Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E
2015-01-01
Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).
Water Pollution, Causes and Cures.
ERIC Educational Resources Information Center
Manufacturing Chemists Association, Washington, DC.
This commentary on sources of water pollution and water pollution treatment systems is accompanied by graphic illustrations. Sources of pollution such as lake bottom vegetation, synthetic organic pollutants, heat pollution, radioactive substance pollution, and human and industrial waste products are discussed. Several types of water purification…
NASA Astrophysics Data System (ADS)
Li, D.
2016-12-01
Sudden water pollution accidents are unavoidable risk events that we must learn to co-exist with. In China's Taihu River Basin, the river flow conditions are complicated with frequently artificial interference. Sudden water pollution accident occurs mainly in the form of a large number of abnormal discharge of wastewater, and has the characteristics with the sudden occurrence, the uncontrollable scope, the uncertainty object and the concentrated distribution of many risk sources. Effective prevention of pollution accidents that may occur is of great significance for the water quality safety management. Bayesian networks can be applied to represent the relationship between pollution sources and river water quality intuitively. Using the time sequential Monte Carlo algorithm, the pollution sources state switching model, water quality model for river network and Bayesian reasoning is integrated together, and the sudden water pollution risk assessment model for river network is developed to quantify the water quality risk under the collective influence of multiple pollution sources. Based on the isotope water transport mechanism, a dynamic tracing model of multiple pollution sources is established, which can describe the relationship between the excessive risk of the system and the multiple risk sources. Finally, the diagnostic reasoning algorithm based on Bayesian network is coupled with the multi-source tracing model, which can identify the contribution of each risk source to the system risk under the complex flow conditions. Taking Taihu Lake water system as the research object, the model is applied to obtain the reasonable results under the three typical years. Studies have shown that the water quality risk at critical sections are influenced by the pollution risk source, the boundary water quality, the hydrological conditions and self -purification capacity, and the multiple pollution sources have obvious effect on water quality risk of the receiving water body. The water quality risk assessment approach developed in this study offers a effective tool for systematically quantifying the random uncertainty in plain river network system, and it also provides the technical support for the decision-making of controlling the sudden water pollution through identification of critical pollution sources.
Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan
2013-08-01
Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.
Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-02-16
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.
Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-01-01
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929
Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.
Wang, L; Wang, B
2000-01-01
The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.
Wu, Yiping; Chen, Ji
2013-01-01
Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.
Pollution source localization in an urban water supply network based on dynamic water demand.
Yan, Xuesong; Zhu, Zhixin; Li, Tian
2017-10-27
Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.
River water quality and pollution sources in the Pearl River Delta, China.
Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu
2005-07-01
Some physicochemical parameters were determined for thirty field water samples collected from different water channels in the Pearl River Delta Economic Zone river system. The analytical results were compared with the environmental quality standards for surface water. Using the SPSS software, statistical analyses were performed to determine the main pollutants of the river water. The main purpose of the present research is to investigate the river water quality and to determine the main pollutants and pollution sources. Furthermore, the research provides some approaches for protecting and improving river water quality. The results indicate that the predominant pollutants are ammonium, phosphorus, and organic compounds. The wastewater discharged from households in urban and rural areas, industrial facilities, and non-point sources from agricultural areas are the main sources of pollution in river water in the Pearl River Delta Economic Zone.
ERIC Educational Resources Information Center
Barton, Kathy
1978-01-01
Nonpoint source pollution, water pollution not released at one specific identifiable point, now accounts for 50 percent of the nation's water pollution problem. Runoff is the primary culprit and includes the following sources: agriculture, mining, hydrologic modifications, and urban runoff. Economics, legislation, practices, and management of this…
Stable Isotope Mixing Models as a Tool for Tracking Sources of Water and Water Pollutants
One goal of monitoring pollutants is to be able to trace the pollutant to its source. Here we review how mixing models using stable isotope information on water and water pollutants can help accomplish this goal. A number of elements exist in multiple stable (non-radioactive) i...
Water Pollution. Project COMPSEP.
ERIC Educational Resources Information Center
Lantz, H. B., Jr.
This is an introductory program on water pollution. Examined are the cause and effect relationships of water pollution, sources of water pollution, and possible alternatives to effect solutions from our water pollution problems. Included is background information on water pollution, a glossary of pollution terminology, a script for a slide script…
Polluted Runoff: Nonpoint Source Pollution
Nonpoint Source (NPS) pollution is caused by rainfall or snowmelt moving over and through the ground, it picks up and carries natural and human-made pollutants, depositing them into lakes, rivers, wetlands, coastal waters and ground waters.
Probabilistic Analysis of Earthquake-Led Water Contamination: A Case of Sichuan, China
NASA Astrophysics Data System (ADS)
Yang, Yan; Li, Lin; Benjamin Zhan, F.; Zhuang, Yanhua
2016-06-01
The objective of this paper is to evaluate seismic-led point source and non-point source water pollution, under the seismic hazard of 10 % probability of exceedance in 50 years, and with the minimum value of the water quality standard in Sichuan, China. The soil conservation service curve number method of calculating the runoff depth in the single rainfall event combined with the seismic damage index were applied to estimate the potential degree of non-point source water pollution. To estimate the potential impact of point source water pollution, a comprehensive water pollution evaluation framework is constructed using a combination of Water Quality Index and Seismic Damage Index methods. The four key findings of this paper are: (1) The water catchment that has the highest factory concentration does not have the highest risk of non-point source water contamination induced by the outbreak of potential earthquake. (2) The water catchment that has the highest numbers of cumulative water pollutants types are typically located in the south western parts of Sichuan where the main river basins in the regions flow through. (3) The most common pollutants in sample factories studied is COD and NH3-N which are found in all catchments. The least common pollutant is pathogen—found present in W1 catchment which has the best rating in the water quality index. (4) Using water quality index as a standardization parameter, parallel comparisons is made among the 16 water catchments. Only catchment W1 reaches level II water quality status which has the rating of moderately polluted in events of earthquake induced water contamination. All other areas suffer from severe water contamination with multiple pollution sources. The results from the data model are significant to urban planning commissions and businesses to strategically choose their factory locations in order to minimize potential hazardous impact during the outbreak of earthquake.
Controlling Nonpoint-Source Water Pollution: A Citizen's Handbook.
ERIC Educational Resources Information Center
Hansen, Nancy Richardson; And Others
Citizens can play an important role in helping their states develop pollution control programs and spurring effective efforts to deal with nonpoint-source pollution. This guide takes the reader step-by-step through the process that states must follow to comply with water quality legislation relevant to nonpoint-source pollution. Part I provides…
Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao
2015-12-15
The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.
Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C
2011-07-01
Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.
Wang, Dongsheng; Xing, Linan; Xie, Jiankun; Chow, Christopher W K; Xu, Zhizhen; Zhao, Yanmei; Drikas, Mary
2010-09-01
China has a very complex water supply system which relies on many rivers and lakes. As the population and economic development increases, water quality is greatly impacted by anthropogenic processes. This seriously affects the character of the dissolved organic matter (DOM) and imposes operational challenges to the water treatment facilities in terms of process optimization. The aim of this investigation was to compare selected drinking water sources (raw) with different DOM character, and the respective treated waters after coagulation, using simple organic characterization techniques to obtain a better understanding of the impact of source water quality on water treatment. Results from the analyses of selected water samples showed that the dissolved organic carbon (DOC) of polluted waters is generally higher than that of un-polluted waters, but the specific UV absorbance value has the opposite trend. After resolving the high performance size exclusion chromatography (HPSEC) peak components of source waters using peak fitting, the twelve waters studied can be divided into two main groups (micro-polluted and un-polluted) by using cluster analysis. The DOM removal efficiency (treatability) of these waters has been compared using four coagulants. For water sources allocated to the un-polluted group, traditional coagulants (Al(2)(SO(4))(3) and FeCl(3)) achieved better removal. High performance poly aluminum chloride, a new type of composite coagulant, performed very well and more efficiently for polluted waters. After peak fitting the HPSEC chromatogram of each of the treated waters, average removal efficiency of the profiles can be calculated and these correspond well with DOC and UV removal. This provides a convenient tool to assess coagulation removal and coagulant selection. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
IDENTIFICATION OF SOURCES OF FECAL POLLUTION IN ENVIRONMENTAL WATERS
A number of Microbial Source Tracking (MST) methods are currently used to determine the origin of fecal pollution impacting environmental waters. MST is based on the assumption that given the appropriate method and indicator organism, the source of fecal microbial pollution can ...
Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie
2013-04-01
Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.
Cao, Bibo; Li, Chuan; Liu, Yan; Zhao, Yue; Sha, Jian; Wang, Yuqiu
2015-05-01
Because water quality monitoring sections or sites could reflect the water quality status of rivers, surface water quality management based on water quality monitoring sections or sites would be effective. For the purpose of improving water quality of rivers, quantifying the contribution ratios of pollutant resources to a specific section is necessary. Because physical and chemical processes of nutrient pollutants are complex in water bodies, it is difficult to quantitatively compute the contribution ratios. However, water quality models have proved to be effective tools to estimate surface water quality. In this project, an enhanced QUAL2Kw model with an added module was applied to the Xin'anjiang Watershed, to obtain water quality information along the river and to assess the contribution ratios of each pollutant source to a certain section (the Jiekou state-controlled section). Model validation indicated that the results were reliable. Then, contribution ratios were analyzed through the added module. Results show that among the pollutant sources, the Lianjiang tributary contributes the largest part of total nitrogen (50.43%), total phosphorus (45.60%), ammonia nitrogen (32.90%), nitrate (nitrite + nitrate) nitrogen (47.73%), and organic nitrogen (37.87%). Furthermore, contribution ratios in different reaches varied along the river. Compared with pollutant loads ratios of different sources in the watershed, an analysis of contribution ratios of pollutant sources for each specific section, which takes the localized chemical and physical processes into consideration, was more suitable for local-regional water quality management. In summary, this method of analyzing the contribution ratios of pollutant sources to a specific section based on the QUAL2Kw model was found to support the improvement of the local environment.
Water Source Pollution and Disease Diagnosis in a Nigerian Rural Community.
ERIC Educational Resources Information Center
Sangodoyin, A. Y.
1991-01-01
Samples from five water sources (spring, borehole, pond, stream, and well) in rural Nigerian communities were tested. Results include source reliabilities in terms of water quality and quantity, pollution effects upon water quality, epidemiological effects related to water quantity and waste disposal, and impact of water quality improvement upon…
Influence of Diffused Sourcers of Water Pollution In The Basin of Volga River
NASA Astrophysics Data System (ADS)
Vasilchenco, O.
The intensive development of industry and agriculture, great growth of cities in the last decades result in an increase of the nature water consumption and deterioration. Different anthropogenic load change characteristics of water objects regime and de- pletion and qualitative degradation of water resources. Sources of pollution are divided on two classes: controlled and uncontrolled. The first includes industrial and domestic wastewater disposal. Their discharge and concentration of pollutants are quite stable. These sources of pollution are identified as "point". Surface run-off from of cities, industrial platforms, agricultural object, navigation, recreation are not controlled have dispersed nature and are identification as diffuse. Pollution from such sources is es- timates by computation. Quantitative assumption of pollution amounts reaches water objects is complicated and independent problem. The significant amount of full-scale observations and information processes of concerning dissolved and fluidized frag- ments movement are required. According to available guidelines the part of the pollu- tant entering water objects, is about 1-10For estimation of pollution mass and transport are mathematical modeling. Preliminary calculations of contaminants transport for different territories under an- thropogenic impact of river-Volga basin were made either for point sources of pol- lution or for non-point. Received data made it possible to analyze the correlation of contaminant volumes, coming from different sources pollution.
Ma, Xiao-xue; Wang, La-chun; Liao, Ling-ling
2015-01-01
Identifying the temp-spatial distribution and sources of water pollutants is of great significance for efficient water quality management pollution control in Wenruitang River watershed, China. A total of twelve water quality parameters, including temperature, pH, dissolved oxygen (DO), total nitrogen (TN), ammonia nitrogen (NH4+ -N), electrical conductivity (EC), turbidity (Turb), nitrite-N (NO2-), nitrate-N(NO3-), phosphate-P(PO4(3-), total organic carbon (TOC) and silicate (SiO3(2-)), were analyzed from September, 2008 to October, 2009. Geographic information system(GIS) and principal component analysis(PCA) were used to determine the spatial distribution and to apportion the sources of pollutants. The results demonstrated that TN, NH4+ -N, PO4(3-) were the main pollutants during flow period, wet period, dry period, respectively, which was mainly caused by urban point sources and agricultural and rural non-point sources. In spatial terms, the order of pollution was tertiary river > secondary river > primary river, while the water quality was worse in city zones than in the suburb and wetland zone regardless of the river classification. In temporal terms, the order of pollution was dry period > wet period > flow period. Population density, land use type and water transfer affected the water quality in Wenruitang River.
Araújo, Susana; Henriques, Isabel S; Leandro, Sérgio Miguel; Alves, Artur; Pereira, Anabela; Correia, António
2014-02-01
Gulls were reported as sources of fecal pollution in coastal environments and potential vectors of human infections. Microbial source tracking (MST) methods were rarely tested to identify this pollution origin. This study was conducted to ascertain the source of water fecal contamination in the Berlenga Island, Portugal. A total of 169 Escherichia coli isolates from human sewage, 423 isolates from gull feces and 334 water isolates were analyzed by BOX-PCR. An average correct classification of 79.3% was achieved. When an 85% similarity cutoff was applied 24% of water isolates were present in gull feces against 2.7% detected in sewage. Jackknifing resulted in 29.3% of water isolates classified as gull, and 10.8% classified as human. Results indicate that gulls constitute a major source of water contamination in the Berlenga Island. This study validated a methodology to differentiate human and gull fecal pollution sources in a real case of a contaminated beach. © 2013.
Li, Chunhui; Sun, Lian; Jia, Junxiang; Cai, Yanpeng; Wang, Xuan
2016-07-01
Source water areas are facing many potential water pollution risks. Risk assessment is an effective method to evaluate such risks. In this paper an integrated model based on k-means clustering analysis and set pair analysis was established aiming at evaluating the risks associated with water pollution in source water areas, in which the weights of indicators were determined through the entropy weight method. Then the proposed model was applied to assess water pollution risks in the region of Shiyan in which China's key source water area Danjiangkou Reservoir for the water source of the middle route of South-to-North Water Diversion Project is located. The results showed that eleven sources with relative high risk value were identified. At the regional scale, Shiyan City and Danjiangkou City would have a high risk value in term of the industrial discharge. Comparatively, Danjiangkou City and Yunxian County would have a high risk value in terms of agricultural pollution. Overall, the risk values of north regions close to the main stream and reservoir of the region of Shiyan were higher than that in the south. The results of risk level indicated that five sources were in lower risk level (i.e., level II), two in moderate risk level (i.e., level III), one in higher risk level (i.e., level IV) and three in highest risk level (i.e., level V). Also risks of industrial discharge are higher than that of the agricultural sector. It is thus essential to manage the pillar industry of the region of Shiyan and certain agricultural companies in the vicinity of the reservoir to reduce water pollution risks of source water areas. Copyright © 2016 Elsevier B.V. All rights reserved.
FECAL POLLUTION, PUBLIC HEALTH AND MICROBIAL SOURCE TRACKING
Microbial source tracking (MST) seeks to provide information about sources of fecal water contamination. Without knowledge of sources, it is difficult to accurately model risk assessments, choose effective remediation strategies, or bring chronically polluted waters into complian...
NASA Astrophysics Data System (ADS)
Fang, Huaiyang; Lu, Qingshui; Gao, Zhiqiang; Shi, Runhe; Gao, Wei
2013-09-01
China economy has been rapidly increased since 1978. Rapid economic growth led to fast growth of fertilizer and pesticide consumption. A significant portion of fertilizers and pesticides entered the water and caused water quality degradation. At the same time, rapid economic growth also caused more and more point source pollution discharge into the water. Eutrophication has become a major threat to the water bodies. Worsening environment problems forced governments to take measures to control water pollution. We extracted land cover from Landsat TM images; calculated point source pollution with export coefficient method; then SWAT model was run to simulate non-point source pollution. We found that the annual TP loads from industry pollution into rivers are 115.0 t in the entire watershed. Average annual TP loads from each sub-basin ranged from 0 to 189.4 ton. Higher TP loads of each basin from livestock and human living mainly occurs in the areas where they are far from large towns or cities and the TP loads from industry are relatively low. Mean annual TP loads that delivered to the streams was 246.4 tons and the highest TP loads occurred in north part of this area, and the lowest TP loads is mainly distributed in middle part. Therefore, point source pollution has much high proportion in this area and governments should take measures to control point source pollution.
NASA Astrophysics Data System (ADS)
Zhu, Lei; Song, JinXi; Liu, WanQing
2017-12-01
Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. Weihe River Watershed above Huaxian Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load(CSLD) method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the normal, rainy and wet period in turn.
Calculating NH3-N pollution load of wei river watershed above Huaxian section using CSLD method
NASA Astrophysics Data System (ADS)
Zhu, Lei; Song, JinXi; Liu, WanQing
2018-02-01
Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. So it is taken as the research objective in this paper and NH3-N is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load (CSLD)method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly. The non-point source pollution load proportions of total pollution load of NH3-N decrease in the normal, rainy and wet period in turn.
Assessment of semi-volatile organic compounds in drinking water sources in Jiangsu, China.
Wu, Yifeng; Jia, Yongzhi; Lu, Xiwu
2013-08-01
Many xenobiotic compounds, especially organic pollutants in drinking water, can cause threats to human health and natural ecosystems. The ability to predict the level of pollutants and identify their source is crucial for the design of pollutant risk reduction plans. In this study, 25 semi-volatile organic compounds (SVOCs) were assessed at 16 monitoring sites of drinking water sources in Jiangsu, east China, to evaluate water quality conditions and source of pollutants. Four multivariate statistical techniques were used for this analysis. The correlation test indicated that 25 SVOCs parameters variables had a significant spatial variability (P<0.05). The results of correlation analysis, principal component analysis (PCA) and cluster analysis (CA) suggested that at least four sources, i.e., agricultural residual pesticides, industrial sewage, water transportation vehicles and miscellaneous sources, were responsible for the presence of SVOCs in the drinking water sites examined, accounting for 89.6% of the total variance in the dataset. The analysis of site similarity showed that 16 sites could be divided into high, moderate, and low pollutant level groups at (D(link)/D(max))×25<10, and each group had primary typical SVOCs. These results provide useful information for developing appropriate strategies for contaminants control in drinking water sources. Copyright © 2013 Elsevier Inc. All rights reserved.
Sanitary survey of the drinking water supply of Kombinati suburb-Tirana, Albania.
Angjeli, V; Reme, B; Leno, L; Bukli, R; Bushati, G
2000-01-01
Microbiological pollution of drinking water is a major health problem in the suburbs of the Albanian capital. Intermittent supply and contamination, resulting in several gastrointestinal manifestations, are the main concerns for the population and health workers. The risk of outbreaks of water-borne diseases is high. Pollution originates from contamination of drinking water with domestic sewage. This research investigated the drinking water cycle from its natural source to the consumer, analysing samples and verifying pollution levels in the microbiological and chemical setting. The most important pollution sources were found in the distribution network, due to cross-contamination with sewers and illegal connections. The second pollution source was found around the extraction wells. This is related to abusive constructions within the sanitary zone around the wells and maybe the highly sewage-contaminated river water which feeds the aquifer.
[Effect analysis on the two total load control methods for poisonous heavy metals].
Fu, Guo-Wei
2012-12-01
Firstly it should be made clear that implementation of source total load control for the first type of pollutants is necessary for environmental pollution control legislation and economic structure regulation. This kind of surveillance method has been more practical to be implemented since the Manual of the Industry Discharge Coefficient of First National Pollution Sources Investigation was published. The source total load control and water environment total load control are independent of each other and none of them is redundant, on the other side they can be complementary to each other. In the present, some local planning managers are blurring and confusing the contents and styles of the two surveillance methods. They just use the water total load control to manage all the pollutants, and source total load control is discarded, which results in the loss of control for the first type of pollutants especially for the drinking water source surveillance. There is a big difference between the water quality standards and the water environmental background concentration values for the first type of pollutants in the Environmental quality standard for surface water (GB 3838-88), which means that there are problems such as "relaxing the pollutant discharge permit" and "risk induced by valence state change". Taking an enterprise with 10t electrolytic lead production capacity as an example, there is a big difference between the allowable lead discharged loads by the two total load surveillance methods. In summary, it will bring a lot of harmful effects if the water total load control is implemented for the two types of pollutants, so the source total load control and water environmental total load control should be implemented strictly at the same time.
A conceptual ground-water-quality monitoring network for San Fernando Valley, California
Setmire, J.G.
1985-01-01
A conceptual groundwater-quality monitoring network was developed for San Fernando Valley to provide the California State Water Resources Control Board with an integrated, basinwide control system to monitor the quality of groundwater. The geology, occurrence and movement of groundwater, land use, background water quality, and potential sources of pollution were described and then considered in designing the conceptual monitoring network. The network was designed to monitor major known and potential point and nonpoint sources of groundwater contamination over time. The network is composed of 291 sites where wells are needed to define the groundwater quality. The ideal network includes four specific-purpose networks to monitor (1) ambient water quality, (2) nonpoint sources of pollution, (3) point sources of pollution, and (4) line sources of pollution. (USGS)
NASA Astrophysics Data System (ADS)
Su, Shiliang; Zhi, Junjun; Lou, Liping; Huang, Fang; Chen, Xia; Wu, Jiaping
Characterizing the spatio-temporal patterns and apportioning the pollution sources of water bodies are important for the management and protection of water resources. The main objective of this study is to describe the dynamics of water quality and provide references for improving river pollution control practices. Comprehensive application of neural-based modeling and different multivariate methods was used to evaluate the spatio-temporal patterns and source apportionment of pollution in Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites for the period of 2001-2004. A self-organizing map classified the 41 monitoring sites into three groups (Group A, B and C), representing different pollution characteristics. Four significant parameters (dissolved oxygen, biochemical oxygen demand, total phosphorus and total lead) were identified by discriminant analysis for distinguishing variations of different years, with about 80% correct assignment for temporal variation. Rotated principal component analysis (PCA) identified four potential pollution sources for Group A (domestic sewage and agricultural pollution, industrial wastewater pollution, mineral weathering, vehicle exhaust and sand mining), five for Group B (heavy metal pollution, agricultural runoff, vehicle exhaust and sand mining, mineral weathering, chemical plants discharge) and another five for Group C (vehicle exhaust and sand mining, chemical plants discharge, soil weathering, biochemical pollution, mineral weathering). The identified potential pollution sources explained 75.6% of the total variances for Group A, 75.0% for Group B and 80.0% for Group C, respectively. Receptor-based source apportionment was applied to further estimate source contributions for each pollution variable in the three groups, which facilitated and supported the PCA results. These results could assist managers to develop optimal strategies and determine priorities for river pollution control and effective water resources management.
NASA Astrophysics Data System (ADS)
Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong
2009-04-01
Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords: groundwater pollution, early warning, aquifer vulnerability, pollution load, pollution risk, ComGIS
Monitor-based evaluation of pollutant load from urban stormwater runoff in Beijing.
Liu, Y; Che, W; Li, J
2005-01-01
As a major pollutant source to urban receiving waters, the non-point source pollution from urban runoff needs to be well studied and effectively controlled. Based on monitoring data from urban runoff pollutant sources, this article describes a systematic estimation of total pollutant loads from the urban areas of Beijing. A numerical model was developed to quantify main pollutant loads of urban runoff in Beijing. A sub-procedure is involved in this method, in which the flush process influences both the quantity and quality of stormwater runoff. A statistics-based method was applied in computing the annual pollutant load as an output of the runoff. The proportions of pollutant from point-source and non-point sources were compared. This provides a scientific basis for proper environmental input assessment of urban stormwater pollution to receiving waters, improvement of infrastructure performance, implementation of urban stormwater management, and utilization of stormwater.
Smolders, Andrew; Rolls, Robert J; Ryder, Darren; Watkinson, Andrew; Mackenzie, Mark
2015-06-01
The provision of safe drinking water is a global issue, and animal production is recognized as a significant potential origin of human infectious pathogenic microorganisms within source water catchments. On-farm management can be used to mitigate livestock-derived microbial pollution in source water catchments to reduce the risk of contamination to potable water supplies. We applied a modified Before-After Control Impact (BACI) design to test if restricting the access of livestock to direct contact with streams prevented longitudinal increases in the concentrations of faecal indicator bacteria and suspended solids. Significant longitudinal increases in pollutant concentrations were detected between upstream and downstream reaches of the control crossing, whereas such increases were not detected at the treatment crossing. Therefore, while the crossing upgrade was effective in preventing cattle-derived point source pollution by between 112 and 158%, diffuse source pollution to water supplies from livestock is not ameliorated by this intervention alone. Our findings indicate that stream crossings that prevent direct contact between livestock and waterways provide a simple method for reducing pollutant loads in source water catchments, which ultimately minimises the likelihood of pathogenic microorganisms passing through source water catchments and the drinking water supply system. The efficacy of the catchment as a primary barrier to pathogenic risks to drinking water supplies would be improved with the integration of management interventions that minimise direct contact between livestock and waterways, combined with the mitigation of diffuse sources of livestock-derived faecal matter from farmland runoff to the aquatic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah
2013-02-01
The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed.
A spatial model to aggregate point-source and nonpoint-source water-quality data for large areas
White, D.A.; Smith, R.A.; Price, C.V.; Alexander, R.B.; Robinson, K.W.
1992-01-01
More objective and consistent methods are needed to assess water quality for large areas. A spatial model, one that capitalizes on the topologic relationships among spatial entities, to aggregate pollution sources from upstream drainage areas is described that can be implemented on land surfaces having heterogeneous water-pollution effects. An infrastructure of stream networks and drainage basins, derived from 1:250,000-scale digital-elevation models, define the hydrologic system in this spatial model. The spatial relationships between point- and nonpoint pollution sources and measurement locations are referenced to the hydrologic infrastructure with the aid of a geographic information system. A maximum-branching algorithm has been developed to simulate the effects of distance from a pollutant source to an arbitrary downstream location, a function traditionally employed in deterministic water quality models. ?? 1992.
Dong, Yang; Liu, Yi; Chen, Jining
2014-01-01
Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.
ALTERNATIVE POLICIES FOR CONTROLLING NONPOINT AGRICULTURAL SOURCES OF WATER POLLUTION
This study of policies for controlling water pollution from nonpoint agricultural sources includes a survey of existing state and Federal programs, agencies, and laws directed to the control of soil erosion. Six policies representing a variety of approaches to this pollution prob...
Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...
Li, Yinghui; Huang, Shuaijin; Qu, Xuexin
2017-10-27
The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter "Reservoir Area"). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.
ERIC Educational Resources Information Center
Buskirk, E. Drannon, Jr.
Nonpoint sources of pollution have diffuse origins and are major contributors to water quality problems in both urban and rural areas. Addressed in this instructor's manual are the identification, assessment, and management of nonpoint source pollutants resulting from mining, agriculture, and forestry. The unit, part of the Working for Clean Water…
Wang, Weiliang; Liu, Xiaohui; Wang, Yufan; Guo, Xiaochun; Lu, Shaoyong
2016-03-01
Based on the data analysis of the water environmental quality and economic development from 2002 to 2012 in the Nansi Lake basin, the correlation and change between the water environmental quality and economic development were studied. Results showed that the GDP and wastewater emissions of point source in the Nansi Lake basin had an average annual growth of 7.30 and 7.68 %, respectively, from 2002 to 2012. The emissions of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) had the average annual decrease of 7.69 and 6.79 % in 2012, respectively, compared to 2002. Basin water quality overall improved, reaching the Class III of the "Environmental quality standards for surface water (GB3838-2002)," in which the main reason was that sewage treatment rate increased gradually and was above 90 % in 2012 (an increase of 10 % compared to 2002) with the progress of pollution abatement technology and the implementation of relevant policies and regulations. The contribution of water environmental pollution was analyzed from related cities (Ji'ning, Zaozhuang, Heze). Results indicated that Ji'ning had the largest contribution to water pollution of the Nansi Lake basin, and the pollutant from domestic sources accounted for a higher percentage compared to industrial sources. The wastewater, COD, and NH3-N mainly came from mining and washing of coal, manufacture of raw chemical materials and chemical products, papermaking industry, and food processing industry. According to the water pollution characteristics of the Nansi Lake basin, the basin pollution treatment strategy and prevention and treatment system were dissected to provide a scientific basis for prevention and control of lakeside point source pollution along the Nansi Lake.
Paper focuses on trading schemes in which regulated point sources are allowed to avoid upgrading their pollution control technology to meet water quality-based effluent limits if they pay for equivalent (or greater) reductions in nonpoint source pollution.
Qu, Jianhua; Meng, Xianlin; Ye, Xiuqing; You, Hong
2016-10-01
China has suffered various water source pollution incidents in the past decades, which have resulted in severe threats to the safety of the water supply for millions of residents. From the aspects of quantity fluctuation, temporal volatility, regional inequality, pollutant category variation, and accident type differences, this study first characterizes the current status of water source contaminations in China by analyzing 340 pollution events for the period spanning from 1985 to 2013. The results show a general increase in the number of accidents during the period 1985-2006 and then a rapid decline starting in 2007. Spring and summer are high-incidence seasons for pollution, and the accident rate in developed southeastern coastal areas is far higher than that in the northwestern regions. Hazardous chemicals and petroleum are the most frequently occurring pollutants, whereas heavy metals and tailings are becoming emerging contaminants during occasional pollutions. Most of the accidents that occurred before 2005 were blamed on illegal emissions or traffic accidents; however, leakage in production has gradually become a major accident type in the past decade. Then, in combination with government actions and policy constraints, this paper explores the deep inducements and offers valuable insight into measures that should be taken to ensure future prevention and mitigation of emergent source water pollution.
Chemical, biological, and DNA markers for tracing slaughterhouse effluent.
Harvey, P J; Taylor, M P; Handley, H K; Foster, S; Gillings, M R; Asher, A J
2017-07-01
Agricultural practices, if not managed correctly, can have a negative impact on receiving environments via waste disposal and discharge. In this study, a chicken slaughter facility on the rural outskirts of Sydney, Australia, has been identified as a possible source of persistent effluent discharge into a peri-urban catchment. Questions surrounding the facility's environmental management practices go back more than four decades. Despite there having never been a definitive determination of the facility's impact on local stream water quality, the New South Wales Environment Protection Authority (NSW EPA) has implemented numerous pollution reduction requirements to manage noise and water pollution at the slaughter facility. However, assessment of compliance remains complicated by potential additional sources of pollution in the catchment. To unravel this long-standing conundrum related to water pollution we apply a forensic, multiple lines of evidence approach to delineate the origin of the likely pollution source(s). Water samples collected between 2014 and 2016 from irrigation pipes and a watercourse exiting the slaughter facility had elevated concentrations of ammonia (max: 63,000µg/L), nitrogen (max: 67,000µg/L) and phosphorus (max: 39,000µg/L), which were significantly higher than samples from adjacent streams that did not receive direct runoff from the facility. Arsenic, sometimes utilised in growth promoting compounds, was detected in water discharging from the facility up to ~4 times (max 3.84µg/L) local background values (<0.5µg/L), with inorganic As (∑V+III) being the dominant species. The spatial association of elevated water pollution to the facility could not unequivocally distinguish a source and consequently DNA analysis of a suspected pollution discharge event was undertaken. Analysis of catchment runoff from several local streams showed that only water sampled at the downstream boundary of the facility tested positive for chicken DNA, with traces of duck DNA being absent, which was a potential confounder given that wild ducks are present in the area. Further, PCR analysis showed that only the discharge water emanating from the slaughter facility tested positive for a generalized marker of anthropogenic pollution, the clinical class 1 integron-integrase gene. The environmental data collected over a three-year period demonstrates that the slaughter facility is indisputably the primary source of water-borne pollution in the catchment. Moreover, application of DNA and PCR for confirming pollution sources demonstrates its potential for application by regulators in fingerprinting pollution sources. Copyright © 2017 Elsevier Inc. All rights reserved.
Suo, An-ning; Wang, Tian-ming; Wang, Hui; Yu, Bo; Ge, Jian-ping
2006-12-01
Non-point sources pollution is one of main pollution modes which pollutes the earth surface environment. Aimed at soil water loss (a typical non-point sources pollution problem) on the Losses Plateau in China, the paper applied a landscape patternevaluation method to twelve watersheds of Jinghe River Basin on the Loess Plateau by means of location-weighted landscape contrast index(LCI) and landscape slope index(LSI). The result showed that LSI of farm land, low density grass land, forest land and LCI responded significantly to soil erosion modulus and responded to depth of runoff, while the relationship between these landscape index and runoff variation index and erosion variation index were not statistically significant. This tell us LSI and LWLCI are good indicators of soil water loss and thus have big potential in non-point source pollution risk evaluation.
Fecal pollution of water from a health point of view is the contamination of water with disease-causing organisms (pathogens) that may inhabit the gastrointestinal tract of mammals, but with particular attention to human fecal sources as the most relevant source of human illnesse...
Fecal pollution of water from a health point of view is the contamination of water with disease-causing organisms (pathogens) that may inhabit the gastrointestinal tract of mammals, but with particular attention to human fecal sources as the most relevant source of human illnesse...
NASA Astrophysics Data System (ADS)
Liu, Luyao; Feng, Minquan
2018-03-01
[Objective] This study quantitatively evaluated risk probabilities of sudden water pollution accidents under the influence of risk sources, thus providing an important guarantee for risk source identification during water diversion from the Hanjiang River to the Weihe River. [Methods] The research used Bayesian networks to represent the correlation between accidental risk sources. It also adopted the sequential Monte Carlo algorithm to combine water quality simulation with state simulation of risk sources, thereby determining standard-exceeding probabilities of sudden water pollution accidents. [Results] When the upstream inflow was 138.15 m3/s and the average accident duration was 48 h, the probabilities were 0.0416 and 0.0056 separately. When the upstream inflow was 55.29 m3/s and the average accident duration was 48 h, the probabilities were 0.0225 and 0.0028 separately. [Conclusions] The research conducted a risk assessment on sudden water pollution accidents, thereby providing an important guarantee for the smooth implementation, operation, and water quality of the Hanjiang-to-Weihe River Diversion Project.
ERIC Educational Resources Information Center
Soil Conservation Service (USDA), Washington, DC.
Nonpoint source pollution is both a relatively recent concern and a complex phenomenon with many unknowns. Knowing the extent to which agricultural sources contribute to the total pollutant load, the extent to which various control practices decrease this load, and the effect of reducing the pollutants delivered to a water body are basic to the…
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, K.; Wu, Z.; Guan, X.
2017-12-01
In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity increased the most in July. The results provide some basis for the field control and management of agricultural non-point source pollution.
40 CFR 467.35 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) 110 53 Subpart C Solution Heat Treatment Contact Cooling Water Pollutant or pollutant property PSES...) 69 35 Subpart C Press Heat Treatment Contact Cooling Water Pollutant or pollutant property PSES...
40 CFR 467.35 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) 110 53 Subpart C Solution Heat Treatment Contact Cooling Water Pollutant or pollutant property PSES...) 69 35 Subpart C Press Heat Treatment Contact Cooling Water Pollutant or pollutant property PSES...
40 CFR 467.35 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) 110 53 Subpart C Solution Heat Treatment Contact Cooling Water Pollutant or pollutant property PSES...) 69 35 Subpart C Press Heat Treatment Contact Cooling Water Pollutant or pollutant property PSES...
BACTERIA SOURCE TRACKING AND HOST SPECIES SPECIFICITY ANALYSIS
Point and non-point pollution sources of fecal pollution on a watershed adversely impact the quality of drinking source waters and recreational waters. States are required to develop total maximum daily loads (TMDLs) and devise best management practices (BMPs) to reduce the pollu...
USDA-ARS?s Scientific Manuscript database
Agriculture and animal feeding operations have been implicated as sources of water pollution along the Choptank River, an estuary and tributary of the Chesapeake Bay. This study examined a subwatershed within the Choptank River watershed for effects of land use on water quality. Water and sediment...
40 CFR 467.36 - Pretreatment standards for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) 20.37 20.37 Subpart C Solution Heat Treatment Contact Cooling Water Pollutant or pollutant property....29 13.29 Subpart C Press Heat Treatment Contact Cooling Water Pollutant or pollutant property PSNS...
40 CFR 467.36 - Pretreatment standards for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) 20.37 20.37 Subpart C Solution Heat Treatment Contact Cooling Water Pollutant or pollutant property....29 13.29 Subpart C Press Heat Treatment Contact Cooling Water Pollutant or pollutant property PSNS...
40 CFR 467.36 - Pretreatment standards for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) 20.37 20.37 Subpart C Solution Heat Treatment Contact Cooling Water Pollutant or pollutant property....29 13.29 Subpart C Press Heat Treatment Contact Cooling Water Pollutant or pollutant property PSNS...
Haji Gholizadeh, Mohammad; Melesse, Assefa M; Reddi, Lakshmi
2016-10-01
In this study, principal component analysis (PCA), factor analysis (FA), and the absolute principal component score-multiple linear regression (APCS-MLR) receptor modeling technique were used to assess the water quality and identify and quantify the potential pollution sources affecting the water quality of three major rivers of South Florida. For this purpose, 15years (2000-2014) dataset of 12 water quality variables covering 16 monitoring stations, and approximately 35,000 observations was used. The PCA/FA method identified five and four potential pollution sources in wet and dry seasons, respectively, and the effective mechanisms, rules and causes were explained. The APCS-MLR apportioned their contributions to each water quality variable. Results showed that the point source pollution discharges from anthropogenic factors due to the discharge of agriculture waste and domestic and industrial wastewater were the major sources of river water contamination. Also, the studied variables were categorized into three groups of nutrients (total kjeldahl nitrogen, total phosphorus, total phosphate, and ammonia-N), water murkiness conducive parameters (total suspended solids, turbidity, and chlorophyll-a), and salt ions (magnesium, chloride, and sodium), and average contributions of different potential pollution sources to these categories were considered separately. The data matrix was also subjected to PMF receptor model using the EPA PMF-5.0 program and the two-way model described was performed for the PMF analyses. Comparison of the obtained results of PMF and APCS-MLR models showed that there were some significant differences in estimated contribution for each potential pollution source, especially in the wet season. Eventually, it was concluded that the APCS-MLR receptor modeling approach appears to be more physically plausible for the current study. It is believed that the results of apportionment could be very useful to the local authorities for the control and management of pollution and better protection of important riverine water quality. Copyright © 2016 Elsevier B.V. All rights reserved.
To adequately control nonpoint source pollution of a water resource, water quality managers must focus on minimizing the impacts of individual nonpoint source pollutants. The strategic choice and placement of best management practices (BMPs) in the watershed can successfully redu...
Ma, Jinzhu; Ding, Zhenyu; Wei, Guoxiao; Zhao, Hua; Huang, Tianming
2009-02-01
Based on surveys and chemical analyses, we performed a case study of the surface water and groundwater quality in the Wuwei basin, in order to understand the sources of water pollution and the evolution of water quality in Shiyang river. Concentrations of major chemical elements in the surface water were related to the distance downstream from the source of the river, with surface water in the upstream reaches of good quality, but the river from Wuwei city to the Hongya reservoir was seriously polluted, with a synthetic pollution index of 25. Groundwater quality was generally good in the piedmont with dominant bicarbonate and calcium ions, but salinity was high and nitrate pollution occurs in the northern part of the basin. Mineralization of the groundwater has changed rapidly during the past 20 years. There are 23 wastewater outlets that discharge a total of 22.4 x 10(6)m(3)y(-1) into the river from Wuwei city, which, combined with a reduction of inflow water, were found to be the major causes of water pollution. Development of fisheries in the Hongya reservoir since 2000 has also contributed to the pollution. The consumption of water must be decreased until it reaches the sustainable level permitted by the available resources in the whole basin, and discharge of wastes must also be drastically reduced.
DNA BASED MOLECULAR METHODS FOR BACTERIAL SOURCE TRACKING IN WATERSHEDS
Point and non-point pollution sources of fecal pollution on a watershed adversely impact the quality of drinking source waters and recreational waters. States are required to develop total maximum daily loads (TMDLs) and devise best management practices (BMPs) to reduce the po...
Huang, Shuaijin; Qu, Xuexin
2017-01-01
The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area. PMID:29077006
NASA Astrophysics Data System (ADS)
Yaghi, Y.; Salim, H.
2017-09-01
Recently the topic of the quality of surface water (rivers - lakes) and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP) and non-point Source pollution (NPSP). Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers) and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.
Ability to distinguish between human and animal fecal pollution is important for risk assessment and watershed management, particularly in bodies of water used as sources of drinking water or for recreation. PCR-based methods were used to determine the source of fecal pollution ...
A Methodology for the Characterization and Management of Nonpoint Source Water Pollution
1992-09-01
Nonpoint Source water pollution management tool. However, the stormwater runoff sampling program conducted at the Air Force Academy for validation proved...17 Nationwide Urban Runoff Program (NUEP) . 19 Urban Runoff Pollutant Characteristics . 20 Annual Urban Runoff Loads . . . . . . . 22...55 Sampling Plan . . . . . . . . . . . . . . . . 55 Samples for Baseline Data. ... . . .... 56 Samples for Runoff Data
An Integrated Risk Management Model for Source Water Protection Areas
Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien
2012-01-01
Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans. PMID:23202770
FECAL BACTERIA SOURCE TRACKING AND BACTEROIDES SPP. HOST SPECIES SPECIFICITY ANALYSIS
Point and non-point pollution sources of fecal pollution on a watershed adversely impact the quality of drinking source waters and recreational waters. States are required to develop total maximum daily loads (TMDLs) and devise best management practices (BMPs) to reduce the po...
[GIS and scenario analysis aid to water pollution control planning of river basin].
Wang, Shao-ping; Cheng, Sheng-tong; Jia, Hai-feng; Ou, Zhi-dan; Tan, Bin
2004-07-01
The forward and backward algorithms for watershed water pollution control planning were summarized in this paper as well as their advantages and shortages. The spatial databases of water environmental function region, pollution sources, monitoring sections and sewer outlets were built with ARCGIS8.1 as the platform in the case study of Ganjiang valley, Jiangxi province. Based on the principles of the forward algorithm, four scenarios were designed for the watershed pollution control. Under these scenarios, ten sets of planning schemes were generated to implement cascade pollution source control. The investment costs of sewage treatment for these schemes were estimated by means of a series of cost-effective functions; with pollution source prediction, the water quality was modeled with CSTR model for each planning scheme. The modeled results of different planning schemes were visualized through GIS to aid decision-making. With the results of investment cost and water quality attainment as decision-making accords and based on the analysis of the economic endurable capacity for water pollution control in Ganjiang river basin, two optimized schemes were proposed. The research shows that GIS technology and scenario analysis can provide a good guidance to the synthesis, integrity and sustainability aspects for river basin water quality planning.
Water Conservation and Nonpoint Source Pollution.
ERIC Educational Resources Information Center
Farrell-Poe, Kitt
This book contains science activities that are designed to make learning and demonstrating nonpoint source pollution concepts exciting and fun. These activities can either be used alone or with an existing water resources education curricula. Activities include: Water Tasting, Acting Out the Hydrologic Cycle, Concentration of Chemical Pollutants…
[Survey on the contamination of microcystin-LR in water supply of Shanghai city].
Wu, He-yan; Zheng, Li-xing; Su, Jin; Shi, Wei
2005-03-01
To study the pollution level of microcystin-LR in water supply of Shanghai city and the removal efficacy for microcystin-LR through routine water treatment technique. High performance liquid chromatogram (HPLC) was applied to determine the concentration of microcystin-LR in source water, water samples after various water treatment procedures and tap water. The concentration of microcystin-LR varied with sampling seasons and sites and reached peak during summer and fall. The maximum of microcystin-LR was 2.38 microg/L in source water. Coagulation plus chlorine disinfection were found to be effective for the removal of microcystin-LR, while the remove rate through filtration was not significant. And it could also be detected in tap water as high as 1.27 microg/L. The source waters of Shanghai city were polluted by cyanobacteria toxins represented by microcystin-LR. The source water in suburb was more polluted. Routine water treatment techniques can not remove the toxins effectively.
An application of Landsat and computer technology to potential water pollution from soil erosion
NASA Technical Reports Server (NTRS)
Campbell, W. J.
1981-01-01
Agricultural activity has been recognized as the primary source of nonpoint source water pollution. Water quality planners have needed information that is timely, accurate, easily reproducible, and relatively inexpensive to utilize to implement 'Best Management Practices' for water quality. In this paper, a case study shows how the combination of satellite data, which can give accurate land-cover/land-use information, and a computerized geographic information system, can assess nonpoint pollution at a regional scale and be cost effective.
Su, Shiliang; Li, Dan; Zhang, Qi; Xiao, Rui; Huang, Fang; Wu, Jiaping
2011-02-01
The increasingly serious river water pollution in developing countries poses great threat to environmental health and human welfare. The assignment of river function to specific uses, known as zoning, is a useful tool to reveal variations of water environmental adaptability to human impact. Therefore, characterizing the temporal trend and identifying responsible pollution sources in different functional zones could greatly improve our knowledge about human impacts on the river water environment. The aim of this study is to obtain a deeper understanding of temporal trends and sources of water pollution in different functional zones with a case study of the Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites in four categories of functional zones during the period 1996-2004. An exploratory approach, which combines smoothing and non-parametric statistical tests, was applied to characterize trends of four significant parameters (permanganate index, ammonia nitrogen, total cadmium and fluoride) accounting for differences among different functional zones identified by discriminant analysis. Aided by GIS, yearly pollution index (PI) for each monitoring site was further mapped to compare the within-group variations in temporal dynamics for different functional zones. Rotated principal component analysis and receptor model (absolute principle component score-multiple linear regression, APCS-MLR) revealed that potential pollution sources and their corresponding contributions varied among the four functional zones. Variations of APCS values for each site of one functional zone as well as their annual average values highlighted the uncertainties associated with cross space-time effects in source apportionment. All these results reinforce the notion that the concept of zoning should be taken seriously in water pollution control. Being applicable to other rivers, the framework of management-oriented source apportionment is thus believed to have potentials to offer new insights into water management and advance the source apportionment framework as an operational basis for national and local governments. © 2010 Elsevier Ltd. All rights reserved.
State of the art molecular markers for fecal pollution source tracking in water.
Roslev, Peter; Bukh, Annette S
2011-03-01
Most environmental waters are susceptible to fecal contamination from animal and/or human pollution sources. To attenuate or eliminate such contamination, it is often critical that the pollution sources are rapidly and correctly identified. Fecal pollution source tracking (FST) is a promising research area that aims to identify the origin(s) of fecal pollution in water. This mini-review focuses on the potentials and limitations of library independent molecular markers that are exclusively or strongly associated with fecal pollution from humans and different animals. Fecal-source-associated molecular markers include nucleic acid sequences from prokaryotes and viruses associated with specific biological hosts, but also sequences such as mitochondrial DNA retrieved directly from humans and animals. However, some fecal-source-associated markers may not be absolutely specific for a given source type, and apparent specificity and frequency established in early studies are sometimes compromised by new studies suggesting variation in specificity and abundance on a regional, global and/or temporal scale. It is therefore recommended that FST studies are based on carefully selected arrays of markers, and that identification of human and animal contributions are based on a multi-marker toolkit with several markers for each source category. Furthermore, future FST studies should benefit from increased knowledge regarding sampling strategies and temporal and spatial variability of marker ratios. It will also be important to obtain a better understanding of marker persistence and the quantitative relationship between marker abundance and the relative contribution from individual fecal pollution source types. A combination of enhanced pathogen screening methods, and validated quantitative source tracking techniques could then contribute significantly to future management of environmental water quality including improved microbial risk assessment.
NASA Astrophysics Data System (ADS)
Liu, W.; Kuo, Y. M.
2016-12-01
The Middle Route of China's South-to-North Water Transfer (MSNW) and Yangtze-Han River Water Diversion (YHWD) Projects have been operated since 2014, which may deteriorate water quality in Han River. The 11 water sampling sites distributed from the middle and down streams of Han River watershed were monitored monthly between July 2014 and December 2015. Factor analysis and cluster analysis were applied to investigate the major pollution types and main variables influencing water quality in Han River. The factor analysis distinguishes three main pollution types (agricultural nonpoint source, organic, and phosphorus point source pollution) affecting water quality of Han River. Cluster analysis classified all sampling sites into four groups and determined their pollution source for both Dry and Wet seasons. The sites located at central city receive point source pollution in both seasons. The water quality in downstream Han River (excluding central city sites) was influenced by nonpoint source pollution from Jianghan Plain. Variations of water qualities are associated with hydrological conditions varied from operations of engineering projects and seasonal variability especially in Dry season. Good water quality as Class III mainly occurred when flow rate is greater than 800 cms in Dry season. The low average flow rate below 583 cms will degrade water quality as Class V at almost all sites. Elevating the flow rate discharged from MSNW and YHWD Projects to Han River can avoid degrading water quality especially in low flow conditions and may decrease the probability of algal bloom occurrence in Han River. Increasing the flow rate from 400 cms to 700 cms in main Han River can obviously improve the water quality of Han River. The investigation of relationships between water quality and flow rate in both projects can provide management strategies of water quality for various flow conditions.
40 CFR 420.95 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Acid Pickling... for existing sources. (a) Sulfuric acid (spent acid solutions and rinse waters)—(1) Rod, wire, and... pickling (spent acid solutions and rinse waters)—(1) Rod, wire, and coil. Subpart I Pollutant or pollutant...
40 CFR 463.14 - New source performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... contact cooling and heating water processes at a new source times the following pollutant concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1 Within the range of 6.0 to...
Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between...
Bonkosky, M; Hernández-Delgado, E A; Sandoz, B; Robledo, I E; Norat-Ramírez, J; Mattei, H
2009-01-01
Human fecal contamination of coral reefs is a major cause of concern. Conventional methods used to monitor microbial water quality cannot be used to discriminate between different fecal pollution sources. Fecal coliforms, enterococci, and human-specific Bacteroides (HF183, HF134), general Bacteroides-Prevotella (GB32), and Clostridium coccoides group (CP) 16S rDNA PCR assays were used to test for the presence of non-point source fecal contamination across the southwestern Puerto Rico shelf. Inshore waters were highly turbid, consistently receiving fecal pollution from variable sources, and showing the highest frequency of positive molecular marker signals. Signals were also detected at offshore waters in compliance with existing microbiological quality regulations. Phylogenetic analysis showed that most isolates were of human fecal origin. The geographic extent of non-point source fecal pollution was large and impacted extensive coral reef systems. This could have deleterious long-term impacts on public health, local fisheries and in tourism potential if not adequately addressed.
Todorovic, Zorica; Breton, Neil P
2014-01-01
Sustainable drainage systems (SUDS) offer many benefits that traditional solutions do not. Traditional approaches are unable to offer a solution to problems of flood management and water quality. Holistic consideration of the wide range of benefits from SUDS can result in advantages such as improved flood resilience and water quality enhancement through consideration of diffuse pollution sources. Using a geographical information system (GIS) approach, diffuse pollutant sources and opportunities for SUDS are easily identified. Consideration of potential SUDS locations results in source, site and regional controls, leading to improved water quality (to meet Water Framework Directive targets). The paper will discuss two different applications of the tool, the first of which is where the pollutant of interest is known. In this case the outputs of the tool highlight and isolate the areas contributing the pollutants and suggest the adequate SUDS measures to meet the required criteria. The second application is where the tool identifies likely pollutants at a receiving location, and SUDS measures are proposed to reduce pollution with assessed efficiencies.
Photocatalytic Oxidation of Oil Contaminated Water Using TiO2/UV
NASA Astrophysics Data System (ADS)
Vargas Solla, Monica; Romero Rojas, Jairo
2017-04-01
Currently, oil is one of the most used energy sources all around the world, for example to make motor engines work. That prevailing usage of oil is the reason why water sources are under serious pollution risks with compounds that are hard to remove, such as hydrocarbons. There are a few water treatment processes known as Advanced Oxidation Processes, which search for a way to treat polluted water with toxic refractory compounds, to make its reuse more feasible and to avoid or at least appease the injurious effects of pollution over ecosystems. A heterogeneous photocatalysis water treatment technology, sorted as an Advanced Oxidation Process, which is intended to treat refractory compound polluted water by the use of TiO2 and UV light, is presented in this investigation. The evidence about its efficiency in hydrocarbon removal from used motor oil polluted water, since it is an extremely important pollutant due to its complexity, toxicity and recalcitrant characteristics, is also presented through COD, Oil and Grease and Hydrocarbons analysis.
Treatability Aspects of Urban Stormwater Stressors
Eleven years into the 21st century, pollution from diffuse sources (pollution from contaminants picked up and carried into surface waters by stormwater runoff) remains the nation's largest source of water quality problems. Scientists and engineers still seek solutions that will ...
Peng, Jianfeng; Song, Yonghui; Yuan, Peng; Xiao, Shuhu; Han, Lu
2013-07-01
The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgent demand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extent depending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of the whole accident process, a novel and expandable identification method for risk sources causing water pollution accidents is presented. The newly developed approach, by analyzing and stimulating the whole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses, were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China, was selected to test the potential of the identification method. The results showed that there were four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plant would lead to the most serious impact on the surrounding water environment. This potential accident would severely damage the ecosystem up to 3.8 km downstream of Yangtze River, and lead to pollution over a distance stretching to 73.7 km downstream. The proposed method is easily extended to the nationwide identification of potential risk sources.
Haijoubi, El Houcine; Benyahya, Fatiha; Bendahou, Abdrezzak; Essadqui, Faima Zahra; Behhari, Mohammed El; El Mamoune, Ahmed Fouad; Ghailani, Naima Nourouti; Mechita, Mohcine Bennani; Barakat, Amina
2017-01-01
Water is used predominantly in food manufacturing process. Northern morocco agro-food industries use different sources of water, but public water and wells water are the main sources of water used. This water can be the main source of possible food contaminations and alterations. This study aims is to assess the bacteriological quality of water used in the agro-food industries in the Northern region of Morocco, to identify the different types of germs responsible for the pollution of these waters and to establish the main causes of this pollution. Water samples taken from taps or wells were analyzed to detect pollution indicator germs (total coliform (TC), fecal coliform (FC), intestinal enterococci (E), revivable microorganisms (RM), sulphite-reducing anaerobes) and pathogens (Salmonella, Staphylococci, Pseudomonas aeruginosa). The enumeration of the bacteria was performed by filtration technique and incorporation obtained through supercooled solid state. The results showed that public-supply waters were of satisfactory bacteriological quality while 40% of the wells water was non-compliant with water quality standards due to the presence of TC, FC, E and RM pollution indicators. In contrast, pathogens, particularly Salmonellae, were absent in all the wells water analyzed. Well water pollution was generally due to failure to meet hygienic requirements for water pumping. Bacteriological quality of these wells water could be improved by adequate protection.
Effluent trading in river systems through stochastic decision-making process: a case study.
Zolfagharipoor, Mohammad Amin; Ahmadi, Azadeh
2017-09-01
The objective of this paper is to provide an efficient framework for effluent trading in river systems. The proposed framework consists of two pessimistic and optimistic decision-making models to increase the executability of river water quality trading programs. The models used for this purpose are (1) stochastic fallback bargaining (SFB) to reach an agreement among wastewater dischargers and (2) stochastic multi-criteria decision-making (SMCDM) to determine the optimal treatment strategy. The Monte-Carlo simulation method is used to incorporate the uncertainty into analysis. This uncertainty arises from stochastic nature and the errors in the calculation of wastewater treatment costs. The results of river water quality simulation model are used as the inputs of models. The proposed models are used in a case study on the Zarjoub River in northern Iran to determine the best solution for the pollution load allocation. The best treatment alternatives selected by each model are imported, as the initial pollution discharge permits, into an optimization model developed for trading of pollution discharge permits among pollutant sources. The results show that the SFB-based water pollution trading approach reduces the costs by US$ 14,834 while providing a relative consensus among pollutant sources. Meanwhile, the SMCDM-based water pollution trading approach reduces the costs by US$ 218,852, but it is less acceptable by pollutant sources. Therefore, it appears that giving due attention to stability, or in other words acceptability of pollution trading programs for all pollutant sources, is an essential element of their success.
Li, Lei; Wang, Tie-yu; Wang, Xiaojun; Xiao, Rong-bo; Li, Qi-feng; Peng, Chi; Han, Cun-liang
2016-04-15
Based on comprehensive consideration of soil environmental quality, pollution status of river, environmental vulnerability and the stress of pollution sources, a technical method was established for classification of priority area of soil environmental protection around the river-style water sources. Shunde channel as an important drinking water sources of Foshan City, Guangdong province, was studied as a case, of which the classification evaluation system was set up. In detail, several evaluation factors were selected according to the local conditions of nature, society and economy, including the pollution degree of heavy metals in soil and sediment, soil characteristics, groundwater sensitivity, vegetation coverage, the type and location of pollution sources. Data information was mainly obtained by means of field survey, sampling analysis, and remote sensing interpretation. Afterwards, Analytical Hierarchy Process (AHP) was adopted to decide the weight of each factor. The basic spatial data layers were set up respectively and overlaid based on the weighted summation assessment model in Geographical Information System (GIS), resulting in a classification map of soil environmental protection level in priority area of Shunde channel. Accordingly, the area was classified to three levels named as polluted zone, risky zone and safe zone, which respectively accounted for 6.37%, 60.90% and 32.73% of the whole study area. Polluted zone and risky zone were mainly distributed in Lecong, Longjiang and Leliu towns, with pollutants mainly resulted from the long-term development of aquaculture and the industries containing furniture, plastic constructional materials and textile and clothing. In accordance with the main pollution sources of soil, targeted and differentiated strategies were put forward. The newly established evaluation method could be referenced for the protection and sustainable utilization of soil environment around the water sources.
Chen, Wenjun; He, Bin; Nover, Daniel; Duan, Weili; Luo, Chuan; Zhao, Kaiyan; Chen, Wen
2018-01-01
Excessive nitrogen (N) discharge from agriculture causes widespread problems in aquatic ecosystems. Knowledge of spatiotemporal patterns and source attribution of N pollution is critical for nutrient management programs but is poorly studied in headwaters with various small water bodies and mini-point pollution sources. Taking a typical small watershed in the low mountains of Southeastern China as an example, N pollution and source attribution were studied for a multipond system around a village using the Hydrological Simulation Program-Fortran (HSPF) model. The results exhibited distinctive spatio-seasonal variations with an overall seriousness rank for the three indicators: total nitrogen (TN) > nitrate/nitrite nitrogen (NO x - -N) > ammonia nitrogen (NH 3 -N), according to the Chinese Surface Water Quality Standard. TN pollution was severe for the entire watershed, while NO x - -N pollution was significant for ponds and ditches far from the village, and the NH 3 -N concentrations were acceptable except for the ponds near the village in summer. Although food and cash crop production accounted for the largest source of N loads, we discovered that mini-point pollution sources, including animal feeding operations, rural residential sewage, and waste, together contributed as high as 47% of the TN and NH 3 -N loads in ponds and ditches. So, apart from eco-fertilizer programs and concentrated animal feeding operations, the importance of environmental awareness building for resource management is highlighted for small farmers in headwater agricultural watersheds. As a first attempt to incorporate multipond systems into the process-based modeling of nonpoint source (NPS) pollution, this work can inform other hydro-environmental studies on scattered and small water bodies. The results are also useful to water quality improvement for entire river basins.
Zhang, Bao-Lei; Cui, Bo-Hao; Zhang, Shu-Min; Wu, Quan-Yuan; Yao, Lei
2018-05-03
Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.
Bhuiyan, Mohammad A H; Islam, M A; Dampare, Samuel B; Parvez, Lutfar; Suzuki, Shigeyuki
2010-07-15
An integrated approach of pollution evaluation indices, principal component analysis (PCA) and cluster analysis (CA) was employed to evaluate the intensity and sources of pollution in irrigation and drinking water systems of northwestern Bangladesh. Temperature, BOD, chemical oxygen demand (COD), Mn, Fe, Co, Ni, Cu and Pb levels in most of the water samples exceed the Bangladesh and international standards. The heavy metal pollution index (HPI) and degree of contamination (C(d)) yield different results despite significant correlations between them. The heavy metal evaluation index (HEI) shows strong correlations with HPI and C(d), and gives a better assessment of pollution levels. Modifications to the existing HPI and C(d) schemes show comparable results with HEI, and indicate that about 55% of the mine drainage/irrigation waters and 50% of the groundwaters are moderately to highly contaminated. The CA, PCA and pollution indices suggest that the mine drainage water (DW) is contaminated by anthropogenic (mining operation and agrogenic) sources, and the proximal parts are more contaminated than the distal part. The groundwater system in the vicinity of the coal mine site is also heavily polluted by anthropogenic sources. The pollution status of irrigation and drinking water systems in the study area are of great environmental and health concerns. 2010 Elsevier B.V. All rights reserved.
Modeling the contribution of point sources and non-point sources to Thachin River water pollution.
Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth
2009-08-15
Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.
7 CFR 1781.11 - Other considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... department because the water is being polluted from an upstream or other source. (g) Environmental.... Facilities will be designed, installed and operated to prevent pollution of water in excess of established standards. Effluent disposal will conform with appropriate State and Federal Water Pollution Control...
Bloodworth, J W; Holman, I P; Burgess, P J; Gillman, S; Frogbrook, Z; Brown, P
2015-09-15
In recent years water companies have started to adopt catchment management to reduce diffuse pollution in drinking water supply areas. The heterogeneity of catchments and the range of pollutants that must be removed to meet the EU Drinking Water Directive (98/83/EC) limits make it difficult to prioritise areas of a catchment for intervention. Thus conceptual frameworks are required that can disaggregate the components of pollutant risk and help water companies make decisions about where to target interventions in their catchments to maximum effect. This paper demonstrates the concept of generalising pollutants in the same framework by reviewing key pollutant processes within a source-mobilisation-delivery context. From this, criteria are developed (with input from water industry professionals involved in catchment management) which highlights the need for a new water industry specific conceptual framework. The new CaRPoW (Catchment Risk to Potable Water) framework uses the Source-Mobilisation-Delivery concept as modular components of risk that work at two scales, source and mobilisation at the field scale and delivery at the catchment scale. Disaggregating pollutant processes permits the main components of risk to be ascertained so that appropriate interventions can be selected. The generic structure also allows for the outputs from different pollutants to be compared so that potential multiple benefits can be identified. CaRPow provides a transferable framework that can be used by water companies to cost-effectively target interventions under current conditions or under scenarios of land use or climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Shou-ping; Xin, Xiao-kang
2017-07-01
Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.
Treatability Aspects of Urban Stormwater Stressors - journal
Eleven years into the 21st century, pollution from diffuse sources (pollution from contaminants picked up and carried into surface waters by stormwater runoff) remains the nation's largest source of water quality problems. Scientists and engineers still seek solutions that will a...
Treatability Aspects of Urban Stormwater Stressors - paper
Eleven years into the 21st century, pollution from diffuse sources (pollution from contaminants picked up and carried into surface waters by stormwater runoff) remains the nation's largest source of water quality problems. Scientists and engineers still seek solutions that will a...
Implications of salinity pollution hotspots on agricultural production
NASA Astrophysics Data System (ADS)
Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph
2016-04-01
Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally, large metropolitan regions are initially loading hotspots and pollution, too, and prevention becomes important as point sources are dependent on sewer connection rates and treatment levels. In conclusion, this study provides a detailed picture of the spatial and temporal distribution of salinity pollution and identifies hotspot areas as well as the dominant sources. Furthermore, impacts of water quality degradation on agricultural production and food security are quantified, which aim for a better understanding of the risks for food security caused by water quality impairment.
Combined air and water pollution control system
NASA Technical Reports Server (NTRS)
Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)
1990-01-01
A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.
Wu, Yonghong; Liu, Junzhuo; Shen, Renfang; Fu, Bojie
2017-12-31
Nonpoint source (NPS) pollution produced by human activities in rural areas has induced excessive nutrient input into surface waters and the decline of water quality. The essence of NPS pollution is the transport of nutrients between soil and water. Traditional NPS pollution control strategies, however, are mainly based on the solid and liquid phases, with little focus on the bio-phase between water and soil. The pollutants produced from NPS can be regarded as a resource if recycled or reused in an appropriate way in the agricultural ecosystem. This mini review proposes novel strategies for NPS pollution control based on three phases (liquid, solid and bio-phase) and highlights the regulating services of an agricultural ecosystem by optimizing land use/cover types. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Lifei; Dong, Liang; Ren, Lijun; Shi, Shuangxin; Zhou, Li; Zhang, Ting; Huang, Yeru
2012-01-01
The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated. Fourteen surface water samples were collected in June 2010. Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry. Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L, respectively. Fluoranthene, naphthalene, pyrene, phenanthrene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate were the most abundant compounds in the samples. The water samples were moderately polluted with benzo[a]pyrene according to China's environmental quality standard for surface water. The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake, Wuxi City and the western section of Yangchenghu Lake. Potential sources of pollution at S7 were petroleum combustion and the plastics industry, and at Yangchenghu Lake were petroleum combustion and domestic waste. Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines. There were no obvious sources of pollution for the other water samples. These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.
Water quality modeling using geographic information system (GIS) data
NASA Technical Reports Server (NTRS)
Engel, Bernard A
1992-01-01
Protection of the environment and natural resources at the Kennedy Space Center (KSC) is of great concern. The potential for surface and ground water quality problems resulting from non-point sources of pollution was examined using models. Since spatial variation of parameters required was important, geographic information systems (GIS) and their data were used. The potential for groundwater contamination was examined using the SEEPAGE (System for Early Evaluation of the Pollution Potential of Agricultural Groundwater Environments) model. A watershed near the VAB was selected to examine potential for surface water pollution and erosion using the AGNPS (Agricultural Non-Point Source Pollution) model.
Yao, Hong; Li, Weixin; Qian, Xin
2015-01-01
Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution. PMID:26308032
Yao, Hong; Li, Weixin; Qian, Xin
2015-08-21
Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.
NASA Astrophysics Data System (ADS)
Destouni, G.
2008-12-01
Continental fresh water transports and loads excess nutrients and pollutants from various land surface sources, through the landscape, into downstream inland and coastal water environments. Our ability to understand, predict and control the eutrophication and the pollution pressures on inland, coastal and marine water ecosystems relies on our ability to quantify these mass flows. This paper synthesizes a series of hydro- biogeochemical studies of nutrient and pollutant sources, transport-transformations and mass flows in catchment areas across a range of scales, from continental, through regional and national, to individual drainage basin scales. Main findings on continental scales include correlations between country/catchment area, population and GDP and associated pollutant and nutrient loading, which differ significantly between world regions with different development levels. On regional scales, essential systematic near-coastal gaps are identified in the national monitoring of nutrient and pollutant loads from land to the sea. Combination of the unmonitored near-coastal area characteristics with the relevant regional nutrient and pollutant load correlations with these characteristics shows that the unmonitored nutrient and pollutant mass loads to the sea may often be as large as, or greater than the monitored river loads. Process studies on individual basin- scales show long-term nutrient and pollutant memories in the soil-groundwater systems of the basins, which may continue to uphold large mass loading to inland and coastal waters long time after mitigation of the sources. Linked hydro-biogeochemical-economic model studies finally demonstrate significant comparative advantages of policies that demand explicit quantitative account of the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model limitations, instead of the now common neglect or subjective implicit handling of such uncertainties in strategies and practices for combating water pollution and eutrophication.
Qu, Jianhua; Meng, Xianlin; Hu, Qi; You, Hong
2016-02-01
Sudden water source pollution resulting from hazardous materials has gradually become a major threat to the safety of the urban water supply. Over the past years, various treatment techniques have been proposed for the removal of the pollutants to minimize the threat of such pollutions. Given the diversity of techniques available, the current challenge is how to scientifically select the most desirable alternative for different threat degrees. Therefore, a novel two-stage evaluation system was developed based on a circulation-correction improved Group-G1 method to determine the optimal emergency treatment technology scheme, considering the areas of contaminant elimination in both drinking water sources and water treatment plants. In stage 1, the threat degree caused by the pollution was predicted using a threat evaluation index system and was subdivided into four levels. Then, a technique evaluation index system containing four sets of criteria weights was constructed in stage 2 to obtain the optimum treatment schemes corresponding to the different threat levels. The applicability of the established evaluation system was tested by a practical cadmium-contaminated accident that occurred in 2012. The results show this system capable of facilitating scientific analysis in the evaluation and selection of emergency treatment technologies for drinking water source security.
Water pollution in Pakistan and its impact on public health--a review.
Azizullah, Azizullah; Khattak, Muhammad Nasir Khan; Richter, Peter; Häder, Donat-Peter
2011-02-01
Water pollution is one of the major threats to public health in Pakistan. Drinking water quality is poorly managed and monitored. Pakistan ranks at number 80 among 122 nations regarding drinking water quality. Drinking water sources, both surface and groundwater are contaminated with coliforms, toxic metals and pesticides throughout the country. Various drinking water quality parameters set by WHO are frequently violated. Human activities like improper disposal of municipal and industrial effluents and indiscriminate applications of agrochemicals in agriculture are the main factors contributing to the deterioration of water quality. Microbial and chemical pollutants are the main factors responsible exclusively or in combination for various public health problems. This review discusses a detailed layout of drinking water quality in Pakistan with special emphasis on major pollutants, sources of pollution and the consequent health problems. The data presented in this review are extracted from various studies published in national and international journals. Also reports released by the government and non-governmental organizations are included. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fujioka, R S
2001-01-01
The US Environmental Protection Agency (USEPA) and the World Health Organization (WHO) have established recreational water quality standards limiting the concentrations of faecal indicator bacteria (faecal coliform, E. coli, enterococci) to ensure that these waters are safe for swimming. In the application of these hygienic water quality standards, it is assumed that there are no significant environmental sources of these faecal indicator bacteria which are unrelated to direct faecal contamination. However, we previously reported that these faecal indicator bacteria are able to grow in the soil environment of humid tropical island environments such as Hawaii and Guam and are transported at high concentrations into streams and storm drains by rain. Thus, streams and storm drains in Hawaii contain consistently high concentrations of faecal indicator bacteria which routinely exceed the EPA and WHO recreational water quality standards. Since, streams and storm drains eventually flow out to coastal marine waters, we hypothesize that all the coastal beaches which receive run-off from streams and storm drains will contain elevated concentrations of faecal indicator bacteria. To test this hypothesis, we monitored the coastal waters at four beaches known to receive water from stream or storm drains for salinity, turbidity, and used the two faecal indicator bacteria (E. coli, enterococci) to establish recreational water quality standards. To determine if these coastal waters are contaminated with non-point source pollution (streams) or with point source pollution (sewage effluent), these same water samples were also assayed for spore-forming bacteria of faecal origin (Cl. perfringens) and of soil origin (Bacillus species). Using this monitoring strategy it was possible to determine when coastal marine waters were contaminated with non-point source pollution and when coastal waters were contaminated with point source pollution. The results of this study are most likely applicable to all countries in the warm and humid region of the world.
NASA Astrophysics Data System (ADS)
Yang, X.; Luo, X.; Zheng, Z.
2012-04-01
It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to be reversed. At least two factors contribute to the dichotomy between huge investment and limited results. First, the majority of the efforts have been limited to engineering approaches to water pollution control, ignoring the important roles of non-engineering approaches and stakeholder participation. Second, the complex hydrological regime of the basin may aggravate the impacts of various pollutant sources. Using the Yincungang canal, one major tributary to the Lake Tai, as an example, we discuss our work on both hydrological and socio-economic factors affecting the water quality of the canal, as well as the grand challenges of coupling hydrological systems and socio-economic systems in the region. Keywords non-point source pollution, rural sewage, agricultural pollution, spatio-temporal pattern, stakeholder participation
NASA Astrophysics Data System (ADS)
Desmet, Nele; Seuntjens, Piet
2013-04-01
Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.
Wang, Quan; Wu, Xianhua; Zhao, Bin; Qin, Jie; Peng, Tingchun
2015-01-01
Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI), Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season). Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites) and 2 clusters for the dry season (highly polluted and less polluted sites) based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium) is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages.
Wang, Quan; Wu, Xianhua; Zhao, Bin; Qin, Jie; Peng, Tingchun
2015-01-01
Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI), Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season). Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites) and 2 clusters for the dry season (highly polluted and less polluted sites) based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium) is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages. PMID:25837673
Occurrence of Surface Water Contaminations: An Overview
NASA Astrophysics Data System (ADS)
Shahabudin, M. M.; Musa, S.
2018-04-01
Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.
A review on the sources and spatial-temporal distributions of Pb in Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Zhang, Jie; Wang, Ming; Zhu, Sixi; Wu, Yunjie
2017-12-01
This paper provided a review on the source, spatial-distribution, temporal variations of Pb in Jiaozhou Bay based on investigation of Pb in surface and waters in different seasons during 1979-1983. The source strengths of Pb sources in Jiaozhou Bay were showing increasing trends, and the pollution level of Pb in this bay was slight or moderate in the early stage of reform and opening-up. Pb contents in the marine bay were mainly determined by the strength and frequency of Pb inputs from human activities, and Pb could be moving from high content areas to low content areas in the ocean interior. Surface waters in the ocean was polluted by human activities, and bottom waters was polluted by means of vertical water’s effect. The process of spatial distribution of Pb in waters was including three steps, i.e., 1), Pb was transferring to surface waters in the bay, 2) Pb was transferring to surface waters, and 3) Pb was transferring to and accumulating in bottom waters.
Magner, J A; Brooks, K N
2008-03-01
Section 303(d) of the Clean Water Act requires States and Tribes to list waters not meeting water quality standards. A total maximum daily load must be prepared for waters identified as impaired with respect to water quality standards. Historically, the management of pollution in Minnesota has been focused on point-source regulation. Regulatory effort in Minnesota has improved water quality over the last three decades. Non-point source pollution has become the largest driver of conventional 303(d) listings in the 21st century. Conventional pollutants, i.e., organic, sediment and nutrient imbalances can be identified with poor land use management practices. However, the cause and effect relationship can be elusive because of natural watershed-system influences that vary with scale. Elucidation is complex because the current water quality standards in Minnesota were designed to work best with water quality permits to control point sources of pollution. This paper presents a sentinel watershed-systems approach (SWSA) to the monitoring and assessment of Minnesota waterbodies. SWSA integrates physical, chemical, and biological data over space and time using advanced technologies at selected small watersheds across Minnesota to potentially improve understanding of natural and anthropogenic watershed processes and the management of point and non-point sources of pollution. Long-term, state-of-the-art monitoring and assessment is needed to advance and improve water quality standards. Advanced water quality or ecologically-based standards that integrate physical, chemical, and biological numeric criteria offer the potential to better understand, manage, protect, and restore Minnesota's waterbodies.
The use of chemical and molecular microbial indicators for faecal source identification.
Gilpin, B; James, T; Nourozi, F; Saunders, D; Scholes, P; Savill, M
2003-01-01
Identifying the source of faecal pollution is important to enable appropriate management of faecal pollution of water. We are developing and evaluating a combination of these microbial and chemical indicators better able to identify the source of faecal pollution. These assays make use of a combination of direct PCR, culturing, and colony hybridisation to identify source specific species of Bifidobacterium, Rhodococcus and Bacteroides. In conjunction with assays for (a) fluorescent whitening agents and (b) faecal sterols and stanols, these indicators were able to identify human derived faecal pollution in river water containing inputs from septic tanks, municipal oxidation ponds, farmed animals and feral animals. Differentiating amongst the animal sources was more difficult and will require development of molecular assays for organisms specific to each animal group.
FIRST ORDER ESTIMATES OF ENERGY REQUIREMENTS FOR POLLUTION CONTROL
This report presents estimates of the energy demand attributable to environmental control of pollution from 'stationary point sources.' This class of pollution source includes powerplants, factories, refineries, municipal waste water treatment plants, etc., but excludes 'mobile s...
NASA Astrophysics Data System (ADS)
Chen, Libin; Yang, Zhifeng; Liu, Haifei
2017-12-01
Inter-basin water transfers containing a great deal of nitrogen are great threats to human health, biodiversity, and air and water quality in the recipient area. Danjiangkou Reservoir, the source reservoir for China's South-to-North Water Diversion Middle Route Project, suffers from total nitrogen pollution and threatens the water transfer to a number of metropolises including the capital, Beijing. To locate the main source of nitrogen pollution into the reservoir, especially near the Taocha canal head, where the intake of water transfer begins, we constructed a 3-D water quality model. We then used an inflow sensitivity analysis method to analyze the significance of inflows from each tributary that may contribute to the total nitrogen pollution and affect water quality. The results indicated that the Han River was the most significant river with a sensitivity index of 0.340, followed by the Dan River with a sensitivity index of 0.089, while the Guanshan River and the Lang River were not significant, with the sensitivity indices of 0.002 and 0.001, respectively. This result implies that the concentration and amount of nitrogen inflow outweighs the geographical position of the tributary for sources of total nitrogen pollution to the Taocha canal head of the Danjiangkou Reservoir.
Nutrient pollution of coastal rivers, bays, and seas
Howarth, Robert; Anderson, Donald; Cloern, James; Elfring, Chris; Hopkinson, Charles; Lapointe, Brian; Malone, Tom; Marcus, Nancy; McGlathery, Karen; Sharpley , Andrew; Walker, Dan
2000-01-01
Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States.
Waters Without Borders: Scarcity and the Future of State Interactions over Shared Water Resources
2010-04-01
urbanization, increasing per capita consumption (associated with globalization and economic development), pollution , and climate change will exacerbate...Standards of Living, and Pollution : Water is fundamental to ensuring an adequate food supply. Agricultural irrigation accounts for 70% of fresh water...Agricultural run-off is also a major source of pollution reducing the quality and availability of drinking water. Energy: Water is also needed for the
ERIC Educational Resources Information Center
Barker, James L.; And Others
This U.S. Environmental Protection Agency report presents estimates of the energy demand attributable to environmental control of pollution from stationary point sources. This class of pollution source includes powerplants, factories, refineries, municipal waste water treatment plants, etc., but excludes mobile sources such as trucks, and…
COMPARISON OF OZONE INDICATORS MONITORED AT CASTNET AND RURALLY - DESIGNATED SLAMS SITES
Many water-bodies within the United States are contaminated by non-point source (NPS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic 13romses. One such NPS pollutant is fe...
Ahmed, W; Stewart, J; Gardner, T; Powell, D; Brooks, P; Sullivan, D; Tindale, N
2007-08-01
Library-dependent (LD) (biochemical fingerprinting of Escherichia coli and enterococci) and library-independent (LI) (PCR detection of human-specific biomarkers) methods were used to detect human faecal pollution in three non-sewered catchments. In all, 550 E. coli isolates and 700 enterococci isolates were biochemically fingerprinted from 18 water samples and compared with metabolic fingerprint libraries of 4508 E. coli and 4833 enterococci isolates. E. coli fingerprints identified human unique biochemical phenotypes (BPTs) in nine out of 18 water samples; similarly, enterococci fingerprints identified human faecal pollution in 10 water samples. Seven samples were tested by PCR for the detection of biomarkers. Human-specific HF134 Bacteroides and enterococci surface protein (esp) biomarkers were detected in five samples. Four samples were also positive for HF183 Bacteroides biomarker. The combination of biomarkers detected human faecal pollution in six out of seven water samples. Of the seven samples analysed for both the indicators/markers, at least one indicator/marker was detected in every sample. Four of the seven PCR-positive samples were also positive for one of the human-specific E. coli or enterococci BPTs. The results indicated human faecal pollution in the studied sub-catchments after storm events. LD and LI methods used in this study complimented each other and provided additional information regarding the polluting sources when one method failed to detect human faecal pollution. Therefore, it is recommended that a combination of methods should be used to identify the source(s) of faecal pollution where possible.
Staley, C.; Sadowsky, M. J.; Gyawali, P.; Sidhu, J. P. S.; Palmer, A.; Beale, D. J.; Toze, S.
2015-01-01
In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. PMID:26231650
Effectiveness of barnyard best management practices in Wisconsin
Stuntebeck, Todd D.; Bannerman, Roger T.
1998-01-01
In 1978, the Wisconsin Legislature committed to protecting water quality by enacting the Nonpoint Source Water Pollution Abatement Program. Through this program, cost-share money is provided within priority watersheds to control sources of nonpoint pollution. Most of the cost-share dollars for rural watersheds have been used to implement barnyard Best Management Practices (BMPs) because barnyards are believed to be a major source of pollutants, most notably phosphorus. Reductions in phosphorus loads of as much as 95 percent have been predicted for the barnyard BMPs recommended for priority watersheds.
The most serious problem facing mankind on Pb pollution
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Miao, Zhenqing; Li, Haixia; Zhang, Xiaolong; Wang, Qi
2017-12-01
Pb pollution is one of the most critical environmental issues in the world. This paper analyzed the content, pollution level and pollution source of Pb in Jiaozhou Bay based on investigation data in surface waters in 1987. Results showed that Pb contents in surface waters in May, July and November 1987 were 1.95-7.96 μg L-1, 5.02-61.61 μg L-1 and 3.98-24.64 μg L-1, respectively, and the pollution levels were moderate, heavy and relative heavy, respectively. The major Pb sources in this bay were river flow and marine current, whose source strengths could be as high as 61.61 μg L-1and 24.64 μg L-1, respectively. The pollution level of Pb in Jiaozhou Bay was serious enough in 1987, and the pollution control and environmental remediation were necessary.
Grant, Stanley B; Sanders, Brett F
2010-12-01
Nearshore waters in bays, harbors, and estuaries are frequently contaminated with human pathogens and fecal indicator bacteria. Tracking down and mitigating this contamination is complicated by the many point and nonpoint sources of fecal pollution that can degrade water quality along the shore. From a survey of the published literature, we propose a conceptual and mathematical framework, the "beach boundary layer model", for understanding and quantifying the relative impact of beach-side and bay-side sources of fecal pollution on nearshore water quality. In the model, bacterial concentration in ankle depth water C(ankle) [bacteria L(-3)] depends on the flux m'' [bacteria L(-2) T(-1)] of fecal bacteria from beach-side sources (bather shedding, bird and dog feces, tidal washing of sediments, decaying vegetation, runoff from small drains, and shallow groundwater discharge), a cross-shore mass transfer velocity k [L T(-1)] that accounts for the physics of nearshore transport and mixing, and a background concentration C(bay) [bacteria L(-3)] attributable to bay-side sources of pollution that impact water quality over large regions (sewage outfalls, creeks and rivers): C(ankle) = m''/k + C(bay). We demonstrate the utility of the model for identifying risk factors and pollution sources likely to impact shoreline water quality, and evaluate the model's underlying assumptions using computational fluid dynamic simulations of flow, turbulence, and mass transport in a trapezoidal channel.
ERIC Educational Resources Information Center
Mariola, Matt J.
2012-01-01
Water quality trading (WQT) is a market arrangement in which a point-source water polluter pays farmers to implement conservation practices and claims the resulting benefits as credits toward meeting a pollution permit. Success rates of WQT programs nationwide are highly variable. Most of the literature on WQT is from an economic perspective…
40 CFR 471.44 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2013 CFR
2013-07-01
... chill casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any one...) Shot casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/off-kg (pounds per million off-pounds) of precious metals shot cast...
40 CFR 471.44 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... chill casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any one...) Shot casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/off-kg (pounds per million off-pounds) of precious metals shot cast...
40 CFR 471.44 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... chill casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any one...) Shot casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/off-kg (pounds per million off-pounds) of precious metals shot cast...
40 CFR 471.44 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... chill casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any one...) Shot casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/off-kg (pounds per million off-pounds) of precious metals shot cast...
40 CFR 471.44 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... chill casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any one...) Shot casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/off-kg (pounds per million off-pounds) of precious metals shot cast...
[A landscape ecological approach for urban non-point source pollution control].
Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing
2005-05-01
Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.
Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.
Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram
2017-08-19
Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.
Chau, N D G; Sebesvari, Z; Amelung, W; Renaud, F G
2015-06-01
Pollution of drinking water sources with agrochemicals is often a major threat to human and ecosystem health in some river deltas, where agricultural production must meet the requirements of national food security or export aspirations. This study was performed to survey the use of different drinking water sources and their pollution with pesticides in order to inform on potential exposure sources to pesticides in rural areas of the Mekong River delta, Vietnam. The field work comprised both household surveys and monitoring of 15 frequently used pesticide active ingredients in different water sources used for drinking (surface water, groundwater, water at public pumping stations, surface water chemically treated at household level, harvested rainwater, and bottled water). Our research also considered the surrounding land use systems as well as the cropping seasons. Improper pesticide storage and waste disposal as well as inadequate personal protection during pesticide handling and application were widespread amongst the interviewed households, with little overall risk awareness for human and environmental health. The results show that despite the local differences in the amount and frequency of pesticides applied, pesticide pollution was ubiquitous. Isoprothiolane (max. concentration 8.49 μg L(-1)), fenobucarb (max. 2.32 μg L(-1)), and fipronil (max. 0.41 μg L(-1)) were detected in almost all analyzed water samples (98 % of all surface samples contained isoprothiolane, for instance). Other pesticides quantified comprised butachlor, pretilachlor, propiconazole, hexaconazole, difenoconazole, cypermethrin, fenoxapro-p-ethyl, tebuconazole, trifloxystrobin, azoxystrobin, quinalphos, and thiamethoxam. Among the studied water sources, concentrations were highest in canal waters. Pesticide concentrations varied with cropping season but did not diminish through the year. Even in harvested rainwater or purchased bottled water, up to 12 different pesticides were detected at concentrations exceeding the European Commission's parametric guideline values for individual or total pesticides in drinking water (0.1 and 0.5 μg L(-1); respectively). The highest total pesticide concentration quantified in bottled water samples was 1.38 μg L(-1). Overall, we failed to identify a clean water source in the Mekong Delta with respect to pesticide pollution. It is therefore urgent to understand further and address drinking water-related health risk issues in the region.
Evaluating barnyard Best Management Practices in Wisconsin using upstream-downstream monitoring
Stuntebeck, Todd D.
1995-01-01
The Nonpoint Source Water Pollution Abatement Program was created in 1978 by the Wisconsin Legislature. The goal of the program is to improve and protect the water quality of lakes, streams, wetlands, and ground water within selected priority watersheds by controlling sources of nonpoint pollution. For each selected watershed, the Wisconsin Department of Natural Resources drafts a management plan that guides the implementation of pollution-control strategies known as Best Management Practices (BMP's). This plan summarizes resource and land-use inventories, describes the results of pollution-source modeling, and suggests pollution reduction goals. The U.S. Geological Survey, through a cooperative effort with the Wisconsin Department of Natural Resources, is monitoring water-quality improvements that result from the implementation of BMP's. The data collected are then compared to the watershed plans to assess progress and determine whether goals are being realized. This fact sheet describes the data-collection efforts, preliminary results, and planned data-analysis techniques of monitoring projects for pre-BMP conditions at two barnyards, one each on Otter Creek and Halfway Prairie Creek.
The Impact of Urban Development on the Water Quality in the Las Vegas Watershed
NASA Astrophysics Data System (ADS)
Yu, A.; Simmons, C.; Acharya, K.
2009-12-01
Las Vegas, one of the fastest growing cities in the nation, must have its water strictly monitored for quality as well as degree of pollution. Samples at various sites were collected to analyze the current pollution status of our water bodies (in both residential and urban settings) in the Las Vegas watershed. These gathered samples (sediment and water) were collected and analyzed for measuring total phosphorus, total organic carbon, trace metal contents, i.e., selenium, arsenic, mercury and lead, as well as pathogens, i.e., E-coli and total coliform counts. The concentrations of various pollutions will be compared among different sites as well as natural local sites (due to the natural occurrence of a few trace metals and normal levels of other measurements) and analyzed for spatial distribution for source identification and for elucidating the cause and consequence. Preliminary analyses of the results indicate that nonpoint source pollutions (golf courses, construction sites, etc.) have larger impacts than point source pollutions such as wastewater treatment effluents. This study will help understand and evaluate the degradation of the water quality caused by the increase of human actions in recent years in Las Vegas.
Spatial and temporal variations of water quality in Cao-E River of eastern China.
Chen, Ding-jiang; Lu, Jun; Yuan, Shao-feng; Jin, Shu-quan; Shen, Ye-na
2006-01-01
Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed I, II, IV and V (0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed III. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed I and II) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed III, IV and V) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes.
Sensitivity Analysis for some Water Pollution Problem
NASA Astrophysics Data System (ADS)
Le Dimet, François-Xavier; Tran Thu, Ha; Hussaini, Yousuff
2014-05-01
Sensitivity Analysis for Some Water Pollution Problems Francois-Xavier Le Dimet1 & Tran Thu Ha2 & M. Yousuff Hussaini3 1Université de Grenoble, France, 2Vietnamese Academy of Sciences, 3 Florida State University Sensitivity analysis employs some response function and the variable with respect to which its sensitivity is evaluated. If the state of the system is retrieved through a variational data assimilation process, then the observation appears only in the Optimality System (OS). In many cases, observations have errors and it is important to estimate their impact. Therefore, sensitivity analysis has to be carried out on the OS, and in that sense sensitivity analysis is a second order property. The OS can be considered as a generalized model because it contains all the available information. This presentation proposes a method to carry out sensitivity analysis in general. The method is demonstrated with an application to water pollution problem. The model involves shallow waters equations and an equation for the pollutant concentration. These equations are discretized using a finite volume method. The response function depends on the pollutant source, and its sensitivity with respect to the source term of the pollutant is studied. Specifically, we consider: • Identification of unknown parameters, and • Identification of sources of pollution and sensitivity with respect to the sources. We also use a Singular Evolutive Interpolated Kalman Filter to study this problem. The presentation includes a comparison of the results from these two methods. .
Deep challenges for China's war on water pollution.
Han, Dongmei; Currell, Matthew J; Cao, Guoliang
2016-11-01
China's Central government has released an ambitious plan to tackle the nation's water pollution crisis. However, this is inhibited by a lack of data, particularly for groundwater. We compiled and analyzed water quality classification data from publicly available government sources, further revealing the scale and extent of the crisis. We also compiled nitrate data in shallow and deep groundwater from a range of literature sources, covering 52 of China's groundwater systems; the most comprehensive national-scale assessment yet. Nitrate pollution at levels exceeding the US EPA's maximum contaminant level (10 mg/L NO 3 N) occurs at the 90th percentile in 25 of 36 shallow aquifers and 10 out of 37 deep or karst aquifers. Isotopic compositions of groundwater nitrate (δ 15 N and δ 18 O NO3 values ranging from -14.9‰ to 35.5‰ and -8.1‰ to 51.0‰, respectively) indicate many nitrate sources including soil nitrogen, agricultural fertilizers, untreated wastewater and/or manure, and locally show evidence of de-nitrification. From these data, it is clear that contaminated groundwater is ubiquitous in deep aquifers as well as shallow groundwater (and surface water). Deep aquifers contain water recharged tens of thousands of years before present, long before widespread anthropogenic nitrate contamination. This groundwater has therefore likely been contaminated due to rapid bypass flow along wells or other conduits. Addressing the issue of well condition is urgently needed to stop further pollution of China's deep aquifers, which are some of China's most important drinking water sources. China's new 10-point Water Pollution Plan addresses previous shortcomings, however, control and remediation of deep groundwater pollution will take decades of sustained effort. Copyright © 2016. Published by Elsevier Ltd.
Study of Water Pollution Early Warning Framework Based on Internet of Things
NASA Astrophysics Data System (ADS)
Chengfang, H.; Xiao, X.; Dingtao, S.; Bo, C.; Xiongfei, W.
2016-06-01
In recent years, with the increasing world environmental pollution happening, sudden water pollution incident has become more and more frequently in China. It has posed a serious threat to water safety of the people living in the water source area. Conventional water pollution monitoring method is manual periodic testing, it maybe miss the best time to find that pollution incident. This paper proposes a water pollution warning framework to change this state. On the basis of the Internet of things, we uses automatic water quality monitoring technology to realize monitoring. We calculate the monitoring data with water pollution model to judge whether the water pollution incident is happen or not. Water pollution warning framework is divided into three layers: terminal as the sensing layer, it with the deployment of the automatic water quality pollution monitoring sensor. The middle layer is the transfer network layer, data information implementation is based on GPRS wireless network transmission. The upper one is the application layer. With these application systems, early warning information of water pollution will realize the high-speed transmission between grassroots units and superior units. The paper finally gives an example that applying this pollution warning framework to water quality monitoring of Beijing, China, it greatly improves the speed of the pollution warning responding of Beijing.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.
Information about the relationship between water and health is provided in this module. Topics considered include: (1) the various uses of water; (2) water demand of individuals in certain communities; (3) water sources; (4) water cycle; (5) pure water; (6) water pollution, focusing on pollution resulting from heat, chemicals, radioactive…
Agricultural runoff as a nonpoint source category of pollution. Resouces to learn more a bout conservation practices to reduce water quality impacts from storm water run off and ground water infiltration
Hong, Ye; Chunhong, Zhou; Xiaoxiong, Zeng
2009-11-01
Concentration and composition of polychlorinated biphenyls (PCBs) in the typical drinking water sources in Jiangsu Province were studied by scene investigation and physical and chemical analyses as well. Total amount of PCBs in some surface water and surface microlayers exceeded the standard (20 ng/l) in the "Environmental Quality Standard of Surface Water". There were less PCBs in suspended substances and bottom mud. It reflected that there was less PCB pollution in drinking water sources in Jiangsu Province for quite a long period. The main kind of PCBs in the typical drinking water sources was dichlorobiphenyl. Monochlorobiphenyl and trichlorobiphenyl ranked next to dichlorobiphenyl. In the study of PCB distribution in drinking water sources, it was found that the concentration of PCBs in surface microlayer was higher than that in deep water. The concentration of PCBs along the Yangtze River bank was more than that in the middle of Yangtze River. PCBs in the typical drinking water sources mostly came from by-products in industrial production.
[Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].
Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun
2013-04-01
The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.
Industrial water pollution, water environment treatment, and health risks in China.
Wang, Qing; Yang, Zhiming
2016-11-01
The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Naser, Ramzy; El Bakkali, Mohammed; Darwesh, Nabil; El Kharrim, Khadija; Belghyti, Driss
2018-05-01
In many parts of the world, groundwater sources are the single most important supply for the production of drinking water, particularly in areas with limited or polluted surface water sources. Fresh water has become a scarce commodity due to over exploitation and pollution of water. Many countries and international organizations, including Wolrd Health Organization, are seeking to promote people's access to safe drinking water. The situation in Yemen is no exception. Although we rely on groundwater significantly in our lives and our survival, we do not manage it in a way that ensures its sustainability and maintenance of pollution. The objective of this study is to determine the suitability of the groundwater in Al Burayhi and Hedran sub-basin (one of the sub-basins of the Upper Valley Rasyan) as a source of drinking water in the shade of the expected deterioration due to natural processes (water interaction with rocks, semi-dry climate) and human activities.
Potential sources of bacteriological pollution for two bays with marinas in Trinidad.
Bullock, Christine Ann; Moonesar, Indar
2005-05-01
Welcome Bay and Chaguaramas Bay in the northwest peninsula of Trinidad contain large marinas and smaller sections of bathing beaches. Bacteriological surveys were conducted at both bays to assess water quality and to determine potential sources of pollution. These surveys were conducted during the wet season of 1996 and the dry season of 1997. Eleven sample stations were established at Welcome Bay and 12 at Chaguaramas Bay. Freshwater samples were collected from rivers and drains within the survey area. Marine water samples were collected from marinas, bathing beaches and inshore and outer areas at both bays. Five water samples were collected from each sampling station during the wet season of 1996 and six during the dry season of 1997. The membrane filter technique was used to determine faecal coliform and Escherichia coli levels in all samples. There was a seasonal effect on water quality, with significantly higher faecal coliform levels in the wet season, when water quality was not in compliance with international standards. This represents a potential health risk in bathing areas. Water quality was better at the outer area of both bays. Water quality at the inner bay areas was most likely adversely affected by land-based sources of pollution identified in this study. These sources include three drains and two rivers, which discharged into the bays. Yachts were apparently not a source of sewage pollution: there was no significant relationship between yacht number and faecal coliform levels.
[Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].
Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun
2016-03-15
To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.
NASA Astrophysics Data System (ADS)
Zhang, Hongbo; Ao, Tianqi; Gusyev, Maksym; Ishidaira, Hiroshi; Magome, Jun; Takeuchi, Kuniyoshi
2018-06-01
Nitrogen and phosphorus concentrations in Chinese river catchments are contributed by agricultural non-point and industrial point sources causing deterioration of river water quality and degradation of ecosystem functioning for a long distance downstream. To evaluate these impacts, a distributed pollutant transport module was developed on the basis of BTOPMC (Block-Wise Use of TOPMODEL with Muskingum-Cunge Method), a grid-based distributed hydrological model, using the water flow routing process of BTOPMC as the carrier of pollutant transport due a direct runoff. The pollutant flux at each grid is simulated based on mass balance of pollutants within the grid and surface water transport of these pollutants occurs between grids in the direction of the water flow on daily time steps. The model was tested in the study area of the Lu county area situated in the Laixi River basin in the Sichuan province of southwest China. The simulated concentrations of nitrogen and phosphorus are compared with the available monthly data at several water quality stations. These results demonstrate a greater pollutant concentration in the beginning of high flow period indicating the main mechanism of pollution transport. From these preliminary results, we suggest that the distributed pollutant transport model can reflect the characteristics of the pollutant transport and reach the expected target.
Chen, Yanxi; Niu, Zhiguang; Zhang, Hongwei
2013-06-01
Landscape lakes in the city suffer high eutrophication risk because of their special characters and functions in the water circulation system. Using a landscape lake HMLA located in Tianjin City, North China, with a mixture of point source (PS) pollution and non-point source (NPS) pollution, we explored the methodology of Fluent and AQUATOX to simulate and predict the state of HMLA, and trophic index was used to assess the eutrophication state. Then, we use water compensation optimization and three scenarios to determine the optimal management methodology. Three scenarios include ecological restoration scenario, best management practices (BMPs) scenario, and a scenario combining both. Our results suggest that the maintenance of a healthy ecosystem with ecoremediation is necessary and the BMPs have a far-reaching effect on water reusing and NPS pollution control. This study has implications for eutrophication control and management under development for urbanization in China.
Luo, Liqiang; Chu, Binbin; Liu, Ying; Wang, Xiaofang; Xu, Tao; Bo, Ying
2014-01-01
Pollution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in vegetable fields was investigated near a Pb-Zn mine that has been exploited for over 50 years without a tailing reservoir. A total of 205 water, soil, and aerosol samples were taken and quantified by combined chemical, spectrometric, and mineral analytical methods. The pollution origins were identified by Pb isotopes and the pathways of transformation and transport of the elements and minerals was studied. The data showed that the vegetable fields were seriously polluted by As, Cd, and Pb. Some concentrations in the samples were beyond the regulatory levels and not suitable for agricultural activities. This study revealed that: (1) particulate matter is a major pollution source and an important carrier of mineral particles and pollutants; (2) the elements from the polluted water and soils were strongly correlated with each other; (3) Pb isotope ratios from the samples show that Pb minerals were the major pollution sources in the nearby vegetable fields, and the aerosols were the main carrier of mining pollution; (4) the alkaline, rich-carbonate, and wet conditions in this area promoted the weathering and transformation of galena into the secondary minerals, anglesite and cerussite, which are significant evidence of such processes; (5) the soil and the aerosols are a recycled secondary pollution source for each other when being re-suspended with wind.Highlights• Mining activities generated heavy metal pollution in fields around a Pb-Zn mine• The elements from water and soils are strongly correlated• Anglesite and cerussite are evidence of galena transformation into secondary minerals• Particulate matter is an important transport carrier of pollution.
EPA Office of Water (OW): Impaired Waters with TMDLs NHDPlus Indexed Dataset
The Total Maximum Daily Load (TMDL) Tracking System contains information on waters that are Not Supporting their designated uses. These waters are listed by the state as impaired under Section 303(d) of the Clean Water Act. The status of TMDLs are also tracked. TMDLs are pollution control measures that reduce the discharge of pollutants into impaired waters. A TMDL or Total Maximum Daily Load is a calculation of the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards, and an allocation of that amount to the pollutant's sources. What is a total maximum daily load (TMDL)? Water quality standards are set by States, Territories, and Tribes. They identify the uses for each waterbody, for example, drinking water supply, contact recreation (swimming), and aquatic life support (fishing), and the scientific criteria to support that use. A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and nonpoint sources. The calculation must include a margin of safety to ensure that the waterbody can be used for the purposes the state has designated. The calculation must also account for seasonal variation in water quality. The Clean Water Act, section 303, establishes the water quality standards and TMDL programs.
EVALUATION OF HOST SPECIFIC PCR-BASED METHODS FOR THE IDENTIFICATION OF FECAL POLLUTION
Microbial Source Tracking (MST) is an approach to determine the origin of fecal pollution impacting a body of water. MST is based on the assumption that, given the appropriate method and indicator, the source of microbial pollution can be identified. One of the key elements of...
NASA Astrophysics Data System (ADS)
Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Anac, Dilek; Düring, Rolf-Alexander
2014-05-01
The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel factories, but also areas of agriculture. Steel industry in Aliaga is causing metal pollution. Around Güzelhisar Basin and nearby, the dominant crop fields are cotton, maize, vegetables, olive trees and vineyards. Güzelhisar stream and dam water is used for irrigation of the agricultural land. Due to contamination from metal industry in Aliaga, organic farming is not allowed in this region. Industrial activities in the region present a threat on sustainable agriculture. The region is a multi-impacted area in terms of several pollutant sources affecting soil and water quality. The overall objective of the project is to trace back plant nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B), hazardous substances (i. e. persistent organic pollutants), radionuclides (40K, 232Th, 226Ra/238U), and metal contents (As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, and Zn) by examining the soils, agricultural crops and natural plants from Güzelhisar Basin and water and sediments from Güzelhisar stream and dam. Spatial distribution of pollution will be evaluated by regionalization methods. For this, an advanced analytical methodology will be applied which provides an understanding of sources and occurrence of the respective substances of concern. An innovative multi-tracer approach comprising organic and inorganic marker substances, will identify and quantitatively assess sources and their impact on water pollution and the pollutant pathways in this agricultural crop production system.
Reischer, G H; Haider, J M; Sommer, R; Stadler, H; Keiblinger, K M; Hornek, R; Zerobin, W; Mach, R L; Farnleitner, A H
2008-10-01
The impairment of water quality by faecal pollution is a global public health concern. Microbial source tracking methods help to identify faecal sources but the few recent quantitative microbial source tracking applications disregarded catchment hydrology and pollution dynamics. This quantitative microbial source tracking study, conducted in a large karstic spring catchment potentially influenced by humans and ruminant animals, was based on a tiered sampling approach: a 31-month water quality monitoring (Monitoring) covering seasonal hydrological dynamics and an investigation of flood events (Events) as periods of the strongest pollution. The detection of a ruminant-specific and a human-specific faecal Bacteroidetes marker by quantitative real-time PCR was complemented by standard microbiological and on-line hydrological parameters. Both quantitative microbial source tracking markers were detected in spring water during Monitoring and Events, with preponderance of the ruminant-specific marker. Applying multiparametric analysis of all data allowed linking the ruminant-specific marker to general faecal pollution indicators, especially during Events. Up to 80% of the variation of faecal indicator levels during Events could be explained by ruminant-specific marker levels proving the dominance of ruminant faecal sources in the catchment. Furthermore, soil was ruled out as a source of quantitative microbial source tracking markers. This study demonstrates the applicability of quantitative microbial source tracking methods and highlights the prerequisite of considering hydrological catchment dynamics in source tracking study design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-04-01
The bibliography contains citations concerning the contamination of ground waters and surface waters by Salmonella bacteria. Articles discuss the occurence, survival, origin, and control of these bacteria in water sources including rivers, reservoirs, swimming pools, wastewater, aquifers, and ground water. Citations also address the use of Salmonella populations as biological indicators of pollution in aquatic systems. (Contains a minimum of 102 citations and includes a subject term index and title list.)
Health impairments arising from drinking water polluted with domestic sewage and excreta in China.
Ling, B
2000-01-01
Raw water of poor quality still causes many drinking-water associated health problems all over China, largely because of poor sanitation, inadequate disposal of sewage and excreta. Eutrophication due to excess of total nitrogen and phosphorous in some sources for drinking-water has led to massive proliferation of cyanobacteria. The dominant species of cyanophyta can produce microcystins, a potent liver cancer promotor. As in previous studies, high incidence of liver cancer coincided with high microcystin concentration in the source water, especially in pond water. A frequent consequence of heavy pollution of source water is further the high incidence of infectious intestinal diseases, which are more than 10-100 times as frequent in China than in developed countries.
Ahmed, W; Staley, C; Sadowsky, M J; Gyawali, P; Sidhu, J P S; Palmer, A; Beale, D J; Toze, S
2015-10-01
In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Storm water runoff for the Y-12 Plant and selected parking lots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, E.T.
1996-01-01
A comparison of storm water runoff from the Y-12 Plant and selected employee vehicle parking lots to various industry data is provided in this document. This work is an outgrowth of and part of the continuing Non-Point Source Pollution Elimination Project that was initiated in the late 1980s. This project seeks to identify area pollution sources and remediate these areas through the Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act (RCRA/CERCLA) process as managed by the Environmental Restoration Organization staff. This work is also driven by the Clean Water Act Section 402(p) which, in part, deals withmore » establishing a National Pollutant Discharge Elimination System (NPDES) permit for storm water discharges. Storm water data from events occurring in 1988 through 1991 were analyzed in two reports: Feasibility Study for the Best Management Practices to Control Area Source Pollution Derived from Parking Lots at the DOE Y-12 Plant, September 1992, and Feasibility Study of Best Management Practices for Non-Point Source Pollution Control at the Oak Ridge Y-12 Plant, February 1993. These data consisted of analysis of outfalls discharging to upper East Fork Poplar Creek (EFPC) within the confines of the Y-12 Plant (see Appendixes D and E). These reports identified the major characteristics of concern as copper, iron, lead, manganese, mercury, nitrate (as nitrogen), zinc, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliform, and aluminum. Specific sources of these contaminants were not identifiable because flows upstream of outfalls were not sampled. In general, many of these contaminants were a concern in many outfalls. Therefore, separate sampling exercises were executed to assist in identifying (or eliminating) specific suspected sources as areas of concern.« less
Application of enteric viruses for fecal pollution source tracking in environmental waters
Microbial source tracking (MST) tools are used to identify sources of fecal pollution for accurately assessing public health risk and implementing best management practices (BMPs). This review focuses on the potential of enteric viruses for MST applications. Following host infect...
Water quality monitoring for nonpoint sources of pollution includes the important element of relating the physical, chemical, and biological characteristics of receiving waters to land use characteristics.
NutrientNet: An Internet-Based Approach to Teaching Market-Based Policy for Environmental Management
ERIC Educational Resources Information Center
Nguyen, To N.; Woodward, Richard T.
2009-01-01
NutrientNet is an Internet-based environment in which a class can simulate a market-based approach for improving water quality. In NutrientNet, each student receives a role as either a point source or a nonpoint source polluter, and then the participants are allowed to trade water quality credits to cost-effectively reduce pollution in a…
Water Pollution: Monitoring the Source.
ERIC Educational Resources Information Center
Wilkes, James W.
1980-01-01
Described is an advanced biology class project involving study of the effects of organic pollution on an aquatic ecosystem from an sewage treatment plant overflow to evaluate the chemical quality and biological activity of the river water. (DS)
Recruitment and Employment of the Water Pollution Control Specialist.
ERIC Educational Resources Information Center
Sherrard, J. H.; Sherrard, F. A.
1979-01-01
Presented are the basic principles of personnel recruitment and employment for the water pollution control field. Attention is given to determination of staffing requirements, effective planning, labor sources, affirmative action, and staffing policies. (CS)
Li, Tong; Chu, Chunli; Zhang, Yinan; Ju, Meiting; Wang, Yuqiu
2017-06-29
Eutrophication is a major problem in China. To combat this issue, the country needs to establish water quality targets, monitoring systems, and intelligent watershed management. This study explores a new watershed management method. Water quality is first assessed using a single factor index method. Then, changes in total nitrogen/total phosphorus (TN/TP) are analyzed to determine the limiting factor. Next, the study compares the eutrophication status of two water function districts, using a comprehensive nutritional state index method and geographic information system (GIS) visualization. Finally, nutrient sources are qualitatively analyzed. Two functional water areas in Tianjin, China were selected and analyzed: Qilihai National Wetland Nature Reserve and Yuqiao Reservoir. The reservoir is a drinking water source. Results indicate that total nitrogen (TN) and total phosphorus (TP) pollution are the main factors driving eutrophication in the Qilihai Wetland and Yuqiao Reservoir. Phosphorus was the limiting factor in the Yuqiao Reservoir; nitrogen was the limiting factor in the Qilihai Wetland. Pollution in Qilihai Wetland is more serious than in Yuqiao Reservoir. The study found that external sources are the main source of pollution. These two functional water areas are vital for Tianjin; as such, the study proposes targeted management measures.
40 CFR 463.24 - New source performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... usage flow rate for cleaning processes at a new source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) BOD5 49 22 Oil and Grease 71 17 TSS 117 36 pH...
40 CFR 463.24 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... usage flow rate for cleaning processes at a new source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) BOD5 49 22 Oil and Grease 71 17 TSS 117 36 pH...
Huang, Yu; Sun, Jie; Li, Aimin; Xie, Xianchuan
2018-05-01
In this study, an integrated approach named the '333' strategy was applied to pollution control in the Jialu River, in northern China, which is heavily burdened with anthropogenic pollution. Due to a deficiency of the natural ecological inflow, the Jialu River receives predominantly industrial and municipal effluent. The '333' strategy is composed of three steps of pollution control including industrial point-source pollution control, advanced treatment of municipal wastewater, and ecological restoration; three increased stringency emission standards; and three stages of reclamation. Phase 1 of the '333' strategy focuses on industrial point-source pollution control; phase 2 aims to harness municipal wastewater and minimize sewage effluents using novel techniques for advanced water purification; phase 3 of the '333' strategy focuses on the further purification of effluents flowing into Jialu River with the employment of an engineering-based ecological restoration project. The application of the '333' strategy resulted in the development of novel techniques for water purification including modified magnetic resins (NDMP resin), a two-stage internal circulation anaerobic reactor (IC reactor) and an ecological restoration system. The results indicate that water quality in the river was significantly improved, with increased concentrations of dissolved oxygen (DO), as well as reduction of COD by 42.8% and NH 3 -N by 61.4%. In addition, it was observed that the total population of phytoplankton in treated river water notably increased from only one prior to restoration to 8 following restoration. This system also provides a tool for pollution control of other similar industrial and anthropogenic source polluted rivers.
SOURCE ASSESSMENT: PRIORITIZATION OF STATIONARY WATER POLLUTION SOURCES
The report gives priority lists to aid in selecting specific sources of water effluents for detailed assessment. It describes the general water prioritization model, explains its implementation, and gives a detailed example of its use. It describes hazard factors that were develo...
Detection of human and animal sources of pollution by microbial and chemical methods
USDA-ARS?s Scientific Manuscript database
A multi-indicator approach comprising Enterococcus, bacterial source tracking (BST), and sterol analysis was tested for pollution source identification. Fecal contamination was detected in 100% of surface water sites tested. Enterococcus faecium was the dominant species in aged litter samples from p...
NASA Astrophysics Data System (ADS)
Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.
2015-12-01
The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land use history.
Chen, Li-ding; Peng, Hong-jia; Fu, Bo-Jie; Qiu, Jun; Zhang, Shu-rong
2005-01-01
Surface waters can be contaminated by human activities in two ways: (1) by point sources, such as sewage treatment discharge and storm-water runoff; and (2) by non-point sources, such as runoff from urban and agricultural areas. With point-source pollution effectively controlled, non-point source pollution has become the most important environmental concern in the world. The formation of non-point source pollution is related to both the sources such as soil nutrient, the amount of fertilizer and pesticide applied, the amount of refuse, and the spatial complex combination of land uses within a heterogeneous landscape. Land-use change, dominated by human activities, has a significant impact on water resources and quality. In this study, fifteen surface water monitoring points in the Yuqiao Reservoir Basin, Zunhua, Hebei Province, northern China, were chosen to study the seasonal variation of nitrogen concentration in the surface water. Water samples were collected in low-flow period (June), high-flow period (July) and mean-flow period (October) from 1999 to 2000. The results indicated that the seasonal variation of nitrogen concentration in the surface water among the fifteen monitoring points in the rainfall-rich year is more complex than that in the rainfall-deficit year. It was found that the land use, the characteristics of the surface river system, rainfall, and human activities play an important role in the seasonal variation of N-concentration in surface water.
Lee, Dae-Young; Lee, Hung; Trevors, Jack T; Weir, Susan C; Thomas, Janis L; Habash, Marc
2014-04-15
Sources of fecal water pollution were assessed in the Grand River and two of its tributaries (Ontario, Canada) using total and host-specific (human and bovine) Bacteroidales genetic markers in conjunction with reference information, such as land use and weather. In-stream levels of the markers and culturable Escherichia coli were also monitored during multiple rain events to gain information on fecal loadings to catchment from diffuse sources. Elevated human-specific marker levels were accurately identified in river water impacted by a municipal wastewater treatment plant (WWTP) effluent and at a downstream site in the Grand River. In contrast, the bovine-specific marker showed high levels of cattle fecal pollution in two tributaries, both of which are characterized as intensely farmed areas. The bovine-specific Bacteroidales marker increased with rainfall in the agricultural tributaries, indicating enhanced loading of cattle-derived fecal pollutants to river from non-point sources following rain events. However, rain-triggered fecal loading was not substantiated in urban settings, indicating continuous inputs of human-originated fecal pollutants from point sources, such as WWTP effluent. This study demonstrated that the Bacteroidales source tracking assays, in combination with land use information and hydrological data, may provide additional insight into the spatial and temporal distribution of source-specific fecal contamination in streams impacted by varying land uses. Using the approach described in this study may help to characterize impacted water sources and to design targeted land use management plans in other watersheds in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fei, Jiang-Chi; Min, Xiao-Bo; Wang, Zhen-Xing; Pang, Zhi-Hua; Liang, Yan-Jie; Ke, Yong
2017-12-01
In recent years, international research on the toxicity of the heavy metal, antimony, has gradually changed focus from early medical and pharmacological toxicology to environmental toxicology and ecotoxicology. However, little research has been conducted for sources identification and risk management of heavy metals pollution by long-term antimony mining activities. In this study, a large number of investigations were conducted on the temporal and spatial distribution of antimony and related heavy metal contaminants (lead, zinc, and arsenic), as well as on the exposure risks for the population for the Yuxi river basin in the Hunan province, China. The scope of the investigations included mine water, waste rock, tailings, agricultural soil, surface water, river sediments, and groundwater sources of drinking water. Health and ecological risks from exposure to heavy metal pollution were evaluated. The main pollution sources of heavy metals in the Yuxi River basin were analyzed. Remediation programs and risk management strategies for heavy metal pollution were consequently proposed. This article provides a scientific basis for the risk assessment and management of heavy metal pollution caused by antimony basin ore mining.
[Watershed water environment pollution models and their applications: a review].
Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang
2013-10-01
Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.
Changing Regulations of COD Pollution Load of Weihe River Watershed above TongGuan Section, China
NASA Astrophysics Data System (ADS)
Zhu, Lei; Liu, WanQing
2018-02-01
TongGuan Section of Weihe River Watershed is a provincial section between Shaanxi Province and Henan Province, China. Weihe River Watershed above TongGuan Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a method—characteristic section load (CSLD) method is suggested and point and non-point source pollution loads of Weihe River Watershed above TongGuan Section are calculated in the rainy, normal and dry season in 2013. The results show that the monthly point source pollution loads of Weihe River Watershed above TongGuan Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above TongGuan Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the rainy, wet and normal period in turn.
Renewable Energy for the Next Generation
ERIC Educational Resources Information Center
Barton, Leslie
2005-01-01
Renewable energy is harnessed from natural and sustainable sources, like wind, sun and water. They offer a pollution-free, endless source of electricity that is crucial in the fight against climate change. Every unit of this "green" electricity directly replaces electricity normally generated from conventional polluting sources such as coal or…
Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua
2014-09-09
In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.
NASA Technical Reports Server (NTRS)
Clapp, J. L.
1973-01-01
Research objectives during 1972-73 were to: (1) Ascertain the extent to which special aerial photography can be operationally used in monitoring water pollution parameters. (2) Ascertain the effectiveness of remote sensing in the investigation of nearshore mixing and coastal entrapment in large water bodies. (3) Develop an explicit relationship of the extent of the mixing zone in terms of the outfall, effluent and water body characteristics. (4) Develop and demonstrate the use of the remote sensing method as an effective legal implement through which administrative agencies and courts can not only investigate possible pollution sources but also legally prove the source of water pollution. (5) Evaluate the field potential of remote sensing techniques in monitoring algal blooms and aquatic macrophytes, and the use of these as indicators of lake eutrophication level. (6) Develop a remote sensing technique for the determination of the location and extent of hydrologically active source areas in a watershed.
Point source pollution and variability of nitrate concentrations in water from shallow aquifers
NASA Astrophysics Data System (ADS)
Nemčić-Jurec, Jasna; Jazbec, Anamarija
2017-06-01
Agriculture is one of the several major sources of nitrate pollution, and therefore the EU Nitrate Directive, designed to decrease pollution, has been implemented. Point sources like septic systems and broken sewage systems also contribute to water pollution. Pollution of groundwater by nitrate from 19 shallow wells was studied in a typical agricultural region, middle Podravina, in northwest Croatia. The concentration of nitrate ranged from <0.1 to 367 mg/l in water from wells, and 29.8 % of 253 total samples were above maximum acceptable value of 50 mg/l (MAV). Among regions R1-R6, there was no statistically significant difference in nitrate concentrations ( F = 1.98; p = 0.15) during the years 2002-2007. Average concentrations of nitrate in all 19 wells for all the analyzed years were between recommended limit value of 25 mg/l (RLV) and MAV except in 2002 (concentration was under RLV). The results of the repeated measures ANOVA showed statistically significant differences between the wells at the point source distance (proximity) of <10 m, compared to the wells at the point source distance of >20 m ( F = 10.6; p < 0.001). Average annual concentrations of nitrate during the years studied are not statistically different, but interaction between proximity and years is statistically significant ( F = 2.07; p = 0.04). Results of k-means clustering confirmed division into four clusters according to the pollution. Principal component analysis showed that there is only one significant factor, proximity, which explains 91.6 % of the total variability of nitrate. Differences in water quality were found as a result of different environmental factors. These results will contribute to the implementation of the Nitrate Directive in Croatia and the EU.
Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants discharge into receiving water bodies and enhance local and ...
75 FR 27552 - Guidance for Federal Land Management in the Chesapeake Bay Watershed
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... effective tools and practices available to reduce water pollution from a variety of nonpoint sources... describe ``proven cost-effective tools and practices that reduce water pollution'' that are appropriate to...: Katie Flahive, USEPA, Office of Water, Office of Wetlands, Oceans and Watersheds, 1200 Pennsylvania Ave...
Muniesa, Maite; Lucena, Francisco; Blanch, Anicet R; Payán, Andrey; Jofre, Juan
2012-12-01
Water contaminated with human faeces is a risk to human health and management of water bodies can be improved by determining the sources of faecal pollution. Field studies show that existing methods are insufficient and that different markers are required. This study proposes the combined use of two microbial indicators, the concentrations of which are presented as ratios. This provides a more reliable approach to identifying faecal sources as it avoids variation due to treatment or ageing of the contamination. Among other indicators, bacteriophages have been proposed as rapid and cheap indicators of faecal pollution. Samples analysed in this study were derived from wastewater treatment plants (raw sewage, secondary and tertiary effluents and raw sewage sludge) river water, seawater and animal related wastewater. The abundance ratios of faecal coliforms and Bacteroides phages, either strain RYC2056 (non-specific for faecal origin) or strain GA17 (specific for human pollution), and among somatic coliphages and phages infecting both Bacteroides strains, were evaluated. The results indicate that the ratio of somatic coliphages and phages infecting Bacteroides strain GA17, which is specific to human faecal sources, provides a robust method for discriminating samples, even those presenting different levels and ages of pollution, and allows samples polluted with human faeces to be distinguished from those containing animal faecal pollution. This method allows the generation of numerical data that can be further applied to numerical methods for faecal pollution discrimination. Copyright © 2012 Elsevier Ltd. All rights reserved.
an occasional bulletin dealing with the condition of the water-related environment, the control of nonpoint sources of water pollution (NPS), and the ecosystem-driven management and restoration of watersheds.
Economic total maximum daily load for watershed-based pollutant trading.
Zaidi, A Z; deMonsabert, S M
2015-04-01
Water quality trading (WQT) is supported by the US Environmental Protection Agency (USEPA) under the framework of its total maximum daily load (TMDL) program. An innovative approach is presented in this paper that proposes post-TMDL trade by calculating pollutant rights for each pollutant source within a watershed. Several water quality trading programs are currently operating in the USA with an objective to achieve overall pollutant reduction impacts that are equivalent or better than TMDL scenarios. These programs use trading ratios for establishing water quality equivalence among pollutant reductions. The inbuilt uncertainty in modeling the effects of pollutants in a watershed from both the point and nonpoint sources on receiving waterbodies makes WQT very difficult. A higher trading ratio carries with it increased mitigation costs, but cannot ensure the attainment of the required water quality with certainty. The selection of an applicable trading ratio, therefore, is not a simple process. The proposed approach uses an Economic TMDL optimization model that determines an economic pollutant reduction scenario that can be compared with actual TMDL allocations to calculate selling/purchasing rights for each contributing source. The methodology is presented using the established TMDLs for the bacteria (fecal coliform) impaired Muddy Creek subwatershed WAR1 in Rockingham County, Virginia, USA. Case study results show that an environmentally and economically superior trading scenario can be realized by using Economic TMDL model or any similar model that considers the cost of TMDL allocations.
URBAN RUNOFF POLLUTION CONTROL - STATE-OF-THE-ART
Combined sewer overflows are major sources of water pollution problems, but even discharges of stormwater alone can seriously affect water quality. Current approaches involve control of overflows, treatment, and combinations of the two. Control may involve maximizing treatment wi...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing... 9.0 at all times. Water Jet Weaving Pollutant or pollutant property BPT limitations Maximum for any...
Code of Federal Regulations, 2011 CFR
2011-07-01
... pH (1) (1) 1 Within the range of 6.0 to 9.0 at all times. The permit authority will obtain the... cleaning water processes at a point source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant property...
Code of Federal Regulations, 2013 CFR
2013-07-01
... for the finishing water processes at a point source times the following pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1...
Code of Federal Regulations, 2011 CFR
2011-07-01
... finishing water processes at a point source times the following pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1 Within the range...
Code of Federal Regulations, 2012 CFR
2012-07-01
... for the finishing water processes at a point source times the following pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... for the finishing water processes at a point source times the following pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1...
Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.
2009-01-01
The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Islam, Md Atikul; Romić, Davor; Akber, Md Ali; Romić, Marija
2018-02-01
Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo ) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.
NASA Astrophysics Data System (ADS)
Koshkina, V. S.; Serova, A. A.; Timofeev, V. Yu
2016-08-01
This study summarizes the information necessary to characterize and assess the quality of drinking and industrial water supply in industrial centers with metallurgical engineering and provides information about the pollution impact on the natural environment. The study shows the influence of air pollution, of the soil pollution on the environment of water objects; it also demonstrates the role of the quality of water supply for establishing a higher risk of health problems for children.
Zhang, Tong; Ni, Jiupai; Xie, Deti
2015-11-01
Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA.
Evolving policies to regulate pollution from animal feeding operations.
Centner, T J
2001-11-01
Due to concentrations of animals at large facilities, animal feeding operations (AFOs) have emerged as a major potential source of water pollution. The federal government regulates concentrated animal feeding operations under its point-source pollution permitting regulations. A major determinant of whether an operation must apply for a permit is the number of animals at an individual lot or facility. This paper examines federal mandatory controls and voluntary guidelines that seek to reduce contaminant pollution from AFOs. Land treatment practices are delineated due to their importance in reducing the injurious by-products of agricultural production. An evaluation of proposed revisions to federal regulations on confined animal feeding operations suggests they diverge from their goal of controlling water pollution. Federal regulations focus on the size of operation and amount of manure governed by the permitting process to the exclusion of other criteria related to the impairment of water quality. Given the uncertainties about the amount of pollution from AFOs, lack of enforcement of existing regulations, localization of problems, and possible alternatives for addressing the pollution, more demanding federal regulations may not form an appropriate response.
Nazeer, Summya; Ali, Zeshan; Malik, Riffat Naseem
2016-07-01
The present study was designed to determine the spatiotemporal patterns in water quality of River Soan using multivariate statistics. A total of 26 sites were surveyed along River Soan and its associated tributaries during pre- and post-monsoon seasons in 2008. Hierarchical agglomerative cluster analysis (HACA) classified sampling sites into three groups according to their degree of pollution, which ranged from least to high degradation of water quality. Discriminant function analysis (DFA) revealed that alkalinity, orthophosphates, nitrates, ammonia, salinity, and Cd were variables that significantly discriminate among three groups identified by HACA. Temporal trends as identified through DFA revealed that COD, DO, pH, Cu, Cd, and Cr could be attributed for major seasonal variations in water quality. PCA/FA identified six factors as potential sources of pollution of River Soan. Absolute principal component scores using multiple regression method (APCS-MLR) further explained the percent contribution from each source. Heavy metals were largely added through industrial activities (28 %) and sewage waste (28 %), nutrients through agriculture runoff (35 %) and sewage waste (28 %), organic pollution through sewage waste (27 %) and urban runoff (17 %) and macroelements through urban runoff (39 %), and mineralization and sewage waste (30 %). The present study showed that anthropogenic activities are the major source of variations in River Soan. In order to address the water quality issues, implementation of effective waste management measures are needed.
Bhuiyan, Mohammad Amir Hossain; Dampare, Samuel B; Islam, M A; Suzuki, Shigeyuki
2015-01-01
Concentrations of heavy metals in water and sediment samples of Buriganga River in the capital city Dhaka, Bangladesh, were studied to understand the level of heavy metals and their source apportionment. The results showed that the mean concentrations of heavy metals both in water and sediment samples were very high and, in most cases, exceeded the permissible limits recommended by the Bangladesh government and other international organizations. Significantly higher concentrations of Pb, Cr, Mn, Co, Ni, Cu, Zn, As, and Cd were found in sediment samples. However, average concentrations of metals both in water and sediment samples were above the effect range median. The heavy metal pollution index (HPI) and degree of contamination (Cd) yielded different results in water samples despite significant correlations between them. The heavy metal evaluation index (HEI) showed strong correlations with HPI and Cd and provided better assessment of pollution levels. The enrichment factor (EF) and geoaccumulation index (Igeo) showed the elevated value of Cr, Pb, and Cd in access of background values. The measured elements were subjected to positive matrix factorization (PMF) and examining correlations in order to explain the content, behavior, and source apportionment of metals. PMF resulted in a successful partitioning of variances into sources related to background geochemistry and contaminant influences. However, the PMF approach successfully demarcated the major sources of metals from tannery, paint, municipal sewage, textiles, and agricultural activities.
Occurrence and potential causes of androgenic activities in source and drinking water in China.
Hu, Xinxin; Shi, Wei; Wei, Si; Zhang, Xiaowei; Feng, Jianfang; Hu, Guanjiu; Chen, Sulan; Giesy, John P; Yu, Hongxia
2013-09-17
The increased incidences of disorders of male reproductive tract as well as testicular and prostate cancers have been attributed to androgenic pollutants in the environment. Drinking water is one pathway of exposure through which humans can be exposed. In this study, both potencies of androgen receptor (AR) agonists and antagonists were determined in organic extracts of raw source water as well as finished water from waterworks, tap water, boiled water, and poured boiled water in eastern China. Ten of 13 samples of source water exhibited detectable AR antagonistic potencies with AR antagonist equivalents (Ant-AR-EQs) ranging from <15.3 (detection limit) to 140 μg flutamide/L. However, no AR agonistic activity was detected in any source water. All finished water from waterworks, tap water, boiled water, and poured boiled water exhibited neither AR agonistic nor antagonistic activity. Although potential risks are posed by source water, water treatment processes effectively removed AR antagonists. Boiling and pouring of water further removed these pollutants. Phthalate esters (PAEs) including diisobutyl phthalate (DIBP) and dibutyl phthalate (DBP) were identified as major contributors to AR antagonistic potencies in source waters. Metabolites of PAEs exhibited no AR antagonistic activity and did not increase potencies of PAEs when they coexist.
Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan
2015-01-01
Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464
Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan
2015-12-11
Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index I(geo) and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. I(geo) classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes.
Qu, Jianhua; Meng, Xianlin; You, Hong
2016-06-05
Due to the increasing number of unexpected water source pollution events, selection of the most appropriate disposal technology for a specific pollution scenario is of crucial importance to the security of urban water supplies. However, the formulation of the optimum option is considerably difficult owing to the substantial uncertainty of such accidents. In this research, a multi-stage technical screening and evaluation tool is proposed to determine the optimal technique scheme, considering the areas of pollutant elimination both in drinking water sources and water treatment plants. In stage 1, a CBR-based group decision tool was developed to screen available technologies for different scenarios. Then, the threat degree caused by the pollution was estimated in stage 2 using a threat evaluation system and was partitioned into four levels. For each threat level, a corresponding set of technique evaluation criteria weights was obtained using Group-G1. To identify the optimization alternatives corresponding to the different threat levels, an extension of TOPSIS, a multi-criteria interval-valued trapezoidal fuzzy decision making technique containing the four arrays of criteria weights, to a group decision environment was investigated in stage 3. The effectiveness of the developed tool was elaborated by two actual thallium-contaminated scenarios associated with different threat levels. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Jie; Liu, Guijian; Liu, Houqi; Lam, Paul K S
2017-04-01
A total of 211 water samples were collected from 53 key sampling points from 5-10th July 2013 at four different depths (0m, 2m, 4m, 8m) and at different sites in the Huaihe River, Anhui, China. These points monitored for 18 parameters (water temperature, pH, TN, TP, TOC, Cu, Pb, Zn, Ni, Co, Cr, Cd, Mn, B, Fe, Al, Mg, and Ba). The spatial variability, contamination sources and health risk of trace elements as well as the river water quality were investigated. Our results were compared with national (CSEPA) and international (WHO, USEPA) drinking water guidelines, revealing that Zn, Cd and Pb were the dominant pollutants in the water body. Application of different multivariate statistical approaches, including correlation matrix and factor/principal component analysis (FA/PCA), to assess the origins of the elements in the Huaihe River, identified three source types that accounted for 79.31% of the total variance. Anthropogenic activities were considered to contribute much of the Zn, Cd, Pb, Ni, Co, and Mn via industrial waste, coal combustion, and vehicle exhaust; Ba, B, Cr and Cu were controlled by mixed anthropogenic and natural sources, and Mg, Fe and Al had natural origins from weathered rocks and crustal materials. Cluster analysis (CA) was used to classify the 53 sample points into three groups of water pollution, high pollution, moderate pollution, and low pollution, reflecting influences from tributaries, power plants and vehicle exhaust, and agricultural activities, respectively. The results of the water quality index (WQI) indicate that water in the Huaihe River is heavily polluted by trace elements, so approximately 96% of the water in the Huaihe River is unsuitable for drinking. A health risk assessment using the hazard quotient and index (HQ/HI) recommended by the USEPA suggests that Co, Cd and Pb in the river could cause non-carcinogenic harm to human health. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, S.; Tang, L.
2007-05-01
Panjiakou Reservoir is an important drinking water resource in Haihe River Basin, Hebei Province, People's Republic of China. The upstream watershed area is about 35,000 square kilometers. Recently, the water pollution in the reservoir is becoming more serious owing to the non-point pollution as well as point source pollution on the upstream watershed. To effectively manage the reservoir and watershed and develop a plan to reduce pollutant loads, the loading of non-point and point pollution and their distribution on the upstream watershed must be understood fully. The SWAT model is used to simulate the production and transportation of the non-point source pollutants in the upstream watershed of the Panjiakou Reservoir. The loadings of non-point source pollutants are calculated for different hydrologic years and the spatial and temporal characteristics of non-point source pollution are studied. The stream network and topographic characteristics of the stream network and sub-basins are all derived from the DEM by ArcGIS software. The soil and land use data are reclassified and the soil physical properties database file is created for the model. The SWAT model was calibrated with observed data of several hydrologic monitoring stations in the study area. The results of the calibration show that the model performs fairly well. Then the calibrated model was used to calculate the loadings of non-point source pollutants for a wet year, a normal year and a dry year respectively. The time and space distribution of flow, sediment and non-point source pollution were analyzed depending on the simulated results. The comparison of different hydrologic years on calculation results is dramatic. The loading of non-point source pollution in the wet year is relatively larger but smaller in the dry year since the non-point source pollutants are mainly transported through the runoff. The pollution loading within a year is mainly produced in the flood season. Because SWAT is a distributed model, it is possible to view model output as it varies across the basin, so the critical areas and reaches can be found in the study area. According to the simulation results, it is found that different land uses can yield different results and fertilization in rainy season has an important impact on the non- point source pollution. The limitations of the SWAT model are also discussed and the measures of the control and prevention of non- point source pollution for Panjiakou Reservoir are presented according to the analysis of model calculation results.
Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua
2014-01-01
In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492
Nitrates in drinking water: relation with intensive livestock production.
Giammarino, M; Quatto, P
2015-01-01
An excess of nitrates causes environmental pollution in receiving water bodies and health risk for human, if contaminated water is source of drinking water. The directive 91/676/ CEE [1] aims to reduce the nitrogen pressure in Europe from agriculture sources and identifies the livestock population as one of the predominant sources of surplus of nutrients that could be released in water and air. Directive is concerned about cattle, sheep, pigs and poultry and their territorial loads, but it does not deal with fish farms. Fish farms effluents may contain pollutants affecting ecosystem water quality. On the basis of multivariate statistical analysis, this paper aims to establish what types of farming affect the presence of nitrates in drinking water in the province of Cuneo, Piedmont, Italy. In this regard, we have used data from official sources on nitrates in drinking water and data Arvet database, concerning the presence of intensive farming in the considered area. For model selection we have employed automatic variable selection algorithm. We have identified fish farms as a major source of nitrogen released into the environment, while pollution from sheep and poultry has appeared negligible. We would like to emphasize the need to include in the "Nitrate Vulnerable Zones" (as defined in Directive 91/676/CEE [1]), all areas where there are intensive farming of fish with open-system type of water use. Besides, aquaculture open-system should be equipped with adequate downstream system of filtering for removing nitrates in the wastewater.
Wang, Ce; Bi, Jun; Zhang, Xu-Xiang; Fang, Qiang; Qi, Yi
2018-05-25
Influent river carrying cumulative watershed load plays a significant role in promoting nuisance algal bloom in river-fed lake. It is most relevant to discern in-stream water quality exceedance and evaluate the spatial relationship between risk location and potential pollution sources. However, no comprehensive studies of source tracking in watershed based on management grid have been conducted for refined water quality management, particularly for plain terrain with complex river network. In this study, field investigations were implemented during 2014 in Taige Canal watershed of Taihu Lake Basin. A Geographical Information System (GIS)-based spatial relationship model was established to characterize the spatial relationships of "point (point-source location and monitoring site)-line (river segment)-plane (catchment)." As a practical exemplification, in-time source tracking was triggered on April 15, 2015 at Huangnianqiao station, where TN and TP concentration violated the water quality standard (TN 4.0 mg/L, TP 0.15 mg/L). Of the target grid cells, 53 and 46 were identified as crucial areas having high pollution intensity for TN and TP pollution, respectively. The estimated non-point source load in each grid cell could be apportioned into different source types based on spatial pollution-related entity objects. We found that the non-point source load derived from rural sewage and livestock and poultry breeding accounted for more than 80% of total TN or TP load than another source type of crop farming. The approach in this study would be of great benefit to local authorities for identifying the serious polluted regions and efficiently making environmental policies to reduce watershed load.
Alves, Darlan Daniel; Riegel, Roberta Plangg; de Quevedo, Daniela Müller; Osório, Daniela Montanari Migliavacca; da Costa, Gustavo Marques; do Nascimento, Carlos Augusto; Telöken, Franko
2018-06-08
Assessment of surface water quality is an issue of currently high importance, especially in polluted rivers which provide water for treatment and distribution as drinking water, as is the case of the Sinos River, southern Brazil. Multivariate statistical techniques allow a better understanding of the seasonal variations in water quality, as well as the source identification and source apportionment of water pollution. In this study, the multivariate statistical techniques of cluster analysis (CA), principal component analysis (PCA), and positive matrix factorization (PMF) were used, along with the Kruskal-Wallis test and Spearman's correlation analysis in order to interpret a water quality data set resulting from a monitoring program conducted over a period of almost two years (May 2013 to April 2015). The water samples were collected from the raw water inlet of the municipal water treatment plant (WTP) operated by the Water and Sewage Services of Novo Hamburgo (COMUSA). CA allowed the data to be grouped into three periods (autumn and summer (AUT-SUM); winter (WIN); spring (SPR)). Through the PCA, it was possible to identify that the most important parameters in contribution to water quality variations are total coliforms (TCOLI) in SUM-AUT, water level (WL), water temperature (WT), and electrical conductivity (EC) in WIN and color (COLOR) and turbidity (TURB) in SPR. PMF was applied to the complete data set and enabled the source apportionment water pollution through three factors, which are related to anthropogenic sources, such as the discharge of domestic sewage (mostly represented by Escherichia coli (ECOLI)), industrial wastewaters, and agriculture runoff. The results provided by this study demonstrate the contribution provided by the use of integrated statistical techniques in the interpretation and understanding of large data sets of water quality, showing also that this approach can be used as an efficient methodology to optimize indicators for water quality assessment.
NASA Astrophysics Data System (ADS)
Edwin, Golda A.; Gopalsamy, Poyyamoli; Muthu, Nandhivarman
2014-03-01
This study aims to discern the domestic gray water (GW) sources that is least polluting, at the urban households of India, by examining the GW characteristics, comparing with literature data, reuse standards and suitable treatment technologies. In view of this, the quantitative and qualitative characteristics of domestic GW originating from bath, wash basin, laundry and kitchen sources are determined and compared with established standards for reuse requirements. Quality of different gray water sources is characterized with respect to the physical, chemical, biological, nutrient, ground element and heavy metal properties. The pollutant loads indicate that the diversion techniques are not suitable for household application and, therefore, treatment is necessary prior to storage and reuse. It is observed that the total volume of GW generated exceeds the reuse requirement for suggested reuse such as for flushing and gardening/irrigation. In spite of generating less volume, the kitchen source is found to be the major contributor for most of the pollutant load and, therefore, not recommended to be considered for treatment. It is concluded that treatment of GW from bathroom source alone is sufficient to meet the onsite reuse requirements and thereby significantly reduce the potable water consumption by 28.5 %. Constructed wetland systems and constructed soil filters are suggested as suitable treatment alternatives owing to its ability to treat highly variable pollutant load with lower operational and maintenance cost, which is more practical for tropical and developing countries.
NASA Astrophysics Data System (ADS)
WANG, J.
2017-12-01
In stream water quality control, the total maximum daily load (TMDL) program is very effective. However, the load duration curves (LDC) of TMDL are difficult to be established because no sufficient observed flow and pollutant data can be provided in data-scarce watersheds in which no hydrological stations or consecutively long-term hydrological data are available. Although the point sources or a non-point sources of pollutants can be clarified easily with the aid of LDC, where does the pollutant come from and to where it will be transported in the watershed cannot be traced by LDC. To seek out the best management practices (BMPs) of pollutants in a watershed, and to overcome the limitation of LDC, we proposed to develop LDC based on a distributed hydrological model of SWAT for the water quality management in data scarce river basins. In this study, firstly, the distributed hydrological model of SWAT was established with the scarce-hydrological data. Then, the long-term daily flows were generated with the established SWAT model and rainfall data from the adjacent weather station. Flow duration curves (FDC) was then developed with the aid of generated daily flows by SWAT model. Considering the goal of water quality management, LDC curves of different pollutants can be obtained based on the FDC. With the monitored water quality data and the LDC curves, the water quality problems caused by the point or non-point source pollutants in different seasons can be ascertained. Finally, the distributed hydrological model of SWAT was employed again to tracing the spatial distribution and the origination of the pollutants of coming from what kind of agricultural practices and/or other human activities. A case study was conducted in the Jian-jiang river, a tributary of Yangtze river, of Duyun city, Guizhou province. Results indicate that this kind of method can realize the water quality management based on TMDL and find out the suitable BMPs for reducing pollutant in a watershed.
Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.
Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye
2017-01-01
Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.
Chemical quality and regulatory compliance of drinking water in Iceland.
Gunnarsdottir, Maria J; Gardarsson, Sigurdur M; Jonsson, Gunnar St; Bartram, Jamie
2016-11-01
Assuring sufficient quality of drinking water is of great importance for public wellbeing and prosperity. Nations have developed regulatory system with the aim of providing drinking water of sufficient quality and to minimize the risk of contamination of the water supply in the first place. In this study the chemical quality of Icelandic drinking water was evaluated by systematically analyzing results from audit monitoring where 53 parameters were assessed for 345 samples from 79 aquifers, serving 74 water supply systems. Compliance to the Icelandic Drinking Water Regulation (IDWR) was evaluated with regard to parametric values, minimum requirement of sampling, and limit of detection. Water quality compliance was divided according to health-related chemicals and indicators, and analyzed according to size. Samples from few individual locations were benchmarked against natural background levels (NBLs) in order to identify potential pollution sources. The results show that drinking compliance was 99.97% in health-related chemicals and 99.44% in indicator parameters indicating that Icelandic groundwater abstracted for drinking water supply is generally of high quality with no expected health risks. In 10 water supply systems, of the 74 tested, there was an indication of anthropogenic chemical pollution, either at the source or in the network, and in another 6 water supplies there was a need to improve the water intake to prevent surface water intrusion. Benchmarking against the NBLs proved to be useful in tracing potential pollution sources, providing a useful tool for identifying pollution at an early stage. Copyright © 2016 Elsevier GmbH. All rights reserved.
Li, Tong; Chu, Chunli; Zhang, Yinan; Ju, Meiting; Wang, Yuqiu
2017-01-01
Eutrophication is a major problem in China. To combat this issue, the country needs to establish water quality targets, monitoring systems, and intelligent watershed management. This study explores a new watershed management method. Water quality is first assessed using a single factor index method. Then, changes in total nitrogen/total phosphorus (TN/TP) are analyzed to determine the limiting factor. Next, the study compares the eutrophication status of two water function districts, using a comprehensive nutritional state index method and geographic information system (GIS) visualization. Finally, nutrient sources are qualitatively analyzed. Two functional water areas in Tianjin, China were selected and analyzed: Qilihai National Wetland Nature Reserve and Yuqiao Reservoir. The reservoir is a drinking water source. Results indicate that total nitrogen (TN) and total phosphorus (TP) pollution are the main factors driving eutrophication in the Qilihai Wetland and Yuqiao Reservoir. Phosphorus was the limiting factor in the Yuqiao Reservoir; nitrogen was the limiting factor in the Qilihai Wetland. Pollution in Qilihai Wetland is more serious than in Yuqiao Reservoir. The study found that external sources are the main source of pollution. These two functional water areas are vital for Tianjin; as such, the study proposes targeted management measures. PMID:28661417
COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS
Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...
[Research on evaluation of water quality of Beijing urban stormwater runoff].
Hou, Pei-Qiang; Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Zhou, Xiao-Ping
2012-01-01
The natural rainwater and stormwater runoff samples from three underlying surfaces (rooftop, campus road and ring road) were sampled and analyzed from July to October, 2010 in Beijing. Eight rainfall events were collected totally and thirteen water quality parameters were measured in each event. Grey relationship analysis and principal component analysis were applied to assess composite water quality and identify the main pollution sources of stormwater runoff. The results show that the composite water quality of ring road runoff is mostly polluted, and then is rooftop runoff, campus road runoff and rainwater, respectively. The composite water quality of ring road runoff is inferior to V class of surface water, while rooftop runoff, campus road runoff and rainwater are in II class of surface water. The mean concentration of TN and NH4(+)-N in rainwater and runoff is 5.49-11.75 mg x L(-1) and 2.90-5.67 mg x L(-1), respectively, indicating that rainwater and runoff are polluted by nitrogen (N). Two potential pollution sources are identified in ring road runoff: (1) P, SS and organic pollutant are possibly related to debris which is from vehicle tyre and material of ring road; (2) N and dissolved metal have relations with automobile exhaust emissions and bulk deposition.
Nationwide assessment of nonpoint source threats to water quality
Thomas C. Brown; Pamela Froemke
2012-01-01
Water quality is a continuing national concern, in part because the containment of pollution from nonpoint (diffuse) sources remains a challenge. We examine the spatial distribution of nonpoint-source threats to water quality. On the basis of comprehensive data sets for a series of watershed stressors, the relative risk of water-quality impairment was estimated for the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tim, U.S.; Jolly, R.
1994-01-01
Considerable progress has been made in developing physically based, distributed parameter, hydrologic/water quality (HIWQ) models for planning and control of nonpoint-source pollution. The widespread use of these models is often constrained by the excessive and time-consuming input data demands and the lack of computing efficiencies necessary for iterative simulation of alternative management strategies. Recent developments in geographic information systems (GIS) provide techniques for handling large amounts of spatial data for modeling nonpoint-source pollution problems. Because a GIS can be used to combine information from several sources to form an array of model input data and to examine any combinations ofmore » spatial input/output data, it represents a highly effective tool for HiWQ modeling. This paper describes the integration of a distributed-parameter model (AGNPS) with a GIS (ARC/INFO) to examine nonpoint sources of pollution in an agricultural watershed. The ARC/INFO GIS provided the tools to generate and spatially organize the disparate data to support modeling, while the AGNPS model was used to predict several water quality variables including soil erosion and sedimentation within a watershed. The integrated system was used to evaluate the effectiveness of several alternative management strategies in reducing sediment pollution in a 417-ha watershed located in southern Iowa. The implementation of vegetative filter strips and contour buffer (grass) strips resulted in a 41 and 47% reduction in sediment yield at the watershed outlet, respectively. In addition, when the integrated system was used, the combination of the above management strategies resulted in a 71% reduction in sediment yield. In general, the study demonstrated the utility of integrating a simulation model with GIS for nonpoini-source pollution control and planning. Such techniques can help characterize the diffuse sources of pollution at the landscape level. 52 refs., 6 figs., 1 tab.« less
Guidance for the Development of Air Force Storm Water Sampling Programs
1993-09-01
38 Storm Water Quality Monitoring ................. 39 Determining Flow Rate ....................... 42 Weirs and Flumes... water quality monitoring it is not possible to analyze the entire nmoff from a drainage basin. The objective of water quality sampling is to collect a...development of storm water pollution prevention plans. Best management practices can also be developed to control the pollution sources identified. In storm
Web-based Communication of Water Quality Issues and Potential Solution Exploration
Many United States water bodies are impaired, i.e., do not meet applicable water quality standards. Pollutants enter water bodies from point sources (PS) and non-point sources (NPS). Loadings from PS are regulated by the Clean Water Act and permits limit them. Loadings from NPS a...
We present a framework to compare water treatment costs to source water protection costs, an important knowledge gap for drinking water treatment plants (DWTPs). This trade-off helps to determine what incentives a DWTP has to invest in natural infrastructure or pollution reductio...
Contribution of Man – Made Activities to the Pollution of the Tigris within Mosul Area/IRAQ
Al-Rawi, S. M.
2005-01-01
This paper presents an overall view of major sources that may lead to the pollution of the Tigris within Mosul city. A stretch exceeding 20kms in length is selected that represents the “sick” path of the river. Many sites along the studied stretch are likely to affect the river quality in some way or another. Samples from 40 sources sites are taken for quality analyses These sources – as huge as 400000 m3 a day – are characterized as (medium – strong) in composition. Such wastewaters with the pollutants they carry alter the river water quality rendering it unsuitable for beneficial uses. Such alterations – do leave –many negative consequences concerning human beings and aquatic life. It is found that domestic discharges are among the most important sources of pollution. Sanitary wastes are often discharged – untreated -into the Tigris. Other illegal practices such as in-house slaughtering add to the pollution as well. Industrial, tourist and institutional wastes put an additional burden on pollution of the river water quality. These wastes contain lead, chrome, and other heavy metals that may pose health risks. Wastewater treatment plants that exist in some sectors do not perform as they are expected. They need proper evaluation and rehabilitation. Eutrophication - a characteristic problem in lakes - finds an access to occur into the Tigris. This problem results from intensive use of detergents rich in nutrients (P&N compounds). In general, pollutants of different sources heavily affect the river water. Recovery and self purification of the river is estimated to occur at 40 km far from reference point. The paper concludes with the necessity of construction of a central treatment plant(s) or tackling the pollutants at their origin. The paper also stresses on importance of environmental education and awareness in order to combat pollution problems. PMID:16705824
Coastal Zone Act Reauthorization Amendments (CZARA) Section 6217
The Coastal Nonpoint Pollution Control Program (Section 6217) addresses nonpoint pollution problems in coastal waters.In its program, a state or territory describes how it will implement nonpoint source pollution controls, known as management measures.
Guidance includes technical assistance to state, local, and tribal program managers on means of reducing nonpoint source pollution of surface and ground water through the protection and restoration of wetlands and riparian areas.
UNCERTAINTY IN LEACHING POTENTIAL OF NONPOINT SOURCE POLLUTANTS WITH APPLICATION TO GIS
This paper presents a stochastic framework for the assessment of groundwater pollution potential of nonpoint source pesticides. A conceptual relationship is presented that relates seasonally averaged groundwater recharge to soil properties and depths to the water table. The analy...
RECOGNIZING FARMERS' ATTITUDES AND IMPLEMENTING NONPOINT SOURCE POLLUTION CONTROL POLICIES
This report examines the role of farmer attitudes and corresponding communication activities in the implementation of nonpoint source water pollution control programs. The report begins with an examination of the basis for and function of attitudes in influencing behavior. The ro...
Estimation of Phosphorus Emissions in the Upper Iguazu Basin (brazil) Using GIS and the More Model
NASA Astrophysics Data System (ADS)
Acosta Porras, E. A.; Kishi, R. T.; Fuchs, S.; Hilgert, S.
2016-06-01
Pollution emissions into the drainage basin have direct impact on surface water quality. These emissions result from human activities that turn into pollution loads when they reach the water bodies, as point or diffuse sources. Their pollution potential depends on the characteristics and quantity of the transported materials. The estimation of pollution loads can assist decision-making in basin management. Knowledge about the potential pollution sources allows for a prioritization of pollution control policies to achieve the desired water quality. Consequently, it helps avoiding problems such as eutrophication of water bodies. The focus of the research described in this study is related to phosphorus emissions into river basins. The study area is the upper Iguazu basin that lies in the northeast region of the State of Paraná, Brazil, covering about 2,965 km2 and around 4 million inhabitants live concentrated on just 16% of its area. The MoRE (Modeling of Regionalized Emissions) model was used to estimate phosphorus emissions. MoRE is a model that uses empirical approaches to model processes in analytical units, capable of using spatially distributed parameters, covering both, emissions from point sources as well as non-point sources. In order to model the processes, the basin was divided into 152 analytical units with an average size of 20 km2. Available data was organized in a GIS environment. Using e.g. layers of precipitation, the Digital Terrain Model from a 1:10000 scale map as well as soils and land cover, which were derived from remote sensing imagery. Further data is used, such as point pollution discharges and statistical socio-economic data. The model shows that one of the main pollution sources in the upper Iguazu basin is the domestic sewage that enters the river as point source (effluents of treatment stations) and/or as diffuse pollution, caused by failures of sanitary sewer systems or clandestine sewer discharges, accounting for about 56% of the emissions. Second significant shares of emissions come from direct runoff or groundwater, being responsible for 32% of the total emissions. Finally, agricultural erosion and industry pathways represent 12% of emissions. This study shows that MoRE is capable of producing valid emission calculation on a relatively reduced input data basis.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
...EPA is proposing a regulation that would strengthen the controls on discharges from certain steam electric power plants by revising technology-based effluent limitations guidelines and standards for the steam electric power generating point source category. Steam electric power plants alone contribute 50-60 percent of all toxic pollutants discharged to surface waters by all industrial categories currently regulated in the United States under the Clean Water Act. Furthermore, power plant discharges to surface waters are expected to increase as pollutants are increasingly captured by air pollution controls and transferred to wastewater discharges. This proposal, if implemented, would reduce the amount of toxic metals and other pollutants discharged to surface waters from power plants. EPA is considering several regulatory options in this rulemaking and has identified four preferred alternatives for regulation of discharges from existing sources. These four preferred alternatives differ with respect to the scope of requirements that would be applicable to existing discharges of pollutants found in two wastestreams generated at power plants. EPA estimates that the preferred options for this proposed rule would annually reduce pollutant discharges by 0.47 billion to 2.62 billion pounds, reduce water use by 50 billion to 103 billion gallons, cost $185 million to $954 million, and would be economically achievable.
Code of Federal Regulations, 2013 CFR
2013-07-01
... contact cooling and heating water processes at a point source times the following pollutant concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate BCT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... contact cooling and heating water processes at a point source times the following pollutant concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate BCT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... TSS 117 36 pH (1) (1) 1 Within the range of 6.0 to 9.0 at all times. The permit authority will obtain... for the cleaning water processes at a point source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant...
Code of Federal Regulations, 2013 CFR
2013-07-01
... TSS 117 36 pH (1) (1) 1 Within the range of 6.0 to 9.0 at all times. The permit authority will obtain... for the cleaning water processes at a point source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant...
Code of Federal Regulations, 2012 CFR
2012-07-01
... TSS 117 36 pH (1) (1) 1 Within the range of 6.0 to 9.0 at all times. The permit authority will obtain... for the cleaning water processes at a point source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant...
Code of Federal Regulations, 2012 CFR
2012-07-01
... contact cooling and heating water processes at a point source times the following pollutant concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate BCT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1...
Code of Federal Regulations, 2011 CFR
2011-07-01
... cooling and heating water processes at a point source times the following pollutant concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate BCT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1...
Pollution loads in urban runoff and sanitary wastewater.
Taebi, Amir; Droste, Ronald L
2004-07-05
While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha.year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control.
Quantitative evaluation of water quality in the coastal zone by remote sensing
NASA Technical Reports Server (NTRS)
James, W. P.
1971-01-01
Remote sensing as a tool in a waste management program is discussed. By monitoring both the pollution sources and the environmental quality, the interaction between the components of the exturaine system was observed. The need for in situ sampling is reduced with the development of improved calibrated, multichannel sensors. Remote sensing is used for: (1) pollution source determination, (2) mapping the influence zone of the waste source on water quality parameters, and (3) estimating the magnitude of the water quality parameters. Diffusion coefficients and circulation patterns can also be determined by remote sensing, along with subtle changes in vegetative patterns and density.
NASA Astrophysics Data System (ADS)
Voss, Anja; Bärlund, Ilona; Punzet, Manuel; Williams, Richard; Teichert, Ellen; Malve, Olli; Voß, Frank
2010-05-01
Although catchment scale modelling of water and solute transport and transformations is a widely used technique to study pollution pathways and effects of natural changes, policies and mitigation measures there are only a few examples of global water quality modelling. This work will provide a description of the new continental-scale model of water quality WorldQual and the analysis of model simulations under changed climate and anthropogenic conditions with respect to changes in diffuse and point loading as well as surface water quality. BOD is used as an indicator of the level of organic pollution and its oxygen-depleting potential, and for the overall health of aquatic ecosystems. The first application of this new water quality model is to river systems of Europe. The model itself is being developed as part of the EU-funded SCENES Project which has the principal goal of developing new scenarios of the future of freshwater resources in Europe. The aim of the model is to determine chemical fluxes in different pathways combining analysis of water quantity with water quality. Simple equations, consistent with the availability of data on the continental scale, are used to simulate the response of in-stream BOD concentrations to diffuse and anthropogenic point loadings as well as flow dilution. Point sources are divided into manufacturing, domestic and urban loadings, whereas diffuse loadings come from scattered settlements, agricultural input (for instance livestock farming), and also from natural background sources. The model is tested against measured longitudinal gradients and time series data at specific river locations with different loading characteristics like the Thames that is driven by domestic loading and Ebro with relative high share of diffuse loading. With scenario studies the influence of climate and anthropogenic changes on European water resources shall be investigated with the following questions: 1. What percentage of river systems will have degraded water quality due to different driving forces? 2. How will climate change and changes in wastewater discharges affect water quality? For the analysis these scenario aspects are included: 1. climate with changed runoff (affecting diffuse pollution and loading from sealed areas), river discharge (causing dilution or concentration of point source pollution) and water temperature (affecting BOD degradation). 2. Point sources with changed population (affecting domestic pollution), connectivity to treatment plants (influencing domestic and manufacturing pollution as well as input from sealed areas and scattered settlements).
URBAN STORMWATER TOXIC POLLUTANTS: ASSESSMENT, SOURCES, AND TREATABILITY
This paper summarizes an investigation to characterize and treat selected storm water contaminants that are listed as toxic pollutants (termed toxicants in this paper) in the Clean Water Act, Section 307 (Arbuckle et al., 1991). The first project phase investigated typical toxica...
Infiltration of stormwater from highway operations to reduce coastal pollution.
DOT National Transportation Integrated Search
2012-12-01
The coastal waters of Hawaii are extremely important for recreation as well as for the health of : the marine environment. Runoff from the construction and operation of highways can be a : source of pollution to coastal waters. Individual states in t...
NASA Astrophysics Data System (ADS)
Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah
2018-03-01
The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.
NASA Astrophysics Data System (ADS)
Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah
2018-05-01
The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant ( p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.
Mapping the scientific research on non-point source pollution: a bibliometric analysis.
Yang, Beibei; Huang, Kai; Sun, Dezhi; Zhang, Yue
2017-02-01
A bibliometric analysis was conducted to examine the progress and future research trends of non-point source (NPS) pollution during the years 1991-2015 based on the Science Citation Index Expanded (SCI-Expanded) of Web of Science (WoS). The publications referencing NPS pollution were analyzed including the following aspects: document type, publication language, publication output and characteristics, subject category, source journal, distribution of country and institution, author keywords, etc. The results indicate that the study of NPS pollution demonstrated a sharply increasing trend since 1991. Article and English were the most commonly used document type and language. Environmental sciences and ecology, water resources, and engineering were the top three subject categories. Water science and technology ranked first in distribution of journal, followed by Science of the total environment and Environmental Monitoring and Assessment. The USA took a leading position in both quantity and quality, playing an important role in the research field of NPS pollution, followed by the UK and China. The most productive institution was the Chinese Academy of Sciences (Chinese Acad Sci), followed by Beijing Normal University and US Department of Agriculture's Agricultural Research Service (USDA ARS). The analysis of author keywords indicates that the major hotspots of NPS pollution from 1991 to 2015 contained "water," "model," "agriculture," "nitrogen," "phosphorus," etc. The results provide a comprehensive understanding of NPS pollution research and help readers to establish the future research directions.
[Temporal variation of water quality and driving factors in Yanghe watershed of Zhangjiakou].
Pang, Bo; Wang, Tie-Yu; Lü, Yong-Long; Du, Li-Yu; Luo, Wei
2013-01-01
Yanghe is an important water source for Guanting Reservoir, which once supplied the Beijing city with drinking water, industrial process water and water-use in landscape. Based on the data of water quality monitored by Yanghe watershed monitoring stations from 1992 to 2009, 11 pollutants were selected for analysis. The trends of changes in water quality were figured out, and the major pollutants and driving factors were measured by the integrated standard index and grey correlation analytical methods. The results showed that there were two stages of water quality change in Yanghe watershed of Zhangjiakou. Firstly, the water was polluted seriously but recovered rapidly from 1992 to 1996. Secondly, although light pollution occurred in the watershed from 1997 to 2009, the pollution factors were still above the limits. The main pollution factors are ammonia nitrogen, petroleum, permanganate index, BOD5, Cr6+ and Cd. The main driving factor of water quality is the change of land use type, and the agricultural land showed less impact on water quality than the industrial land.
MICROBIAL SOURCE TRACKING: DIFFERENT USES AND APPROACHES
Microbial Source Tracking (MST) methods are used to determine the origin of fecal pollution impacting natural water systems. Several methods require the isolation of pure cultures in order to develop phenotypic or genotypic fingerprint libraries of both source and water bacterial...
QUATTO, P.
2015-01-01
Summary Introduction. An excess of nitrates causes environmental pollution in receiving water bodies and health risk for human, if contaminated water is source of drinking water. The directive 91/676/ CEE [1] aims to reduce the nitrogen pressure in Europe from agriculture sources and identifies the livestock population as one of the predominant sources of surplus of nutrients that could be released in water and air. Directive is concerned about cattle, sheep, pigs and poultry and their territorial loads, but it does not deal with fish farms. Fish farms effluents may contain pollutants affecting ecosystem water quality. Methods. On the basis of multivariate statistical analysis, this paper aims to establish what types of farming affect the presence of nitrates in drinking water in the province of Cuneo, Piedmont, Italy. In this regard, we have used data from official sources on nitrates in drinking water and data Arvet database, concerning the presence of intensive farming in the considered area. For model selection we have employed automatic variable selection algorithm. Results and discussion. We have identified fish farms as a major source of nitrogen released into the environment, while pollution from sheep and poultry has appeared negligible. We would like to emphasize the need to include in the "Nitrate Vulnerable Zones" (as defined in Directive 91/676/CEE [1]), all areas where there are intensive farming of fish with open-system type of water use. Besides, aquaculture open-system should be equipped with adequate downstream system of filtering for removing nitrates in the wastewater. PMID:26900335
Deng, Ting; Wu, Lei; Gao, Jun-Min; Zhou, Bin; Zhang, Ya-Li; Wu, Wen-Nan; Tang, Zhuo-Heng; Jiang, Wen-Chao; Huang, Wei-Lin
2018-05-01
The occurrence and health risks of organotins (OTs) in the waterworks and source water in the Three Gorges Reservoir Region (TGRR), China were assessed in this study. Water samples were collected at four waterworks (A, B, C, and D) in March and July 2012 to analyze butyltins (BTs) and phenyltins (PTs) using a gas chromatography-mass spectrometry (GC-MS) system. Our results showed that both the waterworks and their nearby water sources were polluted by OTs, with PTs being the most dominant species. Monobutyltin (MBT), monophenyltin (MPT), diphenyltin (DPT), and triphenyltin (TPT) were detected in most of the analyzed water samples. The highest concentrations of OTs in influents, effluents, and source water in March were 52.81, 17.93, and 55.32 ng Sn L -1 , respectively. Furthermore, significant seasonal changes in OTs pollution were observed in all samples, showing pollution worse in spring compared with summer. The removal of OTs by the conventional treatment processes was not stable among the waterworks. The removal efficiency of OTs in July reached 100% at plant B, while that at plant C was only 38.8%. The source water and influents shared similar composition profiles, concentrations, and seasonal change of OTs, which indicated that OTs in the waterworks were derived from the source water. A health risk assessment indicated that the presence of OTs in the waterworks would not pose a significant health risk to the population, yet their presence should not be ignored.
Feng, Shuchen; Bootsma, Melinda; McLellan, Sandra L
2018-05-04
The human microbiome contains many organisms that could potentially be used as indicators of human fecal pollution. Here we report the development of two novel human-associated genetic marker assays that target organisms within the family Lachnospiraceae Next-generation sequencing of the V6 region of the 16S rRNA gene from sewage and animal stool samples identified 40 human-associated marker candidates with a robust signal in sewage and low or no occurrence in nonhuman hosts. Two were chosen for quantitative PCR (qPCR) assay development using longer sequences (V2 to V9 regions) generated from clone libraries. Validation of these assays, designated Lachno3 and Lachno12, was performed using fecal samples (n=55) from cat, dog, pig, cow, deer, and gull sources, and compared with established host-associated assays (Lachno2, and two Human Bacteroides assays; HB and HF183/BacR287). Each of the established assays cross-reacted with at least one other animal, including animals common in urban areas. Lachno3 and Lachno12 were primarily human-associated; however, Lachno12 demonstrated low levels of cross-reactivity with select cows, and non-specific amplification in pigs. This limitation may not be problematic when testing urban waters. These novel markers resolved ambiguous results from previous investigations in stormwater-impacted waters, demonstrating their utility. The complexity of the microbiome in humans and animals suggests no single organism is strictly specific to humans, and multiple complementary markers used in combination will provide the highest resolution and specificity for assessing fecal pollution sources. IMPORTANCE Traditional fecal indicator bacteria do not distinguish animal from human fecal pollution, which is necessary to evaluate health risks and mitigate pollution sources. Assessing urban areas is challenging since water can be impacted by sewage, which has a high likelihood of carrying human pathogens, as well as pet waste and urban wildlife. We demonstrate Lachno3 and Lachno12 assays are human-associated and highly specific for urban sources, offering reliable identification of fecal pollution sources in urban waters. Copyright © 2018 American Society for Microbiology.
Tanik, A
2000-01-01
The six main drinking water reservoirs of Istanbul are under the threat of pollution due to rapid population increase, unplanned urbanisation and insufficient infrastructure. In contrast to the present land use profile, the environmental evaluation of the catchment areas reveals that point sources of pollutants, especially of domestic origin, dominate over those from diffuse sources. The water quality studies also support these findings, emphasising that if no substantial precautions are taken, there will be no possibility of obtaining drinking water from them. In this paper, under the light of the present status of the reservoirs, possible and probable short- and long-term protective measures are outlined for reducing the impact of point sources. Immediate precautions mostly depend on reducing the pollution arising from the existing settlements. Long-term measures mainly emphasise the preparation of new land use plans taking into consideration the protection of unoccupied lands. Recommendations on protection and control of the reservoirs are stated.
Yang, Xiaoying; Tan, Lit; He, Ruimin; Fu, Guangtao; Ye, Jinyin; Liu, Qun; Wang, Guoqing
2017-12-01
It is increasingly recognized that climate change could impose both direct and indirect impacts on the quality of the water environment. Previous studies have mostly concentrated on evaluating the impacts of climate change on non-point source pollution in agricultural watersheds. Few studies have assessed the impacts of climate change on the water quality of river basins with complex point and non-point pollution sources. In view of the gap, this paper aims to establish a framework for stochastic assessment of the sensitivity of water quality to future climate change in a river basin with complex pollution sources. A sub-daily soil and water assessment tool (SWAT) model was developed to simulate the discharge, transport, and transformation of nitrogen from multiple point and non-point pollution sources in the upper Huai River basin of China. A weather generator was used to produce 50 years of synthetic daily weather data series for all 25 combinations of precipitation (changes by - 10, 0, 10, 20, and 30%) and temperature change (increases by 0, 1, 2, 3, and 4 °C) scenarios. The generated daily rainfall series was disaggregated into the hourly scale and then used to drive the sub-daily SWAT model to simulate the nitrogen cycle under different climate change scenarios. Our results in the study region have indicated that (1) both total nitrogen (TN) loads and concentrations are insensitive to temperature change; (2) TN loads are highly sensitive to precipitation change, while TN concentrations are moderately sensitive; (3) the impacts of climate change on TN concentrations are more spatiotemporally variable than its impacts on TN loads; and (4) wide distributions of TN loads and TN concentrations under individual climate change scenario illustrate the important role of climatic variability in affecting water quality conditions. In summary, the large variability in SWAT simulation results within and between each climate change scenario highlights the uncertainty of the impacts of climate change and the need to incorporate extreme conditions in managing water environment and developing climate change adaptation and mitigation strategies.
Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Zain, Sharifuddin Md; Habir, Nur Liyana Abdul; Retnam, Ananthy; Kamaruddin, Mohd Khairul Amri; Umar, Roslan; Azid, Azman
2016-05-15
This study presents the determination of the spatial variation and source identification of heavy metal pollution in surface water along the Straits of Malacca using several chemometric techniques. Clustering and discrimination of heavy metal compounds in surface water into two groups (northern and southern regions) are observed according to level of concentrations via the application of chemometric techniques. Principal component analysis (PCA) demonstrates that Cu and Cr dominate the source apportionment in northern region with a total variance of 57.62% and is identified with mining and shipping activities. These are the major contamination contributors in the Straits. Land-based pollution originating from vehicular emission with a total variance of 59.43% is attributed to the high level of Pb concentration in the southern region. The results revealed that one state representing each cluster (northern and southern regions) is significant as the main location for investigating heavy metal concentration in the Straits of Malacca which would save monitoring cost and time. The monitoring of spatial variation and source of heavy metals pollution at the northern and southern regions of the Straits of Malacca, Malaysia, using chemometric analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006
NASA Astrophysics Data System (ADS)
Tong, Yindong; Zhang, Wei; Wang, Xuejun; Couture, Raoul-Marie; Larssen, Thorjørn; Zhao, Yue; Li, Jing; Liang, Huijiao; Liu, Xueyan; Bu, Xiaoge; He, Wei; Zhang, Qianggong; Lin, Yan
2017-07-01
Domestic wastewater and agricultural activities are important sources of nutrient pollutants such as phosphorus and nitrogen. Upon reaching freshwater, these nutrients can lead to extensive growth of harmful algae, which results in eutrophication. Many Chinese lakes are subject to such eutrophication, especially in highly polluted areas, and as such, understanding nutrient fluxes to these lakes offers insights into the varying processes governing pollutant fluxes as well as lake water quality. Here we analyse water quality data, recorded between 2006 and 2014 in 862 freshwater lakes in four geographical regions of China, to assess the input of phosphorus from human activity. We find that improvements in sanitation of both rural and urban domestic wastewater have resulted in large-scale declines in lake phosphorus concentrations in the most populated parts of China. In more sparsely populated regions, diffuse sources such as aquaculture and livestock farming offset this decline. Anthropogenic deforestation and soil erosion may also offset decreases in point sources of pollution. In the light of these regional differences, we suggest that a spatially flexible set of policies for water quality control would be beneficial for the future health of Chinese lakes.
40 CFR 427.115 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Wet Dust... water pollutants to navigable waters. [40 FR 1877, Jan. 9, 1975; 40 FR 18172, Apr. 25, 1975] ...
40 CFR 427.115 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Wet Dust... water pollutants to navigable waters. [40 FR 1877, Jan. 9, 1975; 40 FR 18172, Apr. 25, 1975] ...
40 CFR 427.115 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Wet Dust... water pollutants to navigable waters. [40 FR 1877, Jan. 9, 1975; 40 FR 18172, Apr. 25, 1975] ...
ERIC Educational Resources Information Center
Cramer, Jerome
1994-01-01
This article examines the detrimental effects of polluted run-off from agricultural production on salmonids and aquatic ecosystems, alternative farming methods used to reduce water pollution and soil erosion, and current state and federal policies to control nonpoint source pollution. (LZ)
40 CFR 463.34 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1...
UNCERTAINTY IN LEACHING POTENTIAL OF NONPOINT SOURCE POLLUTANTS WITH APPLICATION TO A GIS
This paper presents a stochastic framework for the assessment of groundwater pollution potential of nonpoint source pesticides. A conceptual relationship is presented that relates seasonally averaged groundwater recharge to soil properties and depths to the water table. The analy...
Differential Decay of Bacterial and Viral Fecal Indicators in Common Human Pollution Sources
Understanding the decomposition of different human fecal pollution sources is necessary for proper implementation of many water quality management practices, as well as predicting associated public health risks. Here, the decay of select cultivated and molecular indicators of fe...
40 CFR 467.26 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 467.26 Section 467.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ALUMINUM FORMING POINT SOURCE CATEGORY Rolling With Emulsions Subcategory § 467.26... parameter) 13.29 13.29 Subpart B Solution Heat Treatment Contact Cooling Water Pollutant or pollutant...
[Hygienic evaluation of transboundary pollution of the Ural River basin].
Iskakov, A Zh; Lestsova, N A; Zasorin, B V; Boev, M V
2009-01-01
The anthropogenic pollution of the Ural River and its tributaries is the most important problem of the Ural-Caspian basin. Transboundary inflow from Kazakhstan to Russian is 30.9 km3/year. The border Ilek river pollution was hygienically evaluated and the contribution of pollution sources was ascertained, with the seasonal variations and hydrochemical background being kept in mind, from 2002 to 2007. The monitoring data on the content of priority pollutants of the surface waters of the basin of the Ilek River, a tributary of the Ural River, which come from the Republic of Kazakhstan, are given. Semiquantitative spectral estimation and the atomic absorption method were used to study the chemical composition of bottom sediments in the Ilek River and its tributaries. The magnitude and sources of influence of man-caused pollution on the quality of the river water were established.
Song, Chen; Liu, Xiaoling; Song, Yonghui; Liu, Ruixia; Gao, Hongjie; Han, Lu; Peng, Jianfeng
2017-09-15
Elimination of black-stinking water contamination has been listed as an urgent task in the Water pollution prevention action plan promulgated by State Council of China. However, the key blackening and stinking pollutants and their sources are still unclear. In this study, water quality of a black-stinking urban river in Beijing, Dongsha River, was evaluated firstly; then the distribution of the blackening and stinking pollutants was investigated, and the key pollutants and their potential sources were identified; and finally, the health risk of those pollutants was assessed. The results showed that NH 3 N, total phosphorus, dissolved oxygen and chemical oxygen demand ranged from 1.3 to 5.3 mg/L, 0.7-3.0 mg/L, 1.0-3.2 mg/L and 29-104 mg/L, respectively. The value of TP-based trophic level index indicated that Dongsha River reached severe eutrophication level; the maximum value of chroma and odor level reached 32 and 4, respectively. The main dissolved organic compounds included aromatic protein II, soluble microbiological metabolites, fulvic acids and humic acids. The blackening pollutants Fe, Mn, Cu and S 2- were extensively detected, with significantly spatial differences along the river. Dimethyl sulfide, β-ionone, 2-methylisoborneol and geosmin were identified to be the stinking pollutants. Their concentrations covered wide ranges, and even the lowest concentration value was thousands of times higher than its olfactory threshold. Correlation analysis indicated that in the overlaying water S 2- was the key blackening pollutant, while β-ionone and geosmin were the key stinking pollutants. Principal components analysis combining with the site survey revealed their potential sources. S 2- was mainly associated with the decomposition of endogenous sulfur-containing organics; β-ionone might be generated by the endogenous β-carotene bio-conversion and the exogenous discharges, while geosmin might originate from the endogenous humus bio-conversion and anthropic wastes. Furthermore, multi-metals in the sediment posed health risks to children, while dimethyl sulfide had non-cancer health risk for adults and children. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin
2017-04-01
To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.
2000-08-01
management for NPS. The State nonpoint Source Task Force coordinates joint watershed management efforts with SCS, USFS, BLM. Intense grazing and...nonpoint source water pollution discharges from unimproved lands, particularly military lands. Increasing emphasis at national and state levels on...lands, particularly military lands. Increasing emphasis at national and state levels on controlling pollutant discharges from nonpoint sources and
TREATMENT OF HEAVY METALS IN STORMWATER RUNOFF USING WET POND AND WETLAND MESOCOSMS
Urban stormwater runoff is being recognized as a major source of pollutants to receiving waters and a number of recent investigations have evaluated stormwater runoff quality and best management practices to minimize pollutant input to receiving waters. Particle-bound contaminant...
40 CFR 423.15 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... performance standards: (a) The pH of all discharges, except once through cooling water, shall be within the... the concentration listed in the following table: Pollutant or pollutant property NSPS effluent... cleaning wastes times the concentration listed in the following table: Pollutant or pollutant property NSPS...
40 CFR 423.15 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... performance standards: (a) The pH of all discharges, except once through cooling water, shall be within the... the concentration listed in the following table: Pollutant or pollutant property NSPS effluent... cleaning wastes times the concentration listed in the following table: Pollutant or pollutant property NSPS...
40 CFR 423.15 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... performance standards: (a) The pH of all discharges, except once through cooling water, shall be within the... the concentration listed in the following table: Pollutant or pollutant property NSPS effluent... cleaning wastes times the concentration listed in the following table: Pollutant or pollutant property NSPS...
Water Quality Planning in Rivers: Assimilative Capacity and Dilution Flow.
Hashemi Monfared, Seyed Arman; Dehghani Darmian, Mohsen; Snyder, Shane A; Azizyan, Gholamreza; Pirzadeh, Bahareh; Azhdary Moghaddam, Mehdi
2017-11-01
Population growth, urbanization and industrial expansion are consequentially linked to increasing pollution around the world. The sources of pollution are so vast and also include point and nonpoint sources, with intrinsic challenge for control and abatement. This paper focuses on pollutant concentrations and also the distance that the pollution is in contact with the river water as objective functions to determine two main necessary characteristics for water quality management in the river. These two necessary characteristics are named assimilative capacity and dilution flow. The mean area of unacceptable concentration [Formula: see text] and affected distance (X) are considered as two objective functions to determine the dilution flow by a non-dominated sorting genetic algorithm II (NSGA-II) optimization algorithm. The results demonstrate that the variation of river flow discharge in different seasons can modify the assimilation capacity up to 97%. Moreover, when using dilution flow as a water quality management tool, results reveal that the content of [Formula: see text] and X change up to 97% and 93%, respectively.
Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems.
Mostofa, Khan M G; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi
2013-11-01
Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Yuan-zhu; He, Qiu-fang; Jiang, Yong-jun; Li, Yong
2016-04-15
In a karst groundwater system, it develops complex multiple flows because of its special geological structure and unique physical patterns of aquifers. In order to investigate the characteristics and transport patterns of ammonia, nitrite and nitrate in epikarst water and subterranean stream, the water samples were collected monthly in a fast-urbanizing karst region. The results showed distinctive characteristics of three forms of inorganic nitrogen. The concentration of inorganic nitrogen was stable in the epikarst water while it was fluctuant in the subterranean stream. Epikarst water was less affected by rainfall and sewage compared with subterranean stream. In epikarst water, the nitrate concentration was much higher than the ammonia concentration. Dissolved inorganic nitrogen, mainly from non-point source pollution related to agricultural activities, passed in and out of the epikarst water based on a series of physical; chemical and biological processes in the epikarst zone, such as ammonification, adsorption and nitrification. On the contrary, subterranean stream showed a result of NH₄⁺-N > NO₃⁻-N in dry seasons and NO₃⁻-N > NH₄⁺-N in rainy seasons. This can be due to the fact that sanitary and industrial sewage flowed into subterranean river through sinkholes, fissures and grikes in dry season. Dissolved inorganic nitrogen in subterranean river was mainly from the non-point source pollution in wet season. Non-point source pollutants entered into subterranean water by two transport ways, one by penetration along with vadose flow through fissures and grikes, and the other by conduit flow through sinkholes from the surface runoff, soil water flow and epikarst flow. The export flux of DIN was 56.05 kg · (hm² · a)⁻¹, and NH₄⁺-N and NO₃⁻-N accounted for 46.03% and 52.51%, respectively. The contributions of point-source pollution and non point-source pollution to the export flux of DIN were 25.08% and 74.92%, respectively, based on run-off division method.
ERIC Educational Resources Information Center
Bromley, Albert W.
The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…
USDA-ARS?s Scientific Manuscript database
Water quality trading (WQT) is a market-based approach that allows point sources of water pollution to meet their water quality obligations by purchasing credits from the reduced discharges from other point or nonpoint sources. Non-permitted animal operations and fields of permitted animal operatio...
Simulating the evolution of non-point source pollutants in a shallow water environment.
Yan, Min; Kahawita, Rene
2007-03-01
Non-point source pollution originating from surface applied chemicals in either liquid or solid form as part of agricultural activities, appears in the surface runoff caused by rainfall. The infiltration and transport of these pollutants has a significant impact on subsurface and riverine water quality. The present paper describes the development of a unified 2-D mathematical model incorporating individual models for infiltration, adsorption, solubility rate, advection and diffusion, which significantly improve the current practice on mathematical modeling of pollutant evolution in shallow water. The governing equations have been solved numerically using cubic spline integration. Experiments were conducted at the Hydrodynamics Laboratory of the Ecole Polytechnique de Montreal to validate the mathematical model. Good correspondence between the computed results and experimental data has been obtained. The model may be used to predict the ultimate fate of surface applied chemicals by evaluating the proportions that are dissolved, infiltrated into the subsurface or are washed off.
Using Scientific Inquiry to Teach Students about Water Quality
ERIC Educational Resources Information Center
Puche, Helena; Holt, Jame
2012-01-01
This semi-guided inquiry activity explores the macroinvertebrate fauna in water sources affected by different levels of pollution. Students develop their ability to identify macroinvertebrates, compare aquatic fauna from different sources of water samples, evaluate water quality using an index, document and analyze data, raise questions and…
River Export of Plastic from Land to Sea: A Global Modeling Approach
NASA Astrophysics Data System (ADS)
Siegfried, Max; Gabbert, Silke; Koelmans, Albert A.; Kroeze, Carolien; Löhr, Ansje; Verburg, Charlotte
2016-04-01
Plastic is increasingly considered a serious cause of water pollution. It is a threat to aquatic ecosystems, including rivers, coastal waters and oceans. Rivers transport considerable amounts of plastic from land to sea. The quantity and its main sources, however, are not well known. Assessing the amount of macro- and microplastic transport from river to sea is, therefore, important for understanding the dimension and the patterns of plastic pollution of aquatic ecosystems. In addition, it is crucial for assessing short- and long-term impacts caused by plastic pollution. Here we present a global modelling approach to quantify river export of plastic from land to sea. Our approach accounts for different types of plastic, including both macro- and micro-plastics. Moreover, we distinguish point sources and diffuse sources of plastic in rivers. Our modelling approach is inspired by global nutrient models, which include more than 6000 river basins. In this paper, we will present our modelling approach, as well as first model results for micro-plastic pollution in European rivers. Important sources of micro-plastics include personal care products, laundry, household dust and car tyre wear. We combine information on these sources with information on sewage management, and plastic retention during river transport for the largest European rivers. Our modelling approach may help to better understand and prevent water pollution by plastic , and at the same time serves as 'proof of concept' for future application on global scale.
Pathogenic agents in freshwater resources
NASA Astrophysics Data System (ADS)
Geldreich, Edwin E.
1996-02-01
Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.
40 CFR 403.1 - Purpose and applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 403.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRETREATMENT REGULATIONS FOR EXISTING AND NEW SOURCES OF POLLUTION § 403.1...(a) of the Federal Water Pollution Control Act as amended by the Clean Water Act of 1977 (Pub. L. 95...
Water Quality & Pollutant Source Monitoring: Field and Laboratory Procedures. Training Manual.
ERIC Educational Resources Information Center
Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.
This training manual presents material on techniques and instrumentation used to develop data in field monitoring programs and related laboratory operations concerned with water quality and pollution monitoring. Topics include: collection and handling of samples; bacteriological, biological, and chemical field and laboratory methods; field…
Zheng, Weiwei; Wang, Xia; Tian, Dajun; Jiang, Songhui; Andersen, Melvin E.; He, Genhsjeng; Crabbe, M. James C.; Zheng, Yuxin; Zhong, Yang; Qu, Weidong
2013-01-01
In recent years, China’s developed regions have transferred industries to undeveloped regions. Large numbers of unlicensed or unregistered enterprises are widespread in these undeveloped regions and they are subject to minimal regulation. Current methods for tracing industrial transfers in these areas, based on enterprise registration information or economic surveys, do not work. We have developed an analytical framework combining water fingerprinting and evolutionary analysis to trace the pollution transfer features between water sources. We collected samples in Eastern China (industrial export) and Central China (industrial acceptance) separately from two water systems. Based on the water pollutant fingerprints and evolutionary trees, we traced the pollution transfer associated with industrial transfer between the two areas. The results are consistent with four episodes of industrial transfers over the past decade. Our results also show likely types of the transferred industries - electronics, plastics, and biomedicines - that contribute to the water pollution transfer. PMID:23301152
NASA Astrophysics Data System (ADS)
Zheng, Weiwei; Wang, Xia; Tian, Dajun; Jiang, Songhui; Andersen, Melvin E.; He, Genhsjeng; Crabbe, M. James C.; Zheng, Yuxin; Zhong, Yang; Qu, Weidong
2013-01-01
In recent years, China's developed regions have transferred industries to undeveloped regions. Large numbers of unlicensed or unregistered enterprises are widespread in these undeveloped regions and they are subject to minimal regulation. Current methods for tracing industrial transfers in these areas, based on enterprise registration information or economic surveys, do not work. We have developed an analytical framework combining water fingerprinting and evolutionary analysis to trace the pollution transfer features between water sources. We collected samples in Eastern China (industrial export) and Central China (industrial acceptance) separately from two water systems. Based on the water pollutant fingerprints and evolutionary trees, we traced the pollution transfer associated with industrial transfer between the two areas. The results are consistent with four episodes of industrial transfers over the past decade. Our results also show likely types of the transferred industries - electronics, plastics, and biomedicines - that contribute to the water pollution transfer.
WHEN ISOTOPES AREN'T ENOUGH: ADDITIONAL INFORMATION TO CONSTRAIN MIXING PROBLEMS
Stable isotopes are often used as chemical tracers to determine the relative contributions of sources to a mixture. Ecological examples include partitioning pollution sources to air or water bodies, trophic links in food webs, plant water use from different soil horizons, source...
40 CFR 463.24 - New source performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... performance standards (i.e., mass of pollutant discharged) calculated by multiplying the average process water... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 463... GUIDELINES AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water...
Popescu, Raluca; Mimmo, Tanja; Dinca, Oana Romina; Capici, Calogero; Costinel, Diana; Sandru, Claudia; Ionete, Roxana Elena; Stefanescu, Ioan; Axente, Damian
2015-11-15
Tracing pollution sources and transformation of nitrogen compounds in surface- and groundwater is an issue of great significance worldwide due to the increased human activity, translated in high demand of water resources and pollution. In this work, the hydrological basin of an important chemical industrial platform in Romania (Ramnicu Valcea industrial area) was characterized in terms of the physico-chemical and isotope composition of δ(18)O and δ(2)H in water samples and δ(15)N of the inorganic nitrogen species. Throughout a period of one year, water samples from the Olt River and its more important tributaries were collected monthly in the industrial area, when the seasonal and spatial isotope patterns of the surface waters and the main sources of pollution were determined. Higher inorganic nitrogen concentrations (up to 10.2 mg N L(-1)) were measured between November 2012 and April 2013, which were designated as anthropogenic additions using the mixing calculations. The main sources of pollution with inorganic nitrogen were agriculture and residential release. The inorganic nitrogen from the industrial waste water duct had a distinct δ(15)N fingerprint (mean of -8.6‰). Also, one industrial release into the environment was identified for Olt River, at Ionesti site, in November 2012. The mean precipitation samples had the lowest inorganic nitrogen concentrations (less than 5.5 mg N L(-1)) with a distinct δ(15)N fingerprint compared to the surface and industrial waters. Copyright © 2015 Elsevier B.V. All rights reserved.
7 CFR 634.12 - Eligible project areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... agricultural portion of a 208 water quality management plan, or revised portions thereof, and have identified agricultural nonpoint source water quality problems are eligible for authorization under RCWP. Those critical areas or sources of pollutants significantly contributing to the water quality problems are eligible for...
UTILIZATION OF LANDSCAPE INDICATORS TO MODEL WATER QUALITY
Many water-bodies within the United States are contaminated by, non-point source (NFS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic processes. One such NPS pollu...
Wangkahad, Bencharong; Bosup, Suchada; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee
2015-06-01
The co-residence of bacteriophages and their bacterial hosts in humans, animals, and environmental sources directed the use of bacteriophages to track the origins of the pathogenic bacteria that can be found in contaminated water. The objective of this study was to enumerate bacteriophages of Aeromonas caviae (AecaKS148), Enterobacter sp. (EnspKS513), and Klebsiella pneumoniae (KlpnKS648) in water and evaluate their association with contamination sources (human vs. animals). Bacterial host strains were isolated from untreated wastewater in Bangkok, Thailand. A double-layer agar technique was used to detect bacteriophages. All three bacteriophages were detected in polluted canal samples, with likely contamination from human wastewater, whereas none was found in non-polluted river samples. AecaKS148 was found to be associated with human fecal sources, while EnspKS513 and KlpnKS648 seemed to be equally prevalent in both human and animal fecal sources. Both bacteriophages were also present in polluted canals that could receive contamination from other fecal sources or the environment. In conclusion, all three bacteriophages were successfully monitored in Bangkok, Thailand. This study provided an example of bacteriophages for potential use as source identifiers of pathogen contamination. The results from this study will assist in controlling sources of pathogen contamination, especially in developing countries.
Fluorometry as a bacterial source tracking tool in coastal watersheds, Trinidad, CA
Trever Parker; Andrew Stubblefield
2012-01-01
Bacterial counts have long been used as indicators of water pollution that may affect public health. By themselves, bacteria are indicators only and can not be used to identify the source of the pollutant for remediation efforts. Methods of microbial source tracking are generally time consuming, labor intensive and expensive. As an alternative, a fluorometer can be...
Wierl, J.A.; Rappold, K.F.; Amerson, F.U.
1996-01-01
In 1992, the Wisconsin Department of Natural Resources (WDNR) in cooperation with the U.S. Geological Survey initiated a land-use inventory to identify sources of pollutants and track the land-management changes for eight evaluation monitoring watersheds established as part of the WDNR's Nonpoint Source Program. Each evaluation monitoring watershed is within a WDNR priority watershed. The U.S. Geological Survey is responsible for collection of water-quality data in the evaluation monitoring watersheds. An initial inventory was completed for each of the WDNR priority watersheds before nonpoint-source plans were developed for the control of nonpoint pollution. The land-use inventory described in this report expands upon the initial inventory by including nonpoint pollution sources that were not identified and also by updating changes in landuse and land-management practices. New sources of nonpoint pollution, not identified in the initial inventory, could prove to be important when monitored and modeled data are analyzed. This effort to inventory the evaluation monitoring watersheds will help with the interpretation of future land-use and water-quality data. This report describes landuse inventory methods, presents results of the inventory, and lists proposed future activities.
USDA-ARS?s Scientific Manuscript database
Quantitative risk assessments of pollution and data related to the effectiveness of mitigating best management practices (BMPs) are important aspects of nonpoint source (NPS) pollution control efforts, particularly those driven by specific water quality objectives and by measurable improvement goals...
Reducing hypoxia in the Gulf of Mexico – an alternative approach
USDA-ARS?s Scientific Manuscript database
Hypoxia in the Gulf of Mexico is a high-priority national issue. Agricultural nonpoint source pollution is the greatest source of water pollution today and its consequences are particularly evident in the Gulf of Mexico. For example, Illinois, Iowa and Indiana together contribute nearly 30% of the p...
Assessment of groundwater quality in a typical rural settlement in southwest Nigeria.
Adekunle, I M; Adetunji, M T; Gbadebo, A M; Banjoko, O P
2007-12-01
In most rural settlements in Nigeria, access to clean and potable water is a great challenge, resulting in water borne diseases. The aim of this study was to assess the levels of some physical, chemical, biochemical and microbial water quality parameters in twelve hand - dug wells in a typical rural area (Igbora) of southwest region of the country. Seasonal variations and proximity to pollution sources (municipal waste dumps and defecation sites) were also examined. Parameters were determined using standard procedures. All parameters were detected up to 200 m from pollution source and most of them increased in concentration during the rainy season over the dry periods, pointing to infiltrations from storm water. Coliform population, Pb, NO3- and Cd in most cases, exceeded the World Health Organization recommended thresholds for potable water. Effect of distance from pollution sources was more pronounced on fecal and total coliform counts, which decreased with increasing distance from waste dumps. The qualities of the well water samples were therefore not suitable for human consumption without adequate treatment. Regular monitoring of groundwater quality, abolishment of unhealthy waste disposal practices and introduction of modern techniques are recommended.
Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems.
Roinas, Georgios; Mant, Cath; Williams, John B
2014-01-01
Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants.
40 CFR 426.16 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wastewater pollutants into a publicly owned treatment works must comply with 40 CFR part 403. (a) Applicability. The provisions of this section shall apply to discharges of process waste water pollutants into publicly owned treatment works except for that portion of the waste stream which constitutes cullet water...
40 CFR 426.16 - Pretreatment standards for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wastewater pollutants into a publicly owned treatment works must comply with 40 CFR part 403. (a) Applicability. The provisions of this section shall apply to discharges of process waste water pollutants into publicly owned treatment works except for that portion of the waste stream which constitutes cullet water...
ERIC Educational Resources Information Center
Kelter, Paul B.; Grundman, Julie; Hage, David S.; Carr, James D.; Castro-Acuna, Carlos Mauricio
1997-01-01
Presents discussions on sources, health impacts, methods of analysis as well as lengthy discussions of lead, nitrates, and atrazine as related to water pollution and the interdisciplinary nature of the modern chemistry curriculum. (DKM)
We All Live Downstream. A Guide to Waste Treatment That Stops Water Pollution.
ERIC Educational Resources Information Center
Costner, Pat; And Others
Based on the idea that the prevention and treatment of water pollution should begin at its source, this document focuses on some methods that individuals can use in their homes and businesses to treat wastewater. Chapter one, "What Is the Water Crisis?" explains the basic concepts of the hydrologic cycle, evapotranspiration, and the quantity of…
Newton, Ryan J.; Bootsma, Melinda J.; Morrison, Hilary G.; Sogin, Mitchell L.
2014-01-01
Urban coasts receive watershed drainage from ecosystems that include highly developed lands with sewer and stormwater infrastructure. In these complex ecosystems, coastal waters are often contaminated with fecal pollution, where multiple delivery mechanisms that often contain multiple fecal sources make it difficult to mitigate the pollution. Here, we exploit bacterial community sequencing of the V6 and V6V4 hypervariable regions of the bacterial 16S rRNA gene to identify bacterial distributions that signal the presence of sewer, fecal, and human fecal pollution. The sequences classified to three sewer infrastructure-associated bacterial genera, Acinetobacter, Arcobacter, and Trichococcus, and five fecal-associated bacterial families, Bacteroidaceae, Porphyromonadaceae, Clostridiaceae, Lachnospiraceae, and Ruminococcaceae, served as signatures of sewer and fecal contamination, respectively. The human fecal signature was determined with the Bayesian source estimation program SourceTracker, which we applied to a set of 40 sewage influent samples collected in Milwaukee, WI, USA to identify operational taxonomic units (≥97 % identity) that were most likely of human fecal origin. During periods of dry weather, the magnitudes of all three signatures were relatively low in Milwaukee's urban rivers and harbor and nearly zero in Lake Michigan. However, the relative contribution of the sewer and fecal signature frequently increased to >2 % of the measured surface water communities following sewer overflows. Also during combined sewer overflows, the ratio of the human fecal pollution signature to the fecal pollution signature in surface waters was generally close to that of sewage, but this ratio decreased dramatically during dry weather and rain events, suggesting that nonhuman fecal pollution was the dominant source during these weather-driven scenarios. The qPCR detection of two human fecal indicators, human Bacteroides and Lachno2, confirmed the urban fecal footprint in this ecosystem extends to at least 8 km offshore. PMID:23475306
NASA Astrophysics Data System (ADS)
Widory, D.
2006-12-01
Nitrate is one of the major pollutants of drinking water resources worldwide. Recent European directives reduced inputs from intensive agriculture, but in most places NO3 levels are approaching the potable limit of 50 mg.l-1 in groundwater. Determining the source(s) of contamination in groundwater is an important first step for improving its quality by emission control. It is with this aim that we review here the benefit of using a multi- isotope approach (d15N, d180, d11B and 87Sr/86Sr), in addition to conventional hydrogeological analysis, to both constrain the watersheds hydrology and trace the origin of their NO3 pollution. Watersheds presented here include both fractured bedrock and alluvial (subsurface and deep) hydrogeological contexts. The strontium budget in watersheds is mainly controlled by the water-rock interactions (human inputs usually represents negligible fluxes). With the example of the Allier river (Central France), we show that, even on a very small watershed, the main water flows can usually be determined by the use of the 87Sr/86Sr ratios, thus helping understanding the hydrology controlling pollution processes. The characterisation of the different usual nitrate sources of pollution in groundwater (mineral fertilisers, wastewater and animals manure) shows that they can clearly be discriminated using isotopes. The isotopic composition of the dissolved nitrogen species has been used extensively to better constrain the sources and fate of nitrate in groundwater. The possibility of quantifying both origin and secondary processes affecting N concentrations by means of a single tracer appears more limited however. Nitrogen cannot be considered conservative because it is biologically modified through nitrification and denitrification reactions, both during infiltration of the water and in the groundwater body, causing isotopic fractionation that modifies the d15N-n signatures of the dissolved N species. Discriminating multiple NO3 sources by their N isotopic composition alone becomes impossible whenever heterogenic or autogenic denitrification occurs, thus arising the need for establishing co-migrating discriminators of NO3 sources: addition of the d180 from NO3 and of the d11B. The use of the strontium isotope systematic for discriminating sources of pollution is also discussed. The use of this multi-isotope approach, in each of the studied contexts, clearly deciphers the origin of NO3 in groundwater and allows a semi-quantification of the contributions of the respective pollution sources.
This policy addresses significant noncompliance (SNC) violations associated with combined sewer overflows (CSOs), sanitary sewer overflows (SSOs), concentrated animal feeding operations (CAFOs), and storm water point source discharges covered by the National Pollutant Discharge Elimination System (NPDES) program under the Clean Water Act (CWA).
Nonpoint source pollution is the leading cause of impairment to our nations water resources. Both drinking and wastewater utilities are challenged to comply with existing and proposed federal Safe Drinking Water Act (SDWA) and Clean Water Act (CWA) regulations. Federal and state ...
WHEN ISOTOPES AREN'T ENOUGH: USING ADDITIONAL INFORMATION TO CONSTRAIN MIXING PROBLEMS
Stable isotopes are often used as chemical tracers to determine the relative contributions of sources to a mixture. Ecological examples include partitioning pollution sources to air or water bodies, trophic links in food webs, plant water use from different soil horizons, source...
40 CFR 463.24 - New source performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... standards (i.e., mass of pollutant discharged) calculated by multiplying the average process water usage... 40 Protection of Environment 30 2011-07-01 2011-07-01 false New source performance standards. 463... GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water Subcategory § 463...
NASA Astrophysics Data System (ADS)
Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao
2018-04-01
As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.
NASA Astrophysics Data System (ADS)
Widory, D.
2008-12-01
Nitrate is one of the major pollutants of drinking water resources worldwide. Recent European directives reduced inputs from intensive agriculture, but in most places NO3 levels are approaching the potable limit of 50 mg.l-1 in groundwater. Determining the source(s) of contamination in groundwater is an important first step for improving its quality by emission control. It is with this aim that we review here the benefit of using a multi-isotope approach (d15N, d180, d11B), in addition to conventional hydrogeological analysis, to constrain the the origin of NO3 pollution in water. The isotopic composition of the dissolved nitrogen species has been used extensively to better constrain the sources and fate of nitrate in groundwater. The possibility of quantifying both origin and secondary processes affecting N concentrations by means of a single tracer appears more limited however. Nitrogen cannot be considered conservative because it is biologically modified through nitrification and denitrification reactions, both during infiltration of the water and in the groundwater body, causing isotopic fractionation that modifies the d15N signatures of the dissolved N species. Discriminating multiple NO3 sources by their N isotopic composition alone becomes impossible whenever heterogenic or autogenic denitrification occurs, thus arising the need for establishing co-migrating discriminators of NO3 sources: addition of the d180 from NO3 and of the d11B. This presentation will strongly rely on our current European Life ISONITRATE project, which aims at showing policy makers how management of nitrate pollution in water can be greatly improved by the incorporation of the multi-isotope monitoring. The pilot site is located in the Alsace region (France and border Germany), part of the Upper Rhine basin, a groundwater body considered as one of the most important drinking water reservoirs in Europe. The demonstration of the multi-isotope approach is based on 4 distinct scenarios: 1. Natural case: corresponds to the natural nitrification of the soil and represents the reference end-member. Samples with NO3 concentration levels higher than this end-member are considered as polluted. 2. Denitrification case: groundwater samples are selected along an identified denitrification gradient in the "Appenweier-Rheinau" region (Germany): the uppermost samples being contaminated by mineral fertilizers used in vineyards (but not denitrified), and the downstream sample being (almost) totally denitrified. 3. Simple case: chosen as being under the influence of a sole type of nitrate pollution source: mineral fertilisation from the "Orschwihr- Bergholtz vineyards". 4. Complex case: where nitrates correspond to a mixing of different pollution sources (mineral and organic fertilisers), located within the "Dietwiller area".
NASA Astrophysics Data System (ADS)
Chen, Shih-Kai; Jang, Cheng-Shin; Yeh, Chun-Lin
2013-04-01
The intensive use of chemical fertilizer has negatively impacted environments in recent decades, mainly through water pollution by nitrogen (N) and phosphate (P) originating from agricultural activities. As a main crop with the largest cultivation area about 0.25 million ha per year in Taiwan, rice paddies account for a significant share of fertilizer consumption among agriculture crops. This study evaluated the fertilization of paddy fields impacting return flow water quality in an agricultural watershed located at Hsinchu County, northern Taiwan. Water quality monitoring continued for two crop-periods in 2012, around subject to different water bodies, including the irrigation water, drainage water, and shallow groundwater. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed immediately following three times of fertilizer applications (including basal, tillering, and panicle fertilizer application), but reduced to relatively low concentrations after 7-10 days after each fertilizer application. Groundwater quality monitoring showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the contamination potential of nutrient of groundwater is related not only to the impermeable plow sole layer but also to the length of percolation route in this area. The study also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point source pollution control and the reuse of agricultural return flow. Keywords:Chemical fertilizer, Nitrogen, Phosphorus, Paddy field, Non-point source pollution.
Olive plants (Olea europaea L.) as a bioindicator for pollution.
Eliwa, Amal Mohamed; Kamel, Ehab Abdel-Razik
2013-06-15
In the present work, olive plant (Olea europaea L.) was used as a biological indicator for pollution in which, molecular and physiological parameters were studied. Olive plants were collected from polluted and non-polluted areas in Jeddah - Saudi Arabia, traffic area as an air polluted area, sewage treatment station as water polluted area, industrial area as solid waste polluted, costal area as marine polluted area and an area without a direct source of pollution far away from the city center, which was used as control. These changes conducted with nucleic acid content, minerals content, pigments and some growth parameters. Results showed significant reductions in DNA and RNA contents under all polluted sites. Mineral contents were varied widely depending on the different pollutants and locations of olive plant. Generally, micro-elements varied (increase/decrease) significantly within collected samples and the source of pollution. All growth parameters were decreased significantly within the studied samples of all pollutant areas except the relative water content was increased. The content of chlorophyll a has decreased highly significantly in all polluted leaves. While the content of chlorophyll b has increased significantly in all polluted leaves especially in air polluted leaves. The total content of carotenoid pigments has decreased highly significantly in all polluted leaves. It was concluded that olive plant can be used as a biological indicator to the environmental pollutants.
Kirschner, A.K.T.; Reischer, G.H.; Jakwerth, S.; Savio, D.; Ixenmaier, S.; Toth, E.; Sommer, R.; Mach, R.L.; Linke, R.; Eiler, A.; Kolarevic, S.; Farnleitner, A.H.
2017-01-01
The microbial faecal pollution of rivers has wide-ranging impacts on a variety of human activities that rely on appropriate river water quality. Thus, detailed knowledge of the extent and origin of microbial faecal pollution is crucial for watershed management activities to maintain safe water use. In this study, the microbial faecal pollution levels were monitored by standard faecal indicator bacteria (SFIB) along a 2580 km stretch of the Danube, the world's most international river, as well as the Danube's most important tributaries. To track the origin of faecal pollution, host-associated Bacteroidetes genetic faecal marker qPCR assays for different host groups were applied in concert with SFIB. The spatial resolution analysis was followed by a time resolution analysis of faecal pollution patterns over 1 year at three selected sites. In this way, a comprehensive faecal pollution map of the total length of the Danube was created, combining substantiated information on both the extent and origin of microbial faecal pollution. Within the environmental data matrix for the river, microbial faecal pollution constituted an independent component and did not cluster with any other measured environmental parameters. Generally, midstream samples representatively depicted the microbial pollution levels at the respective river sites. However, at a few, somewhat unexpected sites, high pollution levels occurred in the lateral zones of the river while the midstream zone had good water quality. Human faecal pollution was demonstrated as the primary pollution source along the whole river, while animal faecal pollution was of minor importance. This study demonstrates that the application of host-associated genetic microbial source tracking markers in concert with the traditional concept of microbial faecal pollution monitoring based on SFIB significantly enhances the knowledge of the extent and origin of microbial faecal pollution patterns in large rivers. It constitutes a powerful tool to guide target-oriented water quality management in large river basins. PMID:28806705
Kirschner, A K T; Reischer, G H; Jakwerth, S; Savio, D; Ixenmaier, S; Toth, E; Sommer, R; Mach, R L; Linke, R; Eiler, A; Kolarevic, S; Farnleitner, A H
2017-11-01
The microbial faecal pollution of rivers has wide-ranging impacts on a variety of human activities that rely on appropriate river water quality. Thus, detailed knowledge of the extent and origin of microbial faecal pollution is crucial for watershed management activities to maintain safe water use. In this study, the microbial faecal pollution levels were monitored by standard faecal indicator bacteria (SFIB) along a 2580 km stretch of the Danube, the world's most international river, as well as the Danube's most important tributaries. To track the origin of faecal pollution, host-associated Bacteroidetes genetic faecal marker qPCR assays for different host groups were applied in concert with SFIB. The spatial resolution analysis was followed by a time resolution analysis of faecal pollution patterns over 1 year at three selected sites. In this way, a comprehensive faecal pollution map of the total length of the Danube was created, combining substantiated information on both the extent and origin of microbial faecal pollution. Within the environmental data matrix for the river, microbial faecal pollution constituted an independent component and did not cluster with any other measured environmental parameters. Generally, midstream samples representatively depicted the microbial pollution levels at the respective river sites. However, at a few, somewhat unexpected sites, high pollution levels occurred in the lateral zones of the river while the midstream zone had good water quality. Human faecal pollution was demonstrated as the primary pollution source along the whole river, while animal faecal pollution was of minor importance. This study demonstrates that the application of host-associated genetic microbial source tracking markers in concert with the traditional concept of microbial faecal pollution monitoring based on SFIB significantly enhances the knowledge of the extent and origin of microbial faecal pollution patterns in large rivers. It constitutes a powerful tool to guide target-oriented water quality management in large river basins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... Plastic Pollution Research and Control Act of 1987, and the Ocean Dumping Act, address pollution within... related legislation in 2003-2005 to limit pollution from large passenger and large oceangoing vessels. In...; (3) to further regulate landside sources of pollution; (4) to improve inspection and testing...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brock, T.D.
Thermal pollution is discussed with regard to sources of manmade thermal water; thermal consequences of thermal pollution; and thermal effects on water quality. Natural habitats receiving thermal additions are discussed with regard to geothermal habitats and geothermal modification of normal aquatic ecosystems. Ecological observations on geothermal habitats include upper temperature limits for various taxonomic groups and consequences of species restriction by temperature. General ecological consequences of thermal polution are discussed with regard to differences between thermal effects on cold and warm water habitats; adaptation to the thermal environment; effect of temperature on gruwth rate; temperatare and water quality; and bacterialmore » indicators of thermal pollution. (HLW)« less
Water quality functions of riparian forest buffers in Chesapeake bay watersheds
Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; Staver, K.W.; Lucas, W.; Todd, A.H.
1997-01-01
Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater sediment in surface runoff and total N in born surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment sustainability, and management are also discussed.
Smart City Environmental Pollution Prevention and Control Design Based on Internet of Things
NASA Astrophysics Data System (ADS)
Peng, He; Bohong, Zheng; Qinpei, Kuang
2017-11-01
Due to increasingly serious urban pollution, this paper proposes an environmental pollution prevention and control system in combination with Internet of things. The system transfers data through the Internet, which also utilizes sensor, pH sensor and smoke sensor to obtain environmental data. Besides, combined with the video data acquired through monitoring, the data are transferred to data center to analyze the haze pollution, water pollution and fire disaster in environment. According to the results, multi-purpose vehicles are mobilized to complete the tasks such as spraying water to relieve haze, water source purification and fire fighting in city environment. Experiments show that the environmental pollution prevention and control system designed in this paper can automatically complete the urban environmental pollution detection, prevention and control, which thus reduces human and material resources and improves the efficiency of pollution prevention and control. Therefore, it possesses greatly practical significance to the construction of smart city.
Differential Decay of Cattle-associated Fecal Indicator ...
Background: Fecal indicator bacteria (FIB) have a long history of use in the assessment of the microbial quality of recreational waters. However, quantification of FIB provides no information about the pollution source(s) and relatively little is known about their fate in the ambient waters. Microbial source tracking (MST) field has evolved in response to a need to identify pollution source(s), but majority of MST markers suffer from the same caveat as FIB, as our understanding of the factors influencing their fate in the environment is limited. Materials: We assessed the effect of water type (freshwater vs marine) and select environmental parameters (indigenous microbiota, ambient sunlight) on decay of FIB and MST markers from cattle manure. Experiments were conducted in situ using a submersible aquatic mesocosm containing dialysis bags filled with mixture of cattle manure and ambient water. Culturable FIB were enumerated by membrane filtration and via qPCR (Entero1a, EC23S) and MST markers were enumerated via qPCR and included general marker of fecal pollution (GenBac3) and cattle-associated subset (Rum2Bac, CowM2, CowM3). Results: Decay of culturable FIB was significantly faster (P > 0.001) than any of the molecular markers irrespective of the water type or experimental conditions. The water type was a significant factor affecting decay (P: 0.008 to < 0.001), although the magnitude of the effect differed among the microbial targets and over time. Presence o
NASA Astrophysics Data System (ADS)
Destouni, G.
2008-12-01
Excess nutrient and pollutant releases from various point and diffuse sources at and below the land surface, associated with land use, industry and households, pose serious eutrophication and pollution risks to inland and coastal water ecosystems worldwide. These risks must be assessed, for instance according to the EU Water Framework Directive (WFD). The WFD demands economically efficient, basin-scale water management for achieving and maintaining good physico-chemical and ecological status in all the inland and coastal waters of EU member states. This paper synthesizes a series of hydro-biogeochemical and linked economic efficiency studies of basin-scale waterborne nutrient and pollutant flows, the development over the last decades up to the current levels of these flows, the main monitoring and modelling uncertainties associated with their quantification, and the effectiveness and economic efficiency of different possible abatement strategies for abating them in order to meet WFD requirements and other environmental goals on local, national and international levels under climate and other regional change. The studies include different Swedish and Baltic Sea drainage basins. Main findings include quantification of near-coastal monitoring gaps and long-term nutrient and pollutant memory in the subsurface (soil-groundwater-sediment) water systems of drainage basins. The former may significantly mask nutrient and pollutant loads to the sea while the latter may continue to uphold large loads to inland and coastal waters long time after source mitigation. A methodology is presented for finding a rational trade-off between the two resource-demanding options to reduce, or accept and explicitly account for the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model uncertainties that limit the effectiveness and efficiency of water pollution and eutrophication management.
Identification of pollutant sources in a rapidly developing urban river catchment in China
NASA Astrophysics Data System (ADS)
Huang, Jingshui; Yin, Hailong; Jomma, Seifeddine; Rode, Michael; Zhou, Qi
2016-04-01
Rapid economic development and urbanization worldwide cause serious ecological and environmental problems. A typical region that is in transition and requires systemic research for effective intervention is the rapidly developing city of Hefei in central P. R. China. In order to investigate the sources of pollutants over a one-year period in Nanfei River catchment that drains the city of Hefei, discharges were measured and water samples were taken and measured along the 14km river section at 10 sites for 4 times from 2013 to 2014. Overflow concentrations of combined sewer and separate storm drains were also measured by selecting 15 rain events in 4 typical drainage systems. Loads and budgets of water and different pollutant sources i.e., wastewater treatment plant (WWTP) effluent, urban drainage overflow, unknown wastewater were calculated. The water balance demonstrated that >70% of the discharge originated from WWTP effluent. Lack of clean upstream inflow thereby is threatening ecological safety and water quality. Furthermore, mass fluxes calculations revealed that >40% of the COD (Chemical Oxygen Demand) loads were from urban drainage overflow because of a large amount of discharge of untreated wastewater in pumping stations during rain events. WWTP effluent was the predominant source of the total nitrogen loads (>60%) and ammonia loads (>45%). However, the total phosphorous loads from three different sources are similar (˜1/3). Thus, our research provided a basis for appropriate and prior mitigation strategies (state-of-art of WWTP upgrade, sewer systems modification, storm water regulation and storage capacity improvement, etc.) for different precedence-controlled pollutants with the limited infrastructure investments in these rapidly developing urban regions.
40 CFR 458.45 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraph, which may be discharged from the carbon black lamp process by a new source subject to the provisions of this subpart: There shall be no discharge of process waste water pollutants to navigable waters. ...) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp...
Luo, Xiaojun; Mai, Bixian; Yang, Qingshu; Fu, Jiamo; Sheng, Guoying; Wang, Zhishi
2004-06-01
Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) were measured in suspended particles and dissolved phase from the Baiertang water column and the Macao water column samples as collected from the Guangzhou channel of the Pearl River and the Macao harbor, where the sediments were heavily contaminated with organic pollutants. Total OCPs concentration varies from 23.4 to 61.7 ng/l in Baiertang water column and from 25.2 to 67.8 ng/l in Macao column, while total PAHs concentration varies from 987.1 to 2878.5 ng/l in the Baiertang water column and from 944.0 to 6654.6 ng/l in the Macao column. The vertical distribution profiles of pollutants and the partition of pollutants between particles and dissolved phases indicate that the sediments in Baiertang act as an important source of selected pollutants, and the pollutants in water of this region were mainly originated from the release and re-suspension of contaminants residing in the sediments. The sediments in Macao harbor act as a reservoir for organochlorine pesticides, such as DDTs mainly introduced by river inflow from Xijiang and PAHs input by brackish water from the Lingdingyang estuary. Combustion of fossil fuels and petroleum input are the main sources of PAHs in the Macao water column, while combustion of fossil fuels and coal is responsible for the PAHs in the Baiertang water column. The ratios of DDT/(DDD+DDE) for the Macao water column samples demonstrate that such chemicals were input into this region in recent times.
Thuong, Nguyen Thi; Yoneda, Minoru; Ikegami, Maiko; Takakura, Masato
2013-10-01
The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0-10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0-30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.
40 CFR 35.3140 - Environmental review requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...
40 CFR 35.3140 - Environmental review requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...
40 CFR 35.3140 - Environmental review requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...
40 CFR 35.3140 - Environmental review requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...
40 CFR 35.3140 - Environmental review requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...
Tracking the Primary Sources of Fecal Pollution in a Tropical Watershed in a One-Year Study
A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n=534) from 10 different sites along the Rio Grande de Arecibo watershed were collected every two-three w...
Abdelzaher, Amir M.; Wright, Mary E.; Ortega, Cristina; Solo-Gabriele, Helena M.; Miller, Gary; Elmir, Samir; Newman, Xihui; Shih, Peter; Bonilla, J. Alfredo; Bonilla, Tonya D.; Palmer, Carol J.; Scott, Troy; Lukasik, Jerzy; Harwood, Valerie J.; McQuaig, Shannon; Sinigalliano, Chris; Gidley, Maribeth; Plano, Lisa R. W.; Zhu, Xiaofang; Wang, John D.; Fleming, Lora E.
2010-01-01
Swimming in ocean water, including ocean water at beaches not impacted by known point sources of pollution, is an increasing health concern. This study was an initial evaluation of the presence of indicator microbes and pathogens and the association among the indicator microbes, pathogens, and environmental conditions at a subtropical, recreational marine beach in south Florida impacted by non-point sources of pollution. Twelve water and eight sand samples were collected during four sampling events at high or low tide under elevated or reduced solar insolation conditions. The analyses performed included analyses of fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli, enterococci, and Clostridium perfringens), human-associated microbial source tracking (MST) markers (human polyomaviruses [HPyVs] and Enterococcus faecium esp gene), and pathogens (Vibrio vulnificus, Staphylococcus aureus, enterovirus, norovirus, hepatitis A virus, Cryptosporidium spp., and Giardia spp.). The enterococcus concentrations in water and sand determined by quantitative PCR were greater than the concentrations determined by membrane filtration measurement. The FIB concentrations in water were below the recreational water quality standards for three of the four sampling events, when pathogens and MST markers were also generally undetectable. The FIB levels exceeded regulatory guidelines during one event, and this was accompanied by detection of HPyVs and pathogens, including detection of the autochthonous bacterium V. vulnificus in sand and water, detection of the allochthonous protozoans Giardia spp. in water, and detection of Cryptosporidium spp. in sand samples. The elevated microbial levels were detected at high tide and under low-solar-insolation conditions. Additional sampling should be conducted to further explore the relationships between tidal and solar insolation conditions and between indicator microbes and pathogens in subtropical recreational marine waters impacted by non-point source pollution. PMID:19966020
Mirauda, Domenica; Ostoich, Marco
2018-02-23
The present study develops an integrated methodology combining the results of the water-quality classification, according to the Water Framework Directive 2000/60/EC-WFD, with those of a mathematical integrity model. It is able to analyse the potential anthropogenic impacts on the receiving water body and to help municipal decision-makers when selecting short/medium/long-term strategic mitigation actions to be performed in a territory. Among the most important causes of water-quality degradation in a river, the focus is placed on pollutants from urban wastewater. In particular, the proposed approach evaluates the efficiency and the accurate localisation of treatment plants in a basin, as well as the capacity of its river to bear the residual pollution loads after the treatment phase. The methodology is applied to a sample catchment area, located in northern Italy, where water quality is strongly affected by high population density and by the presence of agricultural and industrial activities. Nearly 10 years of water-quality data collected through official monitoring are considered for the implementation of the system. The sample basin shows different real and potential pollution conditions, according to the resilience of the river and surroundings, together with the point and diffuse pressure sources acting on the receiving body.
Occurrence of THM and NDMA precursors in a watershed: Effect of seasons and anthropogenic pollution.
Aydin, Egemen; Yaman, Fatma Busra; Ates Genceli, Esra; Topuz, Emel; Erdim, Esra; Gurel, Melike; Ipek, Murat; Pehlivanoglu-Mantas, Elif
2012-06-30
In pristine watersheds, natural organic matter is the main source of disinfection by-product (DBP) precursors. However, the presence of point or non-point pollution sources in watersheds may lead to increased levels of DBP precursors which in turn form DBPs in the drinking water treatment plant upon chlorination or chloramination. In this study, water samples were collected from a lake used to obtain drinking water for Istanbul as well as its tributaries to investigate the presence of the precursors of two disinfection by-products, trihalomethanes (THM) and N-nitrosodimethylamine (NDMA). In addition, the effect of seasons and the possible relationships between these precursors and water quality parameters were evaluated. The concentrations of THM and NDMA precursors measured as total THM formation potential (TTHMFP) and NDMA formation potential (NDMAFP) ranged between 126 and 1523μg/L THM and <2 and 1648ng/L NDMA, respectively. Such wide ranges imply that some of the tributaries are affected by anthropogenic pollution sources, which is also supported by high DOC, Cl(-) and NH(3) concentrations. No significant correlation was found between the water quality parameters and DBP formation potential, except for a weak correlation between NDMAFP and DOC concentrations. The effect of the sampling location was more pronounced than the seasonal variation due to anthropogenic pollution in some tributaries and no significant correlation was obtained between the seasons and water quality parameters. Copyright © 2012 Elsevier B.V. All rights reserved.
Nitrogen component in nonpoint source pollution models
USDA-ARS?s Scientific Manuscript database
Pollutants entering a water body can be very destructive to the health of that system. Best Management Practices (BMPs) and/or conservation practices are used to reduce these pollutants, but understanding the most effective practices is very difficult. Watershed models are an effective tool to aid...
Source analysis of radiocesium in river waters using road dust tracers.
Murakami, Michio; Saha, Mahua; Iwasaki, Yuichi; Yamashita, Rei; Koibuchi, Yukio; Tsukada, Hirofumi; Takada, Hideshige; Sueki, Keisuke; Yasutaka, Tetsuo
2017-11-01
Following the Fukushima Dai-ichi Nuclear Power Station accident, regional road dust, heavily contaminated with radiocesium, now represents a potential source of radiocesium pollution in river water. To promote effective countermeasures for reducing the risk from radiocesium pollution, it is important to understand its sources. This study evaluated the utility of metals, including Al, Fe, and Zn as road dust tracers, and applied them to analyze sources of 137 Cs in rivers around Fukushima during wet weather. Concentrations of Zn in road dust were higher than agricultural and forest soils, whereas concentrations of Fe and Al were the opposite. Concentrations of Zn were weakly but significantly correlated with benzothiazole, a molecular marker of tires, indicating Zn represents an effective tracer of road dust. Al, Fe, and Zn were frequently detected in suspended solids in river water during wet weather. Distribution coefficients of these metals and 137 Cs exceeded 10 4 , suggesting sorptive behavior in water. Although concentrations of Al, Fe, Zn, and 137 Cs were higher in fine fractions of road dust and soils than in coarse fractions, use of ratios of 137 Cs to Al, Fe, or Zn showed smaller differences among size fractions. The results demonstrate that combinations of these metals and 137 Cs are useful for analyzing sources of radiocesium in water. These ratios in river water during wet weather were found to be comparable with or lower than during dry weather and were closer to soils than road dust, suggesting a limited contribution from road dust to radiocesium pollution in river water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Xiuru; Ye, Weili; Zhang, Bing
2016-03-01
Transaction costs and uncertainty are considered to be significant obstacles in the emissions trading market, especially for including nonpoint source in water quality trading. This study develops a nonlinear programming model to simulate how uncertainty and transaction costs affect the performance of point/nonpoint source (PS/NPS) water quality trading in the Lake Tai watershed, China. The results demonstrate that PS/NPS water quality trading is a highly cost-effective instrument for emissions abatement in the Lake Tai watershed, which can save 89.33% on pollution abatement costs compared to trading only between nonpoint sources. However, uncertainty can significantly reduce the cost-effectiveness by reducing trading volume. In addition, transaction costs from bargaining and decision making raise total pollution abatement costs directly and cause the offset system to deviate from the optimal state. While proper investment in monitoring and measuring of nonpoint emissions can decrease uncertainty and save on the total abatement costs. Finally, we show that the dispersed ownership of China's farmland will bring high uncertainty and transaction costs into the PS/NPS offset system, even if the pollution abatement cost is lower than for point sources. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wu, Yiping; Liu, Shu-Guang
2012-01-01
Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.
Wu, Yiping; Liu, Shuguang
2012-09-01
Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.
Forestry best management practices relationships with aquatic and riparian fauna: A review
Brooke M. Warrington; W. Michael Aust; Scott M. Barrett; W. Mark Ford; C. Andrew Dolloff; Erik B. Schilling; T. Bently Wigley; M. Chad Bolding
2017-01-01
Forestry best management practices (BMPs) were developed to minimize water pollution from forestry operations by primarily addressing sediment and sediment transport, which is the leading source of pollution from silviculture. Implementation of water quality BMPs may also benefit riparian and aquatic wildlife, although wildlife benefits were not driving forces...
Genthner, Fred J., Joseph B. James, Diane F. Yates and Stephanie D. Friedman. Submitted. Use of Composite Data Sets for Source-Tracking Enterococci in the Water Column and Shoreline Interstitial Waters on Pensacola Beach Florida. Mar. Pollut. Bull. 33 p. (ERL,GB 1212).
So...
Microbial source tracking in highly vulnerable karst drinking water resources.
Diston, D; Robbi, R; Baumgartner, A; Felleisen, R
2018-02-01
Water resources situated in areas with underlying karst geology are particularly vulnerable to fecal pollution. In such vulnerable systems, microbial source tracking (MST) methods are useful tools to elucidate the pathways of both animal and human fecal pollution, leading to more accurate water use risk assessments. Here, we describe the application of a MST toolbox using both culture-dependent bacteriophage and molecular-dependent 16S rRNA assays at spring and well sites in the karstic St Imier Valley, Switzerland. Culture-dependent and molecular-dependent marker performance varied significantly, with the 16S rRNA assays displaying greater sensitivity than their phage counterpart; HF183 was the best performing human wastewater-associated marker while Rum2Bac was the best performing ruminant marker. Differences were observed in pollution regimes between the well and spring sampling sites, with the spring water being more degraded than the well site. Our results inform the choice of marker selection for MST studies and highlight differences in microbial water quality between well and spring karst sites.
Al Ali, Saja; Debade, Xavier; Chebbo, Ghassan; Béchet, Béatrice; Bonhomme, Céline
2017-12-01
A deep understanding of pollutant buildup and wash-off is essential for accurate urban stormwater quality modeling and for the development of stormwater management practices, knowing the potential adverse impacts of runoff pollution on receiving waters. In the context of quantifying the contribution of airborne pollutants to the contamination of stormwater runoff and assessing the need of developing an integrated AIR-WATER modeling chain, loads of polycyclic aromatic hydrocarbons (PAHs) and metal trace elements (MTEs) are calculated in atmospheric dry deposits, stormwater runoff, and surface dust stock within a small yet highly trafficked urban road catchment (~ 30,000 vehicles per day) near Paris. Despite the important traffic load and according to the current definition of "atmospheric" source, atmospheric deposition did not account for more than 10% of the PAHs and trace metal loads in stormwater samples for the majority of the events, based on the ratio of deposition to stormwater. This result shows that atmospheric deposition is not a major source of pollutants in stormwater, and thus, linking the air and water compartment in a modeling chain to have more accurate estimates of pollutant loads in stormwater runoff might not be relevant. Comparison of road dust with water samples demonstrates that only the fine fraction of the available stock is eroded during a rainfall event. Even if the atmosphere mostly generates fine particles, the existence of other sources of fine particles to stormwater runoff is highlighted.
NPDES (National Pollution Discharge & Elimination System) Minor Dischargers
As authorized by the Clean Water Act, the National Pollutant Discharge Elimination System (NPDES) permit program controls water pollution by regulating point sources that discharge pollutants into waters of the United States. The NPDES permit program regulates direct discharges from municipal and industrial wastewater treatment facilities that discharge directly into surface waters. The NPDES permit program is part of the Permit Compliance System (PCS) which issues, records, tracks, and regulates point source discharge facilities. Individual homes that are connected to a municipal system, use a septic system, or do not have a surface discharge do not need an NPDES permit. Facilities in PCS are identified as either major or minor. Within the major/minor classification, facilities are grouped into municipals or non-municipals. In many cases, non-municipals are industrial facilities. This data layer contains Minor dischargers. Major municipal dischargers include all facilities with design flows of greater than one million gallons per day; minor dischargers are less that one million gallons per day. Essentially, a minor discharger does not meet the discharge criteria for a major. Since its introduction in 1972, the NPDES permit program is responsible for significant improvements to our Nation's water quality.
Dudarev, Alexey A; Dushkina, Eugenia V; Sladkova, Yuliya N; Alloyarov, Pavel R; Chupakhin, Valery S; Dorofeyev, Vitaliy M; Kolesnikova, Tatjana A; Fridman, Kirill B; Evengard, Birgitta; Nilsson, Lena M
2013-01-01
Poor state of water supply systems, shortage of water purification facilities and disinfection systems, low quality of drinking water generally in Russia and particularly in the regions of the Russian Arctic, Siberia and Far East have been defined in the literature. However, no standard protocol of water security assessment has been used in the majority of studies. Uniform water security indicators collected from Russian official statistical sources for the period 2000-2011 were used for comparison for 18 selected regions in the Russian Arctic, Siberia and Far East. The following indicators of water security were analyzed: water consumption, chemical and biological contamination of water reservoirs of Categories I and II of water sources (centralized--underground and surface, and non-centralized) and of drinking water. Water consumption in selected regions fluctuated from 125 to 340 L/person/day. Centralized water sources (both underground and surface sources) are highly contaminated by chemicals (up to 40-80%) and biological agents (up to 55% in some regions), mainly due to surface water sources. Underground water sources show relatively low levels of biological contamination, while chemical contamination is high due to additional water contamination during water treatment and transportation in pipelines. Non-centralized water sources are highly contaminated (both chemically and biologically) in 32-90% of samples analyzed. Very high levels of chemical contamination of drinking water (up to 51%) were detected in many regions, mainly in the north-western part of the Russian Arctic. Biological contamination of drinking water was generally much lower (2.5-12%) everywhere except Evenki AO (27%), and general and thermotolerant coliform bacteria predominated in drinking water samples from all regions (up to 17.5 and 12.5%, correspondingly). The presence of other agents was much lower: Coliphages--0.2-2.7%, Clostridia spores, Giardia cysts, pathogenic bacteria, Rotavirus--up to 0.8%. Of a total of 56 chemical pollutants analyzed in water samples from centralized water supply systems, 32 pollutants were found to be in excess of hygienic limits, with the predominant pollutants being Fe (up to 55%), Cl (up to 57%), Al (up to 43%) and Mn (up to 45%). In 18 selected regions of the Russian Arctic, Siberia and Far East Category I and II water reservoirs, water sources (centralized--underground, surface; non-centralized) and drinking water are highly contaminated by chemical and biological agents. Full-scale reform of the Russian water industry and water security system is urgently needed, especially in selected regions.
Characteristics of water quality of rivers related to land-use in Penang Island Malaysia
NASA Astrophysics Data System (ADS)
Yen, Lim Jia; Matsumoto, Yoshitaka; Yin, Chee Su; Wern, Hong Chern; Inoue, Takanobu; Usami, Akiko; Iwatsuki, Eiji; Yagi, Akihiko
2017-10-01
A study of the Water Quality Index (WQI) of rivers in Penang Island, Malaysia conducted by Universiti Sains Malaysia from October 2012 to January 2013 shows that almost all rivers in Penang Island were slightly polluted or polluted. However, WQI does not clarify each water quality indices, for example nutrients and organic pollutants, that reflect the land-use and pollution source in the catchment. Therefore, in this research, the main objectives are to investigate the interaction of land-use and the water quality of rivers in Penang Island, the quantity of pollutant loads discharged, and identification of the pollution sources along the rivers. The procedure starts from the selection of rivers and parameters for investigation, carrying out field survey and sampling, measuring and analyzing each sample, and lastly, providing a conclusion. The three rivers selected are Pinang River, Keluang River and Burung River. In this research, the results show that total organic carbon (TOC) increases generally as the rivers flow towards the river mouths, which means the degree of organic pollution increases along the rivers. In Pinang River, TOC increases as the tributaries from housing areas flow into the mainstream whereas in Keluang River, a marked increase of TOC is shown in the location where the wastewater from a sewage treatment plant discharges. In Burung River, TOC increases as the river flows through the paddy fields. In the principal component analysis, all sampling points of the three rivers are able to be classified into five groups based on the characteristics of water quality. For example, upstream of Keluang River and Burung River show mutual characteristics in terms of man-made pollution index and heavy metal pollution index. As a conclusion, the results in this research show that the characteristics of water quality in Penang Island are highly affected by land-use surrounding the rivers.
NASA Technical Reports Server (NTRS)
Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi
2010-01-01
The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.
Integrated Watershed Pollution Control at Wujingang Canal, China
NASA Astrophysics Data System (ADS)
Zheng, Z.; Yang, X.; Luo, X.
2012-04-01
With a drainage area of 400 square kilometers, Wujingang Canal is located at the economically developed Yangtz Delta of eastern China. As a major tributary, the canal contributes a significant amount of pollutant load to the Lake Tai. Over the past many years, water quality of the canal and its tributaries could not meet the lowest Category V of Chinese surface water quality standard, indicating that its water is not suitable for the purposes of irrigation or scenic views. Major pollution sources in the watershed include industries, residential households, agriculture, fishery, and animal feedlot operations. A comprehensive plan with a budget of 2 billion RMB for the Wujingang watershed pollution control was developed in 2008 and has been implemented progressively ever since. Major components of the plan include: (1) advanced treatment of wastewater from industries and municipal sewage plants for further removal of nitrogen and phosphorous; (2) industrial wastewater reuse; (3) contiguous treatment of sewage from rural residential households with cost-effective technologies such as tower ecofilter system; (4) recycling of rural wastes to generate high-value added products using technologies such as multi-phase anaerobic co-digestion; and (5) making full use of the local landscape and configuring physical, chemical, and biological pollutant treatment structures to build the "clean river network" for treatment of mildly polluted agricultural discharge and surface runoff. Through the implementation of the above measures, water quality of the Wujingang Canal and its tributaries is expected to improve to meet Category IV of Chinese surface water quality standard by 2012, and Category III standard by 2020. Keywords watershed pollution control, non-point source pollution, rural sewage, rural waste, Lake Tai
NASA Astrophysics Data System (ADS)
Maringanti, Chetan; Chaubey, Indrajeet; Popp, Jennie
2009-06-01
Best management practices (BMPs) are effective in reducing the transport of agricultural nonpoint source pollutants to receiving water bodies. However, selection of BMPs for placement in a watershed requires optimization of the available resources to obtain maximum possible pollution reduction. In this study, an optimization methodology is developed to select and place BMPs in a watershed to provide solutions that are both economically and ecologically effective. This novel approach develops and utilizes a BMP tool, a database that stores the pollution reduction and cost information of different BMPs under consideration. The BMP tool replaces the dynamic linkage of the distributed parameter watershed model during optimization and therefore reduces the computation time considerably. Total pollutant load from the watershed, and net cost increase from the baseline, were the two objective functions minimized during the optimization process. The optimization model, consisting of a multiobjective genetic algorithm (NSGA-II) in combination with a watershed simulation tool (Soil Water and Assessment Tool (SWAT)), was developed and tested for nonpoint source pollution control in the L'Anguille River watershed located in eastern Arkansas. The optimized solutions provided a trade-off between the two objective functions for sediment, phosphorus, and nitrogen reduction. The results indicated that buffer strips were very effective in controlling the nonpoint source pollutants from leaving the croplands. The optimized BMP plans resulted in potential reductions of 33%, 32%, and 13% in sediment, phosphorus, and nitrogen loads, respectively, from the watershed.
Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan
2015-07-01
Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source composition of TP (38.1 %) is rural life; the maximum contribution rates of TN and TP in Baota district are 36.26 and 39.26 %, respectively. Results may provide data support for NPS pollution prevention and control in the loess hilly and gully region and also provide scientific reference for the protection of ecological environment of the Loess Plateau in northern Shaanxi.
Microbial source tracking (MST) describes a suite of methods and an investigative strategy designed to identify the dominant sources of fecal pollution in environmental waters. The methods rely on the close association of certain fecal microorganisms with a particular host speci...
Background: Fecal indicator bacteria (FIB) have a long history of use in the assessment of the microbial quality of recreational waters. However, quantification of FIB provides no information about the pollution source(s) and relatively little is known about their fate in the amb...
40 CFR 35.3115 - Eligible activities of the SRF.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3115 Eligible... a nonpoint source pollution control management program under section 319 of the Act; and (c) For...
40 CFR 35.3115 - Eligible activities of the SRF.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3115 Eligible... a nonpoint source pollution control management program under section 319 of the Act; and (c) For...
40 CFR 35.3115 - Eligible activities of the SRF.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3115 Eligible... a nonpoint source pollution control management program under section 319 of the Act; and (c) For...
40 CFR 35.3115 - Eligible activities of the SRF.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3115 Eligible... a nonpoint source pollution control management program under section 319 of the Act; and (c) For...
Urbanization increases the variety and amount of pollutants carried into our nation's waters. Pavement and compacted landscapes do not allow rain and snow melt to soak into the ground. List of typical pollutants from Urban runoff.
40 CFR 35.3115 - Eligible activities of the SRF.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3115 Eligible... a nonpoint source pollution control management program under section 319 of the Act; and (c) For...
Identifying avian sources of faecal contamination using sterol analysis.
Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J
2015-10-01
Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.
Performance of pond-wetland complexes as a preliminary processor of drinking water sources.
Wang, Weidong; Zheng, Jun; Wang, Zhongqiong; Zhang, Rongbin; Chen, Qinghua; Yu, Xinfeng; Yin, Chengqing
2016-01-01
Shijiuyang Constructed Wetland (110 hm(2)) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water in the Xincheng River every day and supplies raw water for Shijiuyang Drinking Water Plant. Daily data for 28 months indicated that the major water quality indexes of source water had been improved by one grade. The percentage increase for dissolved oxygen and the removal rates of ammonia nitrogen, iron and manganese were 73.63%, 38.86%, 35.64%, and 22.14% respectively. The treatment performance weight of ponds and plant-bed/ditch systems was roughly equal but they treated different pollutants preferentially. Most water quality indexes had better treatment efficacy with increasing temperature and inlet concentrations. These results revealed that the pond-wetland complexes exhibited strong buffering capacity for source water quality improvement. The treatment cost of Shijiuyang Drinking Water Plant was reduced by about 30.3%. Regional rainfall significantly determined the external river water levels and adversely deteriorated the inlet water quality, thus suggesting that the "hidden" diffuse pollution in the multitudinous stream branches as well as their catchments should be the controlling emphases for river source water protection in the future. The combination of pond and plant-bed/ditch systems provides a successful paradigm for drinking water source pretreatment. Three other drinking water source treatment wetlands with ponds and plant-bed/ditch systems are in operation or construction in the stream networks of the Yangtze River Delta and more people will be benefited. Copyright © 2015. Published by Elsevier B.V.
Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.
Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R
2015-01-01
When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Nutrient pollution in stormwater runoff from urbanized areas contributes to water quality degradation in streams and receiving waterbodies. Agriculture, population growth, and industrial activities are significant sources of nitrogen inputs for surface waters. Increased nitrogen ...
Ganga water pollution: A potential health threat to inhabitants of Ganga basin.
Dwivedi, Sanjay; Mishra, Seema; Tripathi, Rudra Deo
2018-05-18
The water quality of Ganga, the largest river in Indian sub-continent and life line to hundreds of million people, has severely deteriorated. Studies have indicated the presence of high level of carcinogenic elements in Ganga water. We performed extensive review of sources and level of organic, inorganic pollution and microbial contamination in Ganga water to evaluate changes in the level of various pollutants in the recent decade in comparison to the past and potential health risk for the population through consumption of toxicant tainted fishes in Ganga basin. A systematic search through databases, specific websites and reports of pollution regulatory agencies was conducted. The state wise level of contamination was tabulated along the Ganga river. We have discussed the major sources of various pollutants with particular focus on metal/metalloid and pesticide residues. Bioaccumulation of toxicants in fishes of Ganga water and potential health hazards to humans through consumption of tainted fishes was evaluated. The level of pesticides in Ganga water registered a drastic reduction in the last decade (i.e. after the establishment of National Ganga River Basin Authority (NGRBA) in 2009), still the levels of some organochlorines are beyond the permissible limits for drinking water. Conversely the inorganic pollutants, particularly carcinogenic elements have increased several folds. Microbial contamination has also significantly increased. Hazard quotient and hazard index indicated significant health risk due to metal/metalloid exposure through consumption of tainted fishes from Ganga. Target cancer risk assessment showed high carcinogenic risk from As, Cr, Ni and Pb as well as residues of DDT and HCHs. Current data analysis showed that Ganga water quality is deteriorating day by day and at several places even in upper stretch of Ganga the water is not suitable for domestic uses. Although there is positive impact of ban on persistent pesticides with decreasing trend of pesticide residues in Ganga water, the increasing trend of trace and toxic elements is alarming and the prolong exposure to polluted Ganga water and/or consumption of Ganga water fishes may cause serious illness including cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Strahm, Ivo; Munz, Nicole; Braun, Christian; Gälli, René; Leu, Christian; Stamm, Christian
2014-05-01
Water quality in the Swiss river network is affected by many micropollutants from a variety of diffuse sources. This study compares, for the first time, in a comprehensive manner the diffuse sources and the substance groups that contribute the most to water contamination in Swiss streams and highlights the major regions for water pollution. For this a simple but comprehensive model was developed to estimate emission from diffuse sources for the entire Swiss river network of 65 000 km. Based on emission factors the model calculates catchment specific losses to streams for more than 15 diffuse sources (such as crop lands, grassland, vineyards, fruit orchards, roads, railways, facades, roofs, green space in urban areas, landfills, etc.) and more than 130 different substances from 5 different substance groups (pesticides, biocides, heavy metals, human drugs, animal drugs). For more than 180 000 stream sections estimates of mean annual pollutant loads and mean annual concentration levels were modeled. This data was validated with a set of monitoring data and evaluated based on annual average environmental quality standards (AA-EQS). Model validation showed that the estimated mean annual concentration levels are within the range of measured data. Therefore simulations were considered as adequately robust for identifying the major sources of diffuse pollution. The analysis depicted that in Switzerland widespread pollution of streams can be expected. Along more than 18 000 km of the river network one or more simulated substances has a concentration exceeding the AA-EQS. In single stream sections it could be more than 50 different substances. Moreover, the simulations showed that in two-thirds of small streams (Strahler order 1 and 2) at least one AA-EQS is always exceeded. The highest number of substances exceeding the AA-EQS are in areas with large fractions of arable cropping, vineyards and fruit orchards. Urban areas are also of concern even without considering wastewater treatment plants. Only a small number of problematic substances are expected from grassland. Landfills and roadways are insignificant within the entire Swiss river network, but may locally lead to considerable water pollution. Considering all substance groups, pesticides and some heavy metals are the main polluters. Many pesticides are expected to exceed AA-EQS and in a substantial percentage of the river network. Modeling a large number of substances from many sources and a huge quantity of stream sections is only possible with a simple model. Nevertheless conclusions are robust and may indicate where and for what kind of substance groups additional efforts for water quality improvements should be undertaken.
ERIC Educational Resources Information Center
Simko, Robert A.
Urban stormwater runoff collects pollutants from many parts of a city and is an important consideration in water quality planning. Presented is an instructor's guide for a learning session covering various aspects of urban runoff including pollutant sources, management practices, and regulatory programs. Intended for citizen advisory groups, this…
Atmospheric deposition having been one of the major source of Pb in Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Miao, Zhenqing; Zhang, Xiaolong; Wang, Qi; Li, Haixia
2018-03-01
Many marine bays have been polluted by Pb due to the rapid development of industry, and identifying the major source of Pb is essential to pollution control. This paper analyzed the distribution and pollution source of Pb in Jiaozhou Bay in 1988. Results showed that Pb contents in surface waters in Jiaozhou Bay in April, July and October 1988 were 5.52-24.61 μg L‑1, 7.66-38.62 μg L‑1 and 6.89-19.30 μg L‑1, respectively. The major Pb sources in this bay were atmospheric deposition, and marine current, whose source strengths were 19.30-24.61μg L‑1 and 38.62 μg L‑1, respectively. Atmospheric deposition had been one of the major Pb sources in Jiaozhou Bay, and the source strengths were stable and strong. The pollution level of Pb in this bay in 1988 was moderate to heavy, and the source control measurements were necessary.
Refsgaard, A; Jacobsen, T; Jacobsen, B; Ørum, J-E
2007-01-01
The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse the effects of specific, localized basin water management plans. The paper also includes a land rent modelling approach which can be used to choose the most cost-effective measures and the location of these measures. As a forerunner to the use of basin-scale models in WFD basin water management plans this project demonstrates the potential and limitations of comprehensive, integrated modelling tools.
Chen, Jiabo; Li, Fayun; Fan, Zhiping; Wang, Yanjie
2016-01-01
Source apportionment of river water pollution is critical in water resource management and aquatic conservation. Comprehensive application of various GIS-based multivariate statistical methods was performed to analyze datasets (2009–2011) on water quality in the Liao River system (China). Cluster analysis (CA) classified the 12 months of the year into three groups (May–October, February–April and November–January) and the 66 sampling sites into three groups (groups A, B and C) based on similarities in water quality characteristics. Discriminant analysis (DA) determined that temperature, dissolved oxygen (DO), pH, chemical oxygen demand (CODMn), 5-day biochemical oxygen demand (BOD5), NH4+–N, total phosphorus (TP) and volatile phenols were significant variables affecting temporal variations, with 81.2% correct assignments. Principal component analysis (PCA) and positive matrix factorization (PMF) identified eight potential pollution factors for each part of the data structure, explaining more than 61% of the total variance. Oxygen-consuming organics from cropland and woodland runoff were the main latent pollution factor for group A. For group B, the main pollutants were oxygen-consuming organics, oil, nutrients and fecal matter. For group C, the evaluated pollutants primarily included oxygen-consuming organics, oil and toxic organics. PMID:27775679
NASA Astrophysics Data System (ADS)
Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi
2013-04-01
In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is more humid. A variety of other indices are used to explain the sediments yields. These indices, such as the average percentage of slope, the distance to the stream, the relative position in landscape, the position to the water table, etc. are mainly derived from high precision elevation data. All these data are used to locate critical source areas that generally correspond to a restraint part of the territory but account for the principal amount of sediments exports. Once the critical source areas are identified, best management practices (BMPs) (per example : contaminant source control practices, conservation cropping practices and surface runoff control structures) can be planned. This way, money and energy are used where it really counts. In this presentation, the complete methodology including LiDAR data processing will be explained. The results and the possibility to reproduce the developed method will be discussed.
NASA Astrophysics Data System (ADS)
Lee, E.; Sun, S.; Kim, Y.
2011-12-01
Nonpoint source (NPS) pollutants are the remaining cause of the environment problems, significantly impairing the hydrologic and biologic function of urban water systems and human health. Managing the NPS loads to urban aquatic systems remains a challenge because of ubiquitous contaminant sources and large pollutants loads in the first flush. Best management practices (BMPs) exist for reducing the NPS pollutants in urban storm waters, but the remedial efficiencies of these passive schemes are unpredictable. This study aims to develop a controlled-release system as part of an in situ chemical oxidation scheme designed for on-site treatment of organic pollutants in urban runoff. Controlled-release hydrogen peroxide (CR-HP) solids were manufactured by dispersing fine sodium percarbonate granules in paraffin wax matrices. Release kinetics and treatment efficiencies of CR-HP for BTEX and MTBE were investigated through a series of column tests. Release data indicated that the CR-HP could continually release hydrogen peroxide (H2O2) in flowing water at controlled rates over 276-1756 days, and the release rates could be adjusted by changing the mixing ratios of sodium percarbonate and wax matrices. Additional column tests and model calculations demonstrated that CR-HP/UV systems can provide low-cost, target-specific, and persistent source of oxidants for efficient treatment of organic compounds in urban storm runoff.
Peng, Hai-Qin; Liu, Yan; Gao, Xue-Long; Wang, Hong-Wu; Chen, Yi; Cai, Hui-Yi
2017-11-01
While point source pollutions have gradually been controlled in recent years, the non-point source pollution problem has become increasingly prominent. The receiving waters are frequently polluted by the initial stormwater from the separate stormwater system and the wastewater from sewage pipes through stormwater pipes. Consequently, calculating the intercepted runoff depth has become a problem that must be resolved immediately for initial stormwater pollution management. The accurate calculation of intercepted runoff depth provides a solid foundation for selecting the appropriate size of intercepting facilities in drainage and interception projects. This study establishes a separate stormwater system for the Yishan Building watershed of Fuzhou City using the InfoWorks Integrated Catchment Management (InfoWorks ICM), which can predict the stormwater flow velocity and the flow of discharge outlet after each rainfall. The intercepted runoff depth is calculated from the stormwater quality and environmental capacity of the receiving waters. The average intercepted runoff depth from six rainfall events is calculated as 4.1 mm based on stormwater quality. The average intercepted runoff depth from six rainfall events is calculated as 4.4 mm based on the environmental capacity of the receiving waters. The intercepted runoff depth differs when calculated from various aspects. The selection of the intercepted runoff depth depends on the goal of water quality control, the self-purification capacity of the water bodies, and other factors of the region.
Wang, Bing; Liu, Lei; Huang, Guohe
2017-11-01
Using the Environmental Kuznets Curve (EKC) hypothesis, this study explored the dynamic trends of water use and point source pollution in Urumqi (2000-2014) from an economic perspective. Retrospective analysis results indicated that total GDP and GDP per capita increased around tenfold and a fivefold since 2000. Total, municipal and industrial water use had average annual growth rates of 3.96, 7.01, and 3.69%, respectively. However, agricultural water use, emissions of COD and NH 3 -N showed average annual decreases of 3.06, 12.40, and 4.74%. Regression models reveal that total water demand in Urumqi would keep monotonically increasing relationships with GDP and GDP per capita in the foreseeable years. However, the relations of specific water usage and economic growth showed diverse trends. In the future, the discharge of COD and NH 3 -N would further reduce with economic growth. It could be concluded that Urumqi has almost passed the stage where economic growth had caused serious environment deterioration, but the increasing water demand in Urumqi is still an urgent problem. The obtained results would be helpful for water resources management and pollution control in the future.
Studies on the current state of water quality in the Segamat River
NASA Astrophysics Data System (ADS)
Razelan, Faridah Mohd; Tahir, Wardah; E. M Yahaya, Nasehir Khan
2018-04-01
Nowadays, pollution has become a major concern in developed and developing countries. In a study on the current state of Segamat River water quality; on-site data collection and observation and also laboratory data analysis have been implemented. Studies showed that the downstream of the Segamat River has recorded a significant reduction in quality of water during the dry season compared to the wet season. The deterioration of water quality is caused by the activities along the river such as palm oil plantation, municipal waste and waste from settlements. It was also recorded that the point sources were dominating the pollution at Segamat River during the dry season. However, during the wet season, the water quality was impaired by the non-point sources which originated from the upstream of the river.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Interior and Insular Affairs.
The Federal Water Pollution Control Act provides that each and every point source of pollution be under treatment with the best available technology by July 1983. The Act mandates that: every point source of pollution be issued a national pollutant discharge elimination system (NPDES) permit and comply with effluent guidelines, and the 1983 best…
NASA Astrophysics Data System (ADS)
Mika, Kathryn Beth
Overall, recreational beach water quality remains an issue of concern in Southern California and across the globe. Many factors come into play when determining water quality, including physical issues such as the myriad sources that contribute pollution to the site and financial and political issues that control the way water quality is monitored and determined. Current national regulations require the monitoring of fecal indicator bacteria in order to determine recreational water quality. However, it is also important to identify biological and geographical sources of pollution to consistently impaired locations. A commonly applied approach to meet the goals of source identification is to sample sites that have been high in FIB for further study. A tiered approach such as this, however, assumes a correlation between FIB and the sources of interest in the watershed. The research described in this dissertation tests this assumption in two Southern California watersheds, Santa Monica Canyon and Ventura Harbor. In both cases, a tiered approach to sampling using FIB as a first tier to guide sampling would have failed to identify sources of human fecal pollution (as identified by the presence of the human-associated
Impacts of drought on the quality of surface water of the basin
NASA Astrophysics Data System (ADS)
Huang, B. B.; Yan, D. H.; Wang, H.; Cheng, B. F.; Cui, X. H.
2013-11-01
Under the background of climate change and human's activities, there has been presenting an increase both in the frequency of droughts and the range of their impacts. Droughts may give rise to a series of resources, environmental and ecological effects, i.e. water shortage, water quality deterioration as well as the decrease in the diversity of aquatic organisms. This paper, above all, identifies the impact mechanism of drought on the surface water quality of the basin, and then systematically studies the laws of generation, transfer, transformation and degradation of pollutants during the drought, finding out that the alternating droughts and floods stage is the critical period during which the surface water quality is affected. Secondly, through employing indoor orthogonality experiments, serving drought degree, rainfall intensity and rainfall duration as the main elements and designing various scenario models, the study inspects the effects of various factors on the nitrogen loss in soil as well as the loss of non-point sources pollution and the leaching rate of nitrogen under the different alternating scenarios of drought and flood. It comes to the conclusion that the various factors and the loss of non-point source pollution are positively correlated, and under the alternating scenarios of drought and flood, there is an exacerbation in the loss of ammonium nitrogen and nitrate nitrogen in soil, which generates the transfer and transformation mechanisms of non-point source pollution from a micro level. Finally, by employing the data of Nenjiang river basin, the paper assesses the impacts of drought on the surface water quality from a macro level.
Lalancette, Cindy; Papineau, Isabelle; Payment, Pierre; Dorner, Sarah; Servais, Pierre; Barbeau, Benoit; Di Giovanni, George D; Prévost, Michèle
2014-05-15
Assessing the presence of human pathogenic Cryptosporidium oocysts in surface water remains a significant water treatment and public health challenge. Most drinking water suppliers rely on fecal indicators, such as the well-established Escherichia coli (E. coli), to avoid costly Cryptosporidium assays. However, the use of E. coli has significant limitations in predicting the concentration, the removal and the transport of Cryptosporidium. This study presents a meta-analysis of E. coli to Cryptosporidium concentration paired ratios to compare their complex relationships in eight municipal wastewater sources, five agricultural fecal pollution sources and at 13 drinking water intakes (DWI) to a risk threshold based on US Environmental Protection Agency (USEPA) regulations. Ratios lower than the USEPA risk threshold suggested higher concentrations of oocysts in relation to E. coli concentrations, revealing an underestimed risk for Cryptosporidium based on E. coli measurements. In raw sewage (RS), high ratios proved E. coli (or fecal coliforms) concentrations were a conservative indicator of Cryptosporidium concentrations, which was also typically true for secondary treated wastewater (TWW). Removals of fecal indicator bacteria (FIB) and parasites were quantified in WWTPs and their differences are put forward as a plausible explanation of the sporadic ratio shift. Ratios measured from agricultural runoff surface water were typically lower than the USEPA risk threshold and within the range of risk misinterpretation. Indeed, heavy precipitation events in the agricultural watershed led to high oocyst concentrations but not to E. coli or enterococci concentrations. More importantly, ratios established in variously impacted DWI from 13 Canadian drinking water plants were found to be related to dominant fecal pollution sources, namely municipal sewage. In most cases, when DWIs were mainly influenced by municipal sewage, E. coli or fecal coliforms concentrations agreed with Cryptosporidium concentrations as estimated by the meta-analysis, but when DWIs were influenced by agricultural runoff or wildlife, there was a poor relationship. Average recovery values were available for 6 out of 22 Cryptosporidium concentration data sets and concomitant analysis demonstrated no changes in trends, with and without correction. Nevertheless, recovery assays performed along with every oocyst count would have enhanced the precision of this work. Based on our findings, the use of annual averages of E. coli concentrations as a surrogate for Cryptosporidium concentrations can result in an inaccurate estimate of the Cryptosporidium risk for agriculture impacted drinking water intakes or for intakes with more distant wastewater sources. Studies of upstream fecal pollution sources are recommended for drinking water suppliers to improve their interpretation of source water quality data. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pekey, Hakan; Karakaş, Duran; Bakoğlu, Mithat
2004-11-01
Surface water samples were collected from ten previously selected sites of the polluted Dil Deresi stream, during two field surveys, December 2001 and April 2002. All samples were analyzed using ICP-AES, and the concentrations of trace metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Pb, Sn and Zn) were determined. The results were compared with national and international water quality guidelines, as well as literature values reported for similar rivers. Factor analysis (FA) and a factor analysis-multiple regression (FA-MR) model were used for source apportionment and estimation of contributions from identified sources to the concentration of each parameter. By a varimax rotated factor analysis, four source types were identified as the paint industry; sewage, crustal and road traffic runoff for trace metals, explaining about 83% of the total variance. FA-MR results showed that predicted concentrations were calculated with uncertainties lower than 15%.
Issues in ecology: Nutrient pollution of coastal rivers, bays, and seas
Howarth, Robert W.; Anderson, D. B.; Cloern, James E.; Elfring, Chris; Hopkinson, Charles S.; Lapointe, Brian; Maloney, Thomas J.; Marcus, Nancy; McGlathery, Karen; Sharpley, A.N.; Walker, D.
2000-01-01
Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States. Nutrient pollution is the common thread that links an array of problems along the nations coastline, including eutrophication, harmful algal blooms, dead zones, fish kills, some shellfish poisonings, loss of seagrass and kelp beds, some coral reef destruction, and even some marine mammal and seabird deaths. More than 60 percent of our coastal rivers and bays in every coastal state of the continental United States are moderately to severely degraded by nutrient pollution. This degradation is particularly severe in the mid Atlantic states, in the southeast, and in the Gulf of Mexico. A recent report from the National Research Council entitled Clean Coastal Waters: Understanding and Reduc- ing the Effects of Nutrient Pollution concludes that: Nutrient over-enrichment of coastal ecosystems generally triggers ecological changes that decrease the biologi- cal diversity of bays and estuaries. While moderate N enrichment of some coastal waters may increase fish production, over-enrichment generally degrades the marine food web that supports commercially valuable fish. The marked increase in nutrient pollution of coastal waters has been accompanied by an increase in harmful algal blooms, and in at least some cases, pollution has triggered these blooms. High nutrient levels and the changes they cause in water quality and the makeup of the algal community are detrimental to the health of coral reefs and the diversity of animal life supported by seagrass and kelp communi- ties. Research during the past decade confirms that N is the chief culprit in eutrophication and other impacts of nutrient over-enrichment in temperate coastal waters, while P is most problematic in eutrophication of freshwa- ter lakes. Human conversion of atmospheric N into biologically useable forms, principally synthetic inorganic fertilizers, now matches the natural rate of biological N fixation from all the land surfaces of the earth. Both agriculture and the burning of fossil fuels contribute significantly to nonpoint flows of N to coastal waters, either as direct runoff or airborne pollutants. N from animal wastes that leaks directly to surface waters or is volatilized to the atmosphere as ammonia may be the largest single source of N that moves from agricultural operations into coastal waters. The National Research Council report recommended that, as a minimum goal, the nation should work to reverse nutrient should be taken to assure that the 40 percent of coastal areas now ranked as healthy do not develop symptoms of nutrient pollution in 10 percent of its degraded coastal systems by 2010 and 25 percent of them by 2020. Also, action should be taken to assure that the 40 percent of coastal areas now ranked as healthy do not develop symptoms of nutrient pollution. Meeting these goals will require an array of strategies and approaches tailored to specific regions and coastal ecosystems. There is an urgent need for development and testing of techniques that can reliably pinpoint the sources of N pollutants to an estuary. For some coastal systems, N removal during treatment of human sewage may be sufficient to reverse nutrient pollution. For most coastal systems, however, the solutions will be more complex and may involve controls on N compounds emitted during fossil fuel combustion as well as incentives to reduce over-fertilization of agricul- tural fields and nutrient pollution from animal wastes in livestock feedlot operations.
Nagano, Y; Teraguchi, T; Lieu, P K; Furumai, H
2014-01-01
In the Citadel area of Hue City, drainage systems that include canals and ponds are considerable sources of fecal contaminants to inundated water during the rainy season because canals and ponds receive untreated wastewater. It is important to investigate the characteristics of hydraulics and water pollution in canals and ponds. At the canals and ponds, water sampling was conducted during dry and wet weather periods in order to evaluate fecal contamination and to investigate changes in water pollution caused by runoff inflow. Inundated water was also collected from streets during heavy rainfall. At the canals and ponds, concentrations of Escherichia coli and total coliform exceeded the Vietnamese regulation values for surface water in 23 and 24 out of 27 samples (85 and 89%), respectively. The water samples were categorized based on the characteristics of water pollution using cluster analysis. In the rainy season, continuous monitoring was conducted at the canals and ponds using water depth and electrical conductivity (EC) sensors to investigate the dynamic relationship between water level and water pollution. It is suggested that in the canals, high EC meant water stagnation and low EC signified river water inflow. Therefore, EC might be a good indicator of water flow change in canals.
Managing Nonpoint Source Pollution in Western Washington: Landowner Learning Methods and Motivations
NASA Astrophysics Data System (ADS)
Ryan, Clare M.
2009-06-01
States, territories, and tribes identify nonpoint source pollution as responsible for more than half of the Nation’s existing and threatened water quality impairments, making it the principal remaining cause of water quality problems across the United States. Combinations of education, technical and financial assistance, and regulatory measures are used to inform landowners about nonpoint source pollution issues, and to stimulate the use of best management practices. A mail survey of non-commercial riparian landowners investigated how they learn about best management practices, the efficacy of different educational techniques, and what motivates them to implement land management activities. Landowners experience a variety of educational techniques, and rank those that include direct personal contact as more effective than brochures, advertisements, radio, internet, or television. The most important motivations for implementing best management practices were linked with elements of a personal stewardship ethic, accountability, personal commitment, and feasibility. Nonpoint source education and social marketing campaigns should include direct interpersonal contacts, and appeal to landowner motivations of caring, responsibility, and personal commitment.
Hydrology and water quality of forested lands in eastern North Carolina
G.M. Chescheir; M.E. Lebo; D.M. Amatya; J. Hughes; J.W. Gilliam; R.W. Skaggs; R.B. Herrmann
2003-01-01
Nonpoint sources of nutrients (NPS) are a widespread source of surface water pollution throu&out the United States. Characterizing the sources of this NPS nutrient loading is challenging due to variation in land management practices, physioyaphic setting, site conditions such as soil type, and climatic variation. For nutrients, there is the added challenge of...
Background: Fecal indicator bacteria (FIB) have a long history of use in the assessment of the microbial quality of recreational waters. However, quantification of FIB provides no information about the pollution source(s) and relatively little is known about their fate in the amb...
Yan, Zhenhua; Yang, Haohan; Dong, Huike; Ma, Binni; Sun, Hongwei; Pan, Ting; Jiang, Runren; Zhou, Ranran; Shen, Jie; Liu, Jianchao; Lu, Guanghua
2018-08-01
Water diversion has been increasingly applied to improve water quality in many water bodies. However, little is known regarding pollution by organic micropollutants (OMPs) in water diversion projects, especially at the supplier, and this pollution may threaten the quality of transferred water. In the present study, a total of 110 OMPs belonging to seven classes were investigated in water and sediment collected from a supplier of the Yangtze River within four water diversion projects. A total of 69 and 58 target OMPs were detected in water and sediment, respectively, at total concentrations reaching 1041.78 ng/L and 5942.24 ng/g dry weight (dw). Polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals were the predominant pollutants identified. When preliminarily compared with the pollution in the receiving water, the Yangtze River generally exhibited mild OMPs pollution and good water quality parameters, implying a clean water source in the water diversion project. However, in Zongyang and Fenghuangjing, PAHs pollution was more abundant than that in the corresponding receiving water in Chaohu Lake. Ammonia nitrogen pollution in the Wangyu River was comparable to that in Taihu Lake. These findings imply that water diversion may threaten receiving waters in some cases. In addition, the risks of all detected pollutants in both water and sediment were assessed. PAHs in water, especially phenanthrene and high-molecular-weight PAHs, posed high risks to invertebrates, followed by the risks to fish and algae. Pharmaceuticals, such as antibiotics and antidepressants, may also pose risks to algae and fish at a number of locations. To the best of our knowledge, this report is the first to describe OMPs pollution in water diversion projects, and the results provide a new perspective regarding the security of water diversion projects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chemical and biological tracers to determine groundwater flow in karstic aquifer, Yucatan Peninsula
NASA Astrophysics Data System (ADS)
Lenczewski, M.; Leal-Bautista, R. M.; McLain, J. E.
2013-05-01
Little is known about the extent of pollution in groundwater in the Yucatan Peninsula; however current population growth, both from international tourism and Mexican nationals increases the potential for wastewater release of a vast array of contaminants including personal care products, pharmaceuticals (Rx), and pathogenic microorganisms. Pathogens and Rx in groundwater can persist and can be particularly acute in this region where high permeability of the karst bedrock and the lack of top soil permit the rapid transport of contaminants into groundwater aquifers. The objective of this research is to develop and utilize novel biological and chemical source tracking methods to distinguish between different sources of anthropogenic pollution in degraded groundwater. Although several methods have been used successfully to track fecal contamination sources in small scale studies, little is known about their spatial limitations, as source tracking studies rarely include sample collection over a wide geographical area and with different sources of water. In addition, although source tracking methods to distinguish human from animal fecal contamination are widely available, this work has developed source tracking distinguish between separate human populations is highly unique. To achieve this objective, we collected water samples from a series of drinking wells, cenotes (sinkholes), wastewater treatment plants, and injection wells across the Yucatan Peninsula and examine potential source tracers within the collected water samples. The result suggests that groundwater sources impacted by tourist vs. local populations contain different chemical stressors. This work has developed a more detailed understanding of the presence and persistence of personal care products, pharmaceuticals, and fecal indicators in a karstic system; such understanding will be a vital component for the protection Mexican groundwater and human health. Quantification of different pollution sources within groundwater samples identified point sources of pollution, identify potential remediation strategies, and contribute to an improved understanding of the environmental impact of tourism and tourism-generated waste products on this groundwater-dependent ecosystem.
Use of ERTS imagery in air pollution and marine biology studies, tasks 1 through 3
NASA Technical Reports Server (NTRS)
Copeland, G. E.; Ludwick, J. C.; Marshall, H. G. (Principal Investigator); Bandy, A. R.; Fleischer, P.; Hanna, W. J.; Gosink, T. A.; Bowker, D. W.
1972-01-01
There are no author-identified significant results in this report. The general suitability of ERTS imagery in detecting ground originated air pollution has proved to be excellent. The quality and resolution exceeded expectations and has permitted in some instances location of point sources to within a thousand feet. Suitable techniques have not yet been developed for determining or measuring area and line sources of air pollution. A major problem has been cloud cover that has persisted over the area of primary interest, the Chesapeake Bay. Work has been completed on mounting the shipboard transmissometer which will be used for investigations to relate the chlorophyll and suspended sediment content in the waters of the Lower Chesapeake Bay to ERTS-1 imagery. Water sampling, plankton analysis, and preparations for sea collection of water truth along the eastern continental shelf of the U.S. have been completed for use in comparisons with ERTS-1 data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, G.R.; Watson, J.T.
1993-05-01
One of the Tennessee Valley Authority`s (TVA`s) major goals is cleanup and protection of the waters of the Tennessee River system. Although great strides have been made, point source and nonpoint source pollution still affect the surface water and groundwater quality in the Tennessee Valley and nationally. Causes of this pollution are poorly operating wastewater treatment systems or the lack of them. Practical solutions are needed, and there is great interest and desire to abate water pollution with effective, simple, reliable and affordable wastewater treatment processes. In recognition of this need, TVA began demonstration of the constructed wetlands technology inmore » 1986 as an alternative to conventional, mechanical processes, especially for small communities. Constructed wetlands can be downsized from municipal systems to small systems, such as for schools, camps and even individual homes.« less
Using Microbial Source Tracking to Enhance Environmental Stewardship of Agriculture
NASA Astrophysics Data System (ADS)
Martin, Sherry; Rose, Joan; Flood, Matthew; Aw, Tiong; Hyndman, David
2016-04-01
Large scale agriculture relies on the application of chemical fertilizers and animal manure. It is well known that nutrients in excess of a plant's uptake and soil retention capacity can travel to nearby waterways via surface run-off and groundwater pathways, indirectly fertilizing these aquatic ecosystems. It has not yet been possible to distinguish water quality impacts of fertilizer from those derived from human and animal waste sources. However, new microbial source tracking (MST) tools allow specific identification of fecal pollution. Our objective was to examine pollution risks at the regional scale using MST, mapping and classification and regression tree analysis. We present results Bovine M2 genetic marker data from three flow regimes (baseflow, snow melt, and post-planting rain). Key landscape characteristics were related to the presence of the bovine markers and appear to be related to fate and transport. Impacts at this regional watershed scale will be discussed. Our research aims to identify the impacts of agricultural management practices on water quality by linking nutrient concentrations with fecal pollution sources. We hope that our research will provide guidance that will help improve water quality through agricultural best management practices to reduce pathogen contamination.
Wither, A; Greaves, J; Dunhill, I; Wyer, M; Stapleton, C; Kay, D; Humphrey, N; Watkins, J; Francis, C; McDonald, A; Crowther, J
2005-01-01
Achieving compliance with the mandatory standards of the 1976 Bathing Water Directive (76/160/EEC) is required at all U.K. identified bathing waters. In recent years, the Fylde coast has been an area of significant investments in 'point source' control, which have not proven, in isolation, to satisfactorily achieve compliance with the mandatory, let alone the guide, levels of water quality in the Directive. The potential impact of riverine sources of pollution was first confirmed after a study in 1997. The completion of sewerage system enhancements offered the potential for the study of faecal indicator delivery from upstream sources comprising both point sources and diffuse agricultural sources. A research project to define these elements commenced in 2001. Initially, a desk study reported here, estimated the principal infrastructure contributions within the Ribble catchment. A second phase of this investigation has involved acquisition of empirical water quality and hydrological data from the catchment during the 2002 bathing season. These data have been used further to calibrate the 'budgets' and 'delivery' modelling and these data are still being analysed. This paper reports the initial desk study approach to faecal indicator budget estimation using available data from the sewerage infrastructure and catchment sources of faecal indicators.
[Effect of antecedent dry period on water quality of urban storm runoff pollution].
Bian, Bo
2009-12-01
Identified the main factor influencing urban rainfall-runoff pollution provides a scientific basis for urban rainfall-runoff pollution control and management. Therefore, starting in May 2006, a study was conducted to characterize water quality from representative land uses types in Zhenjiang to analyse the effect of antecedent dry period on stormwater runoff quality. The results show that the beginning of rainfall, with the increase of antecedent dry periods, the percentages of less than 40 microm is increased, the correlation of the water quality parameters (TN, TP, Zn, Pb, Cu, TSS and COD) and antecedent dry period shows a significant positive correlation, dissolved pollutants in the initial period surface runoff is increased. These findings show that facilitating the recognition of antecedent dry periods is the main factor influencing the change in concentration and partitioning of pollutants to provide the scientific basis for non-point source pollution control and management.
Gumbo, B
2000-01-01
The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed.
NASA Astrophysics Data System (ADS)
Sunaryani, A.; Harsono, E.; Rustini, H. A.; Nomosatryo, S.
2018-02-01
Lake Toba is the largest lake in Indonesia utilized as a source of life-support for drinking and clean water, energy sources, aquaculture and tourism. Nowadays the water quality in Lake Toba has decreased due to the presence of excessive nutrient (nitrogen: N and phosphorus: P). This study aims to describe the spatial distribution of nutrient pollution and to develop a decision support tool for the identification and evaluation of nutrient pollution control in Lake Toba. Spatial distribution method was conducted by 2D-multi layers hydrodynamic model, while DPSIR Framework is used as a tool for the assessment. The results showed that the concentration of nutrient was low and tended to increase along the water depth, but nutrient concentration in aquaculture zones was very high and the trophic state index has reached eutrophic state. The principal anthropogenic driving forces were population growth and the development of aquaculture, livestock, agriculture, and tourism. The main environmental pressures showed that aquaculture and livestock waste are the most important nutrient sources (93% of N and 87% of P loads). State analysis showed that high nutrient concentration and increased algal growth lead to oxygen depletion. The impacts of these conditions were massive fish kills, loss of amenities and tourism value, also decreased usability of clean water supply. This study can be a useful information for decision-makers to evaluate nutrient pollution control. Nutrient pollution issue in Lake Toba requires the attention of local government and public society to maintain its sustainability.
Hydrological and pollution processes in mining area of Fenhe River Basin in China.
Yang, Yonggang; Meng, Zhilong; Jiao, Wentao
2018-03-01
The hydrological and pollution processes are an important science problem for aquatic ecosystem. In this study, the samples of river water, reservoir water, shallow groundwater, deep groundwater, and precipitation in mining area are collected and analyzed. δD and δ 18 O are used to identify hydrological process. δ 15 N-NO 3 - and δ 18 O-NO 3 - are used to identify the sources and pollution process of NO 3 - . The results show that the various water bodies in Fenhe River Basin are slightly alkaline water. The ions in the water mainly come from rock weathering. The concentration of SO 4 2- is high due to the impact of coal mining activity. Deep groundwater is significantly less affected by evaporation and human activity, which is recharged by archaic groundwater. There are recharge and discharge between reservoir water, river water, soil water, and shallow groundwater. NO 3 - is the main N species in the study area, and forty-six percent of NO 3 - -N concentrations exceed the drinking water standard of China (NO 3 - -N ≤ 10 mg/L content). Nitrification is the main forming process of NO 3 - . Denitrification is also found in river water of some river branches. The sources of NO 3 - are mainly controlled by land use type along the riverbank. NO 3 - of river water in the upper reaches are come from nitrogen in precipitation and soil organic N. River water in the lower reaches is polluted by a mixture of soil organic N and fertilizers. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Science Activities, 1995
1995-01-01
Presents a Project WET water education activity. Students demonstrate how everyone contributes to the pollution of a river as it flows through a watershed and recognize that everyone's "contribution" can be reduced. Student distinguish between point- and nonpoint-source pollution. (LZ)
Nonpoint Source Pollution: Darby Duck, the Aquatic Crusader
Understanding the characteristics of water, that precious resource we are trying to protect. And understanding how it interacts with other elements in the environment, some of which pollute it and cause problems for people and animals.
Gao, Jian; Zhang, Yuechong; Zhang, Meng; Zhang, Jingqiao; Wang, Shulan; Tao, Jun; Wang, Han; Luo, Datong; Chai, Fahe; Ren, Chun
2014-01-01
Beijing suffered from serious air pollution in October, 2011 with the occurrence of three continuous episodes. Here we analyze the pollution status of particulate matter, the relationship between the gaseous pollutants, physical and chemical properties of single particles, and the profile of water-soluble ions in PM2.5 during the three episodes. Regional and photochemically aged air masses, which were characterized as having high values of O3 and SO2, were hypothesized to have played a dominant role in the first episode. After mixing local air masses with freshly-emitted primary pollutants, the concentration of NO(x) continued to increase and the size of SO4(2-), NO3(-) and NH4(+) in the particle population continued to become smaller. The amount of elemental carbon-rich and organic carbon-rich particles in the scaled single particles (0.2-2 microm) and water-soluble K(+) in PM2.5 also increased in the episodes. All the available information suggests that the biomass or fuel burning sources in or around Beijing may have had a huge impact on the last two episodes.
Toxicological and chemical insights into representative source and drinking water in eastern China.
Shi, Peng; Zhou, Sicong; Xiao, Hongxia; Qiu, Jingfan; Li, Aimin; Zhou, Qing; Pan, Yang; Hollert, Henner
2018-02-01
Drinking water safety is continuously threatened by the emergence of numerous toxic organic pollutants (TOPs) in environmental waters. In this study, an approach integrating in vitro bioassays and chemical analyses was performed to explore toxicological profiles of representative source and drinking water from waterworks of the Yangtze River (Yz), Taihu Lake (Th), and the Huaihe River (Hh) basins in eastern China. Overall, 34 of 96 TOPs were detected in all water samples, with higher concentrations in both source and drinking water samples of Hh, and pollutant profiles also differed across different river basins. Non-specific bioassays indicated that source water samples of Hh waterworks showed higher genotoxicity and mutagenicity than samples of Yz and Th. An EROD assay demonstrated dioxin-like toxicity which was detected in 5 of 7 source water samples, with toxin concentration levels ranging from 62.40 to 115.51 picograms TCDD equivalents per liter of water (eq./L). PAHs and PCBs were not the main contributors to observed dioxin-like toxicity in detected samples. All source water samples induced estrogenic activities of 8.00-129.00 nanograms 17β-estradiol eq./L, and estrogens, including 17α-ethinylestradiol and estriol, contributed 40.38-84.15% of the observed activities in examined samples. While drinking water treatments efficiently removed TOPs and their toxic effects, and estrogenic activity was still observed in drinking water samples of Hh. Altogether, this study indicated that the representative source water in eastern China, especially that found in Hh, may negatively affect human health, a finding that demonstrates an urgent requirement for advanced drinking water treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
UTILIZATION OF LANDSCAPE INDICATORS TO MODEL WATERSHED IMPAIRMENT
Many water-bodies within the United States are contaminated by non-point source (NPS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic 13romses. One such NPS
pol...
EPA scientists evaluated sources of bromide and other inorganic pollutants impacting drinking water intakes on the Allegheny River in Pennsylvania to examine the potential impacts related to the treatment and disposal of oil & gas well produced wastewater.
The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...
Soil erosion following forest operations in the Southern Piedmont of central Alabama
Johnny M. Grace
2004-01-01
In recent years, nonpoint source pollution (NPS) has been recognized as one of the major threats to the nation's water quality. Clearly, forest operations such as harvesting and site preparation have the potential to have degrading impacts on forest water quality. However, there exists a gap in the understanding of the nature and extent of NPS pollution problems...
Soils as sinks or sources for diffuse pollution of the water cycle
NASA Astrophysics Data System (ADS)
Grathwohl, Peter
2010-05-01
Numerous chemical compounds have been released into the environment by human activities and can nowadays be found everywhere, i.e. in the compartments water, soil, and air, at the poles and in high mountains. Examples for a global distribution of toxic compounds are the persistent organic pollutants (PCB, dioxins, PAH, fluorinated surfactants and flame retardants, etc.: "the Stockholm dirty dozen") but also mercury and other metals. Many of these compounds reached a global distribution via the atmo¬sphere; others have been and are still directly applied to top soils at the large scale by agriculture or are released into groundwater at landfill sites or by discharge of treated or untreated waste waters. Sooner or later such compounds end up in the water cycle - often via an intermediate storage in soils. Pollutants in soils are leached by seepage waters, transferred to ground¬water, and transported to rivers via groundwater flow. Adsorbed compounds may be transported from soils into surface waters by erosion processes and will end up in the sediments. Diffuse pollution of the subsurface environment not only reflects the history of the economic development of the modern society but it is still ongoing - e.g. the number of organic pollutants released into the environment is increasing even though the con¬centrations may decrease compared to the past. Evidence shows that many compounds are persistent in the subsurface environment at large time scales (up to centuries). Thus polluted soils already are or may become a future source for pollution of adjacent compartments such as the atmosphere and groundwater. A profound understanding on how diffuse pollutants are stored and processed in the subsurface environment is crucial to assess their long term fate and transport at large scales. Thus integrated studies e.g. at the catchment scale and models are needed which couple not only the relevant compartments (soil - atmosphere - groundwater/surface waters) but also flow and reactive transport. Field observations must allow long-term monitoring (e.g. in hydrological observatories, TERENO etc.), new cross-compartment monitoring strategies need to be applied, and massive parallel numerical codes for prediction of reactive transport of potential water pollutants at catchment scale have to be developed. This is also a prerequisite to assess the impact of climate change as well as land use change on future surface and groundwater quality.
Zhang, Kai; Shi, Huahong; Peng, Jinping; Wang, Yinghui; Xiong, Xiong; Wu, Chenxi; Lam, Paul K S
2018-07-15
The pollution of marine environments and inland waters by plastic debris has raised increasing concerns worldwide in recent years. China is the world's largest developing country and the largest plastic producer. In this review, we gather available information on microplastic pollution in China's inland water systems. The results show that microplastics are ubiquitous in the investigated inland water systems, and high microplastic abundances were observed in developed areas. Although similar sampling and analytical methods were used for microplastic research in inland water and marine systems, methods of investigation should be standardized in the future. The characteristics of the detected microplastics suggest secondary sources as their major sources. The biological and ecological effects of microplastics have been demonstrated, but their risks are difficult to determine at this stage due to the discrepancy between the field-collected microplastics and microplastics used in ecotoxicological studies. Although many laws and regulations have already been established to manage and control plastic waste in China, the implementation of these laws and regulations has been ineffective and sometimes difficult. Several research priorities are identified, and we suggest that the Chinese government should be more proactive in tackling plastic pollution problems to protect the environment and fulfill international responsibilities. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhuo, Dong; Liu, Liming; Yu, Huirong; Yuan, Chengcheng
2018-01-01
China's intensive agriculture has led to a broad range of adverse impacts upon ecosystems and thereby caused environmental quality degradation. One of the fundamental problems that face land managers when dealing with agricultural nonpoint source (NPS) pollution is to quantitatively assess the NPS pollution loads from different sources at a national scale. In this study, export scenarios and geo-spatial data were used to calculate the agricultural NPS pollution loads of nutrient, pesticide, plastic film residue, and crop straw burning in China. The results provided the comprehensive and baseline knowledge of agricultural NPS pollution from China's arable farming system in 2014. First, the nitrogen (N) and phosphorus (P) emission loads to water environment were estimated to be 1.44 Tg N and 0.06 Tg P, respectively. East and south China showed the highest load intensities of nutrient release to aquatic system. Second, the amount of pesticide loss to water of seven pesticides that are widely used in China was estimated to be 30.04 tons (active ingredient (ai)). Acetochlor was the major source of pesticide loss to water, contributing 77.65% to the total loss. The environmental impacts of pesticide usage in east and south China were higher than other parts. Third, 19.75% of the plastic film application resided in arable soils. It contributed a lot to soil phthalate ester (PAE) contamination. Fourth, 14.11% of straw produce were burnt in situ, most occurring in May to July (post-winter wheat harvest) in North China Plain and October to November (post-rice harvest days) in southeast China. All the above agricultural NPS pollution loadings were unevenly distributed across China. The spatial correlations between pollution loads at land unit scale were also estimated. Rising labor cost in rural China might be a possible explanation for the general positive correlations of the NPS pollution loads. It also indicated a co-occurred higher NPS pollution loads and a higher human exposure risk in eastern regions. Results from this research might provide full-scale information on the status and spatial variation of various agricultural NPS pollution loads for policy makers to control the NPS pollution in China.
Dudarev, Alexey A.; Dushkina, Eugenia V.; Sladkova, Yuliya N.; Alloyarov, Pavel R.; Chupakhin, Valery S.; Dorofeyev, Vitaliy M.; Kolesnikova, Tatjana A.; Fridman, Kirill B.; Evengard, Birgitta; Nilsson, Lena M.
2013-01-01
Background Poor state of water supply systems, shortage of water purification facilities and disinfection systems, low quality of drinking water generally in Russia and particularly in the regions of the Russian Arctic, Siberia and Far East have been defined in the literature. However, no standard protocol of water security assessment has been used in the majority of studies. Study design and methods Uniform water security indicators collected from Russian official statistical sources for the period 2000–2011 were used for comparison for 18 selected regions in the Russian Arctic, Siberia and Far East. The following indicators of water security were analyzed: water consumption, chemical and biological contamination of water reservoirs of Categories I and II of water sources (centralized – underground and surface, and non-centralized) and of drinking water. Results Water consumption in selected regions fluctuated from 125 to 340 L/person/day. Centralized water sources (both underground and surface sources) are highly contaminated by chemicals (up to 40–80%) and biological agents (up to 55% in some regions), mainly due to surface water sources. Underground water sources show relatively low levels of biological contamination, while chemical contamination is high due to additional water contamination during water treatment and transportation in pipelines. Non-centralized water sources are highly contaminated (both chemically and biologically) in 32–90% of samples analyzed. Very high levels of chemical contamination of drinking water (up to 51%) were detected in many regions, mainly in the north-western part of the Russian Arctic. Biological contamination of drinking water was generally much lower (2.5–12%) everywhere except Evenki AO (27%), and general and thermotolerant coliform bacteria predominated in drinking water samples from all regions (up to 17.5 and 12.5%, correspondingly). The presence of other agents was much lower: Coliphages – 0.2–2.7%, Clostridia spores, Giardia cysts, pathogenic bacteria, Rotavirus – up to 0.8%. Of a total of 56 chemical pollutants analyzed in water samples from centralized water supply systems, 32 pollutants were found to be in excess of hygienic limits, with the predominant pollutants being Fe (up to 55%), Cl (up to 57%), Al (up to 43%) and Mn (up to 45%). Conclusion In 18 selected regions of the Russian Arctic, Siberia and Far East Category I and II water reservoirs, water sources (centralized – underground, surface; non-centralized) and drinking water are highly contaminated by chemical and biological agents. Full-scale reform of the Russian water industry and water security system is urgently needed, especially in selected regions. PMID:24350065
Glossary of Water Resource Terms.
ERIC Educational Resources Information Center
Titelbaum, Olga Adler
Twelve reference sources were used in the compilation of this glossary of water pollution control terminology. Definitions for 364 words, acronyms, and phrases are included with cross references. (KP)
STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS
Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include food sources for animals, water sources for plants, pollution sources...
Fu, Guo-Wei
2013-08-01
Suggestions on Carrying Out Strict Management Regulations of Water Resources were promulgated by the State Council in January, 2012. This is an important issue which has drawn public attention. I strongly support the principle and spirit of the regulations, as well as the request that governments above the county level bear the overall management responsibility. However, as to the technical route of and countermeasures for achieving strict management, several problems exist in reality. Relevant opinions and suggestions are given in this paper (the paper focuses exclusively on drinking water sources which are most in need of strict protection and management). Main opinions are as follows. (1) The sources of drinking water meeting the Class II standard in Surface Water Environment Quality Standards (GB 3838-2002) may not necessarily be unpolluted; (2) A necessary condition for protecting drinking water sources is that the effluents of enterprises' workshops discharged into the conservation zone should meet the regulation on the permitted maximum concentration of priority-I pollutants defined in the Integrated Wastewater Discharge Standard (GB 8978-1996); (3) There is a strong doubt about whether Class II standard in GB 3838-2002 for priority I pollutants reflects environmental background values in water.
Xu, Hua-Shan; Xu, Zong-Xue; Liu, Pin
2013-03-01
One of the key techniques in establishing and implementing TMDL (total maximum daily load) is to utilize hydrological model to quantify non-point source pollutant loads, establish BMPs scenarios, reduce non-point source pollutant loads. Non-point source pollutant loads under different years (wet, normal and dry year) were estimated by using SWAT model in the Zhangweinan River basin, spatial distribution characteristics of non-point source pollutant loads were analyzed on the basis of the simulation result. During wet years, total nitrogen (TN) and total phosphorus (TP) accounted for 0.07% and 27.24% of the total non-point source pollutant loads, respectively. Spatially, agricultural and residential land with steep slope are the regions that contribute more non-point source pollutant loads in the basin. Compared to non-point source pollutant loads with those during the baseline period, 47 BMPs scenarios were set to simulate the reduction efficiency of different BMPs scenarios for 5 kinds of pollutants (organic nitrogen, organic phosphorus, nitrate nitrogen, dissolved phosphorus and mineral phosphorus) in 8 prior controlled subbasins. Constructing vegetation type ditch was optimized as the best measure to reduce TN and TP by comparing cost-effective relationship among different BMPs scenarios, and the costs of unit pollutant reduction are 16.11-151.28 yuan x kg(-1) for TN, and 100-862.77 yuan x kg(-1) for TP, which is the most cost-effective measure among the 47 BMPs scenarios. The results could provide a scientific basis and technical support for environmental protection and sustainable utilization of water resources in the Zhangweinan River basin.
Risk analysis of emergent water pollution accidents based on a Bayesian Network.
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie
2016-01-01
To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mestdagh, Inge; Bonicelli, Bernard; Laplana, Ramon; Roettele, Manfred
2009-01-01
Based on the results and lessons learned from the TOPPS project (Training the Operators to prevent Pollution from Point Sources), a proposal on a sustainable strategy to avoid point source pollution from Plant Protection Products (PPPs) was made. Within this TOPPS project (2005-2008), stakeholders were interviewed and research and analysis were done in 6 pilot catchment areas (BE, FR, DE, DK, IT, PL). Next, there was a repeated survey on operators' perception and opinion to measure changes resulting from TOPPS activities and good and bad practices were defined based on the Best Management Practices (risk analysis). Aim of the proposal is to suggest a strategy considering the differences between countries which can be implemented on Member State level in order to avoid PPP pollution of water through point sources. The methodology used for the up-scaLing proposal consists of the analysis of the current situation, a gap analysis, a consistency analysis and organisational structures for implementation. The up-scaling proposal focuses on the behaviour of the operators, on the equipment and infrastructure available with the operators. The proposal defines implementation structures to support correct behaviour through the development and updating of Best Management Practices (BMPs) and through the transfer and the implementation of these BMPs. Next, the proposal also defines requirements for the improvement of equipment and infrastructure based on the defined key factors related to point source pollution. It also contains cost estimates for technical and infrastructure upgrades to comply with BMPs.
Xu, Tao; Wang, Fei; Guo, Qiang; Nie, Xiao-Qian; Huang, Ying-Ping; Chen, Jun
2014-04-01
Transfer characteristics of heavy metals and their evaluation of potential risk were studied based on determining concentration of heavy metal in soils from water-level-fluctuating zone (altitude:145-175 m) and bank (altitude: 175-185 m) along Xiangxi River, Three Gorges Reservoir area. Factor analysis-multiple linear regression (FA-MLR) was employed for heavy metal source identification and source apportionment. Results demonstrate that, during exposing season, the concentration of soil heavy metals in water-level-fluctuation zone and bank showed the variation, and the concentration of soil heavy metals reduced in shallow soil, but increased in deep soil at water-level-fluctuation zone. However, the concentration of soil heavy metals reduced in both shallow and deep soil at bank during the same period. According to the geoaccumulation index,the pollution extent of heavy metals followed the order: Cd > Pb > Cu > Cr, Cd is the primary pollutant. FA and FA-MLR reveal that in soils from water-level-fluctuation zone, 75.60% of Pb originates from traffic, 62.03% of Cd is from agriculture, 64.71% of Cu and 75.36% of Cr are from natural rock. In soils from bank, 82.26% of Pb originates from traffic, 68.63% of Cd is from agriculture, 65.72% of Cu and 69.33% of Cr are from natural rock. In conclusion, FA-MLR can successfully identify source of heavy metal and compute source apportionment of heavy metals, meanwhile the transfer characteristic is revealed. All these information can be a reference for heavy metal pollution control.
Water Quality Protection from Nutrient Pollution: Case Analysis
Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, incre...
Water resource managers have been successful in developing approaches for reducing nonpoint source pollution in newly developing urban areas. Issues become increasingly complex, however, when managers are faced with the challenge of reducing nonpoint source impacts within previo...
Water resource managers have been successful in developing approaches for reducingnonpoint source pollution in newly developing urban areas. Isssues become increasingly complex, however, when managers are faced with the challenge of reducing nonpoint source impacts within previou...
40 CFR 420.96 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Acid Pickling...) Sulfuric acid pickling (spent acid solutions and rinse waters)—(1) Rod, wire, coil. Subpart I Pollutant or... operations. (b) Hydrochloric acid pickling (spent acid solutions and rinse waters)—(1) Rod, wire, coil...
33 CFR 133.23 - Investigation to determine the source and responsible party.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Investigation to determine the source and responsible party. 133.23 Section 133.23 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL...
33 CFR 133.23 - Investigation to determine the source and responsible party.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Investigation to determine the source and responsible party. 133.23 Section 133.23 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL...
33 CFR 133.23 - Investigation to determine the source and responsible party.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Investigation to determine the source and responsible party. 133.23 Section 133.23 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL...
33 CFR 133.23 - Investigation to determine the source and responsible party.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Investigation to determine the source and responsible party. 133.23 Section 133.23 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL...
33 CFR 133.23 - Investigation to determine the source and responsible party.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Investigation to determine the source and responsible party. 133.23 Section 133.23 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL...
Impacts of land management practices on stream microbial loading in Northeast GA
Identification of dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and for protecting water resources. The objective of this study was to examine the relative abundance of molecular fecal markers from two cattle farm...
77 FR 6544 - Humanitarian Awards Pilot Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-08
..., medical diagnostics, water purification, more nutritious or higher-yield crops, pollution reduction, and... water filters, sterilization devices, and cleaner sources of energy for light, heat, cooking, or other...
Protecting Our Water Resources.
ERIC Educational Resources Information Center
Jewett, Jon
1996-01-01
Describes the watershed management approach for preserving water resources. Considers pollution sources ranging from industrial discharge to agricultural leachate and runoff and evaluates its impact on the total watershed environment. (JRH)
Levi, Yves
2009-06-01
Analytical laboratories can now identify and quantify an impressive number of "new" pollutants present at very low concentrations in water. Nanotechnology products are a new cause for concern. " Emerging " pollutants are defined as substances that were not previously sought or detected (plasticizers, drugs, chlorination byproducts, persistant organic pollutants, ...) and that are now being identified in many continental water resources. The biological actions of these substances, alone and in combination with other more " classical "pollutants, include such effects as endocrine disruption. Contaminants may be present in surface and groundwater resources, may be generated during treatment, and are found in drinking water distribution networks. In industrialized countries, the main source of emerging pollutants for humans is not water, but rather food, cosmetics and air. Urgent measures are needed to protect biodiversity and human health, including quantitative risk assessment, toxicologic studies of xenobiotic mixtures and chronic effects, strategies to protect water resources, technological advances in wastewater treatment, reliable potable water production, and new inert materials for transport and storage. Good sanitation and safe tap water are major contributors to human health and well-being Major efforts and investments are needed, based on rigorous, objective assessments of risks for the environment and public health.
Sherif, Mohsen
2010-07-01
Environmental problems and their potential impacts on public health vary in scale and time depending on the level and nature of pollutants. Although water is regarded as the source of all kinds of life on earth, it also acts as an efficient carrier of pollutants. Contamination of drinking water, agricultural water, or recreational water by infectious pathogens, chemical pollutants, or others can have significant impacts on public health. During the past few decades, waterborne diseases continued to spread and the health risks continued to increase. The correlation between water resources and public health is more evident in arid regions. This article discusses the availability of water resources in the Gulf Cooperation Council countries and elaborates on the possible impacts of water resources on public health. It emphasizes the importance of preservation of water quality and prevention of waterborne diseases, which could be achieved through a coordinated effort from diverse groups and disciplines.
Zhu, Lin; Li, Xun; Zhang, Chen; Duan, Zengqiang
2017-04-01
Heavily polluted sediment is becoming an important part of water pollution, and this situation is particularly acute in developing countries. Sediment has gradually changed from being the pollution adsorbent to the release source and has influenced the water environment and public health. In this study, we evaluated the pollutant distribution in sediment in a heavily polluted river and agitated the sediment in a heavily polluted river to re-suspend it and re-release pollutants. We found that the levels of chemical oxygen demand (COD), NH₄⁺-N, total nitrogen (TN), and total phosphorus (TP) in overlying water were significantly increased 60 min after agitation. The distribution of the pollutants in the sediment present high concentrations of pollutants congregated on top of the sediment after re-settling, and their distribution decreased with depth. Before agitation, the pollutants were randomly distributed throughout the sediment. Secondly, deep sediment aeration equipment (a micro-porous air diffuser) was installed during the process of sedimentation to study the remediation of the sediment by continuous aeration. The results revealed that deep sediment aeration after re-suspension significantly promoted the degradation of the pollutants both in overlying water and sediment, which also reduced the thickness of the sediment from 0.9 m to 0.6 m. Therefore, sediment aeration after suspension was efficient, and is a promising method for sediment remediation applications.
Research to Inform Nutrient Thresholds and Prioritization of ...
The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two important elements of EPA’s framework for managing nutrient pollution. The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two important elements of EPA’s framework for managing nutrient pollution.
The sources of trace element pollution of dry depositions nearby a drinking water source.
Guo, Xinyue; Ji, Hongbing; Li, Cai; Gao, Yang; Ding, Huaijian; Tang, Lei; Feng, Jinguo
2017-02-01
Miyun Reservoir is one of the most important drinking water sources for Beijing. Thirteen atmospheric PM sampling sites were established around this reservoir to analyze the mineral composition, morphological characteristics, element concentration, and sources of atmospheric PM pollution, using transmission electron microscope, X-ray diffraction, and inductively coupled plasma mass spectrometry analyses. The average monthly dry deposition flux of aerosols was 15.18 g/m 2 , with a range of 5.78-47.56 g/m 2 . The maximum flux season was winter, followed by summer, autumn, and spring. Zn and Pb pollution in this area was serious, and some of the sample sites had Cr, Co, Ni, and Cu pollution. Deposition fluxes of Zn/Pb in winter and summer reached 99.77/143.63 and 17.04/33.23 g/(hm 2 month), respectively. Principal component analysis showed two main components in the dry deposition; the first was Cr, Co, Ni, Cu, and Zn, and the other was Pb and Cd. Principal sources of the trace elements were iron mining and other anthropogenic activities in the surrounding areas and mountainous area north of the reservoir. Mineralogy analysis and microscopic conformation results showed many iron minerals and some unweathered minerals in dry deposition and atmospheric particulate matter, which came from an iron ore yard in the northern mountainous area of Miyun County. There was possible iron-rich dry deposition into Miyun Reservoir, affecting its water quality and harming the health of people living in areas around the reservoir and Beijing.
Isotopic Tracers for Delineating Non-Point Source Pollutants in Surface Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davisson, M L
2001-03-01
This study tested whether isotope measurements of surface water and dissolved constituents in surface water could be used as tracers of non-point source pollution. Oxygen-18 was used as a water tracer, while carbon-14, carbon-13, and deuterium were tested as tracers of DOC. Carbon-14 and carbon-13 were also used as tracers of dissolved inorganic carbon, and chlorine-36 and uranium isotopes were tested as tracers of other dissolved salts. In addition, large databases of water quality measurements were assembled for the Missouri River at St. Louis and the Sacramento-San Joaquin Delta in California to enhance interpretive results of the isotope measurements. Muchmore » of the water quality data has been under-interpreted and provides a valuable resource to investigative research, for which this report exploits and integrates with the isotope measurements.« less
Lamendella, R.; Domingo, J.W.S.; Oerther, D.B.; Vogel, J.R.; Stoeckel, D.M.
2007-01-01
We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards. ?? 2006 Federation of European Microbiological Societies.
NASA Astrophysics Data System (ADS)
Vierheilig, Julia; Reischer, Georg H.; Farnleitner, Andreas H.
2010-05-01
Characterisation of microbial faecal hazards in water is a fundamental aspect for target-orientated water resources management to achieve appropriate water quality for various purposes like water supply or agriculture and thus to minimize related health risks. Nowadays the management of water resources increasingly demands detailed knowledge on the extent and the origin of microbial pollution. Cultivation of standard faecal indicator bacteria, which has been used for over a century to test the microbiological water quality, cannot sufficiently meet these challenges. The abundant intestinal bacterial populations are very promising alternative targets for modern faecal indication systems. Numerous assays for the detection of genetic markers targeting source-specific populations of the phylum Bacteroidetes have been developed in recent years. In some cases markers for total faecal pollution were also proposed in order to relate source-specific marker concentrations to general faecal pollution levels. However, microbial populations in intestinal and non-intestinal systems exhibit a dazzling array of diversity and molecular analysis of microbial faecal pollution has been based on a fragmentary puzzle of very limited sequence information. The aim of this study was to test the available qPCR-based methods detecting genetic Bacteroidetes markers for total faecal pollution in terms of their value and specificity as indicators of faecal pollution. We applied the AllBac (Layton et al., 2006) the BacUni (Kildare et al., 2007) and the Bacteroidetes (Dick and Field, 2004) assays on soil DNA samples. Samples were collected in well characterised karst spring catchments in Austria's Eastern Calcareous Alps. They were at various levels of altitude between 800 and 1800 meters above sea level and from several different habitats (woodland, alpine pastures, krummholz). In addition we tried to choose sampling sites representing a presumptive gradient of faecal pollution levels. For example sites with obvious faecal influence (e.g. right next to a cowpat) were included as well as more pristine sites without faecal influence from large animals (e.g. fenced areas). Surprisingly, results from investigations with the AllBac assay showed concentrations of the total faecal marker in soil in the range of 106 to 109 Marker Equivalents per g of soil, which is equal or only slightly lower than the concentrations of this particular marker in faeces or raw sewage. Preliminary results from the other tested assays seem to confirm that the targeted markers are also highly abundant in soils. In addition, the markers were present in comparable concentrations in soils from pristine locations as well as in soils under the potential influence of faeces giving a strong indication that these methods also target non-intestinal, autochthonous soil populations. In contrast, source-specific markers (ruminant-specific BacR and human-specific BacH, Reischer et al., 2007, 2006) could only be detected in 30 to 50% of the soil samples at concentrations close to the detection limit, which is at least four orders of magnitude lower than in faecal samples of the respective target sources, ruminant animals and humans. The achieved results call the applicability of the proposed qPCR-based assays for total faecal pollution into question. In fact the assays do not seem to be specific for intestinal Bacteroidetes populations at all and the respective marker concentration levels in pristine soils negate their applicability in the investigated areas. This study also emphasizes the need to test the specificity and sensitivity of qPCR-based assays for total faecal pollution on the local level and especially against non-intestinal environmental samples, which might contribute to marker levels in the aquatic compartment. In conclusion there is a strong demand for marker-based detection techniques for total faecal pollution in water quality monitoring and risk assessment but currently none of the tested assays seems to meet the methodical requirements.
NASA Astrophysics Data System (ADS)
Unlu, S.; Alpar, B.
2009-04-01
Under great anthropogenic pressure due to the substantial freshwater input from the surrounding industrial and agricultural areas, especially central and middle-Eastern Europe, the Black Sea basin is ranked among the most ecologically threatened water bodies of the world. Oil levels are unacceptable in many coastal areas perilously close to polluted harbors and many river mouths; the places presenting the highest levels of bio-diversity and having a high socio-economic importance due to human use of coastal resources. There are about sixty sources of pollution which resulted in "hot spots" having disastrous impacts on sensitive marine and coastal areas and needing immediate priorities for action. Beyond such land-based sources, trans-boundary pollution sources from Black Sea riparian countries, heavy maritime traffic, particularly involving petroleum transports and fishing boats, and the improper disposal of ballast and bilge waters and solid waste are also important marine sources of pollution. Found in fossil fuels such as Polycyclic Aromatic Hydrocarbons are generated by incomplete combustion of organic matter. In order to estimate their distribution in sediment and their sources, they were monitored from the bottom samples offshore the Zonguldak industry region, one of the most polluted spots in the Turkish Black Sea. There the budget of pollutants via rivers is not precisely known due to an evident lack of data on chemical and granulometric composition of the river runoff and their fluxes. Therefore the marine sediments, essential components of marine ecosystems, are very important in our estimating the degree of the damage given to the ecosystem by such inputs. Realization of the sources and transport of these contaminants will be a critical tool for future management of the Zonguldak industry region and its watershed. The sea bottom in study area is composed of mainly sand and silt mixtures with small amount of clay. Geochemical analyses have shown that oil contamination was dominated in near-shore sediments. Their spatial distributions over the shelf area make an estimation of possible pollution sources and their transportation routes possible. Sea port activities, industrial inputs and partly maritime petroleum transport are the main sources of pollutants. They are under the control of the longshore currents supplied with river alluvium and coastal abrasion material.
Suspended sediment is a major non-point source pollutant of surface waters. Best management practices (BMPs) and current landuse decisions may not be sufficient to protect water quality in a changing climate, as a result of a loss of efficiency at reducing suspended sedimen...
Water Pollution Search | ECHO | US EPA
ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.
Dashboard and Water Pollution Search Comparison.png ...
ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.
NASA Astrophysics Data System (ADS)
Malsy, Marcus; Reder, Klara; Flörke, Martina
2014-05-01
Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across regions, and across sectors demand for an integrated approach to assess main causes of water quality degradation.
Substance flow analysis as a tool for urban water management.
Chèvre, N; Guignard, C; Rossi, L; Pfeifer, H-R; Bader, H-P; Scheidegger, R
2011-01-01
Human activity results in the production of a wide range of pollutants that can enter the water cycle through stormwater or wastewater. Among others, heavy metals are still detected in high concentrations around urban areas and their impact on aquatic organisms is of major concern. In this study, we propose to use a substance flow analysis as a tool for heavy metals management in urban areas. We illustrate the approach with the case of copper in Lausanne, Switzerland. The results show that around 1,500 kg of copper enter the aquatic compartment yearly. This amount contributes to sediment enrichment, which may pose a long-term risk for benthic organisms. The major sources of copper in receiving surface water are roofs and catenaries of trolleybuses. They represent 75% of the total input of copper into the urban water system. Actions to reduce copper pollution should therefore focus on these sources. Substance flow analysis also highlights that copper enters surface water mainly during rain events, i.e., without passing through any treatment procedure. A reduction in pollution could also be achieved by improving stormwater management. In conclusion, the study showed that substance flow analysis is a very effective tool for sustainable urban water management.
NASA Technical Reports Server (NTRS)
Jensen, L. D.
1972-01-01
The characteristics and effects of industrial waste pollution in the Chesapeake Bay are discussed. The sources of inorganic and organic pollution entering the bay are described. The four types of pollutants are defined as: (1) inorganic chemical wastes, (2) naturally occurring organic wastes, (3) synthetic organic wastes (exotics) and (4) thermal effluents. The ecological behavior of industrial wastes in the surface waters is analyzed with respect to surface film phenomena, interfacial phenomena, and benthis phenomena
Water Biosensor Challenge to Address Toxicity of Water
An ongoing concern for water treatment systems and resource managers is the need to monitor for the presence of increasing number of pollutants from agricultural, municipal, and industrial outfalls that are present in U.S. source waters. The associated environmental compounds can...
Code of Federal Regulations, 2010 CFR
2010-07-01
... BATTERY MANUFACTURING POINT SOURCE CATEGORY General Provisions § 461.1 Applicability. This part applies to any battery manufacturing plant that discharges or may discharge a pollutant to waters of the United States or that introduces pollutants to a publicly owned treatment works. Battery manufacturing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... BATTERY MANUFACTURING POINT SOURCE CATEGORY General Provisions § 461.1 Applicability. This part applies to any battery manufacturing plant that discharges or may discharge a pollutant to waters of the United States or that introduces pollutants to a publicly owned treatment works. Battery manufacturing...
40 CFR 463.14 - New source performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1 Within the range...
40 CFR 463.14 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1 Within the range...
NASA Astrophysics Data System (ADS)
Dai, Aiquan; Li, Keqiang; Ding, Dongsheng; Li, Yan; Liang, Shengkang; Li, Yanbin; Su, Ying; Wang, Xiulin
2015-12-01
The equal percent removal (EPR) method, in which pollutant reduction ratio was set as the same in all administrative regions, failed to satisfy the requirement for water quality improvement in the Bohai Sea. Such requirement was imposed by the developed Coastal Pollution Total Load Control Management. The total maximum allocated load (TMAL) of nitrogen pollutants in the sea-sink source regions (SSRs) around the Bohai Rim, which is the maximum pollutant load of every outlet under the limitation of water quality criteria, was estimated by optimization-simulation method (OSM) combined with loop approximation calculation. In OSM, water quality is simulated using a water quality model and pollutant load is calculated with a programming model. The effect of changes in pollutant loads on TMAL was discussed. Results showed that the TMAL of nitrogen pollutants in 34 SSRs was 1.49×105 ton/year. The highest TMAL was observed in summer, whereas the lowest in winter. TMAL was also higher in the Bohai Strait and central Bohai Sea and lower in the inner area of the Liaodong Bay, Bohai Bay and Laizhou Bay. In loop approximation calculation, the TMAL obtained was considered satisfactory for water quality criteria as fluctuation of concentration response matrix with pollutant loads was eliminated. Results of numerical experiment further showed that water quality improved faster and were more evident under TMAL input than that when using the EPR method
NASA Astrophysics Data System (ADS)
Lyubimova, Tatyana; Lepikhin, Anatoly; Parshakova, Yanina; Tiunov, Alexey
2016-04-01
Today, the potential impact of extremely high floods, which in the last years have become a rather frequent weather-related disaster, is the problem of primary concern. In studies of the potential impact of floods the emphasis is placed first of all on the estimation of possible flood zones and the analysis of the flow regimes in these zones. However, in some cases the hydrochemical parameters related to changes in the chemical composition of water are more important than the hydraulic parameters. It is generally believed that the higher is the flow rate, the more intensive is the process of dissolution, i.e. the lower is the concentration of limiting contaminants in water. However, this statement is valid provided that flooding does not activate new sources of water pollution such as contaminated floodplain water bodies located in the vicinity of water supply systems. Being quite reliable and safe at small and moderate discharges, in the case of extremely high level of river waters they become intensive sources of water pollution, essentially limiting the water consumption schedule for downstream water consumers. It should be noted that compared to the well-studied mechanisms of waste discharge due to failure of hydraulic engineering structures by flood waves, the mechanisms of pollutant washout from the contaminated floodplain water bodies by the flood waves is still poorly understood. We analyze the impacts of such weather-related events on the quality of water in the water intake system, taking as an example, the section of the Vyatka River located in the Prikamskaya lowland of the Russian Federation. The risk of river pollution due to washout from the contaminated floodplain water bodies during high floods is studied by hydrodynamical modeling in the framework of combined approach using one-, two- and three-dimensional hydrodynamic models are implemented and by in situ measurements. It is shown that during high floods the removal of pollutants from the contaminated floodplain water bodies takes place. The washout process includes two stages. The first rapid stage lasts about two hours, during this stage the upper layer is washed out. During the second, longer stage, the concentration of contaminant in the floodplain water body remains nearly constant. The maximal concentration of contaminant in the river in the vicinity of water intake located 21 kilometers downstream is attained in 9 hours from the beginning of the flood; it can become several times larger than acceptable concentration. The calculations and in-situ measurements have also shown that the primary peak of contaminant concentration near the water intake is followed by a smaller second peak related to the contaminant propagation through inundated floodplain. After the second peak the concentration slowly decreases and reaches acceptable values in 30-40 hours. Thus, during high floods, contaminated floodplain water bodies located near drinking water supply systems can become new sources of water pollution which has to be taken into account in downstream water consumption schedule. This work was supported by Russian Science Foundation (grant 14-21-00090).
Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping
2018-03-01
The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide useful information for the identification of highly polluted areas, and aid the development of integrated watershed management system in the drinking water resource area.
NASA Astrophysics Data System (ADS)
Tsai, Ying I.; Sopajaree, Khajornsak; Chotruksa, Auranee; Wu, Hsin-Ching; Kuo, Su-Ching
2013-10-01
PM10 aerosol was collected between February and April 2010 at an urban site (CMU) and an industrial site (TOT) in Chiang Mai, Thailand, and characteristics and provenance of water-soluble inorganic species, carboxylates, anhydrosugars and sugar alcohols were investigated with particular reference to air quality, framed as episodic or non-episodic pollution. Sulfate, a product of secondary photochemical reactions, was the major inorganic salt in PM10, comprising 25.9% and 22.3% of inorganic species at CMU and TOT, respectively. Acetate was the most abundant monocarboxylate, followed by formate. Oxalate was the dominant dicarboxylate. A high acetate/formate mass ratio indicated that primary traffic-related and biomass-burning emissions contributed to Chiang Mai aerosols during episodic and non-episodic pollution. During episodic pollution carboxylate peaks indicated sourcing from photochemical reactions and/or directly from traffic-related and biomass burning processes and concentrations of specific biomarkers of biomass burning including water-soluble potassium, glutarate, oxalate and levoglucosan dramatically increased. Levoglucosan, the dominant anhydrosugar, was highly associated with water-soluble potassium (r = 0.75-0.79) and accounted for 93.4% and 93.7% of anhydrosugars at CMU and TOT, respectively, during episodic pollution. Moreover, levoglucosan during episodic pollution was 14.2-21.8 times non-episodic lows, showing clearly that emissions from biomass burning are the major cause of PM10 episodic pollution in Chiang Mai. Additionally, the average levoglucosan/mannosan mass ratio during episodic pollution was 14.1-14.9, higher than the 5.73-7.69 during non-episodic pollution, indicating that there was more hardwood burning during episodic pollution. Higher concentrations of glycerol and erythritol during episodic pollution further indicate that biomass burning activities released soil biota from forest and farmland soils.
Geogenic fluoride and arsenic contamination in the groundwater environments in Tanzania
NASA Astrophysics Data System (ADS)
Bhattacharya, Prosun; Lesafi, Fina; Filemon, Regina; Ligate, Fanuel; Ijumulana, Julian; Mtalo, Felix
2016-04-01
Adequate, safe and accessible drinking water is an important aspect to human health worldwide. Understanding this importance, the Tanzanian Government has initiated a number of programmes to ensure access to high quality water by the citizens. However, elevated concentration of geochemical pollutants in many drinking water sources pose a serious challenge to water suppliers and users in the country. Fluoride is a widespread drinking water contaminant of geogenic origin occuring in both surface- and groundwater around volcanic mountains and many parts within the East African Rift Valley in regions including Arusha (10 mg/L), Shinyanga (2.9 mg/L) and Singida (1.8 mg/L). An estimated 90% of the population living along the Rift Valley region are affected by dental or skeletal fluorosis and bone crippling because of long term exposure to very high levels of fluoride in drinking water sources. In the mining areas within Lake Victoria basin, groundwater wit elevated concentrations of arsenic has been discovered over an extended area. Most of these geochemical and naturally occurring drinking water pollutants are patchy with uncertainities in their spatial and temporal distribution patterns. The adverse health effects of skin disorder and cancer due to an elevated As concentration are reported from the North Mara gold and Geita mining areas in the Lake Victoria basin. About 30% of the water sources used for drinking in Tanzania exceed the WHO guideline values of fluoride (1.5 mg/L) and arsenic (10 μg/L). There is a scarcity of baseline information on the water quality data especially on geogenic contaminants in the groundwater and surface water as potable sources. This information is crucial in exploring sources of safe drinking water aquifers, associated human health risks of fluoride and arsenic pollution. using Laboratory based studies during the past two decades have shown promising results on the removal of fluoride and arsenic using locally available adsorbent materials such as pumice, bauxite, ferralsols and bone char. Developing innovative technologies, pilot-scale implementation and scaling-up water purification based on the locally available adsorbents is thus necessary to safeguard the public health for communities exposed to high levels of fluoride and arsenic in drinking water.
Building Assessment Survey and Evaluation Study: Summarized Data - Test Space Pollutant Sources
information collected regarding sources that may have potential impact on the building in terms of indoor air quality including sources such as past or current water damage, pesticide application practices, special use spaces, etc.
Microbial source tracking in shellfish harvesting waters in the Gulf of Nicoya, Costa Rica.
Symonds, E M; Young, S; Verbyla, M E; McQuaig-Ulrich, S M; Ross, E; Jiménez, J A; Harwood, V J; Breitbart, M
2017-03-15
Current microbial water quality monitoring is generally limited to culture-based measurements of fecal indicator bacteria (FIB). Given the many possible sources of fecal pollution within a watershed and extra-intestinal FIB reservoirs, it is important to determine source(s) of fecal pollution as a means to improve water quality and protect public health. The principal objective of this investigation was to characterize the microbial water quality of shellfish harvesting areas in the Gulf of Nicoya, Costa Rica during 2015. In order to achieve this objective, the specificity and sensitivity of 11 existing microbial source tracking (MST) PCR assays, associated with cows (BacCow), dogs (BacCan, DogBac), domestic wastewater (PMMoV), general avian (GFD), gulls (Gull2), horses (HorseBac, HoF), humans (HF183, HPyV), and pigs (PF), were evaluated using domestic wastewater and animal fecal samples collected from the region. The sensitivity of animal-associated assays ranged from 13 to 100%, while assay specificity ranged from 38 to 100%. The specificity of pepper mild mottle virus (PMMoV) and human polyomavirus (HPyV) was 100% for domestic wastewater, as compared to 94% specificity of the HF183 Bacteroidales marker. PMMoV was identified as a useful domestic wastewater-associated marker, with concentrations as high as 1.1 × 10 5 copies/ml and 100% sensitivity and specificity. Monthly surface water samples collected from four shellfish harvesting areas were analyzed using culture-based methods for Escherichia coli as well as molecular methods for FIB and a suite of MST markers, which were selected for their specificity in the region. While culturable E. coli results suggested possible fecal pollution during the monitoring period, the absence of human/domestic wastewater-associated markers and low FIB concentrations determined using molecular methods indicated sufficient microbial water quality for shellfish harvesting. This is the first study to our knowledge to test the performance of MST markers in Costa Rica as well as in Central America. Given the lack of wastewater treatment and the presence of secondary sources of FIB, this study highlights the importance of an MST toolbox approach to characterize water quality in tropical regions. Furthermore, it confirms and extends the geographic range of PMMoV as an effective tool for monitoring domestic wastewater pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Das, Suchismita; Choudhury, Shamim Sultana
2016-01-01
The aim of this study was to assess the regional impacts of heavy metals (Mn, Fe, Mg, Ca, Cu, Zn, Cd, Cr, Pb and Ni) on water, sediment and a native, teleost fish species, Labeo angra, inhabiting a flood plain wetland of Barak River in Assam, India. Heavy metal concentrations in the water, sediments and fish were measured; bioaccumulation factor, metal pollution index as well as condition indices were calculated, to assess the pollution load and health status of the fish. Multivariate statistical analysis was used on wetland water and sediment heavy metals to ascertain the possible sources and seasonal variations of the pollutants. Results showed that most heavy metals in the wetland water and sediments exceeded the water (drinking and irrigation) and sediment quality guidelines, respectively. Seasonal variations were observed for geogenic heavy metals, Mn, Fe, Mg and Ca while no seasonal variations were observed for anthropogenic heavy metals, Cu, Cd, Cr, Pb and Ni. Multivariate statistical analysis showed that there was strong correlation between geogenic and anthropogenic heavy metals in water and sediment, both originating from the common anthropogenic sources. Accumulation of most of the metals in all the tissues was above the safe limits as recommended by the Food and Agriculture Organization. High bioaccumulation factors and metal pollution index for these metals in the different tissues revealed that metals were extensively bio-accumulated and bioconcentrated. Condition indices in fish from the wetland suggested metabolic abnormalities.
Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi
2010-01-01
The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.
Environmental impact of leachate characteristics on water quality.
Cumar, Sampath Kumar Mandyam; Nagaraja, Balasubramanya
2011-07-01
Improper urbanization and industrialization are causing a critical stress on groundwater quality in urban areas of the developing countries. The present study under investigation describes the pollution caused by leachate from a waste management site in southwestern Bangalore city causing pollution of the surface water and groundwater reserves. The characterization of 20 groundwater samples and Haralukunte lake sample indicated high pollution of these water reserves by leachate entry into the groundwater and surface water sources. The study area focuses around the solid waste management site, carrying out bio-composting and vermi-composting of municipal solid waste. Further investigations on the severe health problems faced by the public in the study area has revealed a clear pointer towards the usage of polluted water for rearing live-stock, farming, and domestic activities. The characterization of the leachate with high values of BOD at 1,450 mg/l, TDS at 17,200 mg/l, nitrates at 240 mg/l, and MPN at 545/100 ml indicates a clear nuisance potential, which has been substantiated by the characterization of lake water sample with chlorides at 3,400 mg/l, TDS at 8,020 mg/l, and lead and cadmium at 0.18 and 0.08 mg/l, respectively. Analysis of groundwater samples shows alarming physicochemical values closer to the waste disposal site and relatively reduced values away from the source of the waste management site. Bureau of Indian Standards have been adapted as the benchmark for the analysis and validation of observed water quality criteria.
Parikesit; Salim, H; Triharyanto, E; Gunawan, B; Sunardi; Abdoellah, O S; Ohtsuka, R
2005-01-01
The Citarum River in West Java is the largest water supplier to the Saguling Dam, which plays a major role in electric power generation for the entire Java Island and is used for the aquaculture of marketed fish. To elucidate the extent of degradation in water quality and its causes in the Upper Citarum watershed, physical, chemical and biological parameters for water samples collected from various sites were analyzed. The results demonstrate large site-to-site variations in water qualities and pollutant loads derived from various human activities such as agriculture, cattle raising and the textile industry. To halt worsening conditions of the Citarum watershed, integrated mitigation efforts should be made, taking biophysical pollution mechanisms and local socioeconomic conditions into account.
Zhu, Q D; Sun, J H; Hua, G F; Wang, J H; Wang, H
2015-10-01
Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.
Water quality study of Sunter River in Jakarta, Indonesia
NASA Astrophysics Data System (ADS)
Martinus, Y.; Astono, W.; Hendrawan, D.
2018-01-01
Sunter River flows in the city of Jakarta with the designation of river water for agricultural purposes, and can be utilized for urban business and hydroelectric power industry. This study aims to determine the Sunter River water quality based on physical and chemical parameters. Water sampling was conducted 2 times which done in April and May with 5 sampling stations for measuring. The samples was analayzed in the laboratory according SNI methods for parameters BOD, COD, PO4 3-, NO3, Oil & Grease and Detergents. The quality status of Sunter River is determined by the Pollutant Index method. The results show that the water quality of Sunter River is influenced by organic parameter as dominant pollutant with COD concentration ranging from 48 mg/l - 182.4 mg/l and BOD concentration ranging from 14.69 mg/L - 98.91 mg/L. The Pollution Index calculation results show that the water quality status of Sunter River is moderate polluted with IP 6.47. The source of pollutants generally comes from the urban drainage channels, tributaries, and slaughtering industry. The results of this study expected to be use by the government to improve the water quality of Sunter River for better environment.
Li, Chun-Ping; Jiang, Jian-Guo; Chen, Ai-Mei; Wu, Jia-Ling; Fan, Xiu-Juan; Ye, Bin
2010-11-01
Choosing the Beishi river, Changzhou City as the study area, the sewage generation, pollutants characteristics and sewage discharge in catchment area of Beishi river were conducted, detailed investigated and monitored. After using pollution coefficients, the yearly loads of all sources of pollutions were calculated to determine the highest sewage. The results showed that: except pH, the high concentration of SS, COD, BOD5, ammonia nitrogen, TN and TP discharged from MSW collecting houses, MSW transfer stations, public toilets and dining in Changzhou city far exceeded the "Integrated Wastewater Discharge Standard" (GB 8978-1996) and "Effluent Discharged into the City Sewer Water Quality Standards" (CJ 3082-1999). Among which: the highest concentration of COD discharged from MSW transfer stations was up to 51 700 mg/L, while the ammonia nitrogen and TN were as high as 1 616 mg/L and 2 044 mg/L in the toilet wastewater. In addition to this, the ratio of wastewater discharged directly into the river through storm water pipe network was higher from MSW houses, MSW transfer stations, public toilets, dining and other waste in Changzhou city. The 125.2 t/a of COD and 40.53 t/a of BOD5 were the two highest concentrations of various sources of pollution. The highest annual polluting loads discharged into Beishi river is dining, followed by the sanitation facilities. Therefore, cutting pollution control of food and sanitation facilities along the river is particularly urgent.
The Sources and Solutions: Wastewater
Wastewater treatment plants process water from homes and businesses, which contains nitrogen and phosphorus from human waste, food and certain soaps and detergents, and they can be a major source of nutrient pollution.
NASA Astrophysics Data System (ADS)
Shuler, Christopher K.; El-Kadi, Aly I.; Dulai, Henrietta; Glenn, Craig R.; Fackrell, Joseph
2017-12-01
This study presents a modeling framework for quantifying human impacts and for partitioning the sources of contamination related to water quality in the mixed-use landscape of a small tropical volcanic island. On Tutuila, the main island of American Samoa, production wells in the most populated region (the Tafuna-Leone Plain) produce most of the island's drinking water. However, much of this water has been deemed unsafe to drink since 2009. Tutuila has three predominant anthropogenic non-point-groundwater-pollution sources of concern: on-site disposal systems (OSDS), agricultural chemicals, and pig manure. These sources are broadly distributed throughout the landscape and are located near many drinking-water wells. Water quality analyses show a link between elevated levels of total dissolved groundwater nitrogen (TN) and areas with high non-point-source pollution density, suggesting that TN can be used as a tracer of groundwater contamination from these sources. The modeling framework used in this study integrates land-use information, hydrological data, and water quality analyses with nitrogen loading and transport models. The approach utilizes a numerical groundwater flow model, a nitrogen-loading model, and a multi-species contaminant transport model. Nitrogen from each source is modeled as an independent component in order to trace the impact from individual land-use activities. Model results are calibrated and validated with dissolved groundwater TN concentrations and inorganic δ15N values, respectively. Results indicate that OSDS contribute significantly more TN to Tutuila's aquifers than other sources, and thus should be prioritized in future water-quality management efforts.
Oyster reef restoration in controlling coastal pollution around India: A viewpoint.
Chakraborty, Parthasarathi
2017-02-15
Coastal waters receive large amounts of nutrients and pollutants from different point and nonpoint sources through bays and estuaries. Excess supply of nutrients in coastal waters may have detrimental effects, leading to hypoxia and anoxia from eutrophication. Reduction in concentrations of excess nutrients/pollutants in bays/estuarine system is must for healthy coastal ecosystem functioning. Conservations of bays, estuaries and coastal zones are must for sustainable development in any maritime country. Excellent ability of oyster in removing and controlling the concentrations of nutrients, pollutants, suspended particulate matters from bays and estuarine waters stimulated me to provide a viewpoint on oyster reef restoration in controlling nutrient/heavy metals fluxes and marine coastal pollution around India. Oyster reefs restoration may decrease nutrient and heavy metals fluxes in coastal waters and reduce the intensity of oxygen depletion in the coastal Arabian Sea (seasonal) and Bay of Bengal. However, extensive research is recommended to understand the impact of oyster reef restoration in controlling coastal pollution which is essential for sustainable development around India. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Li; Dong, Lei; Meng, Xiaoyang; Li, Qingyun; Huang, Zhuo; Li, Chao; Li, Rui; Yang, Wenjun; Crittenden, John
2018-07-01
After the impoundment of the Three Gorges Reservoir (TGR), the hydrological situation of the reservoir has changed greatly. The concentration and distribution of typical persistent organic pollutants in water and sediment have also changed accordingly. In this study, the concentration, distribution and potential sources of 16 polycyclic aromatic hydrocarbons (PAHs) and 6 phthalic acid esters (PAEs) during the water drawdown and impoundment periods were investigated in water and sediment from the TGR. According to our results, PAHs and PAEs showed temporal and spatial variations. The mean ΣPAH and ΣPAE concentrations in water and sediment were both higher during the water impoundment period than during the water drawdown period. The water samples from the main stream showed larger ΣPAH concentration fluctuations than those from tributaries. Both the PAH and PAE concentrations meet the Chinese national water environmental quality standard (GB 3838-2002). PAH monomers with 2-3 rings and 4 rings were dominant in water, and 4-ring and 5-6-ring PAHs were dominant in sediment. Di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) were the dominant PAE pollutants in the TGR. DBP and DEHP had the highest concentrations in water and sediment, respectively. The main source of PAHs in water from the TGR was petroleum and emissions from coal and biomass combustion, whereas the main sources of PAHs in sediments included coal and biomass combustion, petroleum, and petroleum combustion. The main source of PAEs in water was domestic waste, and the plastics and heavy chemical industries were the main sources of PAEs in sediment. Copyright © 2017. Published by Elsevier B.V.
Peroxidase(s) in Environment Protection
Bansal, Neelam; Kanwar, Shamsher S.
2013-01-01
Industrial discharges of untreated effluents into water bodies and emissions into air have deteriorated the quality of water and air, respectively. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons (PAH), endocrine disruptive chemicals (EDC), pesticides, dioxins, polychlorinated biphenyls (PCB), industrial dyes, and other xenobiotics are among the most important pollutants. Peroxidases are enzymes that are able to transform a variety of compounds following a free radical mechanism, thereby yielding oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to loss of biological activity, reduction in the bioavailability, or the removal from aqueous phase, especially when the pollutant is found in water. The review describes the sources of peroxidases, the reactions catalyzed by them, and their applications in the management of pollutants in the environment. PMID:24453894
Peroxidase(s) in environment protection.
Bansal, Neelam; Kanwar, Shamsher S
2013-01-01
Industrial discharges of untreated effluents into water bodies and emissions into air have deteriorated the quality of water and air, respectively. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons (PAH), endocrine disruptive chemicals (EDC), pesticides, dioxins, polychlorinated biphenyls (PCB), industrial dyes, and other xenobiotics are among the most important pollutants. Peroxidases are enzymes that are able to transform a variety of compounds following a free radical mechanism, thereby yielding oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to loss of biological activity, reduction in the bioavailability, or the removal from aqueous phase, especially when the pollutant is found in water. The review describes the sources of peroxidases, the reactions catalyzed by them, and their applications in the management of pollutants in the environment.
Microbial source tracking and transfer hydrodynamics in rural catchments.
NASA Astrophysics Data System (ADS)
Murphy, Sinead; Bhreathnach, Niamh; O'Flaherty, Vincent; Jordan, Philip; Wuertz, Stefan
2013-04-01
In Ireland, bacterial pathogens from continual point source pollution and intermittent pollution from diffuse sources can impact both drinking water supplies and recreational waters. This poses a serious public health threat. Observing and establishing the source of faecal pollution is imperative for the protection of water quality and human health. Traditional culture methods to detect such pollution via faecal indicator bacteria have been widely utilised but do not decipher the source of pollution. To combat this, microbial source tracking, an important emerging molecular tool, is applied to detect host-specific markers in faecally contaminated waters. The aim of this study is to target ruminant and human-specific faecal Bacteroidales and Bacteroides 16S rRNA genes within rural river catchments in Ireland and investigate hydrological transfer dependencies. During storm events and non-storm periods, 1L untreated water samples, taken every 2 hours over a 48-hour time period at the spring (Cregduff) or outlet (Dunleer), and large (5-20L) untreated water samples were collected from two catchment sites. Cregduff is a spring emergence under a grassland karst landscape in Co. Mayo (west coast of Ireland) and Dunleer is a mixed landuse over till soils in Co. Louth (east coast). From a risk assessment point of view, the catchments are very different. Samples were filtered through 0.2µm nitrocellulose filters to concentrate bacterial cells which then underwent chemical extraction of total nucleic acids. Animal and human stool samples were also collected from the catchments to determine assay sensitivity and specificity following nucleic acid extraction. Aquifer response to seasonal events was assessed by monitoring coliforms and E. coli occurrence using the IDEXX Colisure® Quanti Tray®/2000 system in conjunction with chemical and hydrological parameters. Autoanalysers deployed at each catchment monitor multiple water parameters every 10 min such as phosphorus, nitrogen (nitrate), turbidity, conductivity and flow rate. InStat V 3.06 was used to determine correlations between chemical and microbial parameters (P< 0.05 considered significant).There was a positive correlation between E. coli and phosphorus in Cregduff during rain events (p=0.040) & significant correlation for a non-rain periods (<0.001). There was a positive correlation between E. coli and turbidity in Dunleer during rain events (p=0.0008) and in Cregduff during non-rain periods (p=0.0241). The water samples from Dunleer have a higher concentration of phosphorus than in Cregduff. Host specific primers BacCow-UCD, BacHum-UCD, BacUni-UCD and BoBac were then assayed against both faecal and water extracts and quantified using PCR. BacUni-UCD, BacCow-UCD and BoBac detected faecal contamination in three of the four sample sites in Dunleer and BacHum-UCD detected faecal contamination in one of the sites. The concentrations of the BacUni-UCD qPCR assay were higher in the water samples taken from Dunleer outlet than those taken from Cregduff spring. BacCow-UCD and BacHum-UCD qPCR detected low and very low concentrations, respectively, in water from the Dunleer outlet. The concentrations can be seen changing over the hydrograph event. None of the host-specific assays detected pollution in Cregduff. From the results, it can be seen that Dunleer is more subject to contamination than Cregduff.
Frehmann, T; Nafo, I; Niemann, A; Geiger, W F
2002-01-01
For the examination of the effects of different storm water management strategies in an urban catchment area on receiving water quality, an integrated simulation of the sewer system, wastewater treatment plant and receiving water is carried out. In the sewer system real-time control measures are implemented. As examples of source control measures the reduction of wastewater and the reduction of the amount of impervious surfaces producing storm water discharges are examined. The surface runoff calculation and the simulation of the sewer system and the WWTP are based on a MATLAB/SIMULINK simulation environment. The impact of the measures on the receiving water is simulated using AQUASIM. It can be shown that the examined storm water management measures, especially the source control measures, can reduce the combined sewer overflow volume and the pollutant discharge load considerably. All examined measures also have positive effects on the receiving water quality. Moreover, the reduction of impervious surfaces avoids combined sewer overflow activities, and in consequence prevents pollutants from discharging into the receiving water after small rainfall events. However, the receiving water quality improvement may not be seen as important enough to avoid acute receiving water effects in general.
Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives*
Lone, Mohammad Iqbal; He, Zhen-li; Stoffella, Peter J.; Yang, Xiao-e
2008-01-01
Environmental pollution affects the quality of pedosphere, hydrosphere, atmosphere, lithosphere and biosphere. Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources. Phytoremediation, being more cost-effective and fewer side effects than physical and chemical approaches, has gained increasing popularity in both academic and practical circles. More than 400 plant species have been identified to have potential for soil and water remediation. Among them, Thlaspi, Brassica, Sedum alfredii H., and Arabidopsis species have been mostly studied. It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come. This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources. PMID:18357623
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY General Provisions § 461.1 Applicability. This part applies to any battery manufacturing plant that discharges or may discharge a pollutant to waters of the United States or that introduces pollutants to a publicly owned treatment works. Battery manufacturing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY General Provisions § 461.1 Applicability. This part applies to any battery manufacturing plant that discharges or may discharge a pollutant to waters of the United States or that introduces pollutants to a publicly owned treatment works. Battery manufacturing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY General Provisions § 461.1 Applicability. This part applies to any battery manufacturing plant that discharges or may discharge a pollutant to waters of the United States or that introduces pollutants to a publicly owned treatment works. Battery manufacturing...
40 CFR 125.120 - Scope and purpose.
Code of Federal Regulations, 2010 CFR
2010-07-01
....120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Ocean Discharge Criteria § 125.120 Scope... Elimination System (NPDES) permits for the discharge of pollutants from a point source into the territorial...
40 CFR 125.120 - Scope and purpose.
Code of Federal Regulations, 2011 CFR
2011-07-01
....120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Ocean Discharge Criteria § 125.120 Scope... Elimination System (NPDES) permits for the discharge of pollutants from a point source into the territorial...
NASA Astrophysics Data System (ADS)
Donde, Oscar Omondi; Tian, Cuicui; Xiao, Bangding
2017-11-01
The presence of feacal-derived pathogens in water is responsible for several infectious diseases and deaths worldwide. As a solution, sources of fecal pollution in waters must be accurately assessed, properly determined and strictly controlled. However, the exercise has remained challenging due to the existing overlapping characteristics by different members of faecal coliform bacteria and the inadequacy of information pertaining to the contribution of seasonality and weather condition on tracking the possible sources of pollution. There are continued efforts to improve the Faecal Contamination Source Tracking (FCST) techniques such as Microbial Source Tracking (MST). This study aimed to make contribution to MST by evaluating the efficacy of combining site specific quantification of faecal contamination indicator bacteria and detection of DNA markers while accounting for seasonality and weather conditions' effects in tracking the major sources of faecal contamination in a freshwater system (Donghu Lake, China). The results showed that the use of cyd gene in addition to lacZ and uidA genes differentiates E. coli from other closely related faecal bacteria. The use of selective media increases the pollution source tracking accuracy. BSA addition boosts PCR detection and increases FCST efficiency. Seasonality and weather variability also influence the detection limit for DNA markers.
40 CFR 422.55 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (b) Process waste water pollutants from a cooling water recirculation system designed, constructed... whenever chronic or catastrophic precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must be treated and discharged whenever the water level equals or...
40 CFR 422.55 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (b) Process waste water pollutants from a cooling water recirculation system designed, constructed... whenever chronic or catastrophic precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must be treated and discharged whenever the water level equals or...
40 CFR 422.55 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (b) Process waste water pollutants from a cooling water recirculation system designed, constructed... whenever chronic or catastrophic precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must be treated and discharged whenever the water level equals or...
Zhang, Yixiang; Liang, Xinqiang; Wang, Zhibo; Xu, Lixian
2015-01-01
High content of organic matter in the downstream of watersheds underscored the severity of non-point source (NPS) pollution. The major objectives of this study were to characterize and quantify dissolved organic matter (DOM) in watersheds affected by NPS pollution, and to apply self-organizing map (SOM) and parallel factor analysis (PARAFAC) to assess fluorescence properties as proxy indicators for NPS pollution and labor-intensive routine water quality indicators. Water from upstreams and downstreams was sampled to measure dissolved organic carbon (DOC) concentrations and excitation-emission matrix (EEM). Five fluorescence components were modeled with PARAFAC. The regression analysis between PARAFAC intensities (Fmax) and raw EEM measurements indicated that several raw fluorescence measurements at target excitation-emission wavelength region could provide similar DOM information to massive EEM measurements combined with PARAFAC. Regression analysis between DOC concentration and raw EEM measurements suggested that some regions in raw EEM could be used as surrogates for labor-intensive routine indicators. SOM can be used to visualize the occurrence of pollution. Relationship between DOC concentration and PARAFAC components analyzed with SOM suggested that PARAFAC component 2 might be the major part of bulk DOC and could be recognized as a proxy indicator to predict the DOC concentration. PMID:26526140
NASA Astrophysics Data System (ADS)
Grant, S. B.; Kim, J. H.; Jones, B. H.; Jenkins, S. A.; Wasyl, J.; Cudaback, C.
2005-10-01
Field experiments and modeling studies were carried out to characterize the surf zone entrainment and along-shore transport of pollution from two tidal outlets that drain into Huntington Beach and Newport Beach, popular public beaches in southern California. The surf zone entrainment and near-shore transport of pollutants from these tidal outlets appears to be controlled by prevailing wave conditions and coastal currents, and fine-scale features of the flow field around the outlets. An analysis of data from dye experiments and fecal indicator bacteria monitoring studies reveals that the along-shore flux of surf zone water is at least 50 to 300 times larger than the cross-shore flux of surf zone water. As a result, pollutants entrained in the surf zone hug the shore, where they travel significant distances parallel to the beach before diluting to extinction. Under the assumption that all surf zone pollution at Huntington Beach originates from two tidal outlets, the Santa Ana River and Talbert Marsh outlets, models of mass and momentum transport in the surf zone approximately capture the observed tidal phasing and magnitude of certain fecal indicator bacteria groups (total coliform) but not others (Escherichia coli and enterococci), implying the existence of multiple sources of, and/or multiple transport pathways for, fecal pollution at this site. The intersection of human recreation and near-shore pollution pathways implies that, from a human health perspective, special care should be taken to reduce the discharge of harmful pollutants from land-side sources of surface water runoff, such as tidal outlets and storm drains.
Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India.
Singh, Umesh Kumar; Kumar, Balwant
2017-05-01
The sources of heavy metals and their loads in the Ajay River were investigated based on the seasonal and spatial variations. To identify variation and pathways of heavy metals, seventy-six water samples were estimated for 2 years at nineteen sampling sites. The multifaceted data were applied to evaluate statistical relation between variables and arithmetic calculation of the indices. Fickling plot suggested that the acidic pollutants do not affect the water quality because all samples lie within the neutral pH range. Further, OC showed significant relation with Fe, Mn, Ni and Co. Compositional analysis identified weathering of rocks, mobility of soil and sediment, atmospheric deposition and numerous anthropogenic inputs as major sources of heavy metals. The mean values of heavy metal pollution index (HPI) and pollution index (PI) were found above the critical index and strong loadings respectively due to higher values of Cd, Pb and Fe. Similarly, assessment of human risk revealed that the high load of Cd, Pb and Fe in water body could harm the population. Majority of the samples showed high concentration of heavy metals as compared to regulatory standard and background values, which suggests that the water is highly contaminated through numerous geogenic and anthropogenic sources. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Xu; Zhang, Xueping; Wang, Jifu; Zhao, Guangying; Wang, Baojian
2014-05-01
The slightly polluted source water of Yellow River was pretreated in a horizontal subsurface flow constructed wetland (HSFCW) and a lateral subsurface flow constructed wetland (LSFCW) in the Ji'nan city Reservoir, Shandong, China. During almost one years run, the results showed that at the hydraulic loading rate of 1 m/day, the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4 (+)-N) and total phosphorus (TP) in the HSFCW were 48.9, 51.4, 48.7 and 48.9 %, respectively, and the corresponding removal efficiencies in the LSFCW were 50.51, 53.12, 50.44 and 50.83 %, respectively. The HSFCW and LSFCW had a similar high potential for nutrients removal and LSFCW was slightly better. According to the China standard for surface water resources (GB3838-2002), mean effluent COD can reach the Class I (≤ 15 mg/L), and NH4 (+)-N and TP and TN can reach nearly the Class I (≤ 0.015 mg/L), the Class III (≤ 0.05 mg/L) and the Class IV (≤ 1.5 mg/L), respectively. It can be concluded that the slightly polluted source water from Reservoir was pretreated well by the constructed wetland.
Dević, Gordana; Sakan, Sanja; Đorđević, Dragana
2016-01-01
In this paper, the data for ten water quality variables collected during 2009 at 75 monitoring sites along the river network of Serbia are considered. The results are alarming because 48% of the studied sites were contaminated by Ni, Mn, Pb, As, and nutrients, which are key factors impairing the water quality of the rivers in Serbia. Special attention should be paid to Zn and Cu, listed in the priority toxic pollutants of US EPA for aquatic life protection. The employed Q-model cluster analysis grouped the data into three major pollution zones (low, moderate, and high). Most sites classified as "low pollution zones" (LP) were in the main rivers, whereas those classified as "moderate and high pollution zones" (MP and HP, respectively) were in the large and small tributaries/hydro-system. Principal component analysis/factor analysis (PCA/FA) showed that the dissolved metals and nutrients in the Serbian rivers varied depending on the river, the heterogeneity of the anthropogenic activities in the basins (influenced primarily by industrial wastewater, agricultural activities, and urban runoff pollution), and natural environmental variability, such as geological characteristics. In LP dominated non-point source pollution, such as agricultural and urban runoff, whereas mixed source pollution dominated in the MP and HP zones. These results provide information to be used for developing better pollution control strategies for the river network of Serbia.
Noorhosseini, Seyyed Ali; Allahyari, Mohammad Sadegh; Damalas, Christos A; Moghaddam, Sina Siavash
2017-12-01
Rivers in urban areas have been associated with water quality problems because of the practice of discharging untreated domestic and industrial waste into the water bodies. However, to what extent the public can identify specific environmental problems and whether people are ready to cope with potential risks is to a great extent unknown. Public environmental awareness of factors underpinning the pollution of rivers and approaches for reducing it were studied in Rasht City of Guilan Province in northern Iran, with Zarjub and Goharrud rivers as a case study. Data were collected from residents on the banks of the studied rivers using a questionnaire. Industrial areas, hospitals, and poultry farms were perceived as the main factors deteriorating water pollution of Zarjub and Goharrud rivers in Guilan Province. The discharge of urban sewage into the rivers was the second most important polluting factor. Most residents on the banks of Zarjub and Goharrud rivers showed high interest in the conservation of the environment. Overall, 62.7% of the residents had moderate, 20% had high, and 4% had very high environmental awareness. Families and mass media (TV and radio) were perceived of being the most important sources of information of family members concerning environmental awareness. According to the residents, the main approach for alleviating the pollution of Zarjub and Goharrud rivers were creating green spaces, dredging the rivers, establishing a water purifying system, and establishing a waste incinerator with a separation system (based on municipal planning). The public in the study area appeared well prepared to cope with the risks of water pollution, but further improving environmental awareness of the community can be a first step for preventing environmental degradation. The positive attitudes of the residents towards environmental conservation, the use of proper information sources, and practical training in the context of extension services can be effective in conserving water resources in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Mok, Jong Soo; Lee, Ka Jeong; Kim, Poong Ho; Lee, Tae Seek; Lee, Hee Jung; Jung, Yeoun Joong; Kim, Ji Hoe
2016-07-15
From 2011 to 2013, we conducted a full sanitary survey of pollution sources in proximity to a designated shellfish growing area in Korea, and their impact on the sea area therein. From this area, 836 seawater samples and 93 oyster samples were examined to evaluate their bacteriological quality. There were 483 potential pollution sources in the drainage area of the Jaranman-Saryangdo area, including 38 sources discharging water. It demonstrates that while many pollution sources have been identified, no significant impact occurred within the designated shellfish growing area. Variations in fecal coliform (FC) levels in seawater were closely related to rainfall. The FC levels of seawater and oysters from the designated area met the regulation limits set by various countries. Our study indicates that the oysters produced in this area are apparently safe for raw consumption based on their bacterial quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pollution of water sources due to poor waste management--the case of Dar-es-Salaam.
Makule, D E
2000-01-01
Pollution of water sources for the city of Dar-es-Salaam originates from haphazard disposal of solid wastes, discharge of untreated or inadequately treated wastewater to water sources, lack of standard sanitary facilities and poor hygienic practices. Contaminated water used for human consumption can lead to serious health problems e.g. cholera, typhoid, skin diseases, etc., which, in turn, leads to reduced working hours/manpower. This has a direct effect to production output which can lead to a deterioration of local community welfare. Having realised this as a problem, the Government of Tanzania stipulated, in its water policy of 1991, the need for protection of water sources. In achieving this goal, proper waste management was singled out to be of vital importance. Due to economic hardships, however, budget allocation by the central Government could not cover the costs needed for proper handling of waste. This left Tanzania with no alternative other than heavy reliance on donor and bilateral organisations for financial support of programmes. Nevertheless, these sources of funds proved to be unreliable for many different reasons. To deal with these problems, the Government currently emphasises involving local community and NGOs, the formation of stakeholder funds and organisations, and involvement of the private sector. Other efforts are intensification of education programmes to create more awareness to the local communities on the need for protection of water sources. Although at its infancy level, the system is showing some signs of improvement.
Félix-Cañedo, Thania E; Durán-Álvarez, Juan C; Jiménez-Cisneros, Blanca
2013-06-01
The occurrence and distribution of a group of 17 organic micropollutants in surface and groundwater sources from Mexico City was determined. Water samples were taken from 7 wells, 4 dams and 15 tanks where surface and groundwater are mixed and stored before distribution. Results evidenced the occurrence of seven of the target compounds in groundwater: salicylic acid, diclofenac, di-2-ethylhexylphthalate (DEHP), butylbenzylphthalate (BBP), triclosan, bisphenol A (BPA) and 4-nonylphenol (4-NP). In surface water, 11 target pollutants were detected: same found in groundwater as well as naproxen, ibuprofen, ketoprofen and gemfibrozil. In groundwater, concentration ranges of salicylic acid, 4-NP and DEHP, the most frequently found compounds, were 1-464, 1-47 and 19-232 ng/L, respectively; while in surface water, these ranges were 29-309, 89-655 and 75-2,282 ng/L, respectively. Eleven target compounds were detected in mixed water. Concentrations in mixed water were higher than those determined in groundwater but lower than the detected in surface water. Different to that found in ground and surface water, the pesticide 2,4-D was found in mixed water, indicating that some pollutants can reach areas where they are not originally present in the local water sources. Concentration of the organic micropollutants found in this study showed similar to lower to those reported in water sources from developed countries. This study provides information that enriches the state of the art on the occurrence of organic micropollutants in water sources worldwide, notably in megacities of developing countries. Copyright © 2013 Elsevier B.V. All rights reserved.
Murai, K; Okano, M; Kuramitz, H; Hata, N; Kawakami, T; Taguchi, S
2008-01-01
The pollution of tap water and rain water with formaldehyde in Toyama Pref., Japan was investigated by means of a simple, rapid and cost-effective visual colorimetry developed by us. The levels of formaldehyde in three tap waters from different sources of dams on mountainside and a well-water pumped in urban area in Toyama Pref. were lower than 0.01 mg L(-1) that was the detection limit of the colorimetry. On the other hand, rain waters were seriously polluted with formaldehyde. Rain waters were sampled from three different sites (urban area, top of hill and industrial area) in Toyama Pref. from autumn to winter in 2006. The levels of formaldehyde in the rain waters ranged from 0.07 to 0.30 mg L(-1). The analytical results by the visual colorimetry were in good agreement with those obtained by GC-MS method. It was confirmed that the colorimetry is excellent for practical use for the determination of formaldehyde. It must be concerned about the pollution of rainwater with formaldehyde, when rain water is applied for tap water and miscellaneous purpose. Copyright IWA Publishing 2008.
Research on the Placement of the Ecological Shelter Zone in the Three Gorges Reservoir Area, China
NASA Astrophysics Data System (ADS)
Shan, N.; Ruan, X.
2011-12-01
The Three Gorges Dam is built on the middle reaches of Yangtze River (Changjiang) in south-central China, which is the world's third longest river. The Three Gorges Reservoir Region (TGRR), including the entire inundated area and 19 administrative units (counties and cities) on both sides of the river, is regarded as an environmentally sensitive area. The total area of the TGRR is approximately 58000 km2. As the Three Gorges Dam fully operated, for the flood control, the water level should be kept in the range between 145 m and 175 m and the reservoir surface water area(over 1080 km2)at a water level of 175 m, with a length of 600 km. Many of cities, villages and farms have been submerged. Moreover, as a result of reservoir operation, the water-level alternation of the reservoir is opposite to the nature, which is low water level (145m) in summer and high water level (175m) in winter. The Hydro-Fluctuation Belt, with a height of 30m, will become a new pollution source due to the riparian being flooded and the submerged areas may still contain trace amounts of toxic or radioactive materials. The environmental impacts associated with large scale reservoir area often have significant negative impacts on the environment. It affects forest cover, species in the area, some endangered, water quality, increase the likelihood of earthquakes and mudslides in the area. To solve these problems, it is necessarily to construct the Ecological Shelter Zone (ESZ) along with the edge of the reservoir area. The function of the ESZ is similar to the riparian zone in reducing flood damage, improving water quality, decreasing the levels of the nonpoint source pollution load and soil erosion and rebuilding the migration routes of plant and wildlife. However, the research of the ESZ is mainly focused on rivers at field scale by now, lack of research method on reservoir at the watershed scale. As the special nature of the Three Gorges Reservoir, the construction of the ESZ in the TGRA is very complex. This paper focus on the development of a methodology to target the ESZ based on currently available tools (Remote Sensing, GIS and Hydrologic Model). According to the features of the TGRR, a spatially explicit and process-based method was introduced to help plan the placement of the ESZ in the TGRR for water quality benefits. The methods presented here were based on the integration of grid-based terrain analysis and nonpoint source pollution estimates. Firstly, the contribution of nonpoint source pollution from upslope farmland and urban to the TGRR was determined by grid-based terrain analysis. The upslope contributing area beyond the ESZ was defined as a "source". The SWAT model was used to analyze the characteristics of the pollution load. Secondly, the ESZ was defined as a "sink" and the reducing pollution loads in each grid cell of the ESZ was calculated by the REMM model. Finally, the key areas in the TGRA where the ESZ have the greatest potential to improve water quality were identified and the formula of the width of the ESZ was determined. However, the method in this article considers only the function of pollutants reduction in the ESZ, the next stage of the study will involve detailed modeling for the function of ecological corridor in the ESZ.
McArthur, J M; Sikdar, P K; Hoque, M A; Ghosal, U
2012-10-15
Across West Bengal and Bangladesh, concentrations of Cl in much groundwater exceed the natural, upper limit of 10 mg/L. The Cl/Br mass ratios in groundwaters range up to 2500 and scatter along mixing lines between waste-water and dilute groundwater, with many falling near the mean end-member value for waste-water of 1561 at 126 mg/L Cl. Values of Cl/Br exceed the seawater ratio of 288 in uncommon NO(3)-bearing groundwaters, and in those containing measurable amounts of salt-corrected SO(4) (SO(4) corrected for marine salt). The data show that shallow groundwater tapped by tube-wells in the Bengal Basin has been widely contaminated by waste-water derived from pit latrines, septic tanks, and other methods of sanitary disposal, although reducing conditions in the aquifers have removed most evidence of NO(3) additions from these sources, and much evidence of their additions of SO(4). In groundwaters from wells in palaeo-channel settings, end-member modelling shows that >25% of wells yield water that comprises ≥10% of waste-water. In palaeo-interfluvial settings, only wells at the margins of the palaeo-interfluvial sequence contain detectable waste water. Settings are identifiable by well-colour survey, owner information, water composition, and drilling. Values of Cl/Br and faecal coliform counts are both inversely related to concentrations of pollutant As in groundwater, suggesting that waste-water contributions to groundwater in the near-field of septic-tanks and pit-latrines (within 30 m) suppress the mechanism of As-pollution and lessen the prevalence and severity of As pollution. In the far-field of such sources, organic matter in waste-water may increase groundwater pollution by As. Copyright © 2012. Published by Elsevier B.V.
Groundwater Pollution and Vulnerability Assessment.
Kurwadkar, Sudarshan
2017-10-01
Groundwater is a critical resource that serve as a source of drinking water to large human population and, provide long-term water for irrigation purposes. In recent years; however, this precious resource being increasingly threatened, due to natural and anthropogenic activities. A variety of contaminants of emerging concern such as pharmaceuticals and personal care products, perfluorinated compounds, endocrine disruptors, and biological agents detected in the groundwater sources of both developing and developed nations. In this review paper, various studies have been included that documented instances of groundwater pollution and vulnerability to emerging contaminants of concern, pesticides, heavy metals, and leaching potential of various organic and inorganic contaminants from poorly managed residual waste products (biosolids, landfills, latrines, and septic tanks etc.). Understanding vulnerability of groundwater to pollution is critical to maintain the integrity of groundwater. A section on managed artificial recharge studies is included to highlight the sustainable approaches to groundwater conservation, replenishment and sustainability. This review paper is the synthesis of studies published in last one year that either documented the pollution problems or evaluated the vulnerability of groundwater pollution.
Reduction of point contamination sources of pesticide from a vineyard farm.
Fait, Gabriella; Nicelli, Marco; Fragoulis, George; Trevisan, Marco; Capri, Ettore
2007-05-01
Although plant protection products are already regulated in Europe under Directive 91/414/EEC, there is increasing concern about the pollution of ground and surface water caused by point sources of pesticides, such as tank filling, spillages, faulty equipment, washing, waste disposal, and direct contamination. One tool for the reduction of pesticide point source contamination is a biological system where chemicals are bound and biologically degraded. This paper presents an offset lined system where wastewaters containing pesticide residues leach through a biomix. A pump system is provided to pump the water onto the surface of the biomix and allow it to drain under gravity, keeping the biomix wet. The analysis of residues of nine pesticides in the water, biomix, and sediment inside the tank showed the biobed to function well, with a water decontamination greater than 90%. The use of this system mitigated the potential for pollution (pesticide concentrations higher than 0.1 microg/L) of 1 km of the river system surrounding the farm.
Predicting nonpoint stormwater runoff quality from land use
2018-01-01
Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters. PMID:29742172
Predicting nonpoint stormwater runoff quality from land use.
Zivkovich, Brik R; Mays, David C
2018-01-01
Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters.
Water Pollution Search Criteria Help | ECHO | US EPA
ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.
Water Pollution Search Results Help - TRI | ECHO | US EPA
ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.
Water Pollutant Loading Tool Modernization | ECHO | US EPA
ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.
Stormwater Runoff: What it is and Why it is Important in Johnson County, Kansas
Rasmussen, Teresa J.; Schmidt, Heather C.
2009-01-01
Stormwater runoff is a leading contributor to pollution in streams, rivers, and lakes in Johnson County, Kansas, and nationwide. Because stormwater runoff contains pollutants from many different sources, decreasing pollution from stormwater runoff is a challenging task. It requires cooperation from residents, businesses, and municipalities. An important step in protecting streams from stormwater pollution is understanding watershed processes, stormwater characteristics, and their combined effects on streams and water quality.
Pinpointing Watershed Pollution on a Virtual Globe
ERIC Educational Resources Information Center
Saunders, Cheston; Taylor, Amy
2014-01-01
Pollution is not a problem we just read about anymore. It affects the air we breathe, the land we live on, and the water we consume. After noticing a lack of awareness in students, a lesson was developed that used Google Earth to pinpoint sources of pollution in the local area and in others across the country, and their effects on the surrounding…
GROUND-WATER POLLUTION PROBLEMS IN THE SOUTHEASTERN UNITED STATES
An evaluation of principal sources of ground-water contamination has been carried out in seven southeastern States--Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Virginia. Natural ground-water quality is good to excellent, except for the presence of ...
DOT National Transportation Integrated Search
2014-06-01
Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...
Management and modeling: Tools to improve water quality
USDA-ARS?s Scientific Manuscript database
Agricultural, urban and suburban sources contribute to the contamination of surface waters, which has been observed by the detection of pesticides, excess nutrients, industrial pollutants, antibiotics, pharmaceuticals, and personal care products in both natural waters and treated wastewaters. The us...