Complex Scenes
Patai, Eva Zita; Doallo, Sonia; Nobre, Anna Christina
2014-01-01
In everyday situations we often rely on our memories to find what we are looking for in our cluttered environment. Recently, we developed a new experimental paradigm to investigate how long-term memory (LTM) can guide attention, and showed how the pre-exposure to a complex scene in which a target location had been learned facilitated the detection of the transient appearance of the target at the remembered location (Summerfield, Lepsien, Gitelman, Mesulam, & Nobre, 2006; Summerfield, Rao, Garside, & Nobre, 2011). The present study extends these findings by investigating whether and how LTM can enhance perceptual sensitivity to identify targets occurring within their complex scene context. Behavioral measures showed superior perceptual sensitivity (d′) for targets located in remembered spatial contexts. We used the N2pc event-related potential to test whether LTM modulated the process of selecting the target from its scene context. Surprisingly, in contrast to effects of visual spatial cues or implicit contextual cueing, LTM for target locations significantly attenuated the N2pc potential. We propose that the mechanism by which these explicitly available LTMs facilitate perceptual identification of targets may differ from mechanisms triggered by other types of top-down sources of information. PMID:23016670
Linear Mechanisms and Pressure Fluctuations in Wall Turbulence
NASA Astrophysics Data System (ADS)
Septham, Kamthon; Morrison, Jonathan
2014-11-01
Full-domain, linear feedback control of turbulent channel flow at Reτ <= 400 via vU' at low wavenumbers is an effective method to attenuate turbulent channel flow such that it is relaminarised. The passivity-based control approach is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al .Phys .Fluids 2011). The linear forcing acts on the wall-normal velocity field and thus the pressure field via the linear (rapid) source term of the Poisson equation for pressure fluctuations, 2U'∂v/∂x . The minimum required spanwise wavelength resolution without losing control is constant at λz+ = 125, based on the wall friction velocity at t = 0 . The result shows that the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The effectiveness of linear control is qualitatively explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is much shorter than both the nonlinear and viscous timescales. The response of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control is examined and discussed.
Li, Shu; Lu, DanDan; Zhang, Yaling; Zhang, Yi
2014-01-01
The present study was designed to test the hypothesis that long-term treatment with hydrogen-rich saline abated testicular oxidative stress induced by nicotine in mice. The effects of hydrogen-rich saline (6 ml/kg, i.p.), vitamin C (60 mg/kg, i.p.) and vitamin E (100 mg/kg, i.p.) on reproductive system and testicular oxidative levels in nicotine-treated (4.5 mg/kg, s.b.) mice were investigated. It was found that vitamin C and vitamin E attenuated serum oxidative level, but did not lower testicular oxidative levels in mice subjected to chronic nicotine treatment, and did not improve the male reproductive damage and apoptosis induced by nicotine. Different from normal antioxidants, vitamin C and vitamin E, hydrogen-rich saline abated oxidative stress in testis, and protected against nicotine-induced male reproductive damages. Our results first demonstrated that long-term treatment with hydrogen-rich saline attenuated testicular oxidative level and improved male reproductive function in nicotine-treated mice.
Romberg, Carola; Yang, Sujeong; Melani, Riccardo; Andrews, Melissa R.; Horner, Alexa E.; Spillantini, Maria G.; Bussey, Timothy J.; Fawcett, James W.; Pizzorusso, Tommaso; Saksida, Lisa M.
2013-01-01
Perineuronal nets are extracellular matrix structures surrounding cortical neuronal cell bodies and proximal dendrites, and are involved in the control of brain plasticity and the closure of critical periods. Expression of the link protein Crtl1/Hapln1 in neurons has recently been identified as the key event triggering the formation of perineuronal nets. Here we show that the genetic attenuation of perineuronal nets in adult brain Crtl1 knockout mice enhances long term object recognition memory and facilitates long-term depression in the perirhinal cortex, a neural correlate of object recognition memory. Identical prolongation of memory follows localised digestion of perineuronal nets with chondroitinase ABC, an enzyme that degrades the chondroitin sulphate proteoglycans (CSPGs) components of PNNs. The memory-enhancing effect of chondroitinase ABC treatment attenuated over time, suggesting that regeneration of PNNs gradually restored control plasticity levels. Our findings indicate that perineuronal nets regulate both memory and experience-driven synaptic plasticity in adulthood. PMID:23595763
Reynier, Márcia V; Tâmega, Frederico T S; Daflon, Sarah D A; Santos, Maurício A B; Coutinho, Ricardo; Figueiredo, Marcia A O
2015-07-01
Discharge of drill cuttings into the ocean during drilling of offshore oil wells can impact benthic communities through an increase in the concentrations of suspended particles in the water column and sedimentation of particles on the seafloor around the drilling installation. The present study assessed effects of water-based drill cuttings, barite, bentonite, and natural sediments on shallow- and deep-water calcareous algae in short-term (30 d) and long-term (90 d) experiments, using 2 species from Peregrino's oil field at Campos Basin, Brazil: Mesophyllum engelhartii and Lithothamnion sp. The results were compared with the shallow-water species Lithothamnion crispatum. Smothering and burial exposures were simulated. Oxygen production and fluorescence readings were recorded. Although less productive, M. engelhartii was as sensitive to stress as Lithothamnion sp. Mesophyllum engelhartii was sensitive to smothering by drill cuttings, barite, and bentonite after 60 d of exposure and was similarly affected by natural sediments after 90 d. These results indicate that smothering by sediments caused physical effects that might be attributable to partial light attenuation and partial restriction on gas exchange but did not kill the calcareous algae in the long term. However, 1-mo burial by either natural sediments or drill cuttings was sufficient after 60 d for both species to reduce oxygen production, and the algae were completely dead under both sources of sediments. © 2015 SETAC.
Izquierdo-Garcia, David; Catana, Ciprian
2018-01-01
Synopsis Attenuation correction (AC) is one of the most important challenges in the recently introduced combined positron emission tomography/magnetic resonance imaging (PET/MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients (LACs) of the tissues and other components located in the PET field of view (FoV). MR-AC methods can be divided into three main categories: segmentation-, atlas- and PET-based. This review aims to provide a comprehensive list of the state of the art MR-AC approaches as well as their pros and cons. The main sources of artifacts such as body-truncation, metallic implants and hardware correction will be presented. Finally, this review will discuss the current status of MR-AC approaches for clinical applications. PMID:26952727
X-ray radiography for container inspection
Katz, Jonathan I [Clayton, MO; Morris, Christopher L [Los Alamos, NM
2011-06-07
Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.
A Framework for Assessing the Sustainability of Monitored Natural Attenuation
Chapelle, Francis H.; Novak, John; Parker, John; Campbell, Bruce G.; Widdowson, Mark A.
2007-01-01
The sustainability of monitored natural attenuation (MNA) over time depends upon (1) the presence of chemical/biochemical processes that transform wastes to innocuous byproducts, and (2) the availability of energy to drive these processes to completion. The presence or absence of contaminant-transforming chemical/biochemical processes can be determined by observing contaminant mass loss over time and space (mass balance). The energy available to drive these processes to completion can be assessed by measuring the pool of metabolizable organic carbon available in a system, and by tracing the flow of this energy to available electron acceptors (energy balance). For the special case of chlorinated ethenes in ground-water systems, for which a variety of contaminant-transforming biochemical processes exist, natural attenuation is sustainable when the pool of bioavailable organic carbon is large relative to the carbon flux needed to drive biodegradation to completion. These principles are illustrated by assessing the sustainability of MNA at a chlorinated ethene-contaminated site in Kings Bay, Georgia. Approximately 1,000 kilograms of perchloroethene (PCE) was released to a municipal landfill in the 1978-1980 timeframe, and the resulting plume of chlorinated ethenes migrated toward a nearby housing development. A numerical model, built using the sequential electron acceptor model code (SEAM3D), was used to quantify mass and energy balance in this system. The model considered the dissolution of non-aqueous phase liquid (NAPL) as the source of the PCE, and was designed to trace energy flow from dissolved organic carbon to available electron acceptors in the sequence oxygen > chlorinated ethenes > ferric iron > sulfate > carbon dioxide. The model was constrained by (1) comparing simulated and measured rates of ground-water flow, (2) reproducing the observed distribution of electron-accepting processes in the aquifer, (3) comparing observed and measured concentrations of chlorinated ethenes, and (4) reproducing the observed production and subsequent dilution of dissolved chloride, a final degradation product of chloroethene biodegradation. Simulations using the constrained model indicated that an average flux of 5 milligrams per liter per day of organic carbon (CH2O) per model cell (25 square meters) is required to support the short-term sustainability of MNA. Because this flux is small relative to the pool of renewable organic carbon (about 4.7 x 107 milligrams [mg] per model cell) present in the soil zone and non-renewable carbon (about 6.9 x 108 mg per model cell) in an organic-rich sediment layer overlying the aquifer, the long-term sustainability of MNA is similarly large. This study illustrates that the short- and long-term sustainability of MNA can be assessed by: 1. Estimating the time required for contaminants to dissolve/disperse/degrade under ambient hydrologic conditions (time of remediation). 2. Quantifying the organic carbon flux to the system needed to consume competing electron acceptors (oxygen) and direct electron flow toward chloroethene degradation (short-term sustainability). 3. Comparing the required flux of organic carbon to the pool of renewable and non-renewable organic carbon given the estimated time of remediation (long-term sustainability). These are general principles that can be used to assess the sustainability of MNA in any hydrologic system.
Zohar, Joseph; Matar, Michael A; Ifergane, Gal; Kaplan, Zeev; Cohen, Hagit
2008-09-01
The short- and long-term behavioral effects of a brief course of pregabalin, an antiepileptic structural analogue of alpha-aminobyturic acid with analgesic and anxiolytic effects, were assessed in an animal model of post-traumatic stress disorder (PTSD). Two-hundred thirty-three adult male Sprague-Dawley rats were employed. Behavioral responses to traumatic stress exposure (predator urine scent) were assessed immediately after (1 h) and 30 days after treatment with saline or pregabalin (at doses of 30, 100 and 300 mg/kg) in terms of behavior in the elevated plus maze (EPM) and the acoustic startle response (ASR) paradigms. At day 31 the freezing response to a trauma cue (clean cat litter) was assessed. The same treatment regimen initiated at day 7 was assessed at day 30 and in response to the trauma cue on day 31 in a separate experiment. In the short term, doses of 100 mg/kg and 300 mg/kg of pregabalin effectively attenuated anxiety-like behaviors. In the longer-term, pregabalin did not attenuate the onset of PTSD-like behaviors or the prevalence rates of severe cue-responses, for either the immediate or the delayed treatment regimens. Pregabalin may present an alternative compound for acute anxiolytic treatment after exposure to trauma, but has no long-term protective/preventive effects.
Side- and end-illumination of polymer optical fibers in the UV region
NASA Astrophysics Data System (ADS)
Eckhardt, Hanns-S.; Jungling, B.; Klein, Karl-Friedrich; Poisel, Hans
2003-07-01
Since more than 2 decades, the polymer optical fiber (POF) based on PMMA is well known. A lot of applications were studied and initiated: in addition to data transmission, the automotive, lighting and sensor applications are of main interest. Due to the spectral attenuation and applications, light-sources like broadband metal-halide lamps and halogen lamps, or LEDs and laser-diodes are mainly used. Due to improvement in manufacturing of the standard step-index POF, the variations of the spectral attenuation in the blue region have been reduced. Therefore, the losses are acceptable for short-length applications in the UV-A region. Using different light-sources like high-power Xenon-lamp, deuterium-lamp or UV-LEDs, the UV-damage is an important factor. In addition to the basic attenuation, the UV-induced losses will be determined by experiment, in the interesting UV-A region. The higher flexibilty of the thick-core POF is superior in comparison to silica or glass fibers with the same outer diameter. Therefore, the bending losses in the UV-region are important, too. For special applications in the medical field, side-illuminating fibers are highly accepted. The axial and spectral dependence on the lateral radiation pattern will be described, using a very thick fiber.
Data Release of UV to Submillimeter Broadband Fluxes for Simulated Galaxies from the EAGLE Project
NASA Astrophysics Data System (ADS)
Camps, Peter; Trčka, Ana; Trayford, James; Baes, Maarten; Theuns, Tom; Crain, Robert A.; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop
2018-02-01
We present dust-attenuated and dust emission fluxes for sufficiently resolved galaxies in the EAGLE suite of cosmological hydrodynamical simulations, calculated with the SKIRT radiative transfer code. The post-processing procedure includes specific components for star formation regions, stellar sources, and diffuse dust and takes into account stochastic heating of dust grains to obtain realistic broadband fluxes in the wavelength range from ultraviolet to submillimeter. The mock survey includes nearly half a million simulated galaxies with stellar masses above {10}8.5 {M}ȯ across six EAGLE models. About two-thirds of these galaxies, residing in 23 redshift bins up to z = 6, have a sufficiently resolved metallic gas distribution to derive meaningful dust attenuation and emission, with the important caveat that the same dust properties were used at all redshifts. These newly released data complement the already publicly available information about the EAGLE galaxies, which includes intrinsic properties derived by aggregating the properties of the smoothed particles representing matter in the simulation. We further provide an open-source framework of Python procedures for post-processing simulated galaxies with the radiative transfer code SKIRT. The framework allows any third party to calculate synthetic images, spectral energy distributions, and broadband fluxes for EAGLE galaxies, taking into account the effects of dust attenuation and emission.
Potential for natural and enhanced attenuation of sulphanilamide in a contaminated chalk aquifer.
Bennett, Karen A; Kelly, Simon D; Tang, Xiangyu; Reid, Brian J
2017-12-01
Understanding antibiotic biodegradation is important to the appreciation of their fate and removal from the environment. In this research an Isotope Ratio Mass Spectrometry (IRMS) method was developed to evaluate the extent of biodegradation of the antibiotic, sulphanilamide, in contaminated groundwater. Results indicted an enrichment in δ 13 C of 8.44‰ from -26.56 (at the contaminant source) to -18.12‰ (300m downfield of the source). These results confirm reductions in sulphanilamide concentrations (from 650 to 10mg/L) across the contaminant plume to be attributable to biodegradation (56%) vs. other natural attenuation processes, such as dilution or dispersion (42%). To understand the controls on sulphanilamide degradation ex-situ microcosms assessed the influence of sulphanilamide concentration, redox conditions and an alternative carbon source. Results indicated, high levels of anaerobic capacity (~50% mineralisation) to degrade sulphanilamide under high (263mg/L), moderate (10mg/L) and low (0.02mg/L) substrate concentrations. The addition of electron acceptors; nitrate and sulphate, did not significantly enhance the capacity of the groundwater to anaerobically biodegrade sulphanilamide. Interestingly, where alternative carbon sources were present, the addition of nitrate and sulphate inhibited sulphanilamide biodegradation. These results suggest, under in-situ conditions, when a preferential carbon source was available for biodegradation, sulphanilamide could be acting as a nitrogen and/or sulphur source. These findings are important as they highlight sulphanilamide being used as a carbon and a putative nitrogen and sulphur source, under prevailing iron reducing conditions. Copyright © 2017. Published by Elsevier B.V.
Epigenetic Priming of Memory Updating during Reconsolidation to Attenuate Remote Fear Memories
Gräff, Johannes; Joseph, Nadine F.; Horn, Meryl E.; Samiei, Alireza; Meng, Jia; Seo, Jinsoo; Rei, Damien; Bero, Adam W.; Phan, Trongha X.; Wagner, Florence; Holson, Edward; Xu, Jinbin; Sun, Jianjun; Neve, Rachael L.; Mach, Robert H.; Haggarty, Stephen J.; Tsai, Li-Huei
2014-01-01
Summary Traumatic events generate some of the most enduring forms of memories. Despite the elevated lifetime prevalence of anxiety disorders, effective strategies to attenuate long-term traumatic memories are scarce. The most efficacious treatments to diminish recent (i.e., day-old) traumata capitalize on memory updating mechanisms during reconsolidation that are initiated upon memory recall. Here, we show that, in mice, successful reconsolidation-updating paradigms for recent memories fail to attenuate remote (i.e., month-old) ones. We find that, whereas recent memory recall induces a limited period of hippocampal neuroplasticity mediated, in part, by S-nitrosylation of HDAC2 and histone acetylation, such plasticity is absent for remote memories. However, by using an HDAC2-targeting inhibitor (HDACi) during reconsolidation, even remote memories can be persistently attenuated. This intervention epigenetically primes the expression of neuroplasticity-related genes, which is accompanied by higher metabolic, synaptic, and structural plasticity. Thus, applying HDACis during memory reconsolidation might constitute a treatment option for remote traumata. PMID:24439381
A CCIR aeronautical mobile satellite report
NASA Technical Reports Server (NTRS)
Davarian, Faramaz; Bishop, Dennis; Rogers, David; Smith, Ernest K.
1989-01-01
Propagation effects in the aeronautical mobile-satellite service differ from those in the fixed-satellite service and other mobile-satellite services because: small antennas are used on aircraft, and the aircraft body may affect the performance of the antenna; high aircraft speeds cause large Doppler spreads; aircraft terminals must accommodate a large dynamic range in transmission and reception; and due to their high speeds, banking maneuvers, and three-dimensional operation, aircraft routinely require exceptionally high integrity of communications, making even short-term propagation effects very important. Data and models specifically required to characterize the path impairments are discussed, which include: tropospheric effects, including gaseous attenuation, cloud and rain attenuation, fog attenuation, refraction and scintillation; surface reflection (multipath) effects; ionospheric effects such as scintillation; and environmental effects (aircraft motion, sea state, land surface type). Aeronautical mobile-satellite systems may operate on a worldwide basis, including propagation paths at low elevation angles. Several measurements of multipath parameters over land and sea were conducted. In some cases, laboratory simulations are used to compare measured data and verify model parameters. The received signals is considered in terms of its possible components: a direct wave subject to atmospheric effects, and a reflected wave, which generally contains mostly a diffuse component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1988-12-01
The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO)more » disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.« less
Rabin, B M; Hunt, W A; Lee, J
1988-12-01
The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO) disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.
Bevelhimer, Mark S.; Deng, Z. Daniel; Scherelis, Constantin C.
2016-01-06
Underwaternoise associated with the installation and operation of hydrokinetic turbines in rivers and tidal zones presents a potential environmental concern for fish and marine mammals. Comparing the spectral quality of sounds emitted by hydrokinetic turbines to natural and other anthropogenic sound sources is an initial step at understanding potential environmental impacts. Underwater recordings were obtained from passing vessels and natural underwater sound sources in static and flowing waters. Static water measurements were taken in a lake with minimal background noise. Flowing water measurements were taken at a previously proposed deployment site for hydrokinetic turbines on the Mississippi River, where soundsmore » created by flowing water are part of all measurements, both natural ambient and anthropogenic sources. Vessel sizes ranged from a small fishing boat with 60 hp outboard motor to an 18-unit barge train being pushed upstream by tugboat. As expected, large vessels with large engines created the highest sound levels, which were, on average, 40 dB greater than the sound created by an operating hydrokinetic turbine. As a result, a comparison of sound levels from the same sources at different distances using both spherical and cylindrical sound attenuation functions suggests that spherical model results more closely approximate observed sound attenuation.« less
Bevelhimer, Mark S; Deng, Z Daniel; Scherelis, Constantin
2016-01-01
Underwater noise associated with the installation and operation of hydrokinetic turbines in rivers and tidal zones presents a potential environmental concern for fish and marine mammals. Comparing the spectral quality of sounds emitted by hydrokinetic turbines to natural and other anthropogenic sound sources is an initial step at understanding potential environmental impacts. Underwater recordings were obtained from passing vessels and natural underwater sound sources in static and flowing waters. Static water measurements were taken in a lake with minimal background noise. Flowing water measurements were taken at a previously proposed deployment site for hydrokinetic turbines on the Mississippi River, where sounds created by flowing water are part of all measurements, both natural ambient and anthropogenic sources. Vessel sizes ranged from a small fishing boat with 60 hp outboard motor to an 18-unit barge train being pushed upstream by tugboat. As expected, large vessels with large engines created the highest sound levels, which were, on average, 40 dB greater than the sound created by an operating hydrokinetic turbine. A comparison of sound levels from the same sources at different distances using both spherical and cylindrical sound attenuation functions suggests that spherical model results more closely approximate observed sound attenuation.
Adyel, Tanveer M; Oldham, Carolyn E; Hipsey, Matthew R
2017-11-15
Among different Water Sensitive Urban Design options, constructed wetlands (CWs) are used to protect and restore downstream water quality by attenuating nutrients generated by stormwater runoff. This research compared the nutrient attenuation ability during a diverse population of storm events of two CWs: (a) a hybrid CW with multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments, and (b) a single stage SF CW. Within-storm variability, nutrient concentrations were assessed at 2 to 3-h intervals at both the main inlet and outlet of each CW. Dissolved oxygen concentrations of the surface waters were also monitored at 10-min intervals using high frequency in situ sensors. Nutrient loads into the CWs were observed to be higher when a high rainfall event occurred, particularly after longer antecedent dry conditions. Longer hydraulic retention times promoted higher attenuation at both sites. However, the relative extent of nutrient attenuation differed between the CW types; the mean total nitrogen (TN) attenuation in the hybrid and SF CW was 45 and 48%, respectively. The hybrid CW attenuated 67% total phosphorus (TP) loads on average, while the SF CW acted as a net TP source. Periodic storm events transitioned the lentic CW into a lotic CW and caused riparian zone saturation; it was therefore hypothesized that such saturation of organic matter rich-riparian zones led to release of TP in the system. The hybrid CW attenuated the released TP in the downstream laterite-based SSF compartments. Diel oxygen metabolism calculated before and after the storm events was found to be strongly correlated with water temperature, solar exposure and antecedent dry condition during the pre-storm conditions. Furthermore, the SF CW showed a significant relationship between overall nutrient load attenuation and the change in oxygen metabolism during the storm perturbation, suggesting oxygen variation could be a useful proxy indicator of CW function. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maintas, Dimitris; Houzard, Claire; Ksyar, Rachid; Mognetti, Thomas; Maintas, Catherine; Scheiber, Christian; Itti, Roland
2006-12-01
It is considered that one of the great strengths of PET imaging is the ability to correct for body attenuation. This enables better lesion uptake quantification and quality of PET images. The aim of this work is to compare the sensitivity of non-attenuation-corrected (NAC) PET images, the gamma photons (GPAC) and CT attenuation-corrected (CTAC) images in detecting and staging of lung cancer. We have studied 66 patients undergoing PET/CT examinations for detecting and staging NSC lung cancer. The patients were injected with 18-FDG; 5 MBq/kg under fasting conditions and examination was started 60 min later. Transmission data were acquired by a spiral CT X-ray tube and by gamma photons emitting Cs-137l source and were used for the patient body attenuation correction without correction for respiratory motion. In 55 of 66 patients we performed both attenuation correction procedures and in 11 patients only CT attenuation correction. In seven patients with solitary nodules PET was negative and in 59 patients with lung cancer PET/CT was positive for pulmonary or other localization. In the group of 55 patients we found 165 areas of focal increased 18-FDG uptake in NAC, 165 in CTAC and 164 in GPAC PET images.In the patients with only CTAC we found 58 areas of increased 18-FDG uptake on NAC and 58 areas lesions on CTAC. In the patients with positive PET we found 223 areas of focal increased uptake in NAC and 223 areas in CTAC images. The sensitivity of NAC was equal to the sensitivity of CTAC and GPAC images. The visualization of peripheral lesions was better in NAC images and the lesions were better localized in attenuation-corrected images. In three lesions of the thorax the localization was better in GPAC and fused images than in CTAC images.
Chen, Shiou-Lan; Lee, Sheng-Yu; Tao, Pao-Luh; Chang, Yun-Hsuan; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band
2012-12-01
Recent studies show that proinflammatory cytokines might be related to the development of opioid dependence (physiological, psychological, or both). In a double-blind, randomly stratified clinical trial investigating whether add-on dextromethorphan (60-120 mg/day) attenuated inflammation and the combined use of opioids in heroin-dependent patients undergoing methadone maintenance treatment, we evaluated whether inflammation is related to the progression of opioid dependence. All participants (107 heroin-dependent patients and 84 nondependent healthy controls) were recruited from National Cheng Kung University Hospital. Their plasma cytokine levels were measured to evaluate the effect of add-on dextromethorphan. Plasma TNF-α and IL-8 levels were significantly higher in long-term heroin-dependent patients than in healthy controls (p < 0.001). Chronic heroin-use-induced TNF-α and IL-8 levels were significantly (p < 0.05) attenuated in patients treated for 12 weeks with add-on dextromethorphan. Moreover, both tolerance to methadone and the combined use of opioids were significantly (p < 0.05) attenuated in patients taking dextromethorphan. We conclude that dextromethorphan might be a feasible adjuvant therapeutic for attenuating inflammation and inhibiting methadone tolerance and combined opioid use in heroin-dependent patients.
NASA Astrophysics Data System (ADS)
Ikelle, Luc T.; Osen, Are; Amundsen, Lasse; Shen, Yunqing
2004-12-01
The classical linear solutions to the problem of multiple attenuation, like predictive deconvolution, τ-p filtering, or F-K filtering, are generally fast, stable, and robust compared to non-linear solutions, which are generally either iterative or in the form of a series with an infinite number of terms. These qualities have made the linear solutions more attractive to seismic data-processing practitioners. However, most linear solutions, including predictive deconvolution or F-K filtering, contain severe assumptions about the model of the subsurface and the class of free-surface multiples they can attenuate. These assumptions limit their usefulness. In a recent paper, we described an exception to this assertion for OBS data. We showed in that paper that a linear and non-iterative solution to the problem of attenuating free-surface multiples which is as accurate as iterative non-linear solutions can be constructed for OBS data. We here present a similar linear and non-iterative solution for attenuating free-surface multiples in towed-streamer data. For most practical purposes, this linear solution is as accurate as the non-linear ones.
Propagation of laser beams in scattering media.
Zuev, V E; Kabanov, M V; Savelev, B A
1969-01-01
Experimental investigations have been undertaken of some aspects of the propagation of helium-neon gas laser radiation at lambda = 0.63 micro for different scattering media (artificial water fogs, wood smokes, model media). It has been shown that the attenuation coefficients practically coincide when coherent and incoherent radiation is scattered. The applicability limits of Bouguer-Beer's law for describing the attenuation of radiation in scattering media are investigated and the intensity of multiple forward-scattered light for different geometrical parameters of the source and radiation receiver are measured. The applicability of single scattering theory formulas for describing forward-scattered light intensity are discussed.
Photon Interaction Parameters for Some Borate Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Nisha; Kaur, Updesh; Singh, Tejbir
2010-11-06
Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.
Fuks, Kateryna B; Weinmayr, Gudrun; Hennig, Frauke; Tzivian, Lilian; Moebus, Susanne; Jakobs, Hermann; Memmesheimer, Michael; Kälsch, Hagen; Andrich, Silke; Nonnemacher, Michael; Erbel, Raimund; Jöckel, Karl-Heinz; Hoffmann, Barbara
2016-08-01
Long-term exposure to fine particulate matter (PM2.5) may lead to increased blood pressure (BP). The role of industry- and traffic-specific PM2.5 remains unclear. We investigated the associations of residential long-term source-specific PM2.5 exposure with arterial BP and incident hypertension in the population-based Heinz Nixdorf Recall cohort study. We defined hypertension as systolic BP≥140mmHg, or diastolic BP≥90mmHg, or current use of BP lowering medication. Long-term concentrations of PM2.5 from all local sources (PM2.5ALL), local industry (PM2.5IND) and traffic (PM2.5TRA) were modeled with a dispersion and chemistry transport model (EURAD-CTM) with a 1km(2) resolution. We performed a cross-sectional analysis with BP and prevalent hypertension at baseline, using linear and logistic regression, respectively, and a longitudinal analysis with incident hypertension at 5-year follow-up, using Poisson regression with robust variance estimation. We adjusted for age, sex, body mass index, lifestyle, education, and major road proximity. Change in BP (mmHg), odds ratio (OR) and relative risk (RR) for hypertension were calculated per 1μg/m(3) of exposure concentration. PM2.5ALL was highly correlated with PM2.5IND (Spearman's ρ=0.92) and moderately with PM2.5TRA (ρ=0.42). In adjusted cross-sectional analysis with 4539 participants, we found positive associations of PM2.5ALL with systolic (0.42 [95%-CI: 0.03, 0.80]) and diastolic (0.25 [0.04, 0.46]) BP. Higher, but less precise estimates were found for PM2.5IND (systolic: 0.55 [-0.05, 1.14]; diastolic: 0.35 [0.03, 0.67]) and PM2.5TRA (systolic: 0.88 [-1.55, 3.31]; diastolic: 0.41 [-0.91, 1.73]). We found crude positive association of PM2.5TRA with prevalence (OR 1.41 [1.10, 1.80]) and incidence of hypertension (RR 1.38 [1.03, 1.85]), attenuating after adjustment (OR 1.19 [0.90, 1.58] and RR 1.28 [0.94, 1.72]). We found no association of PM2.5ALL and PM2.5IND with hypertension. Long-term exposures to all-source and industry-specific PM2.5 were positively related to BP. We could not separate the effects of industry-specific PM2.5 from all-source PM2.5. Estimates with traffic-specific PM2.5 were generally higher but inconclusive. Copyright © 2016. Published by Elsevier GmbH.
Newell, John D; Fuld, Matthew K; Allmendinger, Thomas; Sieren, Jered P; Chan, Kung-Sik; Guo, Junfeng; Hoffman, Eric A
2015-01-01
The purpose of this study was to evaluate the impact of ultralow radiation dose single-energy computed tomographic (CT) acquisitions with Sn prefiltration and third-generation iterative reconstruction on density-based quantitative measures of growing interest in phenotyping pulmonary disease. The effects of both decreasing dose and different body habitus on the accuracy of the mean CT attenuation measurements and the level of image noise (SD) were evaluated using the COPDGene 2 test object, containing 8 different materials of interest ranging from air to acrylic and including various density foams. A third-generation dual-source multidetector CT scanner (Siemens SOMATOM FORCE; Siemens Healthcare AG, Erlangen, Germany) running advanced modeled iterative reconstruction (ADMIRE) software (Siemens Healthcare AG) was used.We used normal and very large body habitus rings at dose levels varying from 1.5 to 0.15 mGy using a spectral-shaped (0.6-mm Sn) tube output of 100 kV(p). Three CT scans were obtained at each dose level using both rings. Regions of interest for each material in the test object scans were automatically extracted. The Hounsfield unit values of each material using weighted filtered back projection (WFBP) at 1.5 mGy was used as the reference value to evaluate shifts in CT attenuation at lower dose levels using either WFBP or ADMIRE. Statistical analysis included basic statistics, Welch t tests, multivariable covariant model using the F test to assess the significance of the explanatory (independent) variables on the response (dependent) variable, and CT mean attenuation, in the multivariable covariant model including reconstruction method. Multivariable regression analysis of the mean CT attenuation values showed a significant difference with decreasing dose between ADMIRE and WFBP. The ADMIRE has reduced noise and more stable CT attenuation compared with WFBP. There was a strong effect on the mean CT attenuation values of the scanned materials for ring size (P < 0.0001) and dose level (P < 0.0001). The number of voxels in the region of interest for the particular material studied did not demonstrate a significant effect (P > 0.05). The SD was lower with ADMIRE compared with WFBP at all dose levels and ring sizes (P < 0.05). The third-generation dual-source CT scanners using third-generation iterative reconstruction methods can acquire accurate quantitative CT images with acceptable image noise at very low-dose levels (0.15 mGy). This opens up new diagnostic and research opportunities in CT phenotyping of the lung for developing new treatments and increased understanding of pulmonary disease.
Identification of major backscattering sources in trees and shrubs at 10 GHz
NASA Technical Reports Server (NTRS)
Zoughi, R.; Wu, L. K.; Moore, R. K.
1986-01-01
A short-range very-fine-resolution FM-CW radar scatterometer has been used to identify the primary contributors to 10-GHz radar backscatter from pine, pin oak, American sycamore and sugar maple trees, and from creeping juniper shrubs. This system provided a range resolution of 11 cm and gave a 16-cm diameter illumination area at the target range of about 4 m. For a pine tree, the needles caused the strongest backscatter as well as the strongest attenuation in the radar signal. Cones, although insignificant contributors to the total backscatter, were more important for backscattering than for attenuation. For the rest of the trees, leaves were the strongest cause of backscattering and attenuation. However, in the absence of leaves, the petioles, small twigs, and branches gave relatively strong backscatter. For American sycamore and sugar maple trees, the fruits did not affect the total backscatter unless they were packed in clusters. For creeping juniper the backscattered energy and attenuation in the radar signal were mainly due to the top two layers of the evergreen scales. The contribution of the tree trunks was not determined.
Static tests of excess ground attenuation at Wallops Flight Center
NASA Astrophysics Data System (ADS)
Sutherland, L. C.; Brown, R.
1981-06-01
An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses.
Static tests of excess ground attenuation at Wallops Flight Center
NASA Technical Reports Server (NTRS)
Sutherland, L. C.; Brown, R.
1981-01-01
An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses.
NASA Astrophysics Data System (ADS)
Limkitjaroenporn, P.; Kaewkhao, J.
2014-10-01
In this work, the gamma-rays interaction properties of zircons from Cambodia and South Africa have been studied. The densities of Cambodian and South African's zircons are 4.6716±0.0040 g/cm3 and 4.5505±0.0018 g/cm3, respectively. The mass attenuation coefficient and the effective atomic number of gemstones were measured with the gamma-ray in energies range 223-662 keV using the Compton scattering technique. The mass attenuation coefficients of both zircons decreased with the increasing of gamma-rays energies. The different mass attenuation coefficients between the two zircons observed at gamma-ray energies below 400 keV are attributed to the differences in the photoelectric interaction. The effective atomic number of zircons was decreased with the increasing of gamma-ray energies and showed totally different values between the Cambodia and South Africa sources. The origins of the two zircons could be successfully identified by the method based on gamma-rays interaction with matter with advantage of being a non-destructive testing.
Smith, Richard L.; Repert, Deborah A.; Barber, Larry B.; LeBlanc, Denis R.
2013-01-01
The consequences of groundwater contamination can remain long after a contaminant source has been removed. Documentation of natural aquifer recoveries and empirical tools to predict recovery time frames and associated geochemical changes are generally lacking. This study characterized the long-term natural attenuation of a groundwater contaminant plume in a sand and gravel aquifer on Cape Cod, Massachusetts, after the removal of the treated-wastewater source. Although concentrations of dissolved organic carbon (DOC) and other soluble constituents have decreased substantially in the 15 years since the source was removed, the core of the plume remains anoxic and has sharp redox gradients and elevated concentrations of nitrate and ammonium. Aquifer sediment was collected from near the former disposal site at several points in time and space along a 0.5-km-long transect extending downgradient from the disposal site and analyses of the sediment was correlated with changes in plume composition. Total sediment carbon content was generally low (< 8 to 55.8 μmol (g dry wt)− 1) but was positively correlated with oxygen consumption rates in laboratory incubations, which ranged from 11.6 to 44.7 nmol (g dry wt)− 1 day− 1. Total water extractable organic carbon was < 10–50% of the total carbon content but was the most biodegradable portion of the carbon pool. Carbon/nitrogen (C/N) ratios in the extracts increased more than 10-fold with time, suggesting that organic carbon degradation and oxygen consumption could become N-limited as the sorbed C and dissolved inorganic nitrogen (DIN) pools produced by the degradation separate with time by differential transport. A 1-D model using total degradable organic carbon values was constructed to simulate oxygen consumption and transport and calibrated by using observed temporal changes in oxygen concentrations at selected wells. The simulated travel velocity of the oxygen gradient was 5–13% of the groundwater velocity. This suggests that the total sorbed carbon pool is large relative to the rate of oxygen entrainment and will be impacting groundwater geochemistry for many decades. This has implications for long-term oxidation of reduced constituents, such as ammonium, that are being transported downgradient away from the infiltration beds toward surface and coastal discharge zones.
Sustainability of natural attenuation of nitrate in agricultural aquifers
Green, Christopher T.; Bekins, Barbara A.
2010-01-01
Increased concentrations of nitrate in groundwater in agricultural areas, coinciding with increased use of chemical and organic fertilizers, have raised concern because of risks to environmental and human health. At some sites, these problems are mitigated by natural attenuation of nitrate as a result of microbially mediated reactions. Results from U.S. Geological Survey (USGS) research under the National Water-Quality Assessment (NAWQA) program show that reactions of dissolved nitrate with solid aquifer minerals and organic carbon help lower nitrate concentrations in groundwater beneath agricultural fields. However, increased fluxes of nitrate cause ongoing depletion of the finite pool of solid reactants. Consumption of the solid reactants diminishes the capacity of the aquifer to remove nitrate, calling into question the long-term sustainability of these natural attenuation processes.
Perturbed effects at radiation physics
NASA Astrophysics Data System (ADS)
Külahcı, Fatih; Şen, Zekâi
2013-09-01
Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.
A review of immunogenicity and tolerability of live attenuated Hepatitis A vaccine in children.
Rao, Sameer; Mao, J S; Motlekar, Salman; Fangcheng, Zhuang; Kadhe, Ganesh
2016-12-01
Changing epidemiology of Hepatitis A virus (HAV) has led to an increased susceptibility of adolescents and adults to the infection. Vaccination can remarkably reduce the incidence and associated morbidity of HAV infection. This review is focused on the safety and efficacy of H2 strain derived live attenuated Hepatitis A vaccine. We found the vaccine to be highly immunogenic with minimal or negligible safety issues. Moreover, a single dose of live attenuated vaccine persists a long term immune response and can be a preferred option for developing countries. In 2014, Indian Academy of Paediatrics (IAP) also updated their recommendations for H2 vaccine as a single dose as against the previous 2 dose schedule. A focused approach to include the vaccine in national immunization program should be explored.
Frankel, A.
2009-01-01
Broadband (0.1-20 Hz) synthetic seismograms for finite-fault sources were produced for a model where stress drop is constant with seismic moment to see if they can match the magnitude dependence and distance decay of response spectral amplitudes found in the Next Generation Attenuation (NGA) relations recently developed from strong-motion data of crustal earthquakes in tectonically active regions. The broadband synthetics were constructed for earthquakes of M 5.5, 6.5, and 7.5 by combining deterministic synthetics for plane-layered models at low frequencies with stochastic synthetics at high frequencies. The stochastic portion used a source model where the Brune stress drop of 100 bars is constant with seismic moment. The deterministic synthetics were calculated using an average slip velocity, and hence, dynamic stress drop, on the fault that is uniform with magnitude. One novel aspect of this procedure is that the transition frequency between the deterministic and stochastic portions varied with magnitude, so that the transition frequency is inversely related to the rise time of slip on the fault. The spectral accelerations at 0.2, 1.0, and 3.0 sec periods from the synthetics generally agreed with those from the set of NGA relations for M 5.5-7.5 for distances of 2-100 km. At distances of 100-200 km some of the NGA relations for 0.2 sec spectral acceleration were substantially larger than the values of the synthetics for M 7.5 and M 6.5 earthquakes because these relations do not have a term accounting for Q. At 3 and 5 sec periods, the synthetics for M 7.5 earthquakes generally had larger spectral accelerations than the NGA relations, although there was large scatter in the results from the synthetics. The synthetics showed a sag in response spectra at close-in distances for M 5.5 between 0.3 and 0.7 sec that is not predicted from the NGA relations.
Diallo, Mamadou B C; Anceno, Alfredo J; Tawatsupa, Benjawan; Tripathi, Nitin K; Wangsuphachart, Voranuch; Shipin, Oleg V
2009-03-01
Urban canals play a major socio-economic role in many tropical countries and, particularly, Thailand. One of the overlooked functions that they perform is a significant attenuation of waste-related pathogens posing considerable health risk, as well as pollution attenuation in general. The study dealt with a comparison of three canals receiving: (i) municipal, (ii) mainly industrial and (iii) mainly agricultural wastewater, listed in order of progressively decreasing organic loading. The occurrence and fate of waterborne Cryptosporidium parvum, Giardia lamblia and Escherichia coli were monitored in the canals by both real-time PCR and conventionally for 12 months. The pathogens are etiological agents of an estimated 38% and 47% of diarrhea cases worldwide and in Thailand, respectively. The geographic information system (GIS) was used to evaluate and map point and, particularly, non-point pollution sources which allowed differentiating the canal sections in terms of predominant pathogen sources. The flowthrough canals, which can be viewed as waste stabilization ponds, were found to be efficiently removing the pathogens at the following generalized specific rates: 0.3 (C. parvum), 1.2 (G. lamblia), 1.8 (E. coli) log10/km.d in the dry season. The rates decreased in the rainy season for E. coli and G. lamblia, but increased for C. parvum which indicated different removal mechanisms. Data suggest that E. coli and G. lamblia were mainly removed through sedimentation and sunlight (UV) irradiation, while the likely mechanism for C. parvum was predation. Overall, the specific pathogen removal rates positively correlated with the canal organic loading rates in the rainy season. As an important result, an estimate of the municipal pollution mitigation by over 2280 km canals in the Greater Bangkok suggests that concomitant to the pathogens at least 36-95 tons of BOD5 is being removed daily, thereby saving the receiving Chao Phraya River and Bight of Bangkok, by far exceeding current, from major eutrophication problems.
NASA Astrophysics Data System (ADS)
Vilhelm, Jan; Slavík, Lubomír
2014-05-01
For the purpose of non-destructive monitoring of rock properties in the underground excavation it is possible to perform repeated high-accuracy P- and S-wave velocity measurements. This contribution deals with preliminary results gained during the preparation of micro-seismic long-term monitoring system. The field velocity measurements were made by pulse-transmission technique directly on the rock outcrop (granite) in Bedrichov gallery (northern Bohemia). The gallery at the experimental site was excavated using TBM (Tunnel Boring Machine) and it is used for drinking water supply, which is conveyed in a pipe. The stable measuring system and its automatic operation lead to the use of piezoceramic transducers both as a seismic source and as a receiver. The length of measuring base at gallery wall was from 0.5 to 3 meters. Different transducer coupling possibilities were tested namely with regard of repeatability of velocity determination. The arrangement of measuring system on the surface of the rock massif causes better sensitivity of S-transducers for P-wave measurement compared with the P-transducers. Similarly P-transducers were found more suitable for S-wave velocity determination then P-transducers. The frequency dependent attenuation of fresh rock massif results in limited frequency content of registered seismic signals. It was found that at the distance between the seismic source and receiver from 0.5 m the frequency components above 40 kHz are significantly attenuated. Therefore for the excitation of seismic wave 100 kHz transducers are most suitable. The limited frequency range should be also taken into account for the shape of electric impulse used for exciting of piezoceramic transducer. The spike pulse generates broad-band seismic signal, short in the time domain. However its energy after low-pass filtration in the rock is significantly lower than the energy of seismic signal generated by square wave pulse. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408
Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato
2017-02-01
In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a second-order reaction rate constant. Furthermore, the model accounts for the HPRB lifetime as a function of the oxidant consumption by reaction with upward vapors and its progressive dissolution and leaching by infiltrating water. Simulation results by this new model closely replicate previous lab-scale tests carried out on trichloroethylene (TCE) using a HPRB containing a mixture of potassium permanganate, water and sand. In view of field applications, design criteria, in terms of the minimum HPRB thickness required to attenuate vapors at acceptable risk-based levels and the expected HPRB lifetime, are determined from site-specific conditions such as vapor source concentration, water infiltration rate and HPRB mixture. The results clearly show the field-scale feasibility of this alternative vapor mitigation system for the treatment of chlorinated solvents. Depending on the oxidation kinetic of the target contaminant, a 1m thick HPRB can ensure an attenuation of vapor concentrations of orders of magnitude up to 20years, even for vapor source concentrations up to 10g/m 3 . A demonstrative application for representative contaminated site conditions also shows the feasibility of this mitigation system from an economical point of view with capital costs potentially somewhat lower than those of other remediation options, such as soil vapor extraction systems. Overall, based on the experimental and theoretical evaluation thus far, field-scale tests are warranted to verify the potential and cost-effectiveness of HPRBs for vapor mitigation control under various conditions of application. Copyright © 2017 Elsevier B.V. All rights reserved.
Gaining Regulator Acceptance of Natural Attenuation as a Remediation Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, M.B.
Monitored natural attenuation (MNA) makes use of biological degradation, chemical reactions with natural materials, and other processes to clean up contaminated soils and groundwater. In the past, the regulatory community has been slow to accept natural attenuation due to a misperception that natural attenuation is a ''do nothing'' approach. Recently however, regulators have been more open to considering MNA as part of an overall clean-up plan that includes active treatment technologies to remove or contain the source of contamination at a site. MNA is currently being implemented at the Savannah River Site for remediation of selected contaminants. The South Carolinamore » Department of Health and Environmental Control, who has regulatory authority over these actions, has accepted this process. Significant overall cost savings are forecast. Additionally, there will be less disruption to the ecosystem, compared with engineered technologies. This paper describes the monitored natural attenuation concept as well as the process of constructive engagement with the regulators to achieve acceptance. Application to DOE, DOD, and commercial sites, as well as acceptability to other regulatory bodies, will be discussed with an emphasis on strategies to prevent false starts in the negotiation process and inventing options that result in mutual gains for all parties.« less
NASA Astrophysics Data System (ADS)
Bezada, Maximiliano J.
2017-11-01
The long and often complicated tectonic history of continental lithosphere results in lateral strength heterogeneities which in turn affect the style and localization of deformation. In this study, we produce a model for the attenuation structure of Iberia and northern Morocco using a waveform-matching approach on P-wave data from teleseismic deep-focus earthquakes. We find that attenuation is correlated with zones of intraplate deformation and seismicity, but do not find a consistent relationship between attenuation and recent volcanism. The main features of our model are low to moderate Δt* in the undeformed Tertiary basins of Spain and high Δt* in areas deformed by the Alpine orogeny. Additionally, low Δt* is found in areas where the Alboran slab is thought to be attached to the Iberian and African lithosphere, and high Δt* where it has detached. These features are robust with respect to inversion parameters, and are consistent with independent data. Very mild backazimuthal dependence of the measurements and comparison with previous results suggest that the source of the attenuation is sub-crustal. In line with other recent studies, the range of Δt* we observe is much larger than can be expected from lithospheric thickness or temperature variations.
Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques.
Hofmann, Matthias; Pichler, Bernd; Schölkopf, Bernhard; Beyer, Thomas
2009-03-01
Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data. Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine. MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data.
Wan, Lin; Zhou, Ji-Xun; Rogers, Peter H
2010-08-01
A joint China-U.S. underwater acoustics experiment was conducted in the Yellow Sea with a very flat bottom and a strong and sharp thermocline. Broadband explosive sources were deployed both above and below the thermocline along two radial lines up to 57.2 km and a quarter circle with a radius of 34 km. Two inversion schemes are used to obtain the seabottom sound speed. One is based on extracting normal mode depth functions from the cross-spectral density matrix. The other is based on the best match between the calculated and measured modal arrival times for different frequencies. The inverted seabottom sound speed is used as a constraint condition to extract the seabottom sound attenuation by three methods. The first method involves measuring the attenuation coefficients of normal modes. In the second method, the seabottom sound attenuation is estimated by minimizing the difference between the theoretical and measured modal amplitude ratios. The third method is based on finding the best match between the measured and modeled transmission losses (TLs). The resultant seabottom attenuation, averaged over three independent methods, can be expressed as alpha=(0.33+/-0.02)f(1.86+/-0.04)(dB/m kHz) over a frequency range of 80-1000 Hz.
Insulating epoxy/barite and polyester/barite composites for radiation attenuation.
El-Sarraf, M A; El-Sayed Abdo, A
2013-09-01
A trial has been made to create insulating Epoxy/Barite (EP/Brt) (ρ=2.85 g cm(-3)) and Crosslinked Unsaturated Polyester/Barite (CUP/Brt) (ρ=3.25 g cm(-3)) composites with radiation attenuation and shielding capabilities. Experimental work regarding mechanical and physical properties was performed to study the composites integrity for practical applications. The properties were found to be reasonable. Radiation attenuation properties have been carried out using emitted collimated beam from a fission (252)Cf (100 µg) neutron source, and the neutron-gamma spectrometer with stilbene scintillator. The pulse shape discriminating (P.S.D) technique based on the zero cross-over method was used to discriminate between neutron and gamma-ray pulses. Thermal neutron fluxes, measured using the BF3 detector and thermal neutron detection system, were used to plot the attenuation relations. The fast neutron macroscopic effective removal cross-section ΣR, gamma ray total attenuation coefficient µ and thermal neutron macroscopic cross-section Σ have been evaluated. Theoretical calculations have been achieved using MCNP-4C2 code to calculate ΣR, µ and Σ. Also, MERCSF-N program was used to calculate macroscopic effective removal cross-section ΣR. Measured and calculated results have been compared and were found to be in reasonable agreement. Copyright © 2013 Elsevier Ltd. All rights reserved.
GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies
NASA Astrophysics Data System (ADS)
Buat, V.; Noll, S.; Burgarella, D.; Giovannoli, E.; Charmandaris, V.; Pannella, M.; Hwang, H. S.; Elbaz, D.; Dickinson, M.; Magdis, G.; Reddy, N.; Murphy, E. J.
2012-09-01
Context. Dust attenuation in galaxies is poorly known, especially at high redshift. And yet the amount of dust attenuation is a key parameter to deduce accurate star formation rates from ultraviolet (UV) rest-frame measurements. The wavelength dependence of the dust attenuation is also of fundamental importance to interpret the observed spectral energy distributions (SEDs) and to derive photometric redshifts or physical properties of galaxies. Aims: We want to study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible light wavelength range. In particular, we search for a UV bump and related implications for dust attenuation determinations. Methods: We use photometric data in the Chandra Deep Field South (CDFS), obtained in intermediate and broad band filters by the MUSYC project, to sample the UV rest-frame of 751 galaxies with 0.95 < z < 2.2. When available, infrared (IR) Herschel/PACS data from the GOODS-Herschel project, coupled with Spitzer/MIPS measurements, are used to estimate the dust emission and to constrain dust attenuation. The SED of each source is fit using the CIGALE code. The amount of dust attenuation and the characteristics of the dust attenuation curve are obtained as outputs of the SED fitting process, together with other physical parameters linked to the star formation history. Results: The global amount of dust attenuation at UV wavelengths is found to increase with stellar mass and to decrease as UV luminosity increases. A UV bump at 2175 Å is securely detected in 20% of the galaxies, and the mean amplitude of the bump for the sample is similar to that observed in the extinction curve of the LMC supershell region. This amplitude is found to be lower in galaxies with very high specific star formation rates, and 90% of the galaxies exhibiting a secure bump are at z < 1.5. The attenuation curve is confirmed to be steeper than that of local starburst galaxies for 20% of the galaxies. The large dispersion found for these two parameters describing the attenuation law is likely to reflect a wide diversity of attenuation laws among galaxies. The relations between dust attenuation, IR-to-UV flux ratio, and the slope of the UV continuum are derived for the mean attenuation curve found for our sample. Deviations from the average trends are found to correlate with the age of the young stellar population and the shape of the attenuation curve. Table of multi-colour photometry for the 751 galaxies is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/A141
Hwang, Eun-Sang; Kim, Hyun-Bum; Lee, Seok; Kim, Min-Ji; Lee, Sung-Ok; Han, Seung-Moo; Maeng, Sungho; Park, Ji-Ho
2017-03-15
Although the incidence rate of dementia is rapidly growing in the aged population, therapeutic and preventive reagents are still suboptimal. Various model systems are used for the development of such reagents in which scopolamine is one of the favorable pharmacological tools widely applied. Loganin is a major iridoid glycoside obtained from Corni fructus (Cornusofficinalis et Zucc) and demonstrated to have anti-inflammatory, anti-tumor and osteoporosis prevention effects. It has also been found to attenuate Aβ-induced inflammatory reactions and ameliorate memory deficits induced by scopolamine. However, there has been limited information available on how loganin affects learning and memory both electrophysiologically and behaviorally. To assess its effect on learning and memory, we investigated the influence of acute loganin administration on long-term potentiation (LTP) using organotypic cultured hippocampal tissues. In addition, we measured the effects of loganin on the behavior performance related to avoidance memory, short-term spatial navigation memory and long-term spatial learning and memory in the passive avoidance, Y-maze, and Morris water maze learning paradigms, respectively. Loganin dose-dependently increased the total activity of fEPSP after high frequency stimulation and attenuated scopolamine-induced blockade of fEPSP in the hippocampal CA1 area. In accordance with these findings, loganin behaviorally attenuated scopolamine-induced shortening of step-through latency in the passive avoidance test, reduced the percent alternation in the Y-maze, and increased memory retention in the Morris water maze test. These results indicate that loganin can effectively block cholinergic muscarinic receptor blockade -induced deterioration of LTP and memory related behavioral performance. Based on these findings, loganin may aid in the prevention and treatment of Alzheimer's disease and learning and memory-deficit disorders in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Development of an Empirical Local Magnitude Formula for Northern Oklahoma
NASA Astrophysics Data System (ADS)
Spriggs, N.; Karimi, S.; Moores, A. O.
2015-12-01
In this paper we focus on determining a local magnitude formula for northern Oklahoma that is unbiased with distance by empirically constraining the attenuation properties within the region of interest based on the amplitude of observed seismograms. For regional networks detecting events over several hundred kilometres, distance correction terms play an important role in determining the magnitude of an event. Standard distance correction terms such as Hutton and Boore (1987) may have a significant bias with distance if applied in a region with different attenuation properties, resulting in an incorrect magnitude. We have presented data from a regional network of broadband seismometers installed in bedrock in northern Oklahoma. The events with magnitude in the range of 2.0 and 4.5, distributed evenly across this network are considered. We find that existing models show a bias with respect to hypocentral distance. Observed amplitude measurements demonstrate that there is a significant Moho bounce effect that mandates the use of a trilinear attenuation model in order to avoid bias in the distance correction terms. We present two different approaches of local magnitude calibration. The first maintains the classic definition of local magnitude as proposed by Richter. The second method calibrates local magnitude so that it agrees with moment magnitude where a regional moment tensor can be computed. To this end, regional moment tensor solutions and moment magnitudes are computed for events with magnitude larger than 3.5 to allow calibration of local magnitude to moment magnitude. For both methods the new formula results in magnitudes systematically lower than previous values computed with Eaton's (1992) model. We compare the resulting magnitudes and discuss the benefits and drawbacks of each method. Our results highlight the importance of correct calibration of the distance correction terms for accurate local magnitude assessment in regional networks.
Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel
2005-03-07
We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.
Moon, Graham; Aitken, Grant; Roderick, Paul; Fraser, Simon; Rowlands, Gill
2015-10-01
The relative contributions of functional literacy and functional numeracy to health disparities remain poorly understood in developed world contexts. We seek to unpack their distinctive contributions and to examine how these contributions are framed by place-based deprivation and rurality. We present a multilevel logistic analysis of the 2011 Skills for Life Survey (SfLS), a representative governmental survey of adults aged 16-65 in England. Outcome measures were self-assessed health status and the presence of self-reported long-term health conditions. Exposure variables were functional literacy (FL) and functional numeracy (FN). Age, sex, individual socio-economic status, ethnicity, whether English was a first language, non-UK birthplaces, housing tenure and geography were included as potential confounders and mediators. Geography was measured as area-based deprivation and urban/rural status. FL and FN were both independently associated with self-assessed health status, though the association attenuated after taking account of confounders and mediators. For long-term conditions, the association with FN remained significant following inclusion of confounders and mediators whilst FL attenuated to non-significance. Rurality did not influence these associations. Area deprivation was a significant factor in attenuating the association between FL and self-assessed health status. Policy makers and health professionals will need to be aware of the distinctive impact of FN as well as FL when combating health inequalities, promoting health and managing long-term conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Herzog, S.; McCray, J. E.; Higgins, C. P.
2016-12-01
The hyporheic zone is a hotspot for biogeochemical processing that can attenuate a variety of nonpoint source contaminants in streamwater. However, hyporheic zones in urban and agricultural streams are often degraded and poorly connected with surface water. To increase hyporheic exchange and improve water quality, we introduced engineered streambeds as a stormwater and restoration best management practice. Modifications to streambed hydraulic conductivity and reactivity are termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low-permeability sediments to drive efficient hyporheic exchange, and reactive geomedia to increase reaction rates within the hyporheic zone. This research utilized two artificial stream flumes at the Colorado School of Mines in Golden, CO. Each lined stream flume was 15m long, 0.3m wide, had 0.3m sediment depth, and was continuously dosed with recycled water at 0.25 L/s. One flume served as an all-sand control condition, the other featured BEST modules at 1m spacing with a mixture of 70/30 sand/woodchips (v/v). NaCl breakthrough curves were monitored and analyzed using STAMMT-L, a mobile-immobile exchange model, which showed greater hyporheic exchange and residence times in the BEST stream relative to the control. This result is even more apparent when the calibrated models are used to simulate longer stream reaches. Water quality samples at the reach scale also revealed greater attenuation of nitrate and transformation of the indicator compound resazurin into resorufin. Together these compounds demonstrate that BEST can attenuate contaminants that degrade under anaerobic and aerobic conditions, respectively. These experimental results were also compared to previous numerical simulations to evaluate model accuracy, and show reasonable agreement. Altogether, these results show that BEST may be an effective novel best management practice for improving streamwater quality in urban and agricultural settings.
Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field
NASA Technical Reports Server (NTRS)
Voorhies, C.
1998-01-01
The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.
Cranswick, E.
1988-01-01
Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the "signal" is the site response of the nearsurface. Several examples of waveform data recorded at "hard rock" sites, which are generally assumed to have a "flat" transfer function, are presented to demonstrate the severe signal distortions, including fmax, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinct fmax site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms of fmax and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra. ?? 1988 Birkha??user Verlag.
Transfer function concept for ultrasonic characterization of material microstructures
NASA Technical Reports Server (NTRS)
Vary, A.; Kautz, H. E.
1986-01-01
The approach given depends on treating material microstructures as elastomechanical filters that have analytically definable transfer functions. These transfer functions can be defined in terms of the frequency dependence of the ultrasonic attenuation coefficient. The transfer function concept provides a basis for synthesizing expressions that characterize polycrystalline materials relative to microstructural factors such as mean grain size, grain-size distribution functions, and grain boundary energy transmission. Although the approach is nonrigorous, it leads to a rational basis for combining the previously mentioned diverse and fragmented equations for ultrasonic attenuation coefficients.
CTS attenuation and cross polarization measurements at 11.7 GHz
NASA Technical Reports Server (NTRS)
Vogel, W. J.
1980-01-01
The long-term attenuation, cross-polarization, and rain-rate data monitored in Austin, Texas from the circularly polarized 11.7 GHz satellite beacon transmitter aboard the Communications Technology Satellite are analyzed. Data events are significantly more likely during April-September, than during October-March, except for ice deplorization which predominates during the winter months. A time of day dependence of the events is also noted. The 10 dB fade level is exceeded for .03% during the thunderstorm months. Isolation with the same probability is 23 dB.
Mena, Ana; Maciá, María D.; Borrell, Nuria; Moya, Bartolomé; de Francisco, Teresa; Pérez, José L.; Oliver, Antonio
2007-01-01
The inactivation of the mismatch repair (MMR) system of Pseudomonas aeruginosa modestly reduced in vitro fitness, attenuated virulence in murine models of acute systemic and respiratory infections, and decreased the initial oropharyngeal colonization potential. In contrast, the inactivation of the MMR system favored long-term persistence of oropharyngeal colonization in cystic fibrosis mice. These results may help in understanding the reasons for the low and high prevalences, respectively, of hypermutable P. aeruginosa strains in acute and chronic infections. PMID:17307847
Osherov, Azriel B; Bruoha, Sharon; Laish Farkash, Avishag; Paul, Gideon; Orlov, Ian; Katz, Amos; Jafari, Jamal
2017-02-01
Transradial access for percutaneous coronary intervention (PCI) reduces procedural complications however, there are concerns regarding the potential for increased exposure to ionizing radiation to the primary operator. We evaluated the efficacy of a lead-attenuator in reducing radiation exposure during transradial PCI. This was a non-randomized, prospective, observational study in which 52 consecutive patients were assigned to either standard operator protection (n = 26) or the addition of the lead attenuator across their abdomen/pelvis (n = 26). In the attenuator group patients were relatively older with a higher prevalence of peripheral vascular disease (67.9 vs 58.7 p = 0.0292 and 12% vs 7.6% p < 0.001 respectively). Despite similar average fluoroscopy times (12.3 ± 9.8 min vs. 9.3 ± 5.4 min, p = 0.175) and average examination doses (111866 ± 80790 vs. 91,268 ± 47916 Gycm 2 , p = 0.2688), the total radiation exposure to the operator, at the thyroid level, was significantly lower when the lead-attenuator was utilized (20.2% p < 0.0001) as compared to the control group. Amongst the 26 patients assigned to the lead-attenuator, there was a significant reduction in measured radiation of 94.5% (p < 0.0001), above as compared to underneath the lead attenuator. Additional protection with the use of a lead rectangle-attenuator significantly lowered radiation exposure to the primary operator, which may confer long-term benefits in reducing radiation-induced injury. This is the first paper to show that a simple lead attenuator almost completely reduced the scattered radiation at very close proximity to the patient and should be considered as part of the standard equipment within catheterization laboratories.
NASA Astrophysics Data System (ADS)
Fazio, Marco; De Siena, Luca; Benson, Phillip
2016-04-01
Seismic attenuation and scattering are two attributes that can be linked with porosity and permeability in laboratory experiments. When measuring these two quantities using seismic waveforms recorder at lithospheric and volcanic scales the areas of highest heterogeneity, as batches of melt and zones of high deformation, produce anomalous values of the measured quantities, the seismic quality factor and scattering coefficient. When employed as indicators of heterogeneity and absorption in volcanic areas these anomalous effects become strong indicators of magma accumulation and tectonic boundaries, shaping magmatic chambers and conduit systems. We perform attenuation and scattering measurements and imaging using seismic waveforms produced in laboratory experiments, at frequencies ranging between the kHz and MHz. As attenuation and scattering are measured from the shape of the envelopes, disregarding phases, we are able to connect the observations with the micro fracturing and petrological quantities previously measured on the sample. Connecting the imaging of dry and saturated samples via these novel attributes with the burst of low-period events with increasing saturation and deformation is a challenge. Its solution could plant the seed for better relating attenuation and scattering tomography measurements to the presence of fluids and gas, therefore creating a novel path for reliable porosity and permeability tomography. In particular for volcanoes, being able to relate attenuation/scattering measurements with low-period micro seismicity could deliver new data to settle the debate about if both source and medium can produce seismic resonance.
Azeez, Ali Basheer; Mohammed, Kahtan S.; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul
2013-01-01
Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137Cs and 60Co radioactive elements with photon energies of 0.662 MeV for 137Cs and two energy levels of 1.17 and 1.33 MeV for the 60Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10−3 for 137Cs and 0.92 ± 1.57 × 10−3 for 60Co. Substantial improvement in attenuation performance by 20%–25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%–30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities. PMID:28788363
Protective effects of long-term lithium administration in a slowly progressive SMA mouse model.
Biagioni, Francesca; Ferrucci, Michela; Ryskalin, Larisa; Fulceri, Federica; Lazzeri, Gloria; Calierno, Maria Teresa; Busceti, Carla L; Ruffoli, Riccardo; Fornai, Francesco
2017-12-01
In the present study we evaluated the long-term effects of lithium administration to a knock-out double transgenic mouse model (Smn-/-; SMN1A2G+/-; SMN2+/+) of Spinal Muscle Atrophy type III (SMA-III). This model is characterized by very low levels of the survival motor neuron protein, slow disease progression and motor neuron loss, which enables to detect disease-modifying effects at delayed time intervals. Lithium administration attenuates the decrease in motor activity and provides full protection from motor neuron loss occurring in SMA-III mice, throughout the disease course. In addition, lithium prevents motor neuron enlargement and motor neuron heterotopy and suppresses the occurrence of radial-like glial fibrillary acidic protein immunostaining in the ventral white matter of SMA-III mice. In SMA-III mice long-term lithium administration determines a dramatic increase of survival motor neuron protein levels in the spinal cord. These data demonstrate that long-term lithium administration during a long-lasting motor neuron disorder attenuates behavioural deficit and neuropathology. Since low level of survival motor neuron protein is bound to disease severity in SMA, the robust increase in protein level produced by lithium provides solid evidence which calls for further investigations considering lithium in the long-term treatment of spinal muscle atrophy.