Source contributions to primary airborne particulate matter calculated using the source-oriented UCD/CIT air quality model and the receptor-oriented chemical mass balance (CMB) model are compared for two air quality episodes in different parts of California. The first episode ...
ENHANCED AIR POLLUTION EPIDEMIOLOGY USING A SOURCE-ORIENTED CHEMICAL TRANSPORT MODEL
Air quality model predictions describing source-oriented PM component concentrations in multiple size cuts will provide new inputs to examine the effects of acute and chronic PM exposure on mortality and morbidity. Associations between adverse health effects and PM sources/com...
Controlling Air Pollution; A Primer on Stationary Source Control Techniques.
ERIC Educational Resources Information Center
Corman, Rena
This companion document to "Air Pollution Primer" is written for the nonexpert in air pollution; however, it does assume a familiarity with air pollution problems. This work is oriented toward providing the reader with knowledge about current and proposed air quality legislation and knowledge about available technology to meet these standards for…
Nonparametric Trajectory Analysis (NTA), a receptor-oriented model, was used to assess the impact of local sources of air pollution at monitoring sites located adjacent to highway I-15 in Las Vegas, NV. Measurements of black carbon, carbon monoxide, nitrogen oxides, and sulfur di...
Classifying Sources Influencing Indoor Air Quality (IAQ) Using Artificial Neural Network (ANN)
Mad Saad, Shaharil; Melvin Andrew, Allan; Md Shakaff, Ali Yeon; Mohd Saad, Abdul Rahman; Muhamad Yusof @ Kamarudin, Azman; Zakaria, Ammar
2015-01-01
Monitoring indoor air quality (IAQ) is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN—a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC), base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room’s conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity. PMID:26007724
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Bradley P.; Speidel, Michael A.; Pike, Tina L.
Purpose: In this study, newly formulated XR-RV3 GafChromic film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. Methods: The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity inmore » scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. Results: The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was {+-}7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. Conclusions: XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film orientation. The presence of backscatter slightly modifies the x-ray energy spectrum; however, the increase in film response can be attributed primarily to the increase in total photon fluence at the sensitive layer. Film calibration curves created under free-in-air conditions may be used to measure dose from fluoroscopic quality x-ray beams, including patient backscatter with an error less than the uncertainty of the calibration in most cases.« less
McCabe, Bradley P; Speidel, Michael A; Pike, Tina L; Van Lysel, Michael S
2011-04-01
In this study, newly formulated XR-RV3 GafChromic film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity in scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was +/- 7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film orientation. The presence of backscatter slightly modifies the x-ray energy spectrum; however, the increase in film response can be attributed primarily to the increase in total photon fluence at the sensitive layer. Film calibration curves created under free-in-air conditions may be used to measure dose from fluoroscopic quality x-ray beams, including patient backscatter with an error less than the uncertainty of the calibration in most cases.
McCabe, Bradley P.; Speidel, Michael A.; Pike, Tina L.; Van Lysel, Michael S.
2011-01-01
Purpose: In this study, newly formulated XR-RV3 GafChromic® film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. Methods: The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity in scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. Results: The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was ±7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. Conclusions: XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film orientation. The presence of backscatter slightly modifies the x-ray energy spectrum; however, the increase in film response can be attributed primarily to the increase in total photon fluence at the sensitive layer. Film calibration curves created under free-in-air conditions may be used to measure dose from fluoroscopic quality x-ray beams, including patient backscatter with an error less than the uncertainty of the calibration in most cases. PMID:21626925
Computer-oriented emissions inventory procedure for urban and industrial sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runca, E.; Zannetti, P.; Melli, P.
1978-06-01
A knowledge of the rate of emission of atmospheric pollutants is essential for the enforcement of air quality control policies. A computer-oriented emission inventory procedure has been developed and applied to Venice, Italy. By using optically readable forms this procedure avoids many of the errors inherent in the transcription and punching steps typical of approaches applied so far. Moreover, this procedure allows an easy updating of the inventory. Emission patterns of SO/sub 2/ in the area of Venice showed that the total urban emissions were about 6% of those emitted by industrial sources.
NASA Astrophysics Data System (ADS)
Kang, M.; Zhang, H.; Fu, P.
2017-12-01
Marine aerosols exert a strong influence on global climate change and biogeochemical cycling, as oceans cover beyond 70% of the Earth's surface. However, investigations on marine aerosols are relatively limited at present due to the difficulty and inconvenience in sampling marine aerosols as well as their diverse sources. East China Sea (ECS), lying over the broad shelf of the western North Pacific, is adjacent to the Asian mainland, where continental-scale air pollution could impose a heavy load on the marine atmosphere through long-range atmospheric transport. Thus, contributions of major sources to marine aerosols need to be identified for policy makers to develop cost effective control strategies. In this work, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model, which can directly track the contributions from multiple emission sources to marine aerosols, is used to investigate the contributions from power, industry, transportation, residential, biogenic and biomass burning to marine aerosols over the ECS in May and June 2014. The model simulations indicate significant spatial and temporal variations of concentrations as well as the source contributions. This study demonstrates that the Asian continent can greatly affect the marine atmosphere through long-range transport.
Yassin, Mohamed F; Ohba, Masaake
2012-09-01
To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.
Henry, Ronald C; Vette, Alan; Norris, Gary; Vedantham, Ram; Kimbrough, Sue; Shores, Richard C
2011-12-15
Nonparametric Trajectory Analysis (NTA), a receptor-oriented model, was used to assess the impact of local sources of air pollution at monitoring sites located adjacent to highway I-15 in Las Vegas, NV. Measurements of black carbon, carbon monoxide, nitrogen oxides, and sulfur dioxide concentrations were collected from December 2008 to December 2009. The purpose of the study was to determine the impact of the highway at three downwind monitoring stations using an upwind station to measure background concentrations. NTA was used to precisely determine the contribution of the highway to the average concentrations measured at the monitoring stations accounting for the spatially heterogeneous contributions of other local urban sources. NTA uses short time average concentrations, 5 min in this case, and constructed local back-trajectories from similarly short time average wind speed and direction to locate and quantify contributions from local source regions. Averaged over an entire year, the decrease of concentrations with distance from the highway was found to be consistent with previous studies. For this study, the NTA model is shown to be a reliable approach to quantify the impact of the highway on local air quality in an urban area with other local sources.
Air quality impacts from prescribed forest fires under different management practices.
Tian, Di; Wang, Yuhang; Bergin, Michelle; Hu, Yongtao; Liu, Yongqiang; Russell, Armistead G
2008-04-15
Large amounts of air pollutants are emitted during prescribed forest fires. Such emissions and corresponding air quality impacts can be modulated by different forest management practices. The impacts of changing burning seasons and frequencies and of controlling emissions during smoldering on regional air quality in Georgia are quantified using source-oriented air quality modeling, with modified emissions from prescribed fires reflecting effects of each practice. Equivalent fires in the spring and winter are found to have a greater impact on PM2.5 than those in summer, though ozone impacts are larger from spring and summer fires. If prescribed fires are less frequent more biofuel is burnt in each fire, leading to larger emissions and air quality impacts per fire. For example, emissions from a fire with a 5-year fire return interval (FRI) are 72% larger than those from a fire of the same acreage with a 2-year FRI. However, corresponding long-term regional impacts are reduced with the longer FRI since the annual burned area is reduced. Total emissions for fires in Georgia with a 5-year FRI are 32% less than those with a 2-year FRI. Smoldering emissions can lead to approximately 1.0 or 1.9 microg/m3 of PM2.5 in the Atlanta PM2.5 nonattainment area during March 2002.
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Li, Jingyi; Ying, Qi; Guven, Birnur Buzcu; Olaguer, Eduardo P.
2013-02-01
In this study, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model was developed and used to quantify the contributions of five major local emission source types in Southeast Texas (vehicles, industry, natural gas combustion, wildfires, biogenic sources), as well as upwind sources, to regional primary and secondary formaldehyde (HCHO) concentrations. Predicted HCHO concentrations agree well with observations at two urban sites (the Moody Tower [MT] site at the University of Houston and the Haden Road #3 [HRM-3] site operated by Texas Commission on Environmental Quality). However, the model underestimates concentrations at an industrial site (Lynchburg Ferry). Throughout most of Southeast Texas, primary HCHO accounts for approximately 20-30% of total HCHO, while the remaining portion is due to secondary HCHO (30-50%) and upwind sources (20-50%). Biogenic sources, natural gas combustion, and vehicles are important sources of primary HCHO in the urban Houston area, respectively, accounting for 10-20%, 10-30%, and 20-60% of total primary HCHO. Biogenic sources, industry, and vehicles are the top three sources of secondary HCHO, respectively, accounting for 30-50%, 10-30%, and 5-15% of overall secondary HCHO. It was also found that over 70% of PAN in the Houston area is due to upwind sources, and only 30% is formed locally. The model-predicted source contributions to HCHO at the MT generally agree with source apportionment results obtained from the Positive Matrix Factorization (PMF) technique.
Observational Needs for Four-Dimensional Air Quality Characterization
Surface-based monitoring programs provide the foundation for associating air pollution and causal effects in human health studies, and they support the development of air quality standards and the preparation of emission reduction strategies. While surface oriented networks remai...
ERIC Educational Resources Information Center
Larsen, Ralph I.
1973-01-01
Makes recommendations for a single air quality data system (using average time) for interrelating air pollution effects, air quality standards, air quality monitoring, diffusion calculations, source-reduction calculations, and emission standards. (JR)
2008-10-01
Chow, J.C. (2006). Feasibility of soil dust source apportionment by the pyrolysis-gas chromatography/mass spectrometry method. J. Air Waste Manage...receptor-oriented source apportionment models. • Develop monitoring methods to determine source and fence line amounts of fugitive dust emissions for...offsite impact, including evaluation with receptor- oriented source apportionment models 76 8.8.1 Background 76 8.8.2 Significance 77 8.8.3
NASA Technical Reports Server (NTRS)
Falke, Stefan; Husar, Rudolf
2011-01-01
The goal of this REASoN applications and technology project is to deliver and use Earth Science Enterprise (ESE) data and tools in support of air quality management. Its scope falls within the domain of air quality management and aims to develop a federated air quality information sharing network that includes data from NASA, EPA, US States and others. Project goals were achieved through a access of satellite and ground observation data, web services information technology, interoperability standards, and air quality community collaboration. In contributing to a network of NASA ESE data in support of particulate air quality management, the project will develop access to distributed data, build Web infrastructure, and create tools for data processing and analysis. The key technologies used in the project include emerging web services for developing self describing and modular data access and processing tools, and service oriented architecture for chaining web services together to assemble customized air quality management applications. The technology and tools required for this project were developed within DataFed.net, a shared infrastructure that supports collaborative atmospheric data sharing and processing web services. Much of the collaboration was facilitated through community interactions through the Federation of Earth Science Information Partners (ESIP) Air Quality Workgroup. The main activities during the project that successfully advanced DataFed, enabled air quality applications and established community-oriented infrastructures were: develop access to distributed data (surface and satellite), build Web infrastructure to support data access, processing and analysis create tools for data processing and analysis foster air quality community collaboration and interoperability.
Source Contributions to Premature Mortality Due to Ambient Particulate Matter in China
NASA Astrophysics Data System (ADS)
Hu, J.; Huang, L.; Ying, Q.; Zhang, H.; Shi, Z.
2016-12-01
Outdoor air pollution is linked to various health effects. Globally it is estimated that ambient air pollution caused 3.3 million premature deaths in 2010. The health risk occurs predominantly in developing countries, particularly in Asia. China has been suffering serious air pollution in recent decades. The annual concentrations of ambient PM2.5 are more than five times higher than the WHO guideline value in many populous Chinese cities. Sustained exposure to high PM2.5 concentrations greatly threatens public health in this country. Recognizing the severity of the air pollution situation, the Chinese government has set a target in 2013 to reduce PM2.5 level by up to 25% in major metropolitan areas by 2017. It is urgently needed for China to assess premature mortality caused by outdoor air pollution, identify source contributions of the premature mortality, and evaluate responses of the premature mortality to air quality improvement, in order to design effective control plans and set priority for air pollution controls to better protect public health. In this study, we determined the spatial distribution of excess mortality (ΔMort) due to adult (> 30 years old) ischemic heart disease (IHD), cerebrovascular disease (CEV), chronic obstructive pulmonary disease (COPD) and lung cancer (LC) at 36-km horizontal resolution for 2013 from the predicted annual-average surface PM2.5 concentrations using an updated source-oriented Community Multiscale Air Quality (CMAQ) model along with an ensemble of four regional and global emission inventories. Observation data fusing was applied to provide additional correction of the biases in the PM2.5 concentration field from the ensemble. Source contributions to ΔMort were determined based on total ΔMort and fractional source contributions to PM2.5 mass concentrations. We estimated that ΔMort due to COPD, LC, IHD and CEV are 0.329, 0.148, 0.239 and 0.953 million in China, respectively, leading to a total ΔMort of 1.669 million. Industries and residential sources were the two leading sources to ΔMort, contributing to 0.508 (30.5%) and 0.366 (21.9%) mp, respectively. Secondary ammonium ion from agriculture sources, secondary organic aerosol and aerosols from power generation sources were responsible for ΔMort of 0.204, 0.179 and 0.172 mp, respectively.
Air Quality | Air Quality Planning & Standards | US EPA
2016-06-08
Air pollution comes from many different sources: stationary sources such as factories, power plants, and smelters and smaller sources such as dry cleaners and degreasing operations; mobile sources such as cars, buses, planes, trucks, and trains; and naturally occurring sources such as windblown dust, and volcanic eruptions, all contribute to air pollution.
Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.
Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian
2011-10-01
The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.
Weyerhaeuser Company Oriented Strand Board Plant in Elkin, North Carolina
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Panama Canal Expansion Illustrates Need for Multimodal Near-Source Air Quality Assessment
The compelling issue raised is potential major changes in goods movement due to the Panama Canal expansion and considerations for near-source air quality. Near-source air quality may be affected both at near-port areas as well as along the freight transportation corridor.
HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW
The study evaluates heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). Various literature sources and methods for characterizing HVAC emission sources are reviewed. Available methods include in situ test...
Over the past few decades, air quality planners have forecasted future air pollution levels based on information about changing emissions from stationary and mobile sources, population trends, transportation demand, natural sources of emissions, and other pressures on air quality...
HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW
The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...
NASA Astrophysics Data System (ADS)
Garland, R. M.; Naidoo, M.; Sibiya, B.; Naidoo, S.; Bird, T.; von Gruenewaldt, R.; Liebenberg-Enslin, H.; Nekhwalivhe, M.; Netshandama, J.; Mahlatji, M.
2017-12-01
Ambient air pollution levels are regulated in South Africa; however in many areas pollution concentrations exceed these levels. The South African Air Quality Act also stipulates that government across all levels must have Air Quality Management Plans (AQMP) in place that outline the current state of air quality and emissions, as well as the implementable plan to manage, and where necessary improve, air quality. Historically, dispersion models have been used to support air quality management decisions, including in AQMPs. However, with the focus of air quality management shifting from focusing on industrial point sources to a more integrated and holistic management of all sources, chemical transport models are needed. CAMx was used in the review and development of the City of Johannesburg's AQMP to simulate hot spots of air pollution, as well as to model intervention scenarios. As the pollutants of concern in Johannesburg are ozone and particulate matter, it is critical to use a model that can simulate chemistry. CAMx was run at 1 km with a locally derived emissions inventory for 2014. The sources of pollution in the City are diverse (including, industrial, vehicles, domestic burning, natural), and many sources have large uncertainties in estimating emissions due to lack of necessary data and local emission factors. These uncertainties, together with a lack of measurements to validate the model against, hinder the performance of the model to simulate air quality and thus inform air quality management. However, as air quality worsens in Africa, it is critical for decision makers to have a strong evidence base on the state of air quality and impact of interventions in order to improve air quality effectively. This presentation will highlight the findings from using a chemical transport model for air quality management in the largest city in South Africa, the use and limitations of these for decision-makers, and proposed way forward.
Source Emissions in Multipollutant Air Quality Management
Human activities and natural processes that emit pollutants into the ambient atmosphere are the underlying cause of all air quality problems. In a technical sense, we refer to these activities and processes as pollutant sources. Although air quality management is usually concerne...
Analysis of air quality management with emphasis on transportation sources
NASA Technical Reports Server (NTRS)
English, T. D.; Divita, E.; Lees, L.
1980-01-01
The current environment and practices of air quality management were examined for three regions: Denver, Phoenix, and the South Coast Air Basin of California. These regions were chosen because the majority of their air pollution emissions are related to mobile sources. The impact of auto exhaust on the air quality management process is characterized and assessed. An examination of the uncertainties in air pollutant measurements, emission inventories, meteorological parameters, atmospheric chemistry, and air quality simulation models is performed. The implications of these uncertainties to current air quality management practices is discussed. A set of corrective actions are recommended to reduce these uncertainties.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
... Quality Implementation Plan; California; Sacramento Metropolitan Air Quality Management District... to the Sacramento Metropolitan Air Quality Management District (SMAQMD or District) portion of the..., Sacramento Metropolitan Air Quality Management District, Rule 214 (Federal New Source Review), Rule 203...
EPA is taking final action to approve a revision to the Butte County Air Quality Management District (BCAQMD) portion of the California State Implementation Plan (SIP). This revision concerns the District's New Source Review (NSR) permitting program.
Air Quality Modeling | Air Quality Planning & Standards | US ...
2016-06-08
The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. One facet of accomplishing this goal requires that new and existing air pollution sources be modeled for compliance with the National Ambient Air Quality Standards (NAAQS).
EPA is proposing to approve a revision to the Butte County Air Quality Management District (BCAQMD) portion of the California SIP concerning the District's New Source Review (NSR) permitting program for new and modified sources of air pollution.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-14
... Quality Implementation Plan; California; Sacramento Metropolitan Air Quality Management District... Sacramento Metropolitan Air Quality Management District (SMAQMD or District) portion of the California State... sources within the areas covered by the plan as necessary to assure that the National Ambient Air Quality...
Where's the beef? Retail channel choice and beef preferences in Argentina.
Colella, Florencia; Ortega, David L
2017-11-01
Argentinean beef is recognized and demanded internationally. Locally, consumers are often unable to afford certified beef products, and may rely on external cues to determine beef quality. Uncovering demand for beef attributes and marketing them accordingly, may require an understanding of consumers' product purchasing strategies, which involves retailer choice. We develop a framework utilizing latent class analysis to identify consumer groups with different retailer preferences, and separately estimate their demand for beef product attributes. This framework accounts for the interrelationship between consumers' choice of retail outlets and beef product preferences. Our analysis of data from the city of Buenos Aires identifies two groups of consumers, a convenience- (67%) and a service- (33%) oriented group. We find significant differences in demand for beef attributes across these groups, and find that the service oriented group, while not willing to pay for credence attributes, relies on a service-providing retailer-namely a butcher-as a source of product quality assurance. Copyright © 2017. Published by Elsevier Ltd.
LARGE-SCALE PREDICTIONS OF MOBILE SOURCE CONTRIBUTIONS TO CONCENTRATIONS OF TOXIC AIR POLLUTANTS
This presentation shows concentrations and deposition of toxic air pollutants predicted by a 3-D air quality model, the Community Multi Scale Air Quality (CMAQ) modeling system. Contributions from both on-road and non-road mobile sources are analyzed.
Controlling Pollutants and Sources: Indoor Air Quality Design Tools for Schools
To protect indoor environmental quality the designer should understand indoor air quality problems and seek to eliminate potential sources of contamination that originate from outdoors as well as indoors.
C-PORT: A Community-Scale Near-Source Air Quality System to Assess Port-Related Air Quality Impacts
With increasing activity in global trade, there has been increased activity in transportation by rail, road and ships to move cargo. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission source at the ports may impact local air qu...
Software Model Checking Without Source Code
NASA Technical Reports Server (NTRS)
Chaki, Sagar; Ivers, James
2009-01-01
We present a framework, called AIR, for verifying safety properties of assembly language programs via software model checking. AIR extends the applicability of predicate abstraction and counterexample guided abstraction refinement to the automated verification of low-level software. By working at the assembly level, AIR allows verification of programs for which source code is unavailable-such as legacy and COTS software-and programs that use features-such as pointers, structures, and object-orientation-that are problematic for source-level software verification tools. In addition, AIR makes no assumptions about the underlying compiler technology. We have implemented a prototype of AIR and present encouraging results on several non-trivial examples.
Combined comfort model of thermal comfort and air quality on buses in Hong Kong.
Shek, Ka Wing; Chan, Wai Tin
2008-01-25
Air-conditioning settings are important factors in controlling the comfort of passengers on buses. The local bus operators control in-bus air quality and thermal environment by conforming to the prescribed levels stated in published standards. As a result, the settings are merely adjusted to fulfill the standards, rather than to satisfy the passengers' thermal comfort and air quality. Such "standard-oriented" practices are not appropriate; the passengers' preferences and satisfaction should be emphasized instead. Thus a "comfort-oriented" philosophy should be implemented to achieve a comfortable in-bus commuting environment. In this study, the achievement of a comfortable in-bus environment was examined with emphasis on thermal comfort and air quality. Both the measurement of physical parameters and subjective questionnaire surveys were conducted to collect practical in-bus thermal and air parameters data, as well as subjective satisfaction and sensation votes from the passengers. By analyzing the correlation between the objective and subjective data, a combined comfort models were developed. The models helped in evaluating the percentage of dissatisfaction under various combinations of passengers' sensation votes towards thermal comfort and air quality. An effective approach integrated the combined comfort model, hardware and software systems and the bus air-conditioning system could effectively control the transient in-bus environment. By processing and analyzing the data from the continuous monitoring system with the combined comfort model, air-conditioning setting adjustment commands could be determined and delivered to the hardware. This system adjusted air-conditioning settings depending on real-time commands along the bus journey. Therefore, a comfortable in-bus air quality and thermal environment could be achieved and efficiently maintained along the bus journey despite dynamic outdoor influences. Moreover, this model can help optimize air-conditioning control by striking a beneficial balance between energy conservation and passengers' satisfaction level.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
... Rule To Implement the 1997 8-Hour Ozone National Ambient Air Quality Standard: New Source Review Anti-Backsliding Provisions for Former 1-Hour Ozone Standard--Public Hearing Notice AGENCY: Environmental... be held for the proposed ``Rule to Implement the 1997 8-Hour Ozone National Ambient Air Quality...
40 CFR 52.343 - Significant deterioration of air quality.
Code of Federal Regulations, 2010 CFR
2010-07-01
... quality. 52.343 Section 52.343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met for the following categories of sources for preventing the significant deterioration of air quality...
Air Pollution Emissions Overview | Air Quality Planning & ...
2016-06-08
Air pollution comes from many different sources: stationary sources such as factories, power plants, and smelters and smaller sources such as dry cleaners and degreasing operations; mobile sources such as cars, buses, planes, trucks, and trains; and naturally occurring sources such as windblown dust, and volcanic eruptions, all contribute to air pollution.
Wu, Hao; Zhang, Yan; Yu, Qi; Ma, Weichun
2018-04-01
In this study, the authors endeavored to develop an effective framework for improving local urban air quality on meso-micro scales in cities in China that are experiencing rapid urbanization. Within this framework, the integrated Weather Research and Forecasting (WRF)/CALPUFF modeling system was applied to simulate the concentration distributions of typical pollutants (particulate matter with an aerodynamic diameter <10 μm [PM 10 ], sulfur dioxide [SO 2 ], and nitrogen oxides [NO x ]) in the urban area of Benxi. Statistical analyses were performed to verify the credibility of this simulation, including the meteorological fields and concentration fields. The sources were then categorized using two different classification methods (the district-based and type-based methods), and the contributions to the pollutant concentrations from each source category were computed to provide a basis for appropriate control measures. The statistical indexes showed that CALMET had sufficient ability to predict the meteorological conditions, such as the wind fields and temperatures, which provided meteorological data for the subsequent CALPUFF run. The simulated concentrations from CALPUFF showed considerable agreement with the observed values but were generally underestimated. The spatial-temporal concentration pattern revealed that the maximum concentrations tended to appear in the urban centers and during the winter. In terms of their contributions to pollutant concentrations, the districts of Xihu, Pingshan, and Mingshan all affected the urban air quality to different degrees. According to the type-based classification, which categorized the pollution sources as belonging to the Bengang Group, large point sources, small point sources, and area sources, the source apportionment showed that the Bengang Group, the large point sources, and the area sources had considerable impacts on urban air quality. Finally, combined with the industrial characteristics, detailed control measures were proposed with which local policy makers could improve the urban air quality in Benxi. In summary, the results of this study showed that this framework has credibility for effectively improving urban air quality, based on the source apportionment of atmospheric pollutants. The authors endeavored to build up an effective framework based on the integrated WRF/CALPUFF to improve the air quality in many cities on meso-micro scales in China. Via this framework, the integrated modeling tool is accurately used to study the characteristics of meteorological fields, concentration fields, and source apportionments of pollutants in target area. The impacts of classified sources on air quality together with the industrial characteristics can provide more effective control measures for improving air quality. Through the case study, the technical framework developed in this study, particularly the source apportionment, could provide important data and technical support for policy makers to assess air pollution on the scale of a city in China or even the world.
Usually the most effective way to improve indoor air quality is to eliminate individual sources of pollution or to reduce their emissions. Some sources, like those that contain asbestos, can be sealed or enclosed.
Research in Action: Collect air quality data to characterize near-road/near-source hotspots; Determine potential impact on nearby residences & roadways; Case study of successful use of such data; Relationship between distance to roadways and industrial sources, exposure to...
Air Quality Planning & Standards | Air & Radiation | US EPA
2016-10-18
Air pollution comes from many different sources: stationary sources such as factories, power plants, and smelters and smaller sources such as dry cleaners and degreasing operations; mobile sources such as cars, buses, planes, trucks, and trains; and naturally occurring sources such as windblown dust, and volcanic eruptions, all contribute to air pollution.
Fundamentals of Indoor Air Quality in Buildings
This module provides the fundamentals to understanding indoor air quality. It provides a rudimentary framework for understanding how indoor and outdoor sources of pollution affect the indoor air quality of buildings.
DOT National Transportation Integrated Search
1975-01-01
The preparation of accurate air quality analysis portions of highway environmental impact statements requires valid meteorological and air quality data. These data are needed, in part, to determine the regional and local wind patterns on which pollut...
40 CFR 62.7856 - Albuquerque/Bernalillo County Air Quality Control Board.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Albuquerque/Bernalillo County Air Quality Control Board. (a) Identification of Plan. Albuquerque-Bernalillo... County Air Quality Control Board on November 9, 2005. (b) Identification of Sources. The plan applies to... County Air Quality Control Board that commenced construction prior to May 30, 1991, and have not been...
75 FR 11461 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... Promulgation of Air Quality Implementation Plans; Minnesota AGENCY: Environmental Protection Agency (EPA.... Because the PM 10 emission limits are being reduced, the air quality of Ramsey County will be protected... culpable source in the Childs Road area's nonattainment of the PM 10 National Ambient Air Quality Standards...
A Community-Scale Modeling System to Assess Port-Related Air Quality Impacts
Near-port air pollution has been identified by numerous organizations as a potential public health concern. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission sources at the ports may impact local air quality within several hun...
Contribution of indoor and outdoor nitrogen dioxide to indoor air quality of wayside shops.
Shuai, Jianfei; Yang, Wonho; Ahn, Hogi; Kim, Sunshin; Lee, Seokyong; Yoon, Sung-Uk
2013-06-01
Indoor nitrogen dioxide (NO₂) concentration is an important factor for personal exposure despite the wide distribution of its sources. Exposure to NO₂ may produce adverse health effects. The aims of this study were to characterize the indoor air quality of wayside shops using multiple NO₂ measurements, and to estimate the contribution of outdoor NO₂ sources such as vehicle emission to indoor air quality. Daily indoor and outdoor NO₂ concentrations were measured for 21 consecutive days in wayside shops (5 convenience stores, 5 coffee shops, and 5 restaurants). Contributions of outdoor NO₂ sources to indoor air quality were calculated with penetration factors and source strength factors by indoor mass balance model in winter and summer, respectively. Most wayside shops had significant differences in indoor and outdoor NO₂ concentrations both in winter and in summer. Indoor NO₂ concentrations in restaurants were twice more than those in convenience stores and coffee shops in winter. While outdoor NO₂ contributions in indoor convenience stores and coffee shops were dominant, indoor NO₂ contributions were dominant in restaurants. These could be explained that indoor NO₂ sources such as gas range and smoking mainly affect indoor concentrations comparing to outdoor sources such as vehicle emission. The indoor mass balance model by multiple measurements suggests that quantitative contribution of outdoor air on indoor air quality might be estimated without measurements of ventilation, indoor generation and decay rate.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R09-OAR-2013-0094; FRL-9783-2] Revision of Air Quality Implementation Plan; California; Placer County Air Pollution Control District and Feather River Air Quality Management District; Stationary Source Permits AGENCY: Environmental Protection Agency...
Development of indoor environmental index: Air quality index and thermal comfort index
NASA Astrophysics Data System (ADS)
Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.
2017-03-01
In this paper, index for indoor air quality (also known as IAQI) and thermal comfort index (TCI) have been developed. The IAQI was actually modified from previous outdoor air quality index (AQI) designed by the United States Environmental Protection Agency (US EPA). In order to measure the index, a real-time monitoring system to monitor indoor air quality level was developed. The proposed system consists of three parts: sensor module cloud, base station and service-oriented client. The sensor module cloud (SMC) contains collections of sensor modules that measures the air quality data and transmit the captured data to base station through wireless. Each sensor modules includes an integrated sensor array that can measure indoor air parameters like Carbon Dioxide, Carbon Monoxide, Ozone, Nitrogen Dioxide, Oxygen, Volatile Organic Compound and Particulate Matter. Temperature and humidity were also being measured in order to determine comfort condition in indoor environment. The result from several experiments show that the system is able to measure the air quality presented in IAQI and TCI in many indoor environment settings like air-conditioner, chemical present and cigarette smoke that may impact the air quality. It also shows that the air quality are changing dramatically, thus real-time monitoring system is essential.
NASA Astrophysics Data System (ADS)
Matichuk, R.; Tonnesen, G.; Luecken, D.; Roselle, S. J.; Napelenok, S. L.; Baker, K. R.; Gilliam, R. C.; Misenis, C.; Murphy, B.; Schwede, D. B.
2015-12-01
The western United States is an important source of domestic energy resources. One of the primary environmental impacts associated with oil and natural gas production is related to air emission releases of a number of air pollutants. Some of these pollutants are important precursors to the formation of ground-level ozone. To better understand ozone impacts and other air quality issues, photochemical air quality models are used to simulate the changes in pollutant concentrations in the atmosphere on local, regional, and national spatial scales. These models are important for air quality management because they assist in identifying source contributions to air quality problems and designing effective strategies to reduce harmful air pollutants. The success of predicting oil and natural gas air quality impacts depends on the accuracy of the input information, including emissions inventories, meteorological information, and boundary conditions. The treatment of chemical and physical processes within these models is equally important. However, given the limited amount of data collected for oil and natural gas production emissions in the past and the complex terrain and meteorological conditions in western states, the ability of these models to accurately predict pollution concentrations from these sources is uncertain. Therefore, this presentation will focus on understanding the Community Multiscale Air Quality (CMAQ) model's ability to predict air quality impacts associated with oil and natural gas production and its sensitivity to input uncertainties. The results will focus on winter ozone issues in the Uinta Basin, Utah and identify the factors contributing to model performance issues. The results of this study will help support future air quality model development, policy and regulatory decisions for the oil and gas sector.
National Emissions Inventory (NEI), County-Level, US, 2008, 2011, 2014, EPA OAR, OAPQS
This US EPA Office of Air and Radiation, Office of Air Quality Planning and Standards, Air Quality Assessment Division, Air Quality Analysis Group (OAR, OAQPS, AQAD, AQAG) web service contains the following layers created from the 2008, 2011 and 2014 National Emissions Inventory (NEI): Carbon Monoxide (CO), Lead, Ammonia (NH3), Nitrogen Oxides (NOx), Particulate Matter 10 (PM10), Particulate Matter 2.5 (PM2.5), Sulfur Dioxide (SO2), Volatile Organic Compounds (VOC). Each of these layers conatin county level emissions for 2008, 2011, and 2014. Layers are drawn at all scales. The National Emission Inventory (NEI) is a comprehensive and detailed estimate of air emissions of criteria pollutants, criteria precursors, and hazardous air pollutants from air emissions sources. The NEI is released every three years based primarily upon data provided by State, Local, and Tribal air agencies for sources in their jurisdictions and supplemented by data developed by the US EPA. The NEI is built using the Emissions Inventory System (EIS) first to collect the data from State, Local, and Tribal air agencies and then to blend that data with other data sources.NEI point sources include emissions estimates for larger sources that are located at a fixed, stationary location. Point sources in the NEI include large industrial facilities and electric power plants, airports, and smaller industrial, non-industrial and commercial facilities. A small number of portable sources such as s
NASA Astrophysics Data System (ADS)
Cuchiara, Gustavo C.; Rappenglück, Bernhard; Angelica Rubio, Maria; Lissi, Eduardo; Gramsch, Ernesto; Garreaud, Rene D.
2017-04-01
Wildfires are a significant direct source of atmospheric pollutants; on a global scale biomass burning is believed to be the largest source of primary fine particles in the atmosphere and the second largest source of trace gases after anthropogenic emission sources. During the summer of 2014, an intense forest and dry pasture wildfire occurred nearby the city of Santiago de Chile. The biomass-burning plume was transported towards the metropolitan area of Santiago and exacerbated the air quality in this region. In this study, we investigated this wildfire event using a forward plume-rise and a chemistry (WRF/Chem) simulation. These data sets provided an opportunity to validate a regional air-quality simulation over Santiago, and a unique case to assess the performance of biomass burning plume modeling in complex topography and validated against an established air quality network. The results from both meteorological and air quality models provide insights about the transport of biomass-burning plumes from the wildfire region towards the metropolitan region of Santiago de Chile. We studied a seven-day period between January 01-07, 2014, and the impact of biomass burning plume emissions estimated by Fire Inventory from NCAR version 1 (FINNv1) on the air quality of Santiago de Chile.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... the California State Implementation Plan, South Coast Air Quality Management District AGENCY... approve a revision to the South Coast Air Quality Management District (SCAQMD) portion of the California... Reference (A) South Coast Air Quality Management District (1) Rule 2005, ``New Source Review for RECLAIM...
POPULATION AT RISK TO VARIOUS AIR POLLUTION EXPOSURES: DATA BASE 'POPATRISK'
The work reported was undertaken to provide the EPA with a user-oriented data base containing recent county-based information, for all counties in the contiguous United States, on population demographics, population mobility, climatology, emissions, air quality, and age-adjusted ...
Modeled source attribution information from the Community Multiscale Air Quality model was coupled with ambient data from the 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality Baltimore field study. We assess ...
Probability model for atmospheric sulfur dioxide concentrations in the area of Venice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttazzoni, C.; Lavagnini, I.; Marani, A.
1986-09-01
This paper deals with a comparative screening of existing air quality models based on their ability to simulate the distribution of sulfur dioxide data in the Venetian area. Investigations have been carried out on sulfur dioxide dispersion in the atmosphere of the Venetian area. The studies have been mainly focused on transport models (Gaussian, plume and K-models) aiming at meaningful correlations of sources and receptors. Among the results, a noteworthy disagreement of simulated and experimental data, due to the lack of thorough knowledge of source field conditions and of local meteorology of the sea-land transition area, has been shown. Investigationsmore » with receptor oriented models (based, e.g., on time series analysis, Fourier analysis, or statistical distributions) have also been performed.« less
The development of effects-based air quality management regimes
NASA Astrophysics Data System (ADS)
Longhurst, J. W. S.; Irwin, J. G.; Chatterton, T. J.; Hayes, E. T.; Leksmono, N. S.; Symons, J. K.
This paper considers the evolution of attempts to control and manage air pollution, principally but not exclusively focussing upon the challenge of managing air pollution in urban environments. The development and implementation of a range of air pollution control measures are considered. Initially the measures implemented primarily addressed point sources, a small number of fuel types and a limited number of pollutants. The adequacy of such a source-control approach is assessed within the context of a changing and challenging air pollution climate. An assessment of air quality management in the United Kingdom over a 50-year timeframe exemplifies the range of issues and challenges in contemporary air quality management. The need for new approaches is explored and the development and implementation of an effects-based, risk management system for air quality regulation is evaluated.
Identifying pollution sources and predicting urban air quality using ensemble learning methods
NASA Astrophysics Data System (ADS)
Singh, Kunwar P.; Gupta, Shikha; Rai, Premanjali
2013-12-01
In this study, principal components analysis (PCA) was performed to identify air pollution sources and tree based ensemble learning models were constructed to predict the urban air quality of Lucknow (India) using the air quality and meteorological databases pertaining to a period of five years. PCA identified vehicular emissions and fuel combustion as major air pollution sources. The air quality indices revealed the air quality unhealthy during the summer and winter. Ensemble models were constructed to discriminate between the seasonal air qualities, factors responsible for discrimination, and to predict the air quality indices. Accordingly, single decision tree (SDT), decision tree forest (DTF), and decision treeboost (DTB) were constructed and their generalization and predictive performance was evaluated in terms of several statistical parameters and compared with conventional machine learning benchmark, support vector machines (SVM). The DT and SVM models discriminated the seasonal air quality rendering misclassification rate (MR) of 8.32% (SDT); 4.12% (DTF); 5.62% (DTB), and 6.18% (SVM), respectively in complete data. The AQI and CAQI regression models yielded a correlation between measured and predicted values and root mean squared error of 0.901, 6.67 and 0.825, 9.45 (SDT); 0.951, 4.85 and 0.922, 6.56 (DTF); 0.959, 4.38 and 0.929, 6.30 (DTB); 0.890, 7.00 and 0.836, 9.16 (SVR) in complete data. The DTF and DTB models outperformed the SVM both in classification and regression which could be attributed to the incorporation of the bagging and boosting algorithms in these models. The proposed ensemble models successfully predicted the urban ambient air quality and can be used as effective tools for its management.
ERIC Educational Resources Information Center
Baldwin Union Free School District, NY.
This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…
INTEGRATION OF SATELLITE-DERIVED AEROSOL DATA INTO THE AIR QUALITY APPLICATIONS
Historically, the only source of aerosol air quality data available on an ongoing and systematic basis at national levels was generated by ambient air monitoring networks put in place for the US EPA's Air Quality Programs. Over the past several years, the remote sensing of aeros...
Air Pollution in the World's Megacities.
ERIC Educational Resources Information Center
Richman, Barbara T., Ed.
1994-01-01
Reports findings of the Global Environment Monitoring System study concerning air pollution in the world's megacities. Discusses sources of air pollution, air pollution impacts, air quality monitoring, air quality trends, and control strategies. Provides profiles of the problem in Beijing, Los Angeles, Mexico City, India, Cairo, Sao Paulo, and…
Enforcement of continuous compliance with air quality regulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, C.W.
1985-01-01
The compliance of stationary air-pollution sources with air quality regulations is examined. Contrary to the predictions of economic models of enforcement, sources are generally in continuous compliance with the regulations. An alternative voluntary compliance model of enforcement is proposed, in which regulated sources are penalized not for violations, but for failing to return to compliance when a violation is discovered. It is argued that continuous compliance is a bargain struck between the source and the regulatory agency, in which the agency agrees to avoid use of penalties in return for the source's good faith attempts to maintain compliance.
Air quality assessment of Estarreja, an urban industrialized area, in a coastal region of Portugal.
Figueiredo, M L; Monteiro, A; Lopes, M; Ferreira, J; Borrego, C
2013-07-01
Despite the increasing concern given to air quality in urban and industrial areas in recent years, particular emphasis on regulation, control, and reduction of air pollutant emissions is still necessary to fully characterize the chain emissions-air quality-exposure-dose-health effects, for specific sources. The Estarreja region was selected as a case study because it has one of the largest chemical industrial complexes in Portugal that has been recently expanded, together with a growing urban area with an interesting location in the Portuguese coastland and crossed by important road traffic and rail national networks. This work presents the first air quality assessment for the region concerning pollutant emissions and meteorological and air quality monitoring data analysis, over the period 2000-2009. This assessment also includes a detailed investigation and characterization of past air pollution episodes for the most problematic pollutants: ozone and PM10. The contribution of different emission sources and meteorological conditions to these episodes is investigated. The stagnant meteorological conditions associated with local emissions, namely industrial activity and road traffic, are the major contributors to the air quality degradation over the study region. A set of measures to improve air quality--regarding ozone and PM10 levels--is proposed as an air quality management strategy for the study region.
Sensitivity of air quality simulation to smoke plume rise
Yongqiang Liu; Gary Achtemeier; Scott Goodrick
2008-01-01
Plume rise is the height smoke plumes can reach. This information is needed by air quality models such as the Community Multiscale Air Quality (CMAQ) model to simulate physical and chemical processes of point-source fire emissions. This study seeks to understand the importance of plume rise to CMAQ air quality simulation of prescribed burning to plume rise. CMAQ...
EPA Approved Iowa Regulations - 40 CFR 52.820(c) Chapter 33 - Special Regulations and Construction Permit Requirements for Major Stationary Sources - Prevention of Significant Deterioration (PSD) of Air Quality
Source Apportionment of Final Particulate Matterin North China Plain based on Air Quality Modeling
NASA Astrophysics Data System (ADS)
Xing, J.; Wu, W.; Chang, X.; Wang, S.; Hao, J.
2016-12-01
Most Chinese cities in North China Plain are suffering from serious air pollution. To develop the regional air pollution control policies, we need to identify the major source contributions to such pollution and to design the control policy which is accurate, efficient and effective. This study used the air quality model with serval advanced technologies including ISAM and ERSM, to assess the source contributions from individual pollutants (incl. SO2, NOx, VOC, NH3, primary PM), sectors (incl. power plants, industry, transportation and domestic), and regions (Beijing, Hebei, Tianjing and surrounding provinces). The modeling period is two months in 2012 as January and July which represent winter and summer respectively. The non-linear relationship between air pollutant emissions and air quality will be addressed, and the integrated control of multi-pollutants and multi-regions in China will be suggested.
75 FR 6473 - Primary National Ambient Air Quality Standards for Nitrogen Dioxide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... review, however, some areas could be classified as non-attainment. Certain States will be required to... sources of NO X emissions are on-road mobile sources, electricity generating units, and non-road mobile... tracking. 2. NO 2 Air Quality and Gradients Around Roadways On-road and non-road mobile sources account for...
AIR QUALITY MODELING AT NEIGHBORHOOD SCALES TO IMPROVE HUMAN EXPOSURE ASSESSMENT
Air quality modeling is an integral component of risk assessment and of subsequent development of effective and efficient management of air quality. Urban areas introduce of fresh sources of pollutants into regional background producing significant spatial variability of the co...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litao Wang; Jiming Hao; Kebin He
In the last 10 yr, Beijing has made a great effort to improve its air quality. However, it is still suffering from regional coarse particulate matter (PM10) pollution that could be a challenge to the promise of clean air during the 2008 Olympics. To provide scientific guidance on regional air pollution control, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) air quality modeling system was used to investigate the contributions of emission sources outside the Beijing area to pollution levels in Beijing. The contributions to the PM10 concentrations in Beijing were assessed formore » the following sources: power plants, industry, domestic sources, transportation, agriculture, and biomass open burning. In January, it is estimated that on average 22% of the PM10 concentrations can be attributed to outside sources, of which domestic and industrial sources contributed 37 and 31%, respectively. In August, as much as 40% of the PM10 concentrations came from regional sources, of which approximately 41% came from industry and 31% from power plants. However, the synchronous analysis of the hourly concentrations, regional contributions, and wind vectors indicates that in the heaviest pollution periods the local emission sources play a more important role. The implications are that long-term control strategies should be based on regional-scale collaborations, and that emission abatement of local sources may be more effective in lowering the PM10 concentration levels on the heavy pollution days. Better air quality can be attained during the Olympics by placing effective emission controls on the local sources in Beijing and by controlling emissions from industry and power plants in the surrounding regions. 44 refs., 6 figs., 3 tabs.« less
Impact of inherent meteorology uncertainty on air quality model predictions
It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...
AIR QUALITY SIMULATION MODEL PERFORMANCE FOR ONE-HOUR AVERAGES
If a one-hour standard for sulfur dioxide were promulgated, air quality dispersion modeling in the vicinity of major point sources would be an important air quality management tool. Would currently available dispersion models be suitable for use in demonstrating attainment of suc...
Wang, Peng; Ying, Qi; Zhang, Hongliang; Hu, Jianlin; Lin, Yingchao; Mao, Hongjun
2018-06-01
A Community Multiscale Air Quality (CMAQ) model with source-oriented lumped SAPRC-11 (S11L) photochemical mechanism and secondary organic aerosol (SOA) module was applied to determine the contributions of anthropogenic and biogenic sources to SOA concentrations in China. A one-year simulation of 2013 using the Multi-resolution Emission Inventory for China (MEIC) shows that summer SOA are generally higher (10-15 μg m -3 ) due to large contributions of biogenic (country average 60%) and industrial sources (17%). In winter, SOA formation was mostly due to anthropogenic emissions from industries (40%) and residential sources (38%). Emissions from other countries in southeast China account for approximately 14% of the SOA in both summer and winter, and 46% in spring due to elevated open biomass burning in southeast Asia. The Regional Emission inventory in ASia v2.1 (REAS2) was applied in this study for January and August 2013. Two sets of simulations with the REAS2 inventory were conducted using two different methods to speciate total non-methane carbon into model species. One approach uses total non-methane hydrocarbon (NMHC) emissions and representative speciation profiles from the SPECIATE database. The other approach retains the REAS2 speciated species that can be directly mapped to S11L model species and uses source specific splitting factors to map other REAS2 lumped NMHC species. Biogenic emissions are still the most significant contributor in summer based on these two sets of simulations. However, contributions from the transportation sector to SOA in January are predicted to be much more important based on the two REAS2 emission inventories (∼30-40% vs. ∼5% by MEIC), and contributions from residential sources according to REAS2 was much lower (∼21-24% vs. ∼42%). These discrepancies in source contributions to SOA need to be further investigated as the country seeks for optimal emission control strategies to fight severe air pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
The air, carbon, water synergies and trade-offs in China's natural gas industry
NASA Astrophysics Data System (ADS)
Qin, Y.; Mauzerall, D. L.; Höglund-Isaksson, L.; Wagner, F.; Byers, E.
2017-12-01
Both energy production and consumption can simultaneously affect regional air quality, local water stress, and the global climate. Identifying air, carbon and water impacts of various energy sources and end-uses is important in determining the relative merits of various energy policies. Here, we examine the air-carbon-water interdependencies of China's six major natural gas source choices (domestic conventional natural gas, domestic coal-based synthetic natural gas (SNG), domestic shale gas, imported liquefied natural gas, imported Russian pipeline gas, and imported Central Asian pipeline gas) and three end-use coal-to-gas deployment strategies (with substitution strategies that focus in turn on air quality, carbon, and water) in 2020. On the supply side, we find that gas sources other than SNG offer national air-carbon-water co-benefits. However, we find striking air-carbon/water trade-offs for SNG at the national scale. Moreover, the use of SNG significantly increases water demand and carbon emissions in regions already suffering from the most severe water stress and the highest per capita carbon footprint. On the end-use side, gas substitution for coal can result in enormous variations in air quality, carbon, and water impacts, with notable air-carbon synergies but air-water trade-offs. Our study finds that, except for SNG, end-use choices generally have a much larger influence on air quality, carbon emissions and water use than do gas source choices. Simultaneous consideration of air, carbon, and water impacts is necessary in designing both beneficial energy development and deployment policies.
Managing Air Quality - Control Strategies to Achieve Air Pollution Reduction
Considerations in designing an effective control strategy related to air quality, controlling pollution sources, need for regional or national controls, steps to developing a control strategy, and additional EPA resources.
Measurement and Modeling of Near Road & Near-Port Air Quality
Air pollution from mobile sources has been identified by numerous organizations as a potential public health concern. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission sources at ports can significantly impact local air qualit...
Earth Orientation Effects on Mobile VLBI Baselines
NASA Technical Reports Server (NTRS)
Allen, S. L.
1984-01-01
Improvements in data quality for the mobile VLBI systems have placed higher accuracy requirements on Earth orientation calibrations. Errors in these calibrations may give rise to systematic effects in the nonlength components of the baselines. Various sources of Earth orientation data were investigated for calibration of Mobile VLBI baselines. Significant differences in quality between the several available sources of UT1-UTC were found. It was shown that the JPL Kalman filtered space technology data were at least as good as any other and adequate to the needs of current Mobile VLBI systems and observing plans. For polar motion, the values from all service suffice. The effect of Earth orientation errors on the accuracy of differenced baselines was also investigated. It is shown that the effect is negligible for the current mobile systems and observing plan.
Thoma, Brent; Sebok-Syer, Stefanie S; Colmers-Gray, Isabelle; Sherbino, Jonathan; Ankel, Felix; Trueger, N Seth; Grock, Andrew; Siemens, Marshall; Paddock, Michael; Purdy, Eve; Kenneth Milne, William; Chan, Teresa M
2018-01-30
Construct: We investigated the quality of emergency medicine (EM) blogs as educational resources. Online medical education resources such as blogs are increasingly used by EM trainees and clinicians. However, quality evaluations of these resources using gestalt are unreliable. We investigated the reliability of two previously derived quality evaluation instruments for blogs. Sixty English-language EM websites that published clinically oriented blog posts between January 1 and February 24, 2016, were identified. A random number generator selected 10 websites, and the 2 most recent clinically oriented blog posts from each site were evaluated using gestalt, the Academic Life in Emergency Medicine (ALiEM) Approved Instructional Resources (AIR) score, and the Medical Education Translational Resources: Impact and Quality (METRIQ-8) score, by a sample of medical students, EM residents, and EM attendings. Each rater evaluated all 20 blog posts with gestalt and 15 of the 20 blog posts with the ALiEM AIR and METRIQ-8 scores. Pearson's correlations were calculated between the average scores for each metric. Single-measure intraclass correlation coefficients (ICCs) evaluated the reliability of each instrument. Our study included 121 medical students, 88 EM residents, and 100 EM attendings who completed ratings. The average gestalt rating of each blog post correlated strongly with the average scores for ALiEM AIR (r = .94) and METRIQ-8 (r = .91). Single-measure ICCs were fair for gestalt (0.37, IQR 0.25-0.56), ALiEM AIR (0.41, IQR 0.29-0.60) and METRIQ-8 (0.40, IQR 0.28-0.59). The average scores of each blog post correlated strongly with gestalt ratings. However, neither ALiEM AIR nor METRIQ-8 showed higher reliability than gestalt. Improved reliability may be possible through rater training and instrument refinement.
Since aviation gasoline is now the largest remaining source of lead (Pb) emissions to the air in the United States, there is increased interest by regulatory agencies and the public in assessing the impacts on residents living in close proximity to these sources. An air quality m...
Effect of low emission sources on air quality in Cracow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedoma, J.
1995-12-31
The paper presents calculation of power engineering low emission and results of stimulation of the effect of this emission on air quality in Cracow, Poland. It has been stated that the segment of low emission in central areas of the town makes up ca. 40% of the observed concentration of sulfur dioxide. Furthermore it has been stated that the capital investment must be concentrated in the central part of the town in order to reach noticeable improvement of air quality in Cracow. Neither the output of a separate power source nor the emission level and its individual harmful effect, butmore » the location of the source and especially packing density of the sources must decide the priority of upgrading actions.« less
Air Quality Measurements for Science and Policy
Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...
78 FR 33266 - Review of New Sources and Modifications in Indian Country
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
... burdensome implementation without detriment to air quality in Indian country. Lastly, we are reconsidering... INFORMATION CONTACT: For technical information, contact Greg Nizich, Air Quality Policy Division, Office of Air Quality Planning and Standards (C504-03), Environmental Protection Agency, Research Triangle Park...
The Use of Sensory Analysis Techniques to Assess the Quality of Indoor Air.
Lewkowska, Paulina; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek
2017-01-02
The quality of indoor air is one of the significant elements that influences people's well-being and health inside buildings. Emissions of pollutants, which may cause odor nuisance, are the main reason for people's complaints regarding the quality of indoor air. As a result, it is necessary to perform tests aimed at identifying the sources of odors inside buildings. The article contains basic information on the characteristics of the sources of indoor air pollution and the influence of the odor detection threshold on people's health and comfort. An attempt was also made to classify and use sensory analysis techniques to perform tests of the quality of indoor air, which would enable identification of sensory experience and would allow for indication of the degree of their intensity.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-11
... and Applicable Federal Air Pollution Control Regulations and Other Permanent and Enforceable... Cross-State Air Pollution Rule (CSAPR) and ordered EPA to continue administering the Clean Air... combustion emissions of NO X from power plants, mobile sources and other combustion sources. The first air...
The National Near-Road Mobile Source Air Toxics Study
Recently, much attention has been directed at understanding the impact of mobile sources on near-road air quality, especially PM and its components, NOx and CO, but little information exists for mobile source air toxics (MSATs). MSATs of interest to this project are 1,3-butadiene...
NASA Astrophysics Data System (ADS)
Kim, Y. J.; Sunwoo, Y.; Hwang, I.; Song, S.; Sin, J.; Kim, D.
2015-12-01
A very high population and corresponding high number of vehicles in the Seoul Metropolitan Area (SMA) are aggravating the air quality of this region. The Korean government continues to make concerted efforts to improve air quality. One of the major policies that the Ministry of Environment of Korea enforced is "The Special Act for Improvement of Air Quality in SMA" and "The 1st Air Quality Management Plan of SMA". Mobile Source emission controls are an important part of the policy. Thus, it is timely to evaluate the air quality improvement due to the controls. Therefore, we performed a quantitative analysis of the difference in air quality using the Community Multiscale Air Quality (CMAQ) model and December, 2011 was set as the target period to capture the impact of the above control plans. We considered four fuel-type vehicle emission scenarios and compared the air quality improvement differences between them. The scenarios are as follows: no-control, gasoline vehicle control only, diesel vehicle control only, and control of both; utilizing the revised mobile source emissions from the Clean Air Policy Support System (CAPSS), which is the national emission inventory reflecting current policy.In order to improve the accuracy of the modeling data, we developed new temporal allocation coefficients based on traffic volume observation data and spatially reallocated the mobile source emissions using vehicle flow survey data. Furthermore, we calculated the PM10 and PM2.5 emissions of gasoline vehicles which is omitted in CAPSS.The results of the air quality modeling shows that vehicle control plans for both gasoline and diesel lead to a decrease of 0.65ppb~8.75ppb and 0.02㎍/㎥~7.09㎍/㎥ in NO2 and PM10 monthly average concentrations, respectively. The large percentage decreases mainly appear near the center of the metropolis. However, the largest NO2 decrease percentages are found in the northeast region of Gyeonggi-do, which is the province that surrounds the capital of Seoul. Comparing the results between the different scenarios, diesel vehicle control impact dominates relative to the impact of gasoline control. The diesel-only reduction plan shows that NO2 and PM10 improved by 2.93ppb and 3.32㎍/㎥, respectively.
[Main indoor air pollutants and their health impacts].
Xu, Zhen; Jin, Yinlong
2003-05-01
The quality of indoor air is a very important factor that may directly affect human health. There are many sources as well as a variety of indoor air pollutants. Therefore, the health impact is complicated, affecting different organs and systems of human being such as respiratory and immune system. The main indoor air pollutants are the combustion products from smoking, cooking and heating, the chemical pollutants from renovation materials and the biological contaminants. The kinds, sources and health impacts of these pollutants that affect the indoor air quality are reviewed in this paper.
6 Source Categories - Boilers (Proposed Action)
EPA is proposing options to simplify the Clean Air Act permitting process for certain smaller sources of air pollution commonly found in Indian country. This action would ensure that air quality in Indian country is protected.
Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
...] Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Removal of Gasoline Vapor... Administrative Code, Chapter NR 420 Control of Organic Compound Emissions from Petroleum and Gasoline Sources... FROM PETROLEUM AND GASOLINE SOURCES. NR 420.01 as published in the (Wisconsin) Register, February, 1990...
Assessment of port-related air quality impacts: geographic analysis of population
Increased global trade has led to greater transportation by rail, road and ships to move cargo. Based upon multiple near-road and near-source monitoring studies, the busy roadways and large emission sources at ports may impact local air quality within several hundred metres of th...
Because long-range transport has been shown to affect air quality in downwind continents, there is a growing realization that these effects may need to be considered in air quality management efforts by distinguishing between the contributions of local and regional emission sourc...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R03-OAR-2010-0009; FRL-9115-8] Approval and Promulgation of Air Quality Implementation Plans; Virginia; Opacity Source Surveillance Methods AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA proposes to approve the State...
Stories from OpenAQ, a Global and Grassroots Open Air Quality Community
NASA Astrophysics Data System (ADS)
Hasenkopf, C. A.; Flasher, J. C.; Veerman, O.; Scalamogna, A.; Silva, D.; Salmon, M.; Buuralda, D.; DeWitt, L. H.
2016-12-01
Air pollution, responsible for more deaths each year than HIV/AIDS and malaria, combined, is a global public health crisis. Yet many scientific questions, including those directly relevant for policy, remain unanswered when it comes to the impact of air pollution on health in highly polluted environments. Often, specific solutions to improving air quality are local and sustained through public engagement, policy and monitoring. Both the overarching science of air quality and health and local solutions rely on access to reliable, timely air quality data. Over the past year, the OpenAQ community has opened up existing disparate air quality data in 24 countries through an open source platform (openaq.org) so that communities around the world can use it to advance science, public engagement, and policy. We will share stories of communities, from Delhi to Ulaanbaatar and from scientists to journalists, using open air quality data from our platform to advance their fight against air inequality. We will share recent research we have conducted on best practices for engaging different communities and building tools that enable the public to fully unleash the power of open air quality data to fight air inequality. The subsequent open-source tools (github.com/openaq) we have developed from this research and our entire data-sharing platform may be of interest to other open data communities.
O’Connell, Grant; Colard, Stéphane; Cahours, Xavier; Pritchard, John D.
2015-01-01
Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals in the ambient air, an indoor air quality study was conducted to measure volatile organic compounds (including nicotine and low molecular weight carbonyls), polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines and trace metal levels in the air before, during and after e-cigarette use in a typical small office meeting room. Measurements were compared with human Health Criteria Values, such as indoor air quality guidelines or workplace exposure limits where established, to provide a context for potential bystander exposures. In this study, the data suggest that any additional chemicals present in indoor air from the exhaled e-cigarette aerosol, are unlikely to present an air quality issue to bystanders at the levels measured when compared to the regulatory standards that are used for workplaces or general indoor air quality. PMID:25955526
O'Connell, Grant; Colard, Stéphane; Cahours, Xavier; Pritchard, John D
2015-05-06
Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals in the ambient air, an indoor air quality study was conducted to measure volatile organic compounds (including nicotine and low molecular weight carbonyls), polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines and trace metal levels in the air before, during and after e-cigarette use in a typical small office meeting room. Measurements were compared with human Health Criteria Values, such as indoor air quality guidelines or workplace exposure limits where established, to provide a context for potential bystander exposures. In this study, the data suggest that any additional chemicals present in indoor air from the exhaled e-cigarette aerosol, are unlikely to present an air quality issue to bystanders at the levels measured when compared to the regulatory standards that are used for workplaces or general indoor air quality.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
... the California State Implementation Plan, South Coast Air Quality Management District (SCAQMD) AGENCY... sources, to achieve emissions reductions milestones, to attain and maintain ambient air quality standards... ``significant regulatory action'' subject to review by the Office of Management and Budget under Executive Order...
40 CFR 52.677 - Original identification of plan section.
Code of Federal Regulations, 2010 CFR
2010-07-01
... identification of plan section. (a) This section identifies the original “Idaho Air Quality Implementation Plan... source review, and compliance schedules submitted on July 1, 1974, by the Governor. (12) Air quality... Community Services. (13) An amendment to Regulation C (Ambient Air Quality Standards) and Regulation S...
AIR QUALITY AND GLOBAL CLIMATE CHANGE (PHASE 1)
Predicted changes in the global climate over the coming decades could alter weather patterns and, thus, impact land use, source emissions, and tropospheric air quality. The United States has a series of standards for criteria air pollutants and other air pollutants in place to s...
Data Sources for an Environmental Quality Index: Availability, Quality, and Utility
Rappazzo, Kristen; Messer, Lynne C.
2011-01-01
Objectives. An environmental quality index (EQI) for all counties in the United States is under development to explore the relationship between environmental insults and human health. The EQI is potentially useful for investigators researching health disparities to account for other concurrent environmental conditions. This article focused on the identification and assessment of data sources used in developing the EQI. Data source strengths, limitations, and utility were addressed. Methods. Five domains were identified that contribute to environmental quality: air, water, land, built, and sociodemographic environments. An inventory of possible data sources was created. Data sources were evaluated for appropriate spatial and temporal coverage and data quality. Results. The overall data inventory identified multiple data sources for each domain. From the inventory (187 sources, 617 records), the air, water, land, built environment, and sociodemographic domains retained 2, 9, 7, 4, and 2 data sources for inclusion in the EQI, respectively. However, differences in data quality, geographic coverage, and data availability existed between the domains. Conclusions. The data sources identified for use in the EQI may be useful to researchers, advocates, and communities to explore specific environmental quality questions. PMID:21836111
Air quality assessment in Delhi: before and after CNG as fuel.
Chelani, Asha B; Devotta, Sukumar
2007-02-01
A number of policy measures have been activated in India in order to control the levels of air pollutants such as particulate matter, sulphur dioxide (SO(2)) and nitrogen dioxide (NO(2)). Delhi, which is one of the most polluted cities in the world, is also going through the implementation phase of the control policies. Ambient air quality data monitored during 2000 to 2003, at 10 sites in Delhi, were analyzed to assess the impact of implementation of these measures, specifically fuel change in vehicles. This paper presents the impact of policy measures on ambient air quality levels and also the source apportionment. CO and NO(2) concentration levels in ambient air are found to be associated with the mobile sources. The temporal variation of air quality data shows the significant effect of shift to CNG (Compressed Natural Gas) in vehicles.
40 CFR 52.1824 - Review of new sources and modifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Quality Models” as supplemented by the “North Dakota Guideline for Air Quality Modeling Analysis”.In a... requirements of the EPA Guideline for air quality modeling demonstrations associated with the permitting of new...
AIR QUALITY CHARACTERIZATION OF ENVIRONMENTAL PUBLIC HEALTH TRACKING
The EPA and the CDC have conducted a collaborative effort entitled the Public Health Air Surveillance Evaluation (PHASE) to pilot the development of integrated air quality data sets, from routinely available sources, for specific use by public health officials.
IDENTIFYING SOURCES OF HUMAN EXPOSURE
Air pollution from ambient sources continues to adversely impact human health in the United States. A fundamental goal for EPA is to implement air quality standards and regulations that reduce health risks associated with exposures to criteria pollutants and air toxics. However...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... Environment Department, Air Quality Bureau, 1301 Siler Road, Building B, Santa Fe, New Mexico. FOR FURTHER... November 7, 2012, from the Secretary committing the New Mexico Environment Department (NMED) Air Quality... maintenance plan. \\4\\ Approval and Promulgation of Air Quality Implementation Plans; New Mexico; Sunland Park...
Documents related to the FNF Construction, Inc. Request for Coverage under the General Air Quality Permit for New or Modified Minor Source Hot Mix Asphalt Plants in Indian Country to be Located near Ganado, Arizona on the Navajo Nation.
VERIFICATION AND USES OF THE ENVIRONMENTAL PROTECTION AGENCY (EPA) INDOOR AIR QUALITY MODEL
The paper describes a set of experiments used to verify an indoor air quality (IAQ) model for estimating the impact of various pollution sources on IAQ in a multiroom building. he model treats each room as a well-mixed chamber that contains pollution sources and sinks. he model a...
Enhanced data validation strategy of air quality monitoring network.
Harkat, Mohamed-Faouzi; Mansouri, Majdi; Nounou, Mohamed; Nounou, Hazem
2018-01-01
Quick validation and detection of faults in measured air quality data is a crucial step towards achieving the objectives of air quality networks. Therefore, the objectives of this paper are threefold: (i) to develop a modeling technique that can be used to predict the normal behavior of air quality variables and help provide accurate reference for monitoring purposes; (ii) to develop fault detection method that can effectively and quickly detect any anomalies in measured air quality data. For this purpose, a new fault detection method that is based on the combination of generalized likelihood ratio test (GLRT) and exponentially weighted moving average (EWMA) will be developed. GLRT is a well-known statistical fault detection method that relies on maximizing the detection probability for a given false alarm rate. In this paper, we propose to develop GLRT-based EWMA fault detection method that will be able to detect the changes in the values of certain air quality variables; (iii) to develop fault isolation and identification method that allows defining the fault source(s) in order to properly apply appropriate corrective actions. In this paper, reconstruction approach that is based on Midpoint-Radii Principal Component Analysis (MRPCA) model will be developed to handle the types of data and models associated with air quality monitoring networks. All air quality modeling, fault detection, fault isolation and reconstruction methods developed in this paper will be validated using real air quality data (such as particulate matter, ozone, nitrogen and carbon oxides measurement). Copyright © 2017 Elsevier Inc. All rights reserved.
Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)
NASA Astrophysics Data System (ADS)
Isakov, V.
2010-12-01
Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features, regional-scale transport, and photochemical transformations. Since these needs are currently not met by a single model, hybrid air quality modeling has recently been developed to combine these capabilities. In this paper, we present the results of two studies where we applied the hybrid modeling approach to provide spatial and temporal details in air quality concentrations to support exposure and health studies: a) an urban-scale air quality accountability study involving near-source exposures to multiple ambient air pollutants, and b) an urban-scale epidemiological study involving human health data based on emergency department visits.
NASA Astrophysics Data System (ADS)
Valenzuela, Victor Hugo
Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify variability of the PREDICTED to OBSERVED ozone concentrations of both BASELINE model and simulations with modified emissions assessed by the sensitivity analysis. All simulations were found to vary within acceptable ranges of these two criteria variables. Simulation results indicate ozone formation in the PdN region is VOC-limited. Under VOC-limited conditions, modifications to NOx emissions do not produce a marked increase or decrease in ozone concentrations. Modifications to VOC emissions generated the highest variability in ozone concentrations. Increasing VOC emissions by 75% produced results which minimized model bias and error when comparing PREDICTED and OBSERVED ozone concentrations. Increasing VOC emissions by 75% either alone or in combination with a 75% increase in NOx emissions generated PREDICTED ozone concentrations very near to OBSERVED ozone. By evaluating the changes in ambient ozone concentrations through photochemical modeling, air quality planners may identify the most efficient or effective VOC emissions control strategies for area sources. Among the strategies to achieve emissions reductions are installation of gasoline vapor recovery systems, replacing high-pressure low-volume surface coating paint spray guns with high-volume low-pressure spray paint guns, requiring emissions control booths for surface coating operations as well as undertaking solvent management practices, requiring the sale of low VOC paint solvents in the surface-coating industry, and requiring low-VOC solvents in the dry cleaning industry. Other strategies to reduce VOC emissions include initiating Eco-Driving strategies to reduce fuel consumption from mobile sources and minimize vehicle idling at the international ports of entry by reducing bridge wait times. This dissertation depicts a tool for evaluating impacts of emissions on regional air quality by addressing the highly unresolved fugitive emissions in the Paso del Norte region. It provides a protocol for decision makers to assess the effects of various emission control strategies in the region. Impacts of specific source categories such as the international ports of entry, gasoline stations, paint body shops, truck stops, and military installations on the regional air quality can be easily and systematically addressed in a timely manner in the future.
Review on urban vegetation and particle air pollution - Deposition and dispersion
NASA Astrophysics Data System (ADS)
Janhäll, Sara
2015-03-01
Urban vegetation affects air quality through influencing pollutant deposition and dispersion. Both processes are described by many existing models and experiments, on-site and in wind tunnels, focussing e.g. on urban street canyons and crossings or vegetation barriers adjacent to traffic sources. There is an urgent need for well-structured experimental data, including detailed empirical descriptions of parameters that are not the explicit focus of the study. This review revealed that design and choice of urban vegetation is crucial when using vegetation as an ecosystem service for air quality improvements. The reduced mixing in trafficked street canyons on adding large trees increases local air pollution levels, while low vegetation close to sources can improve air quality by increasing deposition. Filtration vegetation barriers have to be dense enough to offer large deposition surface area and porous enough to allow penetration, instead of deflection of the air stream above the barrier. The choice between tall or short and dense or sparse vegetation determines the effect on air pollution from different sources and different particle sizes.
Kaunelienė, Violeta; Meišutovič-Akhtarieva, Marija; Martuzevičius, Dainius
2018-05-08
With the introduction of novel and potentially less polluting nicotine containing products to the market, the impacts of their usage to indoor air quality as opposed to conventional pollution sources must be reviewed and considered. This review study aimed to comparatively analyse changes in indoor air quality as the consequence of tobacco heating system (THS) generated pollution against general indoor air quality in various micro-environments, especially with combustion-based pollution sources present. Indoor concentrations of formaldehyde, acetaldehyde, benzene, toluene, nicotine and PM 2.5 were reviewed and compared; concentrations of other harmful and potentially harmful substances (HPHCs) were discussed. Generally, the usage of THS has been associated with lower or comparable indoor air pollutant concentrations compared against other conventional indoor sources or environments, in most cases distinguishable above background, thus potentially being associated with health effects at prolonged exposures as any other artificial air pollution source. In the controlled environment the use of THS (as well as an electronic cigarette) resulted in the lowest concentrations of formaldehyde, benzene, toluene, PM 2.5, among majority researched pollution sources (conventional cigarettes, waterpipe, incense, mosquito coils). The exposure to significantly higher pollution levels of benzene, toluene, and formaldehyde occurred in public environments, especially transport micro-environments. Such low levels of conventionally-assessed indoor pollutants resulting from the use of new nicotine containing products raise challenges for epidemiological studies of second-hand exposure to THS aerosol in real-life environments. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lacey, Emerson S; Cardé, Ring T
2012-06-01
The orientation to and landing on a source of human odour by female Culex quinquefasciatus Say (Diptera: Culicidae) is observed in a wind tunnel without an airflow or with a laminar airflow of 0.2 m s -1 . Odours from human feet are collected by 'wearing' clean glass beads inside a stocking and presenting beads in a Petri dish in a wind tunnel. Mosquitoes are activated by brief exposure to a 1 L min -1 jet of 4% CO 2 positioned 10 cm from the release cage. In moving air at 0.2 m s -1 , a mean of 3.45 ± 0.49 landings are observed in 10 min trials (5 mosquitoes per trial), whereas 6.50 ± 0.96 landings are recorded in still air. Furthermore, 1.45 ± 0.31mosquitoes are recorded on beads at any one time in moving air (a measure of individuals landing versus one landing multiple times) compared to 3.10 ± 0.31 in still air. Upwind flight to beads in moving air is demonstrated by angular headings of flight immediately prior to landing, whereas approaches to beads in still air are oriented randomly. The mean latency until first landing is 226.7 ± 17.98 s in moving air compared to 122.5 ± 24.18 in still air. Strategies used to locate a prospective host at close range in still air are considered.
DOT National Transportation Integrated Search
2018-02-02
Traffic congestion at arterial intersections and freeway bottlenecks degrades the air quality and threatens the public health. Conventionally, air pollutants are monitored by sparsely-distributed Quality Assurance Air Monitoring Sites. Sparse mobile ...
Sommerstein, Rami; Rüegg, Christian; Kohler, Philipp; Bloemberg, Guido; Kuster, Stefan P; Sax, Hugo
2016-06-01
Heater-cooler units (HCUs) were recently identified as a source of Mycobacterium chimaera causing surgical site infections. We investigated transmission of this bacterium from HCUs to the surgical field by using a thermic anemometer and particle counter, videotape of an operating room equipped with an ultraclean laminar airflow ventilation system, and bacterial culture sedimentation plates in a nonventilated room. Smoke from the HCU reached the surgical field in 23 s by merging with ultraclean air. The HCU produced on average 5.2, 139, and 14.8 particles/min in the surgical field at positions Off, On/oriented toward, and On/oriented away, respectively. Culture plates were positive for M. chimaera <5 m from the HCU in the test room. These experiments confirm airborne transmission of M. chimaera aerosols from a contaminated HCU to an open surgical field despite ultraclean air ventilation. Efforts to mitigate infectious risks during surgery should consider contamination from water sources and airflow-generating devices.
Sommerstein, Rami; Rüegg, Christian; Kohler, Philipp; Bloemberg, Guido; Kuster, Stefan P.
2016-01-01
Heater–cooler units (HCUs) were recently identified as a source of Mycobacterium chimaera causing surgical site infections. We investigated transmission of this bacterium from HCUs to the surgical field by using a thermic anemometer and particle counter, videotape of an operating room equipped with an ultraclean laminar airflow ventilation system, and bacterial culture sedimentation plates in a nonventilated room. Smoke from the HCU reached the surgical field in 23 s by merging with ultraclean air. The HCU produced on average 5.2, 139, and 14.8 particles/min in the surgical field at positions Off, On/oriented toward, and On/oriented away, respectively. Culture plates were positive for M. chimaera <5 m from the HCU in the test room. These experiments confirm airborne transmission of M. chimaera aerosols from a contaminated HCU to an open surgical field despite ultraclean air ventilation. Efforts to mitigate infectious risks during surgery should consider contamination from water sources and airflow-generating devices. PMID:27070958
NASA Astrophysics Data System (ADS)
Moon, N.; Kim, S.; Seo, J.; Lee, Y. J.
2017-12-01
Recently, the Korean government is focusing on solving air pollution problem such as fine particulate matter and ozone. Korea has high population density and concentrated industrial complex in its limited land space. For better air quality management, it is important to understand source and contribution relation to target pollutant. The air quality analysis representing the mutual contribution among the local regions enables to understand the substantive state of the air quality of a region in association with neighboring regions. Under this background, the source apportionment of PM10, PM2.5, O3, NO2, SO2 using WRF and CMAQ/BFM was analyzed over Korea and BFM was applied to mobile, area and point sources in each local government. The contribution rate from neighboring region showed different pattern for each pollutant. In case of primary pollutants such as NO2, SO2, local source contribution is dominant, on the other hand secondary pollutants case especially O3, contribution from neighboring region is higher than that from source region itself. Local source contribution to PM10 showed 20-25% and the contribution rate to O3 has big difference with different meteorological condition year after year. From this study, we tried to estimate the conversion rate between source (NOx, VOC, SO2, NH3, PMC, PM2.5, CO) and concentration (PM10, PM2.5, O3, NO2, SO2,) by regional group over Korea. The result can contribute to the decision-making process of important national planning related to large-scale industrial developments and energy supply policies (eg., operations of coal-fired power plants and diesel cars) and emission control plan, where many controversies and concerns are currently concentrated among local governments in Korea. With this kind of approach, various environmental and social problems related to air quality can also be identified early so that a sustainable and environmentally sound plan can be established by providing data infrastructures to be utilized by central government agencies, local governments, and even private sectors.
Toxicology of the air in closed spaces
NASA Technical Reports Server (NTRS)
Wands, R. C.
1975-01-01
Sources and identification of contaminants in artificial gas atmospheres are discussed. They include biological sources (microflora and man), materials, processes, aerosols, and malfunctions. Acute or chronic toxicity may result from spacecraft air contamination. Air quality standards are presented in tabular form.
Mapping Emissions that Contribute to Air Pollution Using Adjoint Sensitivity Analysis
NASA Astrophysics Data System (ADS)
Bastien, L. A. J.; Mcdonald, B. C.; Brown, N. J.; Harley, R.
2014-12-01
The adjoint of the Community Multiscale Air Quality model (CMAQ) is used to map emissions that contribute to air pollution at receptors of interest. Adjoint tools provide an efficient way to calculate the sensitivity of a model response to a large number of model inputs, a task that would require thousands of simulations using a more traditional forward sensitivity approach. Initial applications of this technique, demonstrated here, are to benzene and directly-emitted diesel particulate matter, for which atmospheric reactions are neglected. Emissions of these pollutants are strongly influenced by light-duty gasoline vehicles and heavy-duty diesel trucks, respectively. We study air quality responses in three receptor areas where populations have been identified as especially susceptible to, and adversely affected by air pollution. Population-weighted air basin-wide responses for each pollutant are also evaluated for the entire San Francisco Bay area. High-resolution (1 km horizontal grid) emission inventories have been developed for on-road motor vehicle emission sources, based on observed traffic count data. Emission estimates represent diurnal, day of week, and seasonal variations of on-road vehicle activity, with separate descriptions for gasoline and diesel sources. Emissions that contribute to air pollution at each receptor have been mapped in space and time using the adjoint method. Effects on air quality of both relative (multiplicative) and absolute (additive) perturbations to underlying emission inventories are analyzed. The contributions of local versus upwind sources to air quality in each receptor area are quantified, and weekday/weekend and seasonal variations in the influence of emissions from upwind areas are investigated. The contribution of local sources to the total air pollution burden within the receptor areas increases from about 40% in the summer to about 50% in the winter due to increased atmospheric stagnation. The effectiveness of control strategies based on region-wide exposure metrics is compared with strategies that focus on improving air quality at specific receptors.
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.
1996-01-01
A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is positioned vertically. The ground-based experiments are sufficient preliminary tests of theory and should be of significant interest regarding vapor deposited films in microgravity.
NASA Astrophysics Data System (ADS)
Dimitriou, Konstantinos; Kassomenos, Pavlos
2014-10-01
The keystone of this paper was to calculate and interpret indicators reflecting sources and air quality impacts of PM2.5 and PMCOARSE (PM10-PM2.5) in Rome (Italy), focusing on potential exogenous influences. A backward atmospheric trajectory cluster analysis was implemented. The likelihood of daily PM10 exceedances was studied in conjunction with atmospheric patterns, whereas a Potential Source Contribution Function (PSCF) based on air mass residence time was deployed on a grid of a 0.5° × 0.5° resolution. Higher PM2.5 concentrations were associated with short/medium range airflows originated from Balkan Peninsula, whereas potential PMCOARSE sources were localized across the Mediterranean and coastal North Africa, due to dust and sea spray transportation. According to the outcome of a daily Pollution Index (PI), a slightly increased degradation of air quality is induced due to the additional quantity of exogenous PM but nevertheless, average levels of PI in all trajectory clusters belong in the low pollution category. Gaseous and particulate pollutants were also elaborated by a Principal Component Analysis (PCA), which produced 4 components: [Traffic], [photochemical], [residential] and [Secondary Coarse Aerosol], reflecting local sources of air pollution. PM2.5 levels were strongly associated with traffic, whereas PMCOARSE were produced autonomously by secondary sources.
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Li, Jingyi; Ying, Qi; Yu, Jian Zhen; Wu, Dui; Cheng, Yuan; He, Kebin; Jiang, Jingkun
2012-12-01
Nitrate and sulfate account for a significant fraction of PM2.5 mass and are generally secondary in nature. Contributions to these two inorganic aerosol components from major sources need to be identified for policy makers to develop cost effective regional emission control strategies. In this work, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model that directly tracks the contributions from multiple emission sources to secondary PM2.5 is developed to determine the regional contributions of power, industry, transportation and residential sectors as well as biogenic sources to nitrate and sulfate concentrations in China in January and August 2009.The source-oriented CMAQ model is capable of reproducing most of the available PM10 and PM2.5 mass, and PM2.5 nitrate and sulfate observations. Model prediction suggests that monthly average PM2.5 inorganic components (nitrate + sulfate + ammonium ion) can be as high as 60 μg m-3 in January and 45 μg m-3 in August, accounting for 20-40% and 50-60% of total PM2.5 mass. The model simulations also indicate significant spatial and temporal variation of the nitrate and sulfate concentrations as well as source contributions in the country. In January, nitrate is high over Central and East China with a maximum of 30 μg m-3 in the Sichuan Basin. In August, nitrate is lower and the maximum concentration of 16 μg m-3 occurs in North China. In January, highest sulfate occurs in the Sichuan Basin with a maximum concentration of 18 μg m-3 while in August high sulfate concentration occurs in North and East China with a similar maximum concentration. Power sector is the dominating source of nitrate and sulfate in both January and August. Transportation sector is an important source of nitrate (20-30%) in both months. Industry sector contributes to both nitrate and sulfate concentrations by approximately 20-30%. Residential sector contributes to approximately 10-20% of nitrate and sulfate in January but its contribution is low in August.
NASA Astrophysics Data System (ADS)
Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.
2017-03-01
There are various sources influencing indoor air quality (IAQ) which could emit dangerous gases such as carbon monoxide (CO), carbon dioxide (CO2), ozone (O3) and particulate matter. These gases are usually safe for us to breathe in if they are emitted in safe quantity but if the amount of these gases exceeded the safe level, they might be hazardous to human being especially children and people with asthmatic problem. Therefore, a smart indoor air quality monitoring system (IAQMS) is needed that able to tell the occupants about which sources that trigger the indoor air pollution. In this project, an IAQMS that able to classify sources influencing IAQ has been developed. This IAQMS applies a classification method based on Probabilistic Neural Network (PNN). It is used to classify the sources of indoor air pollution based on five conditions: ambient air, human activity, presence of chemical products, presence of food and beverage, and presence of fragrance. In order to get good and best classification accuracy, an analysis of several feature selection based on data pre-processing method is done to discriminate among the sources. The output from each data pre-processing method has been used as the input for the neural network. The result shows that PNN analysis with the data pre-processing method give good classification accuracy of 99.89% and able to classify the sources influencing IAQ high classification rate.
Analysis of weather patterns associated with air quality degradation and potential health impacts
Emissions from anthropogenic and natural sources into the atmosphere are determined in large measure by prevailing weather conditions through complex physical, dynamical and chemical processes. Air pollution episodes are characterized by degradation in air quality as reflected by...
Cotton harvesting emission factors based on source sampling
USDA-ARS?s Scientific Manuscript database
Air quality regulation across the U.S. is intensifying due to increasing public concern for environmental protection. Non-attainment status with Federal particulate matter (PM) air quality standards has forced air pollution regulators in some states to focus emission reduction efforts on previously ...
A Guide to Lowering Test Scores.
ERIC Educational Resources Information Center
Rosenblum, Shelly; Spark, Barbara
2002-01-01
Discusses the adverse impact of poor classroom air quality on student performance and how school officials can eliminate the sources of indoor air pollution. Describes Environmental Protection Agency's "Indoor Air Quality Tools for Schools" program downloadable at www.epa.gov/iaq/schools/index.html. (PKP)
75 FR 8917 - Notice of a Meeting of the Agricultural Air Quality Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
... Feeding Operation Index Tool. Fire As An Ecosystem Management Tool. Thursday, March 11, 2010 Discussion of..., color, national origin, gender, religion, age, sexual orientation, or disability. Additionally...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, William J.; Destaillats, H.; Apte, M.G.
Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone depositionmore » in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... conformity budget in the maintenance plan reflects mobile source emissions without I/M in future years, and... Counties for NO 2 . Furthermore, the impact of mobile sources is declining as newer cleaner vehicles... and Floyd Counties had been discontinued. Therefore, the air quality data from this period (and mobile...
Approved Request for Coverage under General Air Quality Permit for New or Modified Minor Source Cement Batch Plants in Indian Country for FNF Construction Inc. Window Rock Airport Soil Cement Mixing Plant Project, Beacon Road, Window Rock, Arizona 86515.
This research investigated different strategies for source apportionment of airborne fine particulate matter (PM2.5) collected as part of the Pittsburgh Air Quality Study. Two source receptor models were used, the EPA Chemical Mass Balance 8.2 (CMB) and EPA Positive Matrix Facto...
Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality
NASA Technical Reports Server (NTRS)
Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph
2008-01-01
Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.
Local sources of pollution and their impacts in Alaska (Invited)
NASA Astrophysics Data System (ADS)
Molders, N.
2013-12-01
The movie 'Into the Wilde' evoke the impression of the last frontier in a great wide and pristine land. With over half a million people living in Alaska an area as larger as the distance from the US West to the East Coast, this idea comes naturally. The three major cities are the main emission source in an otherwise relative clean atmosphere. On the North Slope oil drilling and production is the main anthropogenic emission sources. Along Alaska's coasts ship traffic including cruises is another anthropogenic emission source that is expected to increase as sea-ice recedes. In summer, wildfires in Alaska, Canada and/or Siberia may cause poor air quality. In winter inversions may lead poor air quality and in spring. In spring, aged polluted air is often advected into Alaska. These different emission sources yield quite different atmospheric composition and air quality impacts. While this may make understanding Alaska's atmospheric composition at-large a challenging task, it also provides great opportunities to examine impacts without co-founders. The talk will give a review of the performed research, and insight into the challenges.
Ambient air pollution is always encountered as a complex mixture, but past regulatory and research strategies largely focused on single pollutants, pollutant classes, and sources one-at-a-time. There is a trend toward managing air quality in a progressively “multipollutant” manne...
40 CFR 52.976 - Review of new sources and modification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the preconstruction requirements for the prevention of significant deterioration (PSD) of air quality... requirements for the prevention of significant deterioration (PSD) of air quality and the Administrator's...
40 CFR 52.976 - Review of new sources and modification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the preconstruction requirements for the prevention of significant deterioration (PSD) of air quality... requirements for the prevention of significant deterioration (PSD) of air quality and the Administrator's...
40 CFR 52.976 - Review of new sources and modification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the preconstruction requirements for the prevention of significant deterioration (PSD) of air quality... requirements for the prevention of significant deterioration (PSD) of air quality and the Administrator's...
40 CFR 52.976 - Review of new sources and modification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the preconstruction requirements for the prevention of significant deterioration (PSD) of air quality... requirements for the prevention of significant deterioration (PSD) of air quality and the Administrator's...
40 CFR 52.976 - Review of new sources and modification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the preconstruction requirements for the prevention of significant deterioration (PSD) of air quality... requirements for the prevention of significant deterioration (PSD) of air quality and the Administrator's...
Kong, Shaofei; Yan, Qin; Zheng, Huang; Liu, Haibiao; Wang, Wei; Zheng, Shurui; Yang, Guowei; Zheng, Mingming; Wu, Jian; Qi, Shihua; Shen, Guofeng; Tang, Lili; Yin, Yan; Zhao, Tianliang; Yu, Huan; Liu, Dantong; Zhao, Delong; Zhang, Tao; Ruan, Jujun; Huang, Mingzhi
2018-05-01
Under great efforts in fighting against serious haze problem of China since 2013, decreasing of air pollutants especially for fine particles (PM 2.5 ) has been revealed for several key regions. This study tried to answer whether the reduction of PM 2.5 -bound polycyclic aromatic hydrocarbons (PAHs) was coincident with PM 2.5 because of long-term pollution control measures (PCM), and to assess source-oriented health risks associated with inhalation exposure to PAHs. Field measurements were carried out before and after the publishing of local air pollution protection plan for Nanjing, a mega-city in east China. Results indicated that the air quality was substantially improving, with a significant reduction in annual average PM 2.5 by 34%, and moreover, PM 2.5 -bound PAHs significantly reduced by 63% (p < 0.001). The remarkable reduction was mainly attributable to the change of emission sources, compared to the influence of atmospheric circulation patterns, surface meteorological conditions, and atmospheric chemical reaction. Four PAHs sources including coal combustion (CC), petroleum and oil burning (PO), wood burning (WB) and vehicle emission (VE) were identified. On an annual basis, contributions to ambient PM 2.5 -PAHs from WB, PO, CC and VE sources in the period before the action of control measures were 2.26, 2.20, 1.96 and 5.62 ng m -3 , respectively. They reduced to 1.09, 0.37, 1.31 and 1.77 ng m -3 for the four source types, with the reduction percentages as 51, 83, 33 and 68%, respectively. The estimated reduction in lifetime lung cancer risk was around 61%. The study that firstly assessed the health effects of PAHs reduction as a co-benefit raised by air PCM sustained for a long period is believed to be applicable and referential for other mega-cities around the world for assessing the benefits of PCM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fractional kalman filter to estimate the concentration of air pollution
NASA Astrophysics Data System (ADS)
Vita Oktaviana, Yessy; Apriliani, Erna; Khusnul Arif, Didik
2018-04-01
Air pollution problem gives important effect in quality environment and quality of human’s life. Air pollution can be caused by nature sources or human activities. Pollutant for example Ozone, a harmful gas formed by NOx and volatile organic compounds (VOCs) emitted from various sources. The air pollution problem can be modeled by TAPM-CTM (The Air Pollution Model with Chemical Transport Model). The model shows concentration of pollutant in the air. Therefore, it is important to estimate concentration of air pollutant. Estimation method can be used for forecast pollutant concentration in future and keep stability of air quality. In this research, an algorithm is developed, based on Fractional Kalman Filter to solve the model of air pollution’s problem. The model will be discretized first and then it will be estimated by the method. The result shows that estimation of Fractional Kalman Filter has better accuracy than estimation of Kalman Filter. The accuracy was tested by applying RMSE (Root Mean Square Error).
What Air Quality Models Tell Us About Sources and Sinks of Atmospheric Aldehydes
NASA Astrophysics Data System (ADS)
Luecken, D.; Hutzell, W. T.; Phillips, S.
2010-12-01
Atmospheric aldehydes play important roles in several aspects of air quality: they are critical radical sources that drive ozone formation, they are hazardous air pollutants that are national drivers for cancer risk, they participate in aqueous chemistry and potentially aerosol formation, and are key species for evaluating the accuracy of isoprene emissions. For these reasons, it is important to accurately understand their sources and sinks, and the sensitivity of their concentrations to emission controls. While both compounds have been included in air quality modeling for many years, current, state-of-the-science chemical mechanisms have difficulty reproducing measured values of aldehydes, which calls into question the robustness of ozone, HAPs and aerosol predictions. In the past, we have attributed discrepancies to measurement errors, inventory errors, or the focus on high-NOx urban regimes. Despite improvements in all of these areas, the measurements still diverge from model predictions, with formaldehyde often underpredicted by 50% and acetaldehyde showing a large degree of scatter - from 20% overprediction to 50% underprediction. To better examine the sources of aldehydes, we implemented the new SAPRC07T mechanism in the Community Multi-Scale Air Quality (CMAQ) model. This mechanism incorporates current recommendations for kinetic data and has the most detailed representation of product formation under a wide variety of conditions of any mechanism used in regional air quality models. We use model simulations to pinpoint where and when aldehyde concentrations tend to deviate from measurements. We demonstrate the role of secondary production versus primary emissions in aldehdye concentrations and find that secondary sources produce the largest deviations from measurements. We identify which VOCs are most responsible for aldehyde secondary production in the areas of the U.S. where the largest health effects are seen, and discuss how this affects consideration of control strategies.
Aerosol Source Attributions and Source-Receptor Relationships Across the Northern Hemisphere
NASA Technical Reports Server (NTRS)
Bian, Huisheng; Chin, Mian; Kucsera, Tom; Pan, Xiaohua; Darmenov, Anton; Colarco, Peter; Torres, Omar; Shults, Michael
2014-01-01
Emissions and long-range transport of air pollution pose major concerns on air quality and climate change. To better assess the impact of intercontinental transport of air pollution on regional and global air quality, ecosystems, and near-term climate change, the UN Task Force on Hemispheric Transport of Air Pollution (HTAP) is organizing a phase II activity (HTAP2) that includes global and regional model experiments and data analysis, focusing on ozone and aerosols. This study presents the initial results of HTAP2 global aerosol modeling experiments. We will (a) evaluate the model results with surface and aircraft measurements, (b) examine the relative contributions of regional emission and extra-regional source on surface PM concentrations and column aerosol optical depth (AOD) over several NH pollution and dust source regions and the Arctic, and (c) quantify the source-receptor relationships in the pollution regions that reflect the sensitivity of regional aerosol amount to the regional and extra-regional emission reductions.
Meteorological and air pollution modeling for an urban airport
NASA Technical Reports Server (NTRS)
Swan, P. R.; Lee, I. Y.
1980-01-01
Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.
Basic Information about Air Emissions Monitoring
This site is about types of air emissions monitoring and the Clean Air Act regulations, including Ambient Air Quality Monitoring, Stationary Source Emissions Monitoring, and Continuous Monitoring Systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... air pollution sources located within Indian reservations in Idaho, Oregon, and Washington that are appropriate in order to ensure a basic level of air pollution control and to protect public health and welfare... quality situations within Indian reservations, the known sources of air pollution, the needs and concerns...
Code of Federal Regulations, 2014 CFR
2014-07-01
... air pollution sources located within Indian reservations in Idaho, Oregon, and Washington that are appropriate in order to ensure a basic level of air pollution control and to protect public health and welfare... quality situations within Indian reservations, the known sources of air pollution, the needs and concerns...
Code of Federal Regulations, 2013 CFR
2013-07-01
... air pollution sources located within Indian reservations in Idaho, Oregon, and Washington that are appropriate in order to ensure a basic level of air pollution control and to protect public health and welfare... quality situations within Indian reservations, the known sources of air pollution, the needs and concerns...
Code of Federal Regulations, 2011 CFR
2011-07-01
... air pollution sources located within Indian reservations in Idaho, Oregon, and Washington that are appropriate in order to ensure a basic level of air pollution control and to protect public health and welfare... quality situations within Indian reservations, the known sources of air pollution, the needs and concerns...
NASA Astrophysics Data System (ADS)
Squizzato, Stefania; Cazzaro, Marta; Innocente, Elena; Visin, Flavia; Hopke, Philip K.; Rampazzo, Giancarlo
2017-04-01
Urban air quality represents a major public health burden and is a long-standing concern to European citizens. Combustion processes and traffic-related emissions represent the main primary particulate matter (PM) sources in urban areas. Other sources can also affect air quality (e.g., secondary aerosol, industrial) depending on the characteristics of the study area. Thus, the identification and the apportionment of all sources is of crucial importance to make effective corrective decisions within environmental policies. The aim of this study is to evaluate the impacts of different emissions sources on PM2.5 concentrations and compositions in a mid-size city in the Po Valley (Treviso, Italy). Data have been analyzed to highlight compositional differences (elements and major inorganic ions), to determine PM2.5 sources and their contributions, and to evaluate the influence of air mass movements. Non-parametric tests, positive matrix factorization (PMF), conditional bivariate probability function (CBPF), and concentration weighted trajectory (CWT) have been used in a multi-chemometrics approach to understand the areal-scale (proximate, local, long-range) where different sources act on PM2.5 levels and composition. Results identified three levels of scale from which the pollution arose: (i) a proximate local scale (close to the sampling site) for traffic non-exhaust and resuspended dust sources; (ii) a local urban scale (including both sampling site and areas close to them) for combustion and industrial; and (iii) a regional scale characterized by ammonium nitrate and ammonium sulfate. This approach and results can help to develop and adopt better air quality policy action.
Vicente, A B; Sanfeliu, T; Jordan, M M
2012-10-15
Environmental pollution control is one of the most important goals in pollution risk assessment today. In this sense, modern and precise tools that allow scientists to evaluate, quantify and predict air pollution are of particular interest. Monitoring atmospheric particulate matter is a challenge faced by the European Union. Specific rules on this subject are being developed (Directive 2004/107/EC, Directive 2008/50/EC) in order to reduce the potential adverse effects on human health caused by air pollution. Air pollution has two sources: natural and anthropogenic. Contributions from natural sources can be assessed but cannot be controlled, while emissions from anthropogenic sources can be controlled; monitoring to reduce this latter type of pollution should therefore be carried out. In this paper, we describe an air quality evaluation in terms of levels of atmospheric particles (PM10), as outlined by European Union legislation, carried out in an industrialised Spanish coastal area over a five-year period with the purpose of comparing these values with those of other areas in the Mediterranean Basin with different weather conditions from North of Europe. The study area is in the province of Castellón. This province is a strategic area in the frame work of European Union (EU) pollution control. Approximately 80% of European ceramic tiles and ceramic frit manufacturers are concentrated in two areas, forming the so-called "ceramics clusters"; ones in Modena (Italy) and the other in Castellón. In this kind of areas, there are a lot of air pollutants from this industry then it is difficult to fulfill de European limits of PM10 so it is necessary to control the air quality in them. The seasonal differences in the number of days in which pollutant level limits were exceeded were evaluated and the sources of contamination were identified. Air quality indexes for each pollutant have been established to determine easily and clearly the quality of air breathed. Furthermore, in accordance with Directive 2008/50/EC, an Air Quality Plan is proposed to protect human health, and the environment as a whole, in the study area. General and specific corrective measures of main emission sources are provided. A strategy for air pollution management is thus presented. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang
2016-10-01
Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used for residential heating can be replaced with gas-burning wall-heaters, ground-source heat pumps, solar energy and electricity. In areas with inadequate clean energy sources, low-sulfur coal should be used instead of the traditional raw coal with high sulfur and ash content, thereby slightly reducing the emissions of PM, SO2, CO and other toxic pollutants.
Southern Nevada air quality study
DOT National Transportation Integrated Search
2007-01-01
The Southern Nevada Air Quality Study (SNAQS) created cross-plume and in-plume measurement systems to quantify emissions distributions and source profiles from transportation emissions, specifically gasoline and diesel powered vehicles. The cross-plu...
Chen, Sheng-Po; Wang, Chieh-Heng; Lin, Wen-Dian; Tong, Yu-Huei; Chen, Yu-Chun; Chiu, Ching-Jui; Chiang, Hung-Chi; Fan, Chen-Lun; Wang, Jia-Lin; Chang, Julius S
2018-05-01
The present study combines high-resolution measurements at various distances from a world-class gigantic petrochemical complex with model simulations to test a method to assess industrial emissions and their effect on local air quality. Due to the complexity in wind conditions which were highly seasonal, the dominant wind flow patterns in the coastal region of interest were classified into three types, namely northeast monsoonal (NEM) flows, southwest monsoonal (SEM) flows and local circulation (LC) based on six years of monitoring data. Sulfur dioxide (SO 2 ) was chosen as an indicative pollutant for prominent industrial emissions. A high-density monitoring network of 12 air-quality stations distributed within a 20-km radius surrounding the petrochemical complex provided hourly measurements of SO 2 and wind parameters. The SO 2 emissions from major industrial sources registered by the monitoring network were then used to validate model simulations and to illustrate the transport of the SO 2 plumes under the three typical wind patterns. It was found that the coupling of observations and modeling was able to successfully explain the transport of the industrial plumes. Although the petrochemical complex was seemingly the only major source to affect local air quality, multiple prominent sources from afar also played a significant role in local air quality. As a result, we found that a more complete and balanced assessment of the local air quality can be achieved only after taking into account the wind characteristics and emission factors of a much larger spatial scale than the initial (20 km by 20 km) study domain. Copyright © 2018 Elsevier Ltd. All rights reserved.
E. Natasha Stavros; Donald McKenzie; Narasimhan Larkin
2014-01-01
Future climate change and its effects on social and ecological systems present challenges for preserving valued ecosystem services, including local and regional air quality. Wildfire is a major source of air-quality impact in some locations, and a substantial contributor to pollutants of concern, including nitrogen oxides and particulate matter, which are regulated to...
Sanchez, Marciano; Karnae, Saritha; John, Kuruvilla
2008-01-01
Selected Volatile Organic Compounds (VOC) emitted from various anthropogenic sources including industries and motor vehicles act as primary precursors of ozone, while some VOC are classified as air toxic compounds. Significantly large VOC emission sources impact the air quality in Corpus Christi, Texas. This urban area is located in a semi-arid region of South Texas and is home to several large petrochemical refineries and industrial facilities along a busy ship-channel. The Texas Commission on Environmental Quality has setup two continuous ambient monitoring stations (CAMS 633 and 634) along the ship channel to monitor VOC concentrations in the urban atmosphere. The hourly concentrations of 46 VOC compounds were acquired from TCEQ for a comprehensive source apportionment study. The primary objective of this study was to identify and quantify the sources affecting the ambient air quality within this urban airshed. Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS) was applied to the dataset. PCA identified five possible sources accounting for 69% of the total variance affecting the VOC levels measured at CAMS 633 and six possible sources affecting CAMS 634 accounting for 75% of the total variance. APCS identified natural gas emissions to be the major source contributor at CAMS 633 and it accounted for 70% of the measured VOC concentrations. The other major sources identified at CAMS 633 included flare emissions (12%), fugitive gasoline emissions (9%), refinery operations (7%), and vehicle exhaust (2%). At CAMS 634, natural gas sources were identified as the major source category contributing to 31% of the observed VOC. The other sources affecting this site included: refinery operations (24%), flare emissions (22%), secondary industrial processes (12%), fugitive gasoline emissions (8%) and vehicle exhaust (3%). PMID:19139530
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... Promulgation of Air Quality Implementation Plans; Wisconsin; Forest County Potawatomi Community Reservation... approving procedures for permitting certain sources in relation to the Forest County Potawatomi Community...)(2).) List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Carbon...
The U.S. Environmental Protection Agency has established the National Ambient Air Quality Standards for six principal air pollutants (criteria pollutants): carbon monoxide (CO), lead (Pb), nitrogen dioxide, particulate matter in two size ranges [less than 2.5 μm (PM2.5) and less ...
Wang, Bao-Zhen; Chen, Zhi
2013-01-01
This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, W. W.; Pierce, R.; Sparling, L. C.
2010-01-05
Quantifying the impacts of remote sources on individual air quality exceedances remains a significant challenge for air quality forecasting. One goal of the 2006 Texas Air Quality Study (TEXAQS II) was to assess the impact of distant sources on air quality in east Texas. From 23-30 August 2006, retrievals of tropospheric carbon monoxide (CO) from NASA’s Atmospheric InfraRed Sounder (AIRS) reveal the transport of CO from fires in the United States Pacific Northwest to Houston, Texas. This transport occurred behind a cold front and contributed to the worst ozone exceedance period of the summer in the Houston area. We presentmore » supporting satellite observations from the NASA A-Train constellation of the vertical distribution of smoke aerosols and CO. Ground-based in situ CO measurements in Oklahoma and Texas track the CO plume as it moves south and indicate mixing of the aloft plume to the surface by turbulence in the nocturnal boundary layer and convection during the day. Ground-based aerosol speciation and lidar observations do not find appreciable smoke aerosol transport for this case. However, MODIS aerosol optical depths and model simulations indicate some smoke aerosols were transported from the Pacific Northwest through Texas to the Gulf of Mexico. Chemical transport and forward trajectory models confirm the three major observations: (1) the AIRS envisioned CO transport, (2) the satellite determined smoke plume height, and (3) the timing of the observed surface CO increases. Further, the forward trajectory simulations find two of the largest Pacific Northwest fires likely had the most significant impact.« less
Tim’s expertise and interests lie in the area of air pollution exposure assessment, including ambient air monitoring, personal monitoring, source apportionment, and air quality and exposure modeling.
Total Quality Management: Will It Work in the System Program Office?
1990-05-01
Quality Management (TQM) is a relatively new philosophy of management which has high-level Department of Defense support and is presently being implemented in the Air Force. In the Air Force Systems Command, weapon system development and acquisition are carried out in System Program Offices (SPOs), staffed with various functionally oriented specialists supplied to the System Program Director by functional ’home offices’ via a matrix management scheme. Can TQM, relying as it does on cross-functional cooperation and on processes which cross functional lines, be
The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R05-OAR-2008-0402; FRL-9834-4] Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Permit Exemption Rule AGENCY: Environmental.... WDNR submitted revisions exempting certain sources of air pollution from construction permit...
Impact of operating wood-burning fireplace ovens on indoor air quality.
Salthammer, Tunga; Schripp, Tobias; Wientzek, Sebastian; Wensing, Michael
2014-05-01
The use of combustion heat sources like wood-burning fireplaces has regained popularity in the past years due to increasing energy costs. While the outdoor emissions from wood ovens are strictly regulated in Germany, the indoor release of combustion products is rarely considered. Seven wood burning fireplaces were tested in private homes between November 2012 and March 2013. The indoor air quality was monitored before, during and after operation. The following parameters were measured: ultra-fine particles (5.6-560 nm), fine particles (0.3-20 μm), PM2.5, NOx, CO, CO2, formaldehyde, acetaldehyde, volatile organic compounds (VOCs) and benzo[a]pyrene (BaP). Most ovens were significant sources of particulate matter. In some cases, an increase of benzene and BaP concentrations was observed in the indoor air. The results illustrate that wood-burning fireplaces are potential sources of indoor air contaminants, especially ultra-fine particles. Under the aspect of lowering indoor air exchange rates and increasing the use of fuels with a net zero-carbon footprint, indoor combustion sources are an important topic for the future. With regards to consumer safety, product development and inspection should consider indoor air quality in addition to the present fire protection requirements. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... in order to ensure a basic level of air pollution control and to protect public health and welfare... quality situations within Indian reservations, the known sources of air pollution, the needs and concerns... Reservations in EPA Region 10” apply to air pollution sources on a particular Indian reservation when EPA has...
NASA Astrophysics Data System (ADS)
Squizzato, Stefania; Masiol, Mauro
2015-10-01
The air quality is influenced by the potential effects of meteorology at meso- and synoptic scales. While local weather and mixing layer dynamics mainly drive the dispersion of sources at small scales, long-range transports affect the movements of air masses over regional, transboundary and even continental scales. Long-range transport may advect polluted air masses from hot-spots by increasing the levels of pollution at nearby or remote locations or may further raise air pollution levels where external air masses originate from other hot-spots. Therefore, the knowledge of ground-wind circulation and potential long-range transports is fundamental not only to evaluate how local or external sources may affect the air quality at a receptor site but also to quantify it. This review is focussed on establishing the relationships among PM2.5 sources, meteorological condition and air mass origin in the Po Valley, which is one of the most polluted areas in Europe. We have chosen the results from a recent study carried out in Venice (Eastern Po Valley) and have analysed them using different statistical approaches to understand the influence of external and local contribution of PM2.5 sources. External contributions were evaluated by applying Trajectory Statistical Methods (TSMs) based on back-trajectory analysis including (i) back-trajectories cluster analysis, (ii) potential source contribution function (PSCF) and (iii) concentration weighted trajectory (CWT). Furthermore, the relationships between the source contributions and ground-wind circulation patterns were investigated by using (iv) cluster analysis on wind data and (v) conditional probability function (CPF). Finally, local source contribution have been estimated by applying the Lenschow' approach. In summary, the integrated approach of different techniques has successfully identified both local and external sources of particulate matter pollution in a European hot-spot affected by the worst air quality.
Car indoor air pollution - analysis of potential sources
2011-01-01
The population of industrialized countries such as the United States or of countries from the European Union spends approximately more than one hour each day in vehicles. In this respect, numerous studies have so far addressed outdoor air pollution that arises from traffic. By contrast, only little is known about indoor air quality in vehicles and influences by non-vehicle sources. Therefore the present article aims to summarize recent studies that address i.e. particulate matter exposure. It can be stated that although there is a large amount of data present for outdoor air pollution, research in the area of indoor air quality in vehicles is still limited. Especially, knowledge on non-vehicular sources is missing. In this respect, an understanding of the effects and interactions of i.e. tobacco smoke under realistic automobile conditions should be achieved in future. PMID:22177291
NASA Astrophysics Data System (ADS)
Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; DiMego, G.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2016-12-01
Wildfires contribute to air quality problems not only towards primary emissions of particular matters (PM) but also emitted ozone precursor gases that can lead to elevated ozone concentration. Wildfires are unpredictable and can be ignited by natural causes such as lightning or accidently by human negligent behavior such as live cigarette. Although wildfire impacts on the air quality can be studied by collecting fire information after events, it is extremely difficult to predict future occurrence and behavior of wildfires for real-time air quality forecasts. Because of the time constraints of operational air quality forecasting, assumption of future day's fire behavior often have to be made based on observed fire information in the past. The United States (U.S.) NOAA/NWS built the National Air Quality Forecast Capability (NAQFC) based on the U.S. EPA CMAQ to provide air quality forecast guidance (prediction) publicly. State and local forecasters use the forecast guidance to issue air quality alerts in their area. The NAQFC fine particulates (PM2.5) prediction includes emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and fires. The fire emission input to the NAQFC is derived from the NOAA NESDIS HMS fire and smoke detection product and the emission module of the US Forest Service BlueSky Smoke Modeling Framework. This study focuses on the error estimation of NAQFC PM2.5 predictions resulting from fire emissions. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that present operational NAQFC fire emissions assumption can lead to a huge error in PM2.5 prediction as fire emissions are sometimes placed at wrong location and time. This PM2.5 prediction error can be propagated from the fire source in the Northwest U.S. to downstream areas as far as the Southeast U.S. From this study, a new procedure has been identified to minimize the aforementioned error. An additional 24 hours reanalysis-run of NAQFC using same-day observed fire emission are being tested. Preliminary results have shown that this procedure greatly improves the PM2.5 predictions at both nearby and downstream areas from fire sources. The 24 hours reanalysis-run is critical and necessary especially during extreme fire events to provide better PM2.5 predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulle, D.J.; Bilello, M.A.; Armstrong, J.A.
The US Trade and Development Agency is partially funding the initial phase of an ambient air quality monitoring program for the Metropolitan Municipality of Istanbul in Turkey. The objectives of the monitoring program are fourfold: (1) to ascertain existing levels of air pollution within the urban area; (2) to identify locations where there may be health concerns associated with existing levels of air pollution; (3) to determine the portion of air pollution arising from specific anthropogenic sources within the urban area; and (4) to target the major sources for an emission-reduction program. This program is being carried out in phases.more » A feasibility study has recently been completed. This initial activity will be followed by three main program phases. Phase 1 will involve the installation of several air quality monitoring stations to collect area-wide background data within and surrounding the Municipality. Phase 2 will consist of taking detailed pollutant measurements near specific sources and in specific areas of high pollutant concentrations identified in Phase 1. Phase 3 would target the major sources for emission reductions to improve local air quality and would institute revisions to the existing air quality permitting program. The feasibility study included determining the pollutants of concern, specifying the equipment that should be utilized in Phase 1 for the collection of the data, recommending the number and location of sites where data should be collected, determining site preparation and security needs, and defining the data reduction and analysis techniques which should be employed. This paper describes the results of the feasibility study and outlines plans for the remaining phases of the program.« less
Reduced-form air quality modeling for community-scale ...
Transportation plays an important role in modern society, but its impact on air quality has been shown to have significant adverse effects on public health. Numerous reviews (HEI, CDC, WHO) summarizing findings of hundreds of studies conducted mainly in the last decade, conclude that exposures to traffic emissions near roads are a public health concern. The Community LINE Source Model (C-LINE) is a web-based model designed to inform the community user of local air quality impacts due to roadway vehicles in their region of interest using a simplified modeling approach. Reduced-form air quality modeling is a useful tool for examining what-if scenarios of changes in emissions, such as those due to changes in traffic volume, fleet mix, or vehicle speed. Examining various scenarios of air quality impacts in this way can identify potentially at-risk populations located near roadways, and the effects that a change in traffic activity may have on them. C-LINE computes dispersion of primary mobile source pollutants using meteorological conditions for the region of interest and computes air-quality concentrations corresponding to these selected conditions. C-LINE functionality has been expanded to model emissions from port-related activities (e.g. ships, trucks, cranes, etc.) in a reduced-form modeling system for local-scale near-port air quality analysis. This presentation describes the Community modeling tools C-LINE and C-PORT that are intended to be used by local gove
Low-cost, high-density sensor network for urban emission monitoring: BEACO2N
NASA Astrophysics Data System (ADS)
Kim, J.; Shusterman, A.; Lieschke, K.; Newman, C.; Cohen, R. C.
2017-12-01
In urban environments, air quality is spatially and temporally heterogeneous as diverse emission sources create a high degree of variability even at the neighborhood scale. Conventional air quality monitoring relies on continuous measurements with limited spatial resolution or passive sampling with high-density and low temporal resolution. Either approach averages the air quality information over space or time and hinders our attempts to understand emissions, chemistry, and human exposure in the near-field of emission sources. To better capture the true spatio-temporal heterogeneity of urban conditions, we have deployed a low-cost, high-density air quality monitoring network in San Francisco Bay Area distributed at 2km horizontal spacing. The BErkeley Atmospheric CO2 Observation Network (BEACO2N) consists of approximately 50 sensor nodes, measuring CO2, CO, NO, NO2, O3, and aerosol. Here we describe field-based calibration approaches that are consistent with the low-cost strategy of the monitoring network. Observations that allow inference of emission factors and identification of specific local emission sources will also be presented.
Intercontinental Transport of Aerosols: Implication for Regional Air Quality
NASA Technical Reports Server (NTRS)
Chin, Mian; Diehl, Thomas; Ginoux, Paul
2006-01-01
Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, M.T.; Segal, H.M.
1994-06-01
A new complex source microcomputer model has been developed for use at civil airports and Air Force bases. This paper describes both the key features of this model and its application in evaluating the air quality impact of new construction projects at three airports: one in the United States and two in Canada. The single EDMS model replaces the numerous models previously required to assess the air quality impact of pollution sources at airports. EDMS also employs a commercial data base to reduce the time and manpower required to accurately assess and document the air quality impact of airfield operations.more » On July 20, 1993, the U.S. Environmental Protection Agency (EPA) issued the final rule (Federal Register, 7/20/93, page 38816) to add new models to the Guideline on Air Quality Models. At that time EDMS was incorporated into the Guideline as an Appendix A model. 12 refs., 4 figs., 1 tab.« less
Developing Interoperable Air Quality Community Portals
NASA Astrophysics Data System (ADS)
Falke, S. R.; Husar, R. B.; Yang, C. P.; Robinson, E. M.; Fialkowski, W. E.
2009-04-01
Web portals are intended to provide consolidated discovery, filtering and aggregation of content from multiple, distributed web sources targeted at particular user communities. This paper presents a standards-based information architectural approach to developing portals aimed at air quality community collaboration in data access and analysis. An important characteristic of the approach is to advance beyond the present stand-alone design of most portals to achieve interoperability with other portals and information sources. We show how using metadata standards, web services, RSS feeds and other Web 2.0 technologies, such as Yahoo! Pipes and del.icio.us, helps increase interoperability among portals. The approach is illustrated within the context of the GEOSS Architecture Implementation Pilot where an air quality community portal is being developed to provide a user interface between the portals and clearinghouse of the GEOSS Common Infrastructure and the air quality community catalog of metadata and data services.
Mapping air quality zones for coastal urban centers.
Freeman, Brian; Gharabaghi, Bahram; Thé, Jesse; Munshed, Mohammad; Faisal, Shah; Abdullah, Meshal; Al Aseed, Athari
2017-05-01
This study presents a new method that incorporates modern air dispersion models allowing local terrain and land-sea breeze effects to be considered along with political and natural boundaries for more accurate mapping of air quality zones (AQZs) for coastal urban centers. This method uses local coastal wind patterns and key urban air pollution sources in each zone to more accurately calculate air pollutant concentration statistics. The new approach distributes virtual air pollution sources within each small grid cell of an area of interest and analyzes a puff dispersion model for a full year's worth of 1-hr prognostic weather data. The difference of wind patterns in coastal and inland areas creates significantly different skewness (S) and kurtosis (K) statistics for the annually averaged pollutant concentrations at ground level receptor points for each grid cell. Plotting the S-K data highlights grouping of sources predominantly impacted by coastal winds versus inland winds. The application of the new method is demonstrated through a case study for the nation of Kuwait by developing new AQZs to support local air management programs. The zone boundaries established by the S-K method were validated by comparing MM5 and WRF prognostic meteorological weather data used in the air dispersion modeling, a support vector machine classifier was trained to compare results with the graphical classification method, and final zones were compared with data collected from Earth observation satellites to confirm locations of high-exposure-risk areas. The resulting AQZs are more accurate and support efficient management strategies for air quality compliance targets effected by local coastal microclimates. A novel method to determine air quality zones in coastal urban areas is introduced using skewness (S) and kurtosis (K) statistics calculated from grid concentrations results of air dispersion models. The method identifies land-sea breeze effects that can be used to manage local air quality in areas of similar microclimates.
Headquarters Air Force Material Command Customer Relationship Management
2006-06-01
important feedback about quality and acceptability of the service . The process orientation allows an organization to look at what the contributions of...ENS/06-17 Abstract The purpose of this research was to determine what was important to Air Force Material Command’s (AFMC) external...is instrumental in writing and administering a survey designed to determine what the keys issues are with AFMC’s customers. The
Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.
Taha, Haider; Konopacki, Steven; Akbari, Hashem
1998-09-01
Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NO x emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.
Distributional benefit analysis of a national air quality rule.
Post, Ellen S; Belova, Anna; Huang, Jin
2011-06-01
Under Executive Order 12898, the U.S. Environmental Protection Agency (EPA) must perform environmental justice (EJ) reviews of its rules and regulations. EJ analyses address the hypothesis that environmental disamenities are experienced disproportionately by poor and/or minority subgroups. Such analyses typically use communities as the unit of analysis. While community-based approaches make sense when considering where polluting sources locate, they are less appropriate for national air quality rules affecting many sources and pollutants that can travel thousands of miles. We compare exposures and health risks of EJ-identified individuals rather than communities to analyze EPA's Heavy Duty Diesel (HDD) rule as an example national air quality rule. Air pollutant exposures are estimated within grid cells by air quality models; all individuals in the same grid cell are assigned the same exposure. Using an inequality index, we find that inequality within racial/ethnic subgroups far outweighs inequality between them. We find, moreover, that the HDD rule leaves between-subgroup inequality essentially unchanged. Changes in health risks depend also on subgroups' baseline incidence rates, which differ across subgroups. Thus, health risk reductions may not follow the same pattern as reductions in exposure. These results are likely representative of other national air quality rules as well.
Source apportionment of hydrocarbons measured in the Eagle Ford shale
NASA Astrophysics Data System (ADS)
Roest, G. S.; Schade, G. W.
2016-12-01
The rapid development of unconventional oil and gas in the US has led to hydrocarbon emissions that are yet to be accurately quantified. Emissions from the Eagle Ford Shale in southern Texas, one of the most productive shale plays in the U.S., have received little attention due to a sparse air quality monitoring network, thereby limiting studies of air quality within the region. We use hourly atmospheric hydrocarbon and meteorological data from three locations in the Eagle Ford Shale to assess their sources. Data are available from the Texas commission of environmental quality (TCEQ) air quality monitors in Floresville, a small town southeast of San Antonio and just north of the shale area; and Karnes city, a midsize rural city in the center of the shale. Our own measurements were carried out at a private ranch in rural Dimmit County in southern Texas from April to November of 2015. Air quality monitor data from the TCEQ were selected for the same time period. Non-negative matrix factorization in R (package NMF) was used to determine likely sources and their contributions above background. While the TCEQ monitor data consisted mostly of hydrocarbons, our own data include both CO, CO2, O3, and NOx. We find that rural Dimmit County hydrocarbons are dominated by oil and gas development sources, while central shale hydrocarbons at the TCEQ monitoring sites have a mix of sources including car traffic. However, oil and gas sources also dominate hydrocarbons at Floresville and Karnes City. Toxic benzene is nearly exclusively due to oil and gas development sources, including flaring, which NMF identifies as a major hydrocarbon source in Karnes City. Other major sources include emissions of light weight alkanes (C2-C5) from raw natural gas emissions and a larger set of alkanes (C2-C10) from oil sources, including liquid storage tanks.
Employing ASHRAE Standard 62-1989 in urban building environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckler, M.
1991-01-01
Indoor air quality (IAQ) is a result of a complex relationship between the contamination sources in a building, the ventilation rate, and the dilution of the indoor air contaminant concentrations with outdoor air. This complex relationship is further complicated by outdoor sources used for dilution air and pollution sinks in a building which may modify or remove contaminants. This paper reports that the factors influencing IAQ in a building are: emissions from indoor contamination sources, dilution rate of outdoor ventilation air, quality of the outdoor dilution air, and systems and materials in a building that change the concentrations of contaminants.more » Emissions from contaminant sources in a building are the primary determinant of IAQ. They include building materials, consumer products, cleaners, furnishings, combustion appliances and processes, biological growth from standing water and damp surfaces and building occupants. These factors combined with the emissions from indoor air contamination sources such as synthetic building materials, modern office equipment, and cleaning and biological agents are believed to increase the levels of indoor air contamination. The physiological reactions to these contaminants, coupled with the psychosocial stresses of the modern office environment, and the wide range of human susceptibility to indoor air contaminants led to the classification of acute building sicknesses: sick building syndrome (SBS), building-related illness (BRI), and multiple chemical sensitivity (MCS).« less
Khan, Fasihullah; Ajmal, Hafiz Muhammad Salman; Huda, Noor Ul; Kim, Ji Hyun; Kim, Sam-Dong
2018-01-01
In this study, the ambient condition for the as-coated seed layer (SL) annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs). The NR crystals of high surface density (~240 rods/μm2) and aspect ratio (~20.3) show greatly enhanced (002) degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002) and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360–400 nm) of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors. PMID:29373523
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, A.W.
1990-04-01
This paper describes an approach to solve air quality problems which frequently occur during iterations of the baseline change process. From a schedule standpoint, it is desirable to perform this evaluation in as short a time as possible while budgetary pressures limit the size of the staff available to do the work. Without a method in place to deal with baseline change proposal requests the environment analysts may not be able to produce the analysis results in the time frame expected. Using a concept called the Rapid Response Air Quality Analysis System (RAAS), the problems of timing and cost becomemore » tractable. The system could be adapted to assess other atmospheric pathway impacts, e.g., acoustics or visibility. The air quality analysis system used to perform the EA analysis (EA) for the Salt Repository Project (part of the Civilian Radioactive Waste Management Program), and later to evaluate the consequences of proposed baseline changes, consists of three components: Emission source data files; Emission rates contained in spreadsheets; Impact assessment model codes. The spreadsheets contain user-written codes (macros) that calculate emission rates from (1) emission source data (e.g., numbers and locations of sources, detailed operating schedules, and source specifications including horsepower, load factor, and duty cycle); (2) emission factors such as those published by the U.S. Environmental Protection Agency, and (3) control efficiencies.« less
Qualitative assessment of precocious puberty-related user-created contents on YouTube.
Nam, Hyo-Kyoung; Bang, Soo Min; Rhie, Young Jun; Park, Sang Hee; Lee, Kee-Hyoung
2015-09-01
User-created content (UCC) has provided a considerable amount of medical information and become an important source. We aimed to evaluate the quality and scientific accuracy of precocious puberty-related UCC on YouTube. The keywords "precocious puberty", "early puberty", "sexual precocity", and "precocity" were searched for on YouTube during June and July 2014. More than 1,500 UCC matched the keywords. According to the information provider, UCC was classified as medical, oriental, or commercial & others. We evaluated the quality and scientific accuracy of the information provided in UCC using the DISCERN instrument and information scores, respectively. We selected 51 UCC, which were categorized into three types: medical (n=17), oriental (n=17), or commercial & others (n=17). The overall quality score for medical UCC (3.4) was significantly higher relative to those of oriental and commercial & others UCC (2.8 and 2.3, respectively) (P<0.001). In the assessment of scientific accuracy, the mean information score for medical UCC (30.7) was significantly higher than those of oriental and commercial & others UCC (15.9 and 5.1, respectively) (P<0.001). The mean duration of oriental UCC was the longest (P<0.001), however, it was viewed less frequently among them (P=0.086). The quality and accuracy of precocious puberty-related health information in UCC were variable and often unreliable. The overall quality of UCC regarding precocious puberty was moderate. Only medical UCC provided scientifically accurate information. As UCC becomes a popular source of health information, it is important to provide reliable, scientifically accurate information.
Qualitative assessment of precocious puberty-related user-created contents on YouTube
Nam, Hyo-Kyoung; Bang, Soo Min; Rhie, Young Jun; Park, Sang Hee
2015-01-01
Purpose User-created content (UCC) has provided a considerable amount of medical information and become an important source. We aimed to evaluate the quality and scientific accuracy of precocious puberty-related UCC on YouTube. Methods The keywords "precocious puberty", "early puberty", "sexual precocity", and "precocity" were searched for on YouTube during June and July 2014. More than 1,500 UCC matched the keywords. According to the information provider, UCC was classified as medical, oriental, or commercial & others. We evaluated the quality and scientific accuracy of the information provided in UCC using the DISCERN instrument and information scores, respectively. Results We selected 51 UCC, which were categorized into three types: medical (n=17), oriental (n=17), or commercial & others (n=17). The overall quality score for medical UCC (3.4) was significantly higher relative to those of oriental and commercial & others UCC (2.8 and 2.3, respectively) (P<0.001). In the assessment of scientific accuracy, the mean information score for medical UCC (30.7) was significantly higher than those of oriental and commercial & others UCC (15.9 and 5.1, respectively) (P<0.001). The mean duration of oriental UCC was the longest (P<0.001), however, it was viewed less frequently among them (P=0.086). Conclusion The quality and accuracy of precocious puberty-related health information in UCC were variable and often unreliable. The overall quality of UCC regarding precocious puberty was moderate. Only medical UCC provided scientifically accurate information. As UCC becomes a popular source of health information, it is important to provide reliable, scientifically accurate information. PMID:26512350
NASA Technical Reports Server (NTRS)
Tao, Zhining; Yu, Hongbin; Chin, Mian
2015-01-01
Observations have well established that aerosols from various sources in Asia, Europe, and Africa can travel across the Pacific and reach the contiguous United States (U.S.) at least on episodic bases throughout a year, with a maximum import in spring. The imported aerosol not only can serve as an additional source to regional air pollution (e.g., direct input), but also can influence regional air quality through the aerosol-cloud-radiation (ACR) interactions that change local and regional meteorology. This study assessed impacts of the transpacific aerosol on air quality, focusing on surface ozone and PM2.5, over the U.S. using the NASA Unified Weather Research Forecast model. Based on the results of 3- month (April to June of 2010) simulations, the impact of direct input (as an additional source) of transpacific aerosol caused an increase of surface PM2.5 concentration by approximately 1.5 micro-g/cu m over the west coast and about 0.5 micro-g/cu m over the east coast of the U.S. By influencing key meteorological processes through the ACR interactions, the transpacific aerosol exerted a significant effect on both surface PM2.5 (+/-6 micro-g/cu m3) and ozone (+/-12 ppbv) over the central and eastern U.S. This suggests that the transpacific transport of aerosol could either improve or deteriorate local air quality and complicate local effort toward the compliance with the U.S. National Ambient Air Quality Standards.
Fisher Sand & Gravel New Mexico, Inc. General Air Quality Permit: Related Documents
Documents related to the Fisher Sand & Gravel – New Mexico, Inc., Grey Mesa Gravel Pit General Air Quality Permit for New or Modified Minor Source Stone Quarrying, Crushing, and Screening Facilities in Indian Country.
Wang, Linlin; Thompson, Tammy; McDonald-Buller, Elena C; Allen, David T
2007-04-01
As part of the State Implementation Plan for attaining the National Ambient Air Quality Standard for ozone, the Texas Commission of Environmental Quality has created a Highly Reactive Volatile Organic Compounds (HRVOC) Emissions Cap and Trade Program for industrial point sources in the Houston/Galveston/Brazoria area. This series of papers examines the potential air quality impacts of this new emission trading program through photochemical modeling of potential trading scenarios; this paper examines the air quality impact of allowing facilities to trade chlorine emission reductions for HRVOC allocations on a reactivity weighted basis. The simulations indicate that trading of anthropogenic chlorine emission reductions for HRVOC allowances at a single facility or between facilities, in general, resulted in improvements in air quality. Decreases in peak 1-h averaged and 8-h averaged ozone concentrations associated with trading chlorine emissions for HRVOC allocations on a Maximum Incremental Reactivity (MIR) basis were up to 0.74 ppb (0.63%) and 0.56 ppb (0.61%), respectively. Air quality metrics based on population exposure decreased by up to 3.3% and 4.1% for 1-h and 8-h averaged concentrations. These changes are small compared to the maximum changes in ozone concentrations due to the VOC emissions from these sources (5-10 ppb for 8-h averages; up to 30 ppb for 1-h averages) and the chlorine emissions from the sources (5-10 ppb for maximum concentrations over wide areas and up to 70 ppb in localized areas). The simulations indicate that the inclusion of chlorine emissions in the trading program is likely to be beneficial to air quality and is unlikely to cause localized increases in ozone concentrations ("hot spots").
EVALUATING SOURCES OF INDOOR AIR POLLUTION
The article discusses a three-phase approach, employing environmental chambers, indoor air quality (IAQ) models, and test house experiments, that is effective in linking sources of indoor pollutants to measured concentrations. mission factors developed in test chambers can be use...
Near-source air quality assessment: challenges and collaboration
This presentation is to give a general overview of near-source air pollution concerns and recent EPA projects (near-road, near-rail, near-port), as well as explaining how these projects were implemented through collaboration internally and externally.
Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M
2016-05-15
This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. Copyright © 2016 Elsevier B.V. All rights reserved.
Impact of Asian Dust on Climate and Air Quality
NASA Technical Reports Server (NTRS)
Chin, Mian; Tan, Qian; Diehl, Thomas; Yu, Hongbin
2010-01-01
Dust generated from Asian permanent desert and desertification areas can be efficiently transported around the globe, making significant radiative impact through their absorbing and scattering solar radiation and through their deposition on snow and ice to modify the surface albedo. Asian dust is also a major concern of surface air quality not only in the source and immediate downwind regions but also areas thousands of miles away across the Pacific. We present here a global model, GOCART, analysis of data from satellite remote sensing instrument (MODIS, MISR, CALIPSO, OMI) and other observations on Asian dust sources, transport, and deposition, and use the model to assess the Asian dust impact on global climate and air quality.
Donnelly, Aoife; Naughton, Owen; Misstear, Bruce; Broderick, Brian
2016-10-14
This article describes a new methodology for increasing the spatial representativeness of individual monitoring sites. Air pollution levels at a given point are influenced by emission sources in the immediate vicinity. Since emission sources are rarely uniformly distributed around a site, concentration levels will inevitably be most affected by the sources in the prevailing upwind direction. The methodology provides a means of capturing this effect and providing additional information regarding source/pollution relationships. The methodology allows for the division of the air quality data from a given monitoring site into a number of sectors or wedges based on wind direction and estimation of annual mean values for each sector, thus optimising the information that can be obtained from a single monitoring station. The method corrects for short-term data, diurnal and seasonal variations in concentrations (which can produce uneven weighting of data within each sector) and uneven frequency of wind directions. Significant improvements in correlations between the air quality data and the spatial air quality indicators were obtained after application of the correction factors. This suggests the application of these techniques would be of significant benefit in land-use regression modelling studies. Furthermore, the method was found to be very useful for estimating long-term mean values and wind direction sector values using only short-term monitoring data. The methods presented in this article can result in cost savings through minimising the number of monitoring sites required for air quality studies while also capturing a greater degree of variability in spatial characteristics. In this way, more reliable, but also more expensive monitoring techniques can be used in preference to a higher number of low-cost but less reliable techniques. The methods described in this article have applications in local air quality management, source receptor analysis, land-use regression mapping and modelling and population exposure studies.
NASA Astrophysics Data System (ADS)
Lee, H.-H.; Chen, S.-H.; Kleeman, M. J.; Zhang, H.; DeNero, S. P.; Joe, D. K.
2015-11-01
The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-dimensional chemical variable (X, Z, Y, Size Bins, Source Types, Species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and longwave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.
NASA Astrophysics Data System (ADS)
Kultys, Beata
2018-01-01
Indoor air quality is important because people spend most of their time in closed rooms. If volatile organic compounds (VOCs) are present at elevated concentrations, they may cause a deterioration in human well-being or health. The identification of indoor emission sources is carried out by comparison indoor and outdoor air composition. The aim of the study was to determinate the concentration of VOCs in indoor air, where there was a risk of elevated levels due to the kind of work type carried out or the users complained about the symptoms of a sick building followed by an appropriate interpretation of the results to determine whether the source of the emission in the tested room occurs. The air from residential, office and laboratory was tested in this study. The identification of emission sources was based on comparison of indoor and outdoor VOCs concentration and their correlation coefficients. The concentration of VOCs in all the rooms were higher or at a similar level to that of the air sampled at the same time outside the building. Human activity, in particular repair works and experiments with organic solvents, has the greatest impact on deterioration of air quality.
Multisource least-squares reverse-time migration with structure-oriented filtering
NASA Astrophysics Data System (ADS)
Fan, Jing-Wen; Li, Zhen-Chun; Zhang, Kai; Zhang, Min; Liu, Xue-Tong
2016-09-01
The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.
NASA Astrophysics Data System (ADS)
Kim, E.; Kim, S.; Kim, H. C.; Kim, B. U.; Cho, J. H.; Woo, J. H.
2017-12-01
In this study, we investigated the contributions of major emission source categories located upwind of South Korea to Particulate Matter (PM) in South Korea. In general, air quality in South Korea is affected by anthropogenic air pollutants emitted from foreign countries including China. Some studies reported that foreign emissions contributed 50 % of annual surface PM total mass concentrations in the Seoul Metropolitan Area, South Korea in 2014. Previous studies examined PM contributions of foreign emissions from all sectors considering meteorological variations. However, little studies conducted to assess contributions of specific foreign source categories. Therefore, we attempted to estimate sectoral contributions of foreign emissions from China to South Korea PM using our air quality forecasting system. We used Model Inter-Comparison Study in Asia 2010 for foreign emissions and Clean Air Policy Support System 2010 emission inventories for domestic emissions. To quantify contributions of major emission sectors to South Korea PM, we applied the Community Multi-scale Air Quality system with brute force method by perturbing emissions from industrial, residential, fossil-fuel power plants, transportation, and agriculture sectors in China. We noted that industrial sector was pre-dominant over the region except during cold season for primary PMs when residential emissions drastically increase due to heating demand. This study will benefit ensemble air quality forecasting and refined control strategy design by providing quantitative assessment on seasonal contributions of foreign emissions from major source categories.
Automobile gross emitter screening with remote sensing data using objective-oriented neural network.
Chen, Ho-Wen; Yang, Hsi-Hsien; Wang, Yu-Sheng
2009-11-01
One of the costs of Taiwan's massive economic development has been severe air pollution problems in many parts of the island. Since vehicle emissions are the major source of air pollution in most of Taiwan's urban areas, Taiwan's government has implemented policies to rectify the degrading air quality, especially in areas with high population density. To reduce vehicle pollution emissions an on-road remote sensing and monitoring system is used to check the exhaust emissions from gasoline engine automobiles. By identifying individual vehicles with excessive emissions for follow-up inspection and testing, air quality in the urban environment is expected to improve greatly. Because remote sensing is capable of measuring a large number of moving vehicles in a short period, it has been considered as an assessment technique in place of the stationary emission-sampling techniques. However, inherent measurement uncertainty of remote sensing instrumentation, compounded by the indeterminacy of monitoring site selection, plus the vagaries of weather, causes large errors in pollution discrimination and limits the application of the remote sensing. Many governments are still waiting for a novel data analysis methodology to clamp down on heavily emitting vehicles by using remote sensing data. This paper proposes an artificial neural network (ANN), with vehicle attributes embedded, that can be trained by genetic algorithm (GA) based on different strategies to predict vehicle emission violation. Results show that the accuracy of predicting emission violation is as high as 92%. False determinations tend to occur for vehicles aged 7-13 years, peaking at 10 years of age.
Special report on transboundary air quality issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-31
The International Air Quality Board was created in 1996 to provide advice to the International Joint Commission in fulfilling an air quality alerting function requested by governments in that year. The Board undertook a review of the many issues affecting transboundary air quality along the Canada-US border. This report reflects on issues previously addressed by the Board in its reporting to the Commission. Section 1 discusses the need for Canada and the US to adopt a seamless border approach to address pollution sources and receptors in a holistic manner. Section 2 discusses nitrogen oxides as a key contaminant because ofmore » its direct impact on the ecosystem and its effects on future levels of other secondary pollutants. Section 3 outlines the deficiencies of emission inventories regarding persistent toxic substances such as mercury, which must be addressed if source-to-receptor relationships are to be established. Section 4 covers the need to develop monitoring and modelling tools to further examine pollutant transport and concentration, and the resulting human and ecological exposure. Section 5 describes issues in individual regions along the border. Section 6 is directed at the harmonization of standards, which would assist in the effective control of transboundary pollutants such as ozone. Section 7 discusses collaboration with other organizations in addressing transboundary air pollution issues. Section 8 describes various feedback mechanisms for verifying that the elimination or management of air pollution is achieving improvement and benefits. Section 9 considers emissions and preventive strategies for major source sectors, including coal-fired utilities and mobile sources. The final section outlines future Board activities.« less
Impacts of WRF lightning assimilation on offline CMAQ simulations
Deep convective clouds vertically redistribute trace gases and aerosols and also provide a source for scavenging, aqueous phase chemistry, and wet deposition, making them important to air quality.? Regional air quality simulations are typically driven by meteorological models tha...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
... Source Ozone Modeling K. Comments That Address Cumulative Air Quality Impacts IV. Final Action V... (section 110(a)(2)(J)); air quality modeling/data (section 110(a)(2)(K)); permitting fees (section 110(a)(2...
DOT National Transportation Integrated Search
1997-04-01
The Land Use, Air Quality, and Transportation Integrated Modeling Environment (LATIME) represents an integrated approach to computer modeling and simulation of land use allocation, travel demand, and mobile source emissions for the Albuquerque, New M...
Davila, Silvije; Ilić, Jadranka Pečar; Bešlić, Ivan
2015-06-01
This article presents a new, original application of modern information and communication technology to provide effective real-time dissemination of air quality information and related health risks to the general public. Our on-line subsystem for urban real-time air quality monitoring is a crucial component of a more comprehensive integrated information system, which has been developed by the Institute for Medical Research and Occupational Health. It relies on a StreamInsight data stream management system and service-oriented architecture to process data streamed from seven monitoring stations across Zagreb. Parameters that are monitored include gases (NO, NO2, CO, O3, H2S, SO2, benzene, NH3), particulate matter (PM10 and PM2.5), and meteorological data (wind speed and direction, temperature and pressure). Streamed data are processed in real-time using complex continuous queries. They first go through automated validation, then hourly air quality index is calculated for every station, and a report sent to the Croatian Environment Agency. If the parameter values exceed the corresponding regulation limits for three consecutive hours, the web service generates an alert for population groups at risk. Coupled with the Common Air Quality Index model, our web application brings air pollution information closer to the general population and raises awareness about environmental and health issues. Soon we intend to expand the service to a mobile application that is being developed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... volatile organic compounds. (42) The initials WRAP mean or refer to the Western Regional Air Partnership... sources of NO X, SO 2 or volatile organic compounds (VOCs) or on point sources [[Page 46144
The Improvement of Spatial-Temporal PM2.5 Resolution in Taiwan by Using Data Assimilation Method
NASA Astrophysics Data System (ADS)
Lin, Yong-Qing; Lin, Yuan-Chien
2017-04-01
Forecasting air pollution concentration, e.g., the concentration of PM2.5, is of great significance to protect human health and the environment. Accurate prediction of PM2.5 concentrations is limited in number and the data quality of air quality monitoring stations. The spatial and temporal variations of PM2.5 concentrations are measured by 76 National Air Quality Monitoring Stations (built by the TW-EPA) in Taiwan. The National Air Quality Monitoring Stations are costly and scarce because of the highly precise instrument and their size. Therefore, many places still out of the range of National Air Quality Monitoring Stations. Recently, there are an enormous number of portable air quality sensors called "AirBox" developed jointly by the Taiwan government and a private company. By virtue of its price and portative, the AirBox can provide higher resolution of space-time PM2.5 measurement. However, the spatiotemporal distribution and data quality are different between AirBox and National Air Quality Monitoring Stations. To integrate the heterogeneous PM2.5 data, the data assimilation method should be performed before further analysis. In this study, we propose a data assimilation method based on Ensemble Kalman Filter (EnKF), which is a variant of classic Kalman Filter, can be used to combine additional heterogeneous data from different source while modeling to improve the estimation of spatial-temporal PM2.5 concentration. The assimilation procedure uses the advantages of the two kinds of heterogeneous data and merges them to produce the final estimation. The results have shown that by combining AirBox PM2.5 data as additional information in our model based EnKF can bring the better estimation of spatial-temporal PM2.5 concentration and improve the it's space-time resolution. Under the approach proposed in this study, higher spatial-temporal resoultion could provide a very useful information for a better spatial-temporal data analysis and further environmental management, such as air pollution source localization and micro-scale air pollution analysis. Keywords: PM2.5, Data Assimilation, Ensemble Kalman Filter, Air Quality
The paper presents the Community Line Source (C-LINE) modeling system that estimates toxic air pollutant (air toxics) concentration gradients within 500 meters of busy roadways for community-sized areas on the order of 100 km2. C-LINE accesses publicly available datasets with nat...
Urban air quality estimation study, phase 1
NASA Technical Reports Server (NTRS)
Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.
1976-01-01
Possibilities are explored for applying estimation theory to the analysis, interpretation, and use of air quality measurements in conjunction with simulation models to provide a cost effective method of obtaining reliable air quality estimates for wide urban areas. The physical phenomenology of real atmospheric plumes from elevated localized sources is discussed. A fluctuating plume dispersion model is derived. Individual plume parameter formulations are developed along with associated a priori information. Individual measurement models are developed.
Indoor air quality of houses located in the urban environment of Agra, India.
Taneja, Ajay; Saini, Renuka; Masih, Amit
2008-10-01
Increased concern over the adverse health effects of air pollution has highlighted the need for air-pollution measurements, especially in urban areas, where many sources of air pollutants are normally monitored outdoors as part of obligations under the National Air Quality Strategies. Very little is known about air pollution indoors. In fact, the largest exposure to health-damaging indoor pollution probably occurs in the developing world, not in households, schools, and offices of developed countries where most research and control efforts have been focused to date. As a result much of the health impacts from air pollution worldwide seem to occur among the poorest and most vulnerable populations. The authors in their earlier studies have confirmed the importance of ambient air in determining the quality of air indoors. In this study an observation of air quality indoors and outdoors of domestic homes located in an urban environment from October 2004 to December 2005 in Agra, north central India, is performed. The purpose of this study was to characterize the indoor/outdoor (I/O) relationship of airborne pollutants and recognize their probable source in all three seasons, that is, winter, summer, and rainy season. Concentrations of SO(2), NO(2), CO(2), Cl(2), H(2)S, NH(3), RSPM, and PAH were monitored simultaneously and I/O ratios were calculated. In order to investigate the effect of seasonality on indoor and ambient air quality, winter to summer and winter to monsoon average ratios were calculated. It is apparent that there is a general pattern of increasing levels from monsoon to summer to winter, and similarly from outdoor to indoor air. Regressions analysis had been done to further investigate the influence of outdoor air-pollutant concentrations on indoor concentrations. The most probable categories of sources for these pollutants have been identified by using principal-component analysis. Indoor air pollution is a complex function of energy housing and behavioral factors. On the basis of this study and observations, some interventions are also suggested.
NASA Astrophysics Data System (ADS)
Dennis, R. L.; Napelenok, S. L.; Linker, L. C.; Dudek, M.
2012-12-01
Estuaries are adversely impacted by excess reactive nitrogen, Nr, from many point and nonpoint sources, including atmospheric deposition to the watershed and the estuary itself as a nonpoint source. For effective mitigation, trading among sources of Nr is being considered. The Chesapeake Bay Program is working to bring air into its trading scheme, which requires some special air computations. Airsheds are much larger than watersheds; thus, wide-spread or national emissions controls are put in place to achieve major reductions in atmospheric Nr deposition. The tributary nitrogen load reductions allocated to the states to meet the TMDL target for Chesapeake Bay are large and not easy to attain via controls on water point and nonpoint sources. It would help the TMDL process to take advantage of air emissions reductions that would occur with State Implementation Plans that go beyond the national air rules put in place to help meet national ambient air quality standards. There are still incremental benefits from these local or state-level controls on atmospheric emissions. The additional air deposition reductions could then be used to offset water quality controls (air-water trading). What is needed is a source to receptor transfer function that connects air emissions from a state to deposition to a tributary. There is a special source attribution version of the Community Multiscale Air Quality model, CMAQ, (termed DDM-3D) that can estimate the fraction of deposition contributed by labeled emissions (labeled by source or region) to the total deposition across space. We use the CMAQ DDM-3D to estimate simplified state-level delta-emissions to delta-atmospheric-deposition transfer coefficients for each major emission source sector within a state, since local air regulations are promulgated at the state level. The CMAQ 4.7.1 calculations are performed at a 12 km grid size over the airshed domain covering Chesapeake Bay for 2020 CAIR emissions. For results, we first present the fractional contributions of Bay state NOx emissions to the oxidized nitrogen deposition to the Chesapeake Bay watershed and the Bay. We then present example tables of the fractional contributions of Bay state NOx emissions from mobile, off road, power plant and industrial emissions to key tributaries: the Potomac, Susquehanna and James Rivers. Finally, we go through an example for a mobile source NOx reductions in Pennsylvania to show how the tributary load offset would be calculated using the factors generated by CMAQ DDM-3D.
Environmental Assessment for Clear AFS Grid Tie-in and Heat Plant, Clear Air Force Station, Alaska
2013-07-01
greenhouse gases are presented in this section. 3.3.2.1 Air Quality Standards All stationary and mobile sources of air pollutants within a...These inventories provide estimates of criteria pollutant emissions associated with industrial sources, residential wood burning, mobile sources...larger, more mobile wildlife species are expected to vacate the project area, whereas individuals of less mobile species (i.e., small mammals,) could
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
...EPA is proposing to approve revisions to the Mojave Desert Air Quality Management District (MDAQMD), Northern Sierra Air Quality Management District (NSAQMD), Sacramento Metropolitan Air Quality Management District (SMAQMD) and San Diego County Air Pollution Control District (SDCAPCD) portions of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from automotive parts and component, automobile refinishing, metal parts and products, and miscellaneous coating and refinishing operations. We are proposing to approve local rules to regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).
NASA Astrophysics Data System (ADS)
Ghosh, B.
2016-12-01
Hydrocarbons can be emitted into the atmosphere from various sources and play a crucial role in local and regional air quality through formation of secondary pollutants such as ozone and particulate matter. Understanding their sources and their potential air quality impact is essential for effective environmental policymaking. A ground based ambient air measurement campaign was conducted in February-March of 2016 at the Phillips 66 Research Center in Northeastern Oklahoma to study ambient hydrocarbons in the region, understand their sources, as well as estimate their air quality impact. This study is a follow-up to a study conducted during the same time in 2015 and aims to understand the variation of hydrocarbons levels in ambient air over time and the corresponding air quality impact. Various trace gases were measured using a suite of instrumentation. Non-methane hydrocarbons (NMHCs) were sampled using two-hour time integrated whole air sampling. A total of 375 air samples were collected during the study and were analyzed offline with GC-MS (Agilent) following cold-trap dehydration (Entech Instruments). In addition, higher time resolution measurement of methane, ethane, CO, CO2, N2O, and H2O was achieved by a 1Hz Dual QCL Monitor (Aerodyne) along with a 0.1 Hz ozone monitor (2B Technologies). Levels of methane of 7 ppm and above were observed in this study. Among NMHCs, C2-C5 alkanes were the most dominant with their mean concentrations ranging from 1.9 to 17 ppb (Figure 1). Chemical tracers (ethane, propane, ethyne, CO) and isomeric ratios (i-C5/ n-C5) suggest that oil and gas production activity probably was the source of hydrocarbon emissions measured in this study. Photochemical age was determined using hydrocarbon ratios and its significance will be discussed. While the 2016 winter was warmer compared to 2015, overall levels of NMHCs are higher in 2016 compared to 2015 and have a different distribution in mixing ratios. The results from 2016 study will be compared with 2015 results.1Significance of these emissions on local air quality will also be discussed. Reference Buddhadeb Ghosh, Volatile Organic Compound Emissions from Oil and Gas Production Sources: A Pilot Study in Northeastern Oklahoma AGU Fall Meeting 2015, https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/59445
Of moss and men: Using moss as a bioindicator of toxic heavy metals at the city scale
Natasha Vizcarra; Sarah Jovan; Demetrios Gatziolis; Vicente Monleon
2018-01-01
Air quality is a critical issue affecting the health of billions of people worldwide, yet often little is known about what is in the air we breathe. To reduce air pollutionâs health impacts, pollution sources must first be reliably identified. Otherwise, it is impossible to design and effectively enforce environmental standards. However, urban networks of air quality...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
...EPA is finalizing a limited approval and limited disapproval of permitting rules submitted for the Placer County Air Pollution Control District (PCAPCD) and Feather River Air Quality Management District (FRAQMD) portions of the California State Implementation Plan (SIP). These revisions were proposed in the Federal Register on May 19, 2011 and concern New Source Review (NSR) permit programs for new and modified major stationary sources of air pollution. We are approving local rules that regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).
Cisneros, Ricardo; Brown, Paul; Cameron, Linda; Gaab, Erin; Gonzalez, Mariaelena; Ramondt, Steven; Veloz, David; Song, Anna; Schweizer, Don
2017-01-01
The San Joaquin Valley of California has poor air quality and high rates of asthma. Surveys were collected from 744 residents of the San Joaquin Valley from November 2014 to January 2015 to examine the public's views about air quality. The results of this study suggest that participants exposed to high PM 2.5 (particulate matter less than 2.5 microns in size) concentrations perceived air pollution to be of the worst quality. Air quality in the San Joaquin Valley was primarily perceived as either moderate or unhealthy for sensitive groups. Females perceived air pollution to be of worse quality compared to males. Participants perceived unemployment, crime, and obesity to be the top three most serious community problems in the San Joaquin Valley. Participants viewed cars and trucks, windblown dust, and factories as the principle contributors to air pollution in the area. There is a need to continue studying public perceptions of air quality in the San Joaquin Valley with a more robust survey with more participants over several years and seasons.
Brown, Paul; Cameron, Linda; Gaab, Erin; Gonzalez, Mariaelena; Ramondt, Steven; Veloz, David; Song, Anna; Schweizer, Don
2017-01-01
The San Joaquin Valley of California has poor air quality and high rates of asthma. Surveys were collected from 744 residents of the San Joaquin Valley from November 2014 to January 2015 to examine the public's views about air quality. The results of this study suggest that participants exposed to high PM2.5 (particulate matter less than 2.5 microns in size) concentrations perceived air pollution to be of the worst quality. Air quality in the San Joaquin Valley was primarily perceived as either moderate or unhealthy for sensitive groups. Females perceived air pollution to be of worse quality compared to males. Participants perceived unemployment, crime, and obesity to be the top three most serious community problems in the San Joaquin Valley. Participants viewed cars and trucks, windblown dust, and factories as the principle contributors to air pollution in the area. There is a need to continue studying public perceptions of air quality in the San Joaquin Valley with a more robust survey with more participants over several years and seasons. PMID:28469673
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R03-OAR-2011-0925; FRL- 9619-6] Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Nonattainment New Source Review Rules AGENCY: Environmental Protection Agency (EPA). [[Page 2938
FORT HALL SOURCE APPORTIONMENT STUDY (FINAL REPORT)
Air quality monitoring on the Fort Hall Indian Reservation has revealed numerous exceedances of the National Ambient Air Quality Standard (NAAQS) for 24-h averaged PM10 mass. Wind-directional analysis coupled with PM10 measurements have identified the FMC elemental phosphorus p...
Shingle Springs Rancheria/Shingle Springs Band of Miwok Indians/Express Fuel Request for Coverage under the General Air Quality Permit for New or Modified Minor Source Gasoline Dispensing Facilities in Indian Country within California.
Impacts of Energy Sector Emissions on PM2.5 Air Quality in Northern India
NASA Astrophysics Data System (ADS)
Karambelas, A. N.; Kiesewetter, G.; Heyes, C.; Holloway, T.
2015-12-01
India experiences high concentrations of fine particulate matter (PM2.5), and several Indian cities currently rank among the world's most polluted cities. With ongoing urbanization and a growing economy, emissions from different energy sectors remain major contributors to air pollution in India. Emission sectors impact ambient air quality differently due to spatial distribution (typical urban vs. typical rural sources) as well as source height characteristics (low-level vs. high stack sources). This study aims to assess the impacts of emissions from three distinct energy sectors—transportation, domestic, and electricity—on ambient PM2.5 in northern India using an advanced air quality analysis framework based on the U.S. EPA Community Multi-Scale Air Quality (CMAQ) model. Present air quality conditions are simulated using 2010 emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model. Modeled PM2.5 concentrations are compared with satellite observations of aerosol optical depth (AOD) from the Moderate Imaging Spectroradiometer (MODIS) for 2010. Energy sector emissions impacts on future (2030) PM2.5 are evaluated with three sensitivity simulations, assuming maximum feasible reduction technologies for either transportation, domestic, or electricity sectors. These simulations are compared with a business as usual 2030 simulation to assess relative sectoral impacts spatially and temporally. CMAQ is modeled at 12km by 12km and include biogenic emissions from the Community Land Model coupled with the Model of Emissions of Gases and Aerosols in Nature (CLM-MEGAN), biomass burning emissions from the Global Fires Emissions Database (GFED), and ERA-Interim meteorology generated with the Weather Research and Forecasting (WRF) model for 2010 to quantify the impact of modified anthropogenic emissions on ambient PM2.5 concentrations. Energy sector emissions analysis supports decision-making to improve future air quality and public health in India.
Ambient air quality trends and driving factor analysis in Beijing, 1983-2007.
Zhang, Ju; Ouyang, Zhiyun; Miao, Hong; Wang, Xiaoke
2011-01-01
The rapid development in Beijing, the capital of China, has resulted in serious air pollution problems. Meanwhile great efforts have been made to improve the air quality, especially since 1998. The variation in air quality under the interaction of pollution and control in this mega city has attracted much attention. We analyzed the changes in ambient air quality in Beijing since the 1980's using the Daniel trend test based on data from long-term monitoring stations. The results showed that different pollutants displayed three trends: a decreasing trend, an increasing trend and a flat trend. SO2, dustfall, B[a]P, NO2 and PM10 fit decreasing trend pattern, while NOx showed an increasing trend, and CO, ozone pollution, total suspended particulate (TSP), as well as Pb fit the flat trend. The cause of the general air pollution in Beijing has changed from being predominantly related to coal burning to mixed traffic exhaust and coal burning related pollution. Seasonally, the pollution level is typically higher during the heating season from November to the following March. The interaction between pollution sources change and implementation of air pollution control measures was the main driving factor that caused the variation in air quality. Changes of industrial structure and improved energy efficiency, the use of clean energy and preferred use of clean coal, reduction in pollution sources, and implementation of advanced environmental standards have all contributed to the reduction in air pollution, particularly since 1998.
Latino and Non-Latino Perceptions of the Air Quality in California's San Joaquin Valley.
Brown, Paul; Cameron, Linda; Cisneros, Ricardo; Cox, Rachel; Gaab, Erin; Gonzalez, Mariaelena; Ramondt, Steven; Song, Anna
2016-12-15
The San Joaquin Valley (SJV) of California has poor air quality, high rates of asthma, and high rates of obesity. Informational campaigns aimed at increasing awareness of the health impacts of poor air quality and promoting behavior change need to be tailored to the specific target audiences. The study examined perceptions of air quality, perceived health impacts, and methods of accessing information about air quality between Latinos and other groups in the SJV. Residents of the SJV (n = 744) where surveyed via one of three methods: community organizations (256), public locations (251), and an internet panel (237). The results suggest that people perceive the air quality in their region to be generally unhealthy, particularly for sensitive groups. The air quality is more likely to be reported as being unhealthy by people with health problems and less unhealthy by Latinos and people who report regularly exercising. Latinos are more likely to report working outdoors regularly, but also more likely to report being able to reduce their exposure if the air quality is unhealthy. The results report differences in informational sources about air quality, suggesting that informational campaigns should target high risk groups using a variety of media.
Latino and Non-Latino Perceptions of the Air Quality in California’s San Joaquin Valley
Brown, Paul; Cameron, Linda; Cisneros, Ricardo; Cox, Rachel; Gaab, Erin; Gonzalez, Mariaelena; Ramondt, Steven; Song, Anna
2016-01-01
The San Joaquin Valley (SJV) of California has poor air quality, high rates of asthma, and high rates of obesity. Informational campaigns aimed at increasing awareness of the health impacts of poor air quality and promoting behavior change need to be tailored to the specific target audiences. The study examined perceptions of air quality, perceived health impacts, and methods of accessing information about air quality between Latinos and other groups in the SJV. Residents of the SJV (n = 744) where surveyed via one of three methods: community organizations (256), public locations (251), and an internet panel (237). The results suggest that people perceive the air quality in their region to be generally unhealthy, particularly for sensitive groups. The air quality is more likely to be reported as being unhealthy by people with health problems and less unhealthy by Latinos and people who report regularly exercising. Latinos are more likely to report working outdoors regularly, but also more likely to report being able to reduce their exposure if the air quality is unhealthy. The results report differences in informational sources about air quality, suggesting that informational campaigns should target high risk groups using a variety of media. PMID:27983706
DOT National Transportation Integrated Search
2017-06-19
Transportation-related emissions are a major source of air pollution in many urban areas. Human exposure to this pollution is related to their proximity to major roadways, yet federal and state Environmental Protection Agencies (EPAs) conduct regulat...
MODELS-3/CMAQ APPLICATIONS WHICH ILLUSTRATE CAPABILITY AND FUNCTIONALITY
The Models-3/CMAQ developed by the U.S. Environmental Protections Agency (USEPA) is a third generation multiscale, multi-pollutant air quality modeling system within a high-level, object-oriented computer framework (Models-3). It has been available to the scientific community ...
Evaluation of air quality in a megacity using statistics tools
NASA Astrophysics Data System (ADS)
Ventura, Luciana Maria Baptista; de Oliveira Pinto, Fellipe; Soares, Laiza Molezon; Luna, Aderval Severino; Gioda, Adriana
2018-06-01
Local physical characteristics (e.g., meteorology and topography) associate to particle concentrations are important to evaluate air quality in a region. Meteorology and topography affect air pollutant dispersions. This study used statistics tools (PCA, HCA, Kruskal-Wallis, Mann-Whitney's test and others) to a better understanding of the relationship between fine particulate matter (PM2.5) levels and seasons, meteorological conditions and air basins. To our knowledge, it is one of the few studies performed in Latin America involving all parameters together. PM2.5 samples were collected in six sampling sites with different emission sources (industrial, vehicular, soil dust) in Rio de Janeiro, Brazil. The PM2.5 daily concentrations ranged from 1 to 61 µg m-3, with averages higher than the annual limit (15 µg m-3) for some of the sites. The results of the statistics evaluation showed that PM2.5 concentrations were not influenced by seasonality. Furthermore, air basins defined previously were not confirmed, because some sites presented similar emission sources. Therefore, new redefinitions of air basins need to be done, once they are important to air quality management.
Evaluation of air quality in a megacity using statistics tools
NASA Astrophysics Data System (ADS)
Ventura, Luciana Maria Baptista; de Oliveira Pinto, Fellipe; Soares, Laiza Molezon; Luna, Aderval Severino; Gioda, Adriana
2017-03-01
Local physical characteristics (e.g., meteorology and topography) associate to particle concentrations are important to evaluate air quality in a region. Meteorology and topography affect air pollutant dispersions. This study used statistics tools (PCA, HCA, Kruskal-Wallis, Mann-Whitney's test and others) to a better understanding of the relationship between fine particulate matter (PM2.5) levels and seasons, meteorological conditions and air basins. To our knowledge, it is one of the few studies performed in Latin America involving all parameters together. PM2.5 samples were collected in six sampling sites with different emission sources (industrial, vehicular, soil dust) in Rio de Janeiro, Brazil. The PM2.5 daily concentrations ranged from 1 to 61 µg m-3, with averages higher than the annual limit (15 µg m-3) for some of the sites. The results of the statistics evaluation showed that PM2.5 concentrations were not influenced by seasonality. Furthermore, air basins defined previously were not confirmed, because some sites presented similar emission sources. Therefore, new redefinitions of air basins need to be done, once they are important to air quality management.
Air quality inside subway metro indoor environment worldwide: A review.
Xu, Bin; Hao, Jinliang
2017-10-01
The air quality in the subway metro indoor microenvironment has been of particular public concern. With specific reference to the growing demand of green transportation and sustainable development, subway metro systems have been rapidly developed worldwide in last decades. The number of metro commuters has continuously increased over recent years in metropolitan cities. In some cities, metro system has become the primary public transportation mode. Although commuters typically spend only 30-40min in metros, the air pollutants emitted from various interior components of metro system as well as air pollutants carried by ventilation supply air are significant sources of harmful air pollutants that could lead to unhealthy human exposure. Commuters' exposure to various air pollutants in metro carriages may cause perceivable health risk as reported by many environmental health studies. This review summarizes significant findings in the literature on air quality inside metro indoor environment, including pollutant concentration levels, chemical species, related sources and health risk assessment. More than 160 relevant studies performed across over 20 countries were carefully reviewed. These comprised more than 2000 individual measurement trips. Particulate matters, aromatic hydrocarbons, carbonyls and airborne bacteria have been identified as the primary air pollutants inside metro system. On this basis, future work could focus on investigating the chronic health risks of exposure to various air pollutants other than PM, and/or further developing advanced air purification unit to improve metro in-station air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ali, Mahboob; Athar, Makshoof
2008-01-01
Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.
This protocol describes how quality control samples should be handled in the field, and was designed as a quick reference source for the field staff. The protocol describes quality control samples for air-VOCs, air-particles, water samples, house dust, soil, urine, blood, hair, a...
ERIC Educational Resources Information Center
Fitzemeyer, Ted
2000-01-01
Discusses how proper maintenance can help schools eliminate sources contributing to poor air quality. Maintaining heating and air conditioning units, investigating bacterial breeding grounds, fixing leaking boilers, and adhering to ventilation codes and standards are discussed. (GR)
Transforming Aggregate Object-Oriented Formal Specifications to Code
1999-03-01
integration issues associated with a formal-based software transformation system, such as the source specification, the problem space architecture , design architecture ... design transforms, and target software transforms. Software is critical in today’s Air Force, yet its specification, design, and development
Ozone (O3), a secondary pollutant, is created in part by emissions from anthropogenic and biogenic sources. It is necessary for local air quality agencies to accurately forecast ozone concentrations to warn the public of unhealthy air and to encourage people to volunta...
A prescribed fire emission factors database for land management and air quality applications
E. Lincoln; WeiMin Hao; S. Baker; R. J. Yokelson; I. R. Burling; Shawn Urbanski; W. Miller; D. R. Weise; T. J. Johnson
2010-01-01
Prescribed fire is a significant emissions source in the U.S. and that needs to be adequately characterized in atmospheric transport/chemistry models. In addition, the Clean Air Act, its amendments, and air quality regulations require that prescribed fire managers estimate the quantity of emissions that a prescribed fire will produce. Several published papers contain a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... Promulgation of Air Quality Implementation Plans; Massachusetts; Revisions to Fossil Fuel Utilization and..., inspection, maintenance and testing requirements for certain fossil fuel utilization facilities, rename and... fossil fuel utilization facility regulation, source registration regulation, and new industrial...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... Promulgation of Air Quality Implementation Plans; Maryland; Control of Volatile Organic Compounds Emissions... Maryland's Volatile Organic Compounds from Specific Processes Regulation. Maryland has adopted standards... (RACT) requirements for sources of volatile organic compounds (VOCs) covered by control techniques...
Code of Federal Regulations, 2010 CFR
2010-07-01
... control equipment or process change; and (5) Final compliance. (i) Region means an air quality control... standard of performance for new stationary sources, but for which air quality criteria have not been issued... account the cost of such reduction) the Administrator has determined has been adequately demonstrated for...
ADVANCEMENTS IN SOURCE-TO-DOSE ANALYSIS OF POPULATION EXPOSURES TO OZONE
The current study takes advantage of the observations from regional air quality monitoring networks, the data from the NE-OPS (North East Oxidant and Particulate Study) Project in the Philadelphia region, and regional photochemical air quality model predictions to obtain and co...
NASA Astrophysics Data System (ADS)
Gong, W.; Beagley, S. R.; Zhang, J.; Cousineau, S.; Sassi, M.; Munoz-Alpizar, R.; Racine, J.; Menard, S.; Chen, J.
2015-12-01
Arctic atmospheric composition is strongly influenced by long-range transport from mid-latitudes as well as processes occurring in the Arctic locally. Using an on-line air quality prediction model GEM-MACH, simulations were carried out for the 2010 northern shipping season (April - October) over a regional Arctic domain. North American wildfire emissions and Arctic shipping emissions were represented, along with other anthropogenic and biogenic emissions. Sensitivity studies were carried out to investigate the principal sources and processes affecting air quality in the Canadian Northern and Arctic regions. In this paper, we present an analysis of sources, transport, and removal processes on the ambient concentrations and atmospheric loading of various pollutants with air quality and climate implications, such as, O3, NOx, SO2, CO, and aerosols (sulfate, black carbon, and organic carbon components). Preliminary results from a model simulation of a recent summertime Arctic field campaign will also be presented.
Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D.; Morawska, Lidia
2016-01-01
Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research. PMID:27420065
75 FR 48880 - Approval and Promulgation of Gila River Indian Community's Tribal Implementation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
...The Environmental Protection Agency (EPA) proposes to approve the Gila River Indian Community's (GRIC or the Tribe) Tribal Implementation Plan (TIP) under the Clean Air Act (CAA) to regulate air pollution within the exterior boundaries of the Tribe's reservation. The proposed TIP is one of four CAA regulatory programs that comprise the Tribe's Air Quality Management Plan (AQMP). EPA approved the Tribe for treatment in the same manner as a State (Treatment as State or TAS) for purposes of administering the AQMP and other CAA authorities on October 21, 2009. In this action we propose to act only on those portions of the AQMP that constitute a TIP containing severable elements of an implementation plan under CAA section 110(a). The proposed TIP includes general and emergency authorities, ambient air quality standards, permitting requirements for minor sources of air pollution, enforcement authorities, procedures for administrative appeals and judicial review in Tribal court, requirements for area sources of fugitive dust and fugitive particulate matter, general prohibitory rules, and source category-specific emission limitations. The purpose of the proposed TIP is to implement, maintain, and enforce the National Ambient Air Quality Standards (NAAQS) in the GRIC reservation. The intended effect of today's proposed action is to make the GRIC TIP federally enforceable.
EPA is taking final action to approve a revision to the YSAQMD portion of the California SIP concerning YSAQMD negative declarations for several VOC source categories included in its RACT State Implementation Plan Analysis.
Air Quality Modeling Needs for Exposure Assessment form the Source-To-Outcome Perspective
Humans are exposed continuously to mixtures of air pollutants. The compositions of these mixtures vary with time and location and their components originate from many types of sources, both local and distant, including industrial facilities, vehicles, consumer products, and more....
Sources and Chemical Composition of Atmospheric Fine Particles in Rabigh, Saudi Arabia
NASA Astrophysics Data System (ADS)
Nayebare, S. R.; Aburizaiza, O. S.; Siddique, A.; Hussain, M. M.; Zeb, J.; Khwaja, H. A.
2014-12-01
Air pollution research in Saudi Arabia and the whole of Middle East is at its inception, making air pollution in the region a significant problem. This study presents the first detailed data on fine particulate matter (PM2.5) concentrations of Black Carbon (BC), ions, and trace metals at Rabigh, Saudi Arabia, and assesses their sources. Results showed several characteristic aspects of air pollution at Rabigh. Daily levels of PM2.5 and BC showed significant temporal variability ranging from 12.2 - 75.9 µg/m3 and 0.39 - 1.31 µg/m3, respectively. More than 90% of the time, the daily PM2.5 exceeded the 24 h WHO guideline of 20 µg/m3. Sulfate, NO3-, and NH4+ dominated the identifiable components. Trace metals with significantly higher concentrations included Si, S, Ca, Al, Fe, Na, Cl, Mg, K, and Ti, with average concentrations of 3.1, 2.2, 1.6, 1.2, 1.1, 0.7, 0.7, 0.5, 0.4 and 0.1 µg/m3, respectively. Based on the Air Quality Index (AQI), there were 44% days of moderate air quality, 33% days of unhealthy air quality for sensitive groups, and 23% days of unhealthy air quality throughout the study period. Two categories of aerosol trace metal sources were defined: anthropogenic (S, V, Cr, Ni, Cu, Zn, Br, Cd, Sb, and Pb) and naturally derived elements (Si, Al, and Fe). The extent of anthropogenic contribution was estimated by the degree of enrichment of these elements compared to the crustal composition. Soil resuspension and/or mobilization is an important source of "natural" elements, while "anthropogenic" elements originate primarily from fossil fuel combustion and industries. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. A positive matrix factorization (PMF) was used to obtain information about possible sources. Our study highlights the need for stringent laws on PM2.5 emission control to protect human health and the environment.
NASA Astrophysics Data System (ADS)
Osterman, G. B.; Neu, J. L.; Eldering, A.; Pinder, R. W.; Tang, Y.; McQueen, J.
2014-12-01
Most regional scale models that are used for air quality forecasts and ozone source attribution do not adequately capture the distribution of ozone in the mid- and upper troposphere, but it is unclear how this shortcoming relates to their ability to simulate surface ozone. We combine ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and a new joint product from TES and the Ozone Monitoring Instrument along with ozonesonde measurements and EPA AirNow ground station ozone data to examine air quality events during August 2006 in the Community Multi-Scale Air Quality (CMAQ) and National Air Quality Forecast Capability (NAQFC) models. We present both aggregated statistics and case-study analyses with the goal of assessing the relationship between the models' ability to reproduce surface air quality events and their ability to capture the vertical distribution of ozone. We find that the models lack the mid-tropospheric ozone variability seen in TES and the ozonesonde data, and discuss the conditions under which this variability appears to be important for surface air quality.
Shi, Zhihao; Li, Jingyi; Huang, Lin; Wang, Peng; Wu, Li; Ying, Qi; Zhang, Hongliang; Lu, Li; Liu, Xuejun; Liao, Hong; Hu, Jianlin
2017-12-01
China has been suffering high levels of fine particulate matter (PM 2.5 ). Designing effective PM 2.5 control strategies requires information about the contributions of different sources. In this study, a source-oriented Community Multiscale Air Quality (CMAQ) model was applied to quantitatively estimate the contributions of different source sectors to PM 2.5 in China. Emissions of primary PM 2.5 and gas pollutants of SO 2 , NO x , and NH 3 , which are precursors of particulate sulfate, nitrate, and ammonium (SNA, major PM 2.5 components in China), from eight source categories (power plants, residential sources, industries, transportation, open burning, sea salt, windblown dust and agriculture) were separately tracked to determine their contributions to PM 2.5 in 2013. Industrial sector is the largest source of SNA in Beijing, Xi'an and Chongqing, followed by agriculture and power plants. Residential emissions are also important sources of SNA, especially in winter when severe pollution events often occur. Nationally, the contributions of different source sectors to annual total PM 2.5 from high to low are industries, residential sources, agriculture, power plants, transportation, windblown dust, open burning and sea salt. Provincially, residential sources and industries are the major anthropogenic sources of primary PM 2.5 , while industries, agriculture, power plants and transportation are important for SNA in most provinces. For total PM 2.5 , residential and industrial emissions are the top two sources, with a combined contribution of 40-50% in most provinces. The contributions of power plants and agriculture to total PM 2.5 are about 10%, respectively. Secondary organic aerosol accounts for about 10% of annual PM 2.5 in most provinces, with higher contributions in southern provinces such as Yunnan (26%), Hainan (25%) and Taiwan (21%). Windblown dust is an important source in western provinces such as Xizang (55% of total PM 2.5 ), Qinghai (74%), Xinjiang (59%). The large variation in sources of PM 2.5 across China suggests that PM 2.5 mitigation programs should be designed separately for different regions/provinces. Copyright © 2017 Elsevier B.V. All rights reserved.
Stratospheric Intrusion-Influenced Ozone Air Quality Exceedences Investigated in MERRA-2
NASA Technical Reports Server (NTRS)
Knowland, K. Emma; Ott, Lesley; Duncan, Bryan; Wargan, Krzysztof
2017-01-01
Ozone near the surface is harmful to human health and is a result of the photochemical reaction with both man-made and natural precursor pollutant sources. Therefore, in order to reduce near surface ozone concentrations, communities must reduce anthropogenic pollution sources. However, the injection of stratospheric ozone into the troposphere, known as a stratospheric intrusion, can also lead to concentrations of ground-level ozone exceeding air quality standards. Stratospheric intrusions are dynamical atmospheric features, however, these intrusions have been misrepresented in models and reanalyses until recently, as the features of a stratospheric intrusion are best identified in horizontal resolutions of approximately 50 km or smaller. NASA's Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) reanalysis is a publicly-available high-resolution dataset (50 km) with assimilated ozone that characterizes stratospheric ozone on the same spatiotemporal resolution as the meteorology. We show that stratospheric intrusions that impact surface air quality are well represented in the MERRA-2 reanalysis. This is demonstrated through a case study analysis of stratospheric intrusion events which were identified by the United States Environmental Protection Agency (EPA) to impact surface ozone air quality in spring 2012 in Colorado. The stratospheric intrusions are identified in MERRA-2 by the folding of the dynamical tropopause under the jet stream and subsequent isentropic descent of dry, O3-rich stratospheric air towards the surface where ozone air quality exceedences were observed. The MERRA-2 reanalysis can support air quality agencies for more rapid identification of the impact of stratospheric air on ground-level ozone.
Hybrid Air Quality Modeling Approach For Use in the Near ...
The Near-road EXposures to Urban air pollutant Study (NEXUS) investigated whether children with asthma living in close proximity to major roadways in Detroit, MI, (particularly near roadways with high diesel traffic) have greater health impacts associated with exposure to air pollutants than those living farther away. A major challenge in such health and exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. This paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the AERMOD and R-LINE dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multiscale Air Quality (CMAQ) model and the Space/Time Ordinary Kriging (STOK) model. To capture the near-road pollutant gradients, refined “mini-grids” of model recep
Spatial Analysis of Air Quality Monitor Data in China, Japan, and South Korea
NASA Astrophysics Data System (ADS)
Rohde, Robert
2016-04-01
In 2015, Berkeley Earth published a widely-reported study concluding that air pollution contributes to 1.6 million deaths per year in China. This presentation will provide an update on that work with additional data for China and new analysis for South Korea and Japan. In China, two years of data from more than 1500 monitoring stations allows local trends to be estimated. Preliminary review indicates a trend towards improving air quality across most of China with decreasing emissions at most major population centers. Such improvements are consistent with tightening emissions standards and the decreasing usage of coal. In addition, new spatial analysis has been applied to ~900 monitoring sites in Japan and ~120 sites in South Korea. This new analysis provides information on air quality, pollutant source distributions, and implied mortality in these countries. Finally, boundary crossing fluxes in South Korea and Japan have been used to estimate the fraction of air pollution in Japan and South Korea that has being imported from sources in China.
Zielinska, Barbara; Campbell, Dave; Samburova, Vera
2014-12-01
Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (< C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.
Linking Meteorology, Air Quality Models and Observations to ...
Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air pollutants. A major challenge in environmental epidemiology is adequate exposure characterization. Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal variability in ambient concentrations, nor the influence of infiltration and indoor sources. Central-site monitoring becomes even more problematic for certain air pollutants that exhibit significant spatial heterogeneity. Statistical interpolation techniques and passive monitoring methods can provide additional spatial resolution in ambient concentration estimates. In addition, spatio-temporal models, which integrate GIS data and other factors, such as meteorology, have also been developed to produce more resolved estimates of ambient concentrations. Models, such as the Community Multi-Scale Air Quality (CMAQ) model, estimate ambient concentrations by combining information on meteorology, source emissions, and chemical-fate and transport. Hybrid modeling approaches, which integrate regional scale models with local scale dispersion
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... (RACT) for sources covered by EPA's Control Techniques Guidelines (CTG) for flexible packaging printing... Promulgation of Air Quality Implementation Plans; Maryland; Adoption of Control Techniques Guidelines for Flexible Packaging Printing AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY...
Diagnostic Air Quality Model Evaluation of Source-Specific ...
Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of −0.55 μgC/m3 was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (−0.46 μgC/m3 on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others. The National Exposure Research L
Napelenok, Sergey L; Simon, Heather; Bhave, Prakash V; Pye, Havala O T; Pouliot, George A; Sheesley, Rebecca J; Schauer, James J
2014-01-01
Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others.
Report on the First APCA Government Affairs Seminar "The Clean Air Act."
ERIC Educational Resources Information Center
Beery, Williamina, T.
1973-01-01
A summary of 18 speeches and sessions from the Government Affairs Seminar is given. Topics featured were emission standards for mobile sources, implementation strategies for stationary sources, non-degradation of air quality standards, and technology assessment and the National Environmental Policy Act. (BL)
Empowerment in practice - insights from CITI-SENSE project in Ljubljana
NASA Astrophysics Data System (ADS)
Robinson, Johanna; Kocman, David; Smolnikar, Miha; Mohorčič, Miha; Horvat, Milena
2014-05-01
We present specifics of the citizen empowerment and crowd sourced citizen science conducted in Ljubljana, Slovenia, as one of the case study cities within the ongoing EU-project CITI-SENSE. CITI-SENSE addresses urban air quality and rests on three pillars: technological platforms for distributed monitoring; novel information and communication technologies; and citizen participation. In the project, empowerment initiatives are conducted, enabling citizens to participate in various aspects of urban air quality, both outdoor and indoor at schools affecting everyday life of societal groups. Each participating country runs its own citizen empowerment campaign adapting to local circumstances. In addition to Ljubljana, local campaigns have been initiated in Barcelona, Belgrade, Edinburgh, Haifa, Ljubljana, Oslo, Ostrava, Vienna and in Vitoria. Poor air quality has been recognized as an important factor affecting the quality of life, especially in urban environments. In Ljubljana specifically, the main air pollution sources are traffic-related emissions, individual house heating devices including increased use of coal and biomass in recent years, and to a limit extent industrial point sources and waste disposal sites. Air quality can be occasionally very poor due to specific climatic conditions owing partially to its location in a basin and on the marshes, resulting in a very complex circulation of air masses, temperature inversions and formation of urban heat island. By recognizing this, we established the main stakeholders in the city who are responsible for monitoring the quality of air in Ljubljana. Based on full stakeholder analysis we consider co-operation with local governmental- and non-governmental institutions with already established means of communications with citizens, as a tool for empowerment. Since we spend over 90% of our time indoors, the indoor air quality is of great importance. It is why the CITI-SENSE project empowerment initiatives also cover this aspect. In Ljubljana we have identified and are involving three schools; differing by location, house type and age of students. The project also gives children a unique approach to learning about air quality issues - by being involved. To evaluate the success of empowerment initiatives after a pilot phase, key performance indicators (KPI) were defined that will enable performance improvement for the full implementation phase of the project. Acknowledgements: CITI-SENSE is a Collaborative Project partly funded by the EU FP7-ENV-2012 under grant agreement no 308524. www.citi-sense.eu.
Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.
ERIC Educational Resources Information Center
Wheeler, Arthur E.
Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…
Indoor air quality and sources in schools and related health effects.
Annesi-Maesano, Isabella; Baiz, Nour; Banerjee, Soutrik; Rudnai, Peter; Rive, Solenne; SINPHONIE Group
2013-01-01
Good indoor air quality in schools is important to provide a safe, healthy, productive, and comfortable environment for students, teachers, and other school staff. However, existing studies demonstrated that various air pollutants are found in classrooms, sometimes at elevated concentrations. Data also indicated that poor air quality may impact children's health, in particular respiratory health, attendance, and academic performance. Nevertheless, it should be noted that there are other adverse health effects that are less documented. Few data exist for teachers and other adults that work in schools. Allergic individuals seem to be at a higher risk for adverse respiratory health consequences. Air quality improvement represents an important measure for prevention of adverse health consequences in children and adults in schools.
Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution
Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Igor Burstyn; Yvonne L. Michael; Michael C. Amacher; Vicente J. Monleon
2016-01-01
Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting....
NASA Astrophysics Data System (ADS)
Hong, J.; Hong, Y.; Song, C. K.; Kim, S. K.; Chang, L. S.; Lim, J.; Ahn, J.; Park, J. H.; Kim, J. Y.; Han, Y. J.; Kim, J.; Park, R.; Lee, G.; Lefer, B. L.; Al-Saadi, J. A.; Crawford, J. H.
2015-12-01
Due to remarkable economic growth over the last two decades, East Asia has become a region experiencing some of the poorest air quality in the world. In addition to local sources of pollution, the Korea peninsula is downwind of the largest emission sources in East Asia, complicating the understanding of air quality over Korea. Thus, knowing the factors controlling changes in air pollution across urban-rural and marine-continental interfaces, in addition to the contributions from local emissions and transboundary transport, is important for building effective management strategies and improving air quality in East Asia. GEMS (Geostationary Environmental Monitoring Spectrometer) is a satellite instrument planned for launch in 2019 by the Republic of Korea. The instrument will observe East Asia and the western Pacific region, providing real-time monitoring of air quality (e.g. O3, NO2, SO2, HCHO, AOD, etc.) and enabling better scientific understanding of the transboundary transport of air pollutants. The KORUS-AQ (the Korea and U.S. Air Quality) field campaign will take place in May - June 2016 and will employ an integrated observing strategy including multiplatform observations (i.e. ground stations, aircraft, ships, and satellites) and chemical transport models. This mission aims to not only strengthen our knowledge of atmospheric chemistry but also provide important data sets for validating GEMS retrieval algorithms. In preparation for KORUS-AQ, a pre-campaign has been successfully conducted in Korea during early summer 2015 with observations from multiple ground sites and a small aircraft. A brief summary of pre-field campaign results will be presented. Moving forward, the GEMS mission and KORUS-AQ study will lead to a new era of air quality monitoring in East Asia. GEMS will also make critical contributions to the global air quality perspective working in concert with geostationary missions launched by the U.S. (TEMPO: Tropospheric Emissions: Monitoring of Pollution) and Europe (Sentinel-4) and low-Earth orbit missions including the European Sentinel-5 Precursor.
NASA Astrophysics Data System (ADS)
Guttikunda, S. K.; Johnson, T. M.; Procee, P.
2004-12-01
Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.
Anemomenotatic orientation in beetles and scorpions
NASA Technical Reports Server (NTRS)
Linsenmair, K. E.
1972-01-01
Orientation, by beetles and scorpions, according to wind direction and force are analyzed. Major efforts were made to determine: (1) which physical qualities of the air current influence anemomenotaxis, (2) which physiological mechanism is responsible for such orientation, (3) which sense organs do beetles and scorpions use to perceive wind directions, and (4) what the biological significance of anemomenotaxis in the beetle and scorpion is. Experimental results show that the trichobothria in scorpions perceives wind direction; in the beetle it is perceived by sense organs excited by pendicellus-flagellum joint movements. A compensation mechanism is suggested as the basis for anemomenotactic orientation. It was also suggested that the biological significance of anemomenotaxis in scorpions is space orientation; while in beetles it was found to be part of the appetitive behavior used to search for olfactory sign stimuli.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
...EPA is proposing to approve revisions to the Antelope Valley Air Quality Management District (AVAQMD) and San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portions of the California State Implementation Plan (SIP). These revisions concern negative declarations for volatile organic compound (VOC) and oxides of sulfur source categories. We are proposing to approve these negative declarations under the Clean Air Act as amended in 1990 (CAA or the Act).
Canada-wide standards and innovative transboundary air quality initiatives.
Barton, Jane
2008-01-01
Canada's approach to air quality management is one that has brought with it opportunities for the development of unique approaches to risk management. Even with Canada's relatively low levels of pollution, science has demonstrated clearly that air quality and ecosystem improvements are worthwhile. To achieve change and address air quality in Canada, Canadian governments work together since, under the constitution, they share responsibility for the environment. At the same time, because air pollution knows no boundaries, working with the governments of other nations is essential to get results. International cooperation at all levels provides opportunities with potential for real change. Cooperation within transboundary airsheds is proving a fruitful source of innovative opportunities to reduce cross-border barriers to air quality improvements. In relation to the NERAM Colloquium objective to establish principles for air quality management based on the identification of international best practice in air quality policy development and implementation, Canada has developed, both at home and with the United States, interesting air management strategies and initiatives from which certain lessons may be taken that could be useful in other countries with similar situations. In particular, the Canada-wide strategies for smog and acid rain were developed by Canadian governments, strategies that improve and protect air quality at home, while Canada-U.S. transboundary airshed projects provide examples of international initiatives to improve air quality.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
...EPA is finalizing a limited approval and limited disapproval of two permitting rules submitted by California as a revision to the Placer County Air Pollution Control District (PCAPCD) and Feather River Air Quality Management District (FRAQMD) portion of the California State Implementation Plan (SIP). These revisions were proposed in the Federal Register on February 22, 2013 and concern construction and modification of stationary sources of air pollution within each District. We are approving local rules that regulate these emission sources under the Clean Air Act as amended in 1990 (CAA). Final approval of these rules makes the rules federally enforceable and corrects program deficiencies identified in a previous EPA rulemaking (76 FR 44809, July 27, 2011). EPA is also making a technical amendment to the Code of Federal Regulations (CFR) to reflect this previous rulemaking, which removed an obsolete provision from the California SIP.
Building Assessment Survey and Evaluation Data (BASE)
The Building Assessment Survey and Evaluation (BASE) study was a five year study to characterize determinants of indoor air quality and occupant perceptions in representative public and commercial office buildings across the U.S. This data source is the raw data from this study about the indoor air quality.
77 FR 30212 - Approval and Promulgation of Air Quality Implementation Plans; Vermont; Regional Haze
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... Promulgation of Air Quality Implementation Plans; Vermont; Regional Haze AGENCY: Environmental Protection... Implementation Plan (SIP) that addresses regional haze for the first planning period from 2008 through 2018. The... numerous sources located over a wide geographic area (also referred to as the ``regional haze program...
There is a need to properly develop the application of Computational Fluid Dynamics (CFD) methods in support of air quality studies involving pollution sources near buildings at industrial sites. CFD models are emerging as a promising technology for such assessments, in part due ...
Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9–12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality ar...
INDOOR AIR QUALITY MODEL VERSION 1.0 DOCUMENTATION
The report presents a multiroom model for estimating the impact of various sources on indoor air quality (IAQ). The model is written for use on IBM-PC and compatible microcomputers. It is easy to use with a menu-driven user interface. Data are entered using a fill-in-a-form inter...
Bakó-Biró, Z; Wargocki, P; Weschler, C J; Fanger, P O
2004-06-01
In groups of six, 30 female subjects were exposed for 4.8 h in a low-polluting office to each of two conditions--the presence or absence of 3-month-old personal computers (PCs). These PCs were placed behind a screen so that they were not visible to the subjects. Throughout the exposure the outdoor air supply was maintained at 10 l/s per person. Under each of the two conditions the subjects performed simulated office work using old low-polluting PCs. They also evaluated the air quality and reported Sick Building Syndrome (SBS) symptoms. The PCs were found to be strong indoor pollution sources, even after they had been in service for 3 months. The sensory pollution load of each PC was 3.4 olf, more than three times the pollution of a standard person. The presence of PCs increased the percentage of people dissatisfied with the perceived air quality from 13 to 41% and increased by 9% the time required for text processing. Chemical analyses were performed to determine the pollutants emitted by the PCs. The most significant chemicals detected included phenol, toluene, 2-ethylhexanol, formaldehyde, and styrene. The identified compounds were, however, insufficient in concentration and kind to explain the observed adverse effects. This suggests that chemicals other than those detected, so-called 'stealth chemicals', may contribute to the negative effects. PCs are an important, but hitherto overlooked, source of pollution indoors. They can decrease the perceived air quality, increase SBS symptoms and decrease office productivity. The ventilation rate in an office with a 3-month-old PC would need to be increased several times to achieve the same perceived air quality as in a low-polluting office with the PC absent. Pollution from PCs has an important negative impact on the air quality, not only in offices but also in many other spaces, including homes. PCs may have played a role in previously published studies on SBS and perceived air quality, where PCs were overlooked as a possible pollution source in the indoor environment. The fact that the chemicals identified in the office air and in the chamber experiments were insufficient to explain the adverse effects observed during human exposures illustrates the inadequacy of the analytical chemical methods commonly used in indoor air quality investigations. For certain chemicals the human senses are much more sensitive than the chemical methods routinely used in indoor air quality investigations. The adverse effects of PC-generated air pollutants could be reduced by modifications in the manufacturing process, increased ventilation, localized PC exhaust, or personalized ventilation systems.
EPA is making an interim final determination to defer imposition of sanctions based on a proposed determination that CARB submitted rules on behalf of BAAQMD that satisfy part D of the Clean Air Act for areas under the jurisdiction of the BAAQMD.
Overview of known sources of mercury vapor in buildings: A discussion paper
This brief overview paper is for use at the 2011 International Air Quality Conference to facilitate discussion among participants at the workshop on mercury as an indoor air pollutant of data gaps in source characterization and in related areas related to improved risk assessment...
NASA Astrophysics Data System (ADS)
Caglar, Mujdat; Atar, Kadir Cemil
2012-10-01
Using indium chloride as an In source, In-doped SnO2 films were fabricated by sol-gel method through dip-coating on borofloat glass substrates. The undoped SnO2 films were deposited in air between 400 and 600 °C to get optimum deposition temperature in terms of crystal quality and hence In-doped SnO2 films were deposited in air at 600 °C. The effect of both deposition temperature and In content on structural, morphological, optical and electrical properties was investigated. The crystalline structure and orientation of the films were investigated by X-ray diffraction (XRD) and surface morphology was studied by a field emission scanning electron microscope (FESEM). The compositional analysis of the films was confirmed by energy dispersive X-ray spectrometer (EDS). The absorption band edge of the SnO2 films shifted from 3.88 to 3.66 eV with In content. The van der Pauw method was used to measure the sheet resistance of the films. The sheet resistance was affected significantly by deposition temperature and In content.
Applications of MODIS satellite data and products for monitoring air quality in the state of Texas
NASA Astrophysics Data System (ADS)
Hutchison, Keith D.
The Center for Space Research (CSR), in conjunction with the Monitoring Operations Division (MOD) of the Texas Commission on Environmental Quality (TCEQ), is evaluating the use of remotely sensed satellite data to assist in monitoring and predicting air quality in Texas. The challenges of meeting air quality standards established by the US Environmental Protection Agency (US EPA) are impacted by the transport of pollution into Texas that originates from outside our borders and are cumulative with those generated by local sources. In an attempt to quantify the concentrations of all pollution sources, MOD has installed ground-based monitoring stations in rural regions along the Texas geographic boundaries including the Gulf coast, as well as urban regions that are the predominant sources of domestic pollution. However, analysis of time-lapse GOES satellite imagery at MOD, clearly demonstrates the shortcomings of using only ground-based observations for monitoring air quality across Texas. These shortcomings include the vastness of State borders, that can only be monitored with a large number of ground-based sensors, and gradients in pollution concentration that depend upon the location of the point source, the meteorology governing its transport to Texas, and its diffusion across the region. With the launch of NASA's MODerate resolution Imaging Spectroradiometer (MODIS), the transport of aerosol-borne pollutants can now be monitored over land and ocean surfaces. Thus, CSR and MOD personnel have applied MODIS data to several classes of pollution that routinely impact Texas air quality. Results demonstrate MODIS data and products can detect and track the migration of pollutants. This paper presents one case study in which continental haze from the northeast moved into the region and subsequently required health advisories to be issued for 150 counties in Texas. It is concluded that MODIS provides the basis for developing advanced data products that will, when used in conjunction with ground-based observations, create a cost-effective and accurate pollution monitoring system for the entire state of Texas.
Chemical transport model simulations of organic aerosol in ...
Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module and organic emissions inventory of a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and parameterizations for mobile sources. The updated model included a revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was used to simulate air quality in southern California during May and June 2010, when the California Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the Traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve predictions of OA sources and composition (e.g., POA–SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performed similar to a recently released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and SOA data
Assessment of the impacts of vehicular pollution on urban air quality.
Ghose, Mrinal K; Paul, R; Banerjee, S K
2004-01-01
Air quality crisis in cities is mainly due to vehicular emissions. Owing to the expanding economic base Indian cities are growing at a faster rate. Transportation systems are increasing everywhere and the improved technology is insufficient to counteract growth. The effect of vehicular emission on urban air quality and human health has been described. A survey has been conducted in an Indian mega city to evaluate the status of air pollution at traffic intersections and the unique problem arising out of vehicular emissions in the study area has been narrated. Approach for the selection of the air monitoring stations, methodology adopted for data collection and the results have been discussed. Vulnerability analysis (VA) has been carried out to identify the zones at what pollution stress. Options for reducing mobile source emission have been discussed and a strategic air quality management plan has been proposed to mitigate the air pollution in the city.
Study on the Influence of Building Materials on Indoor Pollutants and Pollution Sources
NASA Astrophysics Data System (ADS)
Wang, Yao
2018-01-01
The paper summarizes the achievements and problems of indoor air quality research at home and abroad. The pollutants and pollution sources in the room are analyzed systematically. The types of building materials and pollutants are also discussed. The physical and chemical properties and health effects of main pollutants were analyzed and studied. According to the principle of mass balance, the basic mathematical model of indoor air quality is established. Considering the release rate of pollutants and indoor ventilation, a mathematical model for predicting the concentration of indoor air pollutants is derived. The model can be used to analyze and describe the variation of pollutant concentration in indoor air, and to predict and calculate the concentration of pollutants in indoor air at a certain time. The results show that the mathematical model established in this study can be used to analyze and predict the variation law of pollutant concentration in indoor air. The evaluation model can be used to evaluate the impact of indoor air quality and evaluation of current situation. Especially in the process of building and interior decoration, through pre-evaluation, it can provide reliable design parameters for selecting building materials and determining ventilation volume.
Air quality concerns of unconventional oil and natural gas production.
Field, R A; Soltis, J; Murphy, S
2014-05-01
Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of pollutants is possible. Public health protection is improved when emissions are controlled and facilities are located away from where people live. Based on lessons learned in the US we outline an approach for future unconventional O & NG development that includes regulation, assessment and monitoring.
A pilot study of indoor air quality in screen golf courses.
Goung, Sun-Ju Nam; Yang, Jinho; Kim, Yoon Shin; Lee, Cheol Min
2015-05-01
The aims of this study were to provide basic data for determining policies on air quality for multi-user facilities, including the legal enrollment of the indoor air quality regulation as designated by the Ministry of Environment, and to establish control plans. To this end, concentrations of ten pollutants (PM10, carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), radon (Rn), oxone (O3), total bacteria counts (TBC), and asbestos) in addition to nicotine, a smoking index material used to determine the impact of smoking on the air quality, were investigated in indoor game rooms and lobbies of 64 screen golf courses. The average concentration of none of the ten pollutants in the game rooms and lobbies of screen golf courses was found to exceed the limit set by the law. There were, however, pollutant concentrations exceeding limits in some screen golf courses, in order to establish a control plan for the indoor air quality of screen golf courses, a study on the emission sources of each pollutant was conducted. The major emission sources were found to be facility users' activities such as smoking and the use of combustion appliances, building materials, and finishing materials.
Park, Seonghyun; Seo, Janghoo
2016-04-01
Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index.
A Breath of Fresh Air: Addressing Indoor Air Quality
ERIC Educational Resources Information Center
Palliser, Janna
2011-01-01
Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... standards, research related to air quality, sources of air pollution, and the strategies to attain and... public health and the environment. EPA's Office of Air and Radiation requested the Ozone Review Panel... a Public Teleconference of the Clean Air Scientific Advisory Committee (CASAC); Ozone Review Panel...
Towards an operational high-resolution air quality forecasting system at ECCC
NASA Astrophysics Data System (ADS)
Munoz-Alpizar, Rodrigo; Stroud, Craig; Ren, Shuzhan; Belair, Stephane; Leroyer, Sylvie; Souvanlasy, Vanh; Spacek, Lubos; Pavlovic, Radenko; Davignon, Didier; Moran, Moran
2017-04-01
Urban environments are particularly sensitive to weather, air quality (AQ), and climatic conditions. Despite the efforts made in Canada to reduce pollution in urban areas, AQ continues to be a concern for the population, especially during short-term episodes that could lead to exceedances of daily air quality standards. Furthermore, urban air pollution has long been associated with significant adverse health effects. In Canada, the large percentage of the population living in urban areas ( 81%, according to the Canada's 2011 census) is exposed to elevated air pollution due to local emissions sources. Thus, in order to improve the services offered to the Canadian public, Environment and Climate Change Canada has launched an initiative to develop a high-resolution air quality prediction capacity for urban areas in Canada. This presentation will show observed pollution trends (2010-2016) for Canadian mega-cities along with some preliminary high-resolution air quality modelling results. Short-term and long-term plans for urban AQ forecasting in Canada will also be described.
Li, Ting-Yuan; Deng, Xue-Jiao; Fan, Shao-Jia; Wu, Dui; Li, Fei; Deng, Tao; Tan, Hao-Bo; Jiang, De-Hai
2012-09-01
Based on the monitoring data of NO2, O3, SO2, PM, visibility, regional air quality index (RAQI) and the atmospheric transport and diffusion data from Nov. 4, 2010 to Dec. 10, 2010 in Guangzhou area, the variations of air quality and meteorological conditions during the Guangzhou Asian Games were analyzed. It was found that, during the Asian Games, the air quality was better than the air quality before or after the Asian Games. The visibility was greater than the visibility before or after the Asian Games, while the concentrations of PM1 and PM2.5 were lower. The correlation coefficient between visibility and the concentrations of PM1, PM2.5 indicated anti-correlation relationships. Daily and hourly concentrations of NO2 and SO2 met the primary ambient air quality standards, whereas the daily concentration of PM10 and hourly concentration of O3 met the secondary ambient air quality standards. Pollutants had been well controlled during the Asian Games. The concentration of SO2 in Guangzhou was influenced by local sources and long distance transmission, while the concentration of NO2 was significantly influenced by local sources. The emissions of NO2, SO2 and PM10 surrounding Guangzhou had a trend to affect the concentrations in Guangzhou, but the situation of O3 was opposite, the relatively high concentration of O3 in Guangzhou had tendency to be transported to the surrounding areas. The pollution meteorology conditions in the period of Asian Games were better than the conditions before or after the Asian Games. The decrease in the concentrations during the Asian Games did not only benefit from the emission control by the government, but also from the good meteorological conditions.
Data used in these analyses was obtained from publically-available sources, specifically the EPA's AirNow website (https://www.epa.gov/outdoor-air-quality-data). The dataset provided includes the subset of data from AirNow that was used in our analyses.This dataset is associated with the following publication:Dickerson, A., A. Benson, B. Buckley, and E. Chan. Concentrations of individual fine particulate matter components in the United States around July 4th. Air Quality, Atmosphere & Health. Springer Netherlands, NETHERLANDS, 1-10, (2016).
Key issues in controlling air pollutants in Dhaka, Bangladesh
NASA Astrophysics Data System (ADS)
Begum, Bilkis A.; Biswas, Swapan K.; Hopke, Philip K.
2011-12-01
Particulate matter (PM) sampling for both coarse and fine fractions was conducted in a semi-residential site (AECD) in Dhaka from February 2005 to December 2006. The samples were analyzed for mass, black carbon (BC), and elemental compositions. The resulting data set were analyzed for sources by Positive Matrix Factorization (EPA-PMF). From previous studies, it is found that, the air quality became worse in the dry winter period compared to the rainy season because of higher particulate matter concentration in the ambient air. Therefore, seasonal source contributions were determined from seasonally segregated data using EPA-PMF modeling so that further policy interventions can be undertaken to improve air quality. From the source apportionment results, it is observed that vehicular emissions and emission from brick kiln are the major contributors to air pollution in Dhaka especially in the dry seasons, while contribution from emissions from metal smelters increases during rainy seasons. The Government of Bangladesh is considering different interventions to reduce the emissions from those sources by adopting conversion of diesel/petrol vehicles to CNG, increasing traffic speed in the city and by introducing green technologies for brick production. However, in order to reduce the transboundary effect it is necessary to take action regionally.
75 FR 45091 - Notice of Request for Nominations to the Agricultural Air Quality Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... minorities, women, and persons with disabilities. USDA prohibits discrimination in its programs and activities on the basis of race, color, national origin, gender, religion, age, sexual orientation, or disability. Additionally, discrimination on the basis of political beliefs and marital or family status is...
2007-01-01
deposition directly to Puget Sound was an important source of PAHs, polybrominated diphenyl ethers (PBDEs), and heavy metals . In most cases, atmospheric...versus Atmospheric Fluxes ........................................................................66 PAH Source Apportionment ...temperature inversions) on air quality during the wet season. A semi-quantitative apportionment study permitted a first-order characterization of source
NASA Astrophysics Data System (ADS)
Turmuzi, M.; Suryati, I.; Mashaly, E. T.; Batubara, F.
2018-02-01
One source to decrease urban air ambient quality is transportation sector. Important pollutants are released by gas emissions from vehicles are carbon monoxide (CO), hydrocarbons (HC), nitrogen dioxide (NO2), particulate matter and others. The presence of CO pollutants in the ambient air can be predicted by modeling air quality. This study aims to estimate CO concentration resulting from transportation activities using Delhi Finite Line Source (DFLS) model, comparing CO prediction using a DFLS model with CO observation in the field, and determine the suitability of the DFLS model application on the MT Haryono street in Medan City. Research was conducted for 3 days at two sample points with frequency twice daily. Based on research results, the range of CO concentration from observation between 22.903 μg/m3 - 27.484 μg/m3. CO observation is still below the ambient air quality standard. According to the DFLS calculations, the range of CO concentration between 1.499 μg/m3- 2.051 μg/m3. The calculation index of agreement (IOA) validation test obtained value of d = 0.22. The DFLS model is not suitable to be applied on MT Haryono street because many factors affected such as wind direction and wind velocity, ambient air temperature and humidity
NASA Astrophysics Data System (ADS)
Lee, Hsiang-He; Chen, Shu-Hua; Kleeman, Michael J.; Zhang, Hongliang; DeNero, Steven P.; Joe, David K.
2016-07-01
The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and was applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-D chemical variable (X, Z, Y, size bins, source types, species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and long-wave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into cloud condensation nuclei (CCN) at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.
Indoor Air Quality in Apartments
Apartments can have the same indoor air problems as single-family homes because many of the pollution sources, such as the interior building materials, furnishings, and household products, are similar.
Open hardware, low cost, air quality stations for monitoring ozone in coastal area
NASA Astrophysics Data System (ADS)
Lima, Marco; Donzella, Davide; Pintus, Fabio; Fedi, Adriano; Ferrari, Daniele; Massabò, Marco
2014-05-01
Ozone concentrations in urban and coastal area are a great concern for citizens and, consequently regulator. In the last 20 years the Ozone concentration is almost doubled and it has attracted the public attention because of the well know harmful impacts on human health and biosphere in general. Official monitoring networks usually comprise high precision, high accuracy observation stations, usually managed by public administrations and environmental agency; unfortunately due to their high costs of installation and maintenance, the monitoring stations are relatively sparse. This kind of monitoring networks have been recognized to be unsuitable to effectively characterize the high variability of air quality, especially in areas where pollution sources are various and often not static. We present a prototype of a low cost station for air quality monitoring, specifically developed for complementing the official monitoring stations improving the representation of air quality spatial distribution. We focused on a semi-professional product that could guarantee the highest reliability at the lowest possible cost, supported by a consistent infrastructure for data management. We test two type of Ozone sensor electrochemical and metal oxide. This work is integrated in the ACRONET Paradigm ® project: an open-hardware platform strongly oriented on environmental monitoring. All software and hardware sources will be available on the web. Thus, a computer and a small amount of work tools will be sufficient to create new monitoring networks, with the only constraint to share all the data obtained. It will so possible to create a real "sensing community". The prototype is currently able to measure ozone level, temperature and relative humidity, but soon, with the upcoming changes, it will be able also to monitor dust, carbon monoxide and nitrogen dioxide, always through the use of commercial sensors. The sensors are grouped in a compact board that interfaces with a data-logger able to transmit data to a dedicated server through a GPRS module (no ad hoc radio infrastructure needed). Due to the GPRS low latency transmission the data are transmitted in near-real time. The prototype has an independent power supply. The sensors outputs are directly compared with the measurement of the official fixed monitoring stations. We present preliminary tests of a ozone level assessment obtained without laboratory calibration during a first field campaign in Savona (Italy); the preliminary verification and test show reasonable agreement between low cost sensors and fixed monitoring station ozone level trends (low cost sensors detect gas concentration at ppb level). The preliminary results are promising for complementing the fixed official monitoring networks with low-cost sensors.
NASA Astrophysics Data System (ADS)
Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien
2018-05-01
Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from ˜ 4110 per year in 2002 to ˜ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these results suggest that besides minimizing biomass burning activities, an effective air pollution mitigation policy for Southeast Asia needs to consider controlling emissions from non-fire anthropogenic sources.
Statistical Analysis of the Impacts of Regional Transportation on the Air Quality in Beijing
NASA Astrophysics Data System (ADS)
Huang, Zhongwen; Zhang, Huiling; Tong, Lei; Xiao, Hang
2016-04-01
From October to December 2015, Beijing-Tianjin-Hebei (BTH) region had experienced several severe haze events. In order to assess the effects of the regional transportation on the air quality in Beijing, the air monitoring data (PM2.5, SO2, NO2 and CO) from that period published by Chinese National Environmental Monitoring Center (CNEMC) was collected and analyzed with various statistical models. The cities within BTH area were clustered into three groups according to the geographical conditions, while the air pollutant concentrations of cities within a group sharing similar variation trends. The Granger causality test results indicate that significant causal relationships exist between the air pollutant data of Beijing and its surrounding cities (Baoding, Chengde, Tianjin and Zhangjiakou) for the reference period. Then, linear regression models were constructed to capture the interdependency among the multiple time series. It shows that the observed air pollutant concentrations in Beijing were well consistent with the model-fitted results. More importantly, further analysis suggests that the air pollutants in Beijing were strongly affected by regional transportation, as the local sources only contributed 17.88%, 27.12%, 14.63% and 31.36% of PM2.5, SO2, NO2 and CO concentrations, respectively. And the major foreign source for Beijing was from Southwest (Baoding) direction, account for more than 42% of all these air pollutants. Thus, by combining various statistical models, it may not only be able to quickly predict the air qualities of any cities on a regional scale, but also to evaluate the local and regional source contributions for a particular city. Key words: regional transportation, air pollution, Granger causality test, statistical models
Air pollution and chronic airway diseases: what should people know and do?
Jiang, Xu-Qin; Mei, Xiao-Dong; Feng, Di
2016-01-01
The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended.
Air pollution and chronic airway diseases: what should people know and do?
Jiang, Xu-Qin; Feng, Di
2016-01-01
The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended. PMID:26904251
NASA Astrophysics Data System (ADS)
Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.
2012-12-01
Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and comparing upper tropospheric budgets of NOx from aircraft and lightning sources in the modeling domain.
ERIC Educational Resources Information Center
Turner, Ronald W.; And Others
Guidelines for controlling indoor air quality problems associated with kilns, copiers, and welding in schools are provided in this document. Individual sections on kilns, duplicating equipment, and welding operations contain information on the following: sources of contaminants; health effects; methods of control; ventilation strategies; and…
40 CFR 52.1824 - Review of new sources and modifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) North Dakota § 52.1824... the language contained in the North Dakota Administrative Code on the use of the EPA “Guideline on Air Quality Models” as supplemented by the “North Dakota Guideline for Air Quality Modeling Analysis”.In a...
40 CFR 52.1824 - Review of new sources and modifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) North Dakota § 52.1824... the language contained in the North Dakota Administrative Code on the use of the EPA “Guideline on Air Quality Models” as supplemented by the “North Dakota Guideline for Air Quality Modeling Analysis”.In a...
40 CFR 52.1824 - Review of new sources and modifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) North Dakota § 52.1824... the language contained in the North Dakota Administrative Code on the use of the EPA “Guideline on Air Quality Models” as supplemented by the “North Dakota Guideline for Air Quality Modeling Analysis”.In a...
40 CFR 93.159 - Procedures for conformity determinations of general Federal actions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... based on the applicable air quality models, data bases, and other requirements specified in the most... applicable air quality models, data bases, and other requirements specified in the most recent version of the... data are available, such as actual stack test data from stationary sources which are part of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
... Deterioration'' to approve changes to Georgia's SIP-approved regulations entitled ``Air Quality Control Rule 391... a separate action, the correct version of EPA's proposed rulemaking related to Georgia's Air Quality Control Rule 391-3-.1 is being provided for public comment. This course of action will promote efficiency...
40 CFR 52.270 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... applicable State plan for the State of California. (b) District PSD Plans. (1) The PSD rules for Sacramento... of PSD increments. (ii) Those projects which are major stationary sources or major modifications... 83-01, 5/6/83. (2) The PSD rules for North Coast Unified Air Quality Management District are approved...
40 CFR 52.270 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... applicable State plan for the State of California. (b) District PSD Plans. (1) The PSD rules for Sacramento... of PSD increments. (ii) Those projects which are major stationary sources or major modifications... 83-01, 5/6/83. (2) The PSD rules for North Coast Unified Air Quality Management District are approved...
40 CFR 52.270 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicable State plan for the State of California. (b) District PSD Plans. (1) The PSD rules for Sacramento... of PSD increments. (ii) Those projects which are major stationary sources or major modifications... 83-01, 5/6/83. (2) The PSD rules for North Coast Unified Air Quality Management District are approved...
40 CFR 52.270 - Significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... applicable State plan for the State of California. (b) District PSD Plans. (1) The PSD rules for Sacramento... of PSD increments. (ii) Those projects which are major stationary sources or major modifications... 83-01, 5/6/83. (2) The PSD rules for North Coast Unified Air Quality Management District are approved...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... Approval and Disapproval of Air Quality Implementation Plans; Nevada; Clark County; Stationary Source... Clark County, Nevada. DATES: Any comments on this proposal must arrive by September 7, 2012. ADDRESSES... regulations submitted for approval into the Clark County portion of the Nevada State Implementation Plan (SIP...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-18
... Approval and Disapproval of Air Quality Implementation Plans; Nevada; Clark County; Stationary Source... limited approval and limited disapproval of revisions to the Clark County portion of the applicable state... limited approval and limited disapproval action is to update the applicable SIP with current Clark County...
Due to the computational cost of running regional-scale numerical air quality models, reduced form models (RFM) have been proposed as computationally efficient simulation tools for characterizing the pollutant response to many different types of emission reductions. The U.S. Envi...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-10
..., Disapproval and Promulgation of Air Quality Implementation Plans; Colorado; Smoke, Opacity and Sulfur Dioxide... opacity, particulate, sulfur dioxide (SO 2 ), and carbon monoxide (CO) emissions from sources. EPA has... mean Nitrogen Dioxide and SO2 mean Sulfur Dioxide. (vii) The initials BACT mean Best Available Control...
Science Laboratories and Indoor Air Quality in Schools. Technical Bulletin.
ERIC Educational Resources Information Center
Jacobs, Bruce W.
Some of the issues surrounding the indoor air quality (IAQ) problems presented by science labs are discussed. Described are possible contaminants in labs, such as chemicals and biological organisms, and ways to lessen accidents arising from these sources are suggested. Some of the factors contributing to comfort, such as temperature levels, are…
DOT National Transportation Integrated Search
1986-01-01
This report describes an investigation of state-of-the-art models for predicting the impact on air quality of additions or changes to a highway system identified by the U.S. Environmental Protection Agency as a "non-attainment area" for air quality s...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
... includes negative declarations for various VOC source categories. EPA is approving the regulation changes and the negative declarations in accordance with the requirements of the Clean Air Act (CAA). DATES... adopt RACT and negative declarations for various VOC source categories. The formal SIP revision was...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... permit program for pre- construction review of certain new and modified major stationary sources in... program as required by section 165 of the CAA for certain new and modified major stationary sources... the CAA requires states to adopt a pre-construction permitting program for certain new and modified...
Development of service-oriented products based on the inverse manufacturing concept.
Fujimoto, Jun; Umeda, Yasushi; Tamura, Tetsuya; Tomiyama, Tetsuo; Kimura, Fumihiko
2003-12-01
To achieve sustainability, resource consumption and waste generation must be drastically decreased. For societal acceptance, preservation of both quality of life and corporate profits are essential. One promising approach is to shift the source of value from the amount of product sold to the quality of services the product provides. This paper describes the need for redesigning recycling systems from a manufacturing perspective and then discusses the possibility of this "servicification" of products, describing our experience with prototype development. We discuss development of product prototypes and their business, using consumer facsimile machines as an example of "service-oriented products". Traditional thought presumes that only products comprising new materials and components are valuable. Consideration of a service-oriented product can serve as a stimulus to revise this mode of thought and to control delivery and quality of disposed products. This paper also provides a life cycle simulation of the developed service-oriented business. Simulation results indicate that service-oriented business can potentially reduce environmental impact while extending business opportunities from the viewpoint of whole product life cycles.
Shandas, Vivek; Voelkel, Jackson; Rao, Meenakshi; George, Linda
2016-01-01
Reducing exposure to degraded air quality is essential for building healthy cities. Although air quality and population vary at fine spatial scales, current regulatory and public health frameworks assess human exposures using county- or city-scales. We build on a spatial analysis technique, dasymetric mapping, for allocating urban populations that, together with emerging fine-scale measurements of air pollution, addresses three objectives: (1) evaluate the role of spatial scale in estimating exposure; (2) identify urban communities that are disproportionately burdened by poor air quality; and (3) estimate reduction in mobile sources of pollutants due to local tree-planting efforts using nitrogen dioxide. Our results show a maximum value of 197% difference between cadastrally-informed dasymetric system (CIDS) and standard estimations of population exposure to degraded air quality for small spatial extent analyses, and a lack of substantial difference for large spatial extent analyses. These results provide the foundation for improving policies for managing air quality, and targeting mitigation efforts to address challenges of environmental justice. PMID:27527205
High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data.
Apte, Joshua S; Messier, Kyle P; Gani, Shahzad; Brauer, Michael; Kirchstetter, Thomas W; Lunden, Melissa M; Marshall, Julian D; Portier, Christopher J; Vermeulen, Roel C H; Hamburg, Steven P
2017-06-20
Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km 2 area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO 2 , and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.
Predictive monitoring and diagnosis of periodic air pollution in a subway station.
Kim, YongSu; Kim, MinJung; Lim, JungJin; Kim, Jeong Tai; Yoo, ChangKyoo
2010-11-15
The purpose of this study was to develop a predictive monitoring and diagnosis system for the air pollutants in a subway system using a lifting technique with a multiway principal component analysis (MPCA) which monitors the periodic patterns of the air pollutants and diagnoses the sources of the contamination. The basic purpose of this lifting technique was to capture the multivariate and periodic characteristics of all of the indoor air samples collected during each day. These characteristics could then be used to improve the handling of strong periodic fluctuations in the air quality environment in subway systems and will allow important changes in the indoor air quality to be quickly detected. The predictive monitoring approach was applied to a real indoor air quality dataset collected by telemonitoring systems (TMS) that indicated some periodic variations in the air pollutants and multivariate relationships between the measured variables. Two monitoring models--global and seasonal--were developed to study climate change in Korea. The proposed predictive monitoring method using the lifted model resulted in fewer false alarms and missed faults due to non-stationary behavior than that were experienced with the conventional methods. This method could be used to identify the contributions of various pollution sources. Copyright © 2010 Elsevier B.V. All rights reserved.
Mobile Source Observation Database (MSOD)
The Mobile Source Observation Database (MSOD) is a relational database developed by the Assessment and Standards Division (ASD) of the U.S. EPA Office of Transportation and Air Quality (formerly the Office of Mobile Sources).
An engineering approach to controlling indoor air quality.
Woods, J E
1991-11-01
Evidence is accumulating that indicates air quality problems in residential and commercial buildings are nearly always associated with inadequacies in building design and methods of operation. Thus, the very systems depended on to control the indoor environment can become indirect sources of contamination if diligence is not exercised at each stage of a building's life: a) planning and design, b) construction and commissioning, c) operation, and d) demolition or renovation. In this paper, an engineering perspective is presented in which the existing building stock is characterized in terms of its environmental performance. Preliminary data indicate that 20 to 30% of the existing buildings have sufficient problems to manifest as sick-building syndrome or building-related illness, while another 10 to 20% may have undetected problems. Thus, only about 50 to 70% of the existing buildings qualify as healthy buildings. Two methods and three mechanisms of control are described to achieve "acceptable" indoor air quality: source control and exposure control. If sources cannot be removed, some level of occupant exposure will result. To control exposures with acceptable values, the primary sensory receptors of the occupants (i.e., thermal, ocular, auditory, and olfactory) cannot be excessively stimulated. The three exposure control mechanisms are conduction, radiation, and convection. To achieve acceptable occupant responses, it is often practical to integrate the mechanisms of radiation and convection in heating, ventilating, and air conditioning systems that are designed to provide acceptable thermal, acoustic, and air quality conditions within occupied spaces.(ABSTRACT TRUNCATED AT 250 WORDS)
An engineering approach to controlling indoor air quality.
Woods, J E
1991-01-01
Evidence is accumulating that indicates air quality problems in residential and commercial buildings are nearly always associated with inadequacies in building design and methods of operation. Thus, the very systems depended on to control the indoor environment can become indirect sources of contamination if diligence is not exercised at each stage of a building's life: a) planning and design, b) construction and commissioning, c) operation, and d) demolition or renovation. In this paper, an engineering perspective is presented in which the existing building stock is characterized in terms of its environmental performance. Preliminary data indicate that 20 to 30% of the existing buildings have sufficient problems to manifest as sick-building syndrome or building-related illness, while another 10 to 20% may have undetected problems. Thus, only about 50 to 70% of the existing buildings qualify as healthy buildings. Two methods and three mechanisms of control are described to achieve "acceptable" indoor air quality: source control and exposure control. If sources cannot be removed, some level of occupant exposure will result. To control exposures with acceptable values, the primary sensory receptors of the occupants (i.e., thermal, ocular, auditory, and olfactory) cannot be excessively stimulated. The three exposure control mechanisms are conduction, radiation, and convection. To achieve acceptable occupant responses, it is often practical to integrate the mechanisms of radiation and convection in heating, ventilating, and air conditioning systems that are designed to provide acceptable thermal, acoustic, and air quality conditions within occupied spaces.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1821369
Managing future air quality in megacities: A case study for Delhi
NASA Astrophysics Data System (ADS)
Amann, Markus; Purohit, Pallav; Bhanarkar, Anil D.; Bertok, Imrich; Borken-Kleefeld, Jens; Cofala, Janusz; Heyes, Chris; Kiesewetter, Gregor; Klimont, Zbigniew; Liu, Jun; Majumdar, Dipanjali; Nguyen, Binh; Rafaj, Peter; Rao, Padma S.; Sander, Robert; Schöpp, Wolfgang; Srivastava, Anjali; Vardhan, B. Harsh
2017-07-01
Megacities in Asia rank high in air pollution at the global scale. In many cities, ambient concentrations of fine particulate matter (PM2.5) have been exceeding both the WHO interim targets as well as respective national air quality standards. This paper presents a systems analytical perspective on management options that could efficiently improve air quality at the urban scale, having Delhi as a case study. We employ the newly developed GAINS-City policy analysis framework, consisting of a bottom up emission calculation combined with atmospheric chemistry-transport calculation, to derive innovative insights into the current sources of pollution and their impacts on ambient PM2.5, both from emissions of primary PM as well as precursors of secondary inorganic and organic aerosols. We outline the likely future development of these sources, quantify the related ambient PM2.5 concentrations and health impacts, and explore potential policy interventions that could effectively reduce environmental pollution and resulting health impacts in the coming years. The analysis demonstrates that effective improvement of Delhi's air quality requires collaboration with neighboring States and must involve sources that are less relevant in industrialized countries. At the same time, many of the policy interventions will have multiple co-benefits on development targets in Delhi and its neighboring States. Outcomes of this study, as well as the modelling tools used herein, are applicable to other urban areas and fast growing metropolitan zones in the emerging Asian regions.
Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D
2016-01-01
The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.
Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere
NASA Technical Reports Server (NTRS)
Perry, J. L.
2005-01-01
Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.
Air pollution holiday effect in metropolitan Kaohsiung
NASA Astrophysics Data System (ADS)
Tan, P.; Chen, P. Y.
2014-12-01
Different from Taipei, the metropolitan Kaohsiung which is a coastal and industrial city has the major pollution sources from stationary sources such as coal-fired power plants, petrochemical facilities and steel plants, rather than mobile sources. This study was an attempt to conduct a comprehensive and systematical examination of the holiday effect, defined as the difference in air pollutant concentrations between holiday and non-holiday periods, over the Kaohsiung metropolitan area. We documented evidence of a "holiday effect", where concentrations of NOx, CO, NMHC, SO2 and PM10 were significantly different between holidays and non-holidays, in the Kaohsiung metropolitan area from daily surface measurements of seven air quality monitoring stations of the Taiwan Environmental Protection Administration during the Chinese New Year (CNY) and non-Chinese New Year (NCNY) periods of 1994-2010. Concentrations of the five pollutants were lower in the CNY than in the NCNY period, however, that of O3 was higher in the CNY than in the NCNY period and had no holiday effect. The exclusion of the bad air quality day (PSI > 100) and the Lantern Festival Day showed no significant effects on the holiday effects of air pollutants. Ship transportation data of Kaohsiung Harbor Bureau showed a statistically significant difference in the CNY and NCNY period. This difference was consistent with those found in air pollutant concentrations of some industrial and general stations in coastal areas, implying the possible impact of traffic activity on the air quality of coastal areas. Holiday effects of air pollutants over the Taipei metropolitan area by Tan et al. (2009) are also compared.
The organic trace gas composition over South Korea as measured by PTR-ToF-MS during KORUS-AQ
NASA Astrophysics Data System (ADS)
Wisthaler, A.; Eichler, P.; Kaser, L.; Mikoviny, T.; Müller, M.
2017-12-01
Nonmethane organic gases (NMOGs) are important air quality constituents. Many of them act as precursors to ozone and fine particles and some NMOGs (e.g. benzene) are classified as air toxics. During the Korea-United States Air Quality (KORUS-AQ) study in May and June of 2016, we deployed a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) aboard the NASA DC-8 for measuring NMOGs at high speed (10 Hz) and sensitivity (ppt levels). The aircraft sampled emissions from a variety of point and area sources (e.g. urban emissions from Seoul and Daegu, industrial emission from the Daesan and Ulsan complexes, biogenic emissions over central South Korea and agricultural fire emissions in the Western provinces) as well as the pollution inflow from the Yellow Sea. We will provide an overview of NMOG profiles associated with these sources, give an estimate of emission rates where possible, and discuss potential implications for local and regional air quality. We will further give examples on how NMOG tracers can be used for source characterization and highlight findings that should undergo future collaborative analyses within the KORUS-AQ Science Team.
NASA Astrophysics Data System (ADS)
Jathar, Shantanu H.; Woody, Matthew; Pye, Havala O. T.; Baker, Kirk R.; Robinson, Allen L.
2017-03-01
Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module and organic emissions inventory of a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and parameterizations for mobile sources. The updated model included a revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was used to simulate air quality in southern California during May and June 2010, when the California Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the Traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve predictions of OA sources and composition (e.g., POA-SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performed similar to a recently released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and SOA data. Mobile sources were predicted to contribute 30-40 % of the OA in southern California (half of which was SOA), making mobile sources the single largest source contributor to OA in southern California. The remainder of the OA was attributed to non-mobile anthropogenic sources (e.g., cooking, biomass burning) with biogenic sources contributing to less than 5 % to the total OA. Gasoline sources were predicted to contribute about 13 times more OA than diesel sources; this difference was driven by differences in SOA production. Model predictions highlighted the need to better constrain multi-generational oxidation reactions in chemical transport models.
Web technologies for rapid assessment of pollution of the atmosphere of the industrial city
NASA Astrophysics Data System (ADS)
Shaparev, N.; Tokarev, A.; Yakubailik, O.; Soldatov, A.
2018-05-01
The functionality, architectural features, the user interface of the geoinformation web-system of environmental monitoring of Krasnoyarsk is discussed. This system is created in service-oriented architecture. Data collection from the automated stations to monitor the state of atmospheric air has been implemented. An original device to measure the level of contamination of the atmosphere by fine dust PM2.5 has developed. Assessment of the level of air pollution is based on the quality index AQI atmosphere.
40 CFR 52.1970 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the Lane Regional Air Pollution Authority submitted on February 13, 1973, by the Department of Environmental Quality. (16) Special air pollution control rules for Clackamas, Columbia, Multnomah and... (Title 20—Indirect Sources), of the Lane Regional Air Pollution Authority Rules and Regulations...
40 CFR 52.1970 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the Lane Regional Air Pollution Authority submitted on February 13, 1973, by the Department of Environmental Quality. (16) Special air pollution control rules for Clackamas, Columbia, Multnomah and... (Title 20—Indirect Sources), of the Lane Regional Air Pollution Authority Rules and Regulations...
Near-Port Air Quality Assessment Utilizing a Mobile Monitoring Approach
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...
Computer Analysis of Air Pollution from Highways, Streets, and Complex Interchanges
DOT National Transportation Integrated Search
1974-03-01
A detailed computer analysis of air quality for a complex highway interchange was prepared, using an in-house version of the Environmental Protection Agency's Gaussian Highway Line Source Model. This analysis showed that the levels of air pollution n...
How Healthy Is Your School's Air?
ERIC Educational Resources Information Center
Guarneiri, Michele
2002-01-01
Describes sources of indoor air pollution and health risk to children, such as asthma and lower respiratory infections. Asserts that risk of asthma is greater among African-American and Hispanic children attending urban schools. Suggests ways principals can help improve indoor air quality. (PKP)
An analysis of cluster headache information provided on internet websites.
Peterlin, B Lee; Gambini-Suarez, Eduardo; Lidicker, Jeffrey; Levin, Morris
2008-03-01
To evaluate the quality of websites providing cluster headache information for patients and healthcare providers. The Internet has become an increasingly important source of healthcare information. However, limited data exist regarding the quality of websites providing headache information. This was a cross-sectional study conducted in February 2007. Websites providing cluster headache information were determined on the search engine MetaCrawler and classified as either patient oriented or healthcare provider oriented. The overall quality of each site was evaluated using a score system. Readability was evaluated using the Flesch-Kincaid Grade Level Readability Score (FKRS). Website quality was analyzed based on ownership, purpose, authorship, author qualifications, attribution, interactivity, and currency. The technical quality of the cluster headache information was analyzed based on content specific to cluster headache. The final ranking, based on the sum of the ranks of all 3 categories, was determined and then contrasted between the patient-oriented and healthcare professional-oriented websites using 2-sample t-tests. Of the first 40 websites found on MetaCrawler, 72.5% were advertisements, unrelated to headache, or repeated websites. Although the standard US writing averages are at a seventh to eighth grade level, the mean FKRS of all sites was at a 12th grade level of difficulty, with no significant difference between the patient-oriented or healthcare provider-oriented websites (P = .54). Of a total possible 14 points, the overall mean quality component score was 9.9 for all sites; and of a total possible 23 points, the overall mean technical component score was 13.9. There was no significant difference for either the quality or technical component scores between patient-oriented or healthcare provider-oriented websites (P = .45 and P = .80, respectively). There are numerous cluster headache websites that can be found on the Internet. The quality of most of the websites dedicated to cluster headache is mediocre, and although there are some excellent cluster headache websites, these sites may be challenging for many users to locate. There was no significant difference in the overall quality of websites oriented for patients or healthcare providers providing cluster headache information evaluated in this study. In addition, websites providing high-quality cluster headache information are written at an educational level too high for a significant portion of the general population to fully utilize. Physicians should strongly consider providing lists of quality websites on cluster headache for their patients.
Nature of air pollution, emission sources, and management in the Indian cities
NASA Astrophysics Data System (ADS)
Guttikunda, Sarath K.; Goel, Rahul; Pant, Pallavi
2014-10-01
The global burden of disease study estimated 695,000 premature deaths in 2010 due to continued exposure to outdoor particulate matter and ozone pollution for India. By 2030, the expected growth in many of the sectors (industries, residential, transportation, power generation, and construction) will result in an increase in pollution related health impacts for most cities. The available information on urban air pollution, their sources, and the potential of various interventions to control pollution, should help us propose a cleaner path to 2030. In this paper, we present an overview of the emission sources and control options for better air quality in Indian cities, with a particular focus on interventions like urban public transportation facilities; travel demand management; emission regulations for power plants; clean technology for brick kilns; management of road dust; and waste management to control open waste burning. Also included is a broader discussion on key institutional measures, like public awareness and scientific studies, necessary for building an effective air quality management plan in Indian cities.
A user-oriented and computerized model for estimating vehicle ride quality
NASA Technical Reports Server (NTRS)
Leatherwood, J. D.; Barker, L. M.
1984-01-01
A simplified empirical model and computer program for estimating passenger ride comfort within air and surface transportation systems are described. The model is based on subjective ratings from more than 3000 persons who were exposed to controlled combinations of noise and vibration in the passenger ride quality apparatus. This model has the capability of transforming individual elements of a vehicle's noise and vibration environment into subjective discomfort units and then combining the subjective units to produce a single discomfort index typifying passenger acceptance of the environment. The computational procedures required to obtain discomfort estimates are discussed, and a user oriented ride comfort computer program is described. Examples illustrating application of the simplified model to helicopter and automobile ride environments are presented.
Cartier, Yuri; Benmarhnia, Tarik; Brousselle, Astrid
2015-12-01
Urban outdoor air pollution (AP) is a major public health concern but the mechanisms by which interventions impact health and social inequities are rarely assessed. Health and equity impacts of policies and interventions are questioned, but managers and policy agents in various institutional contexts have very few practical tools to help them better orient interventions in sectors other than the health sector. Our objective was to create such a tool to facilitate the assessment of health impacts of urban outdoor AP interventions by non-public health experts. An iterative process of reviewing the academic literature, brainstorming, and consultation with experts was used to identify the chain of effects of urban outdoor AP and the major modifying factors. To test its applicability, the tool was applied to two interventions, the London Low Emission Zone and the Montréal BIXI public bicycle-sharing program. We identify the chain of effects, six categories of modifying factors: those controlling the source of emissions, the quantity of emissions, concentrations of emitted pollutants, their spatial distribution, personal exposure, and individual vulnerability. Modifiable and non-modifiable factors are also identified. Results are presented in the text but also graphically, as we wanted it to be a practical tool, from pollution sources to emission, exposure, and finally, health effects. The tool represents a practical first step to assessing AP-related interventions for health and equity impacts. Understanding how different factors affect health and equity through air pollution can provide insight to city policymakers pursuing Health in All Policies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
#2) Sensor Technology-State of the Science | Science ...
Establish market surveys of commercially-available air quality sensorsConduct an extensive literature survey describing the state of sensor technologiesInvestigate emerging technologies and their potential to meet future air quality monitoring needs for the Agency as well as other partners/stakeholders Develop sensor user guidesEducate sensor developers/sensors users on the state of low cost censorsFacilitate knowledge transfer to Federal/Regional/State air quality associatesWork directly with sensor developers to dramatically speed up the development of next generation air monitoring Support ORD’s Sensor Roadmap by focusing on areas of highest priority (NAAQS, Air Toxics, Citizen Science)Establish highly integrated research efforts across ORD and its partners (internal/external) to ensure consistent The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose.
ERIC Educational Resources Information Center
Crawford, Gary N.
1998-01-01
Explains how a well-designed heating and air conditioning system with good facility maintenance can prevent most indoor air quality problems in schools. Stresses attention to issues of leak prevention and sanitation. (GR)
Receptor model-based source apportionment of particulate pollution in Hyderabad, India.
Guttikunda, Sarath K; Kopakka, Ramani V; Dasari, Prasad; Gertler, Alan W
2013-07-01
Air quality in Hyderabad, India, often exceeds the national ambient air quality standards, especially for particulate matter (PM), which, in 2010, averaged 82.2 ± 24.6, 96.2 ± 12.1, and 64.3 ± 21.2 μg/m(3) of PM10, at commercial, industrial, and residential monitoring stations, respectively, exceeding the national ambient standard of 60 μg/m(3). In 2005, following an ordinance passed by the Supreme Court of India, a source apportionment study was conducted to quantify source contributions to PM pollution in Hyderabad, using the chemical mass balance (version 8.2) receptor model for 180 ambient samples collected at three stations for PM10 and PM2.5 size fractions for three seasons. The receptor modeling results indicated that the PM10 pollution is dominated by the direct vehicular exhaust and road dust (more than 60%). PM2.5 with higher propensity to enter the human respiratory tracks, has mixed sources of vehicle exhaust, industrial coal combustion, garbage burning, and secondary PM. In order to improve the air quality in the city, these findings demonstrate the need to control emissions from all known sources and particularly focus on the low-hanging fruits like road dust and waste burning, while the technological and institutional advancements in the transport and industrial sectors are bound to enhance efficiencies. Andhra Pradesh Pollution Control Board utilized these results to prepare an air pollution control action plan for the city.
NASA Astrophysics Data System (ADS)
Nopmongcol, Uarporn; Alvarez, Yesica; Jung, Jaegun; Grant, John; Kumar, Naresh; Yarwood, Greg
2017-10-01
Evaluating long-term air quality trends can demonstrate effectiveness of control strategies and guide future air quality management planning. Observations have shown that ozone (O3) and fine particulate matter (PM2.5) in the US have declined since as early as 1980 in some areas. But observation trends alone cannot separate effects of changes in local and global emissions to US air quality which are important to air quality planners. This study uses a regional model (CAMx) nested within a global model (GEOS-Chem) to characterize regional changes in O3 and PM2.5 due to the intercontinental transport and local/regional emissions representing six modeling years within five decades (1970-2020). We use the CAMx Source Apportionment Technology (OSAT/PSAT) to estimate contributions from 6 source sectors in 7 source regions plus 6 other groups for a total of 48 tagged contributions. On-road mobile sources consistently make the largest U.S. anthropogenic emissions contribution to O3 in all cities examined even though they decline substantially from 1970 to 2005 and also from 2005 to 2020. Off-road mobile source contributions increase from 1970 to 2005 and then decrease after 2005 in all of the cities. The boundary conditions, mostly from intercontinental transport, contribute more than 20 ppb to high maximum daily 8-h average (MDA8) O3 for all six years. We found that lowering NOx emissions raises O3 formation efficiency (OFE) across all emission categories which will limit potential O3 benefits of local NOx strategies in the near future. PM2.5 benefited from adoption of control devices between 1970 and 1980 and has continued to decline through 2005 and expected to decline further by 2020. Area sources such as residential, commercial and fugitive dust emissions stand out as making large contributions to PM2.5 that are not declining. Inter-regional transport is less important in 2020 than 1990 for both pollutants.
The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems
NASA Astrophysics Data System (ADS)
Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2017-12-01
The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions resulting from incorporating fire smoke emissions into the NAQFC from a recently updated newer version of USFS BlueSky system. This study will show how new approaches has improved the PM2.5 predictions at both nearby and downstream areas from fire sources. Furthermore, Environment and Climate Change Canada (ECCC) fire emissions data are being tested.
The state of ambient air quality in Pakistan--a review.
Colbeck, Ian; Nasir, Zaheer Ahmad; Ali, Zulfiqar
2010-01-01
Pakistan, during the last decade, has seen an extensive escalation in population growth, urbanization, and industrialization, together with a great increase in motorization and energy use. As a result, a substantial rise has taken place in the types and number of emission sources of various air pollutants. However, due to the lack of air quality management capabilities, the country is suffering from deterioration of air quality. Evidence from various governmental organizations and international bodies has indicated that air pollution is a significant risk to the environment, quality of life, and health of the population. The Government has taken positive steps toward air quality management in the form of the Pakistan Clean Air Program and has recently established a small number of continuous monitoring stations. However, ambient air quality standards have not yet been established. This paper reviews the data being available on the criteria air pollutants: particulate matter (PM), sulfur dioxide, ozone, carbon monoxide, nitrogen dioxide, and lead. Air pollution studies in Pakistan published in both scientific journals and by the Government have been reviewed and the reported concentrations of PM, SO(2), O(3), CO, NO(2), and Pb collated. A comparison of the levels of these air pollutants with the World Health Organization air quality guidelines was carried out. Particulate matter was the most serious air pollutant in the country. NO(2) has emerged as the second high-risk pollutant. The reported levels of PM, SO(2), CO, NO(2), and Pb were many times higher than the World Health Organization air quality guidelines. Only O(3) concentrations were below the guidelines. The current state of air quality calls for immediate action to tackle the poor air quality. The establishment of ambient air quality standards, an extension of the continuous monitoring sites, and the development of emission control strategies are essential.
Merging Air Quality and Public Health Decision Support Systems
NASA Astrophysics Data System (ADS)
Hudspeth, W. B.; Bales, C. L.
2003-12-01
The New Mexico Air Quality Mapper (NMAQM) is a Web-based, open source GIS prototype application that Earth Data Analysis Center is developing under a NASA Cooperative Agreement. NMAQM enhances and extends existing data and imagery delivery systems with an existing Public Health system called the Rapid Syndrome Validation Project (RSVP). RSVP is a decision support system operating in several medical and public health arenas. It is evolving to ingest remote sensing data as input to provide early warning of human health threats, especially those related to anthropogenic atmospheric pollutants and airborne pathogens. The NMAQM project applies measurements of these atmospheric pollutants, derived from both remotely sensed data as well as from in-situ air quality networks, to both forecasting and retrospective analyses that influence human respiratory health. NMAQM provides a user-friendly interface for visualizing and interpreting environmentally-linked epidemiological phenomena. The results, and the systems made to provide the information, will be applicable not only to decision-makers in the public health realm, but also to air quality organizations, demographers, community planners, and other professionals in information technology, and social and engineering sciences. As an accessible and interactive mapping and analysis application, it allows environment and health personnel to study historic data for hypothesis generation and trend analysis, and then, potentially, to predict air quality conditions from daily data acquisitions. Additional spin off benefits to such users include the identification of gaps in the distribution of in-situ monitoring stations, the dissemination of air quality data to the public, and the discrimination of local vs. more regional sources of air pollutants that may bear on decisions relating to public health and public policy.
Qiao, Xue; Tang, Ya; Kota, Sri Harsha; Li, Jingyi; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Ying, Qi
2015-11-01
A source-oriented Community Multiscale Air Quality (CMAQ) model driven by the meteorological fields generated by the Weather Research and Forecasting (WRF) model was used to study the dry and wet deposition of nitrate (NO3(-)), sulfate (SO4(2-)), and ammonium (NH4(+)) ions in the Jiuzhaigou National Nature Reserve (JNNR), China from June to August 2010 and to identify the contributions of different emission sectors and source regions that were responsible for the deposition fluxes. Contributions from power plants, industry, transportation, domestic, biogenic, windblown dust, open burning, fertilizer, and manure management sources to deposition fluxes in JNNR watershed and four EANET sites are determined. In JNNR, 96%, 82%, and 87% of the SO4(2-), NO3(-) and NH4(+) deposition fluxes are in the form of wet deposition of the corresponding aerosol species. Industry and power plants are the two major sources of SO4(2-) deposition flux, accounting for 86% of the total wet deposition of SO4(2-), and industry has a higher contribution (56%) than that of power plants (30%). Power plants and industry are also the top sources that are responsible for NO3(-) wet deposition, and contributions from power plants (30%) are generally higher than those from industries (21%). The major sources of NH4(+) wet deposition flux in JNNR are fertilizer (48%) and manure management (39%). Source-region apportionment confirms that SO2 and NOx emissions from local and two nearest counties do not have a significant impact on predicted wet deposition fluxes in JNNR, with contributions less than 10%. While local NH3 emissions account for a higher fraction of the NH4(+) deposition, approximately 70% of NH4(+) wet deposition in JNNR originated from other source regions. This study demonstrates that S and N deposition in JNNR is mostly from long-range transport rather than from local emissions, and to protect JNNR, regional emission reduction controls are needed. Copyright © 2015 Elsevier B.V. All rights reserved.
Heo, Jongbae; Wu, Bo; Abdeen, Ziad; Qasrawi, Radwan; Sarnat, Jeremy A; Sharf, Geula; Shpund, Kobby; Schauer, James J
2017-06-01
This manuscript evaluates spatial and temporal variations of source contributions to ambient fine particulate matter (PM 2.5 ) in Israeli, Jordanian, and Palestinian cities. Twenty-four hour integrated PM 2.5 samples were collected every six days over a 1-year period (January to December 2007) in four cities in Israel (West Jerusalem, Eilat, Tel Aviv, and Haifa), four cities in Jordan (Amman, Aqaba, Rahma, and Zarka), and three cities in Palestine (Nablus, East Jerusalem, and Hebron). The PM 2.5 samples were analyzed for major chemical components, including organic carbon and elemental carbon, ions, and metals, and the results were used in a positive matrix factorization (PMF) model to estimate source contributions to PM 2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, industrial lead sources, dust, construction dust, biomass burning, fuel oil combustion and sea salt, were identified across the sampling sites. Secondary sulfate was the dominant source, contributing 35% of the total PM 2.5 mass, and it showed relatively homogeneous temporal trends of daily source contribution in the study area. Mobile sources were found to be the second greatest contributor to PM 2.5 mass in the large metropolitan cities, such as Tel Aviv, Hebron, and West and East Jerusalem. Other sources (i.e. industrial lead sources, construction dust, and fuel oil combustion) were closely related to local emissions within individual cities. This study demonstrates how international cooperation can facilitate air pollution studies that address regional air pollution issues and the incremental differences across cities in a common airshed. It also provides a model to study air pollution in regions with limited air quality monitoring capacity that have persistent and emerging air quality problems, such as Africa, South Asia and Central America. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, J.; Mauzerall, D. L.
2017-12-01
During periods of high pollution in winter, household space heating can contribute more than half of PM2.5 concentrations in China's Beijing-Tianjin-Hebei (BTH) region. The majority of rural households and some urban households in the region still heat with small stoves and solid fuels such as raw coal, coal briquettes and biomass. Thus, reducing emissions from residential space heating has become a top priority of the Chinese government's air pollution mitigation plan. Electrified space heating is a promising alternative to solid fuel. However, there is little analysis of the air quality and climate implications of choosing various electrified heating devices and utilizing different electricity sources. Here we conduct an integrated assessment of the air quality, human health and climate implications of various electrified heating scenarios in the BTH region using the Weather Research and Forecasting model with Chemistry. We use the Multi-resolution Emission Inventory for China for the year 2012 as our base case and design two electrification scenarios in which either direct resistance heaters or air source heat pumps are installed to replace all household heating stoves. We initially assume all electrified heating devices use electricity from supercritical coal-fired power plants. We find that installing air source heat pumps reduces CO2 emissions and premature deaths due to PM2.5 pollution more than resistance heaters, relative to the base case. The increased health and climate benefits of heat pumps occur because they have a higher heat conversion efficiency and thus require less electricity for space heating than resistance heaters. We also find that with the same heat pump installation, a hybrid electricity source (40% of the electricity generated from renewable sources and the rest from coal) further reduces both CO2 emissions and premature deaths than using electricity only from coal. Our study demonstrates the air pollution and CO2 mitigation potential and public health benefits of using electrified space heating. In particular, we find air source heat pumps could bring more climate and health benefits than direct resistance heaters. Our results also support policies to integrate renewable energy sources with the reduction of solid fuel combustion for residential space heating.
Evaluating Air-Quality Models: Review and Outlook.
NASA Astrophysics Data System (ADS)
Weil, J. C.; Sykes, R. I.; Venkatram, A.
1992-10-01
Over the past decade, much attention has been devoted to the evaluation of air-quality models with emphasis on model performance in predicting the high concentrations that are important in air-quality regulations. This paper stems from our belief that this practice needs to be expanded to 1) evaluate model physics and 2) deal with the large natural or stochastic variability in concentration. The variability is represented by the root-mean- square fluctuating concentration (c about the mean concentration (C) over an ensemble-a given set of meteorological, source, etc. conditions. Most air-quality models used in applications predict C, whereas observations are individual realizations drawn from an ensemble. For cC large residuals exist between predicted and observed concentrations, which confuse model evaluations.This paper addresses ways of evaluating model physics in light of the large c the focus is on elevated point-source models. Evaluation of model physics requires the separation of the mean model error-the difference between the predicted and observed C-from the natural variability. A residual analysis is shown to be an elective way of doing this. Several examples demonstrate the usefulness of residuals as well as correlation analyses and laboratory data in judging model physics.In general, c models and predictions of the probability distribution of the fluctuating concentration (c), (c, are in the developmental stage, with laboratory data playing an important role. Laboratory data from point-source plumes in a convection tank show that (c approximates a self-similar distribution along the plume center plane, a useful result in a residual analysis. At pmsent,there is one model-ARAP-that predicts C, c, and (c for point-source plumes. This model is more computationally demanding than other dispersion models (for C only) and must be demonstrated as a practical tool. However, it predicts an important quantity for applications- the uncertainty in the very high and infrequent concentrations. The uncertainty is large and is needed in evaluating operational performance and in predicting the attainment of air-quality standards.
Operational source receptor calculations for large agglomerations
NASA Astrophysics Data System (ADS)
Gauss, Michael; Shamsudheen, Semeena V.; Valdebenito, Alvaro; Pommier, Matthieu; Schulz, Michael
2016-04-01
For Air quality policy an important question is how much of the air pollution within an urbanized region can be attributed to local sources and how much of it is imported through long-range transport. This is critical information for a correct assessment of the effectiveness of potential emission measures. The ratio between indigenous and long-range transported air pollution for a given region depends on its geographic location, the size of its area, the strength and spatial distribution of emission sources, the time of the year, but also - very strongly - on the current meteorological conditions, which change from day to day and thus make it important to provide such calculations in near-real-time to support short-term legislation. Similarly, long-term analysis over longer periods (e.g. one year), or of specific air quality episodes in the past, can help to scientifically underpin multi-regional agreements and long-term legislation. Within the European MACC projects (Monitoring Atmospheric Composition and Climate) and the transition to the operational CAMS service (Copernicus Atmosphere Monitoring Service) the computationally efficient EMEP MSC-W air quality model has been applied with detailed emission data, comprehensive calculations of chemistry and microphysics, driven by high quality meteorological forecast data (up to 96-hour forecasts), to provide source-receptor calculations on a regular basis in forecast mode. In its current state, the product allows the user to choose among different regions and regulatory pollutants (e.g. ozone and PM) to assess the effectiveness of fictive emission reductions in air pollutant emissions that are implemented immediately, either within the agglomeration or outside. The effects are visualized as bar charts, showing resulting changes in air pollution levels within the agglomeration as a function of time (hourly resolution, 0 to 4 days into the future). The bar charts not only allow assessing the effects of emission reduction measures but they also indicate the relative importance of indigenous versus imported air pollution. The calculations are currently performed weekly by MET Norway for the Paris, London, Berlin, Oslo, Po Valley and Rhine-Ruhr regions and the results are provided free of charge at the MACC website (http://www.gmes-atmosphere.eu/services/aqac/policy_interface/regional_sr/). A proposal to extend this service to all EU capitals on a daily basis within the Copernicus Atmosphere Monitoring Service is currently under review. The tool is an important example illustrating the increased application of scientific tools to operational services that support Air Quality policy. This paper will describe this tool in more detail, focusing on the experimental setup, underlying assumptions, uncertainties, computational demand, and the usefulness for air quality for policy. Options to apply the tool for agglomerations outside the EU will also be discussed (making reference to, e.g., PANDA, which is a European-Chinese collaboration project).
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... Energy and Non-Air Quality Environmental Impacts C. Comments on Factor Three--Existing Controls at FCPP D... compliance, (2) the energy and non-air quality environmental impacts of compliance, (3) any pollution control... installing and operating any of several equivalent controls on Units 1- 3, and through proper operation of...
Recent assessments have analyzed the health impacts of PM2.5 from emissions from different locations and sectors using simplified or reduced-form air quality models. Here we present an alternative approach using the adjoint of the Community Multiscale Air Quality (CMAQ) model, wh...
The oceans are the main source of natural halogen and sulfur compounds, which have a significant influence on the oxidizing capacity of the marine atmosphere; however, their impact on the air quality of coastal cities is currently unknown. We explore the effect of marine halogens...
76 FR 9655 - Approval and Promulgation of Air Quality Implementation Plans; Illinois
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... exempt sources of Oxides of Nitrogen (NO X ) in the Illinois portions of the Chicago-Gary-Lake County...) requirements for NO X Reasonably Available Control Technology (RACT) for purposes of attaining the 1997 8-hour ozone National Ambient Air Quality Standard (NAAQS or standard). This NO X RACT waiver is based on the...
Ozone Control Strategies | Ground-level Ozone | New ...
2017-09-05
The Air Quality Planning Unit's primary goal is to protect your right to breathe clean air. Guided by the Clean Air Act, we work collaboratively with states, communities, and businesses to develop and implement strategies to reduce air pollution from a variety of sources that contribute to the ground-level ozone or smog problem.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-15
... Source Review (NSR) permit programs); provisions for air pollution modeling; and provisions for public... the eastern United States (i.e., the Transport Rule, also known as the Cross-State Air Pollution Rule... and applicable federal air pollution control regulations and other permanent and enforceable...
77 FR 59751 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; PBR and PTIO
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
...) has requested these rule revisions to make its air pollution permit program more efficient. Approving... revisions will make Ohio's air permit program more efficient while continuing to protect human health and... the authority for OEPA to issue PTIs to new sources of air pollution or modifications to existing...
78 FR 11748 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; PBR and PTIO
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
... revisions to make its air pollution permit program more efficient. Approving these additions will make the... air permit program more efficient while continuing to protect human health and the environment, EPA... the authority for OEPA to issue PTIs to new sources of air pollution or modifications to existing...
Support Center for Regulatory Atmospheric Modeling (SCRAM)
This technical site provides access to air quality models (including computer code, input data, and model processors) and other mathematical simulation techniques used in assessing air emissions control strategies and source impacts.
Impact of smoke from biomass burning on air quality in rural communities in southern Australia
NASA Astrophysics Data System (ADS)
Reisen, Fabienne; Meyer, C. P. (Mick); McCaw, Lachie; Powell, Jennifer C.; Tolhurst, Kevin; Keywood, Melita D.; Gras, John L.
2011-08-01
In rural towns of southern Australia, smoke from biomass burning such as prescribed burning of forests, wildfires and stubble burning is often claimed to be the major source of air pollution. To investigate the validity of this claim, ambient measurements of PM 2.5 and ozone were made in two rural locations in southern Australia between 2006 and 2008. In order to distinguish PM 2.5 associated with smoke from other sources of particulate pollution, PM 2.5 samples were analysed for specific smoke tracers, levoglucosan, non sea-salt potassium (nssK +) and oxalate. Monitoring was also undertaken in four homes to determine the extent to which ambient pollutants from prescribed burning penetrate indoors into houses. Monitoring clearly showed that, on occasions, air quality in rural areas is significantly affected by smoke from biomass combustion with PM 2.5 showing the greatest impact. Concentrations of PM 2.5 increased significantly above background levels at both sites during periods of wildfire and prescribed fire leading to exceedences of the 24-h PM 2.5 Air National Environment Protection Measure (NEPM) Advisory standard. The 1-h and 4-h ozone NEPM standards were exceeded only during protracted forest wildfires. The impact of prescribed burning on the indoor air quality of residences depended on the duration of the smoke event and the ventilation rate of the houses. During short-duration events indoor air quality was determined by household activities. During events that persisted for several days, indoor air quality was determined by external conditions coupled with management of household ventilation rate.
Scheepers, Paul T J; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B M
2017-05-08
For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC), acrolein, formaldehyde, nitrogen dioxide (NO₂), respirable particulate matter (PM-4.0 and PM-2.5) and their respective benz(a)pyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO₂ (4.9-17.4 μg/m³) and formaldehyde (2.5-6.4 μg/m³) were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m³ (range: 33.1-2450 μg/m³) and was fivefold higher in laboratories (316 μg/m³) compared to offices (57.0 μg/m³). PM-4.0 and benzo(a)pyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80-90% efficiency filter ( p < 0.01). No indications were found that support a significant contribution of known local sources such as fuels or combustion engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities.
A 14-week investigation during a warm and cold seasons was conducted to improve understanding of air pollution sources that might be impacting air quality in Ostrava, the Czech Republic. Fine particulate matter (PM2.5) samples were collected in consecutive 12-h day and night incr...
Odors and Air Pollution: A Bibliography with Abstracts.
ERIC Educational Resources Information Center
Environmental Protection Agency, Research Triangle Park, NC. Office of Air Programs.
The annotated bibliography presents a compilation of abstracts which deal with odors as they relate to air pollution. The abstracts are arranged within the following categories: Emission sources; Control methods; Measurement methods; Air quality measurements; Atmospheric interaction; Basic science and technology; Effects-human health;…
DOT National Transportation Integrated Search
2009-01-01
Emissions from mobile sources, such as automobiles and trucks, contribute to air quality degradation and can threaten public health and the environment. Under the Clean Air Act, the Environmental Protection Agency (EPA) regulates these emissions. The...
DOT National Transportation Integrated Search
2009-01-16
Emissions from mobile sources, such as automobiles and trucks, contribute to air : quality degradation and can threaten public health and the environment. Under the : Clean Air Act, the Environmental Protection Agency (EPA) regulates these emissions....
DOT National Transportation Integrated Search
2009-01-16
Emissions from mobile sources, such as automobiles and trucks, contribute to air quality degradation and can threaten public health and the environment. Under the Clean Air Act, the Environmental Protection Agency (EPA) regulates these emissions. The...
Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes
The U.S. Environmental Protection Agency (EPA) has established National Ambient Air Quality Standards (NAAQS) for six principal air pollutants (“criteria” pollutants): carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO2), particulate matter (PM) in two size ranges [...
Review of air pollution and health impacts in Malaysia.
Afroz, Rafia; Hassan, Mohd Nasir; Ibrahim, Noor Akma
2003-06-01
In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.
Mobile Source Observation Database (MSOD)
The Mobile Source Observation Database (MSOD) is a relational database being developed by the Assessment and Standards Division (ASD) of the US Environmental Protection Agency Office of Transportation and Air Quality (formerly the Office of Mobile Sources). The MSOD contains emission test data from in-use mobile air- pollution sources such as cars, trucks, and engines from trucks and nonroad vehicles. Data in the database was collected from 1982 to the present. The data is intended to be representative of in-use vehicle emissions in the United States.
Sources of atmospheric aerosols in Ankara (Turkey) atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuncel, S.G.; Yatin, M.; Aras, N.K.
1996-12-31
Ankara was heavily polluted owing to combustion of coal and fuel oil for space heating. Air quality over the city improved after 1993 due to use of low sulfur coal and natural gas for residential heating. These regulatory actions resulted in a dramatic decrease in SO{sub 2} concentrations measured in the air quality network, after 1990. Although concentration of particulate matter also decreased in the same period, the decrease was not as dramatic as that observed in SO{sub 2} concentrations, suggesting that sources other than space heating also contribute on observed aerosol concentrations. Currently, the concentrations of suspended particles aremore » slightly below the air quality standards effective in Turkey. A better source receptor relation must be established to reduce atmospheric levels of particulate matter. In this study, sources contributing to the observed levels of particles was determined through a receptor modeling approach. Factors controlling the observed concentrations of elements and ions were determined by relating their concentrations, to source strengths and determined by relating their concentrations, to source strengths and meteorological parameters. Residential heating was found out to be the main source of anthropogenic elements in Ankara. In the second part of the study, sources contributing on observed concentrations of elements were determined by a principal component analysis and relative contribution of each source were determined by Chemical Mass Balance study. The results indicated that, the airborne soil is the most important source of aerosol in the Ankara atmosphere during summer season, but emissions from coal combustion dominates aerosol mass during winter months.« less
Air Sensor Guidebook | Science Inventory | US EPA
This Air Sensor Guidebook has been developed by the U.S. EPA to assist those interested in potentially using lower cost air quality sensor technologies for air quality measurements. Its development was in direct response to a request for such a document following a recent scientific conference (Apps and Sensors for Air Pollution-2012). Low cost air quality sensors ($100-$2500) are now commercially available in a wide variety of designs and capabilities. This is an emerging technology area and one that is quickly evolving. Even so, their availability has resulted in questions from many as to how they might be used appropriately. This document attempts to provide useful information concerning some of those questions. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and pol
Milando, Chad W.; Martenies, Sheena E.; Batterman, Stuart A.
2017-01-01
In air quality management, reducing emissions from pollutant sources often forms the primary response to attaining air quality standards and guidelines. Despite the broad success of air quality management in the US, challenges remain. As examples: allocating emissions reductions among multiple sources is complex and can require many rounds of negotiation; health impacts associated with emissions, the ultimate driver for the standards, are not explicitly assessed; and long dispersion model run-times, which result from the increasing size and complexity of model inputs, limit the number of scenarios that can be evaluated, thus increasing the likelihood of missing an optimal strategy. A new modeling framework, called the "Framework for Rapid Emissions Scenario and Health impact ESTimation" (FRESH-EST), is presented to respond to these challenges. FRESH-EST estimates concentrations and health impacts of alternative emissions scenarios at the urban scale, providing efficient computations from emissions to health impacts at the Census block or other desired spatial scale. In addition, FRESH-EST can optimize emission reductions to meet specified environmental and health constraints, and a convenient user interface and graphical displays are provided to facilitate scenario evaluation. The new framework is demonstrated in an SO2 non-attainment area in southeast Michigan with two optimization strategies: the first minimizes emission reductions needed to achieve a target concentration; the second minimizes concentrations while holding constant the cumulative emissions across local sources (e.g., an emissions floor). The optimized strategies match outcomes in the proposed SO2 State Implementation Plan without the proposed stack parameter modifications or shutdowns. In addition, the lower health impacts estimated for these strategies suggest the potential for FRESH-EST to identify pollution control alternatives for air quality management planning. PMID:27318620
Air Pollution Source/receptor Relationships in South Coast Air Basin, CA
NASA Astrophysics Data System (ADS)
Gao, Ning
This research project includes the application of some existing receptor models to study the air pollution source/receptor relationships in the South Coast Air Basin (SoCAB) of southern California, the development of a new receptor model and the testing and the modifications of some existing models. These existing receptor models used include principal component factor analysis (PCA), potential source contribution function (PSCF) analysis, Kohonen's neural network combined with Prim's minimal spanning tree (TREE-MAP), and direct trilinear decomposition followed by a matrix reconstruction. The ambient concentration measurements used in this study are a subset of the data collected during the 1987 field exercise of Southern California Air Quality Study (SCAQS). It consists of a number of gaseous and particulate pollutants analyzed from samples collected by SCAQS samplers at eight sampling sites, Anaheim, Azusa, Burbank, Claremont, Downtown Los Angeles, Hawthorne, Long Beach, and Rubidoux. Based on the information of emission inventories, meteorology and ambient concentrations, this receptor modeling study has revealed mechanisms that influence the air quality in SoCAB. Some of the mechanisms affecting the air quality in SoCAB that were revealed during this study include the following aspects. The SO_2 collected at sampling sites is mainly contributed by refineries in the coastal area and the ships equipped with oil-fired boilers off shore. Combustion of fossil fuel by automobiles dominates the emission of NO_{rm x} that is subsequently transformed and collected at sampling sites. Electric power plants also contribute HNO_3 to the sampling sites. A large feedlot in the eastern region of SoCAB has been identified as the major source of NH_3. Possible contributions from other industrial sources such as smelters and incinerators were also revealed. The results of this study also suggest the possibility of DMS (dimethylsulfide) and NH_3 emissions from off-shore sediments that have been contaminated by waste sludge disposal. The study also discovered that non-anthropogenic sources account for the observation of many chemical components being brought to the sampling sites, such as seasalt particles, soil particles, and Cl emission from Mojave Desert. The potential and limitation of the receptor models have been evaluated and some modifications have been made to improve the value of the models. A source apportionment method has been developed based on the application results of the potential source contribution function (PSCF) analysis.
NASA Astrophysics Data System (ADS)
Tong, Daniel Quansong; Kang, Daiwen; Aneja, Viney P.; Ray, John D.
2005-01-01
We present in this study both measurement-based and modeling analyses for elucidation of source attribution, influence areas, and process budget of reactive nitrogen oxides at two rural southeast United States sites (Great Smoky Mountains national park (GRSM) and Mammoth Cave national park (MACA)). Availability of nitrogen oxides is considered as the limiting factor to ozone production in these areas and the relative source contribution of reactive nitrogen oxides from point or mobile sources is important in understanding why these areas have high ozone. Using two independent observation-based techniques, multiple linear regression analysis and emission inventory analysis, we demonstrate that point sources contribute a minimum of 23% of total NOy at GRSM and 27% at MACA. The influence areas for these two sites, or origins of nitrogen oxides, are investigated using trajectory-cluster analysis. The result shows that air masses from the West and Southwest sweep over GRSM most frequently, while pollutants transported from the eastern half (i.e., East, Northeast, and Southeast) have limited influence (<10% out of all air masses) on air quality at GRSM. The processes responsible for formation and removal of reactive nitrogen oxides are investigated using a comprehensive 3-D air quality model (Multiscale Air Quality SImulation Platform (MAQSIP)). The NOy contribution associated with chemical transformations to NOz and O3, based on process budget analysis, is as follows: 32% and 84% for NOz, and 26% and 80% for O3 at GRSM and MACA, respectively. The similarity between NOz and O3 process budgets suggests a close association between nitrogen oxides and effective O3 production at these rural locations.
NASA Astrophysics Data System (ADS)
Naughton, Wendy
In this study's Phase One, representatives of nine municipal agencies involved in air quality education were interviewed and interview transcripts were analyzed for themes related to what citizens need to know or be able to do regarding air quality concerns. Based on these themes, eight air quality Learning Goal Sets were generated and validated via peer and member checks. In Phase Two, six college-level, liberal-arts chemistry textbooks and the National Science Education Standards (NSES) were analyzed for congruence with Phase One learning goals. Major categories of desired citizen understandings highlighted in agency interviews concerned air pollution sources, impact, detection, and transport. Identified cognitive skills focused on information-gathering and -evaluating skills, enabling informed decision-making. A content match was found between textbooks and air quality learning goals, but most textbooks fail to address learning goals that remediate citizen misconceptions and inabilities---particularly those with a "personal experience" focus. A partial match between NSES and air quality learning goals was attributed to differing foci: Researcher-derived learning goals deal specifically with air quality, while NSES focus is on "fundamental science concepts," not "many science topics." Analysis of findings within a situated cognition framework suggests implications for instruction and NSES revision.
An object-oriented software for fate and exposure assessments.
Scheil, S; Baumgarten, G; Reiter, B; Schwartz, S; Wagner, J O; Trapp, S; Matthies, M
1995-07-01
The model system CemoS(1) (Chemical Exposure Model System) was developed for the exposure prediction of hazardous chemicals released to the environment. Eight different models were implemented involving chemicals fate simulation in air, water, soil and plants after continuous or single emissions from point and diffuse sources. Scenario studies are supported by a substance and an environmental data base. All input data are checked on their plausibility. Substance and environmental process estimation functions facilitate generic model calculations. CemoS is implemented in a modular structure using object-oriented programming.
Development of Source-Receptor matrix over South Korea in support of GAINS-Korea model
NASA Astrophysics Data System (ADS)
Choi, K. C.; Woo, J. H.; Kim, H. K.; Lee, Y. M.; Kim, Y.; Heyes, C.; Lee, J. B.; Song, C. K.; Han, J.
2014-12-01
A comprehensive and combined analysis of air pollution and climate change could reveal important synergies of emission control measures, which could be of high policy relevance. IIASA's GAINS model (The Greenhouse gas - Air pollution Interactions and Synergies) has been developed as a tool to identify emission control strategies that achieve given targets on air quality and greenhouse gas emissions at least costs. The GAINS-Korea Model, which is being jointly developed by Konkuk University and IIASA, should play an important role in understanding the impact of air quality improvements across the regions in Korea. Source-Receptor relationships (S-R) is an useful methodology in air pollution studies to determine the areas of origin of chemical compounds at receptor point, and thus be able to target actions to reduce pollutions. The GAINS model can assess the impact of emission reductions of sources on air quality in receptor regions based on S-R matrix, derived from chemical transport model. In order to develop S-R matrix for GAINS-Korea, the CAMx model with PSAT/OSAT tools was applied in this study. The coarse domain covers East Asia, and a nesting domain as main research area was used for Korea peninsula. To evaluate of S-R relationships, a modeling domain is divided into sixteen regions over South Korea with three outside of S. Korea countries (China, N. Korea and Japan) for estimating transboundary contributions. The results of our analysis will be presented at the conference.
Air quality considerations for stormwater green street design.
Shaneyfelt, Kathryn M; Anderson, Andrew R; Kumar, Prashant; Hunt, William F
2017-12-01
Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow. Copyright © 2017 Elsevier Ltd. All rights reserved.
76 FR 38747 - Review of New Sources and Modifications in Indian Country
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
...The EPA is finalizing a Federal Implementation Plan (FIP) under the Clean Air Act (CAA or Act) for Indian country. The FIP includes two New Source Review (NSR) regulations for the protection of air resources in Indian country. The first rule applies to new and modified minor stationary sources (minor sources) and to minor modifications at existing major stationary sources (major sources) throughout Indian country. The second rule (nonattainment major NSR rule) applies to new and modified major sources in areas of Indian country that are designated as not attaining the National Ambient Air Quality Standards (NAAQS). These rules will be implemented by EPA or a delegate Tribal agency assisting EPA with administration of the rules, until replaced by an EPA-approved implementation plan.
Eagle Ford Shale BTEX and NOx concentrations are dominated by oil and gas industry emissions
NASA Astrophysics Data System (ADS)
Schade, G. W.; Roest, G. S.
2017-12-01
US shale oil and gas exploration has been identified as a major source of greenhouse gases and non-methane hydrocarbon (NMHC) emissions to the atmosphere. Here, we present a detailed analysis of 2015 air quality data acquired by the Texas Commission on Environmental Quality (TCEQ) at an air quality monitoring station in Karnes County, TX, central to Texas' Eagle Ford shale area. Data include time series of hourly measured NMHCs, nitrogen oxides (NOx), and hydrogen sulfide (H2S) alongside meteorological measurements. The monitor was located in Karnes City, and thus affected by various anthropogenic emissions, including traffic and oil and gas exploration sources. Highest mixing ratios measured in 2015 included nearly 1 ppm ethane, 0.8 ppm propane, alongside 4 ppb benzene. A least-squares minimization non-negative matrix factorization (NMF) analysis, tested with prior data analyzed using standard PMF-2 software, showed six major emission sources: an evaporative and fugitive source, a flaring source, a traffic source, an oil field source, a diesel source, and an industrial manufacturing source, together accounting for more than 95% of data set variability, and interpreted using NMHC composition and meteorological data. Factor scores strongly suggest that NOx emissions are dominated by flaring and associated sources, such as diesel compressor engines, likely at midstream facilities, while traffic in this rural area is a minor NOx source. The results support, but exceed existing 2012 emission inventories estimating that local traffic emitted seven times fewer NOx than oil and gas exploration sources in the county. Sources of air toxics such as the BTEX compounds are also dominated by oil and gas exploration sources, but are more equally distributed between the associated factors. Benzene abundance is only 20-40% associated with traffic sources, and may thus be 2.5-5 times higher now than prior to the shale boom in this area. Although the monitor was located relatively far from oil and gas exploration sources, these results suggest that exposure to air toxics in this rural population has likely increased manifold since the start of the regional shale boom in 2008.
Sourcing in the Air Force: An Optimization Approach
2009-09-01
quality supplies and services at the lowest cost ( Gabbard , 2004). The commodity sourcing strategy focuses on developing a specific sourcing strategy...Springer Series in Operations Research. New York: Springer-Verlag. Gabbard , E.G. (2004, April). Strategic sourcing: Critical elements and keys to success
NASA Astrophysics Data System (ADS)
Polidori, A.; Tisopulos, L.; Pikelnaya, O.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Robinson, R. A.; Innocenti, F.; Finlayson, A.; Hashmonay, R.
2016-12-01
Despite great advances in reducing air pollution, the South Coast Air Basin (SCAB) still faces challenges to attain federal health standards for air quality. Refineries are large sources of ozone precursors and, hence contribute to the air quality problems of the region. Additionally, petrochemical facilities are also sources of other hazardous air pollutants (HAP) that adversely affect human health, for example aromatic hydrocarbons. In order to assure safe operation, decrease air pollution and minimize population exposure to HAP the South Coast Air Quality Management District (SCAQMD) has a number of regulations for petrochemical facilities. However, significant uncertainties still exist in emission estimates and traditional monitoring techniques often do not allow for real-time emission monitoring. In the fall of 2015 the SCAQMD, Fluxsense Inc., the National Physical Laboratory (NPL), and Atmosfir Optics Ltd. conducted a measurement study to characterize and quantify gaseous emissions from the tank farm of one of the largest oil refineries in the SCAB. Fluxsense used a vehicle equipped with Solar Occultation Flux (SOF), Differential Optical Absorption Spectroscopy (DOAS), and Extractive Fourier Transform Infrared (FTIR) spectroscopy instruments. Concurrently, NPL operated their Differential Absorption Lidar (DIAL) system. Both research groups quantified emissions from the entire tank farm and identified fugitive emission sources within the farm. At the same time, Atmosfir operated an Open Path FTIR (OP-FTIR) spectrometer along the fenceline of the tank farm. During this presentation we will discuss the results of the emission measurements from the tank farm of the petrochemical facility. Emission rates resulting from measurements by different ORS methods will be compared and discussed in detail.
Microbial contamination of dental unit waterlines and effect on quality of indoor air.
Kadaifciler, Duygu Göksay; Cotuk, Aysin
2014-06-01
The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (<500 colony-forming units (CFU)/m(3)) of contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (<100 CFU/m(3)) of contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study's determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sondrup, Andrus Jeffrey
The Department of Energy Idaho Operations Office (DOE-ID) is applying for a synthetic minor, Sitewide, air quality permit to construct (PTC) with a facility emission cap (FEC) component from the Idaho Department of Environmental Quality (DEQ) for Idaho National Laboratory (INL) to limit its potential to emit to less than major facility limits for criteria air pollutants (CAPs) and hazardous air pollutants (HAPs) regulated under the Clean Air Act. This document is supplied as an appendix to the application, Idaho National Laboratory Application for a Synthetic Minor Sitewide Air Quality Permit to Construct with a Facility Emissions Cap Component, hereaftermore » referred to as “permit application” (DOE-ID 2015). Air dispersion modeling was performed as part of the permit application process to demonstrate pollutant emissions from the INL will not cause a violation of any ambient air quality standards. This report documents the modeling methodology and results for the air dispersion impact analysis. All CAPs regulated under Section 109 of the Clean Air Act were modeled with the exception of lead (Pb) and ozone, which are not required to be modeled by DEQ. Modeling was not performed for toxic air pollutants (TAPs) as uncontrolled emissions did not exceed screening emission levels for carcinogenic and non-carcinogenic TAPs. Modeling for CAPs was performed with the EPA approved AERMOD dispersion modeling system (Version 14134) (EPA 2004a) and five years (2000-2004) of meteorological data. The meteorological data set was produced with the companion AERMET model (Version 14134) (EPA 2004b) using surface data from the Idaho Falls airport, and upper-air data from Boise International Airport supplied by DEQ. Onsite meteorological data from the Grid 3 Mesonet tower located near the center of the INL (north of INTEC) and supplied by the local National Oceanic and Atmospheric Administration (NOAA) office was used for surface wind directions and wind speeds. Surface data (i.e., land use data that defines roughness, albedo, Bowen ratio, and other parameters) were processed using the AERSURFACE utility (Version 13016) (EPA 2013). Emission sources were modeled as point sources using actual stack locations and dimensions. Emissions, flow rates and exit temperatures were based on the design operating capacity of each source. All structures close enough to produce an area of wake effect were included for all sources. For multi-tiered structures, the heights of the tiers were included or the entire building height was assumed to be equal to the height of the tallest tier. Concentrations were calculated at 1,352 receptor locations provided by DEQ. All receptors were considered for each pollutant and averaging period. Maximum modeled CAP concentrations summed with average background concentration values were presented and compared to National Ambient Air Quality Standards (NAAQS). The background concentration values used were obtained using the Washington State University’s Laboratory for Atmospheric Research North West Airquest web-based retrieval tool (http://lar.wsu.edu/nw airquest/lookup.html). The air dispersion modeling results show the maximum impacts for CAPs are less than applicable standards and demonstrate the INL will not cause a violation of any ambient air quality standards.« less
Air Pollution Translations: A Bibliography with Abstracts - Volume 4.
ERIC Educational Resources Information Center
Environmental Protection Agency, Research Triangle Park, NC. Air Pollution Technical Information Center.
This volume is the fourth in a series of compilations presenting abstracts and indexes of translations of technical air pollution literature. The entries are grouped into 12 subject categories: Emission Sources, Control Methods, Measurement Methods, Air Quality Measurements, Atmospheric Interaction, Basic Science and Technology, Effects--Human…
NASA Technical Reports Server (NTRS)
1978-01-01
Papers are presented on such topics as environmental chemistry, the effects of sulfur compounds on air quality, the prediction and monitoring of biological effects caused by environmental pollutants, environmental indicators, the satellite remote sensing of air pollution, weather and climate modification by pollution, and the monitoring and assessment of radioactive pollutants. Consideration is also given to empirical and quantitative modeling of air quality, disposal of hazardous and nontoxic materials, sensing and assessment of water quality, pollution source monitoring, and assessment of some environmental impacts of fossil and nuclear fuels.
NASA Astrophysics Data System (ADS)
Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.
2012-12-01
Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor (ASDP) was recently developed to merge PM2.5 estimates from National Aeronautics and Space Administration (NASA) satellite data and AirNow observational data, creating more precise maps and gridded data products for under-monitored areas. The ASDP can easily incorporate other data feeds, including fire and smoke locations, to build enhanced real-time air quality data products. In this presentation, we provide an overview of the features and functions of IMS, an explanation of how data moves through IMS, the rationale of the system architecture, and highlights of the ASDP as an example of the modularity and scalability of IMS.
Indoor air quality in Latino homes in Boulder, Colorado
NASA Astrophysics Data System (ADS)
Escobedo, Luis E.; Champion, Wyatt M.; Li, Ning; Montoya, Lupita D.
2014-08-01
Indoor concentrations of airborne pollutants can be several times higher than those found outdoors, often due to poor ventilation, overcrowding, and the contribution of indoor sources within a home. Americans spend most of their time indoors where exposure to poor indoor air quality (IAQ) can result in diminished respiratory and cardiovascular health. This study measured the indoor air quality in 30 homes of a low-income Latino community in Boulder, Colorado during the summer of 2012. Participants were administered a survey, which included questions on their health conditions and indoor air pollution sources like cigarette smoke, heating fuel, and building materials. Twenty-four hour samples of fine particulate matter (PM2.5) from the indoor air were collected in each home; ambient PM2.5 samples were collected each day as well. Concurrent air samples were collected onto 47 mm Teflo and Tissuquartz filter at each location. Teflo filters were analyzed gravimetrically to measure PM2.5 and their extracts were used to determine levels of proteins and endotoxins in the fine fraction. The Tissuquartz filters were analyzed for elemental and organic carbon content (EC/OC). Results indicated that the indoor air contained higher concentrations of PM2.5 than the ambient air, and that the levels of OC were much higher than EC in both indoor and outdoor samples. This community showed no smoking in their homes and kept furry pets indoors at very low rates; therefore, cooking is likely the primary source of indoor PM. For responders with significant exposure to PM, it appeared to be primarily from occupational environments or childhood exposure abroad. Our findings indicate that for immigrant communities such as this, it is important to consider not only their housing conditions but also the relevant prior exposures when conducting health assessments.
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Elements that contribute to healthy building design.
Loftness, Vivian; Hakkinen, Bert; Adan, Olaf; Nevalainen, Aino
2007-06-01
The elements that contribute to a healthy building are multifactorial and can be discussed from different perspectives. WE PRESENT THREE VIEWPOINTS OF DESIGNING A HEALTHY BUILDING: the importance of sustainable development, the role of occupants for ensuring indoor air quality, and ongoing developments related to indoor finishes with low chemical emissions and good fungal resistance. Sustainable design rediscovers the social, environmental, and technical values of pedestrian and mixed-use communities, using existing infrastructures including "main streets" and small-town planning principles and recapturing indoor-outdoor relationships. This type of design introduces nonpolluting materials and assemblies with lower energy requirements and higher durability and recyclability. Building occupants play a major role in maintaining healthy indoor environments, especially in residences. Contributors to indoor air quality include cleaning habits and other behaviors; consumer products, furnishings, and appliances purchases, as well as where and how the occupants use them. Certification of consumer products and building materials as low-emitting products is a primary control measure for achieving good indoor air quality. Key products in this respect are office furniture, flooring, paints and coatings, adhesives and sealants, wall coverings, wood products, textiles, insulation, and cleaning products. Finishing materials play a major role in the quality of indoor air as related to moisture retention and mold growth. Sustainable design emphasizes the needs of infrastructure, lower energy consumption, durability, and recyclability. To ensure good indoor air quality, the product development for household use should aim to reduce material susceptibility to contaminants such as mold and should adopt consumer-oriented product labeling.
NASA Astrophysics Data System (ADS)
Osterman, G. B.; Neu, J. L.; Eldering, A.; Pinder, R. W.; Tang, Y.; McQueen, J.
2012-12-01
At night, ozone can be transported long distances above the surface inversion layer without chemical destruction or deposition. As the boundary layer breaks up in the morning, this nocturnal ozone can be mixed down to the surface and rapidly increase ozone concentrations at a rate that can rival chemical ozone production. Most regional scale models that are used for air quality forecasts and ozone source attribution do not adequately capture nighttime ozone concentrations and transport. We combine ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and other sensors, ozonesonde data collected during the INTEX Ozonesonde Network Study (IONS), EPA AirNow ground station ozone data, the Community Multi-Scale Air Quality (CMAQ) model, and the National Air Quality Forecast Capability (NAQFC) model to examine air quality events during August 2006. We present both aggregated statistics and case-study analyses that assess the relationship between the models' ability to reproduce surface air quality events and their ability to capture the vertical distribution of ozone both during the day and at night. We perform the comparisons looking at the geospatial dependence in the differences between the measurements and models under different surface ozone conditions.
NASA Astrophysics Data System (ADS)
Bei, N.; Zavala, M. A.; Lei, W.; Li, G.; Molina, L. T.
2010-12-01
The US and Mexico share a common air basin along the ~200 km border between California and Baja California. The economical activities in this region are heavily influenced by the international trade and commerce between Mexico and the US that mainly occurs through the borders of the sister cities of San Diego-Tijuana and Calexico-Mexicali. The diversity and differences in the characteristics of emissions sources of air pollutants in the California-Mexico border region make this an important area for the study of the chemistry and trans-boundary transport of air pollutants. During May-June of 2010, the Cal-Mex 2010 field campaign included a series of measurements aimed at characterizing the emissions from major sources in the California-Mexico border region and assessing the possible impacts of these emissions on local and regional air quality. In this work we will present the results of the use of the Comprehensive Air quality model with extensions (CAMx) in a modeling domain that includes the sister cities of San Diego-Tijuana and Calexico-Mexicali for studying events of trans-boundary transport of air pollutants during Cal-Mex 2010. The measurements obtained during the Cal-Mex 2010 field campaign are used in the evaluation of the model performance and in the design of air quality improvement policies in the California-Mexico border region.
NASA Astrophysics Data System (ADS)
Parker, L. K.; Morris, R. E.; Zapert, J.; Cook, F.; Koo, B.; Rasmussen, D.; Jung, J.; Grant, J.; Johnson, J.; Shah, T.; Pavlovic, T.
2015-12-01
The Colorado Air Resource Management Modeling Study (CARMMS) was funded by the Bureau of Land Management (BLM) to predict the impacts from future federal and non-federal energy development in Colorado and Northern New Mexico. The study used the Comprehensive Air Quality Model with extensions (CAMx) photochemical grid model (PGM) to quantify potential impacts from energy development from BLM field office planning areas. CAMx source apportionment technology was used to track the impacts from multiple (14) different emissions source regions (i.e. field office areas) within one simulation, as well as to assess the cumulative impact of emissions from all source regions combined. The energy development emissions estimates were for the year 2021 for three different development scenarios: (1) low; (2) high; (3) high with emissions mitigation. Impacts on air quality (AQ) including ozone, PM2.5, PM10, NO2, SO2, and air quality related values (AQRVs) such as atmospheric deposition, regional haze and changes in Acid Neutralizing Capacity (ANC) of lakes were quantified, and compared to establish threshold levels. In this presentation, we present a brief summary of the how the emission scenarios were developed, we compare the emission totals for each scenario, and then focus on the ozone impacts for each scenario to assess: (1). the difference in potential ozone impacts under the different development scenarios and (2). to establish the sensitivity of the ozone impacts to different emissions levels. Region-wide ozone impacts will be presented as well as impacts at specific locations with ozone monitors.
Could Expanded Freight Rail Reduce Air Pollution from Trucks?
NASA Astrophysics Data System (ADS)
Bickford, E. E.; Holloway, T.; Johnston, M.
2010-12-01
Cars, trucks and trains are a significant source of emissions that impact both climate and air quality on regional to global scales. Diesel vehicles, most used for freight transport, account for 42% of on-road nitrogen oxide emissions, 58% of on-road fine particulate emissions, and 21% of on-road carbon dioxide emissions. With freight tonnage projected to increase 28% by 2018, and freight trucks the fastest growing source of transportation emissions, we evaluate the potential for increased rail capacity to reduce the environmental impacts of trucks. Most widely available mobile source emissions inventories contain insufficient spatial detail to quantify realistic emission scenario options, and none to date have been linked with commodity flow information in a manner appropriate to consider the true potential of rail substitution. To support a truck-to-rail analysis, and other policy assessments requiring roadway-by-roadway analysis, we have developed a freight emissions inventory for the Upper Midwest based on the Federal Highway Administration’s Freight Analysis Framework version 2.2 and the Environmental Protection Agency’s on-road emissions model, Mobile6.2. Using a Geographical Information System (GIS), we developed emissions scenarios for truck-to-rail modal shifts where 95% of freight tonnage on trips longer than 400 miles is shifted off of trucks and onto railways. Scenarios will be analyzed with the Community Multiscale Air Quality (CMAQ) regional model to assess air quality impacts of associated changes. By using well-respected transportation data and realistic assumptions, results from this study have the potential to inform decisions on transportation sustainability, carbon management, public health, and air quality.
Positive Matrix Factorization Model for environmental data analyses
Positive Matrix Factorization is a receptor model developed by EPA to provide scientific support for current ambient air quality standards and implement those standards by identifying and quantifying the relative contributions of air pollution sources.
Increasing the Use of Earth Science Data and Models in Air Quality Management.
Milford, Jana B; Knight, Daniel
2017-04-01
In 2010, the U.S. National Aeronautics and Space Administration (NASA) initiated the Air Quality Applied Science Team (AQAST) as a 5-year, $17.5-million award with 19 principal investigators. AQAST aims to increase the use of Earth science products in air quality-related research and to help meet air quality managers' information needs. We conducted a Web-based survey and a limited number of follow-up interviews to investigate federal, state, tribal, and local air quality managers' perspectives on usefulness of Earth science data and models, and on the impact AQAST has had. The air quality managers we surveyed identified meeting the National Ambient Air Quality Standards for ozone and particulate matter, emissions from mobile sources, and interstate air pollution transport as top challenges in need of improved information. Most survey respondents viewed inadequate coverage or frequency of satellite observations, data uncertainty, and lack of staff time or resources as barriers to increased use of satellite data by their organizations. Managers who have been involved with AQAST indicated that the program has helped build awareness of NASA Earth science products, and assisted their organizations with retrieval and interpretation of satellite data and with application of global chemistry and climate models. AQAST has also helped build a network between researchers and air quality managers with potential for further collaborations. NASA's Air Quality Applied Science Team (AQAST) aims to increase the use of satellite data and global chemistry and climate models for air quality management purposes, by supporting research and tool development projects of interest to both groups. Our survey and interviews of air quality managers indicate they found value in many AQAST projects and particularly appreciated the connections to the research community that the program facilitated. Managers expressed interest in receiving continued support for their organizations' use of satellite data, including assistance in retrieving and interpreting data from future geostationary platforms meant to provide more frequent coverage for air quality and other applications.
Air quality management in U.S. Fish and Wildlife Service wilderness areas
Ellen M. Porter
2000-01-01
Proper management of air resources is vital to maintaining the wilderness character of an area. Air pollution can affect natural resources and has caused injury to vegetation, bioaccumulation of mercury in fish, eutrophication of coastal ecosystems and visibility impairment in U.S. Fish and Wildlife Service (FWS) wilderness areas. Sources of air pollution include power...
Building Assessment Survey and Evaluation Study: Summarized Data - Test Space Pollutant Sources
information collected regarding sources that may have potential impact on the building in terms of indoor air quality including sources such as past or current water damage, pesticide application practices, special use spaces, etc.
Model assessing the impact of biomass burning on air quality and photochemistry in Mexico City
W. Lei; G. Li; C. Wiedinmyer; R. J. Yokelson; L. T. Molina
2010-01-01
Biomass burning is a major global emission source for trace gases and particulates. Various multi-platform measurements during the Mexico City Metropolitan Area (MCMA)-2003 and Megacity Initiative: Local and Global Research Observations (MILAGRO)-2006 campaigns suggest significant influences of biomass burning (BB) on air quality in Mexico City during the dry season,...
Environmental Impact of Megacities - Results from CityZen
NASA Astrophysics Data System (ADS)
Gauss, M.
2012-04-01
Megacities have increasingly important impacts on air quality and climate change on different spatial scales, owing to their high population densities and concentrated emission sources. The EU FP7 project CityZen (Megacity - Zoom for the Environment) ended in 2011 and was, together with its sister project MEGAPOLI, part of a major research effort within FP7 on megacities in Europe and worldwide. The project mainly focused on air pollution trends in large cities and emission hotspots, climate-chemistry couplings, future projections, and emission mitigation options. Both observational and modeling tools have been extensively used. This paper reviews some of the main results from CityZen regarding present air pollution in and around megacities, future scenarios and mitigation options to reduce air pollution and/or climate change, and the main policy messages from the project. The different observed trends over European and Asian hotspots during the last 10 to 15 years are shown. Results of source attribution of pollutants, which have been measured and calculated in and around the different selected hot spots in CityZen will be discussed. Another important question to be addressed is the extent to which climate change will affect air quality and the effectiveness of air quality legislation. Although projected emission reductions are a major determinate influencing the predictions of future air pollution, model results suggest that climate change has to be taken into account when devising future air quality legislation. This paper will also summarize some important policy messages in terms of ozone, particles and the observational needs that have been put forward as conclusions from the project.
Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model
Source culpability assessments are useful for developing effective emissions control programs. The Integrated Source Apportionment Method (ISAM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to track contributions from source groups and regions to ambi...
NASA Astrophysics Data System (ADS)
Guha, A.; Bower, J.; Martien, P. T.; Perkins, I.; Randall, S.; Stevenson, E.; Young, A.; Hilken, H.
2016-12-01
The Bay Area Air Quality Management District is the greater San Francisco Bay metropolitan area's chief air quality regulatory agency. Aligning itself with the Governor's Executive Order S-3-05, the Air District has set a goal to reduce the region's GHG emissions by 80% below 1990 levels by the year 2050. The Air District's 2016 Clean Air Plan will lay out the agency's vision and actions to put the region on a path forward towards achieving the 2050 goal while also reducing air pollution and related health impacts. The 2016 Plan has three overarching objectives: 1) develop a multi-pollutant emissions control strategy, (2) reduce population exposure to harmful air pollutants, especially in vulnerable communities, and (3) protect climate through a comprehensive Regional Climate Protection Strategy. To accomplish one of 2016 Plan's control measures (SL3 - Greenhouse Gas Monitoring and Measurement Network), the Air District has fabricated a mobile measurement platform i.e. a GHG research van to perform targeted CH4 emissions hotspot detection and source attribution. The van is equipped with analyzers capable of measuring CH4, CO2 and N2O in ambient plumes at fast sampling rates. The coincident measurement of source tracers like isotopic methane (13C - CH4), CO and ethane (C2H6) provide the capability to distinguish between biogenic, combustion-based and fossil-based fugitive methane sources, respectively. The GHG research van is a comprehensive mobile tool to perform tracer-based GHG source identification and apportionment. We report observation-based source-specific tracer-to-tracer emission ratios from a region-wide survey of well-known area sources like landfills, wastewater treatment facilities and dairies, and compare those with similar ratios in the Air District's GHG inventory. We also investigate plumes from potentially under-inventoried sources like anaerobic digesters, composting operations, active and plugged oil and gas wells, and a natural gas storage facility. Data from source-specific measurements will lead to an improved understanding of GHG emissions from well-known and lesser-known CH4 sources in the region, which is key in resolving the differences between top-down regional estimates (Fairley and Fischer, 2015; Jeong et al., in prep) and the regional bottom-up inventory.
Ault, Andrew P; Moore, Meagan J; Furutani, Hiroshi; Prather, Kimberly A
2009-05-15
Oceangoing ships emit an estimated 1.2-1.6 million metric tons (Tg) of PM10 per year and represent a significant source of air pollution to coastal communities. As shown herein, ship and other emissions near the Los Angeles and Long Beach Port region strongly influence air pollution levels in the San Diego area. During time periods with regional transport, atmospheric aerosol measurements in La Jolla, California show an increase in 0.5-1 microm sized single particles with unique signatures including soot, metals (i.e., vanadium, iron, and nickel), sulfate, and nitrate. These particles are attributed to primary emissions from residual oil sourcessuch as ships and refineries, as well as traffic in the port region, and secondary processing during transport. During regional transport events, particulate matter concentrations were 2-4 times higher than typical average concentrations from local sources, indicating the health, environmental, and climate impacts from these emission sources must be taken into consideration in the San Diego region. Unless significant regulations are imposed on shipping-related activities, these emission sources will become even more important to California air quality as cars and truck emissions undergo further regulations and residual oil sources such as shipping continue to expand.
Air quality management in China: issues, challenges, and options.
Wang, Shuxiao; Hao, Jiming
2012-01-01
This article analyzed the control progress and current status of air quality, identified the major air pollution issues and challenges in future, proposed the long-term air pollution control targets, and suggested the options for better air quality in China. With the continuing growth of economy in the next 10-15 years, China will face a more severe situation of energy consumption, electricity generation and vehicle population leading to increase in multiple pollutant emissions. Controlling regional air pollution especially fine particles and ozone, as well as lowering carbon emissions from fossil fuel consumption will be a big challenge for the country. To protect public health and the eco-system, the ambient air quality in all Chinese cities shall attain the national ambient air quality standards (NAAQS) and ambient air quality guideline values set by the World Health Organization (WHO). To achieve the air quality targets, the emissions of SO2, NOx, PM10, and volatile organic compounds (VOC) should decrease by 60%, 40%, 50%, and 40%, respectively, on the basis of that in 2005. A comprehensive control policy focusing on multiple pollutants and emission sources at both the local and regional levels was proposed to mitigate the regional air pollution issue in China. The options include development of clean energy resources, promotion of clean and efficient coal use, enhancement of vehicle pollution control, implementation of synchronous control of multiple pollutants including SO2, NOx, VOC, and PM emissions, joint prevention and control of regional air pollution, and application of climate friendly air pollution control measures.
Deciphering the role of radical precursors during the Second Texas Air Quality Study.
Olaguer, Eduardo P; Rappenglück, Bernhard; Lefer, Barry; Stutz, Jochen; Dibb, Jack; Griffin, Robert; Brune, William H; Shauck, Maxwell; Buhr, Martin; Jeffries, Harvey; Vizuete, William; Pinto, Joseph P
2009-11-01
The Texas Environmental Research Consortium (TERC) funded significant components of the Second Texas Air Quality Study (TexAQS II), including the TexAQS II Radical and Aerosol Measurement Project (TRAMP) and instrumented flights by a Piper Aztec aircraft. These experiments called attention to the role of short-lived radical sources such as formaldehyde (HCHO) and nitrous acid (HONO) in increasing ozone productivity. TRAMP instruments recorded daytime HCHO pulses as large as 32 parts per billion (ppb) originating from upwind industrial activities in the Houston Ship Channel, where in situ surface monitors detected HCHO peaks as large as 52 ppb. Moreover, Ship Channel petrochemical flares were observed to produce plumes of apparent primary HCHO. In one such combustion plume that was depleted of ozone by large emissions of oxides of nitrogen (NOx), the Piper Aztec measured a ratio of HCHO to carbon monoxide (CO) 3 times that of mobile sources. HCHO from uncounted primary sources or ozonolysis of underestimated olefin emissions could significantly increase ozone productivity in Houston beyond previous expectations. Simulations with the CAMx model show that additional emissions of HCHO from industrial flares or mobile sources can increase peak ozone in Houston by up to 30 ppb. Other findings from TexAQS II include significant concentrations of HONO throughout the day, well in excess of current air quality model predictions, with large nocturnal vertical gradients indicating a surface or near-surface source of HONO, and large concentrations of nighttime radicals (approximately30 parts per trillion [ppt] HO2). HONO may be formed heterogeneously on urban canopy or particulate matter surfaces and may be enhanced by organic aerosol of industrial or motor vehicular origin, such as through conversion of nitric acid (HNO3). Additional HONO sources may increase daytime ozone by more than 10 ppb. Improving the representation of primary and secondary HCHO and HONO in air quality models could enhance the simulated effectiveness of control strategies.
Ying, Qi; Feng, Miao; Song, Danlin; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Kleeman, Michael J; Li, Xinghua
2018-05-15
Contributions to 15 trace elements in airborne particulate matter with aerodynamic diameters <2.5μm (PM 2.5 ) in China from five major source sectors (industrial sources, residential sources, transportation, power generation and windblown dust) were determined using a source-oriented Community Multiscale Air Quality (CMAQ) model. Using emission factors in the composite speciation profiles from US EPA's SPECIATE database for the five sources leads to relatively poor model performance at an urban site in Beijing. Improved predictions of the trace elements are obtained by using adjusted emission factors derived from a robust multilinear regression of the CMAQ predicted primary source contributions and observation at the urban site. Good correlations between predictions and observations are obtained for most elements studied with R>0.5, except for crustal elements Al, Si and Ca, particularly in spring. Predicted annual and seasonal average concentrations of Mn, Fe, Zn and Pb in Nanjing and Chengdu are also consistently improved using the adjusted emission factors. Annual average concentration of Fe is as high as 2.0μgm -3 with large contributions from power generation and transportation. Annual average concentration of Pb reaches 300-500ngm -3 in vast areas, mainly from residential activities, transportation and power generation. The impact of high concentrations of Fe on secondary sulfate formation and Pb on human health should be evaluated carefully in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Source influence on emission pathways and ambient PM2.5 pollution over India (2015-2050)
NASA Astrophysics Data System (ADS)
Venkataraman, Chandra; Brauer, Michael; Tibrewal, Kushal; Sadavarte, Pankaj; Ma, Qiao; Cohen, Aaron; Chaliyakunnel, Sreelekha; Frostad, Joseph; Klimont, Zbigniew; Martin, Randall V.; Millet, Dylan B.; Philip, Sajeev; Walker, Katherine; Wang, Shuxiao
2018-06-01
India is currently experiencing degraded air quality, and future economic development will lead to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015-2050, under specific pathways of diffusion of cleaner and more energy-efficient technologies. The impacts of individual source sectors on PM2.5 concentrations were assessed through systematic simulations of spatially and temporally resolved particulate matter concentrations, using the GEOS-Chem model, followed by population-weighted aggregation to national and state levels. We find that PM2.5 pollution is a pan-India problem, with a regional character, and is not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 annual standard (40 µg m-3). Sources related to human activities were responsible for the largest proportion of the present-day population exposure to PM2.5 in India. About 60 % of India's mean population-weighted PM2.5 concentrations come from anthropogenic source sectors, while the remainder are from other
sources, windblown dust and extra-regional sources. Leading contributors are residential biomass combustion, power plant and industrial coal combustion and anthropogenic dust (including coal fly ash, fugitive road dust and waste burning). Transportation, brick production and distributed diesel were other contributors to PM2.5. Future evolution of emissions under regulations set at current levels and promulgated levels caused further deterioration of air quality in 2030 and 2050. Under an ambitious prospective policy scenario, promoting very large shifts away from traditional biomass technologies and coal-based electricity generation, significant reductions in PM2.5 levels are achievable in 2030 and 2050. Effective mitigation of future air pollution in India requires adoption of aggressive prospective regulation, currently not formulated, for a three-pronged switch away from (i) biomass-fuelled traditional technologies, (ii) industrial coal-burning and (iii) open burning of agricultural residue. Future air pollution is dominated by industrial process emissions, reflecting larger expansion in industrial, rather than residential energy demand. However, even under the most active reductions envisioned, the 2050 mean exposure, excluding any impact from windblown mineral dust, is estimated to be nearly 3 times higher than the WHO Air Quality Guideline.
Li, Guohao; Wei, Wei; Shao, Xia; Nie, Lei; Wang, Hailin; Yan, Xiao; Zhang, Rui
2018-05-01
In China, volatile organic compound (VOC) control directives have been continuously released and implemented for important sources and regions to tackle air pollution. The corresponding control requirements were based on VOC emission amounts (EA), but never considered the significant differentiation of VOC species in terms of atmospheric chemical reactivity. This will adversely influence the effect of VOC reduction on air quality improvement. Therefore, this study attempted to develop a comprehensive classification method for typical VOC sources in the Beijing-Tianjin-Hebei region (BTH), by combining the VOC emission amounts with the chemical reactivities of VOC species. Firstly, we obtained the VOC chemical profiles by measuring 5 key sources in the BTH region and referencing another 10 key sources, and estimated the ozone formation potential (OFP) per ton VOC emission for these sources by using the maximum incremental reactivity (MIR) index as the characteristic of source reactivity (SR). Then, we applied the data normalization method to respectively convert EA and SR to normalized EA (NEA) and normalized SR (NSR) for various sources in the BTH region. Finally, the control index (CI) was calculated, and these sources were further classified into four grades based on the normalized CI (NCI). The study results showed that in the BTH region, furniture coating, automobile coating, and road vehicles are characterized by high NCI and need to be given more attention; however, the petro-chemical industry, which was designated as an important control source by air quality managers, has a lower NCI. Copyright © 2017. Published by Elsevier B.V.
Bioenvironmental Engineer’s Guide to Indoor Air Quality Surveys
2014-09-01
housekeeping practices •Fresh air intake located near contaminant source •Check for sewer line leak, septic tank leak, fuel tank leaks...make-up air •Dirty coils/filters •Sewer gas, drain traps, sanitary vents •Leaky tanks , spills •Cleaning products, pesticides •Poor
40 CFR 49.10410 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
....135Rule for emissions detrimental to public health or welfare. (n) Section 49.137Rule for air pollution episodes. (o) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.11050 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10046 - Contents of implementation plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10376 - Contents of implementation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.9990 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10560 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10406 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... health or welfare. (n) Section 49.137Rule for air pollution episodes. (o) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (p) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10830 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10926 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10676 - Contents of implementation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10766 - Contents of implementation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.9956 - Contents of implementation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... detrimental to public health or welfare. (k) Section 49.137Rule for air pollution episodes. (l) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (m) Section 49... ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes-Region X...
40 CFR 49.11016 - Contents of implementation plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (k) Section 49.135Rule for emissions detrimental to public health or welfare. (l) Section 49.137Rule for air pollution episodes. (m) Section 49.138Rule for the registration of air pollution sources and... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10590 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10496 - Contents of implementation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.9990 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10046 - Contents of implementation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10926 - Contents of implementation plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.11076 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.11050 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10470 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10136 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10106 - Contents of implementation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10320 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.9930 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10676 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10766 - Contents of implementation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10926 - Contents of implementation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10676 - Contents of implementation plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10990 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.11016 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (k) Section 49.135Rule for emissions detrimental to public health or welfare. (l) Section 49.137Rule for air pollution episodes. (m) Section 49.138Rule for the registration of air pollution sources and... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10856 - Contents of implementation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10406 - Contents of implementation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... health or welfare. (n) Section 49.137Rule for air pollution episodes. (o) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (p) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10260 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10286 - Contents of implementation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10890 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10526 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.11020 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emissions detrimental to public health or welfare. (l) Section 49.137Rule for air pollution episodes. (m) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (n... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10436 - Contents of implementation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10376 - Contents of implementation plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10020 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10890 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10560 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10766 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10320 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10956 - Contents of implementation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10020 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10560 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10170 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10676 - Contents of implementation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10956 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10046 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10406 - Contents of implementation plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... health or welfare. (n) Section 49.137Rule for air pollution episodes. (o) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (p) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10286 - Contents of implementation plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10590 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10496 - Contents of implementation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.9956 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... detrimental to public health or welfare. (k) Section 49.137Rule for air pollution episodes. (l) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (m) Section 49... ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes-Region X...
40 CFR 49.9986 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Section 49.135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting... ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes-Region X...
40 CFR 49.10230 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10046 - Contents of implementation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10230 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.11050 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.11106 - Contents of implementation plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10890 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10496 - Contents of implementation plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.9956 - Contents of implementation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... detrimental to public health or welfare. (k) Section 49.137Rule for air pollution episodes. (l) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (m) Section 49... ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes-Region X...
40 CFR 49.9930 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10990 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10766 - Contents of implementation plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10106 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.9986 - Contents of implementation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Section 49.135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting... ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes-Region X...
40 CFR 49.11050 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10856 - Contents of implementation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10196 - Contents of implementation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10020 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10590 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10830 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10346 - Contents of implementation plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10830 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10376 - Contents of implementation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.9930 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.11106 - Contents of implementation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10470 - Federally-promulgated regulations and Federal implementation plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
....135Rule for emissions detrimental to public health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT...
40 CFR 49.10346 - Contents of implementation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...
40 CFR 49.10196 - Contents of implementation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... health or welfare. (i) Section 49.137Rule for air pollution episodes. (j) Section 49.138Rule for the registration of air pollution sources and the reporting of emissions. (k) Section 49.139Rule for non-Title V... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes...