Sample records for source-sink dynamics structure

  1. Characterizing source-sink dynamics with genetic parentage assignments

    Treesearch

    M. Zachariah Peery; Steven R. Beissinger; Roger F. House; Martine Berube; Laurie A. Hall; Anna Sellas; Per J. Palsboll

    2008-01-01

    Source-sink dynamics have been suggested to characterize the population structure of many species, but the prevalence of source-sink systems in nature is uncertain because of inherent challenges in estimating migration rates among populations. Migration rates are often difficult to estimate directly with demographic methods, and indirect genetic methods are subject to...

  2. CASSIA--a dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine.

    PubMed

    Schiestl-Aalto, Pauliina; Kulmala, Liisa; Mäkinen, Harri; Nikinmaa, Eero; Mäkelä, Annikki

    2015-04-01

    The control of tree growth vs environment by carbon sources or sinks remains unresolved although it is widely studied. This study investigates growth of tree components and carbon sink-source dynamics at different temporal scales. We constructed a dynamic growth model 'carbon allocation sink source interaction' (CASSIA) that calculates tree-level carbon balance from photosynthesis, respiration, phenology and temperature-driven potential structural growth of tree organs and dynamics of stored nonstructural carbon (NSC) and their modifying influence on growth. With the model, we tested hypotheses that sink demand explains the intra-annual growth dynamics of the meristems, and that the source supply is further needed to explain year-to-year growth variation. The predicted intra-annual dimensional growth of shoots and needles and the number of cells in xylogenesis phases corresponded with measurements, whereas NSC hardly limited the growth, supporting the first hypothesis. Delayed GPP influence on potential growth was necessary for simulating the yearly growth variation, indicating also at least an indirect source limitation. CASSIA combines seasonal growth and carbon balance dynamics with long-term source dynamics affecting growth and thus provides a first step to understanding the complex processes regulating intra- and interannual growth and sink-source dynamics. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Detecting black bear source-sink dynamics using individual-based genetic graphs.

    PubMed

    Draheim, Hope M; Moore, Jennifer A; Etter, Dwayne; Winterstein, Scott R; Scribner, Kim T

    2016-07-27

    Source-sink dynamics affects population connectivity, spatial genetic structure and population viability for many species. We introduce a novel approach that uses individual-based genetic graphs to identify source-sink areas within a continuously distributed population of black bears (Ursus americanus) in the northern lower peninsula (NLP) of Michigan, USA. Black bear harvest samples (n = 569, from 2002, 2006 and 2010) were genotyped at 12 microsatellite loci and locations were compared across years to identify areas of consistent occupancy over time. We compared graph metrics estimated for a genetic model with metrics from 10 ecological models to identify ecological factors that were associated with sources and sinks. We identified 62 source nodes, 16 of which represent important source areas (net flux > 0.7) and 79 sink nodes. Source strength was significantly correlated with bear local harvest density (a proxy for bear density) and habitat suitability. Additionally, resampling simulations showed our approach is robust to potential sampling bias from uneven sample dispersion. Findings demonstrate black bears in the NLP exhibit asymmetric gene flow, and individual-based genetic graphs can characterize source-sink dynamics in continuously distributed species in the absence of discrete habitat patches. Our findings warrant consideration of undetected source-sink dynamics and their implications on harvest management of game species. © 2016 The Author(s).

  4. Detecting black bear source–sink dynamics using individual-based genetic graphs

    PubMed Central

    Draheim, Hope M.; Moore, Jennifer A.; Etter, Dwayne; Winterstein, Scott R.; Scribner, Kim T.

    2016-01-01

    Source–sink dynamics affects population connectivity, spatial genetic structure and population viability for many species. We introduce a novel approach that uses individual-based genetic graphs to identify source–sink areas within a continuously distributed population of black bears (Ursus americanus) in the northern lower peninsula (NLP) of Michigan, USA. Black bear harvest samples (n = 569, from 2002, 2006 and 2010) were genotyped at 12 microsatellite loci and locations were compared across years to identify areas of consistent occupancy over time. We compared graph metrics estimated for a genetic model with metrics from 10 ecological models to identify ecological factors that were associated with sources and sinks. We identified 62 source nodes, 16 of which represent important source areas (net flux > 0.7) and 79 sink nodes. Source strength was significantly correlated with bear local harvest density (a proxy for bear density) and habitat suitability. Additionally, resampling simulations showed our approach is robust to potential sampling bias from uneven sample dispersion. Findings demonstrate black bears in the NLP exhibit asymmetric gene flow, and individual-based genetic graphs can characterize source–sink dynamics in continuously distributed species in the absence of discrete habitat patches. Our findings warrant consideration of undetected source–sink dynamics and their implications on harvest management of game species. PMID:27440668

  5. A novel simulation methodology merging source-sink dynamics and landscape connectivity

    EPA Science Inventory

    Source-sink dynamics are an emergent property of complex species-landscape interactions. This study explores the patterns of source and sink behavior that become established across a large landscape, using a simulation model for the northern spotted owl (Strix occidentalis cauri...

  6. Mapping sources, sinks, and connectivity using a simulation model of northern spotted owls- 5/20/2014

    EPA Science Inventory

    Source-sink dynamics are an emergent property of complex species- landscape interactions. A better understanding of how human activities affect source-sink dynamics has the potential to inform and improve the management of species of conservation concern. Here we use a study of t...

  7. Reserve size and fragmentation alter community assembly, diversity, and dynamics.

    PubMed

    Lasky, Jesse R; Keitt, Timothy H

    2013-11-01

    Researchers have disputed whether a single large habitat reserve will support more species than many small reserves. However, relatively little is known from a theoretical perspective about how reserve size affects competitive communities structured by spatial abiotic gradients. We investigate how reserve size affects theoretical communities whose assembly is governed by dispersal limitation, abiotic niche differentiation, and source-sink dynamics. Simulations were conducted with varying scales of dispersal across landscapes with variable environmental spatial autocorrelation. Landscapes were inhabited by simulated trees with seedling and adult stages. For a fixed total area in reserves, we found that small reserve systems increased the distance between environments dominated by different species, diminishing the effects of source-sink dynamics. As reserve size decreased, environmental limitations to community assembly became stronger, α species richness decreased, and γ richness increased. When dispersal occurred across short distances, a large reserve strategy caused greater stochastic community variation, greater α richness, and lower γ richness than in small reserve systems. We found that reserve size variation trades off between preserving different aspects of natural communities, including α diversity versus γ diversity. Optimal reserve size will depend on the importance of source-sink dynamics and the value placed on different characteristics of natural communities. Anthropogenic changes to the size and separation of remnant habitats can have far-reaching effects on community structure and assembly.

  8. Challenges and constraints of dynamically emerged source and sink in atomtronic circuits: From closed-system to open-system approaches

    PubMed Central

    Lai, Chen-Yen; Chien, Chih-Chun

    2016-01-01

    While batteries offer electronic source and sink for electronic devices, atomic analogues of source and sink and their theoretical descriptions have been a challenge in cold-atom systems. Here we consider dynamically emerged local potentials as controllable source and sink for bosonic atoms. Although a sink potential can collect bosons in equilibrium and indicate its usefulness in the adiabatic limit, sudden switching of the potential exhibits low effectiveness in pushing bosons into it. This is due to conservation of energy and particle in isolated systems such as cold atoms. By varying the potential depth and interaction strength, the systems can further exhibit averse response, where a deeper emerged potential attracts less bosonic atoms into it. To explore possibilities for improving the effectiveness, we investigate what types of system-environment coupling can help bring bosons into a dynamically emerged sink, and a Lindblad operator corresponding to local cooling is found to serve the purpose. PMID:27849034

  9. Intrinsic and extrinsic drivers of source-sink dynamics

    EPA Science Inventory

    1. Many factors affect the presence and exchange of individuals among subpopulations and influence not only the emergence, but the strength of ensuing source-sink dynamics within metapopulations, yet their relative contributions remain largely unexplored. 2. To help identify the...

  10. Spatial variation in anthropogenic mortality induces a source-sink system in a hunted mesopredator.

    PubMed

    Minnie, Liaan; Zalewski, Andrzej; Zalewska, Hanna; Kerley, Graham I H

    2018-04-01

    Lethal carnivore management is a prevailing strategy to reduce livestock predation. Intensity of lethal management varies according to land-use, where carnivores are more intensively hunted on farms relative to reserves. Variations in hunting intensity may result in the formation of a source-sink system where carnivores disperse from high-density to low-density areas. Few studies quantify dispersal between supposed sources and sinks-a fundamental requirement for source-sink systems. We used the black-backed jackal (Canis mesomelas) as a model to determine if heterogeneous anthropogenic mortality induces a source-sink system. We analysed 12 microsatellite loci from 554 individuals from lightly hunted and previously unhunted reserves, as well as heavily hunted livestock- and game farms. Bayesian genotype assignment showed that jackal populations displayed a hierarchical population structure. We identified two genetically distinct populations at the regional level and nine distinct subpopulations at the local level, with each cluster corresponding to distinct land-use types separated by various dispersal barriers. Migration, estimated using Bayesian multilocus genotyping, between reserves and farms was asymmetric and heterogeneous anthropogenic mortality induced source-sink dynamics via compensatory immigration. Additionally some heavily hunted populations also acted as source populations, exporting individuals to other heavily hunted populations. This indicates that heterogeneous anthropogenic mortality results in the formation of a complex series of interconnected sources and sinks. Thus, lethal management of mesopredators may not be an effective long-term strategy in reducing livestock predation, as dispersal and, more importantly, compensatory immigration may continue to affect population reduction efforts as long as dispersal from other areas persists.

  11. Source-sink dynamics sustain central stonerollers (Campostoma anomalum) in a heavily urbanized catchment

    Treesearch

    Eric R. Waits; Mark J. Bagley; Michael J. Blum; Frank H. McCormick; James M. Lazorchak

    2008-01-01

    Relating local demographic processes to spatial structure (e.g. habitat heterogeneity) is essential for understanding population and species persistence (Hanski & Gilpin, 1997; Fagan, 2002). Yet few studies have tested general hypotheses about the importance of spatial patterns in determining population dynamics within river­stream networks (Lowe, Likens &...

  12. Phenotypic plasticity despite source-sink population dynamics in a long-lived perennial plant.

    PubMed

    Anderson, Jill T; Sparks, Jed P; Geber, Monica A

    2010-11-01

    • Species that exhibit adaptive plasticity alter their phenotypes in response to environmental conditions, thereby maximizing fitness in heterogeneous landscapes. However, under demographic source-sink dynamics, selection should favor traits that enhance fitness in the source habitat at the expense of fitness in the marginal habitat. Consistent with source-sink dynamics, the perennial blueberry, Vaccinium elliottii (Ericaceae), shows substantially higher fitness and population sizes in dry upland forests than in flood-prone bottomland forests, and asymmetrical gene flow occurs from upland populations into bottomland populations. Here, we examined whether this species expresses plasticity to these distinct environments despite source-sink dynamics. • We assessed phenotypic responses to a complex environmental gradient in the field and to water stress in the glasshouse. • Contrary to expectations, V. elliottii exhibited a high degree of plasticity in foliar and root traits (specific leaf area, carbon isotope ratios, foliar nitrogen content, root : shoot ratio, root porosity and root architecture). • We propose that plasticity can be maintained in source-sink systems if it is favored within the source habitat and/or a phylogenetic artifact that is not costly. Additionally, plasticity could be advantageous if habitat-based differences in fitness result from incipient niche expansion. Our results illuminate the importance of evaluating phenotypic traits and fitness components across heterogeneous landscapes. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  13. A new tool that links landscale connectivity and source-sink dynamics to population viability

    EPA Science Inventory

    The importance of connectivity and source-sink dynamics to conservation planning is widely appreciated. But the use of these concepts in practical applications such as the identification of critical habitat has been slowed because few models are designed to identify demographic s...

  14. Multiscale Metabolic Modeling: Dynamic Flux Balance Analysis on a Whole-Plant Scale1[W][OPEN

    PubMed Central

    Grafahrend-Belau, Eva; Junker, Astrid; Eschenröder, André; Müller, Johannes; Schreiber, Falk; Junker, Björn H.

    2013-01-01

    Plant metabolism is characterized by a unique complexity on the cellular, tissue, and organ levels. On a whole-plant scale, changing source and sink relations accompanying plant development add another level of complexity to metabolism. With the aim of achieving a spatiotemporal resolution of source-sink interactions in crop plant metabolism, a multiscale metabolic modeling (MMM) approach was applied that integrates static organ-specific models with a whole-plant dynamic model. Allowing for a dynamic flux balance analysis on a whole-plant scale, the MMM approach was used to decipher the metabolic behavior of source and sink organs during the generative phase of the barley (Hordeum vulgare) plant. It reveals a sink-to-source shift of the barley stem caused by the senescence-related decrease in leaf source capacity, which is not sufficient to meet the nutrient requirements of sink organs such as the growing seed. The MMM platform represents a novel approach for the in silico analysis of metabolism on a whole-plant level, allowing for a systemic, spatiotemporally resolved understanding of metabolic processes involved in carbon partitioning, thus providing a novel tool for studying yield stability and crop improvement. PMID:23926077

  15. Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach.

    PubMed

    Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung

    2009-01-01

    Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.

  16. Coexistence in streams: Do source-sink dynamics allow salamanders to persist with fish predators?

    USGS Publications Warehouse

    Sepulveda, A.J.; Lowe, W.H.

    2011-01-01

    Theory suggests that source-sink dynamics can allow coexistence of intraguild predators and prey, but empirical evidence for this coexistence mechanism is limited. We used capture-mark-recapture, genetic methods, and stable isotopes to test whether source-sink dynamics promote coexistence between stream fishes, the intraguild predator, and stream salamanders (Dicamptodon aterrimus), the intraguild prey. Salamander populations from upstream reaches without fish were predicted to maintain or supplement sink populations in downstream reaches with fish. We found instead that downstream reaches with fish were not sinks even though fish consumed salamander larvae-apparent survival, recruitment, and population growth rate did not differ between upstream and downstream reaches. There was also no difference between upstream and downstream reaches in net emigration. We did find that D. aterrimus moved frequently along streams, but believe that this is a response to seasonal habitat changes rather than intraguild predation. Our study provides empirical evidence that local-scale mechanisms are more important than dispersal dynamics to coexistence of streams salamanders and fish. More broadly, it shows the value of empirical data on dispersal and gene flow for distinguishing between local and spatial mechanisms of coexistence. ?? 2011 Springer-Verlag.

  17. Bounds on the dynamics of sink populations with noisy immigration.

    PubMed

    Eager, Eric Alan; Guiver, Chris; Hodgson, Dave; Rebarber, Richard; Stott, Iain; Townley, Stuart

    2014-03-01

    Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics of sink populations are not easily modelled using the standard framework of per capita rates of immigration, because numbers of immigrants are determined by extrinsic sources (for example, source populations, or population managers). Here we appeal to a systems and control framework to place upper and lower bounds on both the transient and future dynamics of sink populations that are subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety of models found in the literature. We apply the results to case studies derived from published models for Chinook salmon (Oncorhynchus tshawytscha) and blowout penstemon (Penstemon haydenii). Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.

    PubMed

    Ma, Yuntao; Chen, Youjia; Zhu, Jinyu; Meng, Lei; Guo, Yan; Li, Baoguo; Hoogenboom, Gerrit

    2018-02-13

    Failure to account for the variation of kernel growth in a cereal crop simulation model may cause serious deviations in the estimates of crop yield. The goal of this research was to revise the GREENLAB-Maize model to incorporate source- and sink-limited allocation approaches to simulate the dry matter accumulation of individual kernels of an ear (GREENLAB-Maize-Kernel). The model used potential individual kernel growth rates to characterize the individual potential sink demand. The remobilization of non-structural carbohydrates from reserve organs to kernels was also incorporated. Two years of field experiments were conducted to determine the model parameter values and to evaluate the model using two maize hybrids with different plant densities and pollination treatments. Detailed observations were made on the dimensions and dry weights of individual kernels and other above-ground plant organs throughout the seasons. Three basic traits characterizing an individual kernel were compared on simulated and measured individual kernels: (1) final kernel size; (2) kernel growth rate; and (3) duration of kernel filling. Simulations of individual kernel growth closely corresponded to experimental data. The model was able to reproduce the observed dry weight of plant organs well. Then, the source-sink dynamics and the remobilization of carbohydrates for kernel growth were quantified to show that remobilization processes accompanied source-sink dynamics during the kernel-filling process. We conclude that the model may be used to explore options for optimizing plant kernel yield by matching maize management to the environment, taking into account responses at the level of individual kernels. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Quantifying terrestrial ecosystem carbon dynamics in the Jinsha watershed, Upper Yangtze, China from 1975 to 2000

    USGS Publications Warehouse

    Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo

    2010-01-01

    Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.

  20. Characterizing Materials Sources and Sinks; Current Approaches: Part II. Chemical and Physical Characterization

    EPA Science Inventory

    The paper discusses methods for characterizing chemical emissions from material sources, including laboratory, dynamic chamber, and full-scale studies. Indoor sources and their interaction with sinks play a major role in determining indoor air quality (IAQ). Techniques for evalua...

  1. The role of local populations within a landscape context: Defining and classifying sources and sinks

    USGS Publications Warehouse

    Runge, J.P.; Runge, M.C.; Nichols, J.D.

    2006-01-01

    The interaction of local populations has been the focus of an increasing number of studies in the past 30 years. The study of source-sink dynamics has especially generated much interest. Many of the criteria used to distinguish sources and sinks incorporate the process of apparent survival (i.e., the combined probability of true survival and site fidelity) but not emigration. These criteria implicitly treat emigration as mortality, thus biasing the classification of sources and sinks in a manner that could lead to flawed habitat management. Some of the same criteria require rather restrictive assumptions about population equilibrium that, when violated, can also generate misleading inference. Here, we expand on a criterion (denoted ?contribution? or Cr) that incorporates successful emigration in differentiating sources and sinks and that makes no restrictive assumptions about dispersal or equilibrium processes in populations of interest. The metric Cr is rooted in the theory of matrix population models, yet it also contains clearly specified parameters that have been estimated in previous empirical research. We suggest that estimates of emigration are important for delineating sources and sinks and, more generally, for evaluating how local populations interact to generate overall system dynamics. This suggestion has direct implications for issues such as species conservation and habitat management.

  2. Quantifying terrestrial ecosystem carbon dynamics in the Jinsha watershed, Upper Yangtze, China from 1975 to 2000

    USGS Publications Warehouse

    Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo; Yin, Runsheng

    2009-01-01

    Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon storage and loss. Here we use the General Ensemble Biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China's upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sinks/source pattern showed a high degree of spatial heterogeneity, Carbon sinks were associated with forest areas without disturbances, whereas carbon Sources were primarily caused by stand-replacing disturbances. This highlights the importance of land-use history in determining the regional carbon sinks/source pattern.

  3. Endangered Butterflies as a Model System for Managing Source Sink Dynamics on Department of Defense Lands

    DTIC Science & Technology

    patches to cycle from sink to source status and back.Objective: Through a combination of field studies and state-of-the-art quantitative models, we...landscapes with dynamic changes in habitat quality due to management. We also validated our general approach by comparing patterns in our focal species to general, cross-taxa, patterns.

  4. Carbon partitioning in Arabidopsis thaliana is a dynamic process controlled by the plants metabolic status and its circadian clock.

    PubMed

    Kölling, Katharina; Thalmann, Matthias; Müller, Antonia; Jenny, Camilla; Zeeman, Samuel C

    2015-10-01

    Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used (14) CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low-starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant's circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  5. Changes in Amazonian forest biomass, dynamics, and composition, 1980-2002

    NASA Astrophysics Data System (ADS)

    Phillips, Oliver L.; Higuchi, Niro; Vieira, Simone; Baker, Timothy R.; Chao, Kuo-Jung; Lewis, Simon L.

    Long-term, on-the-ground monitoring of forest plots distributed across Amazonia provides a powerful means to quantify stocks and fluxes of biomass and biodiversity. Here we examine the evidence for concerted changes in the structure, dynamics, and functional composition of old-growth Amazonian forests over recent decades. Mature forests have, as a whole, gained biomass and undergone accelerated growth and dynamics, but questions remain as to the long-term persistence of these changes. Because forest growth on average exceeds mortality, intact Amazonian forests have been functioning as a carbon sink. We estimate a net biomass increase in trees ≥10 cm diameter of 0.62 ± 0.23 t C ha-1 a-1 through the late twentieth century. If representative of the wider forest landscape, this translates into a sink in South American old-growth forest of at least 0.49 ± 0.18 Pg C a-1. If other biomass and necromass components also increased proportionally, the estimated South American old-growth forest sink is 0.79 ± 0.29 Pg C a-1, before allowing for possible gains in soil carbon. If tropical forests elsewhere are behaving similarly, the old-growth biomass forest sink would be 1.60 ± 0.58 Pg C a-1. This bottom-up estimate of the carbon balance of tropical forests is preliminary, pending syntheses of detailed biometric studies across the other tropical continents. There is also some evidence for recent changes in the functional composition (biodiversity) of Amazonian forest, but the evidence is less comprehensive than that for changes in structure and dynamics. The most likely driver(s) of changes are recent increases in the supply of resources such as atmospheric carbon dioxide, which would increase net primary productivity, increasing tree growth and recruitment, and, in turn, mortality. In the future the growth response of remaining undisturbed Amazonian forests is likely to saturate, and there is a risk of these ecosystems transitioning from sink to source driven by higher respiration (temperature), higher mortality (drought), or compositional change (functional shifts toward lighterwooded plants). Even a modest switch from carbon sink to source for Amazonian forests would impact global climate, biodiversity, and human welfare, while the documented acceleration of tree growth and mortality may already be affecting the interactions of thousands of plant and millions of animal species.

  6. Magnetospheric electrons

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Thorne, R. M.

    1972-01-01

    Coupling of source, transport, and sink processes produces a fairly accurate model for the macroscopic structure and dynamics of magnetospheric electrons. Auroral electrons are controlled by convective transport from a plasma sheet source coupled with a precipitation loss due to whistler and electrostatic plasma turbulence. Outer and inner zone electrons are governed by radial diffusion transport from convection and acceleration sources external to the plasmapause and by parasitic precipitation losses arising from cyclotron and Landau interactions with whistler and ion cyclotron turbulence.

  7. Carbon partitioning in Arabidopsis thaliana is a dynamic process controlled by the plants metabolic status and its circadian clock

    PubMed Central

    Kölling, Katharina; Thalmann, Matthias; Müller, Antonia; Jenny, Camilla; Zeeman, Samuel C

    2015-01-01

    Abstract Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used 14CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low-starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant’s circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock. This work focusses on the temporal changes in the allocation and transport of photoassimilates within Arabidopsis rosettes, helping to fill a gap in our understanding of plant growth. Using short pulses of 14C-labelled carbon dioxide, we quantified how much carbon is used for growth and how much is stored as starch for use at night. In source leaves, partitioning is surprisingly dynamic during the day, even though photosynthesis is relatively constant, while in sink leaves, utilisation is more constant. Furthermore, by analysing metabolic mutants and clock mutants, and by manipulating the growth conditions, we show that partitioning is responsive to endogenous signals such as carbon starvation and the plant’s circadian rhythm. Commentary: Understanding carbon partitioning and its role in determining plant growth PMID:25651812

  8. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    USGS Publications Warehouse

    Jain, A.A.; Yang, Xiaojuan; Kheshgi, H.; McGuire, A. David; Post, W.; Kicklighter, David W.

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.

  9. Seasonal source-sink dynamics at the edge of a species' range

    USGS Publications Warehouse

    Kanda, L.L.; Fuller, T.K.; Sievert, P.R.; Kellogg, R.L.

    2009-01-01

    The roles of dispersal and population dynamics in determining species' range boundaries recently have received theoretical attention but little empirical work. Here we provide data on survival, reproduction, and movement for a Virginia opossum (Didelphis virginiana) population at a local distributional edge in central Massachusetts (USA). Most juvenile females that apparently exploited anthropogenic resources survived their first winter, whereas those using adjacent natural resources died of starvation. In spring, adult females recolonized natural areas. A life-table model suggests that a population exploiting anthropogenic resources may grow, acting as source to a geographically interlaced sink of opossums using only natural resources, and also providing emigrants for further range expansion to new human-dominated landscapes. In a geographical model, this source-sink dynamic is consistent with the local distribution identified through road-kill surveys. The Virginia opossum's exploitation of human resources likely ameliorates energetically restrictive winters and may explain both their local distribution and their northward expansion in unsuitable natural climatic regimes. Landscape heterogeneity, such as created by urbanization, may result in source-sink dynamics at highly localized scales. Differential fitness and individual dispersal movements within local populations are key to generating regional distributions, and thus species ranges, that exceed expectations. ?? 2009 by the Ecological Society of America.

  10. Population-level consequences of herbivory, changing climate, and source-sink dynamics on a long-lived invasive shrub.

    PubMed

    van Klinken, R D; Pichancourt, J B

    2015-12-01

    Long-lived plant species are highly valued environmentally, economically, and socially, but can also cause substantial harm as invaders. Realistic demographic predictions can guide management decisions, and are particularly valuable for long-lived species where population response times can be long. Long-lived species are also challenging, given population dynamics can be affected by factors as diverse as herbivory, climate, and dispersal. We developed a matrix model to evaluate the effects of herbivory by a leaf-feeding biological control agent released in Australia against a long-lived invasive shrub (mesquite, Leguminoseae: Prosopis spp.). The stage-structured, density-dependent model used an annual time step and 10 climatically diverse years of field data. Mesquite population demography is sensitive to source-sink dynamics as most seeds are consumed and redistributed spatially by livestock. In addition, individual mesquite plants, because they are long lived, experience natural climate variation that cycles over decadal scales, as well as anthropogenic climate change. The model therefore explicitly considered the effects of both net dispersal and climate variation. Herbivory strongly regulated mesquite populations through reduced growth and fertility, but additional mortality of older plants will be required to reach management goals within a reasonable time frame. Growth and survival of seeds and seedlings were correlated with daily soil moisture. As a result, population dynamics were sensitive to rainfall scenario, but population response times were typically slow (20-800 years to reach equilibrium or extinction) due to adult longevity. Equilibrium population densities were expected to remain 5% higher, and be more dynamic, if historical multi-decadal climate patterns persist, the effect being dampened by herbivory suppressing seed production irrespective of preceding rainfall. Dense infestations were unlikely to form under a drier climate, and required net dispersal under the current climate. Seed input wasn't required to form dense infestations under a wetter climate. Each factor we considered (ongoing herbivory, changing climate, and source-sink dynamics) has a strong bearing on how this invasive species should be managed, highlighting the need for considering both ecological context (in this case, source-sink dynamics) and the effect of climate variability at relevant temporal scales (daily, multi-decadal, and anthropogenic) when deriving management recommendations for long-lived species.

  11. Identifying Greater Sage-Grouse source and sink habitats for conservation planning in an energy development landscape.

    PubMed

    Kirol, Christopher P; Beck, Jeffrey L; Huzurbazar, Snehalata V; Holloran, Matthew J; Miller, Scott N

    2015-06-01

    Conserving a declining species that is facing many threats, including overlap of its habitats with energy extraction activities, depends upon identifying and prioritizing the value of the habitats that remain. In addition, habitat quality is often compromised when source habitats are lost or fragmented due to anthropogenic development. Our objective was to build an ecological model to classify and map habitat quality in terms of source or sink dynamics for Greater Sage-Grouse (Centrocercus urophasianus) in the Atlantic Rim Project Area (ARPA), a developing coalbed natural gas field in south-central Wyoming, USA. We used occurrence and survival modeling to evaluate relationships between environmental and anthropogenic variables at multiple spatial scales and for all female summer life stages, including nesting, brood-rearing, and non-brooding females. For each life stage, we created resource selection functions (RSFs). We weighted the RSFs and combined them to form a female summer occurrence map. We modeled survival also as a function of spatial variables for nest, brood, and adult female summer survival. Our survival-models were mapped as survival probability functions individually and then combined with fixed vital rates in a fitness metric model that, when mapped, predicted habitat productivity (productivity map). Our results demonstrate a suite of environmental and anthropogenic variables at multiple scales that were predictive of occurrence and survival. We created a source-sink map by overlaying our female summer occurrence map and productivity map to predict habitats contributing to population surpluses (source habitats) or deficits (sink habitat) and low-occurrence habitats on the landscape. The source-sink map predicted that of the Sage-Grouse habitat within the ARPA, 30% was primary source, 29% was secondary source, 4% was primary sink, 6% was secondary sink, and 31% was low occurrence. Our results provide evidence that energy development and avoidance of energy infrastructure were probably reducing the amount of source habitat within the ARPA landscape. Our source-sink map provides managers with a means of prioritizing habitats for conservation planning based on source and sink dynamics. The spatial identification of high value (i.e., primary source) as well as suboptimal (i.e., primary sink) habitats allows for informed energy development to minimize effects on local wildlife populations.

  12. Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.

    PubMed

    Tanaka, W; Mantese, A I; Maddonni, G A

    2009-08-01

    Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P < 0.01) allocation of embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P < 0.01) and soluble sugars (r = 0.95, P < 0.05) were found. Coincidently, embryos with low oil concentration had an increased (P < 0.05-0.10) scutellum cell area occupied by starch granules and fewer oil bodies. The effects of pollen source on both embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.

  13. Mapping sources, sinks, and connectivity using a simulation model of Northern Spotted Owls

    EPA Science Inventory

    This is a study of source-sink dynamics at a landscape scale. In conducting the study, we make use of a mature simulation model for the northern spotted owl (Strix occidentalis caurina) that was developed as part of the US Fish and Wildlife Service’s most recent recovery plannin...

  14. Simulation of fruit-set and trophic competition and optimization of yield advantages in six Capsicum cultivars using functional-structural plant modelling.

    PubMed

    Ma, Y T; Wubs, A M; Mathieu, A; Heuvelink, E; Zhu, J Y; Hu, B G; Cournède, P H; de Reffye, P

    2011-04-01

    Many indeterminate plants can have wide fluctuations in the pattern of fruit-set and harvest. Fruit-set in these types of plants depends largely on the balance between source (assimilate supply) and sink strength (assimilate demand) within the plant. This study aims to evaluate the ability of functional-structural plant models to simulate different fruit-set patterns among Capsicum cultivars through source-sink relationships. A greenhouse experiment of six Capsicum cultivars characterized with different fruit weight and fruit-set was conducted. Fruit-set patterns and potential fruit sink strength were determined through measurement. Source and sink strength of other organs were determined via the GREENLAB model, with a description of plant organ weight and dimensions according to plant topological structure established from the measured data as inputs. Parameter optimization was determined using a generalized least squares method for the entire growth cycle. Fruit sink strength differed among cultivars. Vegetative sink strength was generally lower for large-fruited cultivars than for small-fruited ones. The larger the size of the fruit, the larger variation there was in fruit-set and fruit yield. Large-fruited cultivars need a higher source-sink ratio for fruit-set, which means higher demand for assimilates. Temporal heterogeneity of fruit-set affected both number and yield of fruit. The simulation study showed that reducing heterogeneity of fruit-set was obtained by different approaches: for example, increasing source strength; decreasing vegetative sink strength, source-sink ratio for fruit-set and flower appearance rate; and harvesting individual fruits earlier before full ripeness. Simulation results showed that, when we increased source strength or decreased vegetative sink strength, fruit-set and fruit weight increased. However, no significant differences were found between large-fruited and small-fruited groups of cultivars regarding the effects of source and vegetative sink strength on fruit-set and fruit weight. When the source-sink ratio at fruit-set decreased, the number of fruit retained on the plant increased competition for assimilates with vegetative organs. Therefore, total plant and vegetative dry weights decreased, especially for large-fruited cultivars. Optimization study showed that temporal heterogeneity of fruit-set and ripening was predicted to be reduced when fruits were harvested earlier. Furthermore, there was a 20 % increase in the number of extra fruit set.

  15. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production.

    PubMed

    Slewinski, Thomas L

    2012-08-01

    A dramatic change in agricultural crops is needed in order to keep pace with the demands of an increasing human population, exponential need for renewable fuels, and uncertain climatic changes. Grasses make up the vast majority of agricultural commodities. How these grasses capture, transport, and store carbohydrates underpins all aspects of crop productivity. Sink-source dynamics within the plant direct how much, where, and when carbohydrates are allocated, as well as determine the harvestable tissue. Carbohydrate partitioning can limit the yield capacity of these plants, thus offering a potential target for crop improvement. Grasses have the ability to buffer this sink-source interaction by transiently storing carbohydrates in stem tissue when production from the source is greater than whole-plant demand. These reserves improve yield stability in grain crops by providing an alternative source when photosynthetic capacity is reduced during the later phases of grain filling, or during periods of environmental and biotic stresses. Domesticated grasses such as sugarcane and sweet sorghum have undergone selection for high accumulation of stem carbohydrates, which serve as the primary sources of sugars for human and animal consumption, as well as ethanol production for fuel. With the enormous expectations placed on agricultural production in the near future, research into carbohydrate partitioning in grasses is essential for maintaining and increasing yields in grass crops. This review highlights the current knowledge of non-structural carbohydrate dynamics in grass stems and discusses the impacts of stem reserves in essential agronomic grasses.

  16. A Bayesian methodological framework for accommodating interannual variability of nutrient loading with the SPARROW model

    NASA Astrophysics Data System (ADS)

    Wellen, Christopher; Arhonditsis, George B.; Labencki, Tanya; Boyd, Duncan

    2012-10-01

    Regression-type, hybrid empirical/process-based models (e.g., SPARROW, PolFlow) have assumed a prominent role in efforts to estimate the sources and transport of nutrient pollution at river basin scales. However, almost no attempts have been made to explicitly accommodate interannual nutrient loading variability in their structure, despite empirical and theoretical evidence indicating that the associated source/sink processes are quite variable at annual timescales. In this study, we present two methodological approaches to accommodate interannual variability with the Spatially Referenced Regressions on Watershed attributes (SPARROW) nonlinear regression model. The first strategy uses the SPARROW model to estimate a static baseline load and climatic variables (e.g., precipitation) to drive the interannual variability. The second approach allows the source/sink processes within the SPARROW model to vary at annual timescales using dynamic parameter estimation techniques akin to those used in dynamic linear models. Model parameterization is founded upon Bayesian inference techniques that explicitly consider calibration data and model uncertainty. Our case study is the Hamilton Harbor watershed, a mixed agricultural and urban residential area located at the western end of Lake Ontario, Canada. Our analysis suggests that dynamic parameter estimation is the more parsimonious of the two strategies tested and can offer insights into the temporal structural changes associated with watershed functioning. Consistent with empirical and theoretical work, model estimated annual in-stream attenuation rates varied inversely with annual discharge. Estimated phosphorus source areas were concentrated near the receiving water body during years of high in-stream attenuation and dispersed along the main stems of the streams during years of low attenuation, suggesting that nutrient source areas are subject to interannual variability.

  17. Carbon source-sink limitations differ between two species with contrasting growth strategies.

    PubMed

    Burnett, Angela C; Rogers, Alistair; Rees, Mark; Osborne, Colin P

    2016-11-01

    Understanding how carbon source and sink strengths limit plant growth is a critical knowledge gap that hinders efforts to maximize crop yield. We investigated how differences in growth rate arise from source-sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2 ]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbon and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2 ] indicating that source strength was near maximal at current [CO 2 ]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2 ] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2 ], and lower non-structural carbohydrate accumulation. Alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2 ]. © 2016 John Wiley & Sons Ltd.

  18. Soil organic matter dynamics under decaying wood in a subtropical wet forest: effect of tree species and decay stage.

    Treesearch

    Marcela Zalamea; Grizelle Gonzalez; Chien-Lu Ping; Gary Michaelson

    2007-01-01

    Decaying wood is an important structural and functional component of forests: it contributes to generate habitat diversity, acts as either sink or source of nutrients, and plays a preponderant role in soil formation. Thus, decaying wood might likely have measurable effects on chemical properties of the underlying soil.We hypothesized that decaying wood would have a...

  19. Carbon source-sink limitations differ between two species with contrasting growth strategies: Source-sink limitations vary with growth strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, Angela C.; Rogers, A.; Rees, M.

    When we understand how carbon source and sink strengths limit plant growth we realized how critical the knowledge gap is in hindering efforts to maximize crop yield. Here, we investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbonmore » and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2] indicating that source strength was near maximal at current [CO 2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2], and lower non-structural carbohydrate accumulation. Finally, by alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2].« less

  20. Carbon source-sink limitations differ between two species with contrasting growth strategies: Source-sink limitations vary with growth strategy

    DOE PAGES

    Burnett, Angela C.; Rogers, A.; Rees, M.; ...

    2016-09-22

    When we understand how carbon source and sink strengths limit plant growth we realized how critical the knowledge gap is in hindering efforts to maximize crop yield. Here, we investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbonmore » and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2] indicating that source strength was near maximal at current [CO 2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2], and lower non-structural carbohydrate accumulation. Finally, by alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2].« less

  1. Shading responses of carbon allocation dynamics in mountain grassland

    NASA Astrophysics Data System (ADS)

    Bahn, M.; Lattanzi, F. A.; Brueggemann, N.; Siegwolf, R. T.; Richter, A.

    2012-12-01

    Carbon (C) allocation strongly influences plant and soil processes. Global environmental changes can alter source - sink relations of plants with potential implications for C allocation. Short-term C allocation dynamics in ecosystems and their responses to environmental changes are still poorly understood. To analyze effects of assimilate supply (i.e. C source strength) on ecosystem C allocation dynamics and the role of non-structural carbohydrates, canopy sections of a mountain meadow were pulse labeled with 13CO2 and subsequently shaded for a week or left unshaded (control). Tracer dynamics in above- and belowground sucrose and starch pools were analysed and coupled using compartmental modelling. The hypothesis was tested that shading affects tracer dynamics in non-structural carbohydrates and diminishes the transfer of recently assimilated C to roots and their storage pools. In unshaded plots up to 40% of assimilated C was routed through short-term storage in shoot starch and sucrose to buffer day / night cycles in photosynthesis. Shoot- and root sucrose and shoot starch were kinetically closely related pools. The tracer dynamics of the modelled root sucrose pool corresponded well with those in soil CO2 efflux. Root starch played no role in buffering day / night cycles and likely acted as a seasonal store. Shading strongly reduced sucrose and starch concentrations in shoots but not roots and resulted in a massive reduction of leaf respiration, while root respiration was much less diminished. Shading affected tracer dynamics in sucrose and starch of shoots: shoot starch rapidly lost tracer, while sucrose transiently increased its tracer content. Surprisingly, shading did not alter the dynamics of root carbohydrates. Even under severe C limitation after one week of shading, tracer C continued to be incorporated in root starch. Also the amount of 13C incorporated in phospholipid fatty acids of soil microbial communities was not reduced by shading, though its residence time followed a changed pattern, suggesting an influence of C source strength on the utilization and turnover of recent plant-derived C. These findings will be discussed in the broader context of plant and ecosystem carbon allocation, with particular reference to the concepts of 'source versus sink strength' and 'passive versus active C storage'.

  2. Modelling recolonization of second-growth forest stands by the north american red squirrel Tamiasciurus hudsonicus.

    PubMed

    Nyquist, B; Tyson, R; Larsen, K

    2007-05-01

    In this paper, we present a model for source-sink population dynamics where the locations of source and sink habitats change over time. We do this in the context of the population dynamics of the North American red squirrel, Tamiasciurus hudsonicus, within a forest environment subject to harvesting and regrowth. Harvested patches of forest are initially sinks, then eventually become source habitat again as the forest regrows. At the same time, each harvested patch is gradually recolonized by squirrels from other forest patches. We are interested in the interaction of forest harvesting dynamics with squirrel population dynamics. This depends on the harvesting schedule, and on the choices squirrels make when deciding whether to settle in a mature forest patch or in a recently harvested patch. We find that the time it takes for a second-growth forest patch to be recolonized at the mature forest level is longer than the time required for the habitat quality to be restored to the mature forest level. We also notice that recolonization pressure decreases squirrel populations in neighbouring patches. The connectivity between forest patches and the cutting schedule used also affect the time course of recolonization and steady-state population levels.

  3. Global Ultraviolet Imager (GUVI) investigation

    NASA Technical Reports Server (NTRS)

    Christensen, Andrew B.

    1995-01-01

    This report covers the activities performed under NAS5-32572. The results of those activities are included in this Final Report. TIMED Science Objectives: (1) To determine the temperature, density, and wind structure of the MLTI (mixed layer thermal inertia), including the seasonal and latitudinal variations; and (2) To determine the relative importance of the various radiative, chemical, electrodynamical, and dynamical sources and sinks of energy for the thermal structure of the MLTI. GUVI Science Goals: (1) Determine the spatial and temporal variations of temperature and constituent densities in the lower thermosphere; and (2) Determine the importance of auroral energy sources and solar EUV (extreme ultraviolet) to the energy balance of the region.

  4. Sinks without borders: Snowshoe hare dynamics in a complex landscape

    USGS Publications Warehouse

    Griffin, Paul C.; Mills, L. Scott

    2009-01-01

    A full understanding of population dynamics of wide-ranging animals should account for the effects that movement and habitat use have on individual contributions to population growth or decline. Quantifying the per-capita, habitat-specific contribution to population growth can clarify the value of different patch types, and help to differentiate population sources from population sinks. Snowshoe hares, Lepus americanus, routinely use various habitat types in the landscapes they inhabit in the contiguous US, where managing forests for high snowshoe hare density is a priority for conservation of Canada lynx, Lynx canadensis. We estimated density and demographic rates via mark–recapture live trapping and radio-telemetry within four forest stand structure (FSS) types at three study areas within heterogeneous managed forests in western Montana. We found support for known fate survival models with time-varying individual covariates representing the proportion of locations in each of the FSS types, with survival rates decreasing as use of open young and open mature FSS types increased. The per-capita contribution to overall population growth increased with use of the dense mature or dense young FSS types and decreased with use of the open young or open mature FSS types, and relatively high levels of immigration appear to be necessary to sustain hares in the open FSS types. Our results support a conceptual model for snowshoe hares in the southern range in which sink habitats (open areas) prevent the buildup of high hare densities. More broadly, we use this system to develop a novel approach to quantify demographic sources and sinks for animals making routine movements through complex fragmented landscapes.

  5. MEASUREMENT OF VOCS DESORBED FROM BUILDING MATERIALS--A HIGH TEMPERATURE DYNAMIC CHAMBER METHOD

    EPA Science Inventory

    Mass balance is a commonly used approach for characterizing the source and sink behavior of building materials. Because the traditional sink test methods evaluate the adsorption and desorption of volatile organic compounds (VOC) at ambient temperatures, the desorption process is...

  6. Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere

    NASA Technical Reports Server (NTRS)

    Box, Elgene O.

    1988-01-01

    The estimation of the seasonal dynamics of biospheric-carbon sources and sinks to be used as an input to global atmospheric CO2 studies and models is discussed. An ecological biosphere model is given and the advantages of the model are examined. Monthly maps of estimated biospheric carbon source and sink regions and estimates of total carbon fluxes are presented for an equilibrium terrestrial biosphere. The results are compared with those from other models. It is suggested that, despite maximum variations of atmospheric CO2 in boreal latitudes, the enormous contributions of tropical wet-dry regions to global atmospheric CO2 seasonality can not be ignored.

  7. The global carbon dioxide budget

    USGS Publications Warehouse

    Sundquist, E.T.

    1993-01-01

    The increase in atmospheric CO2 levels during the last deglaciation was comparable in magnitude to the recent historical increase. However, global CO2 budgets for these changes reflect fundamental differences in rates and in sources and sinks. The modern oceans are a rapid net CO2 sink, whereas the oceans were a gradual source during the deglaciation. Unidentified terrestrial CO2 sinks are important uncertainties in both the deglacial and recent CO2 budgets. The deglacial CO2 budget represents a complexity of long-term dynamic behavior that is not adequately addressed by current models used to forecast future atmospheric CO2 levels.

  8. Wildland fire emissions, carbon, and climate: Seeing the forest and the trees - A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems

    Treesearch

    Rachel A. Loehman; Elizabeth Reinhardt; Karin L. Riley

    2014-01-01

    Wildfires are an important component of the terrestrial carbon cycle and one of the main pathways for movement of carbon from the land surface to the atmosphere. Fires have received much attention in recent years as potential catalysts for shifting landscapes from carbon sinks to carbon sources. Unless structural or functional ecosystem shifts occur, net carbon balance...

  9. Shoot litter breakdown and zinc dynamics of an aquatic plant, Schoenoplectus californicus.

    PubMed

    Arreghini, Silvana; de Cabo, Laura; Serafini, Roberto José María; Fabrizio de Iorio, Alicia

    2018-07-03

    Decomposition of plant debris is an important process in determining the structure and function of aquatic ecosystems. The aims were to find a mathematic model fitting the decomposition process of Schoenoplectus californicus shoots containing different Zn concentrations; compare the decomposition rates; and assess metal accumulation/mobilization during decomposition. A litterbag technique was applied with shoots containing three levels of Zn: collected from an unpolluted river (RIV) and from experimental populations at low (LoZn) and high (HiZn) Zn supply. The double exponential model explained S. californicus shoot decomposition, at first, higher initial proportion of refractory fraction in RIV detritus determined a lower decay rate and until 68 days, RIV and LoZn detritus behaved like a source of metal, releasing soluble/weakly bound zinc into the water; after 68 days, they became like a sink. However, HiZn detritus showed rapid release into the water during the first 8 days, changing to the sink condition up to 68 days, and then returning to the source condition up to 369 days. The knowledge of the role of detritus (sink/source) will allow defining a correct management of the vegetation used for zinc removal and providing a valuable tool for environmental remediation and rehabilitation planning.

  10. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology.

    PubMed

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-11-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the "source-sink" theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of "source" of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km(2) in 2008, and the "sink" was 172.06 km(2). The "source" of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the "sink" was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of "source" gets weaker along with the distance from the seas boundary increase, while "sink" gets stronger. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Consequences of a refuge for the predator-prey dynamics of a wolf-elk system in Banff National Park, Alberta, Canada.

    PubMed

    Goldberg, Joshua F; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027-0.186 and 0.001-0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9-2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013-0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146-0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031-0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge.

  12. Consequences of a Refuge for the Predator-Prey Dynamics of a Wolf-Elk System in Banff National Park, Alberta, Canada

    PubMed Central

    Goldberg, Joshua F.; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027–0.186 and 0.001–0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9–2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013–0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146–0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031–0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge. PMID:24670632

  13. The effect of glyphosate on import into a sink leaf of sugar beet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, Wenjang; Geiger, D.R.

    1990-05-01

    The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying {sup 14}CO{sub 2} to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying {sup 14}Cmore » were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves.« less

  14. A Greedy Scanning Data Collection Strategy for Large-Scale Wireless Sensor Networks with a Mobile Sink.

    PubMed

    Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J P C

    2016-09-06

    Mobile sink is widely used for data collection in wireless sensor networks. It can avoid 'hot spot' problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios.

  15. A Greedy Scanning Data Collection Strategy for Large-Scale Wireless Sensor Networks with a Mobile Sink

    PubMed Central

    Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J. P. C.

    2016-01-01

    Mobile sink is widely used for data collection in wireless sensor networks. It can avoid ‘hot spot’ problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios. PMID:27608022

  16. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  17. Using plant growth modeling to analyze C source–sink relations under drought: inter- and intraspecific comparison

    PubMed Central

    Pallas, Benoît; Clément-Vidal, Anne; Rebolledo, Maria-Camila; Soulié, Jean-Christophe; Luquet, Delphine

    2013-01-01

    The ability to assimilate C and allocate non-structural carbohydrates (NSCs) to the most appropriate organs is crucial to maximize plant ecological or agronomic performance. Such C source and sink activities are differentially affected by environmental constraints. Under drought, plant growth is generally more sink than source limited as organ expansion or appearance rate is earlier and stronger affected than C assimilation. This favors plant survival and recovery but not always agronomic performance as NSC are stored rather than used for growth due to a modified metabolism in source and sink leaves. Such interactions between plant C and water balance are complex and plant modeling can help analyzing their impact on plant phenotype. This paper addresses the impact of trade-offs between C sink and source activities and plant production under drought, combining experimental and modeling approaches. Two contrasted monocotyledonous species (rice, oil palm) were studied. Experimentally, the sink limitation of plant growth under moderate drought was confirmed as well as the modifications in NSC metabolism in source and sink organs. Under severe stress, when C source became limiting, plant NSC concentration decreased. Two plant models dedicated to oil palm and rice morphogenesis were used to perform a sensitivity analysis and further explore how to optimize C sink and source drought sensitivity to maximize plant growth. Modeling results highlighted that optimal drought sensitivity depends both on drought type and species and that modeling is a great opportunity to analyze such complex processes. Further modeling needs and more generally the challenge of using models to support complex trait breeding are discussed. PMID:24204372

  18. Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations.

    PubMed

    Li, Mai-He; Xiao, Wen-Fa; Shi, Peili; Wang, San-Gen; Zhong, Yong-De; Liu, Xing-Liang; Wang, Xiao-Dan; Cai, Xiao-Hu; Shi, Zuo-Min

    2008-10-01

    No single hypothesis or theory has been widely accepted for explaining the functional mechanism of global alpine/arctic treeline formation. The present study tested whether the alpine treeline is determined by (1) the needle nitrogen content associated with photosynthesis (carbon gain); (2) a sufficient source-sink ratio of carbon; or (3) a sufficient C-N ratio. Nitrogen does not limit the growth and development of trees studied at the Himalayan treelines. Levels of non-structural carbohydrates (NSC) in trees were species-specific and site-dependent; therefore, the treeline cases studied did not show consistent evidence of source/carbon limitation or sink/growth limitation in treeline trees. However, results of the combined three treelines showed that the treeline trees may suffer from a winter carbon shortage. The source capacity and the sink capacity of a tree influence its tissue NSC concentrations and the carbon balance; therefore, we suggest that the persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar:starch ratio, and a balanced carbon source-sink relationship.

  19. Three-dimensional nonhydrostatic simulations of summer thunderstorms in the humid subtropics versus High Plains

    NASA Astrophysics Data System (ADS)

    Lin, Hsin-mu; Wang, Pao K.; Schlesinger, Robert E.

    2005-11-01

    This article presents a detailed comparison of cloud microphysical evolution among six warm-season thunderstorm simulations using a time-dependent three-dimensional model WISCDYMM. The six thunderstorms chosen for this study consist of three apiece from two contrasting climate zones, the US High Plains (one supercell and two multicells) and the humid subtropics (two in Florida, US and one in Taipei, Taiwan, all multicells). The primary goal of this study is to investigate the differences among thunderstorms in different climate regimes in terms of their microphysical structures and how differently these structures evolve in time. A subtropical case is used as an example to illustrate the general contents of a simulated storm, and two examples of the simulated storms, one humid subtropical and one northern High Plains case, are used to describe in detail the microphysical histories. The simulation results are compared with the available observational data, and the agreement between the two is shown to be at least fairly close overall. The analysis, synthesis and implications of the simulation results are then presented. The microphysical histories of the six simulated storms in terms of the domain-integrated masses of all five hydrometeor classes (cloud water, cloud ice, rain, snow, graupel/hail), along with the individual sources (and sinks) of the three precipitating hydrometeor classes (rain, snow, graupel/hail) are analyzed in detail. These analyses encompass both the absolute magnitudes and their percentage contributions to the totals, for the condensate mass and their precipitation production (and depletion) rates, respectively. Comparisons between the hydrometeor mass partitionings for the High Plains versus subtropical thunderstorms show that, in a time-averaged sense, ice hydrometeors (cloud ice, snow, graupel/hail) account for ˜ 70-80% of the total hydrometeor mass for the High Plains storms but only ˜ 50% for the subtropical storms, after the systems have reached quasi-steady mature states. This demonstrates that ice processes are highly important even in thunderstorms occurring in warm climatic regimes. The dominant rain sources are two of the graupel/hail sinks, shedding and melting, in both High Plains and subtropical storms, while the main rain sinks are accretion by hail and evaporation. The dominant graupel/hail sources are accretion of rain, snow and cloud water, while its main sinks are shedding and melting. The dominant snow sources are the Bergeron-Findeisen process and accretion of cloud water, while the main sinks are accretion by graupel/hail and sublimation. However, the rankings of the leading production and depletion mechanisms differ somewhat in different storm cases, especially for graupel/hail. The model results indicate that the same hydrometeor types in the different climates have their favored microphysical sources and sinks. These findings not only prove that thunderstorm structure depends on local dynamic and thermodynamic atmospheric conditions that are generally climate-dependent, but also provide information about the partitioning of hydrometeors in the storms. Such information is potentially useful for convective parameterization in large-scale models.

  20. Modeling the dynamical sinking of biogenic particles in eastern-boundary upwelling systems

    NASA Astrophysics Data System (ADS)

    Rossi, Vincent; Monroy, Pedro; López, Cristobal; Hernández-García, Emilio; Dewitte, Boris; Paulmier, Aurélien; Garçon, Véronique

    2017-04-01

    Although most of the organic material produced by photosynthesis in the upper ocean is recycled in surface waters, a significant portion sinks into the deep ocean where it is stored for long time-scales. Knowledge of the export flux of organic carbon from the sea surface to depths is needed to estimate the efficiency of the biological carbon pump, a key process of global carbon cycling. We study how the sinking of biogenic particles produced in the euphotic layer is affected by subsurface ocean currents as derived from a regional dynamical model. In the range of sizes and densities appropriate for marine biogenic particles, the sinking trajectories are given by the equation of motion of small particles in a fluid flow (Maxey-Riley equation). We use a modelled 3-dimensional velocity field with major energetic structures in the mesoscale and we assess the influence of physical processes such as the Coriolis force and the inertia of the particles. We find that the latter forces are negligible as compared to the most important terms, which are passive motion with the velocity of the flow and a constant added vertical velocity due to gravity. Horizontal two-dimensional clustering is observed at depth, similar to the inhomogeneities observed in sinking ocean particles. Based on ensemble experiments, we explore the influence of the mean flow and the mesoscale eddy field on particles lateral advection and size fractionation. This modeling framework allows us to extend the concept of particle source funnels and helps interpreting particles fluxes estimated from sediment traps deployed in upwelling systems, informing the spatial mismatch between surface production and particle export.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Tao; Letoquin, Ronan; Keller, Bernd

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and a remote planar phosphor carrier having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED lightmore » is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphor arranged according to the present invention can operate at lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor.« less

  2. Using Bayesian hierarchical models to better understand nitrate sources and sinks in agricultural watersheds.

    PubMed

    Xia, Yongqiu; Weller, Donald E; Williams, Meghan N; Jordan, Thomas E; Yan, Xiaoyuan

    2016-11-15

    Export coefficient models (ECMs) are often used to predict nutrient sources and sinks in watersheds because ECMs can flexibly incorporate processes and have minimal data requirements. However, ECMs do not quantify uncertainties in model structure, parameters, or predictions; nor do they account for spatial and temporal variability in land characteristics, weather, and management practices. We applied Bayesian hierarchical methods to address these problems in ECMs used to predict nitrate concentration in streams. We compared four model formulations, a basic ECM and three models with additional terms to represent competing hypotheses about the sources of error in ECMs and about spatial and temporal variability of coefficients: an ADditive Error Model (ADEM), a SpatioTemporal Parameter Model (STPM), and a Dynamic Parameter Model (DPM). The DPM incorporates a first-order random walk to represent spatial correlation among parameters and a dynamic linear model to accommodate temporal correlation. We tested the modeling approach in a proof of concept using watershed characteristics and nitrate export measurements from watersheds in the Coastal Plain physiographic province of the Chesapeake Bay drainage. Among the four models, the DPM was the best--it had the lowest mean error, explained the most variability (R 2  = 0.99), had the narrowest prediction intervals, and provided the most effective tradeoff between fit complexity (its deviance information criterion, DIC, was 45.6 units lower than any other model, indicating overwhelming support for the DPM). The superiority of the DPM supports its underlying hypothesis that the main source of error in ECMs is their failure to account for parameter variability rather than structural error. Analysis of the fitted DPM coefficients for cropland export and instream retention revealed some of the factors controlling nitrate concentration: cropland nitrate exports were positively related to stream flow and watershed average slope, while instream nitrate retention was positively correlated with nitrate concentration. By quantifying spatial and temporal variability in sources and sinks, the DPM provides new information to better target management actions to the most effective times and places. Given the wide use of ECMs as research and management tools, our approach can be broadly applied in other watersheds and to other materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Dependence of spin pumping and spin transfer torque upon Ni81Fe19 thickness in Ta/Ag /Ni 81Fe19/Ag/Co 2MnGe /Ag /Ta spin-valve structures

    NASA Astrophysics Data System (ADS)

    Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.; Hicken, R. J.; Figueroa, A. I.; Baker, A. A.; van der Laan, G.; Duffy, L. B.; Shafer, P.; Klewe, C.; Arenholz, E.; Cavill, S. A.; Childress, J. R.; Katine, J. A.

    2017-10-01

    Spin pumping has been studied within Ta / Ag / Ni81Fe19 (0-5 nm) / Ag (6 nm) / Co2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni81Fe19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfer torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. This study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.

  4. Hierarchic spatio-temporal dynamics in glycolysis

    NASA Astrophysics Data System (ADS)

    Shinjyo, Takahiro; Nakagawa, Yoshiyuki; Ueda, Tetsuo

    Yeast extracts exhibit oscillations when the glycolytic system is far away from equilibrium. Spatio-temporal dynamics in this system was studied in the newly developed gel as well as in the solution. Small regions (about 10 um) with very complex shape with high or low concentrations of NADH appeared, and upon these small structures large-scale dynamics were superimposed. Concentration waves propagated, and the source of wave was induced by contact with high ADP. Sink of waves was generated by contacting the reaction gel to two small gels rich in ADP. Upon these spatio-temporal dynamics were superimposed much slower global oscillations throughout the system with a period of about 40 min. Similar dynamics was seen in a solution of yeast extract, but the size of domains was about ten times larger than that in the gel. In this way, the multi-enzyme system of glycolysis exhibits self-organization of hierarchy in spatio-temporal dynamics.

  5. Measuring and modelling seasonal patterns of carbohydrate storage and mobilization in the trunks and root crowns of peach trees.

    PubMed

    Da Silva, David; Qin, Liangchun; DeBuse, Carolyn; DeJong, Theodore M

    2014-09-01

    Developing a conceptual and functional framework for simulating annual long-term carbohydrate storage and mobilization in trees has been a weak point for virtually all tree models. This paper provides a novel approach for solving this problem using empirical field data and details of structural components of simulated trees to estimate the total carbohydrate stored over a dormant season and available for mobilization during spring budbreak. The seasonal patterns of mobilization and storage of non-structural carbohydrates in bark and wood of the scion and rootstock crowns of the trunks of peach (Prunus persica) trees were analysed subsequent to treatments designed to maximize differences in source-sink behaviour during the growing season. Mature peach trees received one of three treatments (defruited and no pruning, severe pruning to 1·0 m, and unthinned with no pruning) in late winter, just prior to budbreak. Selected trees of each treatment were harvested at four times (March, June, August and November) and slices of trunk and root crown tissue above and below the graft union were removed for carbohydrate analysis. Inner bark and xylem tissues from the first to fifth rings were separated and analysed for non-structural carbohydrates. Data from these experiments were then used to estimate the amount of non-structural carbohydrates available for mobilization and to parameterize a carbohydrate storage sub-model in the functional-structural L-PEACH model. The mass fraction of carbohydrates in all sample tissues decreased from March to June, but the decrease was greatest in the severely pruned and unthinned treatments. November carbohydrate mass fractions in all tissues recovered to values similar to those in the previous March, except in the older xylem rings of the severely pruned and unthinned treatment. Carbohydrate storage sink capacity in trunks was empirically estimated from the mean maximum measured trunk non-structural carbohydrate mass fractions. The carbohydrate storage source available for mobilization was estimated from these maximum mass fractions and the early summer minimum mass fractions remaining in these tissues in the severe treatments that maximized mobilization of stored carbohydrates. The L-PEACH sink-source carbohydrate distribution framework was then used along with simulated tree structure to successfully simulate annual carbohydrate storage sink and source behaviour over years. The sink-source concept of carbohydrate distribution within a tree was extended to include winter carbohydrate storage and spring mobilization by considering the storage sink and source as a function of the collective capacity of active xylem and phloem tissue of the tree, and its annual behaviour was effectively simulated using the L-PEACH functional-structural plant model.

  6. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    2015-05-01

    Catalytically active colloids maintain nonequilibrium conditions in which they produce and deplete chemicals and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity decay as 1 /r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a nonequilibrium analog of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions when they join up to form molecules via generalized ionic bonds and discuss how we can achieve structures with time-dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern of conformations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that possess dynamical functionalities that are determined by their prescribed three-dimensional structures, a strategy that follows the design principle of proteins.

  7. Analysis of ecosystem controls on soil carbon source-sink relationships in the northwest Great Plains

    USGS Publications Warehouse

    Tan, Z.; Liu, S.; Johnston, C.A.; Liu, J.; Tieszen, L.L.

    2006-01-01

    Our ability to forecast the role of ecosystem processes in mitigating global greenhouse effects relies on understanding the driving forces on terrestrial C dynamics. This study evaluated the controls on soil organic C (SOC) changes from 1973 to 2000 in the northwest Great Plains. SOC source-sink relationships were quantified using the General Ensemble Biogeochemical Modeling System (GEMS) based on 40 randomly located 10 × 10 km2 sample blocks. These sample blocks were aggregated into cropland, grassland, and forestland groups based on land cover composition within each sample block. Canonical correlation analysis indicated that SOC source-sink relationship from 1973 to 2000 was significantly related to the land cover type while the change rates mainly depended on the baseline SOC level and annual precipitation. Of all selected driving factors, the baseline SOC and nitrogen levels controlled the SOC change rates for the forestland and cropland groups, while annual precipitation determined the C source-sink relationship for the grassland group in which noticeable SOC sink strength was attributed to the conversion from cropped area to grass cover. Canonical correlation analysis also showed that grassland ecosystems are more complicated than others in the ecoregion, which may be difficult to identify on a field scale. Current model simulations need further adjustments to the model input variables for the grass cover-dominated ecosystems in the ecoregion.

  8. Future forest aboveground carbon dynamics in the central United States: the importance of forest demographic processes

    Treesearch

    Wenchi Jin; Hong S. He; Frank R. Thompson; Wen J. Wang; Jacob S. Fraser; Stephen R. Shifley; Brice B. Hanberry; William D. Dijak

    2017-01-01

    The Central Hardwood Forest (CHF) in the United States is currently a major carbon sink, there are uncertainties in how long the current carbon sink will persist and if the CHF will eventually become a carbon source. We used a multi-model ensemble to investigate aboveground carbon density of the CHF from 2010 to 2300 under current climate. Simulations were done using...

  9. Dependence of spin pumping and spin transfer torque upon Ni 81 Fe 19 thickness in Ta / Ag / Ni 81 Fe 19 / Ag / Co 2 MnGe / Ag / Ta spin-valve structures

    DOE PAGES

    Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.; ...

    2017-10-18

    Spin pumping has been studied within Ta / Ag / Ni 81Fe 19 (0–5 nm) / Ag (6 nm) / Co 2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni 81Fe 19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co 2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfermore » torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. Furthermore, this study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.« less

  10. Dependence of spin pumping and spin transfer torque upon Ni 81 Fe 19 thickness in Ta / Ag / Ni 81 Fe 19 / Ag / Co 2 MnGe / Ag / Ta spin-valve structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.

    Spin pumping has been studied within Ta / Ag / Ni 81Fe 19 (0–5 nm) / Ag (6 nm) / Co 2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni 81Fe 19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co 2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfermore » torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. Furthermore, this study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.« less

  11. On Blockage Corrections for Two-dimensional Wind Tunnel Tests Using the Wall-pressure Signature Method

    NASA Technical Reports Server (NTRS)

    Allmaras, S. R.

    1986-01-01

    The Wall-Pressure Signature Method for correcting low-speed wind tunnel data to free-air conditions has been revised and improved for two-dimensional tests of bluff bodies. The method uses experimentally measured tunnel wall pressures to approximately reconstruct the flow field about the body with potential sources and sinks. With the use of these sources and sinks, the measured drag and tunnel dynamic pressure are corrected for blockage effects. Good agreement is obtained with simpler methods for cases in which the blockage corrections were about 10% of the nominal drag values.

  12. Landscape analysis of methane flux across complex terrain

    NASA Astrophysics Data System (ADS)

    Kaiser, K. E.; McGlynn, B. L.; Dore, J. E.

    2014-12-01

    Greenhouse gas (GHG) fluxes into and out of the soil are influenced by environmental conditions resulting in landscape-mediated patterns of spatial heterogeneity. The temporal variability of inputs (e.g. precipitation) and internal redistribution (e.g. groundwater flow) and dynamics (e.g. microbial communities) make predicating these fluxes challenging. Complex terrain can provide a laboratory for improving understanding of the spatial patterns, temporal dynamics, and drivers of trace gas flux rates, requisite to constraining current GHG budgets and future scenarios. Our research builds on previous carbon cycle research at the USFS Tenderfoot Creek Experimental Forest, Little Belt Mountains, Montana that highlighted the relationships between landscape position and seasonal CO2 efflux, induced by the topographic redistribution of water. Spatial patterns and landscape scale mediation of CH4 fluxes in seasonally aerobic soils have not yet been elucidated. We measured soil methane concentrations and fluxes across a full range of landscape positions, leveraging topographic and seasonal gradients, to examine the relationships between environmental variables, hydrologic dynamics, and CH4 production and consumption. We determined that a threshold of ~30% VWC distinguished the direction of flux at individual time points, with the riparian area and uplands having distinct source/sink characteristics respectively. Riparian locations were either strong sources or fluctuated between sink and source behavior, resulting in near neutral seasonal flux. Upland sites however, exhibited significant relationships between sink strength and topographic/energy balance indices. Our results highlight spatial and temporal coherence to landscape scale heterogeneity of CH4 dynamics that can improve estimates of landscape scale CH4 balances and sensitivity to change.

  13. The hydrometeor partitioning and microphysical processes over the Pacific Warm Pool in numerical modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Chih; Wang, Pao K.

    2017-01-01

    Numerical modeling is conducted to study the hydrometeor partitioning and microphysical source and sink processes during a quasi-steady state of thunderstorms over the Pacific Warm Pool by utilizing the microphysical model WISCDYMM to simulate selected storm cases. The results show that liquid-phase hydrometeors dominate thunderstorm evolution over the Pacific Warm Pool. The ratio of ice-phase mass to liquid-phase mass is about 41%: 59%, indicating that ice-phase water is not as significant over the Pacific Warm Pool as the liquid water compared to the larger than 50% in the subtropics and 80% in the US High Plains in a previous study. Sensitivity tests support the dominance of liquid-phase hydrometeors over the Pacific Warm Pool. The major rain sources are the key hail sinks: melting of hail and shedding from hail; whereas the crucial rain sinks are evaporation and accretion by hail. The major snow sources are Bergeron-Findeisen process, transfer of cloud ice to snow and accretion of cloud water; whereas the foremost sink of snow is accretion by hail. The essential hail sources are accretions of rain, cloud water, and snow; whereas the critical hail sinks are melting of hail and shedding from hail. The contribution and ranking of sources and sinks of these precipitates are compared with the previous study. Hydrometeors have their own special microphysical processes in the development and depletion over the Pacific Warm Pool. Microphysical budgets depend on atmospheric dynamical and thermodynamical conditions which determine the partitioning of hydrometeors. This knowledge would benefit the microphysics parameterization in cloud models and cumulus parameterization in global circulation models.

  14. Manipulation of the hypocotyl sink activity by reciprocal grafting of two Raphanus sativus varieties: its effects on morphological and physiological traits of source leaves and whole-plant growth.

    PubMed

    Sugiura, Daisuke; Betsuyaku, Eriko; Terashima, Ichiro

    2015-12-01

    To reveal whether hypocotyl sink activities are regulated by the aboveground parts, and whether physiology and morphology of source leaves are affected by the hypocotyl sink activities, we conducted grafting experiments using two Raphanus sativus varieties with different hypocotyl sink activities. Comet (C) and Leafy (L) varieties with high and low hypocotyl sink activities were reciprocally grafted and resultant plants were called by their scion and stock such as CC, LC, CL and LL. Growth, leaf mass per area (LMA), total non-structural carbohydrates (TNCs) and photosynthetic characteristics were compared among them. Comet hypocotyls in CC and LC grew well regardless of the scions, whereas Leafy hypocotyls in CL and LL did not. Relative growth rate was highest in LL and lowest in CC. Photosynthetic capacity was correlated with Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) content but unaffected by TNC. High C/N ratio and accumulation of TNC led to high LMA and structural LMA. These results showed that the hypocotyl sink activity was autonomously regulated by hypocotyl and that the down-regulation of photosynthesis was not induced by TNC. We conclude that the change in the sink activity alters whole-plant growth through the changes in both biomass allocation and leaf morphological characteristics in R. sativus. © 2015 John Wiley & Sons Ltd.

  15. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage

    PubMed Central

    Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing

    2016-01-01

    The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg−1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield. PMID:26752657

  16. Predator transitory spillover induces trophic cascades in ecological sinks

    PubMed Central

    Casini, Michele; Blenckner, Thorsten; Möllmann, Christian; Gårdmark, Anna; Lindegren, Martin; Llope, Marcos; Kornilovs, Georgs; Plikshs, Maris; Stenseth, Nils Christian

    2012-01-01

    Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross-system fluxes on a whole marine ecosystem structure have not yet been presented. Here we show, using 35 y of multitrophic data series from the Baltic Sea, that transitory spillover of the top-predator cod from its main distribution area produces cascading effects in the whole food web of an adjacent and semi-isolated ecosystem. At varying population size, cod expand/contract their distribution range and invade/retreat from the neighboring Gulf of Riga, thereby affecting the local prey population of herring and, indirectly, zooplankton and phytoplankton via top-down control. The Gulf of Riga can be considered for cod a “true sink” habitat, where in the absence of immigration from the source areas of the central Baltic Sea the cod population goes extinct due to the absence of suitable spawning grounds. Our results add a metaecosystem perspective to the ongoing intense scientific debate on the key role of top predators in structuring natural systems. The integration of regional and local processes is central to predict species and ecosystem responses to future climate changes and ongoing anthropogenic disturbances. PMID:22505739

  17. Comparative dynamics of small mammal populations in treefall gaps and surrounding understorey within Amazonian rainforest

    USGS Publications Warehouse

    Beck, H.; Gaines, M.S.; Hines, J.E.; Nichols, J.D.

    2004-01-01

    Variation in food resource availability can have profound effects on habitat selection and dynamics of populations. Previous studies reported higher food resource availability and fruit removal in treefall gaps than in the understorey. Therefore, gaps have been considered 'keystone habitat' for Neotropical frugivore birds. Here we test if this prediction would also hold for terrestrial small mammals. In the Amazon, we quantified food resource availability in eleven treefall gaps and paired understorey habitats and used feeding experiments to test if two common terrestrial rodents (Oryzomys megacephalus and Proechimys spp.) would perceive differences between habitats. We live-trapped small mammals in eleven gaps and understorey sites for two years, and compared abundance, fitness components (survival and per capita recruitment) and dispersal of these two rodent species across gaps and understorey and seasons (rainy and dry). Our data indicated no differences in resource availability and consumption rate between habitats. Treefall gaps may represent a sink habitat for Oryzomys where individuals had lower fitness, apparently because of habitat-specific ant predation on early life stages, than in the understorey, the source habitat. Conversely, gaps may be source habitat for Proechimys where individuals had higher fitness, than in the understorey, the sink habitat. Our results suggest the presence of source-sink dynamics in a tropical gap-understorey landscape, where two rodent species perceive habitats differently. This may be a mechanism for their coexistence in a heterogeneous and species-diverse system.

  18. Human-caused mortality influences spatial population dynamics: pumas in landscapes with varying mortality risks

    USGS Publications Warehouse

    Newby, Jesse R.; Mills, L. Scott; Ruth, Toni K.; Pletscher, Daniel H.; Mitchell, Michael S.; Quigley, Howard B.; Murphy, Kerry M.; DeSimone, Rich

    2013-01-01

    An understanding of how stressors affect dispersal attributes and the contribution of local populations to multi-population dynamics are of immediate value to basic and applied ecology. Puma (Puma concolor) populations are expected to be influenced by inter-population movements and susceptible to human-induced source–sink dynamics. Using long-term datasets we quantified the contribution of two puma populations to operationally define them as sources or sinks. The puma population in the Northern Greater Yellowstone Ecosystem (NGYE) was largely insulated from human-induced mortality by Yellowstone National Park. Pumas in the western Montana Garnet Mountain system were exposed to greater human-induced mortality, which changed over the study due to the closure of a 915 km2 area to hunting. The NGYE’s population growth depended on inter-population movements, as did its ability to act as a source to the larger region. The heavily hunted Garnet area was a sink with a declining population until the hunting closure, after which it became a source with positive intrinsic growth and a 16× increase in emigration. We also examined the spatial and temporal characteristics of individual dispersal attributes (emigration, dispersal distance, establishment success) of subadult pumas (N = 126). Human-caused mortality was found to negatively impact all three dispersal components. Our results demonstrate the influence of human-induced mortality on not only within population vital rates, but also inter-population vital rates, affecting the magnitude and mechanisms of local population’s contribution to the larger metapopulation.

  19. Nitrogen dynamics post-harvest: the role of woody residues

    Treesearch

    Kathryn Piatek

    2007-01-01

    The role of woody residues in N dynamics in harvested forests has not been fully elucidated. Woody residues have been found to be an N sink, N source, and N neutral in different studies. To understand the implications of each of these scenarios, post-harvest N dynamics in high- and no- woody residue treatments were modeled for a Douglas-fir ecosystem. Nitrogen...

  20. Toward more realistic projections of soil carbon dynamics by Earth system models

    USGS Publications Warehouse

    Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, A. David; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.

    2016-01-01

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.

  1. Rainfall-runoff response informed by exact solutions of Boussinesq equation on hillslopes

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S., Jr.; Porporato, A. M.

    2017-12-01

    The Boussinesq equation offers a powerful approach forunderstanding the flow dynamics of unconfined aquifers. Though this nonlinear equation allows for concise representation of both soil and geomorphological controls on groundwater flow, it has only been solved exactly for a limited number of initial and boundary conditions. These solutions do not include source/sink terms (evapotranspiration, recharge, and seepage to bedrock) and are typically limited to horizontal aquifers. Here we present a class of exact solutions that are general to sloping aquifers and a time varying source/sink term. By incorporating the source/sink term, they may describe aquifers with both time varying recharge over seasonal or weekly time scales, as well as a loss of water from seepage to the bedrock interface, which is a common feature in hillslopes. These new solutions shed light on the hysteretic relationship between streamflow and groundwater and the behavior of the hydrograph recession curves, thus providing a robust basis for deriving a runoff curves for the partition of rainfall into infiltration and runoff.

  2. Atmospheric carbon dioxide and the global carbon cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trabalka, J R

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  3. Sources, Sinks, and Model Accuracy

    EPA Science Inventory

    Spatial demographic models are a necessary tool for understanding how to manage landscapes sustainably for animal populations. These models, therefore, must offer precise and testable predications about animal population dynamics and how animal demographic parameters respond to ...

  4. Ethylene dynamics in the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1994-01-01

    A material balance model for ethylene was developed and applied retrospectively to data obtained in the Biomass Production Chamber of CELSS in order to calculate true plant production rates of ethylene. Four crops were analyzed: wheat, lettuce, soybean, and potato. The model represents an effort to account for each and every source and sink for ethylene in the system. The major source of ethylene is the plant biomass and the major sink is leakage to the surroundings. The result, expressed in the units of ppd/day, were converted to nl of ethylene per gram of plant dry mass per hour and compare favorably with recent glasshouse to belljar experiments.

  5. Quantifying Contemporary Terrestrial Carbon Sources and Sinks in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Liu, S.; Loveland, T.

    2003-12-01

    U.S. land likely accounts for a significant portion of the unidentified global carbon sink, although the magnitude is highly uncertain. The ultimate goal of this study is to quantify the contemporary temporal and spatial patterns of carbon sources and sinks in the conterminous United States from the early 1970s to 2000, and to explain the mechanisms that cause the variability and changes. Because of the difficulty and massive cost for developing land cover change databases for the conterminous United States, we adopt an ecoregion-based sampling approach. Carbon dynamics within thousands of 20 km by 20 km or 10 km by 10 km sampling blocks, stratified by Omernik Level III ecoregions, are simulated using the General Ensemble Biogeochemical Modeling System at the spatial resolution of 60 m by 60 m. The land use change data, providing unprecedented accuracy and consistency, are derived from Landsat imagery for five time points (nominally 1972, 1980, 1986, 1992, and 2000). Mechanisms have been implemented to assimilate data from key national benchmark databases (including the USDA Forest Service­_s Forest Inventory and Analysis data and the USDA­_s agricultural census data). The dynamics of carbon stocks in vegetation, soil, and harvested wood materials are quantified. Results from three ecoregions (i.e., Southeastern Plains, Piedmont, and Northern Piedmont) indicated that the carbon sink strength has been decreasing from the 1970s to 2000. The relative contribution of biomass accumulation to the sink decreased during this period, while those of soil organic carbon and harvested wood materials increased.

  6. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    USGS Publications Warehouse

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  7. Thermal Conductivity of Single-Walled Carbon Nanotube with Internal Heat Source Studied by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Wei; Cao, Bing-Yang

    2013-12-01

    The thermal conductivity of (5, 5) single-walled carbon nanotubes (SWNTs) with an internal heat source is investigated by using nonequilibrium molecular dynamics (NEMD) simulation incorporating uniform heat source and heat source-and-sink schemes. Compared with SWNTs without an internal heat source, i.e., by a fixed-temperature difference scheme, the thermal conductivity of SWNTs with an internal heat source is much lower, by as much as half in some cases, though it still increases with an increase of the tube length. Based on the theory of phonon dynamics, a function called the phonon free path distribution is defined to develop a simple one-dimensional heat conduction model considering an internal heat source, which can explain diffusive-ballistic heat transport in carbon nanotubes well.

  8. Sensitivity analysis of the potential impact of discrepancies in stratosphere-troposphere exchange on inferred sources and sinks of CO2

    NASA Astrophysics Data System (ADS)

    Deng, F.; Jones, D. B. A.; Walker, T. W.; Keller, M.; Bowman, K. W.; Henze, D. K.; Nassar, R.; Kort, E. A.; Wofsy, S. C.; Walker, K. A.; Bourassa, A. E.; Degenstein, D. A.

    2015-04-01

    The upper troposphere and lower stratosphere (UTLS) represents a transition region between the more dynamically active troposphere and more stably stratified stratosphere. The region is characterized by strong gradients in the distribution of long-lived tracers, which are sensitive to discrepancies in transport in models. We evaluate the GEOS-Chem model in the UTLS using carbon dioxide (CO2) and ozone (O3) observations from the HIAPER (The High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) campaign in March 2010. GEOS-Chem CO2 / O3 correlation suggests that there is a discrepancy in mixing across the tropopause in the model, which results in an overestimate of CO2 and an underestimate of O3 in the Arctic lower stratosphere. We assimilate stratospheric O3 data from OSIRIS and used the assimilated O3 fields together with the HIPPO CO2 / O3 correlations to obtain a correction to the modeled CO2 profile in the Arctic UTLS (primarily between the 320 and 360 K isentropic surfaces). The HIPPO-derived correction corresponds to a sink of 0.13 Pg C month-1 in the Arctic. Imposing this sink during March-August 2010 results in a reduction in the CO2 sinks inferred from GOSAT observations for temperate North America, Europe, and tropical Asia of 20, 12, and 50%, respectively. Conversely, the inversion increased the source of CO2 from tropical South America by 20%. We found that the model also underestimated CO2 in the upper tropical and subtropical troposphere, which may be linked by mixing across the subtropical tropopause. Correcting for the bias relative to HIPPO in the tropical upper troposphere, by imposing a source of 0.33 Pg C, led to a reduction in the source from tropical South America by 44%, and produced a flux estimate for tropical Asia that was in agreement with the standard inversion (without the imposed source and sink). However, the seasonal transition from a source to a sink of CO2 for tropical Asia was shifted from April to June. It is unclear whether the discrepancies found in the UTLS are due to errors in mixing associated with the large-scale dynamics or are due to the numerical errors in the advection scheme. However, our results illustrate that discrepancies in the CO2 distribution in the UTLS can affect CO2 flux inversions and suggest the need for more careful evaluation of model transport errors in the UTLS.

  9. Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink

    USGS Publications Warehouse

    Shevliakova, Elena; Pacala, Stephen W.; Malyshev, Sergey; Hurtt, George C.; Milly, P.C.D.; Caspersen, John P.; Sentman, Lori T.; Fisk, Justin P.; Wirth, Christian; Crevoisier, Cyril

    2009-01-01

    We have developed a dynamic land model (LM3V) able to simulate ecosystem dynamics and exchanges of water, energy, and CO2 between land and atmosphere. LM3V is specifically designed to address the consequences of land use and land management changes including cropland and pasture dynamics, shifting cultivation, logging, fire, and resulting patterns of secondary regrowth. Here we analyze the behavior of LM3V, forced with the output from the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model AM2, observed precipitation data, and four historic scenarios of land use change for 1700-2000. Our analysis suggests a net terrestrial carbon source due to land use activities from 1.1 to 1.3 GtC/a during the 1990s, where the range is due to the difference in the historic cropland distribution. This magnitude is substantially smaller than previous estimates from other models, largely due to our estimates of a secondary vegetation sink of 0.35 to 0.6 GtC/a in the 1990s and decelerating agricultural land clearing since the 1960s. For the 1990s, our estimates for the pastures' carbon flux vary from a source of 0.37 to a sink of 0.15 GtC/a, and for the croplands our model shows a carbon source of 0.6 to 0.9 GtC/a. Our process-based model suggests a smaller net deforestation source than earlier bookkeeping models because it accounts for decelerated net conversion of primary forest to agriculture and for stronger secondary vegetation regrowth in tropical regions. The overall uncertainty is likely to be higher than the range reported here because of uncertainty in the biomass recovery under changing ambient conditions, including atmospheric CO2 concentration, nutrients availability, and climate. Copyright 2009 by the American Geophysical Union.

  10. Modeling Tree Growth Taking into Account Carbon Source and Sink Limitations.

    PubMed

    Hayat, Amaury; Hacket-Pain, Andrew J; Pretzsch, Hans; Rademacher, Tim T; Friend, Andrew D

    2017-01-01

    Increasing CO 2 concentrations are strongly controlled by the behavior of established forests, which are believed to be a major current sink of atmospheric CO 2 . There are many models which predict forest responses to environmental changes but they are almost exclusively carbon source (i.e., photosynthesis) driven. Here we present a model for an individual tree that takes into account the intrinsic limits of meristems and cellular growth rates, as well as control mechanisms within the tree that influence its diameter and height growth over time. This new framework is built on process-based understanding combined with differential equations solved by numerical method. Our aim is to construct a model framework of tree growth for replacing current formulations in Dynamic Global Vegetation Models, and so address the issue of the terrestrial carbon sink. Our approach was successfully tested for stands of beech trees in two different sites representing part of a long-term forest yield experiment in Germany. This model provides new insights into tree growth and limits to tree height, and addresses limitations of previous models with respect to sink-limited growth.

  11. Removal of unwanted fluid

    NASA Astrophysics Data System (ADS)

    Subudhi, Sudhakar; Sreenivas, K. R.; Arakeri, Jaywant H.

    2013-01-01

    This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6 mm and the sink pipe diameter is either 10 or 20 mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.

  12. Paleogeographic constraints on continental-scale source-to-sink systems: Northern South America and its Atlantic margins

    NASA Astrophysics Data System (ADS)

    Bajolet, Flora; Chardon, Dominique; Rouby, Delphine; Dall'Asta, Massimo; Roig, Jean-Yves; Loparev, Artiom; Coueffe, Renaud

    2017-04-01

    Our work aims at setting the evolving boundary conditions of erosion and sediments transfer, transit, and onshore-offshore accumulations on northern South America and along its Atlantic margins. Since the Early Mesozoic, the source-to-sink system evolved under the interplay of four main processes, which are (i) volcanism and arc building along the proto-Andes, (ii) long-term dynamics of the Amazon incratonic basin, (iii) rifting, relaxation and rejuvenation of the Atlantic margins and (iv) building of the Andes. We compiled information available from geological maps and the literature regarding tectonics, plate kinematics, magmatism, stratigraphy, sedimentology (including paleoenvironments and currents) and thermochronology to produce a series of paleogeographic maps showing the tectonic and kinematic framework of continental areas under erosion (sources), by-pass and accumulation (sinks) over the Amazonian craton, its adjacent regions and along its Atlantic margins. The maps also allow assessing the relative impact of (i) ongoing Pacific subduction, (ii) Atlantic rifting and its aftermath, and (iii) Atlantic slab retreat from under the Caribbean domain on the distribution and activity of onshore/offshore sedimentary basins. Stratigraphic and thermochronology data are also used to assess denudation / vertical motions due to sediment transfers and lithosphere-asthenosphere interactions. This study ultimately aims at linking the sediment routing system to long-wavelength deformation of northern South America under the influence of mountain building, intracratonic geodynamics, divergent margin systems and mantle dynamics.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi; Ahlström, Anders; Allison, Steven D.

    Soil carbon (C) is a critical component of Earth system models (ESMs) and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the 3rd to 5th assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. Firstly, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by 1st-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic SOC dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Secondly, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based datasets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Thirdly, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable datasets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less

  14. The role of branch architecture in assimilate production and partitioning: the example of apple (Malus domestica)

    PubMed Central

    Fanwoua, Julienne; Bairam, Emna; Delaire, Mickael; Buck-Sorlin, Gerhard

    2014-01-01

    Understanding the role of branch architecture in carbon production and allocation is essential to gain more insight into the complex process of assimilate partitioning in fruit trees. This mini review reports on the current knowledge of the role of branch architecture in carbohydrate production and partitioning in apple. The first-order carrier branch of apple illustrates the complexity of branch structure emerging from bud activity events and encountered in many fruit trees. Branch architecture influences carbon production by determining leaf exposure to light and by affecting leaf internal characteristics related to leaf photosynthetic capacity. The dynamics of assimilate partitioning between branch organs depends on the stage of development of sources and sinks. The sink strength of various branch organs and their relative positioning on the branch also affect partitioning. Vascular connections between branch organs determine major pathways for branch assimilate transport. We propose directions for employing a modeling approach to further elucidate the role of branch architecture on assimilate partitioning. PMID:25071813

  15. Making methane visible

    NASA Astrophysics Data System (ADS)

    Gålfalk, Magnus; Olofsson, Göran; Crill, Patrick; Bastviken, David

    2016-04-01

    Methane (CH4) is one of the most important greenhouse gases, and an important energy carrier in biogas and natural gas. Its large scale emission patterns have been unpredictable and the source and sink distributions are poorly constrained. Remote assessment of CH4 with high sensitivity at m2 spatial resolution would allow detailed mapping of near ground distribution and anthropogenic sources and sinks in landscapes but has hitherto not been possible. Here we show that CH4 gradients can be imaged on

  16. So little source, so much sink: requirements for afterdepolarizations to propagate in tissue.

    PubMed

    Xie, Yuanfang; Sato, Daisuke; Garfinkel, Alan; Qu, Zhilin; Weiss, James N

    2010-09-08

    How early (EADs) and delayed afterdepolarizations (DADs) overcome electrotonic source-sink mismatches in tissue to trigger premature ventricular complexes remains incompletely understood. To study this question, we used a rabbit ventricular action potential model to simulate tissues in which a central area of contiguous myocytes susceptible to EADs or DADs was surrounded by unsusceptible tissue. In 1D tissue with normal longitudinal conduction velocity (0.55 m/s), the numbers of contiguous susceptible myocytes required for an EAD and a barely suprathreshold DAD to trigger a propagating action potential were 70 and 80, respectively. In 2D tissue, these numbers increased to 6940 and 7854, and in 3D tissue to 696,910 and 817,280. These numbers were significantly decreased by reduced gap junction conductance, simulated fibrosis, reduced repolarization reserve and heart failure electrical remodeling. In conclusion, the source-sink mismatch in well-coupled cardiac tissue powerfully protects the heart from arrhythmias due to sporadic afterdepolarizations. Structural and electrophysiological remodeling decrease these numbers significantly but still require synchronization mechanisms for EADs and DADs to overcome the robust protective effects of source-sink mismatch. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism

    NASA Astrophysics Data System (ADS)

    Wegener, Pam; Covino, Tim; Wohl, Ellen

    2017-06-01

    River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.

  18. Source to sink: Evolution of lignin composition in the Madre de Dios River system with connection to the Amazon basin and offshore

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Feakins, Sarah J.; Liu, Zongguang; Ponton, Camilo; Wang, Renée. Z.; Karkabi, Elias; Galy, Valier; Berelson, William M.; Nottingham, Andrew T.; Meir, Patrick; West, A. Joshua

    2016-05-01

    While lignin geochemistry has been extensively investigated in the Amazon River, little is known about lignin distribution and dynamics within deep, stratified river channels or its transformations within soils prior to delivery to rivers. We characterized lignin phenols in soils, river particulate organic matter (POM), and dissolved organic matter (DOM) across a 4 km elevation gradient in the Madre de Dios River system, Peru, as well as in marine sediments to investigate the source-to-sink evolution of lignin. In soils, we found more oxidized lignin in organic horizons relative to mineral horizons. The oxidized lignin signature was maintained during transfer into rivers, and lignin was a relatively constant fraction of bulk organic carbon in soils and riverine POM. Lignin in DOM became increasingly oxidized downstream, indicating active transformation of dissolved lignin during transport, especially in the dry season. In contrast, POM accumulated undegraded lignin downstream during the wet season, suggesting that terrestrial input exceeded in-river degradation. We discovered high concentrations of relatively undegraded lignin in POM at depth in the lower Madre de Dios River in both seasons, revealing a woody undercurrent for its transfer within these deep rivers. Our study of lignin evolution in the soil-river-ocean continuum highlights important seasonal and depth variations of river carbon components and their connection to soil carbon pools, providing new insights into fluvial carbon dynamics associated with the transfer of lignin biomarkers from source to sink.

  19. Identification of source-sink dynamics in mountain lions of the Great Basin

    USDA-ARS?s Scientific Manuscript database

    Understanding population boundaries and movement rates in the field for species that are cryptic and occur at low densities is often extremely difficult and logistically prohibitive; however genetic techniques may offer insights that have previously been unattainable. We analyzed thirteen microsatel...

  20. Cradles and museums of Antarctic teleost biodiversity.

    PubMed

    Dornburg, Alex; Federman, Sarah; Lamb, April D; Jones, Christopher D; Near, Thomas J

    2017-09-01

    Isolated in one of the most extreme marine environments on Earth, teleost fish diversity in Antarctica's Southern Ocean is dominated by one lineage: the notothenioids. Throughout the past century, the long-term persistence of this unique marine fauna has become increasingly threatened by regional atmospheric and, to a lesser extent oceanic, warming. Developing an understanding of how historical temperature shifts have shaped source-sink dynamics for Antarctica's teleost lineages provides critical insight for predicting future demographic responses to climate change. We use a combination of phylogenetic and biogeographic modelling to show that high-latitude Antarctic nearshore habitats have been an evolutionary sink for notothenioid species diversity. Contrary to expectations from island biogeographic theory, lower latitude regions of the Southern Ocean that include the northern Antarctic Peninsula and peripheral island archipelagos act as source areas to continental diversity. These peripheral areas facilitate both the generation of new species and repeated colonization of nearshore Antarctic continental regions. Our results provide historical context to contemporary trends of global climate change that threaten to invert these evolutionary dynamics.

  1. Identification of metapopulation dynamics among Northern Goshawks of the Alexander Archipelago, Alaska, and Coastal British Columbia

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; McClaren, Erica L.; Doyle, Frank I.; Titus, K.; Sage, George K.; Wilson, Robert E.; Gust, Judy R.; Talbot, Sandra L.

    2012-01-01

    Northern Goshawks occupying the Alexander Archipelago, Alaska, and coastal British Columbia nest primarily in old-growth and mature forest, which results in spatial heterogeneity in the distribution of individuals across the landscape. We used microsatellite and mitochondrial data to infer genetic structure, gene flow, and fluctuations in population demography through evolutionary time. Patterns in the genetic signatures were used to assess predictions associated with the three population models: panmixia, metapopulation, and isolated populations. Population genetic structure was observed along with asymmetry in gene flow estimates that changed directionality at different temporal scales, consistent with metapopulation model predictions. Therefore, Northern Goshawk assemblages located in the Alexander Archipelago and coastal British Columbia interact through a metapopulation framework, though they may not fit the classic model of a metapopulation. Long-term population sources (coastal mainland British Columbia) and sinks (Revillagigedo and Vancouver islands) were identified. However, there was no trend through evolutionary time in the directionality of dispersal among the remaining assemblages, suggestive of a rescue-effect dynamic. Admiralty, Douglas, and Chichagof island complex appears to be an evolutionarily recent source population in the Alexander Archipelago. In addition, Kupreanof island complex and Kispiox Forest District populations have high dispersal rates to populations in close geographic proximity and potentially serve as local source populations. Metapopulation dynamics occurring in the Alexander Archipelago and coastal British Columbia by Northern Goshawks highlight the importance of both occupied and unoccupied habitats to long-term population persistence of goshawks in this region.

  2. Source-sink interaction: a century old concept under the light of modern molecular systems biology.

    PubMed

    Chang, Tian-Gen; Zhu, Xin-Guang; Raines, Christine

    2017-07-20

    Many approaches to engineer source strength have been proposed to enhance crop yield potential. However, a well-co-ordinated source-sink relationship is required finally to realize the promised increase in crop yield potential in the farmer's field. Source-sink interaction has been intensively studied for decades, and a vast amount of knowledge about the interaction in different crops and under different environments has been accumulated. In this review, we first introduce the basic concepts of source, sink and their interactions, then summarize current understanding of how source and sink can be manipulated through both environmental control and genetic manipulations. We show that the source-sink interaction underlies the diverse responses of crops to the same perturbations and argue that development of a molecular systems model of source-sink interaction is required towards a rational manipulation of the source-sink relationship for increased yield. We finally discuss both bottom-up and top-down routes to develop such a model and emphasize that a community effort is needed for development of this model. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Toward more realistic projections of soil carbon dynamics by Earth system models

    DOE PAGES

    Luo, Yiqi; Ahlstrom, Anders; Allison, Steven D.; ...

    2016-01-21

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. Furthermore, we recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less

  4. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  5. Response of plant community structure and primary productivity to experimental drought and flooding in an Alaskan fen

    Treesearch

    Amber C. Churchill; Merritt R. Turetsky; A. David McGuire; Teresa N. Hollingsworth

    2015-01-01

    Northern peatlands represent a long-term net sink for atmospheric CO2, but these ecosystems can shift from net carbon (C) sinks to sources based on changing climate and environmental conditions. In particular, changes in water availability associated with climate control peatland vegetation and carbon uptake processes. We examined the influence of changing hydrology on...

  6. [Eco-economic thinking for developing carbon sink industry in the de-farming regions].

    PubMed

    Wang, Ji Jun; Wang, Zheng Shu; Cheng, Si Min; Gu, Wen; Li, Yue; Li, Mao Sen

    2017-12-01

    Based on the potential and the law that plants absorb carbon dioxide, carbon sink industry means certain appropriate artificial intervention to obtain clean air, and to meet people's production and life demand for ecological environment industry. Carbon sink industry is considered as a breakthrough point and a new growth point for optimizing and upgrading of the original relatively balanced or stable agricultural industry-resources system. Among the ecosystem services in the de-farming regions, the rapid increase of the economic manifestation of carbon fixation and oxygen release function and the carbon sink potential, as well as the rise of carbon trading and carbon market both in domestic and international, have established a theoretical and practical basis for the deve-lopment of carbon industry. With the development of the carbon sink industry, improving the carbon sequestration output will become the core of the carbon sink industry. The producers or marketers will form the controlling of the carbon source, the development of the path for carbon storage increasing and re-layout of agricultural industry-resources structure, and thus bring new vitality to regional sustainable development in the de-farming regions. This indicates the emphasis for the future research and development, that is, allocating the agricultural industry-resources structure and their benign coupling mechanism after integrating the carbon sink industry.

  7. Structural Design and Analysis of a Light-Weight Laminated Composite Heat Sink for Spaceflight PWBs

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Niemeyer, W. Lee

    1997-01-01

    In order to reduce the overall weight in spaceborne electronic systems, a conventional metallic heat sink typically used for double-sided printed wiring boards was suggested to be replaced by light-weight and high-strength laminated composite materials. Through technology validation assurance (TVA) approach, it has been successfully demonstrated that using laminated composite heat sink can not only reduce the weight of the heat sink by nearly 50%, but also significantly lower the internal thermally-induced stresses that are largely responsible for potential delamination under cyclic temperature variations. With composite heat sink, both thermal and dynamic performance of the double-sided printed wiring board (PWB) exceeds that of its counterpart with metallic heat sink. Also included in this work is the original contribution to the understanding of creep behavior of the worst-case leadless chip carrier (LCC) surface mount solder joint. This was identified as the interconnection most susceptible to thermal fatigue damage in the PWB assembly.

  8. An analysis of the carbon balance of the Arctic Basin from 1997 to 2006

    USGS Publications Warehouse

    McGuire, A.D.; Hayes, D.J.; Kicklighter, D.W.; Manizza, M.; Zhuang, Q.; Chen, M.; Follows, M.J.; Gurney, K.R.; McClelland, J.W.; Melillo, J.M.; Peterson, B.J.; Prinn, R.G.

    2010-01-01

    This study used several model-based tools to analyse the dynamics of the Arctic Basin between 1997 and 2006 as a linked system of land-ocean-atmosphere C exchange. The analysis estimates that terrestrial areas of the Arctic Basin lost 62.9 Tg C yr-1 and that the Arctic Ocean gained 94.1 Tg C yr-1. Arctic lands and oceans were a net CO2 sink of 108.9 Tg C yr-1, which is within the range of uncertainty in estimates from atmospheric inversions. Although both lands and oceans of the Arctic were estimated to be CO2 sinks, the land sink diminished in strength because of increased fire disturbance compared to previous decades, while the ocean sink increased in strength because of increased biological pump activity associated with reduced sea ice cover. Terrestrial areas of the Arctic were a net source of 41.5 Tg CH4 yr-1 that increased by 0.6 Tg CH4 yr-1 during the decade of analysis, a magnitude that is comparable with an atmospheric inversion of CH4. Because the radiative forcing of the estimated CH4 emissions is much greater than the CO2 sink, the analysis suggests that the Arctic Basin is a substantial net source of green house gas forcing to the climate system.

  9. Use of the Stable Nitrogen Isotope to Reveal the Source-Sink Regulation of Nitrogen Uptake and Remobilization during Grain Filling Phase in Maize

    PubMed Central

    Yang, Lan; Guo, Song; Chen, Qinwu; Chen, Fanjun; Yuan, Lixing; Mi, Guohua

    2016-01-01

    Although the remobilization of vegetative nitrogen (N) and post-silking N both contribute to grain N in maize (Zea mays L.), their regulation by grain sink strength is poorly understood. Here we use 15N labeling to analyze the dynamic behaviors of both pre- and post-silking N in relation to source and sink manipulation in maize plants. The results showed that the remobilization of pre-silking N started immediately after silking and the remobilized pre-silking N had a greater contribution to grain N during early grain filling, with post-silking N importance increasing during the later filling stage. The amount of post-silking N uptake was largely driven by post-silking dry matter accumulation in both grain as well as vegetative organs. Prevention of pollination during silking had less effect on post-silking N uptake, as a consequence of compensatory growth of stems, husk + cob and roots. Also, leaves continuously export N even though grain sink was removed. The remobilization efficiency of N in the leaf and stem increased with increasing grain yield (hence N requirement). It is suggested that the remobilization of N in the leaf is controlled by sink strength but not the leaf per se. Enhancing post-silking N uptake rather than N remobilization is more likely to increase grain N accumulation. PMID:27606628

  10. A dynamic nitrogen budget model of a Pacific Northwest salt marsh

    EPA Science Inventory

    The role of salt marshes as either nitrogen sinks or sources in relation to their adjacent estuaries has been a focus of ecosystem service research for many decades. The complex hydrology of these systems is driven by tides, upland surface runoff, precipitation, evapotranspirati...

  11. Could residual oil from the Exxon Valdez spill create a long-term population "sink" for sea otters in Alaska?

    USGS Publications Warehouse

    Monson, Daniel H.; Doak, Daniel F.; Ballachey, Brenda E.; Bodkin, James L.

    2011-01-01

    Over 20 years ago, the Exxon Valdez oil tanker spilled 42 million L of crude oil into the waters of Prince William Sound, Alaska, USA. At the time of the spill, the sea otter (Enhydra lutris) population inhabiting the spill area suffered substantial acute injuries and loss. Subsequent research has resulted in one of the best-studied species responses to an oil spill in history. However, the question remains: Is the spill still influencing the Prince William Sound sea otter population? Here we fit time-varying population models to data for the sea otter population of western Prince William Sound to quantify the duration and extent of mortality effects from the spill. We hypothesize that the patchy nature of residual oil left in the environment has created a source-sink population dynamic. We fit models using the age distributions of both living and dying animals and estimates of sea otter population size to predict the number of sea otters in the hypothesized sink population and the number lost to this sink due to chronic exposure to residual oil. Our results suggest that the sink population has remained at just over 900 individuals (95% CI: 606-960) between 1990 and 2009, during which time prime-age survival remained 2-6% below pre-spill levels. This reduced survival led to chronic losses of ???900 animals over the past two decades, which is similar in magnitude to the number of sea otter deaths documented in western Prince William Sound during the acute phase of the spill. However, the unaffected source population appears to be counterbalancing these losses, with the model indicating that the sea otter population increased from ???2150 individuals in 1990 to nearly 3000 in 2009. The most optimistic interpretation of our results suggests that mortality effects dissipated between 2005 and 2007. Our results suggest that residual oil can affect wildlife populations on time scales much longer than previously believed and that cumulative chronic effects can be as significant as acute effects. Further, source-sink population dynamics can explain the slow recovery observed in the spill-affected western Prince William Sound sea otter population and are consistent with available data. ??2011 by the Ecological Society of America.

  12. Information-System Structure by Communication-Technology Concepts: A Cybernetic Model Approach.

    ERIC Educational Resources Information Center

    Reisig, Gerhard H. R.

    1978-01-01

    Presents the "Evidence-of-Existence" information system in which the structure is developed, with application of cybernetic concepts, as an isomorphic model in analogy to the system structure of communication technology. Three criteria of structuring are postulated: (1) source-channel-sink, with input-output characteristics, (2) filter-type…

  13. SCODE: A Secure Coordination-Based Data Dissemination to Mobile Sinks in Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hung, Lexuan; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo

    For many sensor network applications such as military, homeland security, it is necessary for users (sinks) to access sensor networks while they are moving. However, sink mobility brings new challenges to secure routing in large-scale sensor networks. Mobile sinks have to constantly propagate their current location to all nodes, and these nodes need to exchange messages with each other so that the sensor network can establish and maintain a secure multi-hop path between a source node and a mobile sink. This causes significant computation and communication overhead for sensor nodes. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. In this paper, we propose a secure and energy-efficient data dissemination protocol — Secure COodination-based Data dissEmination (SCODE) — for mobile sinks in sensor networks. We take advantages of coordination networks (grid structure) based on Geographical Adaptive Fidelity (GAF) protocol to construct a secure and efficient routing path between sources and sinks. Our security analysis demonstrates that the proposed protocol can defend against common attacks in sensor network routing such as replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Our performance evaluation both in mathematical analysis and simulation shows that the SCODE significantly reduces communication overhead and energy consumption while the latency is similar compared with the existing routing protocols, and it always delivers more than 90 percentage of packets successfully.

  14. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability.

    PubMed

    Albacete, Alfonso A; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco

    2014-01-01

    Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source-sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses. © 2013.

  15. General analytical solutions for DC/AC circuit-network analysis

    NASA Astrophysics Data System (ADS)

    Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.

    2017-06-01

    In this work, we present novel general analytical solutions for the currents that are developed in the edges of network-like circuits when some nodes of the network act as sources/sinks of DC or AC current. We assume that Ohm's law is valid at every edge and that charge at every node is conserved (with the exception of the source/sink nodes). The resistive, capacitive, and/or inductive properties of the lines in the circuit define a complex network structure with given impedances for each edge. Our solution for the currents at each edge is derived in terms of the eigenvalues and eigenvectors of the Laplacian matrix of the network defined from the impedances. This derivation also allows us to compute the equivalent impedance between any two nodes of the circuit and relate it to currents in a closed circuit which has a single voltage generator instead of many input/output source/sink nodes. This simplifies the treatment that could be done via Thévenin's theorem. Contrary to solving Kirchhoff's equations, our derivation allows to easily calculate the redistribution of currents that occurs when the location of sources and sinks changes within the network. Finally, we show that our solutions are identical to the ones found from Circuit Theory nodal analysis.

  16. Dynamics of prolonged salt movement in the Glückstadt Graben (NW Germany) driven by tectonic and sedimentary processes

    NASA Astrophysics Data System (ADS)

    Warsitzka, Michael; Kley, Jonas; Jähne-Klingberg, Fabian; Kukowski, Nina

    2017-01-01

    The formation of salt structures exerted a major influence on the evolution of subsidence and sedimentation patterns in the Glückstadt Graben, which is part of the Central European Basin System and comprises a post-Permian sediment thickness of up to 11 km. Driven by regional tectonics and differential loading, large salt diapirs, salt walls and salt pillows developed. The resulting salt flow significantly influenced sediment distribution in the peripheral sinks adjacent to the salt structures and overprinted the regional subsidence patterns. In this study, we investigate the geometric and temporal evolution of salt structures and subsidence patterns in the central Glückstadt Graben. Along a key geological cross section, the post-Permian strata were sequentially decompacted and restored in order to reconstruct the subsidence history of minibasins between the salt structures. The structural restoration reveals that subsidence of peripheral sinks and salt structure growth were initiated in Early to Middle Triassic time. From the Late Triassic to the Middle Jurassic, salt movement and salt structure growth never ceased, but were faster during periods of crustal extension. Following a phase from Late Jurassic to the end of the early Late Cretaceous, in which minor salt flow occurred, salt movement was renewed, particularly in the marginal parts of the Glückstadt Graben. Subsidence rates and tectonic subsidence derived from backstripping of 1D profiles reveal that especially the Early Triassic and Middle Keuper times were periods of regional extension. Three specific types of salt structures and adjacent peripheral sinks could be identified: (1) Graben centre salt walls possessing deep secondary peripheral sinks on the sides facing away from the basin centre, (2) platform salt walls, whose main peripheral sinks switched multiple times from one side of the salt wall to the other, and (3) Graben edge pillows, which show only one peripheral sink facing the basin centre.

  17. Making methane visible

    NASA Astrophysics Data System (ADS)

    Gålfalk, Magnus; Olofsson, Göran; Crill, Patrick; Bastviken, David

    2016-04-01

    Methane (CH4) is one of the most important greenhouse gases, and an important energy carrier in biogas and natural gas. Its large-scale emission patterns have been unpredictable and the source and sink distributions are poorly constrained. Remote assessment of CH4 with high sensitivity at a m2 spatial resolution would allow detailed mapping of the near-ground distribution and anthropogenic sources in landscapes but has hitherto not been possible. Here we show that CH4 gradients can be imaged on the

  18. Are soils of Iowa USA currently a carbon sink or source? Simulated changes in SOC stock from 1972 to 2007

    USGS Publications Warehouse

    Liu, Shuguang; Tan, Z.; Li, Z.; Zhao, S.; Yuan, W.

    2011-01-01

    Upscaling the spatial and temporal changes in carbon (C) stocks and fluxes from sites to regions is a critical and challenging step toward improving our understanding of the dynamics of C sources and sinks over large areas. This study simulated soil organic C (SOC) dynamics within 0–100 cm depth of soils across the state of Iowa in the USA from 1972 to 2007 using the General Ensemble biogeochemical Modeling System (GEMS). The model outputs with variation coefficient were analyzed and assembled from simulation unit to the state scale based upon major land use types at annual step. Results from this study indicate that soils (within a depth of 0–100 cm) in Iowa had been a SOC source at a rate of 190 ± 380 kg C ha−1 yr−1. This was likely caused by the installation of a massive drainage system which led to the release of SOC from deep soil layers previously protected under poor drainage conditions. The annual crop rotation was another major force driving SOC variation and resulted in spatial variability of annual budgets in all croplands. Annual rate of change of SOC stocks in all land types depended significantly on the baseline SOC levels; soils with higher SOC levels tended to be C sources, and those with lower levels tended to be C sinks. Management practices (e.g., conservation tillage and residue management practices) slowed down the C emissions from Iowa soils, but could not reverse the general trend of net SOC loss in view of the entire state due mainly to a high level of baseline SOC stocks.

  19. ESTUARINE-OCEAN EXCHANGE IN A NORTH PACIFIC ESTUARY: COMPARISON OF STEADY STATE AND DYNAMIC MODELS

    EPA Science Inventory

    Nutrient levels in coastal waters must be accurately assessed to determine the nutrient effects of increasing populations on coastal ecosystems. To accomplish this goal, in-field data with sufficient temporal resolution are required to define nutrient sources and sinks, and to ul...

  20. Mechanisms driving postfire abundance of a generalist mammal

    Treesearch

    R. Zwolak; D. E. Pearson; Y. K. Ortega; E. E. Crone

    2012-01-01

    Changes in vertebrate abundance following disturbance are commonly attributed to shifts in food resources or predation pressure, but underlying mechanisms have rarely been tested. We examined four hypotheses for the commonly reported increase in abundance of deer mouse (Peromyscus maniculatus (Wagner, 1845)) following forest fires: source-sink dynamics, decreased...

  1. Space shuttle heat pipe thermal control systems

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1973-01-01

    Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.

  2. Soil organic carbon dynamics as related to land use history in the northwestern Great Plains

    USGS Publications Warehouse

    Tan, Z.; Liu, S.; Johnston, C.A.; Loveland, Thomas R.; Tieszen, L.L.; Liu, J.; Kurtz, R.

    2005-01-01

    Strategies for mitigating the global greenhouse effect must account for soil organic carbon (SOC) dynamics at both spatial and temporal scales, which is usually challenging owing to limitations in data and approach. This study was conducted to characterize the SOC dynamics associated with land use change history in the northwestern Great Plains ecoregion. A sampling framework (40 sample blocks of 10 × 10 km2 randomly located in the ecoregion) and the General Ensemble Biogeochemical Modeling System (GEMS) were used to quantify the spatial and temporal variability in the SOC stock from 1972 to 2001. Results indicate that C source and sink areas coexisted within the ecoregion, and the SOC stock in the upper 20-cm depth increased by 3.93 Mg ha−1 over the 29 years. About 17.5% of the area was evaluated as a C source at 122 kg C ha−1 yr−1. The spatial variability of SOC stock was attributed to the dynamics of both slow and passive fractions, while the temporal variation depended on the slow fraction only. The SOC change at the block scale was positively related to either grassland proportion or negatively related to cropland proportion. We concluded that the slow C pool determined whether soils behaved as sources or sinks of atmospheric CO2, but the strength depended on antecedent SOC contents, land cover type, and land use change history in the ecoregion.

  3. North America carbon dioxide sources and sinks: magnitude, attribution, and uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Anthony W.; Hayes, Daniel J.; Huntzinger, Deborah N.

    2012-12-01

    North America is both a source and sink of atmospheric CO2. Sources, predominately fossil-fuel combustion in the United States along with contributions from deforestation in Mexico, add CO2 to the atmosphere. Most North America ecosystems, particularly regrowing forests in the United States, are sinks for atmospheric CO2. CO2 is removed from the atmosphere in photosynthesis, converted into biomass and stored as carbon in vegetation, soil and wood products. Fossil-fuel emissions dominate the North American source-sink balance. North America is a net source of atmospheric CO2 with ecosystem sinks balancing approximately 35% of fossil-fuel CO2 emissions from North America.

  4. N-Sink: A Tool to Identify Nitrogen Sources and Sinks within aWatershed Framework

    EPA Science Inventory

    N-Sink is a customized ArcMap© program that provides maps of N sourcesand sinks within a watershed, and estimates the delivery efficiency of N movement from sources to the watershed outlet. The primary objective of N-Sink is to assist land use planners, watershed managers, and la...

  5. Natural dissolved organic matter dynamics in karstic aquifer: O'Leno Sink-Rise system, Florida, USA

    NASA Astrophysics Data System (ADS)

    Jin, J.; Zimmerman, A. R.

    2010-12-01

    Natural dissolved organic matter (NDOM) dynamics in karstic aquifer remain poorly understood due to the inaccessibility and heterogeneity of the subsurface. Because the Santa Fe River sinks into the Floridan Aquifer and emerges 6 km down gradient, the O'Leno Sink-Rise system in Northern Florida provides an ideal setting to study NDOM transformation in groundwater. Water samples were collected at both high and low temporal resolutions over 3 years from the River Sink, Rise, and a series of shallow and deep wells. Analyses of dissolved organic and inorganic carbon, stable isotopic, and spectrophotometry (excitation-emission matrix or EEM) show that reversals of hydrologic head gradient in the conduit and matrix are closely related to the delivery of NDOM to the aquifer. In addition, the relative influence of biotic and abiotic processes varies along spatiotemporal gradients; regions of the aquifer with greatest connectivity to surface water (new NDOM and terminal electron acceptor supply) see the most microbial transformation of NDOM, while those with least connectivity see relatively greater abiotic transformation of NDOM. A source water mixing model was established for the Sink-Rise system using Mg2+ and SO42- concentrations from three end-members identified as allogenic recharge, upwelling deep water, and shallow groundwater of the Upper Floridan Aquifer. Biogeochemical processes were quantified after accounting for changes that occurred due to source water mixing, according to the model. In addition to NDOM remineralization by subsurface microbes which occurred mostly during wet periods, adsorption of NDOM onto aquifer materials as well as release of NDOM from aquifer materials was also observed. During wet periods when DOC-rich conduit water entered the matrix, progressive NDOM remineralization was found along the preferential flow paths from the conduits into the matrices. Both biotic and abiotic NDOM transformation processes were found to control channel dissolution and thus the subsurface geomorphology, all of which are linked to hydrology and climate patterns.

  6. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces.

    PubMed

    Liang, Y; Liu, X; Allen, M R

    2018-02-01

    Understanding the sorption mechanisms for organophosphate flame retardants (OPFRs) on impervious surfaces is important to improve our knowledge of the fate and transport of OPFRs in indoor environments. The sorption processes of semivolatile organic compounds (SVOCs) on indoor surfaces are heterogeneous (multilayer sorption) or homogeneous (monolayer sorption). In this study, we adopted simplified Langmuir isotherm and Freundlich isotherm in a dynamic sink model to characterize the sorption dynamics of OPFRs on impervious surfaces such as stainless steel and made comparisons between the two models through a series of empty chamber studies. The tests involve two types of stainless steel chambers (53-L small chambers and 44-mL micro chambers) using tris(2-chloroethyl)phosphate (TCEP) and tris(1-chloro-2-propyl)phosphate (TCPP) as target compounds. Our test results show that the dynamic sink model using Freundlich isotherm can better represent the sorption process in the empty small chamber. Micro chamber test results from this study show that the sink model using both simplified Langmuir isotherm and Freundlich isotherm can well fit the measured gas-phase concentrations of OPFRs. We further applied both models and the parameters obtained to predict the gas phase concentrations of OPFRs in a small chamber with an emission source. Comparisons between model predictions and measurements demonstrate the reliability and applicability of the sorption parameters. Published by Elsevier Ltd.

  7. Contribution of Changing Sources and Sinks to the Growth Rate of Atmospheric Methane Concentrations for the Last Two Decades

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; Walter, B.; Bogner, J.; Sarma, D.; Portmey, G.; Travis, Larry (Technical Monitor)

    2001-01-01

    In situ measurements of atmospheric methane concentrations begun in the early 1980s show decadal trends, as well as large interannual variations, in growth rate. Recent research indicates that while wetlands can explain several of the large growth anomalies for individual years, the decadal trend may be the combined effect of increasing sinks, due to increases in tropospheric OH, and stabilizing sources. We discuss new 20-year histories of annual, global source strengths for all major methane sources, i.e., natural wetlands, rice cultivation, ruminant animals, landfills, fossil fuels, and biomass burning. We also present estimates of the temporal pattern of the sink required to reconcile these sources and atmospheric concentrations over this time period. Analysis of the individual emission sources, together with model-derived estimates of the OH sink strength, indicates that the growth rate of atmospheric methane observed over the last 20 years can only be explained by a combination of changes in source emissions and an increasing tropospheric sink. Direct validation of the global sources and the terrestrial sink is not straightforward, in part because some sources/sinks are relatively small and diffuse (e.g., landfills and soil consumption), as well as because the atmospheric record integrates multiple and substantial sources and tropospheric sinks in regions such as the tropics. We discuss ways to develop and test criteria for rejecting and/or accepting a suite of scenarios for the methane budget.

  8. Estimation of Carbon Sink in Surface Carbonate Rocks of Guangxi Province by Using Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Jia, B.; Zhou, G.; Wang, H.; Yue, T.; Huang, W.

    2018-04-01

    Studies of the imbalance of source sinks in the carbon cycle show that CO2 absorbed during rock weathering is part of the "miss carbon" of the global carbon cycle. The carbon sink contribution of carbonate rocks obviously plays a very important role in the absorption of atmospheric CO2. Estimation of carbon sinks in karst dynamic system of Guangxi province has great significance for further understanding of global karst carbon cycle and global climate research. This paper quotes the rock data from Tao Xiaodong's paper, which is obtained using RS and GIS techniques. At the same time, the dissolution rate model studied by Zhou Guoqing and others was used to estimate the dissolution rate of carbonate rocks in Guangxi Province. Finally, the CO2 content consumed by carbonate karstification in Guangxi Province was 1342910.447 t a-1. The results obtained are in the same order of magnitude as the CO2 content consumed by carbonate rock karstification in Guangxi Province calculated by Tao Xiaodong.

  9. Phenology, growth and physiological adjustments of oil palm (Elaeis guineensis) to sink limitation induced by fruit pruning

    PubMed Central

    Legros, S.; Mialet-Serra, I.; Caliman, J.-P.; Siregar, F. A.; Clement-Vidal, A.; Fabre, D.; Dingkuhn, M.

    2009-01-01

    Background and Aims Despite its simple architecture and small phenotypic plasticity, oil palm has complex phenology and source–sink interactions. Phytomers appear in regular succession but their development takes years, involving long lag periods between environmental influences and their effects on sinks. Plant adjustments to resulting source–sink imbalances are poorly understood. This study investigated oil palm adjustments to imbalances caused by severe fruit pruning. Methods An experiment with two treatments (control and complete fruit pruning) during 22 months in 2006–2008) and six replications per treatment was conducted in Indonesia. Phenology, growth of above-ground vegetative and reproductive organs, leaf morphology, inflorescence sex differentiation, dynamics of non-structural carbohydrate reserves and light-saturated net photosynthesis (Amax) were monitored. Key Results Artificial sink limitation by complete fruit pruning accelerated development rate, resulting in higher phytomer, leaf and inflorescence numbers. Leaf size and morphology remained unchanged. Complete fruit pruning also suppressed the abortion of male inflorescences, estimated to be triggered at about 16 months before bunch maturity. The number of female inflorescences increased after an estimated lag of 24–26 months, corresponding to time from sex differentiation to bunch maturity. The most important adjustment process was increased assimilate storage in the stem, attaining nearly 50 % of dry weight in the stem top, mainly as starch, whereas glucose, which in controls was the most abundant non-structural carbohydrate stored in oil palm, decreased. Conclusions The development rate of oil palm is in part controlled by source–sink relationships. Although increased rate of development and proportion of female inflorescences constituted observed adjustments to sink limitation, the low plasticity of plant architecture (constant leaf size, absence of branching) limited compensatory growth. Non-structural carbohydrate storage was thus the main adjustment process. PMID:19748908

  10. Experimental evaluation of the significance of the pressure transport term for the Turbulence Kinetic Energy Budget across contrasting forest architectures

    NASA Astrophysics Data System (ADS)

    Ehrnsperger, Laura; Wunder, Tobias; Thomas, Christoph

    2017-04-01

    Forests are one of the dominant vegetation types on Earth and are an important sink for carbon on our planet. Forests are special ecosystems due to their great canopy height und complex architecture consisting of a subcanopy and a canopy layer, which changes the mechanisms of turbulent exchange within the plant canopy. To date, the sinks and sources of turbulence in forest canopies are not completely understood, especially the role of the pressure transport remains unclear. The INTRAMIX experiment was conducted in a mountainous Norway spruce (Picea abies) forest at the Fluxnet Waldstein site (DE-Bay) in Bavaria, Germany, for a period of 10 weeks in order to experimentally evaluate the significance of the pressure transport to the TKE budget for the first time. The INTRAMIX data of the dense mountain forest was compared to observations from a sparse Ponderosa pine (Pinus ponderosa) stand in Oregon, USA, to study the influence of forest architecture. We hypothesized that the pressure transport is more important in dense forest canopies as the crown decouples the subcanopy from the buoyancy- and shear-driven flow above the canopy. It is also investigated how atmospheric stability influences the TKE budget. Based upon model results from literature we expect the pressure transport to act as a source for TKE especially under free convective and unstable dynamic stability. Results to date indicate that pressure transport is most important in the subcanopy with decreasing magnitude with increasing height. Nevertheless, pressure transport is a continuous source of TKE above the canopy, while in the canopy and subcanopy layer pressure transport acts both as a sink and source term for TKE. In the tree crown layer pressure transport is a source in the morning and afternoon hours and acts as a sink during the evening, while in the subcanopy pressure transport is a source around noon and during the night and acts as a sink in the early morning and afternoon hours. This complementary pattern suggests that the pressure transport is an important means for exchanging TKE across canopy layers.

  11. Impact of a classic paper by H. Ronald Pulliam: An overview of the first twenty years (1988-2007)

    EPA Science Inventory

    In 1988, H. Ronald Pulliam published the classic paper, “Sources, Sinks, and Population Regulation.” The message of this paper was that population dynamics can change across heterogeneous landscapes, where populations in “sink” habitats rely on inputs from “source” habitats to p...

  12. EVALUATING EFFECTS OF LOW QUALITY HABITATS ON REGIONAL GROWTH IN PEOMYCUS LEUCOPUS: INSIGHTS FROM FIELD-PARAMETERIZED SPATIAL MATRIX MODELS.

    EPA Science Inventory

    Due to complex population dynamics and source-sink metapopulation processes, animal fitness sometimes varies across landscapes in ways that cannot be deduced from simple density patterns. In this study, we examine spatial patterns in fitness using a combination of intensive fiel...

  13. Further development of a global pollution model for CO, CH4, and CH2 O

    NASA Technical Reports Server (NTRS)

    Peters, L. K.

    1975-01-01

    Global tropospheric pollution models are developed that describe the transport and the physical and chemical processes occurring between the principal sources and sinks of CH4 and CO. Results are given of long term static chemical kinetic computer simulations and preliminary short term dynamic simulations.

  14. Structural and Dynamical Patterns on Online Social Networks: The Spanish May 15th Movement as a Case Study

    PubMed Central

    Borge-Holthoefer, Javier; Rivero, Alejandro; García, Iñigo; Cauhé, Elisa; Ferrer, Alfredo; Ferrer, Darío; Francos, David; Iñiguez, David; Pérez, María Pilar; Ruiz, Gonzalo; Sanz, Francisco; Serrano, Fermín; Viñas, Cristina; Tarancón, Alfonso; Moreno, Yamir

    2011-01-01

    The number of people using online social networks in their everyday life is continuously growing at a pace never saw before. This new kind of communication has an enormous impact on opinions, cultural trends, information spreading and even in the commercial success of new products. More importantly, social online networks have revealed as a fundamental organizing mechanism in recent country-wide social movements. In this paper, we provide a quantitative analysis of the structural and dynamical patterns emerging from the activity of an online social network around the ongoing May 15th (15M) movement in Spain. Our network is made up by users that exchanged tweets in a time period of one month, which includes the birth and stabilization of the 15M movement. We characterize in depth the growth of such dynamical network and find that it is scale-free with communities at the mesoscale. We also find that its dynamics exhibits typical features of critical systems such as robustness and power-law distributions for several quantities. Remarkably, we report that the patterns characterizing the spreading dynamics are asymmetric, giving rise to a clear distinction between information sources and sinks. Our study represents a first step towards the use of data from online social media to comprehend modern societal dynamics. PMID:21886834

  15. On the inclusion of mass source terms in a single-relaxation-time lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Aursjø, Olav; Jettestuen, Espen; Vinningland, Jan Ludvig; Hiorth, Aksel

    2018-05-01

    We present a lattice Boltzmann algorithm for incorporating a mass source in a fluid flow system. The proposed mass source/sink term, included in the lattice Boltzmann equation, maintains the Galilean invariance and the accuracy of the overall method, while introducing a mass source/sink term in the fluid dynamical equations. The method can, for instance, be used to inject or withdraw fluid from any preferred lattice node in a system. This suggests that injection and withdrawal of fluid does not have to be introduced through cumbersome, and sometimes less accurate, boundary conditions. The method also suggests that, through a chosen equation of state relating mass density to pressure, the proposed mass source term will render it possible to set a preferred pressure at any lattice node in a system. We demonstrate how this model handles injection and withdrawal of a fluid. And we show how it can be used to incorporate pressure boundaries. The accuracy of the algorithm is identified through a Chapman-Enskog expansion of the model and supported by the numerical simulations.

  16. Phloem transport velocity varies over time and among vascular bundles during early cucumber seedling development.

    PubMed

    Savage, Jessica A; Zwieniecki, Maciej A; Holbrook, N Michele

    2013-11-01

    We use a novel dye-tracing technique to measure in vivo phloem transport velocity in cucumber (Cucumis sativus) plants during early seedling development. We focus on seedlings because of their importance in plant establishment and because they provide a simple source and sink model of phloem transport. The dye-tracing method uses a photodiode to track the movement of a bleach front of fluorescent dye traveling in the phloem from the cotyledons (source) to the roots (sink). During early seedling development, phloem transport velocity in this direction can change 2-fold depending on vascular connectivity and the number of actively growing sinks. Prior to leaf expansion, vascular bundles attached to the first developing leaf demonstrate a decline in basipetal phloem transport that can be alleviated by the leaf's removal. At this stage, seedlings appear carbon limited and phloem transport velocity is correlated with cotyledon area, a pattern that is apparent both during cotyledon expansion and after source area manipulation. When the first leaf transitions to a carbon source, seedling growth rate increases and basipetal phloem transport velocity becomes more stable. Because bundles appear to operate autonomously, transport velocity can differ among vascular bundles. Together, these results demonstrate the dynamic and heterogeneous nature of phloem transport and underline the need for a better understanding of how changes in phloem physiology impact growth and allocation at this critical stage of development.

  17. Determining the vertical carbon dioxide source/sink distribution in a mountain pine beetle attacked forest: A comparison of eddy-covariance and ecophysiological approaches

    NASA Astrophysics Data System (ADS)

    Emmel, C.; Bowler, R.; Black, T. A.; Christen, A.

    2012-12-01

    Disturbance of forests caused by insect attacks, such as the mountain pine beetle (Dendroctonus ponderosae, MPB) outbreak in Western North America may lead to a conversion of affected forests from a net carbon dioxide (CO2) sink to a net source. Informed management of forests can help reduce the associated CO2 emissions. The objective of this study is to determine the vertical distribution of sources and sinks of CO2 in an open MPB attacked lodgepole pine (Pinus contorta var. latifolia) canopy (stand height h = 17 m, leaf areas index LAI = 0.55 m2 m-2) in the Interior of British Columbia. The stand has a considerable living secondary structure with a maximum height of 12 m while 99% of the mature pine trees composing the upper canopy are dead. We compared two different methods to accomplish the goal of determining the vertical divergence of the CO2 flux and relate it to the different vegetation layers. Data from a field campaign in July / August 2010 were used. The first method employs eddy-covariance (EC) measurements to determine the vertical source/sink distribution within and above the canopy. The instrumentation included open-path infrared gas analyzers and 3D ultrasonic anemometers. With simultaneous EC measurements at seven heights (z/h = 0.05, 0.15, 0.40, 0.60, 0.85, 1.05 and 1.30) we determined the CO2 uptake or release of the layers between the measurement levels by calculating the flux density divergence and the CO2 storage change in the air of each layer. The second method uses an ecophysiological approach developing a canopy CO2 exchange model. CO2 exchange was directly measured on tree boles and the soil using a portable non-steady-state CO2 chamber system and on leaves using a LI-COR LI-6400 photosynthesis system. Measurements were made during different times of the day and under varying temperature and moisture conditions over the course of the campaign. Airborne light detection and ranging (LIDAR) measurements, and vertical, horizontal and species-specific LAI measurements provided necessary information about the stand structure. We combined this information with measurements of photosynthetically active radiation (PAR) at 6 levels, soil moisture and temperature measurements to model the vertical CO2 source/sink distribution over the course of the campaign. In earlier research, it was found that this stand made the transition from a carbon source to a sink faster than expected (Brown et al., 2010, Agric For Meteorol 150, 254-264). The flux profile showed substantial daytime CO2 uptake below z/h = 0.5, while in the upper canopy there was respiratory CO2 loss. PAR penetrates deep into the canopy with on average almost 60% reaching the ground level (z/h = 0.05). Our study demonstrates that the secondary structure is responsible for significant CO2 uptake, while the understory together with the soil and the dead lodgepole pine trees in the upper canopy are weak CO2 sources, resulting in the stand being a carbon sink. We will discuss the strengths and weaknesses of the two proposed methods with regard to technical challenges and uncertainties, and how the two methods compared overall.

  18. Phosphorus storage and mobilization in coastal Phragmites wetlands: Influence of local-scale hydrodynamics

    NASA Astrophysics Data System (ADS)

    Karstens, Svenja; Buczko, Uwe; Glatzel, Stephan

    2016-04-01

    Coastal Phragmites wetlands are at the interface between terrestrial and aquatic ecosystems and are of paramount importance for nutrient regulation. They can act both as sinks and sources for phosphorus, depending on environmental conditions, sediment properties as well as on antecedent nutrient loading and sorption capacity of the sediments. The Darss-Zingst Bodden Chain is a shallow lagoon system at the German Baltic Sea coast with a long eutrophication history. It is lined almost at its entire length by reed wetlands. In order to elucidate under which conditions these wetlands act as sources or sinks for phosphorus, in-situ data of chemo-physical characteristics of water and sediment samples were combined with hydrodynamic measurements and laboratory experiments. Small-scale basin structures within the wetland serve as sinks for fine-grained particles rich in phosphorus, iron, manganese and organic matter. Without turbulent mixing the bottom water and the sediment surface lack replenishment of oxygen. During stagnant periods with low water level, low turbulence and thus low-oxygen conditions phosphorus from the sediments is released. But the sediments are capable of becoming sinks again once oxygen is resupplied. A thin oxic sediment surface layer rich in iron and manganese adsorbs phosphorus quickly. We demonstrate that sediments in coastal Phragmites wetlands can serve both as sources and sinks of soluble reactive phosphorus on a very short time-scale, depending on local-scale hydrodynamics and the state of the oxic-anoxic sediment interface.

  19. New insights into hydrologic sources and sinks in the Nile Basin: A multi-source satellite data analysis

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Velpuri, N. M.; Bohms, S.; Demissie, Y.; Gebremichael, M.

    2014-12-01

    The Nile River is the longest in the world with a length of 6,800 km. However, the contrast between the length of the river or the size of the basin and the comparatively small volume of basin runoff generated is a unique feature of the Nile Basin. Due to non-availability of in-situ hydrologic data, we do not clearly understand the spatial distribution of hydrologic sources and sinks and how much they control input-output dynamics? In this study, we integrated satellite-derived precipitation, and modeled evapotranspiration data (2000-2012) to describe spatial variability of hydrologic sources and sinks in the Nile Basin. We also used long-term gridded runoff and river discharge data (1869-1984) to understand the discrepancy in the observed and expected flow along the Nile River. Results indicate that over 2000-2012 period, 4 out of 11 countries (Ethiopia, Tanzania, Kenya, and Uganda) in the Nile basin showed a positive water balance while three downstream countries (South Sudan, Sudan, and Egypt) showed a negative balance. The top three countries that contribute most to the flow are Ethiopia, Tanzania and Kenya. The study revealed that ~85% of the runoff generated in the Equatorial region is lost in an inter-station basin that includes the Sudd wetlands in South Sudan; this proportion is higher than the reported loss of 50% at the Sudd wetlands alone. The loss in runoff and flow volume at different sections of the river tend to be more than what can be explained by evaporation losses, suggesting a potential recharge to deeper aquifers that are not connected to the Nile channel systems. On the other hand, we also found that the expected average annual Nile flow at Aswan is larger (97 km3) than the reported amount (84 km3). Gravity Recovery and Climate Experiment (GRACE) mass deviation in storage data analysis showed that at annual time-scales, the Nile Basin shows storage change is substantial while over longer-time periods, it is minimal (<1% of basin precipitation). Due to the large variations of the reported Nile flow at different locations and time periods, the study recommends increased hydro-meteorological instrumentation of the basin. This study improves our understanding of the spatial dynamics of water sources and sinks in the Nile basin and identified emerging hydrologic questions that require further attention.

  20. A framework for estimating the determinants of spatial and temporal variation in vital rates and inferring the occurrence of unobserved extreme events

    PubMed Central

    Jesenšek, Dušan; Crivelli, Alain J.

    2018-01-01

    We develop a general framework that combines long-term tag–recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004–2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event. PMID:29657746

  1. A framework for estimating the determinants of spatial and temporal variation in vital rates and inferring the occurrence of unobserved extreme events.

    PubMed

    Vincenzi, Simone; Jesenšek, Dušan; Crivelli, Alain J

    2018-03-01

    We develop a general framework that combines long-term tag-recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004-2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event.

  2. Whole-plant adjustments in coconut (Cocos nucifera) in response to sink-source imbalance.

    PubMed

    Mialet-Serra, I; Clement-Vidal, A; Roupsard, O; Jourdan, C; Dingkuhn, M

    2008-08-01

    Coconut (Cocos nucifera L.) is a perennial tropical monocotyledon that produces fruit continuously. The physiological function of the large amounts of sucrose stored in coconut stems is unknown. To test the hypothesis that reserve storage and mobilization enable the crop to adjust to variable sink-source relationships at the scale of the whole plant, we investigated the dynamics of dry matter production, yield and yield components, and concentrations of nonstructural carbohydrate reserves in a coconut plantation on Vanuatu Island in the South Pacific. Two treatments were implemented continuously over 29 months (April 2002 to August 2004): 50% leaf pruning (to reduce the source) and 100% fruit and inflorescence pruning (to reduce the sink). The pruning treatments had little effect on carbohydrate reserves because they affected only petioles, not the main reserve pool in the stem. Both pruning treatments greatly reduced dry matter production of the reproductive compartment, but vegetative growth and development were negligibly affected by treatment and season. Leaf pruning increased radiation-use efficiency (RUE) initially, and fruit pruning greatly reduced RUE throughout the experiment. Changes in RUE were negatively correlated with leaflet soluble sugar concentration, indicating feedback inhibition of photosynthesis. We conclude that vegetative development and growth of coconut show little phenotypic plasticity, assimilate demand for growth being largely independent of a fluctuating assimilate supply. The resulting sink-source imbalances were partly compensated for by transitory reserves and, more importantly, by variable RUE in the short term, and by adjustment of fruit load in the long term. Possible physiological mechanisms are discussed, as well as modeling concepts that may be applied to coconut and similar tree crops.

  3. High population variability and source-sink dynamics in a solitary bee species.

    PubMed

    Franzén, Markus; Nilsson, Sven G

    2013-06-01

    Although solitary bees are considered to play key roles in ecosystem functions, surprisingly few studies have explored their population dynamics. We investigated the population dynamics of a rare, declining, solitary bee (Andrena humilis) in a landscape of 80 km2 in southern Sweden from 2003 to 2011. Only one population was persistent throughout all years studied; most likely this population supplied the surrounding landscape with 11 smaller, temporary local populations. Despite stable pollen availability, the size of the persistent population fluctuated dramatically in a two-year cycle over the nine years, with 490-1230 nests in odd-numbered years and 21-48 nests in even-numbered years. These fluctuations were not significantly related to climatic variables or pollen availability. Nineteen colonization and 14 extinction events were recorded. Occupancy decreased with distance from the persistent population and increased with increasing resource (pollen) availability. There were significant positive correlations between the size of the persistent population and patch occupancy and colonization. Colonizations were generally more common in patches closer to the persistent population, whereas extinctions were independent of distance from the persistent population. Our results highlight the complex population dynamics that exist for this solitary bee species, which could be due to source-sink dynamics, a prolonged diapause, or can represent a bet-hedging strategy to avoid natural enemies and survive in small habitat patches. If large fluctuations in solitary bee populations prove to be widespread, it will have important implications for interpreting ecological relationships, bee conservation, and pollination.

  4. Tree carbon allocation dynamics determined using a carbon mass balance approach.

    PubMed

    Klein, Tamir; Hoch, Günter

    2015-01-01

    Tree internal carbon (C) fluxes between compound and compartment pools are difficult to measure directly. Here we used a C mass balance approach to decipher these fluxes and provide a full description of tree C allocation dynamics. We collected independent measurements of tree C sinks, source and pools in Pinus halepensis in a semi-arid forest, and converted all fluxes to g C per tree d(-1) . Using this data set, a process flowchart was created to describe and quantify the tree C allocation on diurnal to annual time-scales. The annual C source of 24.5 kg C per tree yr(-1) was balanced by C sinks of 23.5 kg C per tree yr(-1) , which partitioned into 70%, 17% and 13% between respiration, growth, and litter (plus export to soil), respectively. Large imbalances (up to 57 g C per tree d(-1) ) were observed as C excess during the wet season, and as C deficit during the dry season. Concurrent changes in C reserves (starch) were sufficient to buffer these transient C imbalances. The C pool dynamics calculated using the flowchart were in general agreement with the observed pool sizes, providing confidence regarding our estimations of the timing, magnitude, and direction of the internal C fluxes. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. [Regulation framework of watershed landscape pattern for non-point source pollution control based on 'source-sink' theory: A case study in the watershed of Maluan Bay, Xiamen City, China].

    PubMed

    Huang, Ning; Wang, Hong Ying; Lin, Tao; Liu, Qi Ming; Huang, Yun Feng; Li, Jian Xiong

    2016-10-01

    Watershed landscape pattern regulation and optimization based on 'source-sink' theory for non-point source pollution control is a cost-effective measure and still in the exploratory stage. Taking whole watershed as the research object, on the basis of landscape ecology, related theories and existing research results, a regulation framework of watershed landscape pattern for non-point source pollution control was developed at two levels based on 'source-sink' theory in this study: 1) at watershed level: reasonable basic combination and spatial pattern of 'source-sink' landscape was analyzed, and then holistic regulation and optimization method of landscape pattern was constructed; 2) at landscape patch level: key 'source' landscape was taken as the focus of regulation and optimization. Firstly, four identification criteria of key 'source' landscape including landscape pollutant loading per unit area, landscape slope, long and narrow transfer 'source' landscape, pollutant loading per unit length of 'source' landscape along the riverbank were developed. Secondly, nine types of regulation and optimization methods for different key 'source' landscape in rural and urban areas were established, according to three regulation and optimization rules including 'sink' landscape inlay, banding 'sink' landscape supplement, pollutants capacity of original 'sink' landscape enhancement. Finally, the regulation framework was applied for the watershed of Maluan Bay in Xiamen City. Holistic regulation and optimization mode of watershed landscape pattern of Maluan Bay and key 'source' landscape regulation and optimization measures for the three zones were made, based on GIS technology, remote sensing images and DEM model.

  6. Emission and Sink of Greenhouse Gases in Soils of Moscow

    NASA Astrophysics Data System (ADS)

    Mozharova, N. V.; Kulachkova, S. A.; Lebed'-Sharlevich, Ya. I.

    2018-03-01

    The first inventory and zoning of the emission and sink of methane and carbon dioxide in the urban structure of greenhouse gases from soils and surface technogenic formations (STFs) (Technosols) on technogenic, recrementogenic, and natural sediments have been performed with consideration for the global warming potential under conditions of different formation rate of these gases, underflooding, and sealing. From gas geochemical criteria and anthropogenic pedogenesis features, the main sources of greenhouse gases, their intensity, and mass emission were revealed. The mass fractions of emissions from the sectors of waste and land use in the inventories of greenhouse gas emissions have been determined. New sources of gas emission have been revealed in the first sector, the emissions from which add tens of percent to the literature and state reports. In the second sector, emissions exceed the available data in 70 times. Estimation criteria based on the degree of manifestation and chemical composition of soil-geochemical anomalies and barrier capacities have been proposed. The sink of greenhouse gases from the atmosphere and the internal (latent) sink of methane in soils and STFs have been determined. Ecological functions of soils and STFs have been shown, and the share of latent methane sink has been calculated. The bacterial oxidation of methane in soils and STFs exceeds its emission to the atmosphere in almost hundred times.

  7. Measuring and modelling seasonal patterns of carbohydrate storage and mobilization in the trunks and root crowns of peach trees

    PubMed Central

    Da Silva, David; Qin, Liangchun; DeBuse, Carolyn; DeJong, Theodore M.

    2014-01-01

    Background and Aims Developing a conceptual and functional framework for simulating annual long-term carbohydrate storage and mobilization in trees has been a weak point for virtually all tree models. This paper provides a novel approach for solving this problem using empirical field data and details of structural components of simulated trees to estimate the total carbohydrate stored over a dormant season and available for mobilization during spring budbreak. Methods The seasonal patterns of mobilization and storage of non-structural carbohydrates in bark and wood of the scion and rootstock crowns of the trunks of peach (Prunus persica) trees were analysed subsequent to treatments designed to maximize differences in source–sink behaviour during the growing season. Mature peach trees received one of three treatments (defruited and no pruning, severe pruning to 1·0 m, and unthinned with no pruning) in late winter, just prior to budbreak. Selected trees of each treatment were harvested at four times (March, June, August and November) and slices of trunk and root crown tissue above and below the graft union were removed for carbohydrate analysis. Inner bark and xylem tissues from the first to fifth rings were separated and analysed for non-structural carbohydrates. Data from these experiments were then used to estimate the amount of non-structural carbohydrates available for mobilization and to parameterize a carbohydrate storage sub-model in the functional–structural L-PEACH model. Key Results The mass fraction of carbohydrates in all sample tissues decreased from March to June, but the decrease was greatest in the severely pruned and unthinned treatments. November carbohydrate mass fractions in all tissues recovered to values similar to those in the previous March, except in the older xylem rings of the severely pruned and unthinned treatment. Carbohydrate storage sink capacity in trunks was empirically estimated from the mean maximum measured trunk non-structural carbohydrate mass fractions. The carbohydrate storage source available for mobilization was estimated from these maximum mass fractions and the early summer minimum mass fractions remaining in these tissues in the severe treatments that maximized mobilization of stored carbohydrates. The L-PEACH sink–source carbohydrate distribution framework was then used along with simulated tree structure to successfully simulate annual carbohydrate storage sink and source behaviour over years. Conclusions The sink–source concept of carbohydrate distribution within a tree was extended to include winter carbohydrate storage and spring mobilization by considering the storage sink and source as a function of the collective capacity of active xylem and phloem tissue of the tree, and its annual behaviour was effectively simulated using the L-PEACH functional–structural plant model. PMID:24674986

  8. Quantifying the source-sink balance and carbohydrate content in three tomato cultivars.

    PubMed

    Li, Tao; Heuvelink, Ep; Marcelis, Leo F M

    2015-01-01

    Supplementary lighting is frequently applied in the winter season for crop production in greenhouses. The effect of supplementary lighting on plant growth depends on the balance between assimilate production in source leaves and the overall capacity of the plants to use assimilates. This study aims at quantifying the source-sink balance and carbohydrate content of three tomato cultivars differing in fruit size, and to investigate to what extent the source/sink ratio correlates with the potential fruit size. Cultivars Komeet (large size), Capricia (medium size), and Sunstream (small size, cherry tomato) were grown from 16 August to 21 November, at similar crop management as in commercial practice. Supplementary lighting (High Pressure Sodium lamps, photosynthetic active radiation at 1 m below lamps was 162 μmol photons m(-2) s(-1); maximum 10 h per day depending on solar irradiance level) was applied from 19 September onward. Source strength was estimated from total plant growth rate using periodic destructive plant harvests in combination with the crop growth model TOMSIM. Sink strength was estimated from potential fruit growth rate which was determined from non-destructively measuring the fruit growth rate at non-limiting assimilate supply, growing only one fruit on each truss. Carbohydrate content in leaves and stems were periodically determined. During the early growth stage, 'Komeet' and 'Capricia' showed sink limitation and 'Sunstream' was close to sink limitation. During this stage reproductive organs had hardly formed or were still small and natural irradiance was high (early September) compared to winter months. Subsequently, during the fully fruiting stage all three cultivars were strongly source-limited as indicated by the low source/sink ratio (average source/sink ratio from 50 days after planting onward was 0.17, 0.22, and 0.33 for 'Komeet,' 'Capricia,' and 'Sunstream,' respectively). This was further confirmed by the fact that pruning half of the fruits hardly influenced net leaf photosynthesis rates. Carbohydrate content in leaves and stems increased linearly with the source/sink ratio. We conclude that during the early growth stage under high irradiance, tomato plants are sink-limited and that the level of sink limitation differs between cultivars but it is not correlated with their potential fruit size. During the fully fruiting stage tomato plants are source-limited and the extent of source limitation of a cultivar is positively correlated with its potential fruit size.

  9. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    DOEpatents

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  10. Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA

    NASA Astrophysics Data System (ADS)

    Jin, Jin; Zimmerman, Andrew R.; Moore, Paul J.; Martin, Jonathan B.

    2014-03-01

    Spatiotemporal variations in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), major ions concentrations and other geochemical parameters including stable carbon isotopes of DIC (δ13CDIC), were measured in surface water and deep and shallow well water samples of the Santa Fe River Sink-Rise eogenetic karst system, north Florida, USA. Three end-member water sources were identified: one DOC-rich/DIC-poor/δ13CDIC-depleted, one DOC-poor/DIC-rich/δ13CDIC-enriched, and one enriched in major ions. Given their spatiotemporal distributions, they were presumed to represent soil water, upper aquifer groundwater, and deep aquifer water sources, respectively. Using assumed ratios of Na+, Cl, and SO42- for each end-member, a mixing model calculated the contribution of each water source to each sample. Then, chemical effects of biogeochemical reactions were calculated as the difference between those predicted by the mixing model and measured species concentrations. In general, carbonate mineral dissolution occurred throughout the Sink-Rise system, surface waters were net autotrophic and the subsurface was in metabolic balance, i.e., no net DOC or DIC production or consumption. However, there was evidence for chemolithoautotrophy, perhaps by hydrogen oxidizing microbes, at some deep aquifer sites. Mineralization of this autochthonous natural dissolved organic matter (NDOM) led to localized carbonate dissolution as did surface water-derived NDOM supplied to shallow well sites during the highest flow periods. This study demonstrates linkages between hydrology, abiotic and microbial processes and carbon dynamics and has important implications for groundwater quality, karst morphologic evolution, and hydrogeologic projects such as aquifer storage and recovery in karst systems.

  11. The Potential of Carbonyl Sulfide as a Proxy for Gross Primary Production at Flux Tower Sites

    USDA-ARS?s Scientific Manuscript database

    Regional and continental scale studies of the seasonal dynamics of atmospheric carbonyl sulfide (OCS) mole fractions and leaf-level studies of plant OCS exchange have shown a close relationship with those for CO2. CO2 has sinks and sources within terrestrial ecosystems, but the primary terrestrial e...

  12. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Treesearch

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  13. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  14. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    PubMed

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Self-sustaining populations, population sinks or aggregates of strays: chum (Oncorhynchus keta) and Chinook salmon (Oncorhynchus tshawytscha) in the Wood River system, Alaska.

    PubMed

    Lin, Jocelyn E; Hilborn, Ray; Quinn, Thomas P; Hauser, Lorenz

    2011-12-01

    Small populations can provide insights into ecological and evolutionary aspects of species distributions over space and time. In the Wood River system in Alaska, USA, small aggregates of Chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) spawn in an area dominated by sockeye salmon (O. nerka). Our objective was to determine whether these Chinook and chum salmon are reproductively isolated, self-sustaining populations, population sinks that produce returning adults but receive immigration, or strays from other systems that do not produce returning adults. DNA samples collected from adult chum salmon from 16 streams and Chinook salmon from four streams in the Wood River system over 3 years were compared to samples from large populations in the nearby Nushagak River system, a likely source of strays. For both species, microsatellite markers indicated no significant genetic differentiation between the two systems. Simulations of microsatellite data in a large source and a smaller sink population suggested that considerable immigration would be required to counteract the diverging effects of genetic drift and produce genetic distances as small as those observed, considering the small census sizes of the two species in the Wood River system. Thus, the Wood River system likely receives substantial immigration from neighbouring watersheds, such as the Nushagak River system, which supports highly productive runs. Although no data on population productivity in the Wood River system exist, our results suggest source-sink dynamics for the two species, a finding relevant to other systems where salmonid population sizes are limited by habitat factors. © 2011 Blackwell Publishing Ltd.

  16. Lattice Strain Due to an Atomic Vacancy

    PubMed Central

    Li, Shidong; Sellers, Michael S.; Basaran, Cemal; Schultz, Andrew J.; Kofke, David A.

    2009-01-01

    Volumetric strain can be divided into two parts: strain due to bond distance change and strain due to vacancy sources and sinks. In this paper, efforts are focused on studying the atomic lattice strain due to a vacancy in an FCC metal lattice with molecular dynamics simulation (MDS). The result has been compared with that from a continuum mechanics method. It is shown that using a continuum mechanics approach yields constitutive results similar to the ones obtained based purely on molecular dynamics considerations. PMID:19582230

  17. Evaluation of carbon fluxes and trends (2000-2008) in the Greater Platte River Basin: a sustainability study on the potential biofuel feedstock development

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Zhang, Li; Gilmanov, Tagir G.

    2012-01-01

    This study evaluates the carbon fluxes and trends and examines the environmental sustainability (e.g., carbon budget, source or sink) of the potential biofuel feedstock sites identified in the Greater Platte River Basin (GPRB). A 9-year (2000–2008) time series of net ecosystem production (NEP), a measure of net carbon absorption or emission by ecosystems, was used to assess the historical trends and budgets of carbon flux for grasslands in the GPRB. The spatially averaged annual NEP (ANEP) for grassland areas that are possibly suitable for biofuel expansion (productive grasslands) was 71–169 g C m−2 year−1 during 2000–2008, indicating a carbon sink (more carbon is absorbed than released) in these areas. The spatially averaged ANEP for areas not suitable for biofuel feedstock development (less productive or degraded grasslands) was −47 to 69 g C m−2 year−1 during 2000–2008, showing a weak carbon source or a weak carbon sink (carbon emitted is nearly equal to carbon absorbed). The 9-year pre-harvest cumulative ANEP was 1166 g C m−2 for the suitable areas (a strong carbon sink) and 200 g C m−2 for the non-suitable areas (a weak carbon sink). Results demonstrate and confirm that our method of dynamic modeling of ecosystem performance can successfully identify areas desirable and sustainable for future biofuel feedstock development. This study provides useful information for land managers and decision makers to make optimal land use decisions regarding biofuel feedstock development and sustainability.

  18. Effects of carbohydrate accumulation on photosynthesis differ between sink and source leaves of Phaseolus vulgaris L.

    PubMed

    Araya, Takao; Noguchi, Ko; Terashima, Ichiro

    2006-05-01

    Accumulation of non-structural carbohydrate in leaves represses photosynthesis. However, the extent of repression should be different between sink leaves (sugar consumers) and source leaves (sugar exporters). We investigated the effects of carbohydrate accumulation on photosynthesis in the primary leaves of bean (Phaseolus vulgaris L.) during leaf expansion. To increase the carbohydrate content of the leaves, we supplied 20 mM sucrose solution to the roots for 5 d (sugar treatment). Plants supplied only with water and nutrients were used as controls. The carbohydrate contents, which are the sum of glucose, sucrose and starch, of the sugar-treated leaves were 1.5-3 times of those of the control leaves at all developmental stages. In the young sink leaves, the photosynthetic rate at saturating light and at an ambient CO2 concentration (A360) did not differ between the sugar-treated and control leaves. The A360 of sugar-treated source leaves gradually decreased relative to the control source leaves with leaf expansion. The initial slope of the A-Ci (CO2 concentration in the intercellular space) curve, and the Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) content per leaf area showed trends similar to that of A360. Differences in Amax between the treatments were slightly smaller than those in A360. These results indicate that the effect of carbohydrate accumulation on photosynthesis is significant in the source leaves, but not in the young sink leaves, and that the decrease in Rubisco content was the main cause of the carbohydrate repression of photosynthesis.

  19. Spatial Light Modulators as Optical Crossbar Switches

    NASA Technical Reports Server (NTRS)

    Juday, Richard

    2003-01-01

    A proposed method of implementing cross connections in an optical communication network is based on the use of a spatial light modulator (SLM) to form controlled diffraction patterns that connect inputs (light sources) and outputs (light sinks). Sources would typically include optical fibers and/or light-emitting diodes; sinks would typically include optical fibers and/or photodetectors. The sources and/or sinks could be distributed in two dimensions; that is, on planes. Alternatively or in addition, sources and/or sinks could be distributed in three dimensions -- for example, on curved surfaces or in more complex (including random) three-dimensional patterns.

  20. Contribution of Changing Sources and Sinks to the Growth Rate of Atmospheric Methane Concentrations for the Last Two Decades

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; Walter, B.; Bogner, J.; Sarma, D.; Portney, B.; Hansen, James (Technical Monitor)

    2000-01-01

    In situ measurements of atmospheric methane concentrations begun in the early 1980s show decadal trends, as well as large interannual variations, in growth rate. Recent research indicates that while wetlands can explain several of the large growth anomalies for individual years, the decadal trend may be the combined effect of increasing sinks, due to increases in tropospheric OH, and stabilizing sources. We discuss new 20-year histories of annual, global source strengths for all major methane sources, i.e., natural wetlands, rice cultivation, ruminant animals, landfills, fossil fuels, and biomass burning, and present estimates of the temporal pattern of the sink required to reconcile these sources and atmospheric concentrations over the time period. Analysis of the individual emission sources, together with model-derived estimates of the OH sink strength, indicates that the growth rate of atmospheric methane observed over the last 20 years can only be explained by a combination of changes in source emissions and an increasing tropospheric sink.

  1. Crown dynamics and wood production of Douglas-fir trees in an old-growth forest

    Treesearch

    H. Roaki Ishii; Stephen C. Sillett; Allyson L. Carroll

    2017-01-01

    Large trees are the most prominent structural features of old-growth forests, which are considered to be globally important carbon sinks. Because of their large size, estimates of biomass and growth of large trees are often based on ground-level measurements (e.g., diameter at breast height, DBH) and little is known about growth dynamics within the crown. As trees...

  2. The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum

    PubMed Central

    Alexandrov, G. A.; Brovkin, V. A.; Kleinen, T.

    2016-01-01

    Boreal and subarctic peatlands are an important dynamical component of the earth system. They are sensitive to climate change, and could either continue to serve as a carbon sink or become a carbon source. Climatic thresholds for switching peatlands from sink to source are not well defined, and therefore, incorporating peatlands into Earth system models is a challenging task. Here we introduce a climatic index, warm precipitation excess, to delineate the potential geographic distribution of boreal peatlands for a given climate and landscape morphology. This allows us to explain the present-day distribution of peatlands in Western Siberia, their absence during the Last Glacial Maximum, their expansion during the mid-Holocene, and to form a working hypothesis about the trend to peatland degradation in the southern taiga belt of Western Siberia under an RCP 8.5 scenario for the projected climate in year 2100. PMID:27095029

  3. The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum.

    PubMed

    Alexandrov, G A; Brovkin, V A; Kleinen, T

    2016-04-20

    Boreal and subarctic peatlands are an important dynamical component of the earth system. They are sensitive to climate change, and could either continue to serve as a carbon sink or become a carbon source. Climatic thresholds for switching peatlands from sink to source are not well defined, and therefore, incorporating peatlands into Earth system models is a challenging task. Here we introduce a climatic index, warm precipitation excess, to delineate the potential geographic distribution of boreal peatlands for a given climate and landscape morphology. This allows us to explain the present-day distribution of peatlands in Western Siberia, their absence during the Last Glacial Maximum, their expansion during the mid-Holocene, and to form a working hypothesis about the trend to peatland degradation in the southern taiga belt of Western Siberia under an RCP 8.5 scenario for the projected climate in year 2100.

  4. The Distribution of Carbon Monoxide in the GOCART Model

    NASA Technical Reports Server (NTRS)

    Fan, Xiaobiao; Chin, Mian; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Carbon monoxide (CO) is an important trace gas because it is a significant source of tropospheric Ozone (O3) as well as a major sink for atmospheric hydroxyl radical (OH). The distribution of CO is set by a balance between the emissions, transport, and chemical processes in the atmosphere. The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the atmospheric distribution of CO. The GOCART model is driven by the assimilated meteorological data from the Goddard Earth Observing System Data Assimilation System (GEOS DAS) in an off-line mode. We study the distribution of CO on three time scales: (1) day to day fluctuation produced by the synoptic waves; (2) seasonal changes due to the annual cycle of CO sources and sinks; and (3) interannual variability induced by dynamics. Comparison of model results with ground based and remote sensing measurements will also be presented.

  5. Historical warming reduced due to enhanced land carbon uptake.

    PubMed

    Shevliakova, Elena; Stouffer, Ronald J; Malyshev, Sergey; Krasting, John P; Hurtt, George C; Pacala, Stephen W

    2013-10-15

    Previous studies have demonstrated the importance of enhanced vegetation growth under future elevated atmospheric CO2 for 21st century climate warming. Surprisingly no study has completed an analogous assessment for the historical period, during which emissions of greenhouse gases increased rapidly and land-use changes (LUC) dramatically altered terrestrial carbon sources and sinks. Using the Geophysical Fluid Dynamics Laboratory comprehensive Earth System Model ESM2G and a reconstruction of the LUC, we estimate that enhanced vegetation growth has lowered the historical atmospheric CO2 concentration by 85 ppm, avoiding an additional 0.31 ± 0.06 °C warming. We demonstrate that without enhanced vegetation growth the total residual terrestrial carbon flux (i.e., the net land flux minus LUC flux) would be a source of 65-82 Gt of carbon (GtC) to atmosphere instead of the historical residual carbon sink of 186-192 GtC, a carbon saving of 251-274 GtC.

  6. A two-dimensional transient analytical solution for a ponded ditch drainage system under the influence of source/sink

    NASA Astrophysics Data System (ADS)

    Sarmah, Ratan; Tiwari, Shubham

    2018-03-01

    An analytical solution is developed for predicting two-dimensional transient seepage into ditch drainage network receiving water from a non-uniform steady ponding field from the surface of the soil under the influence of source/sink in the flow domain. The flow domain is assumed to be saturated, homogeneous and anisotropic in nature and have finite extends in horizontal and vertical directions. The drains are assumed to be standing vertical and penetrating up to impervious layer. The water levels in the drains are unequal and invariant with time. The flow field is also assumed to be under the continuous influence of time-space dependent arbitrary source/sink term. The correctness of the proposed model is checked by developing a numerical code and also with the existing analytical solution for the simplified case. The study highlights the significance of source/sink influence in the subsurface flow. With the imposition of the source and sink term in the flow domain, the pathline and travel time of water particles started deviating from their original position and above that the side and top discharge to the drains were also observed to have a strong influence of the source/sink terms. The travel time and pathline of water particles are also observed to have a dependency on the height of water in the ditches and on the location of source/sink activation area.

  7. A global view of F-region electron density and temperature at solar maximum

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Theis, R. F.; Hoegy, W. R.

    1982-01-01

    It is pointed out that the thermal structure of the ionosphere represents a quasi-static balance between a variety of heat sources and sinks which vary spatially and temporally on a wide range of time scales. The present investigation has the objective to present selected early results from the Dynamics Explorer-2 (DE-2) Langmuir probe instrument and to make an initial evaluation of how the thermal structure of the ionosphere at solar maximum differs from that observed at solar minimum. Bowen et al. (1964) and Brace and Reddy (1965) devised early empirical models of the F region electron temperature (Te), based on satellite Langmuir probe measurements at low levels of solar activity. The global structure of Te and the electron density (Ne) obtained in the current investigation is not very different from that reported by Brace and Reddy. The primary difference at solar maximum is that Ne is everywhere much higher, but Te differs only in detail.

  8. Phloem Transport Velocity Varies over Time and among Vascular Bundles during Early Cucumber Seedling Development1[C][W][OPEN

    PubMed Central

    Savage, Jessica A.; Zwieniecki, Maciej A.; Holbrook, N. Michele

    2013-01-01

    We use a novel dye-tracing technique to measure in vivo phloem transport velocity in cucumber (Cucumis sativus) plants during early seedling development. We focus on seedlings because of their importance in plant establishment and because they provide a simple source and sink model of phloem transport. The dye-tracing method uses a photodiode to track the movement of a bleach front of fluorescent dye traveling in the phloem from the cotyledons (source) to the roots (sink). During early seedling development, phloem transport velocity in this direction can change 2-fold depending on vascular connectivity and the number of actively growing sinks. Prior to leaf expansion, vascular bundles attached to the first developing leaf demonstrate a decline in basipetal phloem transport that can be alleviated by the leaf’s removal. At this stage, seedlings appear carbon limited and phloem transport velocity is correlated with cotyledon area, a pattern that is apparent both during cotyledon expansion and after source area manipulation. When the first leaf transitions to a carbon source, seedling growth rate increases and basipetal phloem transport velocity becomes more stable. Because bundles appear to operate autonomously, transport velocity can differ among vascular bundles. Together, these results demonstrate the dynamic and heterogeneous nature of phloem transport and underline the need for a better understanding of how changes in phloem physiology impact growth and allocation at this critical stage of development. PMID:24072581

  9. Are changes in the phytoplankton community structure altering the flux of CO2 in regions of the North Atlantic?

    NASA Astrophysics Data System (ADS)

    Ostle, C.; Landschutzer, P.; Johnson, M.; Schuster, U.; Watson, A. J.; Edwards, M.; Robinson, C.

    2016-02-01

    The North Atlantic Ocean is a globally important sink of carbon dioxide (CO2). However, the strength of the sink varies temporally and regionally. This study uses a neural network method to map the surface ocean pCO2 (partial pressure of CO2) and flux of CO2from the atmosphere to the ocean alongside measurements of plankton abundance collected from the Continuous Plankton Recorder (CPR) survey to determine the relationship between regional changes in phytoplankton community structure and regional differences in carbon flux. Despite increasing sea surface temperatures, the Grand Banks of Newfoundland show a decrease in sea surface pCO2 of -2 µatm yr-1 from 1993 to 2011. The carbon flux in the North Sea is variable over the same period. This is in contrast to most of the open ocean within the North Atlantic, where increases in sea surface pCO2 follow the trend of increasing CO2 in the atmosphere, i.e. the flux or sink remains constant. The increasing CO2 sink in the Grand Banks of Newfoundland and the variable sink in the North Sea correlate with changes in phytoplankton community composition. This study investigates the biogeochemical and oceanographic mechanisms potentially linking increasing sea surface temperature, changes in phytoplankton community structure and the changing carbon sink in these two important regions of the Atlantic Ocean. The use of volunteer ships to concurrently collect these datasets demonstrates the potential to investigate relationships between plankton community structure and carbon flux in a cost-effective way. These results not only have implications for plankton-dynamic biogeochemical models, but also likely influence carbon export, as different phytoplankton communities have different carbon export efficiencies. Extending and maintaining such datasets is critical to improving our understanding of and monitoring carbon cycling in the surface ocean and improving climate model accuracy.

  10. Demographic source-sink dynamics restrict local adaptation in Elliott's blueberry (Vaccinium elliottii).

    PubMed

    Anderson, Jill T; Geber, Monica A

    2010-02-01

    In heterogeneous landscapes, divergent selection can favor the evolution of locally adapted ecotypes, especially when interhabitat gene flow is minimal. However, if habitats differ in size or quality, source-sink dynamics can shape evolutionary trajectories. Upland and bottomland forests of the southeastern USA differ in water table depth, light availability, edaphic conditions, and plant community. We conducted a multiyear reciprocal transplant experiment to test whether Elliott's blueberry (Vaccinium elliottii) is locally adapted to these contrasting environments. Additionally, we exposed seedlings and cuttings to prolonged drought and flooding in the greenhouse to assess fitness responses to abiotic stress. Contrary to predictions of local adaptation, V. elliottii families exhibited significantly higher survivorship and growth in upland than in bottomland forests and under drought than flooded conditions, regardless of habitat of origin. Neutral population differentiation was minimal, suggesting widespread interhabitat migration. Population density, reproductive output, and genetic diversity were all significantly greater in uplands than in bottomlands. These disparities likely result in asymmetric gene flow from uplands to bottomlands. Thus, adaptation to a marginal habitat can be constrained by small populations, limited fitness, and immigration from a benign habitat. Our study highlights the importance of demography and genetic diversity in the evolution of local (mal)adaptation.

  11. Quantifying postfire aeolian sediment transport using rare earth element tracers

    USGS Publications Warehouse

    Dukes, David; Gonzales, Howell B.; Ravi, Sujith; Grandstaff, David E.; Van Pelt, R. Scott; Li, Junran; Wang, Guan; Sankey, Joel B.

    2018-01-01

    Grasslands, which provide fundamental ecosystem services in many arid and semiarid regions of the world, are undergoing rapid increases in fire activity and are highly susceptible to postfire-accelerated soil erosion by wind. A quantitative assessment of physical processes that integrates fire-wind erosion feedbacks is therefore needed relative to vegetation change, soil biogeochemical cycling, air quality, and landscape evolution. We investigated the applicability of a novel tracer technique—the use of multiple rare earth elements (REE)—to quantify soil transport by wind and to identify sources and sinks of wind-blown sediments in both burned and unburned shrub-grass transition zone in the Chihuahuan Desert, NM, USA. Results indicate that the horizontal mass flux of wind-borne sediment increased approximately threefold following the fire. The REE tracer analysis of wind-borne sediments shows that the source of the horizontal mass flux in the unburned site was derived from bare microsites (88.5%), while in the burned site it was primarily sourced from shrub (42.3%) and bare (39.1%) microsites. Vegetated microsites which were predominantly sinks of aeolian sediments in the unburned areas became sediment sources following the fire. The burned areas showed a spatial homogenization of sediment tracers, highlighting a potential negative feedback on landscape heterogeneity induced by shrub encroachment into grasslands. Though fires are known to increase aeolian sediment transport, accompanying changes in the sources and sinks of wind-borne sediments may influence biogeochemical cycling and land degradation dynamics. Furthermore, our experiment demonstrated that REEs can be used as reliable tracers for field-scale aeolian studies.

  12. Assessment of an apparent relationship between availability of soluble carbohydrates and reduced nitrogen during floral initiation in tobacco

    NASA Technical Reports Server (NTRS)

    Raper, C. D. Jr; Thomas, J. F.; Tolley-Henry, L.; Rideout, J. W.; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    Daily relative accumulation rate of soluble carbohydrates (RARS) and reduced nitrogen (RARN) in the shoot, as estimates of source strength, were compared with daily relative growth rates (RGR) of the shoot, as an estimate of sink demand, during floral transformation in apical meristems of tobacco (Nicotiana tabacum 'NC 2326') grown at day/night temperatures of 18/14, 22/18, 26/22, 30/26, and 34/30 C. Source strength was assumed to exceed sink demand for either carbohydrates or nitrogen when the ratio of RARS/RGR or RARN/RGR was greater than unity, and sink demand was assumed to exceed source strength when the ratio was less than unity. Time of floral initiation, which was delayed up to 21 days with increases in temperature over the experimental range, was associated with intervals in which source strength of either carbohydrate or nitrogen exceeded sink demand, while sink demand for the other exceeded source strength. Floral initiation was not observed during intervals in which source strengths of both carbohydrates and nitrogen were greater than or less than sink demand. These results indicate that floral initiation is responsive to an imbalance in the relative availabilities of carbohydrate and nitrogen.

  13. Sensitivity analysis of the potential impact of discrepancies in stratosphere-troposphere exchange on inferred sources and sinks of CO2

    NASA Astrophysics Data System (ADS)

    Deng, F.; Jones, D. B. A.; Walker, T. W.; Keller, M.; Bowman, K. W.; Henze, D. K.; Nassar, R.; Kort, E. A.; Wofsy, S. C.; Walker, K. A.; Bourassa, A. E.; Degenstein, D. A.

    2015-10-01

    The upper troposphere and lower stratosphere (UTLS) represents a transition region between the more dynamically active troposphere and more stably stratified stratosphere. The region is characterized by strong gradients in the distribution of long-lived tracers, whose representation in models is sensitive to discrepancies in transport. We evaluate the GEOS-Chem model in the UTLS using carbon dioxide (CO2) and ozone (O3) observations from the HIAPER (The High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) campaign in March 2010. GEOS-Chem CO2/O3 correlation suggests that there is a discrepancy in mixing across the tropopause in the model, which results in an overestimate of CO2 and an underestimate of O3 in the Arctic lower stratosphere. We assimilate stratospheric O3 data from the Optical Spectrograph and InfraRed Imager System (OSIRIS) and use the assimilated O3 fields together with the HIPPO CO2/O3 correlations to obtain an adjustment to the modeled CO2 profile in the Arctic UTLS (primarily between the 320 and 360 K isentropic surfaces). The HIPPO-derived adjustment corresponds to a sink of 0.60 Pg C for March-August 2010 in the Arctic. Imposing this adjustment results in a reduction in the CO2 sinks inferred from GOSAT observations for temperate North America, Europe, and tropical Asia of 19, 13, and 49 %, respectively. Conversely, the inversion increased the source of CO2 from tropical South America by 23 %. We find that the model also underestimates CO2 in the upper tropical and subtropical troposphere. Correcting for the underestimate in the model relative to HIPPO in the tropical upper troposphere leads to a reduction in the source from tropical South America by 77 %, and produces an estimated sink for tropical Asia that is only 19 % larger than the standard inversion (without the imposed source and sink). Globally, the inversion with the Arctic and tropical adjustment produces a sink of -6.64 Pg C, which is consistent with the estimate of -6.65 Pg C in the standard inversion. However, the standard inversion produces a stronger northern land sink by 0.98 Pg C to account for the CO2 overestimate in the high-latitude UTLS, suggesting that this UTLS discrepancy can impact the latitudinal distribution of the inferred sources and sinks. We find that doubling the model resolution from 4° × 5° to 2° × 2.5° enhances the CO2 vertical gradient in the high-latitude UTLS, and reduces the overestimate in CO2 in the extratropical lower stratosphere. Our results illustrate that discrepancies in the CO2 distribution in the UTLS can affect CO2 flux inversions and suggest the need for more careful evaluation of model errors in the UTLS.

  14. Divergence in sink contributions to population persistence (journal article)

    EPA Science Inventory

    Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks t...

  15. Bryophyte gas-exchange dynamics along varying hydration status reveal a significant carbonyl sulphide (COS) sink in the dark and COS source in the light.

    PubMed

    Gimeno, Teresa E; Ogée, Jérôme; Royles, Jessica; Gibon, Yves; West, Jason B; Burlett, Régis; Jones, Sam P; Sauze, Joana; Wohl, Steven; Benard, Camille; Genty, Bernard; Wingate, Lisa

    2017-08-01

    Carbonyl sulphide (COS) is a potential tracer of gross primary productivity (GPP), assuming a unidirectional COS flux into the vegetation that scales with GPP. However, carbonic anhydrase (CA), the enzyme that hydrolyses COS, is expected to be light independent, and thus plants without stomata should continue to take up COS in the dark. We measured net CO 2 (A C ) and COS (A S ) uptake rates from two astomatous bryophytes at different relative water contents (RWCs), COS concentrations, temperatures and light intensities. We found large A S in the dark, indicating that CA activity continues without photosynthesis. More surprisingly, we found a nonzero COS compensation point in light and dark conditions, indicating a temperature-driven COS source with a Q 10 (fractional change for a 10°C temperature increase) of 3.7. This resulted in greater A S in the dark than in the light at similar RWC. The processes underlying such COS emissions remain unknown. Our results suggest that ecosystems dominated by bryophytes might be strong atmospheric sinks of COS at night and weaker sinks or even sources of COS during daytime. Biotic COS production in bryophytes could result from symbiotic fungal and bacterial partners that could also be found on vascular plants. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. The effects of management on ammonia fluxes over a cut grassland as measured by use of dynamic chambers

    NASA Astrophysics Data System (ADS)

    David, M.; Roche, R.; Mattsson, M.; Sutton, M. A.; Dämmgen, U.; Schjoerring, J. K.; Cellier, P.

    2009-01-01

    Grassland management may lead to strong modification of the canopy structure and hence fluxes of carbon and nitrogen in the soil-plant-atmosphere system. Mowing or grazing removes green leaves, which are often a sink for ammonia. Consequently, the ratio between actively growing leaves and senescing/dead parts of the plants is strongly changed in favour of the latter, which may constitute a large source of ammonia. Moreover, fertilisers are a known source of ammonia through direct volatilisation. The effects of grassland management, e.g. growing, cutting and fertilisation, on ammonia emission were investigated using a dynamic chamber. This technique made it possible to monitor ammonia emissions in the field at the plant level. With ammonia-free air at the inlet, the ammonia emissions from mature sward did not exceed 4 ng NH3 m-2 s-1. They were approximately 20 times larger above a sward re-growing after cutting and 200 times larger after fertilisation, where 0.5-1.0% of the applied inorganic nitrogen fertiliser was lost by volatilisation. Cutting implied three main changes in ammonia sources and sinks within the canopy: (i) physiological changes with nitrogen remobilisation to the growing leaves and increase in senescence, (ii) changes in compartment proportions with only 5% of green leaves remaining after cutting as opposed to equal proportions of dead leaves as green leaves before cutting, (iii) microclimate changes within the canopy especially for litter with higher turbulence, temperature, and alternation of dry (day) and wet (night) conditions after cutting. These changes promoted ammonia volatilisation from the litter, which could account for the increased ammonia loss following cutting. Another potential source was the wounded surfaces of the stubble which may have emitted ammonia during bleeding and evaporation of sap containing significant levels of ammonium. These results showed that the contribution of litter and drying cut sward on the ammonia balance of grassland is very significant, as well as their interaction with microclimatic conditions. This could apply to most natural and managed ecosystems and could be especially significant in the former. Consequently, further studies on ammonia fluxes should have a 0focus on this part of the canopy.

  17. Sensitivity of the boreal forest-mire ecotone CO2, CH4, and N2O global warming potential to rainy and dry weather

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero

    2015-04-01

    In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net warming.

  18. The genomic and epidemiological dynamics of human influenza A virus.

    PubMed

    Rambaut, Andrew; Pybus, Oliver G; Nelson, Martha I; Viboud, Cecile; Taubenberger, Jeffery K; Holmes, Edward C

    2008-05-29

    The evolutionary interaction between influenza A virus and the human immune system, manifest as 'antigenic drift' of the viral haemagglutinin, is one of the best described patterns in molecular evolution. However, little is known about the genome-scale evolutionary dynamics of this pathogen. Similarly, how genomic processes relate to global influenza epidemiology, in which the A/H3N2 and A/H1N1 subtypes co-circulate, is poorly understood. Here through an analysis of 1,302 complete viral genomes sampled from temperate populations in both hemispheres, we show that the genomic evolution of influenza A virus is characterized by a complex interplay between frequent reassortment and periodic selective sweeps. The A/H3N2 and A/H1N1 subtypes exhibit different evolutionary dynamics, with diverse lineages circulating in A/H1N1, indicative of weaker antigenic drift. These results suggest a sink-source model of viral ecology in which new lineages are seeded from a persistent influenza reservoir, which we hypothesize to be located in the tropics, to sink populations in temperate regions.

  19. Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment.

    USGS Publications Warehouse

    Zhang, Bo; Liu, Xin; DeAngelis, Donald L.; Ni, Wei-Ming; Wang, G Geoff

    2015-01-01

    An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed.

  20. Implications of Deep Decarbonization for Carbon Cycle Science

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Williams, J.; Torn, M. S.

    2016-12-01

    The energy-system transformations required to achieve deep decarbonization in the United States, defined as a reduction of greenhouse gas emissions of 80% or more below 1990 levels by 2050, have profound implications for carbon cycle science, particularly with respect to 4 key objectives: understanding and enhancing the terrestrial carbon sink, using bioenergy sustainably, controlling non-CO2 GHGs, and emissions monitoring and verification. (1) As a source of mitigation, the terrestrial carbon sink is pivotal but uncertain, and changes in the expected sink may significantly affect the overall cost of mitigation. Yet the dynamics of the sink under changing climatic conditions, and the potential to protect and enhance the sink through land management, are poorly understood. Policy urgently requires an integrative research program that links basic science knowledge to land management practices. (2) Biomass resources can fill critical energy needs in a deeply decarbonized system, but current understanding of sustainability and lifecycle carbon aspects is limited. Mitigation policy needs better understanding of the sustainable amount, types, and cost of bioenergy feedstocks, their interactions with other land uses, and more efficient and reliable monitoring of embedded carbon. (3) As CO2 emissions from energy decrease under deep decarbonization, the relative share of non-CO2 GHGs grows larger and their mitigation more important. Because the sources tend to be distributed, variable, and uncertain, they have been under-researched. Policy needs a better understanding of mitigation priorities and costs, informed by deeper research in key areas such as fugitive CH4, fertilizer-derived N2O, and industrial F-gases. (4) The M&V challenge under deep decarbonization changes with a steep decrease in the combustion CO2 sources due to widespread electrification, while a greater share of CO2 releases is net-carbon-neutral. Similarly, gas pipelines may carry an increasing share of methane from biogenic or other net carbon-neutral sources. Improved lifecycle analysis will be needed to verify carbon neutrality, while the signal-to-noise challenge for attributing CO2 to fossil or biogenic fuels becomes more challenging.

  1. Accounting for heterogeneity of nutrient dynamics in riverscapes through spatially distributed models

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Stewart, R. J.

    2011-12-01

    Numerous types of heterogeneity exist within river systems, leading to hotspots of nutrient sources, sinks, and impacts embedded within an underlying gradient defined by river size. This heterogeneity influences the downstream propagation of anthropogenic impacts across flow conditions. We applied a river network model to explore how nitrogen saturation at river network scales is influenced by the abundance and distribution of potential nutrient processing hotspots (lakes, beaver ponds, tributary junctions, hyporheic zones) under different flow conditions. We determined that under low flow conditions, whole network nutrient removal is relatively insensitive to the number of hotspots because the underlying river network structure has sufficient nutrient processing capacity. However, hotspots become more important at higher flows and greatly influence the spatial distribution of removal within the network at all flows, suggesting that identification of heterogeneity is critical to develop predictive understanding of nutrient removal processes under changing loading and climate conditions. New temporally intensive data from in situ sensors can potentially help to better understand and constrain these dynamics.

  2. Variations in sedimentological properties in Lake Challa, East Africa: Understanding the source to sink processes

    NASA Astrophysics Data System (ADS)

    Meyer, Inka; Eloy, Jonas; Verschuren, Dirk; De Batist, Marc

    2016-04-01

    The clastic mineral fraction of lacustrine sediments has been proven to provide valuable information about sedimentation dynamics within a lake, and it can be used to define distinct terrestrial source areas and transport mechanisms from source to sink. Down-core variation in the properties of the clastic mineral fraction yields indications for changes in terrestrial sediment sources over time. However, in order to use terrestrial proxies in palaeo-environmental reconstruction, we have to understand and quantify the modern conditions of sediment provenance and deposition at the study site. In this study we present data on grain-size distribution, mineralogy and particle shape of the clastic mineral component of lacustrine sediments from Lake Challa, a small freshwater lake of volcanic origin, located on the eastern slope of Mt. Kilimanjaro. Situated close to the equator, it contains a uniquely long and continuous sediment sequence allowing the study of inter-hemispheric climate dynamics. The finely laminated profundal sediments of Lake Challa are characterized by a fine-grained texture and are mainly composed of organic matter, biogenic silica and authigenic carbonate, with a relatively minor component of detrital mineral that can either originate from erosion of the steep volcanic crater walls or was mobilized by wind from unvegetated areas of the surrounding scrub savannah landscape. In order to distinguish between these two sources of terrestrial sediment input (i.e., local run-off versus distant aeolian) into Lake Challa, and to map out differences in sediment properties, samples were investigated from profundal surface sediments and short cores, as well as on-shore soils from several locations around the lake and from beyond the crater catchment. Variation in grain-size distribution and mineralogy can be linked to distinct terrestrial sources, whereas the shape of single particles gives additional information about transport dynamics. In future, the results from this study will be applied to the down-core record of Lake Challa to reconstruct climate-driven changes in terrigenous sediment input over time.

  3. Dynamics and kinetics of narrow dusty ringlets

    NASA Astrophysics Data System (ADS)

    Sun, K. L.; Spahn, F.; Schmidt, J.

    2011-10-01

    Several narrow dusty rings have been discovered in the Saturn system, such as the F ring, ringlets in the C Ring, the Cassini division, and the Encke Gap [1] [2]. The kinky and clumpy structures in the F ring are considered as the result of embedded moonlets which are dynamically dominated by shepherding moons [3]. Similar features are found in Encke ringlets which we hypothesize to be associated with embedded moonlets [4] [5]. On the other hand, these ringlets are believed to be composed of micron-sized particles [6], which are strongly perturbed by solar radiation pressure and their lifetime is restricted. Therefore mechanisms must be at work to replenish these ringlets. We develop a model for the kinetic balance of dust production, dynamical evolution, and sinks by assuming that dust is freed and annihilated by moonlets embedded in the ringlet. The dynamics of particles ejected from these putative moonlets is explored and the contribution of impact-ejecta to the ringlet is estimated [7] [8]. We found that the optical depth sustained by embedded moonlets is too low (orders of magnitude), indicating that other sources or processes should be responsible for supporting the Encke ringlet.

  4. Can the source–sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test

    PubMed Central

    Hardy, Sarah M.; Smith, Craig R.; Thurnherr, Andreas M.

    2015-01-01

    Low food availability is a major structuring force in deep-sea benthic communities, sustaining only very low densities of organisms in parts of the abyss. These low population densities may result in an Allee effect, whereby local reproductive success is inhibited, and populations are maintained by larval dispersal from bathyal slopes. This slope–abyss source–sink (SASS) hypothesis suggests that the abyssal seafloor constitutes a vast sink habitat with macrofaunal populations sustained only by an influx of larval ‘refugees' from source areas on continental slopes, where higher productivity sustains greater population densities. Abyssal macrofaunal population densities would thus be directly related to larval inputs from bathyal source populations. We evaluate three predictions derived from the SASS hypothesis: (i) slope-derived larvae can be passively transported to central abyssal regions within a single larval period, (ii) projected larval export from slopes to the abyss reproduces global patterns of macrofaunal abundance and (iii) macrofaunal abundance decreases with distance from the continental slope. We find that abyssal macrofaunal populations are unlikely to be sustained solely through influx of larvae from slope sources. Rather, local reproduction probably sustains macrofaunal populations in relatively high-productivity abyssal areas, which must also be considered as potential larval source areas for more food-poor abyssal regions. PMID:25948686

  5. Active crystals on a sphere

    NASA Astrophysics Data System (ADS)

    Praetorius, Simon; Voigt, Axel; Wittkowski, Raphael; Löwen, Hartmut

    2018-05-01

    Two-dimensional crystals on curved manifolds exhibit nontrivial defect structures. Here we consider "active crystals" on a sphere, which are composed of self-propelled colloidal particles. Our work is based on a phase-field-crystal-type model that involves a density and a polarization field on the sphere. Depending on the strength of the self-propulsion, three different types of crystals are found: a static crystal, a self-spinning "vortex-vortex" crystal containing two vortical poles of the local velocity, and a self-translating "source-sink" crystal with a source pole where crystallization occurs and a sink pole where the active crystal melts. These different crystalline states as well as their defects are studied theoretically here and can in principle be confirmed in experiments.

  6. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    PubMed

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  7. Sources and Sinks: A Stochastic Model of Evolution in Heterogeneous Environments

    NASA Astrophysics Data System (ADS)

    Hermsen, Rutger; Hwa, Terence

    2010-12-01

    We study evolution driven by spatial heterogeneity in a stochastic model of source-sink ecologies. A sink is a habitat where mortality exceeds reproduction so that a local population persists only due to immigration from a source. Immigrants can, however, adapt to conditions in the sink by mutation. To characterize the adaptation rate, we derive expressions for the first arrival time of adapted mutants. The joint effects of migration, mutation, birth, and death result in two distinct parameter regimes. These results may pertain to the rapid evolution of drug-resistant pathogens and insects.

  8. Identifying important spatial and temporal scales and patterns of soil properties in a tidal saltmarsh situated in a mixed red alder and Douglas fir watershed

    EPA Science Inventory

    Sea level rise is expected to drive a loss in salt marsh area and a change in marsh habitat composition, potentially leading to changes in the nitrogen source/sink dynamics of these systems. Estuaries in the Pacific Northwest might be particularly vulnerable to the effect of sal...

  9. Multi-Scale Approach to Understanding Source-Sink Dynamics of Amphibians

    DTIC Science & Technology

    2015-12-01

    spotted salamander, A. maculatum) at Fort Leonard Wood (FLW), Missouri. We used a multi-faceted approach in which we combined ecological , genetic...spotted salamander, A. maculatum) at Fort Leonard Wood , Missouri through a combination of intensive ecological field studies, genetic analyses, and...spatial demographic networks to identify optimal locations for wetland construction and restoration. Ecological Applications. Walls, S. C., Ball, L. C

  10. Lunar Flashlight and Other Lunar Cubesats

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2017-01-01

    Water is a human-exploitable resource. Lunar Flashlight is a Cubesat mission to detect and map lunar surface ice in permanently-shadowed regions of the lunar south pole. EM-1 will carry 13 Cubesat-class missions to further smallsat science and exploration capabilities; much room to infuse LEO cubesat methodology, models, and technology. Exploring the value of concurrent measurements to measure dynamical processes of water sources and sinks.

  11. Gas-Solid Dynamics at Disordered and Adsorbate Covered Surfaces

    DTIC Science & Technology

    1992-09-02

    interesting physical problems in which non-linear reactions occur at localized defects. The Lotka - Volterra system is considered, in which the source, sink...designing external optical fields for manipulating molecular scale events. A general formulation of the theory was developed, for treating rotational...interrelated avenues of study were pursued. The goals of the research were achieved, thereby producing a general theoretical framework for both optimal

  12. Studies of Trace Gas Chemical Cycles Using Inverse Methods and Global Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    2003-01-01

    We report progress in the first year, and summarize proposed work for the second year of the three-year dynamical-chemical modeling project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for long lived gases important in ozone depletion and climate forcing, (b) utilization of inverse methods to determine these source/sink strengths using either MATCH (Model for Atmospheric Transport and Chemistry) which is based on analyzed observed wind fields or back-trajectories computed from these wind fields, (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple titrating gases, and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important goals include determination of regional source strengths of methane, nitrous oxide, methyl bromide, and other climatically and chemically important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal protocol and its follow-on agreements and hydrohalocarbons now used as alternatives to the restricted halocarbons.

  13. Metapopulation dynamics and total biomass: Understanding the effects of diffusion in complex networks.

    PubMed

    Ruiz-Herrera, Alfonso

    2018-05-01

    In this study, I explored the impact of constructing a new dispersal route between two different patches in a metapopulation. My results indicated that its success/failure on the population abundance greatly depends on the patches directly involved and negligibly on the network topology. Specifically, constructing a dispersal route is highly recommended if it connects a source to a source that is close to becoming a sink or a sink that is close to becoming a source. This biological property is the basis for understanding the influence of the network topology on the population abundance. According to some thresholds discussed in this manuscript, I identified when a given route has a positive or negative effect on the population size. Consequently, as a simple rule of thumb, managers should look for metapopulations that have the maximum (resp. minimum) number paths with a positive (resp. negative) effect on the population abundance. As emphasized, the biological results of this paper do not depend on the model formulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Atmospheric CO2 at Waliguan station in China: Transport climatology, temporal patterns and source-sink region representativeness

    NASA Astrophysics Data System (ADS)

    Cheng, Siyang; An, Xingqin; Zhou, Lingxi; Tans, Pieter P.; Jacobson, Andy

    2017-06-01

    In order to explore where the source and sink have the greatest impact on CO2 background concentration at Waliguan (WLG) station, a statistical method is here proposed to calculate the representative source-sink region. The key to this method is to find the best footprint threshold, and the study is carried out in four parts. Firstly, transport climatology, expressed by total monthly footprint, was simulated by FLEXPART on a 7-day time scale. Surface CO2 emissions in Eurasia frequently transported to WLG station. WLG station was mainly influenced by the westerlies in winter and partly controlled by the Southeast Asian monsoon in summer. Secondly, CO2 concentrations, simulated by CT2015, were processed and analyzed through data quality control, screening, fitting and comparing. CO2 concentrations displayed obvious seasonal variation, with the maximum and minimum concentration appearing in April and August, respectively. The correlation of CO2 fitting background concentrations was R2 = 0.91 between simulation and observation. The temporal patterns were mainly correlated with CO2 exchange of biosphere-atmosphere, human activities and air transport. Thirdly, for the monthly CO2 fitting background concentrations from CT2015, a best footprint threshold was found based on correlation analysis and numerical iteration using the data of footprints and emissions. The grid cells where monthly footprints were greater than the best footprint threshold were the best threshold area corresponding to representative source-sink region. The representative source-sink region of maximum CO2 concentration in April was primarily located in Qinghai province, but the minimum CO2 concentration in August was mainly influenced by emissions in a wider region. Finally, we briefly presented the CO2 source-sink characteristics in the best threshold area. Generally, the best threshold area was a carbon sink. The major source and sink were relatively weak owing to less human activities and vegetation types in this high altitude area. CO2 concentrations were more influenced by human activities when air mass passed through many urban areas in summer. Therefore, the combination of footprints and emissions is an effective approach for assessing the source-sink region representativeness of CO2 background concentration.

  15. Quantifying Post-Fire Aeolian Sediment Transport Using Rare Earth Element Tracers.

    NASA Astrophysics Data System (ADS)

    Dukes, D.; Ravi, S.; Grandstaff, D. E.; Gonzales, H. B.; Li, J. J.; Sankey, J. B.; Wang, G.; Van Pelt, R. S.

    2016-12-01

    Grasslands and rangelands in arid and semi-arid regions of the world, which provide fundamental ecosystem services, are undergoing rapid increases in fire activity and are highly susceptible to post-fire accelerated soil erosion by wind. A quantitative assessment that integrates fire-wind erosion feedbacks is therefore critically needed in understanding vegetation change, soil biogeochemical cycling, air quality, and landscape evolution. We investigated the applicability of a novel tracer technique - the use of rare earth element (REE) tracers - to quantify soil erosion by wind and to identify sources and sinks of wind-blown sediments in both a burned and unburned shrub-grass transition zone within the Chihuahuan desert (New Mexico, USA). At the beginning of the windy season, March 2016, silt and sand sized particles in shrub, grass, and bare microsites were each tagged with a unique REE oxide, Ho, Eu, and Yb respectively. Samples were then taken directly after application prior to a prescribed fire and again at the end of the windy season in June 2016. All REE tracers showed signs of depletion and mixing, with the depletion in the burned site up to 20% greater than the unburned. REE concentration comparisons between the burned and unburned plots reveal a shift in the source and sink dynamics of sediment post fire. In unburned plots, changes in microsite REE concentrations indicate that sediment moved from the bare to vegetated microsites, whereas the opposite occurred in burned plots. However, burned plot grass microsites acted as a sink for sediment from shrub microsites, whereas unburned plot grass microsites exhibited no enrichment from shrub microsite-sourced sediment. Though fires are known to immediately increase aeolian sediment transport, accompanying changes in the sources and sinks of wind borne sediment may influence biogeochemical cycling and vegetation shifts possibly providing a feedback mechanism for land degradation in dryland ecosystems.

  16. Contaminated sinks in intensive care units: an underestimated source of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the patient environment.

    PubMed

    Roux, D; Aubier, B; Cochard, H; Quentin, R; van der Mee-Marquet, N

    2013-10-01

    Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) outbreaks in intensive care units (ICUs) associated with contaminated handwashing sinks have been reported. To conduct a regional study to assess whether handwashing sinks in 135 ICU patient rooms are a potential source of contamination, and to identify factors associated with an increased risk of sink contamination. A multicentre study was conducted in 13 ICUs, including microbiological testing for ESBLE contamination at 185 sinks. The micro-organisms isolated were analysed using randomly amplified polymorphic DNA analysis to assess clonal spread in ICUs. Data were collected to document the use of each sink, factors that may contribute to contamination of clinical areas near to the sinks, and routine cleansing procedures for the sinks. Fifty-seven sinks were contaminated (31%) with ESBLE, mostly Klebsiella (N = 33) and Enterobacter (N = 18). In two ICUs, a high contamination rate was associated with clonal spread of an epidemic isolate. Risk factors for contamination of and by handwashing sinks were frequent: 81 sinks (44%) were used for handwashing as well as the disposal of body fluids; splash risk was identified for 67 sinks (36%), among which 23 were contaminated by ESBLE. Routine sink disinfection was frequent (85%), mostly daily (75%), and involved quaternary ammonium compounds (41%) or bleach (21%). A lower sink contamination rate was significantly associated with use of the sink being restricted to handwashing and to daily sink disinfection using bleach. In ICUs, contaminated sinks are a potential source of ESBLE in the environment of the patient, a problem that may be underestimated by ICU teams. Relatively simple measures may result in a rapid improvement of the situation, and a significant decrease of the risk of exposure of ICU patients to multiresistant Enterobacteriaceae. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  17. D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things

    PubMed Central

    Akan, Ozgur B.

    2018-01-01

    Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST). PMID:29538405

  18. D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things.

    PubMed

    Aktas, Metin; Kuscu, Murat; Dinc, Ergin; Akan, Ozgur B

    2018-01-01

    Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST).

  19. Placing barrier-island transgression in a blue-carbon context

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Ethan J.; Rodriguez, Antonio B.

    2017-07-01

    Backbarrier saltmarshes are considered carbon sinks; however, barrier island transgression and the associated processes of erosion and overwash are typically not included in coastal carbon budgets. Here, we present a carbon-budget model for transgressive barrier islands that includes a dynamic carbon-storage term, driven by backbarrier-marsh width, and a carbon-export term, driven by ocean and backbarrier shoreline erosion. To examine the impacts of storms, human disturbances and the backbarrier setting of a transgressive barrier island on carbon budgets and reservoirs, the model was applied to sites at Core Banks and Onslow Beach, NC, USA. Results show that shoreline erosion and burial of backbarrier marsh from washover deposition and dredge-spoil disposal temporarily transitioned each site into a net exporter (source) of carbon. The magnitude of the carbon reservoir was linked to the backbarrier setting of an island. Carbon reservoirs of study sites separated from the mainland by only backbarrier marsh (no lagoon) decreased for over a decade because carbon storage could not keep pace with erosion. With progressive narrowing of the backbarrier marsh, these barriers will begin to function more persistently as carbon sources until the reservoir is depleted at the point where the barrier welds with the mainland. Undeveloped barrier islands with wide lagoons are carbon sources briefly during erosive periods; however, at century time scales are net carbon importers (sinks) because new marsh habitat can form during barrier rollover. Human development on backbarrier saltmarsh serves to reduce the carbon storage capacity and can hasten the transition of an island from a sink to a source.

  20. Sediment budget on African passive margins: a record of margin bulges and far field very long wavelength deformations

    NASA Astrophysics Data System (ADS)

    Guillocheau, Francois; Robin, Cécile; Baby, Guillaume; Simon, Brendan; Rouby, Delphine; Loparev, Artiom

    2017-04-01

    The post-rift siliciclastic sediment budget of passive margins is a function of (1) the deformation (uplift) of the upstream catchment, of (2) the climate (precipitation) regime and of (3) the oceanic circulation (mainly since Miocene times). The main questions in source to sink studies are (1) to quantify the relative importance of the erosion due to uplifts or to precipitation changes and (2) to characterize the source of the sediments. A source to sink study was carried out in Western, Central and Austral Africa, characterized by anorogenic relief (plains and plateaus) that record long (several 100 km) to very long (several 1000 km) wavelength deformations respectively of lithospheric and mantle origin. The sink measurement was based on seismic lines and wells (industrial - IODP) using the VolumeEstimator software including the calculation of the uncertainties (Guillocheau et al., 2013, Basin Research). The source study was performed using dated stepped planation surfaces (etchplains and pediplains), mappable at catchments-scale (Guillocheau et al., in press, Gondwana Research). Results: (1) Deformation (uplift) is the dominant control of the sediment budget. Climate (precipitation) changes only enhance or inhibit a deformation-controlled flux. (2) The sources of siliciclastic sediments are either closed marginal bulges or far field domes due to mantle dynamics with river by-passing over long-lasting polygenic surfaces located between the bulges and domes. Two main periods of African-scale deformations (contemporaneous with an increase of the sedimentary flux) are confirmed, one during Late Cretaceous (Turonian-Coniacian) and the second around the Eocene-Oligocene boundary with a gap and intense chemical erosion from 75 Ma and mainly from 65 to 40 Ma.

  1. Dynamics of propagation of premature impulses in structurally remodeled infarcted myocardium: a computational analysis

    PubMed Central

    Cabo, Candido

    2014-01-01

    Initiation of cardiac arrhythmias typically follows one or more premature impulses either occurring spontaneously or applied externally. In this study, we characterize the dynamics of propagation of single (S2) and double premature impulses (S3), and the mechanisms of block of premature impulses at structural heterogeneities caused by remodeling of gap junctional conductance (Gj) in infarcted myocardium. Using a sub-cellular computer model of infarcted tissue, we found that |INa,max|, prematurity (coupling interval with the previous impulse), and conduction velocity (CV) of premature impulses change dynamically as they propagate away from the site of initiation. There are fundamental differences between the dynamics of propagation of S2 and S3 premature impulses: for S2 impulses |INa,max| recovers fast, prematurity decreases and CV increases as propagation proceeds; for S3 impulses low values of |INa,max| persist, prematurity could increase, and CV could decrease as impulses propagate away from the site of initiation. As a consequence it is more likely that S3 impulses block at sites of structural heterogeneities causing source/sink mismatch than S2 impulses block. Whether premature impulses block at Gj heterogeneities or not is also determined by the values of Gj (and the space constant λ) in the regions proximal and distal to the heterogeneity: when λ in the direction of propagation increases >40%, premature impulses could block. The maximum slope of CV restitution curves for S2 impulses is larger than for S3 impulses. In conclusion: (1) The dynamics of propagation of premature impulses make more likely that S3 impulses block at sites of structural heterogeneities than S2 impulses block; (2) Structural heterogeneities causing an increase in λ (or CV) of >40% could result in block of premature impulses; (3) A decrease in the maximum slope of CV restitution curves of propagating premature impulses is indicative of an increased potential for block at structural heterogeneities. PMID:25566085

  2. Dynamics of propagation of premature impulses in structurally remodeled infarcted myocardium: a computational analysis.

    PubMed

    Cabo, Candido

    2014-01-01

    Initiation of cardiac arrhythmias typically follows one or more premature impulses either occurring spontaneously or applied externally. In this study, we characterize the dynamics of propagation of single (S2) and double premature impulses (S3), and the mechanisms of block of premature impulses at structural heterogeneities caused by remodeling of gap junctional conductance (Gj) in infarcted myocardium. Using a sub-cellular computer model of infarcted tissue, we found that |INa,max|, prematurity (coupling interval with the previous impulse), and conduction velocity (CV) of premature impulses change dynamically as they propagate away from the site of initiation. There are fundamental differences between the dynamics of propagation of S2 and S3 premature impulses: for S2 impulses |INa,max| recovers fast, prematurity decreases and CV increases as propagation proceeds; for S3 impulses low values of |INa,max| persist, prematurity could increase, and CV could decrease as impulses propagate away from the site of initiation. As a consequence it is more likely that S3 impulses block at sites of structural heterogeneities causing source/sink mismatch than S2 impulses block. Whether premature impulses block at Gj heterogeneities or not is also determined by the values of Gj (and the space constant λ) in the regions proximal and distal to the heterogeneity: when λ in the direction of propagation increases >40%, premature impulses could block. The maximum slope of CV restitution curves for S2 impulses is larger than for S3 impulses. (1) The dynamics of propagation of premature impulses make more likely that S3 impulses block at sites of structural heterogeneities than S2 impulses block; (2) Structural heterogeneities causing an increase in λ (or CV) of >40% could result in block of premature impulses; (3) A decrease in the maximum slope of CV restitution curves of propagating premature impulses is indicative of an increased potential for block at structural heterogeneities.

  3. Understanding the contribution of habitats and regional variation to long-term population trends in tricolored blackbirds

    PubMed Central

    Graves, Emily E; Holyoak, Marcel; Rodd Kelsey, T; Meese, Robert J

    2013-01-01

    Population trends represent a minimum amount of information required to assess the conservation status of a species. However, understanding and detecting trends can be complicated by variation among habitats and regions, and by dispersal connecting habitats through source-sink dynamics. We analyzed trends in breeding populations between habitats and regions to better understand the overall dynamics of a species' decline. Specifically, we analyzed historical trends in breeding populations of tricolored blackbirds (Agelaius tricolor) using breeding records from 1907 to 2009. The species breeds itinerantly and ephemerally uses multiple habitat types and breeding areas, which make interpretation of trends complex. We found overall abundance declines of 63% between 1935 and 1975. Since 1980 overall declines became nonsignificant and obscure despite large amounts of data from 1980 to 2009. Temporal trends differed between breeding habitat types and were associated with regional differences in population declines. A new habitat, triticale crops (a wheat-rye hybrid grain) produced colonies 40× larger, on average, than other breeding habitats, and contributed to a change in regional distribution since it primarily occurred in a single region. The mechanism for such an effect is not clear, but could represent the local availability of foodstuffs in the landscape rather than something specific to triticale crops. While variation in trends among habitats clearly occurred, they could not easily be ascribed to source-sink dynamics, ecological traps, habitat selection or other detailed ecological mechanisms. Nonetheless, such exchanges provide valuable information to guide management of dynamic systems. PMID:24101977

  4. Impact of heat source/sink on radiative heat transfer to Maxwell nanofluid subject to revised mass flux condition

    NASA Astrophysics Data System (ADS)

    Khan, M.; Irfan, M.; Khan, W. A.

    2018-06-01

    Nanofluids retain noteworthy structure that have absorbed attentions of numerous investigators because of their exploration in nanotechnology and nanoscience. In this scrutiny a mathematical computation of 2D flows of Maxwell nanoliquid influenced by a stretched cylinder has been established. The heat transfer structure is conceded out in the manifestation of thermal radiation and heat source/sink. Moreover, the nanoparticles mass flux condition is engaged in this exploration. This newly endorsed tactic is more realistic where the conjecture is made that the nanoparticle flux is zero and nanoparticle fraction regulates itself on the restrictions consequently. By utilizing apposite conversion the governing PDEs are transformed into ODEs and then tackled analytically via HAM. The attained outcomes are plotted and deliberated in aspect for somatic parameters. It is remarked that with an intensification in the Deborah number β diminish the liquid temperature while it boosts for radiation parameter Rd . Furthermore, the concentration of Maxwell liquid has conflicting impact for Brownian motion Nb and thermophoresis parameters Nt .

  5. Crystallization dynamics on curved surfaces

    NASA Astrophysics Data System (ADS)

    García, Nicolás A.; Register, Richard A.; Vega, Daniel A.; Gómez, Leopoldo R.

    2013-07-01

    We study the evolution from a liquid to a crystal phase in two-dimensional curved space. At early times, while crystal seeds grow preferentially in regions of low curvature, the lattice frustration produced in regions with high curvature is rapidly relaxed through isolated defects. Further relaxation involves a mechanism of crystal growth and defect annihilation where regions with high curvature act as sinks for the diffusion of domain walls. The pinning of grain boundaries at regions of low curvature leads to the formation of a metastable structure of defects, characterized by asymptotically slow dynamics of ordering and activation energies dictated by the largest curvatures of the system. These glassylike ordering dynamics may completely inhibit the appearance of the ground-state structures.

  6. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    PubMed Central

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.; Großkinsky, Dominik K.; de la Cruz González, María; Martínez-Andújar, Cristina; Smigocki, Ann C.; Roitsch, Thomas; Pérez-Alfocea, Francisco

    2014-01-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of metabolic and hormonal inter-regulation of local sink processes in controlling tomato fruit sink activity, growth, and yield under salinity. PMID:25170099

  7. Managed Metapopulations: Do Salmon Hatchery ‘Sources’ Lead to In-River ‘Sinks’ in Conservation?

    PubMed Central

    Johnson, Rachel C.; Weber, Peter K.; Wikert, John D.; Workman, Michelle L.; MacFarlane, R. Bruce; Grove, Marty J.; Schmitt, Axel K.

    2012-01-01

    Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstrate that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes (34S/32S, referred to as δ34S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI = 5.5 to 18.1%) of adults spawning in the river had otolith δ34S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate = 95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. These findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected by monitoring programs. PMID:22347362

  8. Managed Metapopulations: Do Salmon Hatchery ‘Sources’ Lead to In-River ‘Sinks’ in Conservation?

    DOE PAGES

    Johnson, Rachel C.; Weber, Peter K.; Wikert, John D.; ...

    2012-02-08

    Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstratemore » that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes ( 34S/ 32S, referred to as δ 34S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI=5.5 to 18.1%) of adults spawning in the river had otolith δ 34S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate=95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. In conclusion, these findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected by monitoring programs.« less

  9. Dynamic replacement and loss of soil carbon on eroding cropland

    USGS Publications Warehouse

    Harden, J.W.; Sharpe, J.M.; Parton, W.J.; Ojima, D.S.; Fries, T.L.; Huntington, T.G.; Dabney, S.M.

    1999-01-01

    Links between erosion/sedimentation history and soil carbon cycling were examined in a highly erosive setting in Mississippi loess soils. We sampled soils on (relatively) undisturbed and cropped hillslopes and measured C, N, 14C, and CO2 flux to characterize carbon storage and dynamics and to parameterize Century and spreadsheet 14C models for different erosion and tillage histories. For this site, where 100 years of intensive cotton cropping were followed by fertilization and contour plowing, there was an initial and dramatic decline in soil carbon content from 1870 to 1950, followed by a dramatic increase in soil carbon. Soil erosion amplifies C loss and recovery: About 100% of the original, prehistoric soil carbon was likely lost over 127 years of intensive land use, but about 30% of that carbon was replaced after 1950. The eroded cropland was therefore a local sink for CO2 since the 1950s. However, a net CO2 sink requires a full accounting of eroded carbon, which in turn requires that decomposition rates in lower slopes or wetlands be reduced to about 20% of the upland value. As a result, erosion may induce unaccounted sinks or sources of CO2, depending on the fate of eroded carbon and its protection from decomposition. For erosion rates typical of the United States, the sink terms may be large enough (1 Gt yr-1, back-of-the-envelope) to warrant a careful accounting of site management, cropping, and fertilization histories, as well as burial rates, for a more meaningful global assessment.

  10. Historical warming reduced due to enhanced land carbon uptake

    PubMed Central

    Shevliakova, Elena; Stouffer, Ronald J.; Malyshev, Sergey; Krasting, John P.; Hurtt, George C.; Pacala, Stephen W.

    2013-01-01

    Previous studies have demonstrated the importance of enhanced vegetation growth under future elevated atmospheric CO2 for 21st century climate warming. Surprisingly no study has completed an analogous assessment for the historical period, during which emissions of greenhouse gases increased rapidly and land-use changes (LUC) dramatically altered terrestrial carbon sources and sinks. Using the Geophysical Fluid Dynamics Laboratory comprehensive Earth System Model ESM2G and a reconstruction of the LUC, we estimate that enhanced vegetation growth has lowered the historical atmospheric CO2 concentration by 85 ppm, avoiding an additional 0.31 ± 0.06 °C warming. We demonstrate that without enhanced vegetation growth the total residual terrestrial carbon flux (i.e., the net land flux minus LUC flux) would be a source of 65–82 Gt of carbon (GtC) to atmosphere instead of the historical residual carbon sink of 186–192 GtC, a carbon saving of 251–274 GtC. PMID:24062452

  11. Characteristics of sources and sinks of momentum in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Fiscaletti, D.; Ganapathisubramani, B.

    2018-05-01

    In turbulent boundary layers, the wall-normal gradient of the Reynolds shear stress identifies momentum sources and sinks (T =∂ [-u v ]/∂ y ). These motions can be physically interpreted in two ways: (1) as contributors to the turbulence term balancing the mean momentum equation, and (2) as regions of strong local interaction between velocity and vorticity fluctuations. In this paper, the space-time evolution of momentum sources and sinks is investigated in a turbulent boundary layer at the Reynolds number (Reτ) = 2700, with time-resolved planar particle image velocimetry in a plane along the streamwise and wall-normal directions. Wave number-frequency power spectra of T fluctuations reveal that the wave velocities of momentum sources and sinks tend to match the local streamwise velocity in proximity to the wall. However, as the distance from the wall increases, the wave velocities of the T events are slightly lower than the local streamwise velocities of the flow, which is also confirmed from the tracking in time of the intense momentum sources and sinks. This evidences that momentum sources and sinks are preferentially located in low-momentum regions of the flow. The spectral content of the T fluctuations is maximum at the wall, but it decreases monotonically as the distance from the wall grows. The relative spectral contributions of the different wavelengths remains unaltered at varying wall-normal locations. From autocorrelation coefficient maps, the characteristic streamwise and wall-normal extents of the T motions are respectively 60 and 40 wall units, independent of the wall distance. Both statistics and instantaneous visualizations show that momentum sources and sinks have a preferential tendency to be organized in positive-negative pairs in the wall-normal direction.

  12. Education & Collection Facility GSHP Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joplin, Jeff

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to amore » recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient system.« less

  13. Contribution of Doñana Wetlands to Carbon Sequestration

    PubMed Central

    Morris, Edward P.; Flecha, Susana; Figuerola, Jordi; Costas, Eduardo; Navarro, Gabriel; Ruiz, Javier; Rodriguez, Pablo; Huertas, Emma

    2013-01-01

    Inland and transitional aquatic systems play an important role in global carbon (C) cycling. Yet, the C dynamics of wetlands and floodplains are poorly defined and field data is scarce. Air-water fluxes in the wetlands of Doñana Natural Area (SW Spain) were examined by measuring alkalinity, pH and other physiochemical parameters in a range of water bodies during 2010–2011. Areal fluxes were calculated and, using remote sensing, an estimate of the contribution of aquatic habitats to gaseous transport was derived. Semi-permanent ponds adjacent to the large Guadalquivir estuary acted as mild sinks, whilst temporal wetlands were strong sources of (−0.8 and 36.3 ). Fluxes in semi-permanent streams and ponds changed seasonally; acting as sources in spring-winter and mild sinks in autumn (16.7 and −1.2 ). Overall, Doñana's water bodies were a net annual source of (5.2 ). Up–scaling clarified the overwhelming contribution of seasonal flooding and allochthonous organic matter inputs in determining regional air-water gaseous transport (13.1 ). Nevertheless, this estimate is about 6 times < local marsh net primary production, suggesting the system acts as an annual net sink. Initial indications suggest longer hydroperiods may favour autochthonous C capture by phytoplankton. Direct anthropogenic impacts have reduced the hydroperiod in Doñana and this maybe exacerbated by climate change (less rainfall and more evaporation), suggesting potential for the modification of C sequestration. PMID:23977044

  14. Sources and sinks of trace gases in Amazonia and the Cerrado

    Treesearch

    M.M.C. Bustamante; Michael Keller; D.A. Silva

    2009-01-01

    Data for trace gas fluxes (NOx, N2O, and CH4) from the Amazon and cerrado region are presented with focus on the processes of production and consumption of these trace gases in soils and how they may be changed because of land use changes in both regions. Fluxes are controlled by seaonality, soil moisture, soil texture, topography, and fine-root dynamics. Compared to...

  15. A unified framework for modelling sediment fate from source to sink and its interactions with reef systems over geological times.

    PubMed

    Salles, Tristan; Ding, Xuesong; Webster, Jody M; Vila-Concejo, Ana; Brocard, Gilles; Pall, Jodie

    2018-03-27

    Understanding the effects of climatic variability on sediment dynamics is hindered by limited ability of current models to simulate long-term evolution of sediment transfer from source to sink and associated morphological changes. We present a new approach based on a reduced-complexity model which computes over geological time: sediment transport from landmasses to coasts, reworking of marine sediments by longshore currents, and development of coral reef systems. Our framework links together the main sedimentary processes driving mixed siliciclastic-carbonate system dynamics. It offers a methodology for objective and quantitative sediment fate estimations over regional and millennial time-scales. A simulation of the Holocene evolution of the Great Barrier Reef shows: (1) how high sediment loads from catchments erosion prevented coral growth during the early transgression phase and favoured sediment gravity-flows in the deepest parts of the northern region basin floor (prior to 8 ka before present (BP)); (2) how the fine balance between climate, sea-level, and margin physiography enabled coral reefs to thrive under limited shelf sedimentation rates after ~6 ka BP; and, (3) how since 3 ka BP, with the decrease of accommodation space, reduced of vertical growth led to the lateral extension of reefs consistent with available observational data.

  16. Fernandina caldera collapse morphology in geometric and dynamic comparison to sandbox models, subsidence sinks over nuclear-explosion cavities, and some other calderas

    NASA Astrophysics Data System (ADS)

    Howard, K. A.

    2009-12-01

    The 1968 collapse structure of Fernandina caldera (1.5 km3 collapsed) and also the smaller Darwin Bay caldera in Galápagos each closely resembles morphologically the structural zoning of features found in depressions collapsed into nuclear-explosion cavities (“sinks” of Houser, 1969) and in coherent sandbox-collapse models. Coherent collapses characterized by faulting, folding, and organized structure contrast with spalled pit craters (and lab experiments with collapsed powder) where disorganized piles of floor rubble result from tensile failure of the roof. Subsidence in coherent mode, whether in weak sand in the lab, stronger desert alluvium for nuclear-test sinks, or in hard rock for calderas, exhibits consistent morphologic zones. Characteristically in the sandbox and the nuclear-test analogs these include a first-formed central plug that drops along annular reverse faults. This plug and a surrounding inward-tilted or monoclinal ring (hanging wall of the reverse fault) contract as the structure expands outward by normal faulting, wherein peripheral rings of distending material widen the upper part of the structure along inward-dipping normal faults and compress inner zones and help keep them intact. In Fernandina, a region between the monocline and the outer zone of normal faulting is interpreted, by comparison to the analogs, to overlie the deflation margin of an underlying magma chamber. The same zoning pattern is recognized in structures ranging from sandbox subsidence features centimeters across, to Alae lave lake and nuclear-test sinks tens to hundreds of meters across, to Fenandina’s 2x4 km-wide collapse, to Martian calderas tens of kilometers across. Simple dimensional analysis using the height of cliffs as a proxie for material strength implies that the geometric analogs are good dynamic analogs, and validates that the pattern of both reverse and normal faulting that has been reported consistently from sandbox modeling applies widely to calderas.

  17. High-order scheme for the source-sink term in a one-dimensional water temperature model

    PubMed Central

    Jing, Zheng; Kang, Ling

    2017-01-01

    The source-sink term in water temperature models represents the net heat absorbed or released by a water system. This term is very important because it accounts for solar radiation that can significantly affect water temperature, especially in lakes. However, existing numerical methods for discretizing the source-sink term are very simplistic, causing significant deviations between simulation results and measured data. To address this problem, we present a numerical method specific to the source-sink term. A vertical one-dimensional heat conduction equation was chosen to describe water temperature changes. A two-step operator-splitting method was adopted as the numerical solution. In the first step, using the undetermined coefficient method, a high-order scheme was adopted for discretizing the source-sink term. In the second step, the diffusion term was discretized using the Crank-Nicolson scheme. The effectiveness and capability of the numerical method was assessed by performing numerical tests. Then, the proposed numerical method was applied to a simulation of Guozheng Lake (located in central China). The modeling results were in an excellent agreement with measured data. PMID:28264005

  18. High-order scheme for the source-sink term in a one-dimensional water temperature model.

    PubMed

    Jing, Zheng; Kang, Ling

    2017-01-01

    The source-sink term in water temperature models represents the net heat absorbed or released by a water system. This term is very important because it accounts for solar radiation that can significantly affect water temperature, especially in lakes. However, existing numerical methods for discretizing the source-sink term are very simplistic, causing significant deviations between simulation results and measured data. To address this problem, we present a numerical method specific to the source-sink term. A vertical one-dimensional heat conduction equation was chosen to describe water temperature changes. A two-step operator-splitting method was adopted as the numerical solution. In the first step, using the undetermined coefficient method, a high-order scheme was adopted for discretizing the source-sink term. In the second step, the diffusion term was discretized using the Crank-Nicolson scheme. The effectiveness and capability of the numerical method was assessed by performing numerical tests. Then, the proposed numerical method was applied to a simulation of Guozheng Lake (located in central China). The modeling results were in an excellent agreement with measured data.

  19. Carbon dynamics after forest harvest in Central Siberia: the ZOTTO footprint area

    NASA Astrophysics Data System (ADS)

    Panov, Alexey; Zrazhevskaya, Galina; Shibistova, Olga; Onuchin, Alexander; Heimann, Martin

    2013-04-01

    Temperate and boreal forests of the Northern Hemisphere have been recognized as important carbon sinks. Accurate calculation of forest carbon budget and estimation of the temporal variations of forest net carbon fluxes are important topics to elucidate the ''missing sink'' question and follow up the changing carbon dynamics in forests. In the frame of the ongoing Russian-German partner project the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a unique international research platform for large-scale climatic observations is operational about 20 km west of the Yenisei river (60.8°N; 89.35°E). The data of the ongoing greenhouse gas and aerosol measurements at the tall tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over the whole Northern Eurasia. The tall tower footprint area estimates of carbon stocks and fluxes are highly demanded for bottom-up validation of inversion estimates. The ZOTTO site lies in a vast region of forests and wetlands, still relatively undisturbed by anthropogenic influences, but a moderate human impact on vegetation, represented mainly by logging activities, becomes essential. Therefore, accurate estimates of carbon pools in vegetation and soil following harvesting are essential to inversion studies for ZOTTO and critical to predictions of both local ecosystem sustainability and global C exchange with the atmosphere. We present our investigation of carbon dynamics after forest harvest in the tall tower footprint area (~1000 km2). The changes in C pools and annual sequestration were quantified among several clear-cut lichen pine (Pinus sylvestris Lamb.) stands representing various stages of secondary succession with a "space-for-time substitution" technique. When viewed as a chronosequence, these stands represent snapshots showing how the effects of logging may propagate through time. The study concluded that ecosystems during the first 15 yrs after forest harvest become C sources to the atmosphere which is attributed to increases in decomposition rates and decreases in litter inputs due to the ecosystem disturbed. Pine stands nearly 15-20-year-old after harvesting have been recognized as weak carbon sinks, and the ecosystem of 25-40-year-old represents a relatively strong C uptake. The work was supported financially by ISTC Project # 2757p "Biogeochemical Responses to Rapid Climate Changes in Eurasia".

  20. Mechanical design of translocating motor proteins.

    PubMed

    Hwang, Wonmuk; Lang, Matthew J

    2009-01-01

    Translocating motors generate force and move along a biofilament track to achieve diverse functions including gene transcription, translation, intracellular cargo transport, protein degradation, and muscle contraction. Advances in single molecule manipulation experiments, structural biology, and computational analysis are making it possible to consider common mechanical design principles of these diverse families of motors. Here, we propose a mechanical parts list that include track, energy conversion machinery, and moving parts. Energy is supplied not just by burning of a fuel molecule, but there are other sources or sinks of free energy, by binding and release of a fuel or products, or similarly between the motor and the track. Dynamic conformational changes of the motor domain can be regarded as controlling the flow of free energy to and from the surrounding heat reservoir. Multiple motor domains are organized in distinct ways to achieve motility under imposed physical constraints. Transcending amino acid sequence and structure, physically and functionally similar mechanical parts may have evolved as nature's design strategy for these molecular engines.

  1. Mechanical Design of Translocating Motor Proteins

    PubMed Central

    Lang, Matthew J.

    2013-01-01

    Translocating motors generate force and move along a biofilament track to achieve diverse functions including gene transcription, translation, intracellular cargo transport, protein degradation, and muscle contraction. Advances in single molecule manipulation experiments, structural biology, and computational analysis are making it possible to consider common mechanical design principles of these diverse families of motors. Here, we propose a mechanical parts list that include track, energy conversion machinery, and moving parts. Energy is supplied not just by burning of a fuel molecule, but there are other sources or sinks of free energy, by binding and release of a fuel or products, or similarly between the motor and the track. Dynamic conformational changes of the motor domain can be regarded as controlling the flow of free energy to and from the surrounding heat reservoir. Multiple motor domains are organized in distinct ways to achieve motility under imposed physical constraints. Transcending amino acid sequence and structure, physically and functionally similar mechanical parts may have evolved as nature’s design strategy for these molecular engines. PMID:19452133

  2. Three dimensional global modeling of atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Fung, I.; Hansen, J.; Rind, D.

    1983-01-01

    A model was developed to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO2 variations. The approach uses a three dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO2 at the surface. The 3-D model employed is identified and biosphere, ocean and fossil fuel sources and sinks are discussed. Some preliminary model results are presented.

  3. Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis and experiment.

    PubMed

    Zhang, Bo; Liu, Xin; DeAngelis, D L; Ni, Wei-Ming; Wang, G Geoff

    2015-06-01

    An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Relaxation, Structure and Properties of Semi-coherent Interfaces

    DOE PAGES

    Shao, Shuai; Wang, Jian

    2015-11-05

    Materials containing high density of interfaces are promising candidates for future energy technologies, because interfaces acting as sources, sinks, and barriers for defects can improve mechanical and irradiation properties of materials. Semi-coherent interface widely occurring in various materials is composed of a network of misfit dislocations and coherent regions separated by misfit dislocations. Lastly, in this article, we review relaxation mechanisms, structure and properties of (111) semi-coherent interfaces in face centered cubic structures.

  5. A large and persistent carbon sink in the world's forests

    USGS Publications Warehouse

    Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; Ciais, P.; Jackson, R.B.; Pacala, S.W.; McGuire, A.D.; Piao, S.; Rautiainen, A.; Sitch, S.; Hayes, D.

    2011-01-01

    The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ?? 0.4 petagrams of carbon per year (Pg C year-1) globally for 1990 to 2007. We also estimate a source of 1.3 ?? 0.7 Pg C year-1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ?? 0.5 Pg C year-1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ?? 0.5 Pg C year-1. Together, the fluxes comprise a net global forest sink of 1.1 ?? 0.8 Pg C year-1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

  6. Modelling and simulation of [18F]fluoromisonidazole dynamics based on histology-derived microvessel maps

    NASA Astrophysics Data System (ADS)

    Mönnich, David; Troost, Esther G. C.; Kaanders, Johannes H. A. M.; Oyen, Wim J. G.; Alber, Markus; Thorwarth, Daniela

    2011-04-01

    Hypoxia can be assessed non-invasively by positron emission tomography (PET) using radiotracers such as [18F]fluoromisonidazole (Fmiso) accumulating in poorly oxygenated cells. Typical features of dynamic Fmiso PET data are high signal variability in the first hour after tracer administration and slow formation of a consistent contrast. The purpose of this study is to investigate whether these characteristics can be explained by the current conception of the underlying microscopic processes and to identify fundamental effects. This is achieved by modelling and simulating tissue oxygenation and tracer dynamics on the microscopic scale. In simulations, vessel structures on histology-derived maps act as sources and sinks for oxygen as well as tracer molecules. Molecular distributions in the extravascular space are determined by reaction-diffusion equations, which are solved numerically using a two-dimensional finite element method. Simulated Fmiso time activity curves (TACs), though not directly comparable to PET TACs, reproduce major characteristics of clinical curves, indicating that the microscopic model and the parameter values are adequate. Evidence for dependence of the early PET signal on the vascular fraction is found. Further, possible effects leading to late contrast formation and potential implications on the quantification of Fmiso PET data are discussed.

  7. Laboratory study of PCBs transport from primary sources to ...

    EPA Pesticide Factsheets

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber serving as a stable source of PCBs and building materials in the test chamber. During the tests, the PCB concentrations in the outlet air of the test chamber were monitored and the building materials were removed from the test chamber at different times to determine their PCB content. Among the materials tested, a petroleum-based paint, a latex paint, and a certain type of carpet were among the strongest sinks. Solvent-free epoxy coating, certain types of flooring materials, and brick were among the weakest sinks. For a given sink material, PCB congeners with lower vapor pressures were sorbed in larger quantities. Rough estimates of the partition and diffusion coefficients were obtained by applying a sink model to the data acquired from the chamber studies. A desorption test with the concrete panels showed that re-emission is a slow process, suggesting that PCB sinks, e.g. concrete, can release PCBs into the air for a prolonged period of time (years or decades). This study could fill some of the data gaps associated with the characterization of PCB sinks in contaminated buildings. This paper summarizes the laboratory research results for PCB transport from primary sources to PCB sinks, includ

  8. Thermal trim for luminaire

    DOEpatents

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  9. Thermal trim for a luminaire

    DOEpatents

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-02-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  10. Source-sink-storage relationships of conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxmoore, R.J.; Oren, R.; Sheriff, D.W.

    1995-07-01

    Irradiance, air temperature, saturation vapor pressure deficit, and soil temperature vary in association with Earth`s daily rotation, inducing significant hourly changes in the rates of plant physiological processes. These processes include carbon fixation in photosynthesis, sucrose translocation, and carbon utilization in growth, storage, and respiration. The sensitivity of these physiological processes to environmental factors such as temperature, soil water availability, and nutrient supply reveals differences that must be viewed as an interactive whole in order to comprehend whole-plant responses to the environment. Integrative frameworks for relationships between plant physiological processes are needed to provide syntheses of plant growth and development.more » Source-sink-storage relationships, addressed in this chapter, provide one framework for synthesis of whole-plant responses to external environmental variables. To address this issue, some examples of carbon assimilation and utilization responses of five conifer species to environmental factors from a range of field environments are first summarized. Next, the interactions between sources, sinks, and storages of carbon are examined at the leaf and tree scales, and finally, the review evaluates the proposition that processes involved with carbon utilization (sink activity) are more sensitive to the supply of water and nutrients (particularly nitrogen) than are the processes of carbon gain (source activity) and carbon storage. The terms {open_quotes}sink{close_quotes} and {open_quotes}source{close_quotes} refer to carbon utilization and carbon gain, respectively. The relative roles of stored carbon reserves and of current photosynthate in meeting sink demand are addressed. Discussions focus on source-sink-storage relationships within the diurnal, wetting-drying, and annual cycles of conifer growth and development, and some discussion of life cycle aspects is also presented.« less

  11. Integrating SPOT-VEGETATION 13-yr time series and land-surface modelling to forecast the terrestrial carbon dynamics in a changing climate - The VEGECLIM project: achievements and lessons learned

    NASA Astrophysics Data System (ADS)

    Defourny, Pierre; Verbeeck, Hans; Moreau, Inès; De Weirdt, Marjolein; Verhegghen, Astrid; Kibambe-Lubamba, Jean-Paul; Jungers, Quentin; Maignan, Fabienne; Najdovski, Nicolas; Poulter, Benjamin; MacBean, Natasha; Peylin, Philippe

    2014-05-01

    Vegetation is a major carbon sink and is as such a key component of the international response to climate change caused by the build-up of greenhouse gases in the atmosphere. However, anthropogenic disturbances like deforestation are the primary mechanism that changes ecosystems from carbon sinks to sources, and are hardly included in the current carbon modelling approaches. Moreover, in tropical regions, the seasonal/interannual variability of carbon fluxes is still uncertain and a weak or even no seasonality is taken into account in global vegetation models. In the context of climate change and mitigation policies like "Reducing Emissions from Deforestation and Forest Degradation in Developing Countries" (REDD), it is particularly important to be able to quantify and forecast the vegetation dynamics and carbon fluxes in these regions. The overall objective of the VEGECLIM project is to increase our knowledge on the terrestrial carbon cycle in tropical regions and to improve the forecast of the vegetation dynamics and carbon stocks and fluxes under different climate-change and deforestation scenarios. Such an approach aims to determine whether the African terrestrial carbon balance will remain a net sink or could become a carbon source by the end of the century, according to different climate-change and deforestation scenarios. The research strategy is to integrate the information of the land surface characterizations obtained from 13 years of consistent SPOT-VEGETATION time series (land cover, vegetation phenology through vegetation indices such as the Enhanced Vegetation Index (EVI)) as well as in-situ carbon flux data into the process based ORCHIDEE global vegetation model, capable of simulating vegetation dynamics and carbon balance. Key challenge of this project was to bridge the gap between the land cover and the land surface model teams. Several improvements of the ORCHIDEE model have been realized such as a new seasonal leaf dynamics for tropical evergreen forests, the introduction of spatial soil phosphorus to improve the spatial distribution of simulated woody biomass and an assimilation of smoothed seasonal pattern of satellite-based EVI used as a proxy to vegetation productivity. The outputs of the ORCHIDEE simulations over both Amazon and Congo Basins are discussed with regards to the observed phenology by remote sensing.

  12. The Derivation of Sink Functions of Wheat Organs using the GREENLAB Model

    PubMed Central

    Kang, Mengzhen; Evers, Jochem B.; Vos, Jan; de Reffye, Philippe

    2008-01-01

    Background and Aims In traditional crop growth models assimilate production and partitioning are described with empirical equations. In the GREENLAB functional–structural model, however, allocation of carbon to different kinds of organs depends on the number and relative sink strengths of growing organs present in the crop architecture. The aim of this study is to generate sink functions of wheat (Triticum aestivum) organs by calibrating the GREENLAB model using a dedicated data set, consisting of time series on the mass of individual organs (the ‘target data’). Methods An experiment was conducted on spring wheat (Triticum aestivum, ‘Minaret’), in a growth chamber from, 2004 to, 2005. Four harvests were made of six plants each to determine the size and mass of individual organs, including the root system, leaf blades, sheaths, internodes and ears of the main stem and different tillers. Leaf status (appearance, expansion, maturity and death) of these 24 plants was recorded. With the structures and mass of organs of four individual sample plants, the GREENLAB model was calibrated using a non-linear least-square-root fitting method, the aim of which was to minimize the difference in mass of the organs between measured data and model output, and to provide the parameter values of the model (the sink strengths of organs of each type, age and tiller order, and two empirical parameters linked to biomass production). Key Results and Conclusions The masses of all measured organs from one plant from each harvest were fitted simultaneously. With estimated parameters for sink and source functions, the model predicted the mass and size of individual organs at each position of the wheat structure in a mechanistic way. In addition, there was close agreement between experimentally observed and simulated values of leaf area index. PMID:18045794

  13. Land application of spent gypsum from ditch filters: phosphorus source or sink?

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage ditches can provide a direct connection between fields and surface waters, and some have been shown to deliver high loads of phosphorus (P) to sensitive water bodies. A potential way to reduce nutrient loads in drainage ditches is to install filter structures containing P sorbi...

  14. Connecting the Mississippi River with Carbon Variability in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Xue, Z. G.; He, R.; Fennel, K.; Cai, W. J.; Lohrenz, S. E.; Huang, W. J.; Tian, H.; Ren, W.

    2016-02-01

    To understand the linkage between landuse/land-cover change within the Mississippi basin and the carbon dynamics in the Gulf of Mexico, a three-dimensional coupled physical-biogeochemical model was used to the examine temporal and spatial variability of surface ocean pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and freshwater and terrestrial nutrient and carbon input from major rivers provided by the Dynamic Land Ecosystem Model (DLEM). A seven-year model hindcast (2004-2010) was performed and was validated against the recently updated Lamont-Doherty Earth Observatory global ocean carbon dataset. Model simulated seawater pCO2 and air-sea CO2 flux are in good agreement with in-situ measurements. An inorganic carbon budget was estimated based on the multi-year mean of the model results. Overall, the GoM is a sink of atmospheric CO2 with a flux of 0.92 × 1012 mol C yr-1, which, together with the enormous fluvial carbon input, is balanced by carbon export through the Loop Current. In a sensitivity experiment with all biological sources and sinks of carbon disabled surface pCO2 was elevated by 70 ppm, suggesting that biological uptake is the most important reason for the simulated CO2 sink. The impact from landuse and land-cover changes within the Mississippi River basin on coastal pCO2 dynamics is also discussed based on a scenario run driven by river conditions during the 1904-1910 provided by the DLEM model.

  15. Does Don Fisher's high-pressure manifold model account for phloem transport and resource partitioning?

    PubMed Central

    Patrick, John W.

    2013-01-01

    The pressure flow model of phloem transport envisaged by Münch (1930) has gained wide acceptance. Recently, however, the model has been questioned on structural and physiological grounds. For instance, sub-structures of sieve elements may reduce their hydraulic conductances to levels that impede flow rates of phloem sap and observed magnitudes of pressure gradients to drive flow along sieve tubes could be inadequate in tall trees. A variant of the Münch pressure flow model, the high-pressure manifold model of phloem transport introduced by Donald Fisher may serve to reconcile at least some of these questions. To this end, key predicted features of the high-pressure manifold model of phloem transport are evaluated against current knowledge of the physiology of phloem transport. These features include: (1) An absence of significant gradients in axial hydrostatic pressure in sieve elements from collection to release phloem accompanied by transport properties of sieve elements that underpin this outcome; (2) Symplasmic pathways of phloem unloading into sink organs impose a major constraint over bulk flow rates of resources translocated through the source-path-sink system; (3) Hydraulic conductances of plasmodesmata, linking sieve elements with surrounding phloem parenchyma cells, are sufficient to support and also regulate bulk flow rates exiting from sieve elements of release phloem. The review identifies strong circumstantial evidence that resource transport through the source-path-sink system is consistent with the high-pressure manifold model of phloem transport. The analysis then moves to exploring mechanisms that may link demand for resources, by cells of meristematic and expansion/storage sinks, with plasmodesmal conductances of release phloem. The review concludes with a brief discussion of how these mechanisms may offer novel opportunities to enhance crop biomass yields. PMID:23802003

  16. Limitation of Unloading in the Developing Grains Is a Possible Cause Responsible for Low Stem Non-structural Carbohydrate Translocation and Poor Grain Yield Formation in Rice through Verification of Recombinant Inbred Lines

    PubMed Central

    Li, Guohui; Pan, Junfeng; Cui, Kehui; Yuan, Musong; Hu, Qiuqian; Wang, Wencheng; Mohapatra, Pravat K.; Nie, Lixiao; Huang, Jianliang; Peng, Shaobing

    2017-01-01

    Remobilisation of non-structural carbohydrates (NSC) from leaves and stems and unloading into developing grains are essential for yield formation of rice. In present study, three recombinant inbred lines of rice, R91, R156 and R201 have been tested for source-flow-sink related attributes determining the nature of NSC accumulation and translocation at two nitrogen levels in the field. Compared to R91 and R156, R201 had lower grain filling percentage, harvest index, and grain yield. Meanwhile, R201 had significantly lower stem NSC translocation during grain filling stage. Grain filling percentage, harvest index, and grain yield showed the consistent trend with stem NSC translocation among the three lines. In comparison with R91 and R156, R201 had similarity in leaf area index, specific leaf weight, stem NSC concentration at heading, biomass, panicles m-2, spikelets per panicle, remobilization capability of assimilation in stems, sink capacity, sink activity, number and cross sectional area of small vascular bundles, greater number and cross sectional area of large vascular bundles, and higher SPAD, suggesting that source, flow, and sink were not the limiting factors for low stem NSC translocation and grain filling percentage of R201. However, R201 had significant higher stem and rachis NSC concentrations at maturity, which implied that unloading in the developing grains might result in low NSC translocation in R201. The results indicate that stem NSC translocation could be beneficial for enhancement of grain yield potential, and poor unloading into caryopsis may be the possible cause of low stem NSC translocation, poor grain filling and yield formation in R201. PMID:28848573

  17. NetFlow Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbet Jr., Thomas F; Beyeler, Walter E; Vanwestrienen, Dirk

    NetFlow Dynamics is a web-accessible analysis environment for simulating dynamic flows of materials on model networks. Performing a simulation requires both the NetFlow Dynamics application and a network model which is a description of the structure of the nodes and edges of a network including the flow capacity of each edge and the storage capacity of each node, and the sources and sinks of the material flowing on the network. NetFlow Dynamics consists of databases for storing network models, algorithms to calculate flows on networks, and a GIS-based graphical interface for performing simulations and viewing simulation results. Simulated flows aremore » dynamic in the sense that flows on each edge of the network and inventories at each node change with time and can be out of equilibrium with boundary conditions. Any number of network models could be simulated using Net Flow Dynamics. To date, the models simulated have been models of petroleum infrastructure. The main model has been the National Transportation Fuels Model (NTFM), a network of U.S. oil fields, transmission pipelines, rail lines, refineries, tank farms, and distribution terminals. NetFlow Dynamics supports two different flow algorithms, the Gradient Flow algorithm and the Inventory Control algorithm, that were developed specifically for the NetFlow Dynamics application. The intent is to add additional algorithms in the future as needed. The ability to select from multiple algorithms is desirable because a single algorithm never covers all analysis needs. The current algorithms use a demand-driven capacity-constrained formulation which means that the algorithms strive to use all available capacity and stored inventory to meet desired flows to sinks, subject to the capacity constraints of each network component. The current flow algorithms are best suited for problems in which a material flows on a capacity-constrained network representing a supply chain in which the material supplied can be stored at each node of the network. In the petroleum models, the flowing materials are crude oil and refined products that can be stored at tank farms, refineries, or terminals (i.e. the nodes of the network). Examples of other network models that could be simulated are currency flowing in a financial network, agricultural products moving to market, or natural gas flowing on a pipeline network.« less

  18. The carbon balance of reducing wildfire risk and restoring process: an analysis of 10-year post-treatment carbon dynamics in a mixed-conifer forest

    Treesearch

    Morgan L. Wiechmann; Matthew D. Hurteau; Malcolm P. North; George W. Koch; Lucie Jerabkova

    2015-01-01

    Forests sequester carbon from the atmosphere, helping mitigate climate change. In fire-prone forests, burn events result in direct and indirect emissions of carbon. High fire-induced tree mortality can cause a transition from a carbon sink to source, but thinning and prescribed burning can reduce fire severity and carbon loss when wildfire occurs. However, treatment...

  19. Using multiple metrics to assess the effects of forest succession on population status: a comparative study of two terrestrial salamanders in the US Pacific Northwest

    Treesearch

    Hart Welsh; Karen L. Pope; Clara A. Wheeler

    2008-01-01

    Investigations to determine stable or source-sink animal population dynamics are challenging and often infeasible for most species due to the time and expense of mark-recapture studies and the challenge of life histories attributes that result in low detectability and low recapture probabilities. Often, managers rely solely on occupancy or relative abundance patterns...

  20. Modeling landscape net ecosystem productivity (LandNEP) under alternative management regimes

    Treesearch

    Eugenie S. Euskirchen; Jiquan Chen; Harbin Li; Eric J. Gustafson; Thomas R. Crow

    2002-01-01

    Forests have been considered as a major carbon sink within the global carbon budget. However, a fragmented forest landscape varies significantly in its composition and age structure, and the amount of carbon sequestered at this level remains generally unknown to the scientific community. More precisely, the temporal dynamics and spatial distribution of net ecosystem...

  1. Robbing Peter to Pay Paul: Modeling the Dynamic Evolution of the Coastal Carbon Sink Across Multiple Landforms

    NASA Astrophysics Data System (ADS)

    Herbert, E. R.; Walters, D.; Windham-Myers, L.; Kirwan, M. L.

    2016-12-01

    Evaluating the strength and long-term stability of the coastal carbon sink requires a consideration of the spatial evolution of coastal landscapes in both the horizontal and vertical dimensions. We present a model of the transformation and burial of carbon along a bay-marsh-upland forest complex to explore the response of the coastal carbon sink to sea level rise (SLR) and anthropogenic activity. We establish a carbon mass-balance by coupling dynamic biogeochemically-based models of soil carbon burial in aquatic, intertidal, and upland environments with a physically-based model of marsh edge erosion, vertical growth and migration into adjacent uplands. The modeled increase in marsh vertical growth and carbon burial at moderate rates of sea level rise (3-10 mm/yr) is consistent with a synthesis of 219 field measurements of marsh carbon accumulation that show a significant (p<0.0001) positive correlation with local SLR rates. The model suggests that at moderate SLR rates in low topographic relief landscapes, net marsh expansion into upland forest concomitant with increased carbon burial rates are sufficient to mitigate the associated loss of forest carbon stocks. Coastlines with high relief or barriers to wetland migration can become sources of carbon through the erosion of buried carbon stocks, but we show that the recapture of eroded carbon through vertical growth can be an important mechanism for reducing carbon loss. Overall, we show that the coastal carbon balance must be evaluated in a landscape context to account for changes in the size and magnitude of both the stocks and sinks of marsh carbon and for the transfers of carbon between coastal habitats. These results may help inform current efforts to appraise coastal carbon sinks that are beset by issues of landscape heterogeneity and the provenance of buried carbon.

  2. Theoretical overview and modeling of the sodium and potassium atmospheres of the moon

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Marconi, M. L.

    1995-01-01

    A general theoretical overview for the sources, sinks, gas-surface interactions, and transport dynamics of sodium and potassium in the exospheric atmosphere of the Moon is given. These four factors, which control the spatial distribution of these two alkali-group gases about the Moon, are incorporated in numerical models. The spatial nature and relative importance of the initial source atoms atmosphere (which must be nonthermal to explain observational data) and the ambient (ballistic hopping) atom atmosphere are examined. The transport dynamics, atmospheric structure, and lunar escape of the nonthermal source atoms are time variable with season of the year and lunar phase because of their dependence on the radiation acceleration experienced by sodium and potassium atoms as they resonantly scatter solar photons. The dynamic transport time of fully thermally accomodated ambient atoms along the surface because of solar radiation acceleration (only several percent of surface gravity) is larger than the photoionization lifetimes and hence unimportant in determining the local density, although for potassium the situation is borderline. The sodium model was applied to analyze sodium observations of the sunward brightness profiles acquired near last quarter by Potter & Morgan (1988b) extending from the surface to an altitude of 1200 km, and near first quarter by Mendillo, Baumgardner, & Flynn (1991), extending in altitude from approximately 1430 to approximately 7000 km. The observations at larger altitudes could be fitted only for source atoms having a velocity distribution with a tail that is mildly nonthermal (like an approximately 1000 K Maxwell-Boltzmann distribution). Solar wind sputtering appears to a be a viable source atom mechanism for the sodium observations with photon-simulated desorption also possible but highly uncertain, although micrometeoroid impact vaporization appears to have a source that is too small and too hot, with likely an incorrect angular distribution about the Moon.

  3. Electron Transport at the Microbe–Mineral Interface: A Synthesis of Current Research Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, David; Fredrickson, Jim K.; Zachara, John M.

    2012-12-01

    Many bacterial and archaeal species can couple growth to the respiratory reduction or oxidation of insoluble mineral oxides of transition metals. These solid substrates are abundant electron sinks and sources for life on Earth, but, since they are insoluble in water, they cannot enter the bacterial cells. So, to exploit these electron sinks and sources, specific respiratory electron-transfer mechanisms must overcome the physical limitations associated with electron transfer between a microbe and extracellular metal oxides. Recent microbiological, geochemical, biochemical, spectroscopic and structural work is beginning to shed light on the molecular mechanism and impacts of electron transfer at themicrobe–mineral interfacemore » from a nanometre to kilometre scale. The research field is attracting attention in applied quarters from those with interests in nanowires, microbial fuel cells, bioremediation and microbial cell factories.« less

  4. Stress, deformation and diffusion interactions in solids - A simulation study

    NASA Astrophysics Data System (ADS)

    Fischer, F. D.; Svoboda, J.

    2015-05-01

    Equations of diffusion treated in the frame of Manning's concept, are completed by equations for generation/annihilation of vacancies at non-ideal sources and sinks, by conservation laws, by equations for generation of an eigenstrain state and by a strain-stress analysis. The stress-deformation-diffusion interactions are demonstrated on the evolution of a diffusion couple consisting of two thin layers of different chemical composition forming a free-standing plate without external loading. The equations are solved for different material parameters represented by the values of diffusion coefficients of individual components and by the intensity of sources and sinks for vacancies. The results of simulations indicate that for low intensity of sources and sinks for vacancies a significant eigenstress state can develop and the interdiffusion process is slowed down. For high intensity of sources and sinks for vacancies a significant eigenstrain state can develop and the eigenstress state quickly relaxes. If the difference in the diffusion coefficients of individual components is high, then the intensity of sources and sinks for vacancies influences the interdiffusion process considerably. For such systems their description only by diffusion coefficients is insufficient and must be completed by a microstructure characterization.

  5. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks.

    PubMed

    Zhou, Zhangbing; Xing, Riliang; Duan, Yucong; Zhu, Yueqin; Xiang, Jianming

    2015-12-15

    With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady.

  6. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks

    PubMed Central

    Zhou, Zhangbing; Xing, Riliang; Duan, Yucong; Zhu, Yueqin; Xiang, Jianming

    2015-01-01

    With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady. PMID:26694394

  7. Management Impacts on Carbon Dynamics in a Sierra Nevada Mixed Conifer Forest

    PubMed Central

    Dore, Sabina; Fry, Danny L.; Collins, Brandon M.; Vargas, Rodrigo; York, Robert A.; Stephens, Scott L.

    2016-01-01

    Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass), and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%). Soil carbon content (upper 15 cm) was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60–70%) but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25%) by thinning and reduced (12%) by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and climate related stresses. PMID:26918460

  8. Potential for wind extraction from 4D-Var assimilation of aerosols and moisture

    NASA Astrophysics Data System (ADS)

    Zaplotnik, Žiga; Žagar, Nedjeljka

    2017-04-01

    We discuss the potential of the four-dimensional variational data assimilation (4D-Var) to retrieve the unobserved wind field from observations of atmospheric tracers and the mass field through internal model dynamics and the multivariate relationships in the background-error term for 4D-Var. The presence of non-linear moist dynamics makes the wind retrieval from tracers very difficult. On the other hand, it has been shown that moisture observations strongly influence both tropical and mid-latitude wind field in 4D-Var. We present an intermediate complexity model that describes nonlinear interactions between the wind, temperature, aerosols and moisture including their sinks and sources in the framework of the so-called first baroclinic mode atmosphere envisaged by A. Gill. Aerosol physical processes, which are included in the model, are the non-linear advection, diffusion and sources and sinks that exist as dry and wet deposition and diffusion. Precipitation is parametrized according to the Betts-Miller scheme. The control vector for 4D-Var includes aerosols, moisture and the three dynamical variables. The former is analysed univariately whereas wind field and mass field are analysed in a multivariate fashion taking into account quasi-geostrophic and unbalanced dynamics. The OSSE type of studies are performed for the tropical region to assess the ability of 4D-Var to extract wind-field information from the time series of observations of tracers as a function of the flow nonlinearity, the observations density and the length of the assimilation window (12 hours and 24 hours), in dry and moist environment. Results show that the 4D-Var assimilation of aerosols and temperature data is beneficial for the wind analysis with analysis errors strongly dependent on the moist processes and reliable background-error covariances.

  9. Quantifying the Sources and Sinks of Greenhouse Gases: What Does It Take to Satisfy Scientific and Decision-Making Needs?

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Keller, K.; Ogle, S. M.; Smith, S.

    2014-12-01

    Changes in the sources and sinks of greenhouse gases (GHGs) are key drivers of anthropogenic climate change. It is hence not surprising that current and emerging U.S. governmental science priorities and programs focused on climate change (e.g. a U.S. Carbon Cycle Science Plan; the U.S. Carbon Cycle Science Program, the U.S. Global Change Research Program, Executive Order 13653 'Preparing the U.S. for the Impacts of Climate Change') all call for an improved understanding of these sources and sinks.. Measurements of the total atmospheric burden of these gases are well established, but measurements of their sources and sinks are difficult to make over spatial and temporal scales that are relevant for scientific and decisionmaking needs. Quantifying the uncertainty in these measurements is particularly challenging. This talk reviews the intersection of the state of knowledge of GHG sources and sinks, focusing in particular on CO2 and CH4, and science and decision-making needs for this information. Different science and decision-making needs require differing levels of uncertainty. A number of high-priority needs (early detection of changes in the Earth system, projections of future climate, support of markets or regulations) often require a high degree of accuracy and/or precision. We will critically evaluate current U.S. planning to documents to infer current perceived needs for GHG source/sink quantification, attempting to translate these needs into quantitative uncertainty metrics. We will compare these perceived needs with the current state of the art of GHG source/sink quantification, including the apparent pattern of systematic differences between so-called "top down" and "bottom-up" flux estimates. This comparison will enable us to identify where needs can be readily satisfied, and where gaps in technology exist. Finally, we will examine what steps could be taken to close existing gaps.

  10. Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    NASA Astrophysics Data System (ADS)

    Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.

    2017-05-01

    Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.

  11. Design and simulation of a novel high-efficiency cooling heat-sink structure using fluid-thermodynamics

    NASA Astrophysics Data System (ADS)

    Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma

    2015-10-01

    A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).

  12. Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US.

    PubMed

    Hurteau, Matthew D

    2017-01-01

    Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010-2019), mid (2050-2059), and late (2090-2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8-48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink.

  13. Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US

    PubMed Central

    2017-01-01

    Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010–2019), mid (2050–2059), and late (2090–2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8–48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink. PMID:28046079

  14. Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input

    PubMed Central

    Tahon, Koen; Wijnants, Mike; De Schutter, Erik

    2011-01-01

    The overall circuitry of the cerebellar cortex has been known for over a century, but the function of many synaptic connections remains poorly characterized in vivo. We used a one-dimensional multielectrode probe to estimate the current source density (CSD) of Crus IIa in response to perioral tactile stimuli in anesthetized rats and to correlate current sinks and sources to changes in the spike rate of corecorded Golgi and Purkinje cells. The punctate stimuli evoked two distinct early waves of excitation (at <10 and ∼20 ms) associated with current sinks in the granular layer. The second wave was putatively of corticopontine origin, and its associated sink was located higher in the granular layer than the first trigeminal sink. The distinctive patterns of granular-layer sinks correlated with the spike responses of corecorded Golgi cells. In general, Golgi cell spike responses could be linearly reconstructed from the CSD profile. A dip in simple-spike activity of coregistered Purkinje cells correlated with a current source deep in the molecular layer, probably generated by basket cell synapses, interspersed between sparse early sinks presumably generated by synapses from granule cells. The late (>30 ms) enhancement of simple-spike activity in Purkinje cells was characterized by the absence of simultaneous sinks in the granular layer and by the suppression of corecorded Golgi cell activity, pointing at inhibition of Golgi cells by Purkinje axon collaterals as a likely mechanism of late Purkinje cell excitation. PMID:21228303

  15. Hyporheic Passive Flux Meters Reveal Inverse Vertical Zonation and High Seasonality of Nitrogen Processing in an Anthropogenically Modified Stream (Holtemme, Germany)

    NASA Astrophysics Data System (ADS)

    Kunz, Julia Vanessa; Annable, Michael D.; Rao, Suresh; Rode, Michael; Borchardt, Dietrich

    2017-12-01

    Transformation and retention of nitrogen and other biologically reactive solutes in the hyporheic zones of running water contribute to an essential ecosystem service. However, the synoptic impact of intense agricultural or urban land-uses, elevated nutrient loading, flow alterations, riparian clear-cutting, and channelization on the source-sink behavior of solutes in hyporheic zones remains largely uncharacterized and unquantified. Therefore, we studied nutrient dynamics in a hydromorphologically and chemically modified stream reach using a new monitoring approach allowing the simultaneous measurement of nutrient and water flux through a screened area in the subsurface of rivers (hyporheic passive flux meter, HPFM). With HPFMs we directly assessed time-integrated lateral hyporheic nitrate fluxes during early spring and midsummer covering different temperature and discharge regimes. Contrary to our expectations, higher stream discharge coincided with substantially lower hyporheic exchange rates. While in streams featuring a natural morphology, bed form induced exchange commonly increases with surface flow, the influence of groundwater level was dominant in this reach. Furthermore, in contrast to less impacted environments, where progressive substrate depletion with depths reduces metabolic rates in the subsurface, we identified not the upper, but the intermediate layer of the hyporheic zone as hot spot of nutrient turnover. Overall, the hyporheic zone at the study site functioned partly as nitrate source, partly as a sink. Neither of the commonly used determinants redox state and residence time could explain this source or sink function. Our results give clear evidence to carefully transfer the knowledge of hyporheic zone processes from "natural" systems to anthropologically modified streams.

  16. Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System

    NASA Astrophysics Data System (ADS)

    Gruber, Nicolas; Frenzel, Hartmut; Doney, Scott C.; Marchesiello, Patrick; McWilliams, James C.; Moisan, John R.; Oram, John J.; Plattner, Gian-Kasper; Stolzenbach, Keith D.

    2006-09-01

    We study the dynamics of the planktonic ecosystem in the coastal upwelling zone within the California Current System using a three-dimensional (3-D), eddy-resolving circulation model coupled to an ecosystem/biogeochemistry model. The physical model is based on the Regional Oceanic Modeling System (ROMS), configured at a resolution of 15 km for a domain covering the entire US West Coast, with an embedded child grid covering the central California upwelling region at a resolution of 5 km. The model is forced with monthly mean boundary conditions at the open lateral boundaries as well as at the surface. The ecological/biogeochemical model is nitrogen based, includes single classes for phytoplankton and zooplankton, and considers two detrital pools with different sinking speeds. The model also explicitly simulates a variable chlorophyll-to-carbon ratio. Comparisons of model results with either remote sensing observations (AVHRR, SeaWiFS) or in-situ measurements from the CalCOFI program indicate that our model is capable of replicating many of the large-scale, time-averaged features of the coastal upwelling system. An exception is the underestimation of the chlorophyll levels in the northern part of the domain, perhaps because of the lack of short-term variations in the atmospheric forcing. Another shortcoming is that the modeled thermocline is too diffuse, and that the upward slope of the isolines toward the coast is too small. Detailed time-series comparisons with observations from Monterey Bay reveal similar agreements and discrepancies. We attribute the good agreement between the modeled and observed ecological properties in large part to the accuracy of the physical fields. In turn, many of the discrepancies can be traced back to our use of monthly mean forcing. Analysis of the ecosystem structure and dynamics reveal that the magnitude and pattern of phytoplankton biomass in the nearshore region are determined largely by the balance of growth and zooplankton grazing, while in the offshore region, growth is balanced by mortality. The latter appears to be inconsistent with in situ observations and is a result of our consideration of only one zooplankton size class (mesozooplankton), neglecting the importance of microzooplankton grazing in the offshore region. A comparison of the allocation of nitrogen into the different pools of the ecosystem in the 3-D results with those obtained from a box model configuration of the same ecosystem model reveals that only a few components of the ecosystem reach a local steady-state, i.e. where biological sources and sinks balance each other. The balances for the majority of the components are achieved by local biological source and sink terms balancing the net physical divergence, confirming the importance of the 3-D nature of circulation and mixing in a coastal upwelling system.

  17. Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids1[OPEN

    PubMed Central

    Santiago, James P.; Tegeder, Mechthild

    2016-01-01

    Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield. PMID:27016446

  18. Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004

    USGS Publications Warehouse

    Zhuang, Qianlai; Zhu, Xudong; He, Yujie; Prigent, Catherine; Melillo, Jerry M.; McGuire, A. David; Prinn, Ronald G.; Kicklighter, David W.

    2015-01-01

    Estimates of the seasonal and interannual exchanges of carbon dioxide (CO2) and methane (CH4) between land ecosystems north of 45°N and the atmosphere are poorly constrained, in part, because of uncertainty in the temporal variability of water-inundated land area. Here we apply a process-based biogeochemistry model to evaluate how interannual changes in wetland inundation extent might have influenced the overall carbon dynamics of the region during the time period 1993–2004. We find that consideration by our model of these interannual variations between 1993 and 2004, on average, results in regional estimates of net methane sources of 67.8 ± 6.2 Tg CH4 yr−1, which is intermediate to model estimates that use two static inundation extent datasets (51.3 ± 2.6 and 73.0 ± 3.6 Tg CH4 yr−1). In contrast, consideration of interannual changes of wetland inundation extent result in regional estimates of the net CO2 sink of −1.28 ± 0.03 Pg C yr−1 with a persistent wetland carbon sink from −0.38 to −0.41 Pg C yr−1 and a upland sink from −0.82 to −0.98 Pg C yr−1. Taken together, despite the large methane emissions from wetlands, the region is a consistent greenhouse gas sink per global warming potential (GWP) calculations irrespective of the type of wetland datasets being used. However, the use of satellite-detected wetland inundation extent estimates a smaller regional GWP sink than that estimated using static wetland datasets. Our sensitivity analysis indicates that if wetland inundation extent increases or decreases by 10% in each wetland grid cell, the regional source of methane increases 13% or decreases 12%, respectively. In contrast, the regional CO2 sink responds with only 7–9% changes to the changes in wetland inundation extent. Seasonally, the inundated area changes result in higher summer CH4 emissions, but lower summer CO2 sinks, leading to lower summer negative greenhouse gas forcing. Our analysis further indicates that wetlands play a disproportionally important role in affecting regional greenhouse gas budgets given that they only occupy approximately 10% of the total land area in the region.

  19. Lagrangian descriptors in dissipative systems.

    PubMed

    Junginger, Andrej; Hernandez, Rigoberto

    2016-11-09

    The reaction dynamics of time-dependent systems can be resolved through a recrossing-free dividing surface associated with the transition state trajectory-that is, the unique trajectory which is bound to the barrier region for all time in response to a given time-dependent potential. A general procedure based on the minimization of Lagrangian descriptors has recently been developed by Craven and Hernandez [Phys. Rev. Lett., 2015, 115, 148301] to construct this particular trajectory without requiring perturbative expansions relative to the naive transition state point at the top of the barrier. The extension of the method to account for dissipation in the equations of motion requires additional considerations established in this paper because the calculation of the Lagrangian descriptor involves the integration of trajectories in forward and backward time. The two contributions are in general very different because the friction term can act as a source (in backward time) or sink (in forward time) of energy, leading to the possibility that information about the phase space structure may be lost due to the dominance of only one of the terms. To compensate for this effect, we introduce a weighting scheme within the Lagrangian descriptor and demonstrate that for thermal Langevin dynamics it preserves the essential phase space structures, while they are lost in the nonweighted case.

  20. Hierarchical functional organization of formal biological systems: a dynamical approach. II. The concept of non-symmetry leads to a criterion of evolution deduced from an optimum principle of the (O-FBS) sub-system.

    PubMed

    Chauvet, G A

    1993-03-29

    In paper I a theory of functional organization in terms of functional interactions was proposed for a formal biological system (FBS). A functional interaction was defined as the product emitted by a structural unit, i.e. an assembly of molecules, cells, tissues or organs, which acts on another. We have shown that a self-association hypothesis could be an explanation for the source of these functional interactions because it is consistent with increased stability of the system after association. The construction of the set of interactions provides the topology of the biological system, called (O-FBS), in contrast to the (D-FBS) which describes the dynamics of the processes associated with the functional interactions. In this paper, an optimum principle is established, due to the non-symmetry of functional interactions, which could explain the stability of an FBS, and a criterion of evolution for the hierarchical topological organization of a FBS during development is deduced from that principle. The combinatorics of the (O-FBS) leads to the topological stability of the related graph. It is shown that this problem can be expressed as the re-distribution of sources and sinks, when one of them is suppressed, given the constraint of the invariance of the physiological function. Such an optimum principle could be called a 'principle of increase in functional order by hierarchy'. The first step is the formulation of a 'potential' for the functional organization, which describes the ability of the system to combine functional interactions, such that the principle of vital coherence (paper I) is satisfied. This function measures the number of potential functional interactions. The second step is to discover the maximum of this function. Biological systems in such a state of maximum organization are shown to satisfy particular dynamics, which can be experimentally verified: either the number of sinks decreases, or this number increases, in a monotonic way. The class of systems considered here is assumed to satisfy such an extremum hypothesis. The third step is a study of the variation of the degree of organization (paper I), i.e. the number of structural units when the biological system is growing. We establish an optimum principle for a new function called 'orgatropy'. By adding a criterion of specialization to the system we show the emergence of a level of organization with a re-organization of the system.(ABSTRACT TRUNCATED AT 400 WORDS)

  1. Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meixner, Tom; Tidwell, Vincent Carroll; Oelsner, Gretchen

    2008-08-01

    Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual modelsmore » of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.« less

  2. Drivers of inorganic carbon dynamics in first-year sea ice: A model study

    NASA Astrophysics Data System (ADS)

    Moreau, Sébastien; Vancoppenolle, Martin; Delille, Bruno; Tison, Jean-Louis; Zhou, Jiayun; Kotovitch, Marie; Thomas, David N.; Geilfus, Nicolas-Xavier; Goosse, Hugues

    2015-01-01

    Sea ice is an active source or a sink for carbon dioxide (CO2), although to what extent is not clear. Here, we analyze CO2 dynamics within sea ice using a one-dimensional halothermodynamic sea ice model including gas physics and carbon biogeochemistry. The ice-ocean fluxes, and vertical transport, of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equations. Carbonate chemistry, the consumption, and release of CO2 by primary production and respiration, the precipitation and dissolution of ikaite (CaCO3·6H2O) and ice-air CO2 fluxes, are also included. The model is evaluated using observations from a 6 month field study at Point Barrow, Alaska, and an ice-tank experiment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine-air CO2 fluxes, ikaite formation, and net primary production, are secondary factors. In terms of ice-atmosphere CO2 exchanges, sea ice is a net CO2 source and sink in winter and summer, respectively. The formulation of the ice-atmosphere CO2 flux impacts the simulated near-surface CO2 partial pressure (pCO2), but not the DIC budget. Because the simulated ice-atmosphere CO2 fluxes are limited by DIC stocks, and therefore <2 mmol m-2 d-1, we argue that the observed much larger CO2 fluxes from eddy covariance retrievals cannot be explained by a sea ice direct source and must involve other processes or other sources of CO2. Finally, the simulations suggest that near-surface TA/DIC ratios of ˜2, sometimes used as an indicator of calcification, would rather suggest outgassing.

  3. Drivers of inorganic carbon dynamics in first-year sea ice: A model study

    NASA Astrophysics Data System (ADS)

    Moreau, Sébastien; Vancoppenolle, Martin; Delille, Bruno; Tison, Jean-Louis; Zhou, Jiayun; Kotovich, Marie; Thomas, David; Geilfus, Nicolas-Xavier; Goosse, Hugues

    2015-04-01

    Sea ice is an active source or a sink for carbon dioxide (CO2), although to what extent is not clear. Here, we analyze CO2 dynamics within sea ice using a one-dimensional halo-thermodynamic sea ice model including gas physics and carbon biogeochemistry. The ice-ocean fluxes, and vertical transport, of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equations. Carbonate chemistry, the consumption and release of CO2 by primary production and respiration, the precipitation and dissolution of ikaite (CaCO3•6H2O) and ice-air CO2 fluxes, are also included. The model is evaluated using observations from a 6-month field study at Point Barrow, Alaska and an ice-tank experiment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine-air CO2 fluxes, ikaite formation, and net primary production, are secondary factors. In terms of ice-atmosphere CO2 exchanges, sea ice is a net CO2 source and sink in winter and summer, respectively. The formulation of the ice-atmosphere CO2 flux impacts the simulated near-surface CO2 partial pressure (pCO2), but not the DIC budget. Because the simulated ice-atmosphere CO2 fluxes are limited by DIC stocks, and therefore < 2 mmol m-2 day-1, we argue that the observed much larger CO2 fluxes from eddy covariance retrievals cannot be explained by a sea ice direct source and must involve other processes or other sources of CO2. Finally, the simulations suggest that near surface TA/DIC ratios of ~2, sometimes used as an indicator of calcification, would rather suggest outgassing.

  4. Global epidemic invasion thresholds in directed cattle subpopulation networks having source, sink, and transit nodes.

    PubMed

    Schumm, Phillip; Scoglio, Caterina; Zhang, Qian; Balcan, Duygu

    2015-02-21

    Through the characterization of a metapopulation cattle disease model on a directed network having source, transit, and sink nodes, we derive two global epidemic invasion thresholds. The first threshold defines the conditions necessary for an epidemic to successfully spread at the global scale. The second threshold defines the criteria that permit an epidemic to move out of the giant strongly connected component and to invade the populations of the sink nodes. As each sink node represents a final waypoint for cattle before slaughter, the existence of an epidemic among the sink nodes is a serious threat to food security. We find that the relationship between these two thresholds depends on the relative proportions of transit and sink nodes in the system and the distributions of the in-degrees of both node types. These analytic results are verified through numerical realizations of the metapopulation cattle model. Published by Elsevier Ltd.

  5. Transcriptional response to petiole heat girdling in cassava.

    PubMed

    Zhang, Yang; Ding, Zehong; Ma, Fangfang; Chauhan, Raj Deepika; Allen, Doug K; Brutnell, Thomas P; Wang, Wenquan; Peng, Ming; Li, Pinghua

    2015-02-12

    To examine the interactions of starch and sugar metabolism on photosynthesis in cassava, a heat-girdling treatment was applied to petioles of cassava leaves at the end of the light cycle to inhibit starch remobilization during the night. The inhibition of starch remobilization caused significant starch accumulation at the beginning of the light cycle, inhibited photosynthesis, and affected intracellular sugar levels. RNA-seq analysis of heat-treated and control plants revealed significantly decreased expression of genes related to photosynthesis, as well as N-metabolism and chlorophyll biosynthesis. However, expression of genes encoding TCA cycle enzymes and mitochondria electron transport components, and flavonoid biosynthetic pathway enzymes were induced. These studies reveal a dynamic transcriptional response to perturbation of sink demand in a single leaf, and provide useful information for understanding the regulations of cassava under sink or source limitation.

  6. Transcriptional response to petiole heat girdling in cassava

    PubMed Central

    Zhang, Yang; Ding, Zehong; Ma, Fangfang; Chauhan, Raj Deepika; Allen, Doug K.; Brutnell, Thomas P.; Wang, Wenquan; Peng, Ming; Li, Pinghua

    2015-01-01

    To examine the interactions of starch and sugar metabolism on photosynthesis in cassava, a heat-girdling treatment was applied to petioles of cassava leaves at the end of the light cycle to inhibit starch remobilization during the night. The inhibition of starch remobilization caused significant starch accumulation at the beginning of the light cycle, inhibited photosynthesis, and affected intracellular sugar levels. RNA-seq analysis of heat-treated and control plants revealed significantly decreased expression of genes related to photosynthesis, as well as N-metabolism and chlorophyll biosynthesis. However, expression of genes encoding TCA cycle enzymes and mitochondria electron transport components, and flavonoid biosynthetic pathway enzymes were induced. These studies reveal a dynamic transcriptional response to perturbation of sink demand in a single leaf, and provide useful information for understanding the regulations of cassava under sink or source limitation. PMID:25672661

  7. Land use and carbon dynamics in the southeastern United States from 1992 to 2050

    USGS Publications Warehouse

    Zhao, Shuqing; Liu, Shuguang; Sohl, Terry L.; Young, Claudia; Werner, Jeremy M.

    2013-01-01

    Land use and land cover change (LUCC) plays an important role in determining the spatial distribution, magnitude, and temporal change of terrestrial carbon sources and sinks. However, the impacts of LUCC are not well understood and quantified over large areas. The goal of this study was to quantify the spatial and temporal patterns of carbon dynamics in various terrestrial ecosystems in the southeastern United States from 1992 to 2050 using a process-based modeling system and then to investigate the impacts of LUCC. Spatial LUCC information was reconstructed and projected using the FOREcasting SCEnarios of future land cover (FORE-SCE) model according to information derived from Landsat observations and other sources. Results indicated that urban expansion (from 3.7% in 1992 to 9.2% in 2050) was expected to be the primary driver for other land cover changes in the region, leading to various declines in forest, cropland, and hay/pasture. The region was projected to be a carbon sink of 60.4 gC m−2 yr−1 on average during the study period, primarily due to the legacy impacts of large-scale conversion of cropland to forest that happened since the 1950s. Nevertheless, the regional carbon sequestration rate was expected to decline because of the slowing down of carbon accumulation in aging forests and the decline of forest area.

  8. Carbon dynamics within agricultural and native sites in the loess region of Western lowa

    USGS Publications Warehouse

    Manies, K.L.; Harden, J.W.; Kramer, L.; Parton, W.J.

    2001-01-01

    In order to quantify the historical changes in carbon storage that result from agricultural conversion, this study compared the carbon dynamics of two sites in the loess region of Iowa: a native prairie and a cropland. Field data were obtained to determine present-day carbon storage and its variability within a landscape (a stable ridgetop vs. eroding upper-midslope vs. depositional lower slope). Models were used to recreate the historical carbon budget of these sites and determine the cropland's potential to be a net CO2 source or sink, relative to the atmosphere. Regardless of slope position, the cropland site contains approximately half the amount of carbon as prairie. Variability in soil carbon storage within a site as a consequence of slope position is as large or larger (variations of 200-300%) than temporal variation (???200% at all slope positions). The most extreme difference in soil carbon storage between the cropland and prairie sites is found in the soil at the upper-midslope, which is the area of greatest erosion. The models estimate that 93-172% of the carbon in the original topsoil has been lost from the cropland's eroding midslope. Much of this carbon is derived from deeper soil horizons. Either a small sink or strong source of carbon to the atmosphere is created, depending on the fate of the eroded sediment and its associated carbon.

  9. Boreal forest soil erosion and soil-atmosphere carbon exchange

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Harden, J. W.; O'Donnell, J.; Sierra, C. A.

    2013-12-01

    Erosion may become an increasingly important agent of change in boreal systems with climate warming, due to enhanced ice wedge degradation and increases in the frequency and intensity of stand-replacing fires. Ice wedge degradation can induce ground surface subsidence and lateral movement of mineral soil downslope, and fire can result in the loss of O horizons and live roots, with associated increases in wind- and water-promoted erosion until vegetation re-establishment. It is well-established that soil erosion can induce significant atmospheric carbon (C) source and sink terms, with the strength of these terms dependent on the fate of eroded soil organic carbon (SOC) and the extent to which SOC oxidation and production characteristics change with erosion. In spite of the large SOC stocks in the boreal system and the high probability that boreal soil profiles will experience enhanced erosion in the coming decades, no one has estimated the influence of boreal erosion on the atmospheric C budget, a phenomenon that can serve as a positive or negative feedback to climate. We employed an interactive erosion model that permits the user to define 1) profile characteristics, 2) the erosion rate, and 3) the extent to which each soil layer at an eroding site retains its pre-erosion SOC oxidation and production rates (nox and nprod=0, respectively) vs. adopts the oxidation and production rates of previous, non-eroded soil layers (nox and nprod=1, respectively). We parameterized the model using soil profile characteristics observed at a recently burned site in interior Alaska (Hess Creek), defining SOC content and turnover times. We computed the degree to which post-burn erosion of mineral soil generates an atmospheric C sink or source while varying erosion rates and assigning multiple values of nox and nprod between 0 and 1, providing insight into the influence of erosion rate, SOC oxidation, and SOC production on C dynamics in this and similar profiles. Varying nox and nprod did not induce meaningful changes in model estimates of atmospheric C source or sink strength, likely due to the low turnover rate of SOC in this system. However, variation in mineral soil erosion rates induced large shifts in the source and sink strengths for atmospheric C; after 50 y of mineral soil erosion at 5 cm y-1, we observed a maximum C source of 35 kg C m-2 and negligible sink strength. Doubling the erosion rate approximately doubled the source strength. Scaling these estimates to the region requires estimates of the area undergoing mineral soil erosion in forests similar to those modeled. We suggest that erosion is an important but little studied feature of fire-driven boreal systems that will influence atmospheric CO2 budgets.

  10. Solute source depletion control of forward and back diffusion through low-permeability zones

    NASA Astrophysics Data System (ADS)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2016-10-01

    Solute diffusive exchange between low-permeability aquitards and high-permeability aquifers acts as a significant mediator of long-term contaminant fate. Aquifer contaminants diffuse into aquitards, but as contaminant sources are depleted, aquifer concentrations decline, triggering back diffusion from aquitards. The dynamics of the contaminant source depletion, or the source strength function, controls the timing of the transition of aquitards from sinks to sources. Here, we experimentally evaluate three archetypical transient source depletion models (step-change, linear, and exponential), and we use novel analytical solutions to accurately account for dynamic aquitard-aquifer diffusive transfer. Laboratory diffusion experiments were conducted using a well-controlled flow chamber to assess solute exchange between sand aquifer and kaolinite aquitard layers. Solute concentration profiles in the aquitard were measured in situ using electrical conductivity. Back diffusion was shown to begin earlier and produce larger mass flux for rapidly depleting sources. The analytical models showed very good correspondence with measured aquifer breakthrough curves and aquitard concentration profiles. The modeling approach links source dissolution and back diffusion, enabling assessment of human exposure risk and calculation of the back diffusion initiation time, as well as the resulting plume persistence.

  11. Solute source depletion control of forward and back diffusion through low-permeability zones.

    PubMed

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2016-10-01

    Solute diffusive exchange between low-permeability aquitards and high-permeability aquifers acts as a significant mediator of long-term contaminant fate. Aquifer contaminants diffuse into aquitards, but as contaminant sources are depleted, aquifer concentrations decline, triggering back diffusion from aquitards. The dynamics of the contaminant source depletion, or the source strength function, controls the timing of the transition of aquitards from sinks to sources. Here, we experimentally evaluate three archetypical transient source depletion models (step-change, linear, and exponential), and we use novel analytical solutions to accurately account for dynamic aquitard-aquifer diffusive transfer. Laboratory diffusion experiments were conducted using a well-controlled flow chamber to assess solute exchange between sand aquifer and kaolinite aquitard layers. Solute concentration profiles in the aquitard were measured in situ using electrical conductivity. Back diffusion was shown to begin earlier and produce larger mass flux for rapidly depleting sources. The analytical models showed very good correspondence with measured aquifer breakthrough curves and aquitard concentration profiles. The modeling approach links source dissolution and back diffusion, enabling assessment of human exposure risk and calculation of the back diffusion initiation time, as well as the resulting plume persistence. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Geospatial Analysis of Atmospheric Haze Effect by Source and Sink Landscape

    NASA Astrophysics Data System (ADS)

    Yu, T.; Xu, K.; Yuan, Z.

    2017-09-01

    Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD) of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN) and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents atmospheric haze pollution; For Wuhan City, the method of adjusting the built-up area slightly and planning the non-built-up areas reasonably can be taken to reduce atmospheric haze pollution.

  13. Observations of CO above Venus cloud top near 4.53 μm

    NASA Astrophysics Data System (ADS)

    Marcq, E.; Encrenaz, T.; Widemann, T.; Bertaux, J. L.

    2013-09-01

    Venus' cloud top region exhibits a higher level of variability both in space and time than previously thought. The interplay between photochemistry, dynamics and cloud microphysics requires more observational constraints in order to be fully grasped. Recent observations of sulfur dioxide (SO2) variability [2, 8, 7, 9] have evidenced both short-term, longterm and latitudinal variability whose origin remains mysterious (volcanogenic emissions? dynamic variability?). A better knowledge of the variability of other minor species would be highly welcome in this context. Carbon monoxide (CO), whose pattern of sinks and sources is opposite to SO2, is a prime candidate.

  14. An Enhanced Backbone-Assisted Reliable Framework for Wireless Sensor Networks

    PubMed Central

    Tufail, Ali; Khayam, Syed Ali; Raza, Muhammad Taqi; Ali, Amna; Kim, Ki-Hyung

    2010-01-01

    An extremely reliable source to sink communication is required for most of the contemporary WSN applications especially pertaining to military, healthcare and disaster-recovery. However, due to their intrinsic energy, bandwidth and computational constraints, Wireless Sensor Networks (WSNs) encounter several challenges in reliable source to sink communication. In this paper, we present a novel reliable topology that uses reliable hotlines between sensor gateways to boost the reliability of end-to-end transmissions. This reliable and efficient routing alternative reduces the number of average hops from source to the sink. We prove, with the help of analytical evaluation, that communication using hotlines is considerably more reliable than traditional WSN routing. We use reliability theory to analyze the cost and benefit of adding gateway nodes to a backbone-assisted WSN. However, in hotline assisted routing some scenarios where source and the sink are just a couple of hops away might bring more latency, therefore, we present a Signature Based Routing (SBR) scheme. SBR enables the gateways to make intelligent routing decisions, based upon the derived signature, hence providing lesser end-to-end delay between source to the sink communication. Finally, we evaluate our proposed hotline based topology with the help of a simulation tool and show that the proposed topology provides manifold increase in end-to-end reliability. PMID:22294890

  15. Are gas exchange responses to resource limitation and defoliation linked to source:sink relationships?

    PubMed

    Pinkard, E A; Eyles, A; O'Grady, A P

    2011-10-01

    Productivity of trees can be affected by limitations in resources such as water and nutrients, and herbivory. However, there is little understanding of their interactive effects on carbon uptake and growth. We hypothesized that: (1) in the absence of defoliation, photosynthetic rate and leaf respiration would be governed by limiting resource(s) and their impact on sink limitation; (2) photosynthetic responses to defoliation would be a consequence of changing source:sink relationships and increased availability of limiting resources; and (3) photosynthesis and leaf respiration would be adjusted in response to limiting resources and defoliation so that growth could be maintained. We tested these hypotheses by examining how leaf photosynthetic processes, respiration, carbohydrate concentrations and growth rates of Eucalyptus globulus were influenced by high or low water and nitrogen (N) availability, and/or defoliation. Photosynthesis of saplings grown with low water was primarily sink limited, whereas photosynthetic responses of saplings grown with low N were suggestive of source limitation. Defoliation resulted in source limitation. Net photosynthetic responses to defoliation were linked to the degree of resource availability, with the largest responses measured in treatments where saplings were ultimately source rather than sink limited. There was good evidence of acclimation to stress, enabling higher rates of C uptake than might otherwise have occurred. © 2011 Blackwell Publishing Ltd.

  16. Atmospheric measurements of peroxyacetyl nitrate and other organic nitrates at high latitudes - Possible sources and sinks

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Bradshaw, J. D.; Sandholm, S. T.; Gregory, G. L.; Sachse, G. W.; Blake, D. R.; Crutzen, P. J.; Kanakidou, M. A.

    1992-01-01

    Measurements of PAN and other reactive nitrogen species during the NASA Arctic Boundary Layer Expedition (ABLE 3A) are described, their north-south and east-west gradients in the free troposphere are characterized, and the sources and sinks of PAN and NO(y) are assessed. Large concentrations of PAN and NO(y) are present in the Arctic/sub-Arctic troposphere of the Northern Hemisphere during the summer. Mixing ratios of PAN and a variety of other molecules are more abundant in the free troposphere compared to the boundary layer. Coincident PAN and O3 atmospheric structures suggest that phenomena that define PAN also define the corresponding O3 behavior. Model calculations, correlations between NO(y) and anthropogenic tracers, and the compositions of NO(y) itself suggest that the Arctic/sub-Arctic reactive nitrogen measured during ABLE 3A is predominantly of anthropogenic origin with a minor component from the stratosphere.

  17. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  18. High-Frequency Measurements of Tree Methane Fluxes Indicate a Primary Souce Inside Tree Tissue

    NASA Astrophysics Data System (ADS)

    Brewer, P.; Megonigal, P.

    2017-12-01

    Methane emissions from the boles and shoots of living upland trees is a recent discovery with significant implications for methane budgets. Forest soil methane uptake is the greatest terrestrial methane sink, but studies have shown this may be partially for fully offset by tree methane sources. However, our ability to quantify the tree source has been hampered because the ultimate biological source(s) of methane is unclear. We measured methane fluxes from two species of living tree boles in an Eastern North American deciduous forest over 100 consecutive days. Our two hour sampling intervals allowed us to characterize diurnal patterns and seasonal dynamics. We observed wide intraspecific differences in average flux rates and diurnal dynamics, even between adjacent individuals. This and other properties of the fluxes indicates the primary methane source is likely within the tree tissues, not in soil or groundwater. Emissions of methane from trees offset approximately 10% of soil uptake on average, but at times tree fluxes were much higher. Preliminary analyses indicate the highest rates are related to tree life history, tree growth, temperature, ground-water depth, and soil moisture.

  19. Shoreline erosion and decadal sediment accumulation in the Tar-Pamlico estuary, North Carolina, USA: A source-to-sink analysis

    NASA Astrophysics Data System (ADS)

    Eulie, Devon O.; Corbett, D. Reide; Walsh, J. P.

    2018-03-01

    Estuaries contain vital habitats and it is important to understand how these areas respond to human activities and natural processes such as sea-level rise and wave attack. As estuarine shorelines erode or become modified with hard structures, there is potential for significantly altering the availability of sediment and the filling of coastal systems. This study used a source-to-sink approach and quantified rates of shoreline erosion in the Tar-Pamlico sub-estuary, a tributary of the larger Albemarle-Pamlico Estuarine System (APES). The average shoreline change rate (SCR) determined using an end-point method was -0.5 ± 0.9 m yr-1 for the Tar-Pamlico. Incorporating bulk density estimates, this contributes 0.6 × 105 tons of fine sediment to the system annually, or after accounting for fluvial input, about 40% of the total sediment supply to the sub-estuary. The role of the Tar-Pamlico as a sink for these sediments was addressed using the radionuclide tracers 210Pb and 137Cs. Radionuclide activities and sediment accumulation rates identified several depositional regions, in particular in the middle of the estuary. Linear sediment accumulation rates ranged from 0.10 ± 0.02 to 0.38 ± 0.02 g cm-2 yr-1, and total storage of fine sediment in the system was 1.6 × 105 t yr-1. It was not possible to confidently discern a change in the rate of shoreline erosion or seabed accumulation. A preliminary budget for fine sediments (grain-size <63 μm) was then calculated to compare erosional sources with sedimentary sinks. Almost all (∼93.0%) of the fine sediment entering the system was accumulated and stored, while only about 7.0% was exported to Pamlico Sound.

  20. Contaminated handwashing sinks as the source of a clonal outbreak of KPC-2-producing Klebsiella oxytoca on a hematology ward.

    PubMed

    Leitner, Eva; Zarfel, Gernot; Luxner, Josefa; Herzog, Kathrin; Pekard-Amenitsch, Shiva; Hoenigl, Martin; Valentin, Thomas; Feierl, Gebhard; Grisold, Andrea J; Högenauer, Christoph; Sill, Heinz; Krause, Robert; Zollner-Schwetz, Ines

    2015-01-01

    We investigated sinks as possible sources of a prolonged Klebsiella pneumonia carbapenemase (KPC)-producing Klebsiella oxytoca outbreak. Seven carbapenem-resistant K. oxytoca isolates were identified in sink drains in 4 patient rooms and in the medication room. Investigations for resistance genes and genetic relatedness of patient and environmental isolates revealed that all the isolates harbored the blaKPC-2 and blaTEM-1 genes and were genetically indistinguishable. We describe here a clonal outbreak caused by KPC-2-producing K. oxytoca, and handwashing sinks were a possible reservoir. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. How can we make plants grow faster? A source–sink perspective on growth rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Angela C.; Rogers, Alistair; Rees, Mark

    Growth is a major component of fitness in all organisms, an important mediator of competitive interactions in plant communities, and a central determinant of yield in crops. Understanding what limits plant growth is therefore of fundamental importance to plant evolution, ecology, and crop science, but each discipline views the process from a different perspective. This review highlights the importance of source–sink interactions as determinants of growth. The evidence for source- and sink-limitation of growth, and the ways in which regulatory molecular feedback systems act to maintain an appropriate source:sink balance, are first discussed. Evidence clearly shows that future increases inmore » crop productivity depend crucially on a quantitative understanding of the extent to which sources or sinks limit growth, and how this changes during development. In addition, to identify bottlenecks limiting growth and yield, a holistic view of growth is required at the whole-plant scale, incorporating mechanistic interactions between physiology, resource allocation, and plant development. Such a holistic perspective on source–sink interactions will allow the development of a more integrated, whole-system level understanding of growth, with benefits across multiple disciplines.« less

  2. How can we make plants grow faster? A source–sink perspective on growth rate

    DOE PAGES

    White, Angela C.; Rogers, Alistair; Rees, Mark; ...

    2015-10-14

    Growth is a major component of fitness in all organisms, an important mediator of competitive interactions in plant communities, and a central determinant of yield in crops. Understanding what limits plant growth is therefore of fundamental importance to plant evolution, ecology, and crop science, but each discipline views the process from a different perspective. This review highlights the importance of source–sink interactions as determinants of growth. The evidence for source- and sink-limitation of growth, and the ways in which regulatory molecular feedback systems act to maintain an appropriate source:sink balance, are first discussed. Evidence clearly shows that future increases inmore » crop productivity depend crucially on a quantitative understanding of the extent to which sources or sinks limit growth, and how this changes during development. In addition, to identify bottlenecks limiting growth and yield, a holistic view of growth is required at the whole-plant scale, incorporating mechanistic interactions between physiology, resource allocation, and plant development. Such a holistic perspective on source–sink interactions will allow the development of a more integrated, whole-system level understanding of growth, with benefits across multiple disciplines.« less

  3. Propagative selection of tilted array patterns in directional solidification

    NASA Astrophysics Data System (ADS)

    Song, Younggil; Akamatsu, Silvère; Bottin-Rousseau, Sabine; Karma, Alain

    2018-05-01

    We investigate the dynamics of tilted cellular/dendritic array patterns that form during directional solidification of a binary alloy when a preferred-growth crystal axis is misoriented with respect to the temperature gradient. In situ experimental observations and phase-field simulations in thin samples reveal the existence of a propagative source-sink mechanism of array spacing selection that operates on larger space and time scales than the competitive growth at play during the initial solidification transient. For tilted arrays, tertiary branching at the diverging edge of the sample acts as a source of new cells with a spacing that can be significantly larger than the initial average spacing. A spatial domain of large spacing then invades the sample propagatively. It thus yields a uniform spacing everywhere, selected independently of the initial conditions, except in a small region near the converging edge of the sample, which acts as a sink of cells. We propose a discrete geometrical model that describes the large-scale evolution of the spatial spacing profile based on the local dependence of the cell drift velocity on the spacing. We also derive a nonlinear advection equation that predicts the invasion velocity of the large-spacing domain, and sheds light on the fundamental nature of this process. The models also account for more complex spacing modulations produced by an irregular dynamics at the source, in good quantitative agreement with both phase-field simulations and experiments. This basic knowledge provides a theoretical basis to improve the processing of single crystals or textured polycrystals for advanced materials.

  4. Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects.

    PubMed

    Epron, Daniel; Bahn, Michael; Derrien, Delphine; Lattanzi, Fernando Alfredo; Pumpanen, Jukka; Gessler, Arthur; Högberg, Peter; Maillard, Pascale; Dannoura, Masako; Gérant, Dominique; Buchmann, Nina

    2012-06-01

    Pulse-labelling of trees with stable or radioactive carbon (C) isotopes offers the unique opportunity to trace the fate of labelled CO(2) into the tree and its release to the soil and the atmosphere. Thus, pulse-labelling enables the quantification of C partitioning in forests and the assessment of the role of partitioning in tree growth, resource acquisition and C sequestration. However, this is associated with challenges as regards the choice of a tracer, the methods of tracing labelled C in tree and soil compartments and the quantitative analysis of C dynamics. Based on data from 47 studies, the rate of transfer differs between broadleaved and coniferous species and decreases as temperature and soil water content decrease. Labelled C is rapidly transferred belowground-within a few days or less-and this transfer is slowed down by drought. Half-lives of labelled C in phloem sap (transfer pool) and in mature leaves (source organs) are short, while those of sink organs (growing tissues, seasonal storage) are longer. (13)C measurements in respiratory efflux at high temporal resolution provide the best estimate of the mean residence times of C in respiratory substrate pools, and the best basis for compartmental modelling. Seasonal C dynamics and allocation patterns indicate that sink strength variations are important drivers for C fluxes. We propose a conceptual model for temperate and boreal trees, which considers the use of recently assimilated C versus stored C. We recommend best practices for designing and analysing pulse-labelling experiments, and identify several topics which we consider of prime importance for future research on C allocation in trees: (i) whole-tree C source-sink relations, (ii) C allocation to secondary metabolism, (iii) responses to environmental change, (iv) effects of seasonality versus phenology in and across biomes, and (v) carbon-nitrogen interactions. Substantial progress is expected from emerging technologies, but the largest challenge remains to carry out in situ whole-tree labelling experiments on mature trees to improve our understanding of the environmental and physiological controls on C allocation.

  5. Estimation of In-Canopy Ammonia Sources and Sinks in a Fertilized Zea mays Field

    EPA Science Inventory

    An analytical model was developed that describes the in-canopy vertical distribution of NH3 source and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy concentration and wind speed profiles.

  6. Towards the theory of pollinator-mediated gene flow.

    PubMed Central

    Cresswell, James E

    2003-01-01

    I present a new exposition of a model of gene flow by animal-mediated pollination between a source population and a sink population. The model's parameters describe two elements: (i) the expected portion of the source's paternity that extends to the sink population; and (ii) the dilution of this portion by within-sink pollinations. The model is termed the portion-dilution model (PDM). The PDM is a parametric restatement of the conventional view of animal-mediated pollination. In principle, it can be applied to plant species in general. I formulate a theoretical value of the portion parameter that maximizes gene flow and prescribe this as a benchmark against which to judge the performance of real systems. Existing foraging theory can be used in solving part of the PDM, but a theory for source-to-sink transitions by pollinators is currently elusive. PMID:12831465

  7. Thiourea, a ROS scavenger, regulates source-to-sink relationship to enhance crop yield and oil content in Brassica juncea (L.).

    PubMed

    Pandey, Manish; Srivastava, Ashish Kumar; D'Souza, Stanislaus Francis; Penna, Suprasanna

    2013-01-01

    In the present agricultural scenario, the major thrust is to increase crop productivity so as to ensure sustainability. In an earlier study, foliar application of thiourea (TU; a non physiological thiol based ROS scavenger) has been demonstrated to enhance the stress tolerance and yield of different crops under field condition. Towards this endeavor, present work deals with the effect of TU on photosynthetic efficiency and source-to-sink relationship of Indian mustard (Brassica juncea) for understanding its mode of action. The application of TU increased the efficiency of both PSI and PSII photosystems and vegetative growth of plant. The comparative analysis of sucrose to starch ratio and expression level of sugar transporters confirmed the higher source and sink strength in response to TU treatment. The biochemical evidence in support of this was derived from higher activities of sucrose phosphate synthase and fructose-1,6-bis-phosphatase at source; and sucrose synthase and different classes of invertases at both source and sink. This indicated an overall increase in photoassimilate level at sink. An additional contribution through pod photosynthesis was confirmed through the analysis of phosphoenol pyruvate carboxylase enzyme activity and level of organic acids. The increased photoassimilate level was also co-ordinated with acetyl coA carboxylase mediated oil biosynthesis. All these changes were ultimately reflected in the form of 10 and 20% increase in total yield and oil content, respectively under TU treatment as compared to control. Additionally, no change was observed in oil composition of seeds derived from TU treated plants. The study thus signifies the co-ordinated regulation of key steps of photosynthesis and source-to-sink relationship through the external application of TU resulting in increased crop yield and oil content.

  8. Prolonged deficits in parvalbumin neuron stimulation-evoked network activity despite recovery of dendritic structure and excitability in the somatosensory cortex following global ischemia in mice.

    PubMed

    Xie, Yicheng; Chen, Shangbin; Wu, Yujin; Murphy, Timothy H

    2014-11-05

    Relatively few studies have examined plasticity of inhibitory neuronal networks following stroke in vivo, primarily due to the inability to selectively monitor inhibition. We assessed the structure of parvalbumin (PV) interneurons during a 5 min period of global ischemia and reperfusion in mice, which mimicked cerebral ischemia during cardiac arrest or forms of transient ischemic attack. The dendritic structure of PV-neurons in cortical superficial layers was rapidly swollen and beaded during global ischemia, but recovered within 5-10 min following reperfusion. Using optogenetics and a multichannel optrode, we investigated the function of PV-neurons in mouse forelimb somatosensory cortex. We demonstrated pharmacologically that PV-channelrhodopsin-2 (ChR2) stimulation evoked activation in layer IV/V, which resulted in rapid current sinks mediated by photocurrent and action potentials (a measure of PV-neuron excitability), which was then followed by current sources mediated by network GABAergic synaptic activity. During ischemic depolarization, the PV-ChR2-evoked current sinks (excitability) were suppressed, but recovered rapidly following reperfusion concurrent with repolarization of the DC-EEG. In contrast, the current sources reflecting GABAergic synaptic network activity recovered slowly and incompletely, and was coincident with the partial recovery of the forepaw stimulation-evoked current sinks in layer IV/V 30 min post reperfusion. Our in vivo data suggest that the excitability of PV inhibitory neurons was suppressed during global ischemia and rapidly recovered during reperfusion. In contrast, PV-ChR2 stimulation-evoked GABAergic synaptic network activity exhibited a prolonged suppression even ∼1 h after reperfusion, which could contribute to the dysfunction of sensation and cognition following transient global ischemia. Copyright © 2014 the authors 0270-6474/14/3414890-12$15.00/0.

  9. An approach to analyzing the intensity of the daytime surface urban heat island effect at a local scale.

    PubMed

    Xu, Shenlai

    2009-04-01

    A landscape index LI is proposed to evaluate the intensity of the daytime surface urban heat island (SUHI) effect at a local scale. Three aspects of this landscape index are crucial: the source landscape, the sink landscape, and the contribution of source and sink landscapes to the intensity of the SUHI. Source and sink landscape types are identified using the thermo-band of Landsat 7 with a spatial resolution of 60 m, along with appropriate threshold values for the Normalized Difference Vegetation Index, Modified Normalized Difference Water Index, and Normalized Difference Built-up Index. The landscape index was defined as the ratio of the contributions of the source and sink landscapes to the intensity of the SUHI. The intensity of the daytime SUHI is assessed with the help of the landscape index. Our analysis indicates the landscape index can be used to evaluate and compare the intensity of the daytime SUHI for different areas.

  10. Competition of coagulation sink and source rate: New particle formation in the Pearl River Delta of China

    NASA Astrophysics Data System (ADS)

    Gong, Youguo; Hu, Min; Cheng, Yafang; Su, Hang; Yue, Dingli; Liu, Feng; Wiedensohler, A.; Wang, Zhibin; Kalesse, H.; Liu, Shang; Wu, Zhijun; Xiao, Kaitao; Mi, Puchun; Zhang, Yuanhang

    The coagulation sink and its role in new particle formation are investigated based on data obtained during the PRIDE-PRD2004 campaign at Xinken of Pearl River Delta, China. Analysis of size distributions and mode contributions of the coagulation sink show that the observed higher load of accumulation mode particles impose a significant effect on the coagulation sink and result in higher coagulation sinks at Xinken despite of the lower total particle number compared with other areas. Hence it is concluded that the higher coagulation sink may depress the occurrence frequency of new particle formation events. The strategies targeting at controlling accumulation mode particles may have influences on the frequency of new particle formation events at this area. The factors affecting the coagulation sink are evaluated. The relatively lower ambient relative humidities may weaken the coagulation sink and facilitate the occurrence of new particle formation events during noontime, while the surmise of nucleation and growth involving organic matter may imply an actually higher coagulation sink than expected. These factors have a significant influence on the ultimate fate of the newly formed nuclei and new particle formation. A comparison of event and non-event days indicates that the coagulation sink is not the only decisive factor affecting new particle formation, other factors including the precursor vapors and photochemical activity are none the less important either. Competition of coagulation sink and high source rate leads to the occurrence of new particle formation events at Xinken.

  11. TEM Pump With External Heat Source And Sink

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1991-01-01

    Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.

  12. Isotopic constraints on global atmospheric methane sources and sinks: a critical assessment of recent findings and new data

    NASA Astrophysics Data System (ADS)

    Schwietzke, S.; Sherwood, O.; Michel, S. E.; Bruhwiler, L.; Dlugokencky, E. J.; Tans, P. P.

    2017-12-01

    Methane isotopic data have increasingly been used in recent studies to help constrain global atmospheric methane sources and sinks. The added scientific contributions to this field include (i) careful comparisons and merging of atmospheric isotope measurement datasets to increase spatial coverage, (ii) in-depth analyses of observed isotopic spatial gradients and seasonal patterns, and (iii) improved datasets of isotopic source signatures. Different interpretations have been made regarding the utility of the isotopic data on the diagnosis of methane sources and sinks. Some studies have found isotopic evidence of a largely microbial source causing the renewed growth in global atmospheric methane since 2007, and underestimated global fossil fuel methane emissions compared to most previous studies. However, other studies have challenged these conclusions by pointing out substantial spatial variability in isotopic source signatures as well as open questions in atmospheric sinks and biomass burning trends. This presentation will review and contrast the main arguments and evidence for the different conclusions. The analysis will distinguish among the different research objectives including (i) global methane budget source attribution in steady-state, (ii) source attribution of recent global methane trends, and (iii) identifying specific methane sources in individual plumes during field campaigns. Additional comparisons of model experiments with atmospheric measurements and updates on isotopic source signature data will complement the analysis.

  13. Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees

    Treesearch

    Shinichi Asao; Michael G. Ryan

    2015-01-01

    How trees sense source-sink carbon balance remains unclear. One potential mechanism is a feedback from non-structural carbohydrates regulating photosynthesis and removing excess as waste respiration when the balance of photosynthesis against growth and metabolic activity changes. We tested this carbohydrate regulation of photosynthesis and respiration using branch...

  14. [Correlating landscape pattern with total nitrogen concentration using a location-weighted sink-source landscape index in the Haihe River Basin, China].

    PubMed

    Sun, Ran-Hao; Chen, Li-Ding; Wang, Wei; Wang, Zhao-Ming

    2012-06-01

    Understanding the effect of land cover pattern on nutrient losses is of great importance in management of water resources. The extensive application of mechanism models is limited in large-scale watersheds owing to the intensive data and calibration requirements. On the other hand, the traditional landscape indexes only take the areas and types of land cover into account, considering less about their topographic features and spatial patterns. We constructed a location-weighted landscape index (LWLI) based on the Lorenz curve, which plots the cumulative proportion of areas for sink and source landscapes respectively against cumulative proportion of their relative location to the outlet in a watershed, including relative elevation, distance and slope. We assessed the effect of land cover pattern on total nitrogen losses in the Haihe River. Firstly, 26 watersheds were derived from 1: 250 000 digital elevation model (DEM), and their "source" and "sink" landscape types were identified from Landsat TM images in 2007. The source" landscapes referred to the paddy land, dry land and residential area, correspondingly the "sink" landscapes referred to the forest and grassland. Secondly, LWLI was calculated according to the landscape types and spatial patterns for each watershed. Thirdly, we accessed the effect of land cover pattern on total nitrogen (TN) flux according to the value of LWLI, comparing with the area proportion of sink-source landscapes. The correlation coefficients were different in three parts of Haihe River, i. e., 0.86, 0.67 and 0.65 in the Yanshan Mts, Taihang Mts and lower Haihe River. The results showed strong correlations between TN and LWLI in contrast to the weak correlations between TN and area proportion of sink and source landscape types. This study indicates the spatial pattern of land cover is essential for accessing the nutrient losses, and the location-weighted landscape pattern analysis may be an alternate to existing water quality models, especially in large watershed scales. The sink-source index is sufficiently simple that it can be compared across watersheds and be easily interpreted, and potentially be used in landscape pattern optimal designing and planning.

  15. Above and belowground connections and species interactions: Controls over ecosystem fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trowbridge, Amy Marie; Phillips, Richard; Stoy, Paul Christopher

    The ultimate goal of this work was to quantify soil and volatile organic compound fluxes as a function of tree species and associated mycorrhizal associations in an intact forest, but also to describe the physical and biological factors that control these emissions. The results of this research lay the foundation toward an improved mechanistic understanding of carbon pathways, fluxes, and ecosystem function, ultimately improving the representation of forest ecosystems in Earth System models. To this end, a multidisciplinary approach was necessary to fill a critical gap in our understanding of how soil and root processes may influence whole-ecosystem carbon-based volatilemore » fluxes in the face of a rapidly changing climate. We developed a series of novel sampling protocols and coupled a variety of advanced analytical techniques, resulting in findings relevant across disciplines. Furthermore, we leveraged existing infrastructure, research sites, and datasets to design a low-cost exploratory project that links belowground processes, soil volatile emissions, and total ecosystem carbon budgets. Measurements from soil collars installed across a species/mycorrhizal gradient at the DOE-supported Moran Monroe State Forest Ameriflux tower site suggest that leaf litter is the primary source of belowground and forest floor volatile emissions, but the strength of this source is significantly affected not only by leaf litter type, but the strength of the soil as a sink. Results suggest that the strength of the sink is influenced by tree species-specific associated microbial communities that change throughout the season as a function of temperature, soil moisture, leaf litter inputs, and phenology. The magnitude of the observed volatile fluxes from the forest floor is small relative to total aboveground ecosystem flux, but the contribution of these emissions to volatile-mediated ecological interactions and soil processes (e.g. nitrification) varies substantially across the growing season. This research lays the foundation to answer important questions regarding the impacts of seasonality and forest composition on belowground volatile source-sink dynamics in mediating nutrient cycling and biogeochemistry dynamics—critical components of overall ecosystem functioning. In collaboration with the Environmental Simulations Unit (EUS) at the Helmholtz Zentrum in Munich, Germany (headed by Prof. Dr. Joerg-Peter Schinitzler), we investigated carbon investment in above and belowground plant volatile compounds in response to environmental conditions and mycorrhizal associations. Using the sophisticated phytotron facility and on-line trace gas instruments, we conducted controlled laboratory experiments that showed that biotic stresses, such as herbivore feeding, can alter the magnitude of belowground volatile emissions as well as carbon allocation towards these volatiles. We saw no effect of mycorrhizae on any induced response, suggesting that microbial effects were unrelated to source-sink dynamics driving terpene emissions. Furthermore, the results suggest that even though enzyme activity responsible for root volatile synthesis is up-regulated following herbivory, the sink strength of the soil can significantly impact what is measured at the soil/atmosphere interface and thereby what enters the atmosphere. This is important as scientists may be underestimating the magnitude of belowground volatile emissions and their influence on belowground interactions due to limitations associated with current sampling techniques. These key findings are being integrated with results from a hydroxyl radical reactivity-VOC campaign and a late season litter removal experiment to offer a comprehensive mechanistic understanding of the sources and controls over soil volatile emissions, particularly during times of the year when vegetative aboveground emissions are low (leaf senescence). Ultimately, these coupled field and laboratory experiments offer insights into seasonal dynamics of volatile emissions and the mechanisms that control carbon allocation to these compounds with an eye towards improving carbon budgets, nutrient cycling, and terrestrial ecosystem models.« less

  16. Using a Hierarchical Approach to Model Regional Source Sink Dynamics for Neotropical Nearctic Songbirds to Inform Management Practices on Department of Defense Installations

    DTIC Science & Technology

    2017-03-20

    comparison with the more intensive demographic study . We found support for spatial variation in productivity at both location and station scales. At location...the larger intensive demographic monitoring study , we also fit a productivity model that included a covariate calculated for the 12 stations included...Reference herein to any specific commercial product , process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily

  17. Transient performance and temperature field of a natural convection air dehumidifier loop

    NASA Astrophysics Data System (ADS)

    Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar

    2017-07-01

    In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.

  18. Cenozoic Source-to-Sink of the African margin of the Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Rouby, Delphine; Chardon, Dominique; Huyghe, Damien; Guillocheau, François; Robin, Cecile; Loparev, Artiom; Ye, Jing; Dall'Asta, Massimo; Grimaud, Jean-Louis

    2016-04-01

    The objective of the Transform Source to Sink Project (TS2P) is to link the dynamics of the erosion of the West African Craton to the offshore sedimentary basins of the African margin of the Equatorial Atlantic at geological time scales. This margin, alternating transform and oblique segments from Guinea to Nigeria, shows a strong structural variability in the margin width, continental geology and relief, drainage networks and subsidence/accumulation patterns. We analyzed this system combining onshore geology and geomorphology as well as offshore sub-surface data. Mapping and regional correlation of dated lateritic paleo-landscape remnants allows us to reconstruct two physiographic configurations of West Africa during the Cenozoic. We corrected those reconstitutions from flexural isostasy related to the subsequent erosion. These geometries show that the present-day drainage organization stabilized by at least 29 Myrs ago (probably by 34 Myr) revealing the antiquity of the Senegambia, Niger and Volta catchments toward the Atlantic as well as of the marginal upwarp currently forming a continental divide. The drainage rearrangement that lead to this drainage organization was primarily enhanced by the topographic growth of the Hoggar swell and caused a major stratigraphic turnover along the Equatorial margin of West Africa. Elevation differences between paleo-landscape remnants give access to the spatial and temporal distribution of denudation for 3 time-increments since 45 Myrs. From this, we estimate the volumes of sediments and associated lithologies exported by the West African Craton toward different segments of the margin, taking into account the type of eroded bedrock and the successive drainage reorganizations. We compare these data to Cenozoic accumulation histories in the basins and discuss their stratigraphic expression according to the type of margin segment they are preserved in.

  19. Estimating sources, sinks and fluxes of reactive atmospheric compounds within a forest canopy

    EPA Science Inventory

    While few dispute the significance of within-canopy sources or sinks of reactive gaseous and particulate compounds, their estimation continues to be the subject of active research and debate. Reactive species undergo turbulent dispersion within an inhomogeneous flow field, and ma...

  20. Dynamic power balance analysis in JET

    NASA Astrophysics Data System (ADS)

    Matthews, G. F.; Silburn, S. A.; Challis, C. D.; Eich, T.; Iglesias, D.; King, D.; Sieglin, B.; Contributors, JET

    2017-12-01

    The full scale realisation of nuclear fusion as an energy source requires a detailed understanding of power and energy balance in current experimental devices. In this we explore whether a global power balance model in which some of the calibration factors applied to the source or sink terms are fitted to the data can provide insight into possible causes of any discrepancies in power and energy balance seen in the JET tokamak. We show that the dynamics in the power balance can only be properly reproduced by including the changes in the thermal stored energy which therefore provides an additional opportunity to cross calibrate other terms in the power balance equation. Although the results are inconclusive with respect to the original goal of identifying the source of the discrepancies in the energy balance, we do find that with optimised parameters an extremely good prediction of the total power measured at the outer divertor target can be obtained over a wide range of pulses with time resolution up to ∼25 ms.

  1. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective.

    PubMed

    Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost

    2012-02-01

    We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The 'evolving metacommunity' framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats.

  2. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective

    PubMed Central

    Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost

    2012-01-01

    We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The ‘evolving metacommunity’ framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats. PMID:25568038

  3. Seeking potential contributions to future carbon budget in conterminous US forests considering disturbances

    NASA Astrophysics Data System (ADS)

    Zhang, Fangmin; Pan, Yude; Birdsey, Richard A.; Chen, Jing M.; Dugan, Alexa

    2017-11-01

    Currently, US forests constitute a large carbon sink, comprising about 9 % of the global terrestrial carbon sink. Wildfire is the most significant disturbance influencing carbon dynamics in US forests. Our objective is to estimate impacts of climate change, CO2 concentration, and nitrogen deposition on the future net biome productivity (NBP) of US forests until the end of twenty-first century under a range of disturbance conditions. We designate three forest disturbance scenarios under one future climate scenario to evaluate factor impacts for the future period (2011-2100): (1) no wildfires occur but forests continue to age (Saging), (2) no wildfires occur and forest ages are fixed in 2010 (Sfixed_nodis), and (3) wildfires occur according to a historical pattern, consequently changing forest age (Sdis_age_change). Results indicate that US forests remain a large carbon sink in the late twenty-first century under the Sfixed_nodis scenario; however, they become a carbon source under the Saging and Sdis_age_change scenarios. During the period of 2011 to 2100, climate is projected to have a small direct effect on NBP, while atmospheric CO2 concentration and nitrogen deposition have large positive effects on NBP regardless of the future climate and disturbance scenarios. Meanwhile, responses to past disturbances under the Sfixed_nodis scenario increase NBP regardless of the future climate scenarios. Although disturbance effects on NBP under the Saging and Sdis_age_change scenarios decrease with time, both scenarios experience an increase in NBP prior to the 2050s and then a decrease in NBP until the end of the twenty-first century. This study indicates that there is potential to increase or at least maintain the carbon sink of conterminous US forests at the current level if future wildfires are reduced and age structures are maintained at a productive mix. The effects of CO2 on the future carbon sink may overwhelm effects of other factors at the end of the twenty-first century. Although our model in conjunction with multiple disturbance scenarios may not reflect the true conditions of future forests, it provides a range of potential conditions as well as a useful guide to both current and future forest carbon management.

  4. Geochemistry and Hydrogeology of Water-Filled Sinkholes at Bitter Lake NWR, Roswell, NM

    NASA Astrophysics Data System (ADS)

    Premo, Z. E.; Crossey, L. J.

    2008-12-01

    Bitter Lake NWR in southeast (Roswell) New Mexico is located at the convergence of the Pecos River and the surface discharge region in the Roswell Artesian Basin (shallow alluvial aquifer and carbonate aquifer). The Refuge hosts approximately 50 water-filled sinkholes, which each support a unique and diverse aquatic ecosystem. An initial survey of water chemistries indicates that each sink has a unique chemical identity and neutral to alkaline pH. Sinkholes are filled by one or more artesian springs, groundwater seepage and possible hydrothermal water sources. We present results of water and gas analyses of 10 representative sinkholes, sampled during spring and summer, 2008. Analytical results, including major ions, metals (arsenic, selenium, iron), and gas chemistries are compared with monitoring well data from wells found to the north of the Refuge, along the Pecos River, and to the west, along the Pecos Slope - the regional aquifer recharge area. Well samples representative of regional groundwater provide potential end member perspectives for sources of sinkhole waters. Samples were collected incrementally from the surface to sinkhole floor to profile the limnological structure and to assess chemical variation and mixing through the water column. A sonde was deployed to measure and record physical parameters. Results of the analysis are used to describe the geochemical mixing that is occurring within the sinks. As each sink behaves as an independent unit, those separated by less than 10 meters can have dramatic variability in chemical signature and biological influence. For example, among the 29 sinks sampled during the initital survey, chloride concentrations range from 1.912x10-3 to 1.405 mol/kg; sulfate from 7.204x10-4 to 0.1364 mol/kg; and fluoride from 3.579x10-4 to 3.453x10-3 mol/kg. Along the Pecos Slope, groundwater chloride concentrations increase from less than 1.410x10-3 mol/kg near the major recharge area in the Sacramento Mountains to 0.141 mol/kg in the discharge area at the Pecos River to the east of Roswell, which includes the Refuge. Sinks are thus analyzed on three resolutions: regional distribution of sink chemistry (both within the Refuge and along and to the west of the Pecos River); variability between mature and immature sinks; and the anatomy of a representative sink.

  5. Quantification of mid and late evoked sinks in laminar current source density profiles of columns in the primary auditory cortex

    PubMed Central

    Schaefer, Markus K.; Hechavarría, Julio C.; Kössl, Manfred

    2015-01-01

    Current source density (CSD) analysis assesses spatiotemporal synaptic activations at somatic and/or dendritic levels in the form of depolarizing current sinks. Whereas many studies have focused on the short (<50 ms) latency sinks, associated with thalamocortical projections, sinks with longer latencies have received less attention. Here, we analyzed laminar CSD patterns for the first 600 ms after stimulus onset in the primary auditory cortex of Mongolian gerbils. By applying an algorithm for contour calculation, three distinct mid and four late evoked sinks were identified in layers I, III, Va, VIa, and VIb. Our results further showed that the patterns of intracortical information-flow remained qualitatively similar for low and for high sound pressure level stimuli at the characteristic frequency (CF) as well as for stimuli ± 1 octave from CF. There were, however, differences associated with the strength, vertical extent, onset latency, and duration of the sinks for the four stimulation paradigms used. Stimuli one octave above the most sensitive frequency evoked a new, and quite reliable, sink in layer Va whereas low level stimulation led to the disappearance of the layer VIb sink. These data indicate the presence of input sources specifically activated in response to level and/or frequency parameters. Furthermore, spectral integration above vs. below the CF of neurons is asymmetric as illustrated by CSD profiles. These results are important because synaptic feedback associated with mid and late sinks—beginning at 50 ms post stimulus latency—is likely crucial for response modulation resulting from higher order processes like memory, learning or cognitive control. PMID:26557058

  6. Data collection framework for energy efficient privacy preservation in wireless sensor networks having many-to-many structures.

    PubMed

    Bahşi, Hayretdin; Levi, Albert

    2010-01-01

    Wireless sensor networks (WSNs) generally have a many-to-one structure so that event information flows from sensors to a unique sink. In recent WSN applications, many-to-many structures evolved due to the need for conveying collected event information to multiple sinks. Privacy preserved data collection models in the literature do not solve the problems of WSN applications in which network has multiple un-trusted sinks with different level of privacy requirements. This study proposes a data collection framework bases on k-anonymity for preventing record disclosure of collected event information in WSNs. Proposed method takes the anonymity requirements of multiple sinks into consideration by providing different levels of privacy for each destination sink. Attributes, which may identify an event owner, are generalized or encrypted in order to meet the different anonymity requirements of sinks at the same anonymized output. If the same output is formed, it can be multicasted to all sinks. The other trivial solution is to produce different anonymized outputs for each sink and send them to related sinks. Multicasting is an energy efficient data sending alternative for some sensor nodes. Since minimization of energy consumption is an important design criteria for WSNs, multicasting the same event information to multiple sinks reduces the energy consumption of overall network.

  7. Genome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi

    PubMed Central

    Giguere, Andrew T.; Murthy, Ganti S.; Bottomley, Peter J.; Sayavedra-Soto, Luis A.

    2018-01-01

    ABSTRACT Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi. The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH4+). Up to 60% of NH4+-based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO3−), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO2], and nitrous oxide [N2O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification. PMID:29577088

  8. Genome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi.

    PubMed

    Mellbye, Brett L; Giguere, Andrew T; Murthy, Ganti S; Bottomley, Peter J; Sayavedra-Soto, Luis A; Chaplen, Frank W R

    2018-01-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO 2 , and N 2 O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi . The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH 4 + ). Up to 60% of NH 4 + -based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO 3 - ), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO 2 ], and nitrous oxide [N 2 O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification.

  9. Grizzly bear management in Yellowstone National Park: The heart of recovery in the Yellowstone Ecosystem

    USGS Publications Warehouse

    Schwartz, C.C.; Gunther, K.; McCullough, Dale R.; Kaji, Koichi; Yamanaka, Masami

    2006-01-01

    Grizzly bear (Ursus arctos) management in the Greater Yellowstone Ecosystem (GYE) in the past quarter century has resulted in more than doubling of the population from around 200 to more than 500, expansion of range back into habitats where the bear has extirpated more than a century ago, and a move toward removal from the U.S. Endangered Species list. At the center of this success story are the management programs in Yellowstone National Park (YNP). Regulations that restrict human activity, camping, and food storage, elimination of human food and garbage as attractants, and ranger attendance of roadside bears have all resulted in the population of grizzlies in YNP approaching carrying capacity. Recent studies suggest, however, that YNP alone is too small to support the current population, making management beyond the park boundary important and necessary to the demographics of the population as a whole. Demographic analyses suggest a source-sink dynamic exists within the GYE, with YNP and lands outside the park within the Grizzly Bear Recovery Zone (RZ) representing source habitats, whereas lands beyond the RZ constitute sinks. The source-sink demography in the GYE is indicative of carnivore conservation issues worldwide where many national parks or preserves designed to protect out natural resources are inadequate in size or shape to provide all necessary life history requirements for these wide-ranging species. Additionally, wide-ranging behavior and long-distance dispersal seem inherent to large carnivores, so mortality around the edges is virtually inevitable, and conservation in the GYE is inextricably linked to management regimes not only within YNP, but within the GYE as a whole. We discuss those needs here.

  10. Dynamic behavior and deformation analysis of the fish cage system using mass-spring model

    NASA Astrophysics Data System (ADS)

    Lee, Chun Woo; Lee, Jihoon; Park, Subong

    2015-06-01

    Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.

  11. Simulating the Earth System Response to Negative Emissions

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Milne, J.; Littleton, E. W.; Jones, C.; Canadell, J.; Peters, G. P.; van Vuuren, D.; Davis, S. J.; Jonas, M.; Smith, P.; Ciais, P.; Rogelj, J.; Torvanger, A.; Shrestha, G.

    2016-12-01

    The natural carbon sinks of the land and oceans absorb approximately half the anthropogenic CO2 emitted every year. The CO2 that is not absorbed accumulates in the Earth's atmosphere and traps the suns rays causing an increase in the global mean temperature. Removing this left over CO2 using negative emissions technologies (NETs) has been proposed as a strategy to lessen the accumulating CO2 and avoid dangerous climate change. Using CMIP5 Earth system model simulations this study assessed the impact on the global carbon cycle, and how the Earth system might respond, to negative emissions strategies applied to low emissions scenarios, over different times horizons from the year 2000 to 2300. The modeling results suggest that using NETs to remove atmospheric CO2 over five 50-year time horizons has varying effects at different points in time. The effects of anthropogenic and natural sources and sinks, can result in positive or negative changes in atmospheric CO2 concentration. Results show that historic emissions and the current state of the Earth System have impacts on the behavior of atmospheric CO2, as do instantaneous anthropogenic emissions. Indeed, varying background scenarios seemed to have a greater effect on atmospheric CO2 than the actual amount and timing of NETs. These results show how NETs interact with the physical climate-carbon cycle system and highlight the need for more research on earth-system dynamics as they relate to carbon sinks and sources and anthropogenic perturbations.

  12. How reservoirs alter drinking water quality: Organic matter sources, sinks, and transformations

    USGS Publications Warehouse

    Kraus, Tamara E.C.; Bergamaschi, Brian A.; Hernes, Peter J.; Doctor, Daniel H.; Kendall, Carol; Downing, Bryan D.; Losee, Richard F.

    2011-01-01

    Within reservoirs, production, transformation, and loss of dissolved organic matter (DOM) occur simultaneously. While the balance between production and loss determines whether a reservoir is a net sink or source of DOM, changes in chemical composition are also important because they affect DOM reactivity with respect to disinfection by-product (DBP) formation. The composition of the DOM pool also provides insight into DOM sources and processing, which can inform reservoir management. We examined the concentration and composition of DOM in San Luis Reservoir, a large off-stream impoundment of the California State Water Project. We used a wide array of DOM chemical tracers including dissolved organic carbon (DOC) concentration, trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP, respectively), absorbance properties, isotopic composition, lignin phenol content, and structural groupings determined by 13C nuclear magnetic resonance (NMR). There were periods when the reservoir was a net source of DOC due to the predominance of algal production (summer), a net sink due to the predominance of degradation (fall–winter), and balanced between production and consumption (spring). Despite only moderate variation in bulk DOC concentration (3.0–3.6 mg C/L), changes in DOM composition indicated that terrestrial-derived material entering the reservoir was being degraded and replaced by aquatic-derived DOM produced within the reservoir. Substantial changes in the propensity of the DOM pool to form THMs and HAAs illustrate that the DBP precursor pool was not directly coupled to bulk DOC concentration and indicate that algal production is an important source of DBP precursors. Results suggest reservoirs have the potential to attenuate DOM amount and reactivity with respect to DBP precursors via degradative processes; however, these benefits can be decreased or even negated by the production of algal-derived DOM.

  13. Evaluation of helicity generation in the tropical storm Gonu

    NASA Astrophysics Data System (ADS)

    Farahani, Majid M.; Khansalari, Sakineh; Azadi, Majid

    2017-06-01

    Helicity is a valuable dynamical concept for the study of rotating flows. Consequently helicity flux, indicative of the source or sink of helicity, owns comparable importance. In this study, while reviewing the existing methods, a mathematical relation between helicity and helicity-flux is introduced, discussed and examined. The computed values of helicity and helicity fluxes in an actual case, using the classical and this proposed method are compared. The down-stream helicity flux including sources and sinks of helicity is considered for the tropical storm Gonu that occurred over the coasts of Oman and Iran on June 2-7, 2007. Results show that the buoyancy, through the upper troposphere down to a height within boundary layer, is the main source in producing helicity, and surface friction from earth surface up to a height within boundary layer, is the main dissipating element of helicity. The dominance of buoyancy forcing over the dissipative friction forcing results in generation of vortex or enhancement of it after bouncing the land. Furthermore, the increase (decrease) of helicity results in an increase (decrease) in the height of the level in which maximum helicity flux occurs. It is suggested that the maximum helicity flux occurs at the top of the turbulent boundary layer, so that the height of boundary layer could be obtained.

  14. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    NASA Astrophysics Data System (ADS)

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help the geoscientific community to contribute further to our quantitative understanding of source-to-sink systems and its allogenic and autogenic controls, geomorphological characteristics, terrestrial sediment transit times and the anthropogenic impact on those systems.

  15. A functional-structural kiwifruit vine model integrating architecture, carbon dynamics and effects of the environment.

    PubMed

    Cieslak, Mikolaj; Seleznyova, Alla N; Hanan, Jim

    2011-04-01

    Functional-structural modelling can be used to increase our understanding of how different aspects of plant structure and function interact, identify knowledge gaps and guide priorities for future experimentation. By integrating existing knowledge of the different aspects of the kiwifruit (Actinidia deliciosa) vine's architecture and physiology, our aim is to develop conceptual and mathematical hypotheses on several of the vine's features: (a) plasticity of the vine's architecture; (b) effects of organ position within the canopy on its size; (c) effects of environment and horticultural management on shoot growth, light distribution and organ size; and (d) role of carbon reserves in early shoot growth. Using the L-system modelling platform, a functional-structural plant model of a kiwifruit vine was created that integrates architectural development, mechanistic modelling of carbon transport and allocation, and environmental and management effects on vine and fruit growth. The branching pattern was captured at the individual shoot level by modelling axillary shoot development using a discrete-time Markov chain. An existing carbon transport resistance model was extended to account for several source/sink components of individual plant elements. A quasi-Monte Carlo path-tracing algorithm was used to estimate the absorbed irradiance of each leaf. Several simulations were performed to illustrate the model's potential to reproduce the major features of the vine's behaviour. The model simulated vine growth responses that were qualitatively similar to those observed in experiments, including the plastic response of shoot growth to local carbon supply, the branching patterns of two Actinidia species, the effect of carbon limitation and topological distance on fruit size and the complex behaviour of sink competition for carbon. The model is able to reproduce differences in vine and fruit growth arising from various experimental treatments. This implies it will be a valuable tool for refining our understanding of kiwifruit growth and for identifying strategies to improve production.

  16. Estimation of in-canopy flux distributions of reactive nitrogen and sulfur within a mixed hardwood forest in southern Appalachia

    EPA Science Inventory

    Estimating the source/sink distribution and vertical fluxes of air pollutants within and above forested canopies is critical for understanding biological, physical, and chemical processes influencing the soil-vegetation-atmosphere exchange. The vertical source-sink profiles of re...

  17. Estimation of in-canopy ammonia sources and sinks in a fertilized Zea mays field

    EPA Science Inventory

    An analytical model was developed that describes the in-canopy vertical distribution of NH3 source and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy concentration and wind speed profiles. This model was applied to quantify in-canopy air-s...

  18. FOREST HARVESTS AND WOOD PRODUCTS: SOURCES AND SINKS OF ATMOSPHERIC CARBON DIOXIDE

    EPA Science Inventory

    Changes in the net carbon(c)sink-source balance related to a country's forest harvesting and use of wood products is an important component in making country-level inventories of greenhouse gas emissions,a current activity within many signatory nations to the UN Framework Convent...

  19. Global epidemic invasion thresholds in directed cattle subpopulation networks having source, sink, and transit nodes

    USDA-ARS?s Scientific Manuscript database

    Through the characterization of a metapopulation cattle disease model on a directed network having source, transit, and sink nodes, we derive two global epidemic invasion thresholds. The first threshold defines the conditions necessary for an epidemic to successfully spread at the global scale. The ...

  20. Sources, sinks, and spatial ecology of cotton mice in longleaf pine stands undergoing restoration

    USGS Publications Warehouse

    Sharp, N.W.; Mitchell, M.S.; Grand, J.B.

    2009-01-01

    The Fire and Fire Surrogate studya replicated, manipulative experimentsought the most economically and ecologically efficient way to restore the nation's fire-maintained ecosystems. As part of this study, we conducted a 3-year markrecapture study, comprising 105,000 trap-nights, to assess demographic responses of cotton mice (Peromyscus gossypinus) to Fire and Fire Surrogate treatments at the Gulf Coastal Plain site, where longleaf pine was the ecosystem to be restored. We compared competing models to evaluate restoration effects on variation in apparent survival and recruitment over time, space, and treatment, and incorporated measures of available source habitat for cotton mice with reverse-time modeling to infer immigration from outside the study area. The top-ranked survival model contained only variation over time, but the closely ranked 2nd and 3rd models included variation over space and treatment, respectively. The top 4 recruitment models all included effects for availability of source habitat and treatments. Burning appeared to degrade habitat quality for cotton mice, showing demographic characteristics of a sink, but treatments combining fire with thinning of trees or application of herbicide to the understory appeared to improve habitat quality, possibly creating sources. Bottomland hardwoods outside the study also acted as sources by providing immigrants to experimental units. Models suggested that population dynamics operated over multiple spatial scales. Treatments applied to 15-ha stands probably only caused local variation in vital rates within the larger population. ?? 2009 American Society of Mammalogists.

  1. Numerical models of diapiric structures: comparison of the 2D finite deformation field between Rayleigh-Taylor like and down-built like diapirs

    NASA Astrophysics Data System (ADS)

    Fuchs, Lukas; Schmeling, Harro; Koyi, Hemin

    2013-04-01

    Magmatic and salt diapirs are common structures in different tectonic regimes. Salt diapirs can act as possible hydrocarbon traps and, moreover, they could be used as repositories for nuclear waste disposal. Understanding the evolution and the dynamics of diapirs as well as their driving mechanisms has fundamental and applied significance. In general, salt diapirs seem to be driven by differential loading of sediments creating an uneven load that drives the salt from high to low pressure areas, e.g. a down-built diapir. Magmatic diapirs, instead, seem to be driven by buoyancy where lighter material rises vertically through a heavier overburden, i.e. a classical Rayleigh-Taylor instability [RTI]. These different driving mechanisms and dynamics strongly govern the internal deformation of the diapirs. In this study, we use a two-dimensional finite difference code (FDCON) in combination with a marker and cell method to calculate the finite deformation within diapiric structures. Thereby, we distinguish between the two different driving mechanisms, i.e. the differential loading and the buoyancy. We calculate the different finite deformation patterns during the evolution of RTI's and down-built diapirs for different viscosity ratios m = -?buoyant- ?overburden. The deformation pattern in the buoyant layer shows similarities for both diapiric structures, like high shear deformation at the bottom, a high finite deformation within the middle of the stem, and an increasing maximum finite deformation for a decreasing m. However, the strain partitioning between the overburden and the source layer is different within down-built diapirs compared to the RTI's, even for down-built diapirs with m = 1. Thus a higher amount of the total strain induced by down-building is concentrated within the buoyant layer. Moreover, in the case of viscosity ratios of m = 0.1 or 1 the sinking overburden units create an internal rotation within the diapiric bulb. This rotation depends indirectly on the sedimentation rate as it determines the width of the sediment basin; the higher the sedimentation rate, the wider the basins and the weaker the internal rotation. In addition, the viscous drag between the sinking overburden and the rising diapir creates a stronger and wider band of finite deformation along the edges of the down-built diapir in comparison to the RTI.

  2. CarbonSat -Quantification of natural and man-made greenhouse gas surface fluxes from satellite observations of atmospheric CO2 and CH4 column amounts

    NASA Astrophysics Data System (ADS)

    Bovensmann, Heinrich; Buchwitz, M.; Burrows, J. P.; Notholt, J.; Bovensmann, H.; Reuter, M.; Trautmann, T.; Ehret, G.; Heimann, M.; Monks, P.; B&Ü, H.; Sch; Harding, R.; Quegan, S.; Rayner, P.; Breon, F. M.; Bergam-O Aschi, P.; Dittus, H. J.; Erzinger, J.; Crisp, D.

    Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geo-logic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5 percent goal (1 percent threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO her-itage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath continuous across track coverage with 2 x 2 km2 spatial resolution. Ideally, the imaging spectrometer will be accompanied by a compact CH4 Lidar, to derive complementary accurate XCH4 -especially in high northern latitudes -as well as information on clouds and vegetation height. The overall mission concept will be presented.

  3. CarbonSat - Quantification of natural and man-made greenhouse gas surface fluxes from satellite observations of atmospheric CO2 and CH4 column amounts

    NASA Astrophysics Data System (ADS)

    Bovensmann, Heinrich; Buchwitz, Michael

    2010-05-01

    Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geologic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5% goal (1%, threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO heritage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath continuous across track coverage with 2 x 2 km2 spatial resolution. Ideally, the imaging spectrometer will be accompanied by a compact CH4 Lidar, to derive complementary accurate XCH4 - especially in high northern latitudes - as well as information on clouds and vegetation height. The overall mission concept, the expected data quality and selected application areas will be presented.

  4. Signatures of planets: Observations and modeling of structure in the zodiacal cloud and Kuiper disk

    NASA Astrophysics Data System (ADS)

    Holmes, Elizabeth Katherine

    2002-12-01

    There is a possible connection between structure in evolved circumstellar disks and the presence of planets, our own zodiacal cloud being a proven example. Asymmetries in such a disk could be diagnostic of planets which would be otherwise undetectable. Using COBE DIRBE observations, we link structure in the zodiacal cloud, namely the warp and offset of the cloud, to the presence of planets using secular perturbation theory. In addition, we obtain supplementary ISO observations and determine a scale factor for the data which we apply to calibrate the data to the observed COBE brightness. A Kuiper dust disk will have a resonant structure, with two concentrations in brightness along the ecliptic longitude arising because 10 15% of the Kuiper belt objects are in the 3:2 mean motion resonance with Neptune. We run numerical integrations of particles originating from source bodies trapped in the 3:2 resonance and we determine what percentage of particles remain in the resonance for a variety of particle and source body sizes. The dynamical evolution of the particles is followed from source to sink with Poynting- Robertson light drag, solar wind drag, radiation pressure, the Lorentz force, neutral interstellar gas drag, and the effects of planetary gravitational perturbations included. We then conduct an observational search in the 60 μm COBE data for the Kuiper disk, which is predicted to be, at most, a few percent of the brightness of the zodiacal cloud. By removing emission due to the background zodiacal cloud and the dust bands, we expect to see the trailing/leading signature of Earth's resonant ring. However, when subtracted from the data, we find that none of the empirical background zodiacal cloud models give the residuals predicted by theory. We conclude that a dynamical two-component (both inner and outer) zodiacal cloud model must be created to complete the search. Lastly, we extend our work outside the solar system and obtain upper limits on the flux around ten Vega-type stars using the Sub-millimeter Telescope Observatory in the 870 μm and 1300 μm wave bands, which will be used to determine the most promising candidates for future observations.

  5. Is Earth coming out of the recent ice house age in the long-term? - constraints from probable mantle CO2-degassing reconstructions

    NASA Astrophysics Data System (ADS)

    Hartmann, Jens; Li, Gaojun; West, A. Joshua

    2017-04-01

    Enhanced partial melting of mantle material probably started when the subduction motor started around 3.2 Ga ago as evidenced by the formation history of the continental crust. Carbon is degassing due partial melting as it is an incompatible element. Therefore, mantle carbon degassing rates would change with time proportionally to the reservoir mantle concentration evolution and the ocean crust production rate, causing a distinct CO2-degassing rate change with time. The evolution of the mantle degassing rate has some implications for the reconstruction of the carbon cycle and therefore climate and Earth surface processes rates, as CO2-degassing rates are used to constrain or to balance the atmosphere-ocean-crust carbon cycle system. It will be shown that compilations of CO2-degassing from relevant geological sources are probably exceeding the established CO2-sink terrestrial weathering, which is often used to constrain long-term mantle degassing rates to close the carbon cycle on geological time scales. In addition, the scenarios for the degassing dynamics from the mantle sources suggest that the mantle is depleting its carbon content since 3 Ga. This has further implications for the long-term CO2-sink weathering. Results will be compared with geochemical proxies for weathering and weathering intensity dynamics, and will be set in context with snow ball Earth events and long-term emplacement dynamics of mafic areas as Large Igneous Provinces. Decreasing mantle degassing rates since about 2 Ga suggest a constraint for the evolution of the carbon cycle and recycling potential of the amount of subducted carbon. If the given scenarios hold further investigation, the contribution of mantle degassing to climate forcing (directly and via recycling) will decrease further.

  6. Late Cretaceous Turbidite Reservoirs Along the Equatorial West African Margin: An Industry Perspective on Source-to-Sink Relationships

    NASA Astrophysics Data System (ADS)

    Wilson, Jonathan; Kohlmann, Fabian; Nicoll, Graeme

    2017-04-01

    The source-to-sink mindset provides an important framework for the exploration geologist. It enables an integrated understanding of hinterland and basin, and can lead to subsurface risk mitigation, particularly with respect to predicting reservoir location and quality. Despite the numerous benefits associated with source-to-sink analysis, such studies are time-consuming to generate, encompassing a large array of disciplines and data, and are not routinely performed within the hydrocarbon industry. The discovery of several significant hydrocarbon fields along the equatorial West African margin has been followed by a series of expensive failures throughout the last decade associated with reservoir quality/presence. This paper discusses a case study focused on the equatorial West African margin, demonstrating how three well-known but effective approaches can be integrated to reconstruct source-to-sink relationships in an ancient sedimentary system, helping de-risk exploration efforts. The first step is to characterize the hinterland. To do this, detailed information was collected for two separate but interlinked datasets—mineral deposits and hard rock geochronology. Combined, these two datasets allow an understanding of the timing and nature of an areas tectonic evolution to be easily developed. The data can be used alongside stratigraphic data and geodynamic information from a plate tectonic model to reconstruct topography and bathymetry of the earth at different episodes of geological time. Paleo digital elevation models (PDEMs) give a first-order approximation of hinterland topography and therefore allow possible sediment source areas to be identified and potential sediment transport pathways to be visualized by means of the digital reconstruction of paleo-drainage networks and their attendant watersheds. This integrated global dataset of hinterland geochronology provides useful "source" information complemented by "sink" information contained within a detrital geochronology database. By combining these two datasets and matching the age populations, sediment provenance can be deduced and source-to-sink relationships can be unraveled. Sedimentary provenance analysis from detrital/hinterland geochronology, and the application of flow routing algorithms to PDEMs, allow for the physical limits of paleo-drainage basins to be reconstructed. Assessment of the nature and composition of the hinterland within individual paleo-drainage basins provides a useful means of predicting the quality of sediment in associated point-sourced depocentres along the margin. For example, the erosion of hinterlands with markedly different compositions can have dramatic effects on the quality of sediment delivered to the surrounding basins. Sediment transport pathways provided by PDEMs and detrital zircon geochronology provide a paleo-drainage network that can be further developed by exploiting power-law scaling relationships observed between source-to-sink systems (Somme et al. 2009). These relationships, and more general predictive models (e.g., Syvitski and Milliman 2007), allow for semiquantitative approximation of morphological and sedimentological parameters in both the source and sink domain and provide a useful means of verifying inferred drainage patterns. In frontier areas where subsurface constraint is sparse, an appreciation of sink characteristics, such as fan size and sediment flux are extremely valuable as a first-pass basin screening tool.

  7. A review of carbon monoxide sources, sinks, and concentrations in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Bortner, M. H.; Kummler, R. H.; Jaffe, L. S.

    1972-01-01

    Carbon monoxide is a toxic pollutant which is continually introduced into the earth's atmosphere in significant quantities. There are apparently some mechanisms operating which destroy most of the CO in the atmosphere, i.e., a carbon monoxide sink. These mechanisms have not as yet been established in a quantitative sense. This report discusses the various possible removal mechanisms which warrant serious consideration. Particular emphasis is given to chemical reactions (especially that with OH), soil bacteria and other biological action, and transport effects. The sources of carbon monoxide, both natural and anthropogenic, are reviewed and it is noted that there is quite possibly a significant undefined natural source. Atmospheric CO concentrations are discussed and their implications on carbon monoxide lifetime, sinks and sources are considered.

  8. Synergies Between Quantum Mechanics and Machine Learning in Reaction Prediction.

    PubMed

    Sadowski, Peter; Fooshee, David; Subrahmanya, Niranjan; Baldi, Pierre

    2016-11-28

    Machine learning (ML) and quantum mechanical (QM) methods can be used in two-way synergy to build chemical reaction expert systems. The proposed ML approach identifies electron sources and sinks among reactants and then ranks all source-sink pairs. This addresses a bottleneck of QM calculations by providing a prioritized list of mechanistic reaction steps. QM modeling can then be used to compute the transition states and activation energies of the top-ranked reactions, providing additional or improved examples of ranked source-sink pairs. Retraining the ML model closes the loop, producing more accurate predictions from a larger training set. The approach is demonstrated in detail using a small set of organic radical reactions.

  9. Leaf-level to Canopy Exchange of NOx and Ozone in a Forest at the University of Michigan Biological Station

    NASA Astrophysics Data System (ADS)

    Wang, W.; Ganzeveld, L.; Helmig, D.; Hueber, J.; Rossabi, S.; Vogel, C. S.

    2017-12-01

    During the month-long PROPHET-AMOS campaign in July, 2016 we investigated NOx and ozone dynamics at the University of Michigan AmeriFlux Tower (US-UMB tower) and the PROPHET Tower research sites at the University of Michigan Biological Station (UMBS), using a multi-pronged experimental approach. The two sites are within 100 m of each other, located in a mixed forest on the northern lower peninsula of Michigan, USA. In a previous study, it was found that invoking a leaf-level compensation point for NOx uptake and emission provided better agreement between observed and model-simulated in- and above-canopy NOx concentrations in this forest. To further examine the role of foliar exchange relative to other in-canopy sources and sinks of NOx, we conducted detailed vertical gradient measurements of NOx and ozone at ten heights from the forest floor to above the canopy, along with micrometeorological conditions at the AmeriFlux Tower. In parallel, to investigate the leaf-level exchanges of NOx and ozone, we carried out branch enclosure experiments near the PROPHET tower on the dominant tree species of this forest. We combine these observations with micrometeorological data from the AmeriFlux Tower to constrain simulations with the Multi-Layer Canopy Chemical Exchange Model (MLC-CHEM) for investigation of sources, sinks, and dynamics that determine NOx concentrations, vertical gradients, and fluxes in this forest. We will compare our results with previous studies and other observations during the PHOPHET-AMOS campaign.

  10. Scalar potential model (SPM) of redshift and discrete redshift

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2005-11-01

    On the galactic scale the universe is inhomogeneous and redshift z is occasionally less than zero. Several differences among galaxy types suggest that spiral galaxies are Sources and that early type galaxies are Sinks of a scalar potential field (SPF). The morphology-radius and intragalactic medium cluster observations support a cell structure of galaxies. The SPF causes the mass expected by Newtonian mechanics to measure less in Source galaxies and more in Sink galaxies. The cell structure allows the universe to be bounded and flat without collapsing. An equation is derived relating z of particle photons and the distance D to galaxies. The calculated z has a correlation coefficient of 0.88 with the measured z for a sample of 32 spiral galaxies with a Cepheid based D. The equation is consistent with z <0 observations of close galaxies. At low cosmological distances, the equation reduces to z ~ KD, where K is a constant, positive value. The model qualitatively suggests the discrete variations in z, which was reported by W. G. Tifft, 1997, ApJ 485, 465 and others, are consistent with the SPM. Full text: http://web.infoave.net/ scjh.

  11. The impact of agricultural soil erosion on the global carbon cycle

    USGS Publications Warehouse

    Van Oost, Kristof; Quine, T.A.; Govers, G.; De Gryze, S.; Six, J.; Harden, J.W.; Ritchie, J.C.; McCarty, G.W.; Heckrath, G.; Kosmas, C.; Giraldez, J.V.; Marques Da Silva, J.R.; Merckx, R.

    2007-01-01

    Agricultural soil erosion is thought to perturb the global carbon cycle, but estimates of its effect range from a source of 1 petagram per year -1 to a sink of the same magnitude. By using caesium-137 and carbon inventory measurements from a large-scale survey, we found consistent evidence for an erosion-induced sink of atmospheric carbon equivalent to approximately 26% of the carbon transported by erosion. Based on this relationship, we estimated a global carbon sink of 0.12 (range 0.06 to 0.27) petagrams of carbon per year-1 resulting from erosion in the world's agricultural landscapes. Our analysis directly challenges the view that agricultural erosion represents an important source or sink for atmospheric CO2.

  12. Moisture sources of the Atmospheric Rivers making landfall in western Europe

    NASA Astrophysics Data System (ADS)

    Trigo, Ricardo M.; Ramos, Alexandre M.; Nieto, Raquel; Tomé, Ricardo; Gimeno, Luis; Liberato, Margarida L. R.; Lavers, David A.

    2017-04-01

    An automated atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs affecting western European coasts between 1979 and 2012. The entire western coast of Europe was divided into five domains, namely the Iberian Peninsula (9.75W, 36-43.75N), France (4.5W, 43.75-50N), UK (4.5W, 50-59N), southern Scandinavia and the Netherlands (5.25E, 50-59N), and northern Scandinavia (5.25E, 59-70N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main areas where the moisture uptake was anomalous and contributed to the ARs reaching each domain. The Lagrangian data set used was obtained from the FLEXPART model global simulation from 1979 to 2012. The results show that, in general, for all regions considered, the major climatological areas for the anomalous moisture uptake extend along the subtropical North Atlantic, from the Florida Peninsula (northward of 20N) to each sink region, with the nearest coast to each sink region always appearing as a local maximum. In addition, during AR events the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the sources found when the sink region is positioned at higher latitudes. In conclusion, the results confirm not only the anomalous advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical source, together with midlatitude anomaly sources at some locations closer to AR landfalls (Ramos et al., 2016). References: Ramos et al., (2016) Atmospheric rivers moisture sources from a Lagrangian perspective, Earth Syst. Dynam., 7, 371-384. Acknowledgements This work was supported by the project IMDROFLOOD - Improving Drought and Flood Early Warning, Forecasting and Mitigation using real-time hydroclimatic indicators (WaterJPI/0004/2014) funded by Fundação para a Ciência e a Tecnologia, Portugal (FCT). A. M. Ramos was supported by a FCT postdoctoral grant (FCT/DFRH/ SFRH/BPD/84328/2012). Raquel Nieto acknowledges the support of the Xunta de Galicia, Spain, through THIS (EM2014/043) project.

  13. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network.

    PubMed

    Han, Changcai; Yang, Jinsheng

    2017-10-30

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes.

  14. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network

    PubMed Central

    Han, Changcai; Yang, Jinsheng

    2017-01-01

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes. PMID:29084155

  15. Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control.

    PubMed

    Ruktanonchai, Nick W; Smith, David L; De Leenheer, Patrick

    2016-09-01

    We consider the dynamics of a mosquito-transmitted pathogen in a multi-patch Ross-Macdonald malaria model with mobile human hosts, mobile vectors, and a heterogeneous environment. We show the existence of a globally stable steady state, and a threshold that determines whether a pathogen is either absent from all patches, or endemic and present at some level in all patches. Each patch is characterized by a local basic reproduction number, whose value predicts whether the disease is cleared or not when the patch is isolated: patches are known as "demographic sinks" if they have a local basic reproduction number less than one, and hence would clear the disease if isolated; patches with a basic reproduction number above one would sustain endemic infection in isolation, and become "demographic sources" of parasites when connected to other patches. Sources are also considered focal areas of transmission for the larger landscape, as they export excess parasites to other areas and can sustain parasite populations. We show how to determine the various basic reproduction numbers from steady state estimates in the patched network and knowledge of additional model parameters, hereby identifying parasite sources in the process. This is useful in the context of control of the infection on natural landscapes, because a commonly suggested strategy is to target focal areas, in order to make their corresponding basic reproduction numbers less than one, effectively turning them into sinks. We show that this is indeed a successful control strategy-albeit a conservative and possibly expensive one-in case either the human host, or the vector does not move. However, we also show that when both humans and vectors move, this strategy may fail, depending on the specific movement patterns exhibited by hosts and vectors. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Source to Sink Transport of Terrestrial Biomarkers in a Monsoon-driven Fluvial System

    NASA Astrophysics Data System (ADS)

    Kirkels, F.; Zwart, H. M.; Usman, M.; Basu, S.; Martes, C.; Eglinton, T. I.; Peterse, F.

    2016-12-01

    Rivers are an important link in global organic carbon (OC) cycling by connecting soils and marine sediments. Whereas deposition of terrestrial carbon in marine settings may form a large OC sink, the extent of OC loss during river transport by CO2 outgassing is highly uncertain. In this context, it is crucial to better constrain the composition and sources of OC in rivers. The Godavari River in Central India is very dynamic with intense rainfall and high soil erosion rates during the monsoon and low transport during the dry period, representative of low frequency, high-impact erosion events expected worldwide due to climate change. In this study, we did a high-resolution sampling of soils, river sediments (bulk and < 63 um) and suspended particulate matter (SPM) during the monsoon and dry season. Source-to-sink tracing of concentration and compositional variations in branched glycerol dialkyl glycerol tetraethers (brGDGTs) as soil-specific biomarkers allowed us to follow soil OC transport through the river basin. Spatial trends in weight-normalized GDGT patterns reveal marked changes during the monsoon and dry season from upstream tributaries towards the delta. Evolution of GDGT signatures along the course of the river shows that SPM during the monsoon carries a primarily soil-derived signal contributed by the northern headwaters. Dominance of the recently discovered 6-methyl isomer indicates a year-round aquatic contribution from the western tributaries. River water isotopic composition and GDGT signatures show that northern tributaries dominate modern OC export from the Godavari basin, providing new information for the interpretation of paleorecords derived from cores taken in the Bay of Bengal. More detailed insights in OC sources in the Godavari basin will derive from (bulk) δ13C and ultimately 14C analyses of soils and river sediments. Further research into provenance of the mineral fraction will reveal if sediment and OC transport is (de)coupled.

  17. 78 FR 52898 - Science-Based Methods for Entity-Scale Quantification of Greenhouse Gas Sources and Sinks From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... DEPARTMENT OF AGRICULTURE [Docket Number: USDA-2013-0003] Science-Based Methods for Entity-Scale Quantification of Greenhouse Gas Sources and Sinks From Agriculture and Forestry Practices AGENCY: Office of the... of Agriculture (USDA) has prepared a report containing methods for quantifying entity-scale...

  18. Density and Reproductive Success of California Towhees

    Treesearch

    Kathryn L. Purcell; Jared Verner

    1998-01-01

    Models of habitat selection commonly asume that higher-quality source habitats will be occupied at higher densities than sink habitats. We examined an apparent sink habitat for California Towhees (Pipilo crissalis) in which densities are greater than in nearby source habitats. We estimated territory density using spot-mapping and monitored nests of towhees in grazed...

  19. Reestablishing the Dominance of Biogeochemical Pathways for Reducing Downstream Nutrient Losses from Aged Impounded Features

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Shukla, A.

    2017-12-01

    Water and phosphorus (P) dynamics and loss pathways at two stormwater impoundments (SIs) were analyzed using measured fluxes between 2008 and 2011. These SIs are a decade old. Analyses of water and P budgets along with the discernment of various P pools and characterization of the intermediary processes revealed that soil adsorption and plant uptake are secondary to volume reduction apropos of P treatment. At one site, extreme wet conditions in a year combined with soil P saturation resulted in it being a P source rather than a sink. The impoundment (SI-1) discharged 12% more P than incoming due to soil P desorption, a consequence of dilution of incoming stormwater with large water input from an extreme tropical rain event. The second impoundment (SI-2) was a consistent sink of P; 55% and 95% of the incoming total P was retained in the two years, mainly as a result of 49% and 84% volume retention, respectively. Analysis of plant available aluminum, iron, and phosphorus showed the surface soil to be P saturated and at risk of releasing P to a limit of environmental concern. These results when seen in light of more frequent extreme precipitation events under the changed climate scenario call for alternatives to revive the role of biogeochemical processes in P treatment because volume reduction may not always be the viable option, especially for wet conditions. Aboveground biomass harvesting and removal was evaluated to transform the SIs from a frequent P source to sink and maintain the long-term sink functions of the SIs. Use of harvested biomass as a source of nutrients (N and P) and carbon to agricultural soil can result in beneficial use of biomass and offset the cost of harvesting. Other avenues such as altering the hydrology of the SIs by compartmentalizing the system and increasing the storage were also explored for short-term benefits. Results provided a combination of hydraulic and biochemical options for achieving long-term water and nutrient retentions in agricultural and urban landscapes that use the SIs to meet downstream flows and water quality goals for watersheds.

  20. [Urban heat island effect based on urban heat island source and sink indices in Shenyang, Northeast China].

    PubMed

    Li, Li-Guang; Xu, Shen-Lai; Wang, Hong-Bo; Zhao, Zi-Qi; Cai, Fu; Wu, Jin-Wen; Chen, Peng-Shi; Zhang, Yu-Shu

    2013-12-01

    Based on the remote images in 2001 and 2010, the source and sink areas of urban heat island (UHI) in Shenyang City, Northeast China were determined by GIS technique. The effect of urban regional landscape pattern on UHI effect was assessed with land surface temperature (LST), area rate index (CI) of the source and sink areas and intensity index (LI) of heat island. The results indicated that the land use type changed significantly from 2001 to 2010, which significantly changed the source and sink areas of UHI, especially in the second and third circle regions. The source and sink areas were 94.3% and 5.7% in the first circle region, 64.0% and 36.0% in the third circle region in 2001, while they were 93.4% and 6.6%, 70.2% and 29.8% in 2010, respectively. It suggested that the land use pattern extended by a round shape in Shenyang led to the corresponding UHI pattern. The LST in the study area tended to decrease from the first circle region to the third. The UHI intensity was characterized with a single center in 2001 and with several centers in 2010, and the grade of UHI intensity was in a decreasing trend from 2001 to 2010. The absolute value of CI increased from the first circle region to the third, and the L1 was close to 1, suggesting the change in land use pattern had no significant influence on UHI in Shenyang.

  1. Evaluation of nitrous acid sources and sinks in urban outflow

    NASA Astrophysics Data System (ADS)

    Gall, Elliott T.; Griffin, Robert J.; Steiner, Allison L.; Dibb, Jack; Scheuer, Eric; Gong, Longwen; Rutter, Andrew P.; Cevik, Basak K.; Kim, Saewung; Lefer, Barry; Flynn, James

    2016-02-01

    Intensive air quality measurements made from June 22-25, 2011 in the outflow of the Dallas-Fort Worth (DFW) metropolitan area are used to evaluate nitrous acid (HONO) sources and sinks. A two-layer box model was developed to assess the ability of established and recently identified HONO sources and sinks to reproduce observations of HONO mixing ratios. A baseline model scenario includes sources and sinks established in the literature and is compared to scenarios including three recently identified sources: volatile organic compound-mediated conversion of nitric acid to HONO (S1), biotic emission from the ground (S2), and re-emission from a surface nitrite reservoir (S3). For all mechanisms, ranges of parametric values span lower- and upper-limit values. Model outcomes for 'likely' estimates of sources and sinks generally show under-prediction of HONO observations, implying the need to evaluate additional sources and variability in estimates of parameterizations, particularly during daylight hours. Monte Carlo simulation is applied to model scenarios constructed with sources S1-S3 added independently and in combination, generally showing improved model outcomes. Adding sources S2 and S3 (scenario S2/S3) appears to best replicate observed HONO, as determined by the model coefficient of determination and residual sum of squared errors (r2 = 0.55 ± 0.03, SSE = 4.6 × 106 ± 7.6 × 105 ppt2). In scenario S2/S3, source S2 is shown to account for 25% and 6.7% of the nighttime and daytime budget, respectively, while source S3 accounts for 19% and 11% of the nighttime and daytime budget, respectively. However, despite improved model fit, there remains significant underestimation of daytime HONO; on average, a 0.15 ppt/s unknown daytime HONO source, or 67% of the total daytime source, is needed to bring scenario S2/S3 into agreement with observation. Estimates of 'best fit' parameterizations across lower to upper-limit values results in a moderate reduction of the unknown daytime source, from 0.15 to 0.10 ppt/s.

  2. StreaMorph: A Case for Synthesizing Energy-Efficient Adaptive Programs Using High-Level Abstractions

    DTIC Science & Technology

    2013-08-12

    technique when switching from using eight cores to one core. 1. Introduction Real - time streaming of media data is growing in popularity. This includes...both capture and processing of real - time video and audio, and delivery of video and audio from servers; recent usage number shows over 800 million...source of data, when that source is a real - time source, and it is generally not necessary to get ahead of the sink. Even with real - time sources and sinks

  3. Structural and Physiological Changes in Sugar Beet Leaves during Sink to Source Conversion 1

    PubMed Central

    Fellows, Robert J.; Geiger, Donald R.

    1974-01-01

    The onset of export during leaf development was correlated with changes in metabolism and ultrastructure and with patterns of solute distribution in the developing seventh leaf of sugar beet (Beta vulgaris L.) in order to study the cause of initiation of translocation. Infrared gas analysis of carbon dioxide uptake showed a broad peak for net photosynthesis dm−2 at 35 to 40% final laminar length. Pulse labeling with 14CO2 demonstrated that maximum import of translocate occurred at 25% final laminar length; export was first observed at 35% final laminar length. Between 40 and 50% final laminar length a rapid increase in amount of export occurred, primarily as a result of the increase in the area of leaf which was exporting. Whole leaf autoradiography revealed that onset of phloem loading spread basipetally from the leaf tip; loading was initiated at about 22% final laminar length and was essentially complete by 50% final laminar length. Those areas which clearly exhibited loading no longer imported from other parts of the plant while the area in transition still appeared to import label from source regions. There was little difference between source and sink leaf tissue in the kinetic parameters Kj and Jmax (30) for uptake of exogenous sucrose supplied via free space. The concentration of solutes in sieve elements and companion cells of the sink leaf was highest in the mature tip area and gradually decreased in the direction of the immature base. There appeared to be no dramatic structural transformation within the phloem of the minor veins that was closely correlated with the time when phloem loading or export began. Rather, there appeared to be a gradual differentiation of phloem which resulted in a sizable proportion of the population of minor vein sieve elements and companion cells attaining maturity in the older sink regions prior to initiation of phloem loading. The area of the leaf undergoing development appeared to exhibit the beginnings of phloem loading 30 to 45 hours prior to onset of export. Import continued into the area in transition until the full level of vein loading was attained. Structural maturation of the phloem and onset of phloem loading are felt to be more preparatory in nature rather than immediately causal events which triggered export. The initiation of export out of a developing leaf, we believe, is the result of the increasing solute content within the sieve element and companion cells of the minor veins, in particular. The higher osmotic pressure in the sieve tubes causes a reversal of the previously inward directed gradient and produces a mass flow, through unobstructed sieve elements, out of the new source region of the leaf. Images PMID:16658993

  4. Oceanic biogeochemical controls on global dynamics of persistent organic pollutants.

    PubMed

    Dachs, Jordi; Lohmann, Rainer; Ockenden, Wendy A; Méjanelle, Laurence; Eisenreich, Steven J; Jones, Kevin C

    2002-10-15

    Understanding and quantifying the global dynamics and sinks of persistent organic pollutants (POPs) is important to assess their environmental impact and fate. Air-surface exchange processes, where temperature plays a central role in controlling volatilization and deposition, are of key importance in controlling global POP dynamics. The present study is an assessment of the role of oceanic biogeochemical processes, notably phytoplankton uptake and vertical fluxes of particles, on the global dynamics of POPs. Field measurements of atmospheric polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs), and furans (PCDFs) are combined with remote sensing estimations of oceanic temperature, wind speed, and chlorophyll, to model the interactions between air-water exchange, phytoplankton uptake, and export of organic matter and POPs out of the mixed surface ocean layer. Deposition is enhanced in the mid-high latitudes and is driven by sinking marine particulate matter, rather than by a cold condensation effect. However, the relative contribution of the biological pump is a function of the physical-chemical properties of POPs. It is concluded that oceanic biogeochemical processes play a critical role in controlling the global dynamics and the ultimate sink of POPs.

  5. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxin; Miller, Paul A.; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-09-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.

  6. Numerical prediction of micro-channel LD heat sink operated with antifreeze based on CFD method

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Liu, Yang; Wang, Chao; Wang, Wentao; Wang, Gang; Tang, Xiaojun

    2014-12-01

    To theoretically study the feasibility of antifreeze coolants applied as cooling fluids for high power LD heat sink, detailed Computational Fluid Dynamics (CFD) analysis of liquid cooled micro-channels heat sinks is presented. The performance operated with antifreeze coolant (ethylene glycol aqueous solution) compared with pure water are numerical calculated for the heat sinks with the same micro-channels structures. The maximum thermal resistance, total pressure loss (flow resistance), thermal resistance vs. flow-rate, and pressure loss vs. flow-rate etc. characteristics are numerical calculated. The results indicate that the type and temperature of coolants plays an important role on the performance of heat sinks. The whole thermal resistance and pressure loss of heat sinks increase significantly with antifreeze coolants compared with pure water mainly due to its relatively lower thermal conductivity and higher fluid viscosity. The thermal resistance and pressure loss are functions of the flow rate and operation temperature. Increasing of the coolant flow rate can reduce the thermal resistance of heat sinks; meanwhile increase the pressure loss significantly. The thermal resistance tends to a limit with increasing flow rate, while the pressure loss tends to increase exponentially with increasing flow rate. Low operation temperature chiefly increases the pressure loss rather than thermal resistance due to the remarkable increasing of fluid viscosity. The actual working point of the cooling circulation system can be determined on the basis of the pressure drop vs. flow rate curve for the micro-channel heat sink and that for the circulation system. In the same system, if the type or/and temperature of the coolant is changed, the working point is accordingly influenced, that is, working flow rate and pressure is changed simultaneously, due to which the heat sink performance is influenced. According to the numerical simulation results, if ethylene glycol aqueous solution is applied instead of pure water as the coolant under the same or a higher working temperature, the available output of optical power will decrease due to the worse heat sink performance; if applied under a lower working temperature(0 °C, -20 °C), although the heat sink performance become worse, however the temperature difference of heat transfer rises more significantly, the available output of optical power will increase on the contrary.

  7. Spatiotemporal variations in CO2 flux in a fringing reef simulated using a novel carbonate system dynamics model

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Yamamoto, T.; Nadaoka, K.; Maeda, Y.; Miyajima, T.; Tanaka, Y.; Blanco, A. C.

    2013-03-01

    A carbonate system dynamics (CSD) model was developed in a fringing reef on the east coast of Ishigaki Island, southwest Japan, by incorporating organic and inorganic carbon fluxes (photosynthesis and calcification), air-sea gas exchanges, and benthic cover of coral and seagrass into a three-dimensional hydrodynamic model. The CSD model could reproduce temporal variations in dissolved inorganic carbon (DIC) and total alkalinity in coral zones, but not in seagrass meadows. The poor reproduction in seagrass meadows can be attributed to significant contributions of submarine groundwater discharge as well as misclassification of remotely sensed megabenthos in this area. In comparison with offshore areas, the reef acted as a CO2 sink during the observation period when it was averaged over 24 h. The CSD model also indicated large spatiotemporal differences in the carbon dioxide (CO2) sink/source, possibly related to hydrodynamic features such as effective offshore seawater exchange and neap/spring tidal variation. This suggests that the data obtained from a single point observation may lead to misinterpretation of the overall trend and thus should be carefully considered. The model analysis also showed that the advective flux of DIC from neighboring grids is several times greater than local biological flux of DIC and is three orders of magnitude greater than the air-sea gas flux at the coral zone. Sensitivity tests in which coral or seagrass covers were altered revealed that the CO2 sink potential was much more sensitive to changes in coral cover than seagrass cover.

  8. Does the Sverdrup critical depth model explain bloom dynamics in estuaries?

    USGS Publications Warehouse

    Lucas, L.V.; Cloern, J.E.; Koseff, Jeffrey R.; Monismith, Stephen G.; Thompson, J.K.

    1998-01-01

    In this paper we use numerical models of coupled biological-hydrodynamic processes to search for general principles of bloom regulation in estuarine waters. We address three questions: what are the dynamics of stratification in coastal systems as influenced by variable freshwater input and tidal stirring? How does phytoplankton growth respond to these dynamics? Can the classical Sverdrup Critical Depth Model (SCDM) be used to predict the timing of bloom events in shallow coastal domains such as estuaries? We present results of simulation experiments which assume that vertical transport and net phytoplankton growth rates are horizontally homogeneous. In the present approach the temporally and spatially varying turbulent diffusivities for various stratification scenarios are calculated using a hydrodynamic code that includes the Mellor-Yamada 2.5 turbulence closure model. These diffusivities are then used in a time- and depth-dependent advection-diffusion equation, incorporating sources and sinks, for the phytoplankton biomass. Our modeling results show that, whereas persistent stratification greatly increases the probability of a bloom, semidiurnal periodic stratification does not increase the likelihood of a phytoplankton bloom over that of a constantly unstratified water column. Thus, for phytoplankton blooms, the physical regime of periodic stratification is closer to complete mixing than to persistent stratification. Furthermore, the details of persistent stratification are important: surface layer depth, thickness of the pycnocline, vertical density difference, and tidal current speed all weigh heavily in producing conditions which promote the onset of phytoplankton blooms. Our model results for shallow tidal systems do not conform to the classical concepts of stratification and blooms in deep pelagic systems. First, earlier studies (Riley, 1942, for example) suggest a monotonic increase in surface layer production as the surface layer shallows. Our model results suggest, however, a nonmonotonic relationship between phytoplankton population growth and surface layer depth, which results from a balance between several 'competing' processes, including the interaction of sinking with turbulent mixing and average net growth occurring within the surface layer. Second, we show that the traditional SCDM must be refined for application to energetic shallow systems or for systems in which surface layer mixing is not strong enough to counteract the sinking loss of phytoplankton. This need for refinement arises because of the leakage of phytoplankton from the surface layer by turbulent diffusion and sinking, processes not considered in the classical SCDM. Our model shows that, even for low sinking rates and small turbulent diffusivities, a significant % of the phytoplankton biomass produced in the surface layer can be lost by these processes.

  9. Capillary spreading of contact line over a sinking sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seong Jin; Fezzaa, Kamel; An, Jim

    The contact line dynamics over a sinking solid sphere are investigated in comparison with classical spreading theories. Experimentally, high-speed imaging systems with optical light or x-ray illumination are employed to accurately measure the spreading motion and dynamic contact angle of the contact line. Millimetric spheres are controlled to descend with a constant speed ranging from 7.3 × 10-5 to 0.79 m/s. We observed three different spreading stages over a sinking sphere, which depends on the contact line velocity and contact angle. These stages consistently showed the characteristics of capillarity-driven spreading as the contact line spreads faster with a higher contactmore » angle. The contact line velocity is observed to follow a classical capillary-viscous model at a high Ohnesorge number (> 0.02). For the cases with a relatively low Ohnesorge number (< 0.02), the contact line velocity is significantly lower than the speed predicted by the capillary-viscous balance. This indicates the existence of an additional opposing force (inertia) for a decreasing Ohnesorge number. The capillary-inertial balance is only observed at the very beginning of the capillary rise, in which the maximum velocity is independent of the sphere’s sinking speed. Additionally, we observed the linear relation between the contact line velocity and the sphere sinking speed during the second stage, which represents capillary adjustment by dynamic contact angle.« less

  10. Volume-weighted particle-tracking method for solute-transport modeling; Implementation in MODFLOW–GWT

    USGS Publications Warehouse

    Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.

    2018-02-16

    In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.

  11. Carbon dioxide in Arctic and subarctic regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, themore » hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.« less

  12. Protocol for buffer space negotiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nessett, D.

    There are at least two ways to manage the buffer memory of a communications node. On etechnique veiws the buffer as a single resource that is to be reserved and released as a unit for a particular communication transaction. A more common approach treats the node's buffer space as a collection of resources (e.g., bytes, words, packet slots) capable of being allocated among multiple concurrent conversations. To achieve buffer space multiplexing, some sort of negotiation for buffer space must take place between source and sink nodes before a transaction can commence. Results are presented which indicate that, for an applicationmore » involving a CSMA broadcast network, buffer space multiplexing offers better performance than buffer reservation. To achieve this improvement, a simple protocol is presented that features flow-control information traveling both from source to sink as well as from sink to source. It is argued that this bidirectionality allows the sink to allocate buffer space among its active communication paths more effectively. 13 figures.« less

  13. Systems biology derived source-sink mechanism of BMP gradient formation

    PubMed Central

    Zinski, Joseph; Bu, Ye; Wang, Xu; Dou, Wei

    2017-01-01

    A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development. PMID:28826472

  14. Systems biology derived source-sink mechanism of BMP gradient formation.

    PubMed

    Zinski, Joseph; Bu, Ye; Wang, Xu; Dou, Wei; Umulis, David; Mullins, Mary C

    2017-08-09

    A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development.

  15. Sources and sinks of plastic debris in estuaries: A conceptual model integrating biological, physical and chemical distribution mechanisms.

    PubMed

    Vermeiren, Peter; Muñoz, Cynthia C; Ikejima, Kou

    2016-12-15

    Micro- and macroplastic accumulation threatens estuaries worldwide because of the often dense human populations, diverse plastic inputs and high potential for plastic degradation and storage in these ecosystems. Nonetheless, our understanding of plastic sources and sinks remains limited. We designed conceptual models of the local and estuary-wide transport of plastics. We identify processes affecting the position of plastics in the water column; processes related to the mixing of fresh and salt water; and processes resulting from the influences of wind, topography, and organism-plastic interactions. The models identify gaps in the spatial context of plastic-organisms interactions, the chemical behavior of plastics in estuaries, effects of wind on plastic suspension-deposition cycles, and the relative importance of processes affecting the position in the water column. When interpreted in the context of current understanding, sinks with high management potential can be identified. However, source-sink patterns vary among estuary types and with local scale processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Million Trees Los Angeles: Carbon dioxide sink or source?

    Treesearch

    E.G. McPherson; A. Kendall; S. Albers

    2015-01-01

    This study seeks to answer the question, 'Will the Million Trees LA (MTLA) programme be a CO2 sink or source?' Using surveys, interviews, field sampling and computer simulation of tree growth and survival over a 40-year period, we developed the first process-based life cycle inventory of CO2 for a large tree...

  17. MODELING THE DISTRIBUTION OF NONPOINT NITROGEN SOURCES AND SINKS IN THE NEUSE RIVER BASIN OF NORTH CAROLINA, USA

    EPA Science Inventory

    This study quantified nonpoint nitrogen (N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide a tabular database to initialize in-stream N decay models and graphic overlay products for the development of management approaches to...

  18. Analysis of soybean leaf metabolism and seed coat transcriptome reveal sink strength is maintained under abiotic stress conditions

    USDA-ARS?s Scientific Manuscript database

    The seed coat is a vital tissue for directing the flow of photosynthate from source leaves to the embryo and cotyledons during seed development. By forming a sucrose gradient, the seed coat promotes transport of sugars from source leaves to seeds, thereby establishing sink strength. Understanding th...

  19. Quantifying the impact of human mobility on malaria

    PubMed Central

    Wesolowski, Amy; Eagle, Nathan; Tatem, Andrew J.; Smith, David L.; Noor, Abdisalan M.; Snow, Robert W.; Buckee, Caroline O.

    2013-01-01

    Human movements contribute to the transmission of malaria on spatial scales that exceed the limits of mosquito dispersal. Identifying the sources and sinks of imported infections due to human travel and locating high-risk sites of parasite importation could greatly improve malaria control programs. Here we use spatially explicit mobile phone data and malaria prevalence information from Kenya to identify the dynamics of human carriers that drive parasite importation between regions. Our analysis identifies specific importation routes that contribute to malaria epidemiology on regional spatial scales. PMID:23066082

  20. How Reservoirs Alter DOM Amount and Composition: Sources, Sinks, and Transformations

    NASA Astrophysics Data System (ADS)

    Kraus, T. E.; Bergamaschi, B. A.; Hernes, P. J.; Doctor, D. H.; Kendall, C.; Losee, R. F.; Downing, B. D.

    2011-12-01

    Reservoirs are critical components of many water supply systems as they allow the storage of water when supply exceeds demand. However, during water storage biogeochemical processes can alter both the amount and composition of dissolved organic matter (DOM), which can in turn affect water quality. While the balance between production and loss determines whether a reservoir is a net sink or source of DOM, changes in chemical composition are also relevant as they affect DOM reactivity (e.g. persistence in the environment, removability during coagulation treatment, and potential to form toxic compounds during drinking water treatment). The composition of the DOM pool also provides information about the DOM sources and processing, which can inform reservoir management. We examined the concentration and composition of DOM in San Luis Reservoir (SLR), a large off-stream impoundment of the California State Water Project. We used an array of DOM chemical tracers including dissolved organic carbon (DOC) concentration, optical properties, isotopic composition, lignin phenol content, and structural groupings determined by 13C NMR. There were periods when the reservoir was i) a net source of DOM due to the predominance of algal production (summer), ii) a net sink due to the predominance of degradation (fall/winter), and iii) balanced between production and consumption (spring). Despite only moderate variation in bulk DOC concentration (3.0-3.6 mg C/L), substantial changes in DOM composition indicated that terrestrial-derived material entering the reservoir was being degraded and replaced by aquatic-derived DOM produced within the reservoir. Results suggest reservoirs have the potential to reduce DOM amount and reactivity via degradative processes, however, these benefits can be decreased or even negated by the production of algal-derived DOM.

  1. The Water Vapor Source and Transport Characteristic of Rainy Seasons in Eastern China Base on Lagrangian Method

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Jiang, Z.; Liu, Z.; Li, L.

    2017-12-01

    The Hybrid Single-Particle Lagrangian Integrated Trajectory platform is employed in this studyto simulate trajectories of air parcels in the different rainy seasons in East China from 1961 to 2010,with the purpose of investigating general and specific characteristics of moisture sources and the eventual relationship withprecipitation in each rainy season.The moisture transport andsource-sink characteristics of different rainy seasons have evident differences. The results show that the frontal pre-rainy season is mainly influenced bywinter monsoon system, and the precipitation is strongly affected by water vapor from Pacific Ocean (PO) and East China (EC). Afterthe onset of South China Sea Summer Monsoon (SCSMS), the moisture from Pacific Ocean decreases and from Indian Ocean monsoon area increases. Afterwards, with the northward of the rain belt, the parcels from Southwest region (South China Sea (SCS), Indian Ocean (IO) andIndo-China Peninsula and Indian Peninsula(IP)) decrease and from North region (EC, Eurasia (EA) and PO) increase. Besides, most of the land areas are water vapor sink region and most of sea areas are water vapor source region. Before the onset of SCSMS, EC and PO are two main water vapor source areas.After the onset of SCSMS, the source from PO decreasesand Indian monsoon area becomes the main vapor source region. IP is the main water vapor sink area for all four rainy seasons.As for moisture circulation characteristics, the results of vertical structure of water vapor transport indicate that the maximum water vapor transport in west and east boundaries is located in mid-troposphere and in south and north boundaries is at low-troposphere. The spatiotemporal analysis of moisture trajectory based onmultivariate empirical orthogonal function (MVEOF) indicates that the first mode has close relationship with the precipitation in North China and PDO pattern; the second mode is closely related with the precipitation in Yangtze-Huaihe river basin and EAP pattern.

  2. The Metabolic Core and Catalytic Switches Are Fundamental Elements in the Self-Regulation of the Systemic Metabolic Structure of Cells

    PubMed Central

    De la Fuente, Ildefonso M.; Cortes, Jesus M.; Perez-Pinilla, Martin B.; Ruiz-Rodriguez, Vicente; Veguillas, Juan

    2011-01-01

    Background Experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a metabolic core formed by a set of enzymatic reactions which are always active under all environmental conditions, while the rest of catalytic processes are only intermittently active. The reactions of the metabolic core are essential for biomass formation and to assure optimal metabolic performance. The on-off catalytic reactions and the metabolic core are essential elements of a Systemic Metabolic Structure which seems to be a key feature common to all cellular organisms. Methodology/Principal Findings In order to investigate the functional importance of the metabolic core we have studied different catalytic patterns of a dissipative metabolic network under different external conditions. The emerging biochemical data have been analysed using information-based dynamic tools, such as Pearson's correlation and Transfer Entropy (which measures effective functionality). Our results show that a functional structure of effective connectivity emerges which is dynamical and characterized by significant variations of bio-molecular information flows. Conclusions/Significance We have quantified essential aspects of the metabolic core functionality. The always active enzymatic reactions form a hub –with a high degree of effective connectivity- exhibiting a wide range of functional information values being able to act either as a source or as a sink of bio-molecular causal interactions. Likewise, we have found that the metabolic core is an essential part of an emergent functional structure characterized by catalytic modules and metabolic switches which allow critical transitions in enzymatic activity. Both, the metabolic core and the catalytic switches in which also intermittently-active enzymes are involved seem to be fundamental elements in the self-regulation of the Systemic Metabolic Structure. PMID:22125607

  3. Agricultural peat lands; towards a greenhouse gas sink - a synthesis of a Dutch landscape study

    NASA Astrophysics Data System (ADS)

    Schrier-Uijl, A. P.; Kroon, P. S.; Hendriks, D. M. D.; Hensen, A.; Van Huissteden, J. C.; Leffelaar, P. A.; Berendse, F.; Veenendaal, E. M.

    2013-06-01

    It is generally known that managed, drained peatlands act as carbon sources. In this study we examined how mitigation through the reduction of management and through rewetting may affect the greenhouse gas (GHG) emission and the carbon balance of intensively managed, drained, agricultural peatlands. Carbon and GHG balances were determined for three peatlands in the western part of the Netherlands from 2005 to 2008 by considering spatial and temporal variability of emissions (CO2, CH4 and N2O). One area (Oukoop) is an intensively managed grass-on-peatland, including a dairy farm, with the ground water level at an average annual depth of 0.55 m below the soil surface. The second area (Stein) is an extensively managed grass-on-peatland, formerly intensively managed, with a dynamic ground water level at an average annual depth of 0.45 m below the soil surface. The third area is an (since 1998) rewetted former agricultural peatland (Horstermeer), close to Oukoop and Stein, with the average annual ground water level at a depth of 0.2 m below the soil surface. During the measurement campaigns we found that both agriculturally managed sites acted as carbon and GHG sources but the rewetted agricultural peatland acted as a carbon and GHG sink. The terrestrial GHG source strength was 1.4 kg CO2-eq m-2 yr-1 for the intensively managed area and 1.0 kg CO2-eq m-2 yr-1 for the extensively managed area; the unmanaged area acted as a GHG sink of 0.7 kg CO2-eq m-2 yr-1. Water bodies contributed significantly to the terrestrial GHG balance because of a high release of CH4 and the loss of DOC only played a minor role. Adding the farm-based CO2 and CH4 emissions increased the source strength for the managed sites to 2.7 kg CO2-eq m-2 yr-1 for Oukoop and 2.1 kg CO2-eq m-2 yr-1 for Stein. Shifting from intensively managed to extensively managed grass-on-peat reduced GHG emissions mainly because N2O emission and farm-based CH4 emissions decreased. Overall, this study suggests that managed peatlands are large sources of GHG and carbon, but, if appropriate measures are taken they can be turned back into GHG and carbon sinks within 15 yr of abandonment and rewetting.

  4. [Simulation of CO2 exchange between forest canopy and atmosphere].

    PubMed

    Diao, Yiwei; Wang, Anzhi; Jin, Changjie; Guan, Dexin; Pei, Tiefan

    2006-12-01

    Estimating the scalar source/sink distribution of CO2 and its vertical fluxes within and above forest canopy continues to be a critical research problem in biosphere-atmosphere exchange processes and plant ecology. With broad-leaved Korean pine forest in Changbai Mountains as test object, and based on Raupach's localized near field theory, the source/sink and vertical flux distribution of CO2 within and above forest canopy were modeled through an inverse Lagrangian dispersion analysis. This model correctly predicted a strong positive CO2 source strength in the deeper layers of the canopy due to soil-plant respiration, and a strong CO2 sink in the upper layers of the canopy due to the assimilation by sunlit foliage. The foliage in the top layer of canopy changed from a CO2 source in the morning to a CO2 sink in the afternoon, while the soil constituted a strong CO2 source all the day. The simulation results accorded well with the eddy covariance CO2 flux measurements within and above the canopy, and the average precision was 89%. The CO2 exchange predicted by the analysis was averagely 15% higher than that of the eddy correlation, but exhibited identical temporal trend. Atmospheric stability remarkably affected the CO2 exchange between forest canopy and atmosphere.

  5. Development of a Small Thermoelectric Generators Prototype for Energy Harvesting from Low Temperature Waste Heat at Industrial Plant.

    PubMed

    Chiarotti, Ugo; Moroli, Valerio; Menchetti, Fernando; Piancaldini, Roberto; Bianco, Loris; Viotto, Alberto; Baracchini, Giulia; Gaspardo, Daniele; Nazzi, Fabio; Curti, Maurizio; Gabriele, Massimiliano

    2017-03-01

    A 39-W thermoelectric generator prototype has been realized and then installed in industrial plant for on-line trials. The prototype was developed as an energy harvesting demonstrator using low temperature cooling water waste heat as energy source. The objective of the research program is to measure the actual performances of this kind of device working with industrial water below 90 °C, as hot source, and fresh water at a temperature of about 15 °C, as cold sink. The article shows the first results of the research program. It was verified, under the tested operative conditions, that the produced electric power exceeds the energy required to pump the water from the hot source and cold sink to the thermoelectric generator unit if they are located at a distance not exceeding 50 m and the electric energy conversion efficiency is 0.33%. It was calculated that increasing the distance of the hot source and cold sink to the thermoelectric generator unit to 100 m the produced electric energy equals the energy required for water pumping, while reducing the distance of the hot source and cold sink to zero meters the developed unit produces an electric energy conversion efficiency of 0.61%.

  6. Variation in carbohydrate source-sink relations of forest and treeline white spruce in southern, interior and northern Alaska.

    PubMed

    Sveinbjörnsson, Bjartmar; Smith, Matthew; Traustason, Tumi; Ruess, Roger W; Sullivan, Patrick F

    2010-08-01

    Two opposing hypotheses have been presented to explain reduced tree growth at the treeline, compared with growth in lower elevation or lower latitude forests: the carbon source and sink limitation hypotheses. The former states that treeline trees have an unfavorable carbon balance and cannot support growth of the magnitude observed at lower elevations or latitudes, while the latter argues that treeline trees have an adequate carbon supply, but that cold temperatures directly limit growth. In this study, we examined the relative importance of source and sink limitation in forest and treeline white spruce (Picea glauca) in three mountain ranges from southern to northern Alaska. We related seasonal changes in needle nonstructural carbohydrate (NSC) content with branch extension growth, an approach we argue is more powerful than using needle NSC concentration. Branch extension growth in the southernmost Chugach Mountains was much greater than in the White Mountains and the Brooks Range. Trees in the Chugach Mountains showed a greater seasonal decline in needle NSC content than trees in the other mountain ranges, and the seasonal change in NSC was correlated with site-level branch growth across mountain ranges. There was no evidence of a consistent difference in branch growth between the forest and treeline sites, which differ in elevation by approximately 100 m. Our results point to a continuum between source and sink limitation of growth, with high-elevation trees in northern and interior Alaska showing greater evidence of sink limitation, and those in southern Alaska showing greater potential for source limitation.

  7. Carbon allocation, source-sink relations and plant growth: do we need to revise our carbon centric concepts?

    NASA Astrophysics Data System (ADS)

    Körner, Christian

    2014-05-01

    Since the discovery that plants 'eat air' 215 years ago, carbon supply was considered the largely unquestioned top driver of plant growth. The ease at which CO2 uptake (C source activity) can be measured, and the elegant algorithms that describe the responses of photosynthesis to light, temperature and CO2 concentration, explain why carbon driven growth and productivity became the starting point of all process based vegetation models. Most of these models, nowadays adopt other environmental drivers, such as nutrient availability, as modulating co-controls, but the carbon priority is retained. Yet, if we believe in the basic rules of stoichometry of all life, there is an inevitable need of 25-30 elements other then carbon, oxygen and hydrogen to build a healthy plant body. Plants compete for most of these elements, and their availability (except for N) is finite per unit land area. Hence, by pure plausibility, it is a highly unlikely situation that carbon plays the rate limiting role of growth under natural conditions, except in deep shade or on exceptionally fertile soils. Furthermore, water shortage and low temperature, both act directly upon tissue formation (meristems) long before photosynthetic limitations come into play. Hence, plants will incorporate C only to the extent other environmental drivers permit. In the case of nutrients and mature ecosystems, this sink control of plant growth may be masked in the short term by a tight, almost closed nutrient cycle or by widening the C to other element ratio. Because source and sink activity must match in the long term, it is not possible to identify the hierarchy of growth controls without manipulating the environment. Dry matter allocation to C rich structures and reserves may provide some stoichimetric leeway or periodic escapes from the more fundamental, long-term environmental controls of growth and productivity. I will explain why carbon centric explanations of growth are limited or arrive at plausible answers for the wrong reason. Suggested reading: Fatichi, Leuzinger, Körner (2013) Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytologist. Körner C (2013) Growth controls photosynthesis - mostly. Nova Acta Leopoldina 391:273-283.

  8. Do mitigation strategies reduce global warming potential in the northern U.S. Corn Belt?

    USDA-ARS?s Scientific Manuscript database

    Agriculture is both an anthropogenic source of CO2, CH4, and N2O, and a sink for CO2 and CH4. Management can impact agriculture's net global warming potential (GWP) by changing source and/or sink. This study compared GWP among three crop management systems: business as usual (BAU), optimum greenhous...

  9. Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach

    Treesearch

    Riccardo Lo Bianco; Mark Rieger; Shi-Jean S. Sung

    2000-01-01

    In peach (Prunus persica [L.] Batsch.), sorbitol and sucrose are the two main forms of photosynthetic and translocated carbon and may have different functions depending on the organ of utilization and its developmental stage. The role and interaction of sorbitol and sucrose metabolism was studied in mature leaves (source) and shoot tips (sinks) of...

  10. Preface: Impacts of extreme climate events and disturbances on carbon dynamics

    USGS Publications Warehouse

    Xiao, Jingfeng; Liu, Shuguang; Stoy, Paul C.

    2016-01-01

    The impacts of extreme climate events and disturbances (ECE&D) on the carbon cycle have received growing attention in recent years. This special issue showcases a collection of recent advances in understanding the impacts of ECE&D on carbon cycling. Notable advances include quantifying how harvesting activities impact forest structure, carbon pool dynamics, and recovery processes; observed drastic increases of the concentrations of dissolved organic carbon and dissolved methane in thermokarst lakes in western Siberia during a summer warming event; disentangling the roles of herbivores and fire on forest carbon dioxide flux; direct and indirect impacts of fire on the global carbon balance; and improved atmospheric inversion of regional carbon sources and sinks by incorporating disturbances. Combined, studies herein indicate several major research needs. First, disturbances and extreme events can interact with one another, and it is important to understand their overall impacts and also disentangle their effects on the carbon cycle. Second, current ecosystem models are not skillful enough to correctly simulate the underlying processes and impacts of ECE&D (e.g., tree mortality and carbon consequences). Third, benchmark data characterizing the timing, location, type, and magnitude of disturbances must be systematically created to improve our ability to quantify carbon dynamics over large areas. Finally, improving the representation of ECE&D in regional climate/earth system models and accounting for the resulting feedbacks to climate are essential for understanding the interactions between climate and ecosystem dynamics.

  11. A preliminary source-to-sink sediment budget for aeolian sands

    NASA Astrophysics Data System (ADS)

    Sebe, Krisztina; Csillag, Gábor; Timár, Gábor; Jámbor, Áron

    2015-04-01

    Source-to-sink sediment budgets are being intensively studied in fluvial systems. In contrast, sediment budget calculations are very rare for wind-transported material. This may be attributed to the fact that the exact delineation of both source and sink areas in aeolian systems can pose difficulties. In the Pannonian Basin, aeolian action by northwesterly to northerly winds exerted a thorough impact on landscape evolution during the Quaternary, testified among others by yardangs, wind corridors and numerous ventifacts as well as extensive blown sand fields. Wind erosion has been dated to be important since at least 1.5 Ma ago. Considering the sand fraction, the Pleistocene Pannonian Basin seems to be a nearly complete aeolian sedimentary system from source to sink, thus it provides a good opportunity to carry out sediment budget calculations. The largest blown sand accumulation occupies ~10 000 km2 in the central part of the Pannonian Basin, in the area called Kiskunság, and contains considerable volumes of aeolian sands extending down to the Lower Pleistocene. Its material is traditionally considered to originate from fluvial sediments of the Danube floodplain. However, recent studies on wind erosion and wind direction reconstructions have indicated that a considerable portion of the sand can have had a provenance in the extensive unconsolidated sediments of the Late Miocene Lake Pannon, which cover the uplifting Transdanubian Range and its surroundings. To gain data on this question, we carried out sediment budget calculations to assess if material volumes of the supposed source and sink areas are comparable. In the source area we reconstructed a paleotopography, practically a bounding envelope surface for the Pliocene/Pleistocene boundary using existing knowledge e.g. on the typical succession of Lake Pannon sediments and the evolution history of the area. The missing volume down to the present-day surface was then calculated, where the removed material was constituted dominantly by the Upper Miocene sediments, subordinately by older clastics. The final amount of sand possibly eroded by the wind from the area was calculated by reducing this volume through estimating the portion of sand in the lacustrine succession and the ratio of aeolian and fluvial erosion. Aeolian sand volumes of the sink were calculated using borehole data from publications and original borehole documentations. This approach contains several error sources, including uncertainties in the position of the envelope surface, varying quality of borehole documentations or the distribution of sampling points. As a result, the estimated error margin of the missing volume computation is up to 50% and the provided value is rather a minimum estimation. A similar value can be valid for the sink area. The calculations showed that sand volumes of the source and sink areas are comparable, with the eroded material being about one third to a half of that of the deposited amount (somewhere below 150 km3 and between 300-400 km3, respectively). This result supports the idea that Transdanubia is an important source area of the Kiskunság blown sand field. The portion of sand in the sink not accounted for by the present estimation can be derived from two sources. Probably more blown sand had been delivered to the sink from areas even more upwind from the Transdanubian Range (Danube Basin), now not included in the calculations. The floodplain of the Danube may have also provided sediments, but mostly only in the Late Pleistocene, when the river had already occupied its modern course upwind of the Kiskunság area. Work has been supported by the OTKA projects K 106197 and NK83400.

  12. Observational constraints on the global atmospheric CO2 budget

    NASA Technical Reports Server (NTRS)

    Tans, Pieter P.; Fung, Inez Y.; Takahashi, Taro

    1990-01-01

    Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.

  13. Special Important Aspects of the Thomson Effect

    NASA Astrophysics Data System (ADS)

    Lashkevych, Igor; Velázquez, J. E.; Titov, Oleg Yu.; Gurevich, Yuri G.

    2018-06-01

    A comprehensive study of the mechanisms of heating and cooling originating from an electrical current in semiconductor devices is reported. The variation in temperature associated with the Peltier effect is not related to the presence of heat sources and sinks if the heat flux is correctly determined. The Thomson effect is commonly regarded as a heat source/sink proportional to the Thomson coefficient, which is added to the Joule heating. In the present work, we will show that this formulation of the Thomson effect is not sufficiently clear. When the heat flux is correctly defined, the Thomson heat source/sink is proportional to the Seebeck coefficient. In the conditions in which the Peltier effect takes place, the temperature gradient is created, and, consequently, the Thomson effect will occur naturally.

  14. Special Important Aspects of the Thomson Effect

    NASA Astrophysics Data System (ADS)

    Lashkevych, Igor; Velázquez, J. E.; Titov, Oleg Yu.; Gurevich, Yuri G.

    2018-03-01

    A comprehensive study of the mechanisms of heating and cooling originating from an electrical current in semiconductor devices is reported. The variation in temperature associated with the Peltier effect is not related to the presence of heat sources and sinks if the heat flux is correctly determined. The Thomson effect is commonly regarded as a heat source/sink proportional to the Thomson coefficient, which is added to the Joule heating. In the present work, we will show that this formulation of the Thomson effect is not sufficiently clear. When the heat flux is correctly defined, the Thomson heat source/sink is proportional to the Seebeck coefficient. In the conditions in which the Peltier effect takes place, the temperature gradient is created, and, consequently, the Thomson effect will occur naturally.

  15. On the structure of existence regions for sinks of the Hénon map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galias, Zbigniew, E-mail: galias@agh.edu.pl; Tucker, Warwick, E-mail: warwick@math.uu.se

    2014-03-15

    An extensive search for stable periodic orbits (sinks) for the Hénon map in a small neighborhood of the classical parameter values is carried out. Several parameter values which generate a sink are found and verified by rigorous numerical computations. Each found parameter value is extended to a larger region of existence using a simplex continuation method. The structure of these regions of existence is investigated. This study shows that for the Hénon map, there exist sinks close to the classical case.

  16. Effect of altered sink:source ratio on photosynthetic metabolism of source leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaut, Z.; Mayoral, M.L.; Reinhold, L.

    When seven crop species were grown under identical environmental conditions, decreased sink:source ratio led to a decreased photosynthetic rate within 1 to 3 days in Cucumis sativus L., Gossypium hirsutum L., and Raphanus sativus L., but not in Capsicum annuum L., Solanum melongena L., Phaseolus vulgaris L., or Ricinus communis L. The decrease was not associated with stomatal closure. In cotton and cucumbers, sink removal led to an increase in starch and sugar content, in glucose 6-phosphate and fructose 6-phosphate pools, and in the proportion of /sup 14/C detected in sugar phosphates and UDPglucose following /sup 14/CO/sub 2/ supply. Whenmore » mannose was supplied to leaf discs to sequester cytoplasmic inorganic phosphate, promotion of starch synthesis, and inhibition of CO/sub 2/ fixation, were observed in control discs, but not in discs from treated plants. Phosphate buffer reduced starch synthesis in the latter, but not the former discs. The findings suggest that sink removal led to a decreased ratio inorganic phosphate:phosphorylated compounds. In beans /sup 14/C in sugar phosphates increased following sink removal, but without sucrose accumulation, suggesting tighter feedback control of sugar level. Starch accumulated to higher levels than in the other plants, but CO/sub 2/ fixation rate was constant for several days.« less

  17. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance.

    PubMed

    Yang, Hong; Xing, Yangping; Xie, Ping; Ni, Leyi; Rong, Kewen

    2008-02-01

    Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO(2) and CH(4) causing a net release of CO(2) and CH(4) to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO(2) and CH(4)) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange.

  18. Legacy of human-induced C erosion and burial on soil-atmosphere C exchange.

    PubMed

    Van Oost, Kristof; Verstraeten, Gert; Doetterl, Sebastian; Notebaert, Bastiaan; Wiaux, François; Broothaerts, Nils; Six, Johan

    2012-11-20

    Carbon exchange associated with accelerated erosion following land cover change is an important component of the global C cycle. In current assessments, however, this component is not accounted for. Here, we integrate the effects of accelerated C erosion across point, hillslope, and catchment scale for the 780-km(2) Dijle River catchment over the period 4000 B.C. to A.D. 2000 to demonstrate that accelerated erosion results in a net C sink. We found this long-term C sink to be equivalent to 43% of the eroded C and to have offset 39% (17-66%) of the C emissions due to anthropogenic land cover change since the advent of agriculture. Nevertheless, the erosion-induced C sink strength is limited by a significant loss of buried C in terrestrial depositional stores, which lagged the burial. The time lag between burial and subsequent loss at this study site implies that the C buried in eroded terrestrial deposits during the agricultural expansion of the last 150 y cannot be assumed to be inert to further destabilization, and indeed might become a significant C source. Our analysis exemplifies that accounting for the non-steady-state C dynamics in geomorphic active systems is pertinent to understanding both past and future anthropogenic global change.

  19. Occurrence of the siphonophore Muggiaea atlantica in Scottish coastal waters: source or sink?

    PubMed Central

    Blackett, Michael; Lucas, Cathy H.; Cook, Katherine; Licandro, Priscilla

    2017-01-01

    We applied the concept of source–sink dynamics to investigate a recent (1999–2013) increase in the occurrence of the siphonophore Muggiaea atlantica in Scottish coastal waters. Our aim was to determine whether this change represented the establishment of resident populations (i.e. “sources”), or transient populations reliant on immigration (i.e. “sinks”). First, we show that local production was not always sufficient to account for recruitment (a “source” prerequisite), suggesting reliance on immigration (a “sink” prerequisite). Using variation partitioning, we then discriminated between the exclusive effects of immigration [indexed by the European Slope Current (ESC)] and local production (indexed by local sea temperature and food availability). On the west coast (Loch Ewe), interannual variability in the species’ abundance was determined by, in order of increasing importance: (i) suitable local environmental conditions (13%); (ii) the role of the ESC in modulating these conditions (20%); and (iii) immigration via the ESC (29%). These results provided a strong indication that Loch Ewe represents a sink habitat for M. atlantica. However, on the east coast (Stonehaven) our results were less conclusive, probably due to the less direct influence of the ESC. For both locations, we suggest that low winter temperatures prevented overwintering, necessitating annual re-colonization via immigration. PMID:28566798

  20. Legacy of human-induced C erosion and burial on soil–atmosphere C exchange

    PubMed Central

    Van Oost, Kristof; Verstraeten, Gert; Doetterl, Sebastian; Notebaert, Bastiaan; Wiaux, François; Broothaerts, Nils; Six, Johan

    2012-01-01

    Carbon exchange associated with accelerated erosion following land cover change is an important component of the global C cycle. In current assessments, however, this component is not accounted for. Here, we integrate the effects of accelerated C erosion across point, hillslope, and catchment scale for the 780-km2 Dijle River catchment over the period 4000 B.C. to A.D. 2000 to demonstrate that accelerated erosion results in a net C sink. We found this long-term C sink to be equivalent to 43% of the eroded C and to have offset 39% (17–66%) of the C emissions due to anthropogenic land cover change since the advent of agriculture. Nevertheless, the erosion-induced C sink strength is limited by a significant loss of buried C in terrestrial depositional stores, which lagged the burial. The time lag between burial and subsequent loss at this study site implies that the C buried in eroded terrestrial deposits during the agricultural expansion of the last 150 y cannot be assumed to be inert to further destabilization, and indeed might become a significant C source. Our analysis exemplifies that accounting for the non–steady-state C dynamics in geomorphic active systems is pertinent to understanding both past and future anthropogenic global change. PMID:23134723

  1. Improvement of a free software tool for the assessment of sediment connectivity

    NASA Astrophysics Data System (ADS)

    Crema, Stefano; Lanni, Cristiano; Goldin, Beatrice; Marchi, Lorenzo; Cavalli, Marco

    2015-04-01

    Sediment connectivity expresses the degree of linkage that controls sediment fluxes throughout landscape, in particular between sediment sources and downstream areas. The assessment of sediment connectivity becomes a key issue when dealing with risk mitigation and priorities of intervention in the territory. In this work, the authors report the improvements made to an open source and stand-alone application (SedInConnect, http://www.sedalp.eu/download/tools.shtml), along with extensive applications to alpine catchments. SedInConnect calculates a sediment connectivity index as expressed in Cavalli et al. (2013); the software improvements consisted primarily in the introduction of the sink feature, i.e. areas that act as traps for sediment produced upstream (e.g., lakes, sediment traps). Based on user-defined sinks, the software decouples those parts of the catchment that do not deliver sediment to a selected target of interest (e.g., fan apex, main drainage network). In this way the assessment of sediment connectivity is achieved by taking in consideration effective sediment contributing areas. Sediment connectivity analysis has been carried out on several catchments in the South Tyrol alpine area (Northern Italy) with the goal of achieving a fast and objective characterization of the topographic control on sediment transfer. In addition to depicting the variability of sediment connectivity inside each basin, the index of connectivity has proved to be a valuable indicator of the dominant process characterizing the basin sediment dynamics (debris flow, bedload, mixed behavior). The characterization of the dominant process is of great importance for the hazard and risk assessment in mountain areas, and for choice and design of structural and non-structural intervention measures. The recognition of the dominant sediment transport process by the index of connectivity is in agreement with evidences arising from post-event field surveys and with the application of morphometric indexes, such as the Melton ruggedness number, commonly used for discriminating debris-flow catchments from bedload catchments. References: Cavalli, M., Trevisani, S., Comiti, F., Marchi, L., 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188,31-41. doi:10.1016/j.geomorph.2012.05.007

  2. Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia

    NASA Astrophysics Data System (ADS)

    Weng, Wei; Luedeke, Matthias K. B.; Zemp, Delphine C.; Lakes, Tobia; Kropp, Juergen P.

    2018-02-01

    The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5-12 % and runoff by 19-50 % according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land-water management.

  3. Chronic Nitrogen Deposition Influences the Chemical Dynamics of Leaf Litter and Fine Roots During Decomposition

    EPA Science Inventory

    Atmospheric nitrogen deposition induces a forest carbon sink across broad parts of the Northern Hemisphere; this carbon sink may partly result from slower litter decomposition. Although microbial responses to experimental nitrogen deposition have been well-studied, evidence linki...

  4. Baltic Sea Blue Carbon: Role of environmental factors influencing the carbon sink capacity of eelgrass (Zostera marina) meadows.

    NASA Astrophysics Data System (ADS)

    Röhr, E.; Holmer, M.; Boström, C.

    2016-02-01

    Although the global seagrass coverage area is less than 0.2 % of the worlds ocean floor, the carbon sink capacity of seagrasses may account up to 18 % of oceanic carbon burial and thus play a critical structural and functional role in many coastal ecosystems. Recent studies have shown considerable variation in the global estimates for seagrass meadow Corg accumulation rates and stocks, and indicate lack of understanding the factors influencing this variability. We sampled 20 eelgrass (Zostera marina) meadows in Finland and Denmark to study the variation in Corg accumulation rates and stocks within the Baltic Sea area. The study sites in both regions spanned a gradient from sheltered to exposed locations. The estimates for Corg accumulation rates at the Finnish eelgrass meadows were two orders of magnitude lower than the estimates for the Danish sites. The Corg stock integrated over the top 25 cm of sediment showed similar pattern, suggesting that the Finnish eelgrass meadows are carbon sources rather than carbon sinks, and the produced Corg is exported from the meadows. In contrast, at the Danish sites both Corg accumulation rates and areal Corg stock was more varying suggesting, that in this region the meadows function both as carbon sinks and sources. Our analysis further showed that a large percentage (> 55 %) of the variation in the Corg stocks was explained by sediment characteristics (density, fraction of silt and grain size distribution). In addition, the contribution of Zostera marina detritus to the sediment Corg pool explained >14 % of the variation in the Corg stocks. In order to get more reliable regional and global estimates of the role of seagrass meadows in the ocean carbon cycle, more studies accounting for the full range of environmental and species characteristics are urgently needed.

  5. The sustainability of subsistence hunting by Matsigenka native communities in Manu National Park, Peru.

    PubMed

    Ohl-Schacherer, Julia; Shepard, Glenn H; Kaplan, Hillard; Peres, Carlos A; Levi, Taal; Yu, Douglas W

    2007-10-01

    The presence of indigenous people in tropical parks has fueled a debate over whether people in parks are conservation allies or direct threats to biodiversity. A well-known example is the Matsigenka (or Machiguenga) population residing in Manu National Park in Peruvian Amazonia. Because the exploitation of wild meat (or bushmeat), especially large vertebrates, represents the most significant internal threat to biodiversity in Manu, we analyzed 1 year of participatory monitoring of game offtake in two Matsigenka native communities within Manu Park (102,397 consumer days and 2,089 prey items). We used the Robinson and Redford (1991) index to identify five prey species hunted at or above maximum sustainable yield within the approximately 150-km(2) core hunting zones of the two communities: woolly monkey (Lagothrix lagotricha), spider monkey (Ateles chamek), white-lipped peccary (Tayassu pecari), Razor-billed Currasow (Mitu tuberosa), and Spix's Guan (Penelope jacquacu). There was little or no evidence that any of these five species has become depleted, other than locally, despite a near doubling of the human population since 1988. Hunter-prey profiles have not changed since 1988, and there has been little change in per capita consumption rates or mean prey weights. The current offtake by the Matsigenka appears to be sustainable, apparently due to source-sink dynamics. Source-sink dynamics imply that even with continued human population growth within a settlement, offtake for each hunted species will eventually reach an asymptote. Thus, stabilizing the Matsigenka population around existing settlements should be a primary policy goal for Manu Park.

  6. Heat dissipation investigation of the internal heat sink geometry of a commercial available LED lamp

    NASA Astrophysics Data System (ADS)

    Lai, S. L.; Ong, N. R.; Kirtsaeng, S.; Sakuntasathien, S.; Alcain, J. B.; Sauli, Z.; Thangsi, K.; Retnasamy, V.

    2017-09-01

    Thermal issue is still the bottleneck of the LED to sustain their operational performance. LED lamp is vastly commercialized and has become the next generation of lighting source to substitute the conventional incandescent lamp. Thus, thermal management issue on LED lamp is important to maintain the device reliability. This study focuses on the modification of internal heat sink of the LED lamp which was considered and the thermal performance was investigated. Open source software, Salome and Elmer were used for this study. The result shows that larger surface area of heat sink has better heat dissipation performance.

  7. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks.

    PubMed

    Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming; Chen, Wei

    2016-01-29

    In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS) should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN) in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH) algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  8. Using a Divided Bar Apparatus to Measure Thermal Conductivity of Samples of Odd Sizes and Shapes

    NASA Astrophysics Data System (ADS)

    Crowell, J. "; Gosnold, W. D.

    2012-12-01

    Standard procedure for measuring thermal conductivity using a divided bar apparatus requires a sample that has the same surface dimensions as the heat sink/source surface in the divided bar. Heat flow is assumed to be constant throughout the column and thermal conductivity (K) is determined by measuring temperatures (T) across the sample and across standard layers and using the basic relationship Ksample=(Kstandard*(ΔT1+ΔT2)/2)/(ΔTsample). Sometimes samples are not large enough or of correct proportions to match the surface of the heat sink/source, however using the equations presented here the thermal conductivity of these samples can still be measured with a divided bar. Measurements were done on the UND Geothermal Laboratories stationary divided bar apparatus (SDB). This SDB has been designed to mimic many in-situ conditions, with a temperature range of -20C to 150C and a pressure range of 0 to 10,000 psi for samples with parallel surfaces and 0 to 3000 psi for samples with non-parallel surfaces. The heat sink/source surfaces are copper disks and have a surface area of 1,772 mm2 (2.74 in2). Layers of polycarbonate 6 mm thick with the same surface area as the copper disks are located in the heat sink and in the heat source as standards. For this study, all samples were prepared from a single piece of 4 inch limestone core. Thermal conductivities were measured for each sample as it was cut successively smaller. The above equation was adjusted to include the thicknesses (Th) of the samples and the standards and the surface areas (A) of the heat sink/source and of the sample Ksample=(Kstandard*Astandard*Thsample*(ΔT1+ΔT3))/(ΔTsample*Asample*2*Thstandard). Measuring the thermal conductivity of samples of multiple sizes, shapes, and thicknesses gave consistent values for samples with surfaces as small as 50% of the heat sink/source surface, regardless of the shape of the sample. Measuring samples with surfaces smaller than 50% of the heat sink/source surface resulted in thermal conductivity values which were too high. The cause of the error with the smaller samples is being examined as is the relationship between the amount of error in the thermal conductivity and the difference in surface areas. As more measurements are made an equation to mathematically correct for the error is being developed on in case a way to physically correct the problem cannot be determined.

  9. Estimating Sources and Sinks of Methane from Soils in the Contiguous United States (CONUS)

    NASA Astrophysics Data System (ADS)

    Shu, S.; Jain, A. K.; Kheshgi, H. S.

    2017-12-01

    The global methane (CH4) budget estimated based on state-of-the-art models remains highly uncertain. Sources and sinks of CH4 from soils, including wetlands, are the most important source of uncertainty. Soils are estimated to account for about 45% of global CH4 emissions. At the same time oxidation of CH4 by soils is a significant sink, representing about 10% of the total sink. However, most regional and global scale modeling studies of soil CH4 fluxes have ignored the sink through soil oxidation and the source of CH4 emissions from the wet soils with shallow water tables. In this study, we link a bottom-up soil gas diffusion and CH4 biogeochemistry model to a land surface model, ISAM, to calculate the sources, emissions from both wetlands and non-wetlands, and sinks, soil oxidation, of CH4 from soils for the CONUS over the period 1900-2100. The newly developed soil CH4 model framework consists of a gas diffusion module with the vertically resolved soil hydrology (depth up to 3.5 m soil) and soil organic carbon (SOC) and CH4 biogeochemistry module. SOC profile is estimated by modeling vertical soil mixing and thus can represent the deep SOC content and estimate CH4 production from the deep non-wetland soil. For the diffusion calculations, we separately consider both the dissolved and gaseous O2 and CH4 at each soil layer. For CH4 biogeochemistry, we parameterize the production, soil oxidation, ebullition and aerenchyma transportation of CH4 for both seasonal/permanent wetland and wet soil. The SWAMP inundated fraction dataset with 8-day temporal resolution is incorporated to prescribe the extent of permanent and seasonal wetland extent for the recent decade. The model is first evaluated using a compilation of published CH4 site measurement data for CONUS. We then perform two different model experiments: 1) forced by the CRUNCEP climate data from 1900 to 2010 to estimate the contemporary CH4 emission and 2) forced by a climate projection of IPCC's highest representative concentration pathway (RCP8.5) from 2011 to 2100. Our study shows that soil oxidation has an important role attenuating the estimated natural CH4 source. We also find a wetter and warmer climate affects the dry soil CH4 sink and wet soil CH4 emissions and increases the estimated CH4 source over the CONUS.

  10. Enzyme localization, crowding, and buffers collectively modulate diffusion-influenced signal transduction: Insights from continuum diffusion modeling

    PubMed Central

    Kekenes-Huskey, Peter M.; Eun, Changsun; McCammon, J. A.

    2015-01-01

    Biochemical reaction networks consisting of coupled enzymes connect substrate signaling events with biological function. Substrates involved in these reactions can be strongly influenced by diffusion “barriers” arising from impenetrable cellular structures and macromolecules, as well as interactions with biomolecules, especially within crowded environments. For diffusion-influenced reactions, the spatial organization of diffusion barriers arising from intracellular structures, non-specific crowders, and specific-binders (buffers) strongly controls the temporal and spatial reaction kinetics. In this study, we use two prototypical biochemical reactions, a Goodwin oscillator, and a reaction with a periodic source/sink term to examine how a diffusion barrier that partitions substrates controls reaction behavior. Namely, we examine how conditions representative of a densely packed cytosol, including reduced accessible volume fraction, non-specific interactions, and buffers, impede diffusion over nanometer length-scales. We find that diffusion barriers can modulate the frequencies and amplitudes of coupled diffusion-influenced reaction networks, as well as give rise to “compartments” of decoupled reactant populations. These effects appear to be intensified in the presence of buffers localized to the diffusion barrier. These findings have strong implications for the role of the cellular environment in tuning the dynamics of signaling pathways. PMID:26342355

  11. The effects of land cover and land use change on the contemporary carbon balance of the arctic and boreal terrestrial ecosystems of northern Eurasia

    USGS Publications Warehouse

    Hayes, Daniel J.; McGuire, A. David; Kicklighter, David W.; Burnside , Todd J.; Melillo, Jerry M.

    2010-01-01

    Recent changes in climate, disturbance regimes and land use and management systems in Northern Eurasia have the potential to disrupt the terrestrial sink of atmospheric CO2 in a way that accelerates global climate change. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial carbon dynamics across northern Eurasia over a recent 10-year period using a terrestrial biogeochemical process model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 45 Tg C year−1between 1997 and 2006. The simulation framework and subsequent analyses presented in this study attribute this shift to a large loss of carbon from boreal forest ecosystems, which experienced a trend of decreasing precipitation and a large area burned during this time period.

  12. A Comprehensive Study of Data Collection Schemes Using Mobile Sinks in Wireless Sensor Networks

    PubMed Central

    Khan, Abdul Waheed; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Bangash, Javed Iqbal

    2014-01-01

    Recently sink mobility has been exploited in numerous schemes to prolong the lifetime of wireless sensor networks (WSNs). Contrary to traditional WSNs where sensory data from sensor field is ultimately sent to a static sink, mobile sink-based approaches alleviate energy-holes issues thereby facilitating balanced energy consumption among nodes. In mobility scenarios, nodes need to keep track of the latest location of mobile sinks for data delivery. However, frequent propagation of sink topological updates undermines the energy conservation goal and therefore should be controlled. Furthermore, controlled propagation of sinks' topological updates affects the performance of routing strategies thereby increasing data delivery latency and reducing packet delivery ratios. This paper presents a taxonomy of various data collection/dissemination schemes that exploit sink mobility. Based on how sink mobility is exploited in the sensor field, we classify existing schemes into three classes, namely path constrained, path unconstrained, and controlled sink mobility-based schemes. We also organize existing schemes based on their primary goals and provide a comparative study to aid readers in selecting the appropriate scheme in accordance with their particular intended applications and network dynamics. Finally, we conclude our discussion with the identification of some unresolved issues in pursuit of data delivery to a mobile sink. PMID:24504107

  13. Isotope and fatty acid trends along continental shelf depth gradients: Inshore versus offshore hydrological influences on benthic trophic functioning

    NASA Astrophysics Data System (ADS)

    Chouvelon, T.; Schaal, G.; Grall, J.; Pernet, F.; Perdriau, M.; A-Pernet, E. J.; Le Bris, H.

    2015-11-01

    Anthropogenic activities and land-based inputs into the sea may influence the trophic structure and functioning of coastal and continental shelf ecosystems, despite the numerous opportunities and services the latter offer to humans and wildlife. In addition, hydrological structures and physical dynamics potentially influence the sources of organic matter (e.g., terrestrial versus marine, or fresh material versus detrital material) entering marine food webs. Understanding the significance of the processes that influence marine food webs and ecosystems (e.g., terrestrial inputs, physical dynamics) is crucially important because trophic dynamics are a vital part of ecosystem integrity. This can be achieved by identifying organic matter sources that enter food webs along inshore-offshore transects. We hypothesised that regional hydrological structures over wide continental shelves directly control the benthic trophic functioning across the shelf. We investigated this issue along two transects in the northern ecosystem of the Bay of Biscay (north-eastern Atlantic). Carbon and nitrogen stable isotope analysis (SIA) and fatty acid analysis (FAA) were conducted on different complementary ecosystem compartments that include suspended particulate organic matter (POM), sedimentary organic matter (SOM), and benthic consumers such as bivalves, large crustaceans and demersal fish. Samples were collected from inshore shallow waters (at ∼1 m in depth) to more than 200 m in depth on the offshore shelf break. Results indicated strong discrepancies in stable isotope (SI) and fatty acid (FA) compositions in the sampled compartments between inshore and offshore areas, although nitrogen SI (δ15N) and FA trends were similar along both transects. Offshore the influence of a permanently stratified area (described previously as a ;cold pool;) was evident in both transects. The influence of this hydrological structure on benthic trophic functioning (i.e., on the food sources available for consumers) was especially apparent across the northern transect, due to unusual carbon isotope compositions (δ13C) in the compartments. At stations under the cold pool, SI and FA organism compositions indicated benthic trophic functioning based on a microbial food web, including a significant contribution of heterotrophic planktonic organisms and/or of SOM, notably in stations under the cold pool. On the contrary, inshore and shelf break areas were characterised by a microalgae-based food web (at least in part for the shelf break area, due to slope current and upwelling that can favour fresh primary production sinking on site). SIA and FAA were relevant and complementary tools, and consumers better medium- to long-term system integrators than POM samples, for depicting the trophic functioning and dynamics along inshore-offshore transects over continental shelves.

  14. Variation in carbohydrate source-sink relations of forest and treeline white spruce in southern, interior and northern Alaska

    Treesearch

    Bjartmar Sveinbjornsson; Matthew Smith; Tumi Traustason; Roger W. Ruess; Patrick F. Sullivan

    2010-01-01

    Two opposing hypotheses have been presented to explain reduced tree growth at the treeline, compared with growth in lower elevation or lower latitude forests: the carbon source and sink limitation hypotheses. The former states that treeline trees have an unfavorable carbon balance and cannot support growth of the magnitude observed at lower elevations or latitudes,...

  15. Source/sink patterns of disturbance and cross-scale mismatches in a panarchy of social-ecological landscapes

    Treesearch

    Nicola1 Zaccarelli; Petrosillo; Irene; Giovanni Zurlini; KurtHans Riitters

    2008-01-01

    Land-use change is one of the major factors affecting global environmental change and represents a primary human effect on natural systems. Taking into account the scales and patterns of human land uses as source/sink disturbance systems, we describe a framework to characterize and interpret the spatial patterns of disturbances along a continuum of scales in a panarchy...

  16. Sources and Sinks: Elucidating Mechanisms, Documenting Patterns, and Forecasting Impacts

    DTIC Science & Technology

    2017-01-18

    Molecular Ecology 17: 3628-3639. Fazio III, V. W., Miles, D. B., & White, M. M. 2004. Genetic differentiation in the endangered Black-capped Vireo...exploration of accuracy and power. Molecular Ecology 13: 55–65. Raymond, M., & Rousset, F. 1995. GENEPOP (version 1.2): population genetics software for...SUPPLEMENTAL GENETICS MEMO Sources and Sinks: Elucidating Mechanisms, Documenting Patterns, and Forecasting Impacts SERDP Project RC-2120

  17. Interannual variability in dissolved inorganic nutrients in northern San Francisco Bay estuary

    USGS Publications Warehouse

    Peterson, D.H.; Smith, R.E.; Hager, S.W.; Harmon, D.D.; Herndon, R.E.; Schemel, L.E.

    1985-01-01

    Nearly two decades of seasonal dissolved inorganic nutrient-salinity distributions in northern San Francisco Bay estuary (1960-1980) illustrate interannual variations in effects of river flow (a nutrient source) and phytoplankton productivity (a nutrient sink). During winter, nutrient sources dominate the nutrient-salinity distribution patterns (nutrients are at or exceed conservative mixing concentrations). During summer, however, the sources and sinks are in close competition. In summers of wet years, the effects of increased river flow often dominate the nutrient distributions (nutrients are at or less than conservative mixing concentrations), whereas in summers of dry years, phytoplankton productivity dominates (the very dry years 1976-1977 were an exception for reasons not yet clearly known). Such source/sink effects also vary with chemical species. During summer the control of phytoplankton on nutrient distributions is apparently strongest for ammonium, less so for nitrate and silica, and is the least for phosphate. Furthermore, the strength of the silica sink (diatom productivity) is at a maximum at intermediate river flows. This relation, which is in agreement with other studies based on phytoplankton abundance and enumeration, is significant to the extent that diatoms are an important food source for herbivores. The balance or lack of balance between nutrient sources and sinks varies from one estuary to another just as it can from one year to another within the same estuary. At one extreme, in some estuaries river flow dominates the estuarine dissolved inorganic nutrient distributions throughout most of the year. At the other extreme, phytoplankton productivity dominates. In northern San Francisco Bay, for example, the phytoplankton nutrient sink is not as strong as in less turbid estuaries. In this estuary, however, river effects, which produce or are associated with near-conservative nutrient distributions, are strong even at flows less than mean-annual flow. Thus, northern San Francisco Bay appears to be an estuary in between the two extremes and is shifted closer to one extreme or the other depending on interannual variations in river flow. ?? 1985 Dr W. Junk Publishers.

  18. Energy efficient sensor scheduling with a mobile sink node for the target tracking application.

    PubMed

    Maheswararajah, Suhinthan; Halgamuge, Saman; Premaratne, Malin

    2009-01-01

    Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performance.

  19. Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application

    PubMed Central

    Maheswararajah, Suhinthan; Halgamuge, Saman; Premaratne, Malin

    2009-01-01

    Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performance PMID:22399934

  20. Baseline-dependent responses of soil organic carbon dynamics to climate and land disturbances

    USGS Publications Warehouse

    Tan, Zhengxi; Liu, Shuguang

    2013-01-01

    Terrestrial carbon (C) sequestration through optimizing land use and management is widely considered a realistic option to mitigate the global greenhouse effect. But how the responses of individual ecosystems to changes in land use and management are related to baseline soil organic C (SOC) levels still needs to be evaluated at various scales. In this study, we modeled SOC dynamics within both natural and managed ecosystems in North Dakota of the United States and found that the average SOC stock in the top 20 cm depth of soil lost at a rate of 450 kg C ha−1 yr−1 in cropland and 110 kg C ha−1 yr−1 in grassland between 1971 and 1998. Since 1998, the study area had become a SOC sink at a rate of 44 kg C ha−1 yr−1. The annual rate of SOC change in all types of lands substantially depends on the magnitude of initial SOC contents, but such dependency varies more with climatic variables within natural ecosystems and with management practices within managed ecosystems. Additionally, soils with high baseline SOC stocks tend to be C sources following any land surface disturbances, whereas soils having low baseline C contents likely become C sinks following conservation management.

  1. In the line of fire: the peatlands of Southeast Asia

    PubMed Central

    Hooijer, A.

    2016-01-01

    Peatlands are a significant component of the global carbon (C) cycle, yet despite their role as a long-term C sink throughout the Holocene, they are increasingly vulnerable to destabilization. Nowhere is this shift from sink to source happening more rapidly than in Southeast Asia, and nowhere else are the combined pressures of land-use change and fire on peatland ecosystem C dynamics more evident nor the consequences more apparent. This review focuses on the peatlands of this region, tracing the link between deforestation and drainage and accelerating C emissions arising from peat mineralization and fire. It focuses on the implications of the recent increase in fire occurrence for air quality, human health, ecosystem resilience and the global C cycle. The scale and controls on peat-driven C emissions are addressed, noting that although fires cause large, temporary peaks in C flux to the atmosphere, year-round emissions from peat mineralization are of a similar magnitude. The review concludes by advocating land management options to reduce future fire risk as part of wider peatland management strategies, while also proposing that this region's peat fire dynamic could become increasingly relevant to northern peatlands in a warming world. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216508

  2. Reconciliation of the carbon budget in the ocean's twilight zone.

    PubMed

    Giering, Sarah L C; Sanders, Richard; Lampitt, Richard S; Anderson, Thomas R; Tamburini, Christian; Boutrif, Mehdi; Zubkov, Mikhail V; Marsay, Chris M; Henson, Stephanie A; Saw, Kevin; Cook, Kathryn; Mayor, Daniel J

    2014-03-27

    Photosynthesis in the surface ocean produces approximately 100 gigatonnes of organic carbon per year, of which 5 to 15 per cent is exported to the deep ocean. The rate at which the sinking carbon is converted into carbon dioxide by heterotrophic organisms at depth is important in controlling oceanic carbon storage. It remains uncertain, however, to what extent surface ocean carbon supply meets the demand of water-column biota; the discrepancy between known carbon sources and sinks is as much as two orders of magnitude. Here we present field measurements, respiration rate estimates and a steady-state model that allow us to balance carbon sources and sinks to within observational uncertainties at the Porcupine Abyssal Plain site in the eastern North Atlantic Ocean. We find that prokaryotes are responsible for 70 to 92 per cent of the estimated remineralization in the twilight zone (depths of 50 to 1,000 metres) despite the fact that much of the organic carbon is exported in the form of large, fast-sinking particles accessible to larger zooplankton. We suggest that this occurs because zooplankton fragment and ingest half of the fast-sinking particles, of which more than 30 per cent may be released as suspended and slowly sinking matter, stimulating the deep-ocean microbial loop. The synergy between microbes and zooplankton in the twilight zone is important to our understanding of the processes controlling the oceanic carbon sink.

  3. Modelling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen

    PubMed Central

    Bancal, Marie-Odile; Hansart, Amandine; Sache, Ivan; Bancal, Pierre

    2012-01-01

    Background and Aims Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina. Methods One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling. Key Results Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the duration of grain filling. Conclusions Source–sink modelling holds the promise of accounting for plant–pathogen interactions over time under fluctuating climatic/lighting conditions in a robust way. PMID:22589327

  4. A large and persistent carbon sink in the world's forests

    Treesearch

    Yude Pan; Richard A. Birdsey; Jingyun Fang; Richard Houghton; Pekka E. Kauppi; Werner A. Kurz; Oliver L. Phillips; Anatoly Shvidenko; Simon L. Lewis; Josep G. Canadell; Philippe Ciais; Robert B. Jackson; Stephen W. Pacala; A. David McGuire; Shilong Piao; Aapo Rautiainen; Stephen Sitch; Daniel Hayes

    2011-01-01

    The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year-1) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg...

  5. Dynamic sinking behaviour in marine phytoplankton: rapid changes in buoyancy may aid in nutrient uptake.

    PubMed

    Gemmell, Brad J; Oh, Genesok; Buskey, Edward J; Villareal, Tracy A

    2016-10-12

    Phytoplankton sinking is an important property that can determine community composition in the photic zone and material loss to the deep ocean. To date, studies of diatom suspension have relied on bulk measurements with assumptions that bulk rates adequately capture the essential characteristics of diatom sinking. However, recent work has illustrated that individual diatom sinking rates vary considerably from the mean bulk rate. In this study, we apply high-resolution optical techniques, individual-based observations of diatom sinking and a recently developed method of flow visualization around freely sinking cells. The results show that in both field samples and laboratory cultures, some large species of centric diatoms are capable of a novel behaviour, whereby cells undergo bursts of rapid sinking that alternate with near-zero sinking rates on the timescales of seconds. We also demonstrate that this behaviour is under direct metabolic control of the cell. We discuss these results in the context of implications for nutrient flux to the cell surface. While nutrient flux in large diatoms increases during fast sinking, current mass transport models cannot incorporate the unsteady sinking behaviour observed in this study. However, large diatoms appear capable of benefiting from the enhanced nutrient flux to their surface during rapid sinking even during brief intervening periods of near-zero sinking rates. © 2016 The Author(s).

  6. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  7. Numerical analysis of high-power broad-area laser diode with improved heat sinking structure using epitaxial liftoff technique

    NASA Astrophysics Data System (ADS)

    Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young

    2018-02-01

    The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.

  8. Comparison of atmospheric CO2 mole fractions and source-sink characteristics at four WMO/GAW stations in China

    NASA Astrophysics Data System (ADS)

    Cheng, Siyang; Zhou, Lingxi; Tans, Pieter P.; An, Xingqin; Liu, Yunsong

    2018-05-01

    As CO2 is a primary driving factor of climate change, the mole fraction and source-sink characteristics of atmospheric CO2 over China are constantly inferred from multi-source and multi-site data. In this paper, we compared ground-based CO2 measurements with satellite retrievals and investigated the source-sink regional representativeness at China's four WMO/GAW stations. The results indicate that, firstly, atmospheric CO2 mole fractions from ground-based sampling measurement and Greenhouse Gases Observing Satellite (GOSAT) products reveal similar seasonal variation. The seasonal amplitude of the column-averaged CO2 mole fractions is smaller than that of the ground-based CO2 at all stations. The extrema of the seasonal cycle of ground-based and column CO2 mole fractions are basically synchronous except a slight phase delay at Lin'an (LAN) station. For the two-year average, the column CO2 is lower than ground-based CO2, and both of them reveal the lowest CO2 mole fraction at Waliguan (WLG) station. The lowest (∼4 ppm) and largest (∼8 ppm) differences between the column and ground-based CO2 appear at WLG and Longfengshan (LFS) stations, respectively. The CO2 mole fraction and its difference between GOSAT and ground-based measurement are smaller in summer than in winter. The differences of summer column CO2 among these stations are also much smaller than their ground-based counterparts. In winter, the maximum of ground-based CO2 mole fractions and the greatest difference between the two (ground-based and column) datasets appear at the LFS station. Secondly, the representative areas of the monthly CO2 background mole fractions at each station were found by employing footprints and emissions. Smaller representative areas appeared at Shangdianzi (SDZ) and LFS, whereas larger ones were seen at WLG and LAN. The representative areas in summer are larger than those in winter at WLG and SDZ, but the situation is opposite at LAN and LFS. The representative areas for the stations are different in summer and winter, distributed in four typical regions. The CO2 net fluxes in these representative areas show obvious seasonal cycles with similar trends but different varying ranges and different time of the strongest sink. The intensities and uncertainties of the CO2 fluxes are different at different stations in different months and source-sink sectors. Overall, the WLG station is almost a carbon sink, but the other three stations present stronger carbon sources for most of the year. These findings could be conducive to the application of multi-source CO2 data and the understanding of regional CO2 source-sink characteristics and patterns over China.

  9. Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP/NCAR ranalysis. Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanai, Michio; Tomita, Tomohiko

    1997-11-01

    In this paper, an analysis of the heat and moisture budgets of the troposphere is revised and extended. The analysis is based on the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1994. The seasonal and interannual variability of heat sources and sinks and the nature of heating over various geographical locations is examined in detail. Results presented include global distributions of the 15-year mean of the vertically integrated heat source and moisture sink and the outgoing longwave radiation flux for northern winter and northern summer. A time series of monthlymore » mean anomalies of the apparent heat source, the apparent moisture sink, outgoing longwave radiation, sea surface temperature, and divergence at wind fields of 850 hPa and 200 hPa are presented for the equatorial Indian Ocean, the equatorial eastern Pacific Ocean, western Tibet, and eastern Tibet. In the equatorial Indian Ocean, short period oscillation is superimposed upon longer periods. Over the eastern Pacific, a longer periodicity is dominant and the variability of the heat source is very well correlated with similar variations of outgoing longwave radiation, sea surface temperature, and horizontal divergence. The high correlation with these variables suggests that anomalous heating is accompanied by intensified convective activity favored by warmer sea surface temperature. 13 refs., 5 figs.« less

  10. Sink populations in carnivore management: cougar demography and immigration in a hunted population.

    PubMed

    Robinson, Hugh S; Wielgus, Robert B; Cooley, Hilary S; Cooley, Skye W

    2008-06-01

    Carnivores are widely hunted for both sport and population control, especially where they conflict with human interests. It is widely believed that sport hunting is effective in reducing carnivore populations and related human-carnivore conflicts, while maintaining viable populations. However, the way in which carnivore populations respond to harvest can vary greatly depending on their social structure, reproductive strategies, and dispersal patterns. For example, hunted cougar (Puma concolor) populations have shown a great degree of resiliency. Although hunting cougars on a broad geographic scale (> 2000 km2) has reduced densities, hunting of smaller areas (i.e., game management units, < 1000 km2), could conceivably fail because of increased immigration from adjacent source areas. We monitored a heavily hunted population from 2001 to 2006 to test for the effects of hunting at a small scale (< 1000 km2) and to gauge whether population control was achieved (lambda < or = 1.0) or if hunting losses were negated by increased immigration allowing the population to remain stable or increase (lambda > or = 1.0). The observed growth rate of 1.00 was significantly higher than our predicted survival/fecundity growth rates (using a Leslie matrix) of 0.89 (deterministic) and 0.84 (stochastic), with the difference representing an 11-16% annual immigration rate. We observed no decline in density of the total population or the adult population, but a significant decrease in the average age of independent males. We found that the male component of the population was increasing (observed male population growth rate, lambda(OM) = 1.09), masking a decrease in the female component (lambda(OF) = 0.91). Our data support the compensatory immigration sink hypothesis; cougar removal in small game management areas (< 1000 km2) increased immigration and recruitment of younger animals from adjacent areas, resulting in little or no reduction in local cougar densities and a shift in population structure toward younger animals. Hunting in high-quality habitats may create an attractive sink, leading to misinterpretation of population trends and masking population declines in the sink and surrounding source areas.

  11. Sinking bubbles in stout beers

    NASA Astrophysics Data System (ADS)

    Lee, W. T.; Kaar, S.; O'Brien, S. B. G.

    2018-04-01

    A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.

  12. Geostationary Carbon Process Mapper (GCPM)

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natraj, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung

    2012-01-01

    Geostationary Carbon Process Mapper (GCPM) is an earth science mission to measure key atmospheric trace gases related to climate change and human activity.Understanding of sources and sinks of CO2 is currently limited by frequency of observations and uncertainty in vertical transport. GCPM improves this situation by making simultaneous high resolution measurements of CO2, CH4, CF, and CO in near-IR, many times per day. GCPM is able to investigate processes with time scales of minutes to hours. CO2, CH4, CF, Co selected because their combination provides information needed to disentangle natural and anthropogenic sources/sinks. Quasi-continuous monitoring effectively eliminates atmospheric transport uncertainties from source/sink inversion modeling. will have one instrument (GeoFTS), hosted on a commercial communications satellite, planned for two years operation. GCPM will affordably advance the understanding of observed cycle variability improving future climate projections.

  13. Understanding methane variability from 1980 - 2015 using inversions of methane, δ13C and ethane

    NASA Astrophysics Data System (ADS)

    Thompson, Rona; Nisbet, Euan

    2017-04-01

    Atmospheric methane (CH4) increased globally during the 20th century, from a pre-industrial value of approximately 722 ppb to 1773 ppb in 1999. The upward trend, however, was interrupted between 1999 and 2006, when the atmospheric growth rate of CH4 was close to zero. From 2007, atmospheric CH4 started to increase again and, in 2014, the growth rate was substantially faster (12.5 ppb/y) than in any other year since 2007. Changes in the atmospheric growth rate indicate changes in the balance of CH4 sources and sinks, however, the cause of the 1999-2006 stabilization and subsequent rise in atmospheric CH4, and its attribution to different sources is still not fully resolved. Various explanations have been proposed for the pause in the growth, including a reduction in fossil fuel and wetland emissions, and for its renewed increase, such as increasing emissions from wetlands, enteric fermentation, and fossil fuels, as well as a decline in the OH sink. To better constrain the sources and sinks of CH4, we have performed an inversion using the AGAGE 12-box model of the atmosphere using atmospheric observations of CH4, δ13C, and of ethane. Using observations of these 3 atmospheric tracers simultaneously, a stronger constraint is placed on the different sources, as well as the principal atmospheric sink via oxidation by OH. In the model, we account for all emissions grouped into microbial, fossil fuel, biomass burning, landfill and ocean sources, as well as the soil oxidation sink. We also account for the atmospheric sink of CH4 and ethane via oxidation by OH and Cl radicals. The modelled lifetimes of CH4 and ethane were 8.2 years and 1.3 months, respectively. Inversions were also performed in which the OH sink was optimized simultaneously with the emissions. We find that fossil fuel emissions were underestimated in the northern mid to high latitudes in the 1980s but were overestimated from the mid 1990s onwards with respect to the prior (EDGAR-4.2), and that there is no evidence for a recent increase. For microbial emissions, we find an increase in emissions in the northern low and high latitudes from the early 2000s. The inversion also shifts microbial emissions from the northern to the southern low latitudes with respect to the prior (LPX-Bern for wetlands and EDGAR-4.2 for enteric fermentation). Finally, we do not find any evidence for a recent decrease in the OH sink.

  14. An INCA model for pathogens in rivers and catchments: Model structure, sensitivity analysis and application to the River Thames catchment, UK.

    PubMed

    Whitehead, P G; Leckie, H; Rankinen, K; Butterfield, D; Futter, M N; Bussi, G

    2016-12-01

    Pathogens are an ongoing issue for catchment water management and quantifying their transport, loss and potential impacts at key locations, such as water abstractions for public supply and bathing sites, is an important aspect of catchment and coastal management. The Integrated Catchment Model (INCA) has been adapted to model the sources and sinks of pathogens and to capture the dominant dynamics and processes controlling pathogens in catchments. The model simulates the stores of pathogens in soils, sediments, rivers and groundwaters and can account for diffuse inputs of pathogens from agriculture, urban areas or atmospheric deposition. The model also allows for point source discharges from intensive livestock units or from sewage treatment works or any industrial input to river systems. Model equations are presented and the new pathogens model has been applied to the River Thames in order to assess total coliform (TC) responses under current and projected future land use. A Monte Carlo sensitivity analysis indicates that the input coliform estimates from agricultural sources and decay rates are the crucial parameters controlling pathogen behaviour. Whilst there are a number of uncertainties associated with the model that should be accounted for, INCA-Pathogens potentially provides a useful tool to inform policy decisions and manage pathogen loading in river systems. Copyright © 2016. Published by Elsevier B.V.

  15. Increased Photochemical Efficiency in Cyanobacteria via an Engineered Sucrose Sink.

    PubMed

    Abramson, Bradley W; Kachel, Benjamin; Kramer, David M; Ducat, Daniel C

    2016-12-01

    In plants, a limited capacity to utilize or export the end-products of the Calvin-Benson cycle (CB) from photosynthetically active source cells to non-photosynthetic sink cells can result in reduced carbon capture and photosynthetic electron transport (PET), and lowered photochemical efficiency. The down-regulation of photosynthesis caused by reduced capacity to utilize photosynthate has been termed 'sink limitation'. Recently, several cyanobacterial and algal strains engineered to overproduce target metabolites have exhibited increased photochemistry, suggesting that possible source-sink regulatory mechanisms may be involved. We directly examined photochemical properties following induction of a heterologous sucrose 'sink' in the unicellular cyanobacterium Synechococcus elongatus PCC 7942. We show that total photochemistry increases proportionally to the experimentally controlled rate of sucrose export. Importantly, the quantum yield of PSII (ΦII) increases in response to sucrose export while the PET chain becomes more oxidized from less PSI acceptor-side limitation, suggesting increased CB activity and a decrease in sink limitation. Enhanced photosynthetic activity and linear electron flow are detectable within hours of induction of the heterologous sink and are independent of pigmentation alterations or the ionic/osmotic effects of the induction system. These observations provide direct evidence that secretion of heterologous carbon bioproducts can be used as an alternative approach to improve photosynthetic efficiency, presumably by by-passing sink limitation. Our results also suggest that engineered microalgal production strains are valuable alternative models for examining photosynthetic sink limitation because they enable greater control and monitoring of metabolite fluxes relative to plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Carbon Cycle in South China Sea: Flux, Controls and Global Implications

    NASA Astrophysics Data System (ADS)

    Dai, M.; Cao, Z.; Yang, W.; Guo, X.; Yin, Z.; Gan, J.

    2016-12-01

    The contemporary coastal ocean is generally seen as a significant CO2 sink of 0.2-0.4 Pg C/yr at the global scale. However, mechanistic understanding of the coastal ocean carbon cycle remains limited, leading to the unanswered question of why some coastal systems are sources while others are sinks of atmospheric CO2. As the largest marginal sea of Northern Pacific, the South China Sea (SCS) is a mini-ocean with wide shelves in both its southern and northern parts. Its northern shelf, which receives significant land inputs from the Pearl River, a world major river, can be categorized as a River-Dominated Margin (RioMar) during peak discharges, and is characterized as a CO2 sink to the atmosphere. The SCS basin is identified as an Ocean-Dominated Margin (OceMar) and a CO2 source. OceMar is characterized by exchange with the open ocean via a two-dimensional (at least) process, i.e., the horizontal intrusion of open ocean water and subsequent vertical mixing and upwelling. Depending on the different ratios of dissolved inorganic carbon (DIC) and nutrients from the source waters into the continental margins, the relative consumption or removal bwtween DIC and nutrients, when being transported into the euphotic zones where biogeochemical processes take over, determines the CO2 fluxes. Thus, excess DIC relative to nutrients existing in the upper layer will lead to CO2 degassing. The CO2 fluxes in both RioMars and OceMars can be quantified using a semi-analytical diagnostic approach by coupling the physical dynamics and biogeochemical processes. We extended our mechanistic studies in the SCS to other OceMars including the Caribbean Sea, the Arabian Sea, and the upwelling system off the Oregon-California coast, and RioMars including the East China Sea and Amazon River plume to demonstrate the global implications of our SCS carbon studies.

  17. Understanding the hydrologic sources and sinks in the Nile Basin using multisource climate and remote sensing data sets

    USGS Publications Warehouse

    Senay, Gabriel; Velpuri, Naga Manohar; Bohms, Stefanie; Demissie, Yonas; Gebremichael, Mekonnen

    2014-01-01

    In this study, we integrated satellite-drived precipitation and modeled evapotranspiration data (2000–2012) to describe spatial variability of hydrologic sources and sinks in the Nile Basin. Over 2000–2012 period, 4 out of 11 countries (Ethiopia, Tanzania, Kenya, and Uganda) in the Nile Basin showed a positive water balance while three downstream countries (South Sudan, Sudan, and Egypt) showed a negative balance. Gravity Recovery and Climate Experiment (GRACE) mass deviation in storage data analysis showed that at annual timescales, the Nile Basin storage change is substantial while over longer time periods, it is minimal (<1% of basin precipitation). We also used long-term gridded runoff and river discharge data (1869–1984) to understand the discrepancy in the observed and expected flow along the Nile River. The top three countries that contribute most to the flow are Ethiopia, Tanzania, and Kenya. The study revealed that ∼85% of the runoff generated in the equatorial region is lost in an interstation basin that includes the Sudd wetlands in South Sudan; this proportion is higher than the literature reported loss of 50% at the Sudd wetlands alone. The loss in runoff and flow volume at different sections of the river tend to be more than what can be explained by evaporation losses, suggesting a potential recharge to deeper aquifers that are not connected to the Nile channel systems. On the other hand, we also found that the expected average annual Nile flow at Aswan is greater (97 km3) than the reported amount (84 km3). Due to the large variations of the reported Nile flow at different locations and time periods, the study results indicate the need for increased hydrometeorological instrumentation of the basin. The study also helped improve our understanding of the spatial dynamics of water sources and sinks in the Nile Basin and identified emerging hydrologic questions that require further attention.

  18. Understanding the hydrologic sources and sinks in the Nile Basin using multisource climate and remote sensing data sets

    NASA Astrophysics Data System (ADS)

    Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Demissie, Yonas; Gebremichael, Mekonnen

    2014-11-01

    In this study, we integrated satellite-drived precipitation and modeled evapotranspiration data (2000-2012) to describe spatial variability of hydrologic sources and sinks in the Nile Basin. Over 2000-2012 period, 4 out of 11 countries (Ethiopia, Tanzania, Kenya, and Uganda) in the Nile Basin showed a positive water balance while three downstream countries (South Sudan, Sudan, and Egypt) showed a negative balance. Gravity Recovery and Climate Experiment (GRACE) mass deviation in storage data analysis showed that at annual timescales, the Nile Basin storage change is substantial while over longer time periods, it is minimal (<1% of basin precipitation). We also used long-term gridded runoff and river discharge data (1869-1984) to understand the discrepancy in the observed and expected flow along the Nile River. The top three countries that contribute most to the flow are Ethiopia, Tanzania, and Kenya. The study revealed that ˜85% of the runoff generated in the equatorial region is lost in an interstation basin that includes the Sudd wetlands in South Sudan; this proportion is higher than the literature reported loss of 50% at the Sudd wetlands alone. The loss in runoff and flow volume at different sections of the river tend to be more than what can be explained by evaporation losses, suggesting a potential recharge to deeper aquifers that are not connected to the Nile channel systems. On the other hand, we also found that the expected average annual Nile flow at Aswan is greater (97 km3) than the reported amount (84 km3). Due to the large variations of the reported Nile flow at different locations and time periods, the study results indicate the need for increased hydrometeorological instrumentation of the basin. The study also helped improve our understanding of the spatial dynamics of water sources and sinks in the Nile Basin and identified emerging hydrologic questions that require further attention.

  19. Episodic Sediment Supply from Mountains and Downstream Emplacement within Large Lowland Basins: Seeking a Sink-to-Source Synthesis

    NASA Astrophysics Data System (ADS)

    Aalto, R. E.

    2009-12-01

    Application of a new geochronological method for high-resolution 210-Pb dating over the past 5 years has facilitated the identification of individual floodplain sedimentation events across disparate large river basins: three examples from ongoing research include a pristine 720,000 km2 basin in northern Bolivia, a 36,000 km2 basin in Papua New Guinea, and the 70,000 km2 Sacramento River Basin in California. Published and new research suggests that large, rapid-rise, cold-phase ENSO floods account for the preponderance of sediment accumulation within the two tropical systems, and that extreme floods associated with ENSO similarly correspond to transport and deposition of material within the extensive floodways along the Sacramento River. The vast scale of these temporally discrete deposits within such large river systems (typically 10s to 100s of millions of tonnes) begs the question: where did all this material come from? Huge deposits require similarly massive episodic supply and transport of material from upstream, often specifically within the very short timescale of a single large flood event. What data and techniques are available to track and balance such enormous mass budgets? This presentation explores this general theme with new data from the three iconic systems identified above. New daily discharge data are coupled with 210-Pb concentrations and particle size distribution in sediment to elucidate the considerable inter-annual variation of sediment supply from the Andes, resulting from the interaction of Andean erosion, anthropogenic effects, and the dynamics of extreme climate. Biogeochemical and/or geochemical tracers can be employed for all three study basins to track sediment from source to sink (or alternatively, working from the well-defined sink to the less-constrained source), providing insight into the geomorphic processes that modulate the efflux, transport, intermediate channel/floodplain storage, and downstream delivery of sediment during extreme flooding events. Landslide in the Bolivian Andes: Does episodic erosion correlate with episodic deposition?

  20. Zoonotic disease in a peripheral population: persistence and transmission of Leishmania major in a putative sink-source system in the Negev Highlands, Israel.

    PubMed

    Berger, Ruti; Wasserberg, Gideon; Warburg, Alon; Orshan, Laor; Kotler, Burt P

    2014-08-01

    Populations at the edge of their geographic distributions are referred to as peripheral populations. Very little attention has been given to this topic in the context of persistence of infectious disease in natural populations. In this study, we examined this question using zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania major in the Negev Desert of Israel as a model system. Here, we suggest that the regional persistence of Phlebotomus papatasi populations and L. major transmission in the Sede Boqer region could be explained through processes akin to sink-source and/or mainland-island metapopulation dynamics. Given its potentially enzootically superior ecological conditions, we hypothesize that the Zin Valley ecotope constitutes the "mainland" or the "source" patch for the Sede Boqer area where L. major transmission is persistent and resistant to local extinctions (die-outs) whereas the local sand fly populations on the Zin Plateau ("island patch" or "sink patch") are more prone to local extinctions. Between 2007 and 2008, we trapped sand flies and sand rats in the two areas and compared sand fly abundance and L. major infection prevalence in both. In both 2007 and 2008, sand fly abundance was high and continuous in the Zin Wadi but low and discontinuous in the Zin Plateau. Infection prevalence of sand rats was significantly higher in the Wadi (13%) compared with the Zin Plateau (3%). Minimum infection rate in sand flies did not differ significantly between the two areas. Overall, our results are consistent with the premise that the Zin Valley population is relatively robust in terms of L. major transmission, whereas transmission is potentially more tenuous in the plateau. Understanding the biotic and abiotic processes enabling the persistence of L. major and other vector-borne diseases in peripheral disease foci is important for predicting the effect of anthropogenic land use and climate change.

  1. Population demographics of two local South Carolina mourning dove populations

    USGS Publications Warehouse

    McGowan, D.P.; Otis, D.L.

    1998-01-01

    The mourning dove (Zenaida macroura) call-count index had a significant (P 2,300 doves and examined >6,000 individuals during harvest bag checks. An age-specific band recovery model with time- and area-specific recovery rates, and constant survival rates, was chosen for estimation via Akaike's Information Criterion (AIC), likelihood ratio, and goodness-of-fit criteria. After-hatching-year (AHY) annual survival rate was 0.359 (SE = 0.056), and hatching-year (HY) annual survival rate was 0.118 (SE = 0.042). Average estimated recruitment per adult female into the prehunting season population was 3.40 (SE = 1.25) and 2.32 (SE = 0.46) for the 2 study areas. Our movement data support earlier hypotheses of nonmigratory breeding and harvested populations in South Carolina. Low survival rates and estimated population growth rate in the study areas may be representative only of small-scale areas that are heavily managed for dove hunting. Source-sink theory was used to develop a model of region-wide populations that is composed of source areas with positive growth rates and sink areas of declining growth. We suggest management of mourning doves in the Southeast might benefit from improved understanding of local population dynamics, as opposed to regional-scale population demographics.

  2. Tropical forests and the changing earth system.

    PubMed

    Lewis, Simon L

    2006-01-29

    Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.

  3. Variability in organic carbon reactivity across lake residence time and trophic gradients

    NASA Astrophysics Data System (ADS)

    Evans, Chris D.; Futter, Martyn N.; Moldan, Filip; Valinia, Salar; Frogbrook, Zoe; Kothawala, Dolly N.

    2017-11-01

    The transport of dissolved organic carbon from land to ocean is a large dynamic component of the global carbon cycle. Inland waters are hotspots for organic matter turnover, via both biological and photochemical processes, and mediate carbon transfer between land, oceans and atmosphere. However, predicting dissolved organic carbon reactivity remains problematic. Here we present in situ dissolved organic carbon budget data from 82 predominantly European and North American water bodies with varying nutrient concentrations and water residence times ranging from one week to 700 years. We find that trophic status strongly regulates whether water bodies act as net dissolved organic carbon sources or sinks, and that rates of both dissolved organic carbon production and consumption can be predicted from water residence time. Our results suggest a dominant role of rapid light-driven removal in water bodies with a short water residence time, whereas in water bodies with longer residence times, slower biotic production and consumption processes are dominant and counterbalance one another. Eutrophication caused lakes to transition from sinks to sources of dissolved organic carbon. We conclude that rates and locations of dissolved organic carbon processing and associated CO2 emissions in inland waters may be misrepresented in global carbon budgets if temporal and spatial reactivity gradients are not accounted for.

  4. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics. ?? 2010 by the Ecological Society of America.

  5. Inventory of U.S. greenhouse gas emissions and sinks: 1990-2008

    DOT National Transportation Integrated Search

    2010-04-01

    An emissions inventory that identifies and quantifies a country's primary anthropogenic sources and sinks of greenhouse gases is essential for addressing climate change. This inventory adheres to both 1) a comprehensive and detailed set of methodolog...

  6. Sources and sinks for ammonia and nitrite on the early Earth and the reaction of nitrite with ammonia

    NASA Technical Reports Server (NTRS)

    Summers, D. P.

    1999-01-01

    An analysis of sources and sinks for ammonia and nitrite on the early Earth was conducted. Rates of formation and destruction, and steady state concentrations of both species were determined by steady state kinetics. The importance of the reaction of nitrite with ammonia on the feasibility of ammonia formation from nitrite was evaluated. The analysis considered conditions such as temperature, ferrous iron concentration, and pH. For sinks we considered the reduction of nitrite to ammonia, reaction between nitrite and ammonia, photochemical destruction of both species, and destruction at hydrothermal vents. Under most environmental conditions, the primary sink for nitrite is reduction to ammonia. The reaction between ammonia and nitrite is not an important sink for either nitrite or ammonia. Destruction at hydrothermal vents is important at acidic pH's and at low ferrous iron concentrations. Photochemical destruction, even in a worst case scenario, is unimportant under many conditions except possibly under acidic, low iron concentration, or low temperature conditions. The primary sink for ammonia is photochemical destruction in the atmosphere. Under acidic conditions, more of the ammonia is tied up as ammonium (reducing its vapor pressure and keeping it in solution) and hydrothermal destruction becomes more important.

  7. Belowground carbon balance and carbon accumulation rate in the successional series of monsoon evergreen broad-leaved forest

    USGS Publications Warehouse

    Zhou, G.; Liu, S.; Tang, X.; Ouyang, X.; Zhang, Dongxiao; Liu, J.; Yan, J.; Zhou, C.; Luo, Y.; Guan, L.; Liu, Yajing

    2006-01-01

    The balance, accumulation rate and temporal dynamics of belowground carbon in the successional series of monsoon evergreen broadleaved forest are obtained in this paper, based on long-term observations to the soil organic matter, input and standing biomass of litter and coarse woody debris, and dissolved organic carbon carried in the hydrological process of subtropical climax forest ecosystem—monsoon evergreen broad-leaved forest, and its two successional forests of natural restoration—coniferous and broad-leaved mixed forest and Pinus massoniana forest, as well as data of root biomass obtained once every five years and respiration measurement of soil, litter and coarse woody debris respiration for 1 year. The major results include: the belowground carbon pools of monsoon evergreen broad-leaved forest, coniferous and broad-leaved mixed forest, and Pinus massoniana forest are 23191 ± 2538 g · m−2, 16889 ± 1936 g · m−2 and 12680 ± 1854 g · m−2, respectively, in 2002. Mean annual carbon accumulation rates of the three forest types during the 24a from 1978 to 2002 are 383 ± 97 g · m−2 · a−1, 193 ± 85 g · m−2 · a−1 and 213 ± 86 g · m−2 · a−1, respectively. The belowground carbon pools in the three forest types keep increasing during the observation period, suggesting that belowground carbon pools are carbon sinks to the atmosphere. There are seasonal variations, namely, they are strong carbon sources from April to June, weak carbon sources from July to September; while they are strong carbon sinks from October to November, weak carbon sinks from December to March.

  8. Permafrost carbon-climate feedbacks accelerate global warming.

    PubMed

    Koven, Charles D; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles

    2011-09-06

    Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent.

  9. Reduction of fecal indicator bacteria (FIB) in the Ballona Wetlands saltwater marsh (Los Angeles County, California, USA) with implications for restoration actions.

    PubMed

    Dorsey, John H; Carter, Patrick M; Bergquist, Sean; Sagarin, Rafe

    2010-08-01

    A benefit of wetland preservation and restoration is the ecosystem service of improving water quality, typically assessed based on bacterial loading. The Ballona Wetlands, a degraded salt marsh of approximately 100 ac located on the southern border of Marina Del Rey (Los Angeles County, California, USA) are currently the focus of publicly funded restoration planning. The wetlands receive tidal water, usually contaminated with fecal indicator bacteria (FIB: total and fecal coliforms, Escherichia coli, enterococci) from the adjacent Ballona Creek and Estuary. During the summer of 2007, two 24-h studies were conducted to determine FIB tidal dynamics within the wetland. Measurements of water flow and mean FIB concentrations (n = 3) were measured every 1.5 h to determine total FIB load estimates. FIB loading rates (MPN/s) were greatest during flood tides as water entered the wetlands, and then again during spring tide conditions when sediments were resuspended during swifter spring ebb flows. During daylight hours, the wetland acted as a sink for these bacteria as loads diminished, presumably by sunlight and other processes. Conversely, during late afternoon and night, the wetlands shifted to being a source as excess FIB departed on ebb flows. Therefore, the wetlands act as both a source and sink for FIB depending on tidal conditions and exposure to sunlight. Future restoration actions would result in a tradeoff - increased tidal channels offer a greater surface area for FIB inactivation, but also would result in a greater volume of FIB-contaminated resuspended sediments carried out of the wetlands on stronger ebb flows. As levels of FIB in Ballona Creek and Estuary diminish through recently established regulatory actions, the wetlands could shift into a greater sink for FIB. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Integration and dynamics of a renewable regenerative hydrogen fuel cell system

    NASA Astrophysics Data System (ADS)

    Bergen, Alvin Peter

    2008-10-01

    This thesis explores the integration and dynamics of residential scale renewable-regenerative energy systems which employ hydrogen for energy buffering. The development of the Integrated Renewable Energy Experiment (IRENE) test-bed is presented. IRENE is a laboratory-scale distributed energy system with a modular structure which can be readily re-configured to test newly developed components for generic regenerative systems. Key aspects include renewable energy conversion, electrolysis, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability to accept dynamic inputs from and provide dynamic loads to real devices as well as from simulated energy sources/sinks. The integration issues encountered while developing IRENE and innovative solutions devised to overcome these barriers are discussed. Renewable energy systems that employ a regenerative approach to enable intermittent energy sources to service time varying loads rely on the efficient transfer of energy through the storage media. Experiments were conducted to evaluate the performance of the hydrogen energy buffer under a range of dynamic operating conditions. Results indicate that the operating characteristics of the electrolyser under transient conditions limit the production of hydrogen from excess renewable input power. These characteristics must be considered when designing or modeling a renewable-regenerative system. Strategies to mitigate performance degradation due to interruptions in the renewable power supply are discussed. Experiments were conducted to determine the response of the IRENE system to operating conditions that are representative of a residential scale, solar based, renewable-regenerative system. A control algorithm, employing bus voltage constraints and device current limitations, was developed to guide system operation. Results for a two week operating period that indicate that the system response is very dynamic but repeatable are presented. The overall system energy balance reveals that the energy input from the renewable source was sufficient to meet the demand load and generate a net surplus of hydrogen. The energy loss associated with the various system components as well as a breakdown of the unused renewable energy input is presented. In general, the research indicates that the technical challenges associated with hydrogen energy buffing can be overcome, but the round trip efficiency for the current technologies is low at only 22 percent.

  11. Alternative majority-voting methods for real-time computing systems

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Dolter, James W.

    1989-01-01

    Two techniques that provide a compromise between the high time overhead in maintaining synchronous voting and the difficulty of combining results in asynchronous voting are proposed. These techniques are specifically suited for real-time applications with a single-source/single-sink structure that need instantaneous error masking. They provide a compromise between a tightly synchronized system in which the synchronization overhead can be quite high, and an asynchronous system which lacks suitable algorithms for combining the output data. Both quorum-majority voting (QMV) and compare-majority voting (CMV) are most applicable to distributed real-time systems with single-source/single-sink tasks. All real-time systems eventually have to resolve their outputs into a single action at some stage. The development of the advanced information processing system (AIPS) and other similar systems serve to emphasize the importance of these techniques. Time bounds suggest that it is possible to reduce the overhead for quorum-majority voting to below that for synchronous voting. All the bounds assume that the computation phase is nonpreemptive and that there is no multitasking.

  12. Carbon Dynamics of Bioenergy Cropping Systems Compared to Conventional Cotton Cropping Systems in the Southern Cotton Belt Region of the U.S.

    NASA Astrophysics Data System (ADS)

    Rajan, N.; Sharma, S.; Casey, K.; Maas, S. J.

    2015-12-01

    We are facing an unprecedented challenge in securing America's energy future. To address this challenge, increased biofuel crop production is needed. Second-generation biofuels are made from the by-products of intensive agriculture or from less-intensive agriculture on more marginal lands. The Southwestern U.S. Cotton Belt can play a significant role in this effort through a change from more conventional crops (like continuous cotton) to second-generation biofuel feedstocks (biomass sorghum and perennial grasses). We have established eddy covariance flux towers in producer fields in the Southern High Plains region. Among the four land uses compared, the net carbon uptake was the highest for the biomass sorghum field. During the year 2014, the biomass sorghum field gained approximately 672 gC m-2y-1. The next highest carbon uptake was recorded for the Old World Bluestem grass field, which was approximately 301 gC m-2y-1. The dominant land use in the region is cotton. While the forage sorghum and grass fields acted as net carbon sinks, the irrigated cotton field acted as a net carbon source to the atmosphere during the same period. The irrigated cotton field exhibited a net carbon loss of approximately 246 gC m-2y-1. In contrast, the dryland cotton field acted as a net carbon sink, with a total uptake of approximately 58 g C m-2y-1. The net primary production of the irrigated cotton field was higher than that of the dryland cotton field, yet the irrigated field was a significant carbon source to the atmosphere. This was due to conventional tillage practices combined with irrigation which enhanced the ecosystem respiration significantly compared to the dryland field. In 2014, an early spring cold front caused poor germination of seeds in the majority of the cotton fields in the region, including the eddy covariance site. This site was re-planted on 9 June, which shortened the growing season for cotton. This was also a contributing factor to this field being a net carbon source. When only seasonal data were considered (i.e, from planting to harvest), the biomass sorghum field was the largest net C sink (-668 g C m-2y-1) followed by the grassland field (-298 g C m-2y-1). Among the two cotton fields, the irrigated cotton field remained a net carbon source (38 g C m-2y-1), while the dryland field was a net carbon sink (-127 g C m-2y-1).

  13. Geography of Global Forest Carbon Stocks & Dynamics

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Yu, Y.; Xu, L.; Yang, Y.; Fore, A.; Ganguly, S.; Nemani, R. R.; Zhang, G.; Lefsky, M. A.; Sun, G.; Woodall, C. W.; Naesset, E.; Seibt, U. H.

    2014-12-01

    Spatially explicit distribution of carbon stocks and dynamics in global forests can greatly reduce the uncertainty in the terrestrial portion of the global carbon cycle by improving estimates of emissions and uptakes from land use activities, and help with green house gas inventory at regional and national scales. Here, we produce the first global distribution of carbon stocks in living woody biomass at ~ 100 m (1-ha) resolution for circa 2005 from a combination of satellite observations and ground inventory data. The total carbon stored in live woody biomass is estimated to be 337 PgC with 258 PgC in aboveground and 79 PgC in roots, and partitioned globally in boreal (20%), tropical evergreen (50%), temperate (12%), and woodland savanna and shrublands (15%). We use a combination of satellite observations of tree height, remote sensing data on deforestation and degradation to quantify the dynamics of these forests at the biome level globally and provide geographical distribution of carbon storage dynamics in terms sinks and sources globally.

  14. Source-To-Sink Perspectives On The Mississippi River System, Miocene To Present, Mountain To Abyss

    NASA Astrophysics Data System (ADS)

    Bentley, S. J.; Blum, M. D.

    2013-12-01

    . The objective of this study is to present a synthesis of the Mississippi River source-to-sink system, from montane source to abyssal sink, to elucidate specific geomorphic components and boundaries in the system, controls on mass transfer, and resultant geomorphic and statigraphic development. The Mississippi River source-to-sink system constitutes one of the largest sources, conduits, and depocenters of sediment on Earth, extending from elevations of 3.7 km in the Rocky Mountains to the Gulf of Mexico abyssal plain. Despite being one of the most intensely studied fluvial-marine systems in the world, comprehensive understanding and management of the system's resources remain a challenge. The system is valuable in many ways: it provides navigation and water to the heart of North America, and sustains extensive marine fisheries. The river has built a delta that is home to millions of people and yet is subsiding rapidly. Ancestral Mississippi fluvial-marine deposits continue to yield high-value petroleum resources to exploration. To address the range of temporal and spatial scales over which the system has developed and continues to evolve, we will focus on three geological time spans that display contrasting geologic forcing and response: Miocene, Pleistocene, and late Holocene. The present configuration of source, conduit, and sink were established during the Miocene epoch, when tectonics (via the uplifting southern Rockies, and later the rejuvenated Appalachians) and climate (wet in the east and dry in the west) provided abundant water and sediment to prograde the shelf margin and initiate deep-sea fan growth. Pleistocene continental glaciation, eustasy, and catastrophic drainage events further sculpted the alluvial valley, and extended the shelf margin, and fan. Studies of Modern processes and Holocene delta development have provided keys to both the delta's past and future evolution, in terms of cyclic autogenic lobe-switching, mass-transport events, storm-driven sediment delivery to canyon heads, and allogenic/anthropogenic controls on sediment supply and subsidence.

  15. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling.

    PubMed

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha; Thompson, Jill; Zimmerman, Jess K; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate. © 2017 John Wiley & Sons Ltd.

  16. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    USGS Publications Warehouse

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  17. Cougar survival and source-sink structure on Greater Yellowstone's Northern Range

    USGS Publications Warehouse

    Ruth, T.K.; Haroldson, M.A.; Murphy, K.M.; Buotte, P.C.; Hornocker, M.G.; Quigley, H.B.

    2011-01-01

    We studied survival and causes of mortality of radiocollared cougars (Puma concolor) on the Greater Yellowstone Northern Range (GYNR) prior to (1987–1994) and after wolf (Canis lupus) reintroduction (1998–2005) and evaluated temporal, spatial, and environmental factors that explain variation in adult, subadult, and kitten survival. Using Program MARK and multimodel inference, we modeled cougar survival based on demographic status, season, and landscape attributes. Our best models for adult and independent subadults indicated that females survived better than males and survival increased with age until cougars reached older ages. Lower elevations and increasing density of roads, particularly in areas open to cougar hunting north of Yellowstone National Park (YNP), increased mortality risks for cougars on the GYNR. Indices of ungulate biomass, cougar and wolf population size, winter severity, rainfall, and individual characteristics such as the presence of dependent young, age class, and use of Park or Wilderness were not important predictors of survival. Kitten survival increased with age, was lower during winter, increased with increasing minimum estimates of elk calf biomass, and increased with increasing density of adult male cougars. Using our best model, we mapped adult cougar survival on the GYNR landscape. Results of receiver operating characteristic (ROC) analysis indicated a good model fit for both female (area under the curve [AUC] = 0.81, 95%CI = 0.70–0.92, n = 35 locations) and male cougars (AUC = 0.84, 95%CI = 0.74–0.94, n = 49 locations) relative to hunter harvest locations in our study area. Using minimum estimates of survival necessary to sustain the study population, we developed a source-sink surface and we identify several measures that resource management agencies can take to enhance cougar population management based on a source-sink strategy.

  18. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems.

    PubMed

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = -2.48 tonnes C ha(-1)), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha(-1), respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha(-1) at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1-2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30-60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems.

  19. Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems

    PubMed Central

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = −2.48 tonnes C ha−1), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha−1, respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha−1 at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1–2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30–60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems. PMID:23335986

  20. Life and Death Near Zero: The distribution and evolution of NEA orbits of near-zero MOID, (e, i), and q

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Morbidelli, Alessandro; Granvik, Mikael

    2016-10-01

    Modeling the distribution of orbits with near-zero orbital parameters requires special attention to the dimensionality of the parameters in question. This is even more true since orbits of near-zero MOID, (e, i), or q are especially interesting as sources or sinks of NEAs. An essentially zero value of MOID (Minimum Orbital Intersection Distance) with respect to the Earth's orbit is a requirement for an impact trajectory, and initially also for ejecta from lunar impacts into heliocentric orbits. The collision cross section of the Earth goes up greatly with decreasing relative encounter velocity, venc, thus the impact flux onto the Earth is enhanced in such low-venc objects, which correspond to near-zero (e,i) orbits. And lunar ejecta that escapes from the Earth-moon system mostly does so at only barely greater than minimum velocity for escape (Gladman, et al., 1995, Icarus 118, 302-321), so the Earth-moon system is both a source and a sink of such low-venc orbits, and understanding the evolution of these populations requires accurately modeling the orbit distributions. Lastly, orbits of very low heliocentric perihelion distance, q, are particularly interesting as a "sink" in the NEA population as asteroids "fall into the sun" (Farinella, et al., 1994, Nature 371, 314-317). Understanding this process, and especially the role of disintegration of small asteroids as they evolve into low-q orbits (Granvik et al., 2016, Nature 530, 303-306), requires accurate modeling of the q distribution that would exist in the absence of a "sink" in the distribution. In this paper, we derive analytical expressions for the expected steady-state distributions near zero of MOID, (e,i), and q in the absence of sources or sinks, compare those to numerical simulations of orbit distributions, and lastly evaluate the distributions of discovered NEAs to try to understand the sources and sinks of NEAs "near zero" of these orbital parameters.

  1. A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C

    PubMed Central

    Holdo, Ricardo M.; Sinclair, Anthony R. E.; Dobson, Andrew P.; Metzger, Kristine L.; Bolker, Benjamin M.; Ritchie, Mark E.; Holt, Robert D.

    2009-01-01

    Tree cover is a fundamental structural characteristic and driver of ecosystem processes in terrestrial ecosystems, and trees are a major global carbon (C) sink. Fire and herbivores have been hypothesized to play dominant roles in regulating trees in African savannas, but the evidence for this is conflicting. Moving up a trophic scale, the factors that regulate fire occurrence and herbivores, such as disease and predation, are poorly understood for any given ecosystem. We used a Bayesian state-space model to show that the wildebeest population irruption that followed disease (rinderpest) eradication in the Serengeti ecosystem of East Africa led to a widespread reduction in the extent of fire and an ongoing recovery of the tree population. This supports the hypothesis that disease has played a key role in the regulation of this ecosystem. We then link our state-space model with theoretical and empirical results quantifying the effects of grazing and fire on soil carbon to predict that this cascade may have led to important shifts in the size of pools of C stored in soil and biomass. Our results suggest that the dynamics of herbivores and fire are tightly coupled at landscape scales, that fire exerts clear top-down effects on tree density, and that disease outbreaks in dominant herbivores can lead to complex trophic cascades in savanna ecosystems. We propose that the long-term status of the Serengeti and other intensely grazed savannas as sources or sinks for C may be fundamentally linked to the control of disease outbreaks and poaching. PMID:19787022

  2. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.

    PubMed

    Yu, Shuizi Rachel; Burkhardt, Markus; Nowak, Matthias; Ries, Jonas; Petrásek, Zdenek; Scholpp, Steffen; Schwille, Petra; Brand, Michael

    2009-09-24

    It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.

  3. Submarine groundwater discharge into typical tropical lagoons: A case study in eastern Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Wang, Xilong; Du, Jinzhou

    2016-11-01

    Assessing submarine groundwater discharge (SGD) into lagoons and bays can be helpful to understand biogeochemical processes, especially nutrient dynamics. In the present paper, radium (Ra) isotopes were used to quantify SGD in two typical tropical lagoons (Laoye Lagoon (LY Lagoon) and Xiaohai Lagoon (XH Lagoon)) of eastern Hainan Island, China. The Ra mass balance model provided evidence that SGD plays an important role in the hydrology of the LY Lagoon and the XH Lagoon, delivering average SGD fluxes of 1.7 × 106 (94 L m-2 d-1) and 1.8 × 106 (41 L m-2 d-1) m3 d-1, respectively. Tidal pumping was one of the important driving forces for SGD fluxes in the LY and the XH Lagoons. Tidal-driven SGD into the tidal channels of both lagoons can account for approximately 10% of the total SGD flux into the lagoons. In addition, the dissolved inorganic nutrient budgets were reassessed in the LY Lagoon and the XH Lagoon, which showed that SGD was the major source of nutrients entering the LY Lagoon and that the LY Lagoon behaved as a source for dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) and as a sink for dissolved silicate (DSi). Nutrient loads in the XH Lagoon were mainly derived from riverine inputs and SGD, and the XH Lagoon behaved as a source for DIP, but a sink for DIN and DSi.

  4. A microfluidic brain slice perfusion chamber for multisite recording using penetrating electrodes.

    PubMed

    Blake, Alexander J; Rodgers, Frank C; Bassuener, Anna; Hippensteel, Joseph A; Pearce, Thomas M; Pearce, Timothy R; Zarnowska, Ewa D; Pearce, Robert A; Williams, Justin C

    2010-05-30

    To analyze the spatiotemporal dynamics of network activity in a brain tissue slice, it is useful to record simultaneously from multiple locations. When obtained from laminar structures such as the hippocampus or neocortex, multisite recordings also yield information about subcellular current distributions via current source density analysis. Multisite probes developed for in vivo recordings could serve these purposes in vitro, allowing recordings to be obtained from brain slices at sites deeper within the tissue than currently available surface recording methods permit. However, existing recording chambers do not allow for the insertion of lamina-spanning probes that enter through the edges of brain slices. Here, we present a novel brain slice recording chamber design that accomplishes this goal. The device provides a stable microfluidic perfusion environment in which tissue health is optimized by superfusing both surfaces of the slice. Multichannel electrodes can be inserted parallel to the surface of the slice, at any depth relative to the surface. Access is also provided from above for the insertion of additional recording or stimulating electrodes. We illustrate the utility of this recording configuration by measuring current sources and sinks during theta burst stimuli that lead to the induction of long-term potentiation in hippocampal slices. (c) 2010 Elsevier B.V. All rights reserved.

  5. Relationships between depth and δ15N of Arctic benthos vary among regions and trophic functional groups

    NASA Astrophysics Data System (ADS)

    Stasko, Ashley D.; Bluhm, Bodil A.; Reist, James D.; Swanson, Heidi; Power, Michael

    2018-05-01

    Stable isotope ratios of nitrogen (δ15N) of benthic primary consumers are often significantly related to water depth. This relationship is commonly attributed to preferential uptake of 14N from sinking particulate organic matter (POM) by microbes, and suggests that relationships between δ15N and water depth may be affected by local POM sources and flux dynamics. We examined the relationships between δ15N and water depth (20-500 m) for six trophic functional groups using a mixed effects modelling approach, and compared relationships between two contiguous Arctic marine ecosystems with different POM sources and sinking export dynamics: the Canadian Beaufort Sea and Amundsen Gulf. We demonstrate for the first time in the Arctic that δ15N values of mobile epifaunal carnivores increased as a function of depth when considered separately from benthopelagic and infaunal carnivores, which contrarily did not exhibit increasing δ15N with depth. The δ15N of suspension/filter feeders, infaunal deposit feeders and bulk sediment also increased with water depth, and the slopes of the relationships were steeper in the Amundsen Gulf than in the Beaufort Sea. We propose that regional differences in slopes reflect differences in POM sources exported to the benthos. In the Beaufort Sea, terrestrial POM discharged from the Mackenzie River quantitatively dominates the sedimentary organic matter across the continental shelf and slope, dampening change in δ15N of benthic POM with depth. In the Amundsen Gulf, we attribute a faster rate of change in δ15N of POM with increasing depth to larger contributions of marine-derived POM to the benthic sedimentary pool, which had likely undergone extensive biological transformation in the productive offshore pelagic zone. Differences in POM input regimes among regions should be considered when comparing food webs using stable isotopes, as such differences may impact the rate at which consumer δ15N changes with depth.

  6. Gypsum Wallboard as a sink for formaldehyde

    EPA Science Inventory

    Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its presence in a wide range of consumer products and its adverse health effects. Materials acting as HCHO sinks, such as painted gypsum wallboard, can become emission sources. However, adsorpti...

  7. Combining stable isotope and carbohydrate analyses in phloem sap and fine roots to study seasonal changes of source-sink relationships in a Mediterranean beech forest.

    PubMed

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2015-08-01

    Carbon isotope composition (δ(13)C) and carbohydrate content of phloem sap and fine roots were measured in a Mediterranean beech (Fagus sylvatica L.) forest throughout the growing season to study seasonal changes of source-sink relationships. Seasonal variations of δ(13)C and content of phloem sap sugars, collected during the daylight period, reflected the changes in soil and plant water status. The correlation between δ(13)C and content of phloem sap sugars, collected from plants belonging to different social classes, was significantly positive only during the driest month of July. In this month, δ(13)C of phloem sap sugars was inversely related to the increment of trunk radial growth and positively related to δ(13)C of fine roots. We conclude that the relationship between δ(13)C and the amount of phloem sap sugars is affected by a combination of causes, such as sink strength, tree social class, changes in phloem anatomy and transport capacity, and phloem loading of sugars to restore sieve tube turgor following the reduced plant water potential under drought conditions. However, δ(13)C and sugar composition of fine roots suggested that phloem transport of leaf sucrose to this belowground component was not impaired by mild drought and that sucrose was in a large part allocated towards fine roots in July, depending on tree social class. Hence, fine roots could represent a functional carbon sink during the dry seasonal periods, when transport and use of assimilates in other sink tissues are reduced. These results indicate a strict link between above- and belowground processes and highlight a rapid response of this Mediterranean forest to changes in environmental drivers to regulate source-sink relationships and carbon sink capacity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Hydrologic controls of methane dynamics in a karst subterranean estuary

    NASA Astrophysics Data System (ADS)

    Brankovits, D.; Pohlman, J.; Ganju, N. K.; Lowell, N. S.; Roth, E.; Lapham, L.

    2017-12-01

    Subterranean estuaries extend into carbonate landmasses where abundant cave networks influence the hydrology and biogeochemistry of the coastal aquifer environment. Enhanced density stratification between meteoric freshwater and saline groundwater facilitates the development of sharp salinity and redox gradients associated with the production and consumption of methane, a potent greenhouse gas. These processes impact methane-dynamics in the coastal zone and provide nutritive resources for the cave-adapted estuarine food web in this oligotrophic habitat. These observations were based on sampling in discrete time periods, leaving questions about the effects of temporally dynamic hydrology on the production, consumption and transport of methane. In this study, we evaluated hydro-biogeochemical controls of methane dynamics in a subterranean estuary to quantify the magnitude of the methane sink in the coastal karst platform of the Yucatan Peninsula, Mexico. We deployed osmotically-driven sampling devices (OsmoSamplers) in flooded cave passages to document temporal variability in methane concentrations and δ13C values, as well as major ions in the groundwater. Water level, current velocities, water and air temperatures, and precipitation were also monitored. Using these records, we built an integrated model to provide a first-order calculation on methane consumption rates for the coastal aquifer. The year-long water chemistry record reveals higher source concentrations of methane in the dry season (5849 ± 1198 nM) than in the wet season (4265 ± 778 nM) with depleted δ13C values (-65.4 ± 2.1 ‰) throughout the year. Our analyses suggest the methane sink potential and ecosystem function are significantly affected by precipitation induced hydrological changes within the tropical subterranean karst estuary.

  9. Power System for Venus Surface Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Mellott, Kenneth

    2002-01-01

    A radioisotope power and cooling system is designed to provide electrical power for a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep electronic components at a temperature below ambient. The fundamental cooling parameters are the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density (90 bar CO2) atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus, with a small contribution of heat generation from electronics and sensors. Both thermoelectric (RTG) and dynamic power conversion systems were analyzed, based on use of a standard isotope (General-purpose heat source, or GPHS) brick. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500-watt power class, laboratory-tested Stirling engines. The overall efficiency is calculated to be 23.36 %. The mass of the power converter is estimated at approximately 21.6 kg. Additional information is included in the original extended abstract.

  10. Resilience in Source to Sink Systems: A Millennial Record of Watershed Responses to Disturbance in Loon Lake, Umpqua River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Guerrero, F. J.; Richardson, K.; Hatten, J. A.

    2017-12-01

    Small mountainous watersheds are disproportionate sources of particulate organic matter (POM) to long-term sinks like lake bottoms and the ocean. Thus, alterations in sediment routing resulting from disturbances (e.g. earthquakes, fires, and timber harvesting) have profound consequences on watershed's (biogeochemical) resilience. The assessment of these biogeochemical impacts is complicated by the episodic signal propagation along these source-to-sink systems and therefore is seldom attempted. We report on a 1500-year record of historical changes in Loon Lake, a local sedimentary sink (1.2 km2) for a 230 km2 watershed in the Oregon Coast Range. Particle size distributions and POM elemental composition (C, N) were sampled at high temporal resolution ( 3 years). Stable isotopic composition and lignin biomarkers were sampled with varying temporal resolution depending on the period analyzed: 1939-2013 (3-year resolution); 515-1939 (15-year resolution). Disturbance history in Loon Lake catchment is recorded as a sequence of event beds deposited in sharp contrast within a matrix of background sedimentation. At least 8 out of 23 event beds were associated with >8.2 magnitude earthquakes (including the 9.0 megathrust earthquake in 1700). Forest fires in 1770 and 1890 were also recorded as event beds. After 1939, event beds record the impacts of landscape destabilization due to the interaction between intense storms and timber harvesting. At the onset of each event, %C, %N, and C:N ratios increased reflecting the input of coarse POM from surficial soil horizons. Top layers bracketing event beds are rich in clays and have low %C, suggesting a deep-soil sediment source. Isotopic signatures (i.e. δ13C, δ15N) confirm the allochthony of sediment inputs during events and lignin biomarkers suggest a replacement of riparian inputs by a strong gymnosperm signal, particularly after 1945. Thus, event beds record changes in the relative importance of different sediment sources within the catchment as they connect with their sink on the lake bottom. In contrast with continuous records of ecosystem changes from small watersheds, discontinuous records suggest the need for resilience assessments that go beyond the reconstruction of recovery paths to consider source to sink connectivity in small mountainous watersheds.

  11. Carbon balance of a drained forested bog in southern Finland

    NASA Astrophysics Data System (ADS)

    Minkkinen, Kari; Penttilä, Timo; Ojanen, Paavo; Lohila, Annalea

    2016-04-01

    Carbon and greenhouse gas (GHG) dynamics of a drained forested peatland in southern Finland were measured over multiple years, including one with severe drought during growing season. Net ecosystem carbon dioxide exchange (NEE) was measured with an eddy covariance method from a tower above the forest. Soil and forest floor CO2, CH4 and N2O fluxes were measured from the strips and from ditches with closed chambers. Biomasses and litter production were sampled, and soil subsidence was measured by consequtive levelings of the peat surface. The data were used to estimate the ecosystem C pools and annual fluxes of carbon and GHGs of the peatland and to analyse the impact of periodical drought on the carbon fluxes. The drained peatland was a strong sink of carbon dioxide in all studied years. Soil CO2 balance was estimated by subtracting the carbon sink of the growing tree stand from NEE, and it showed that also the soil was a sink of carbon in all studied years. A drought period in one summer significantly decreased the sink through decreased GPP. Drought also decreased the ecosystem respiration, including soil respiration. Decreasing water table thus did not increase, but rather decreased CO2 efflux from the peat soil. The site was a small sink for CH4, even when emissions from ditches were included. N2O emissions were small from all surfaces. Despite of the continuous carbon sink, peat surface subsided slightly (1.4 mm a-1) during the 10-year measurement period, which is interpreted to mean mainly compaction, rather than oxidation of the peat. It is concluded that this drained peatland acts as a continuous soil C sink similarly to an undrained peatland. The reason may be the relatively small water-level drawdown compared to an undrained situation, the consequently rather small changes in plant community structure and the significantly improved tree stand growth and litter production. The consequences of continuing production forestry vs. restoration of the site on the GHG fluxes and climate impact will be discussed.

  12. Influence of plankton community structure on the sinking velocity of marine aggregates

    NASA Astrophysics Data System (ADS)

    Bach, L. T.; Boxhammer, T.; Larsen, A.; Hildebrandt, N.; Schulz, K. G.; Riebesell, U.

    2016-08-01

    About 50 Gt of carbon is fixed photosynthetically by surface ocean phytoplankton communities every year. Part of this organic matter is reprocessed within the plankton community to form aggregates which eventually sink and export carbon into the deep ocean. The fraction of organic matter leaving the surface ocean is partly dependent on aggregate sinking velocity which accelerates with increasing aggregate size and density, where the latter is controlled by ballast load and aggregate porosity. In May 2011, we moored nine 25 m deep mesocosms in a Norwegian fjord to assess on a daily basis how plankton community structure affects material properties and sinking velocities of aggregates (Ø 80-400 µm) collected in the mesocosms' sediment traps. We noted that sinking velocity was not necessarily accelerated by opal ballast during diatom blooms, which could be due to relatively high porosity of these rather fresh aggregates. Furthermore, estimated aggregate porosity (Pestimated) decreased as the picoautotroph (0.2-2 µm) fraction of the phytoplankton biomass increased. Thus, picoautotroph-dominated communities may be indicative for food webs promoting a high degree of aggregate repackaging with potential for accelerated sinking. Blooms of the coccolithophore Emiliania huxleyi revealed that cell concentrations of 1500 cells/mL accelerate sinking by about 35-40%, which we estimate (by one-dimensional modeling) to elevate organic matter transfer efficiency through the mesopelagic from 14 to 24%. Our results indicate that sinking velocities are influenced by the complex interplay between the availability of ballast minerals and aggregate packaging; both of which are controlled by plankton community structure.

  13. Reduced-Stress Mounting for Thermocouples

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1986-01-01

    Mounting accommodates widely different coefficients of thermal expansion. In new method, legs of thermocouple placed in separate n- and p-type arrays. Two arrays contact common heat pipe as source but have separate heatpipe sinks. Net expansion (or contraction) taken up by spring mounting on heat-pipe sinks.

  14. Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators.

    PubMed

    Brankack, J; Stewart, M; Fox, S E

    1993-07-02

    Single-electrode depth profiles of the hippocampal EEG were made in urethane-anesthetized rats and rats trained in an alternating running/drinking task. Current source density (CSD) was computed from the voltage as a function of depth. A problem inherent to AC-coupled profiles was eliminated by incorporating sustained potential components of the EEG. 'AC' profiles force phasic current sinks to alternate with current sources at each lamina, changing the magnitude and even the sign of the computed membrane current. It was possible to include DC potentials in the profiles from anesthetized rats by using glass micropipettes for recording. A method of 'subtracting' profiles of the non-theta EEG from theta profiles was developed as an approach to including sustained potentials in recordings from freely-moving animals implanted with platinum electrodes. 'DC' profiles are superior to 'AC' profiles for analysis of EEG activity because 'DC'-CSD values can be considered correct in sign and more closely represent the actual membrane current magnitudes. Since hippocampal inputs are laminated, CSD analysis leads to straightforward predictions of the afferents involved. Theta-related activity in afferents from entorhinal neurons, hippocampal interneurons and ipsi- and contralateral hippocampal pyramids all appear to contribute to sources and sinks in CA1 and the dentate area. The largest theta-related generator was a sink at the fissure, having both phasic and tonic components. This sink may reflect activity in afferents from the lateral entorhinal cortex. The phase of the dentate mid-molecular sink suggests that medial entorhinal afferents drive the theta-related granule and pyramidal cell firing. The sustained components may be simply due to different average rates of firing during theta rhythm than during non-theta EEG in afferents whose firing rates are also phasically modulated.

  15. Methane Emissions from Upland Forests

    NASA Astrophysics Data System (ADS)

    Megonigal, Patrick; Pitz, Scott; Wang, Zhi-Ping

    2016-04-01

    Global budgets ascribe 4-10% of atmospheric methane sinks to upland soils and assume that soils are the sole surface for methane exchange between upland forests and the atmosphere. The dogma that upland forests are uniformly atmospheric methane sinks was challenged a decade ago by the discovery of abiotic methane production from plant tissue. Subsequently a variety of relatively cryptic microbial and non-microbial methane sources have been proposed that have the potential to emit methane in upland forests. Despite the accumulating evidence of potential methane sources, there are few data demonstrating actual emissions of methane from a plant surface in an upland forest. We report direct observations of methane emissions from upland tree stems in two temperate forests. Stem methane emissions were observed from several tree species that dominate a forest located on the mid-Atlantic coast of North America (Maryland, USA). Stem emissions occurred throughout the growing season while soils adjacent to the trees simultaneously consumed methane. Scaling fluxes by stem surface area suggested the forest was a net methane source during a wet period in June, and that stem emissions offset 5% of the soil methane sink on an annual basis. High frequency measurements revealed diurnal cycles in stem methane emission rates, pointing to soils as the methane source and transpiration as the most likely pathway for gas transport. Similar observations were made in an upland forest in Beijing, China. However, in this case the evidence suggested the methane was not produced in soils, but in the heartwood by microbial or non-microbial processes. These data challenge the concept that forests are uniform sinks of methane, and suggest that upland forests are smaller methane sinks than previously estimated due to stem emissions. Tree emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration.

  16. The effect of carbohydrate accumulation and nitrogen deficiency on feedback regulation of photosynthesis in beech (Fagus sylvatica) under elevated CO2 concentration

    NASA Astrophysics Data System (ADS)

    Klem, K.; Urban, O.; Holub, P.; Rajsnerova, P.

    2012-04-01

    One of the main manifestations of global change is an increase in atmospheric CO2 concentration. Elevated concentration of CO2 has stimulating effect on plant photosynthesis and consequently also on the productivity. Long-term studies, however, show that this effect is progressively reduced due to feedback regulation of photosynthesis. The main causes of this phenomenon are considered as two factors: i) increased biomass production consumes a larger amount of nitrogen from the soil and this leads to progressive nitrogen limitation of photosynthesis, particularly at the level of the enzyme Rubisco, ii) the sink capacity is genetically limited and elevated CO2 concentration leads to increased accumulation of carbohydtrates (mainly sucrose, which is the main transport form of assimilates) in leaves. Increased concentrations of carbohydrates leads to a feedback regulation of photosynthesis by both, long-term feedback regulation of synthesis of the enzyme Rubisco, and also due to reduced capacity to produce ATP in the chloroplasts. However, mechanisms for interactive effects of nitrogen and accumulation of non-structural carbohydrates are still not well understood. Using 3-year-old Fagus sylvatica seedlings we have explored the interactive effects of nitrogen nutrition and sink capacity manipulation (sucrose feeding) on the dynamics of accumulation of non-structural carbohydrates and changes in photosynthetic parameters under ambient (385 μmol (CO2) mol-1) and elevated (700 μmol(CO2) mol-1) CO2 concentration. Sink manipulation by sucrose feeding led to a continuous increase of non-structural carbohydrates in leaves, which was higher in nitrogen fertilized seedlings. The accumulation of non-structural carbohydrates was also slightly stimulated by elevated CO2 concentration. Exponential decay (p <0.01) was observed in CO2 assimilation rate and stomatal conductance when the content of non-structural carbohydrates increased. However, this relationship was modified by the nitrogen content. Accumulation of non-structural carbohydrates had relatively smaller effect on actual quantum yield of photosystem II. Both, CO2 assimilation rate and the actual quantum yield of photosystem II decreased more rapidly during sink manipulation in elevated concentrations of CO2 than in ambient. Application of chlorophyll fluorescence imaging enabled us to evaluate changes in spatial distribution of feedback regulation of photosynthesis on the leaf-level. We can conclude that the accumulation of non-structural carbohydrates down-regulates photosynthesis mainly through the stomatal conductance, and this effect is further modified by nitrogen content.

  17. Source-to-sink transport of sugar and regulation by environmental factors

    PubMed Central

    Lemoine, Remi; Camera, Sylvain La; Atanassova, Rossitza; Dédaldéchamp, Fabienne; Allario, Thierry; Pourtau, Nathalie; Bonnemain, Jean-Louis; Laloi, Maryse; Coutos-Thévenot, Pierre; Maurousset, Laurence; Faucher, Mireille; Girousse, Christine; Lemonnier, Pauline; Parrilla, Jonathan; Durand, Mickael

    2013-01-01

    Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favored in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses…) also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted. PMID:23898339

  18. Source-to-sink transport of sugar and regulation by environmental factors.

    PubMed

    Lemoine, Remi; La Camera, Sylvain; Atanassova, Rossitza; Dédaldéchamp, Fabienne; Allario, Thierry; Pourtau, Nathalie; Bonnemain, Jean-Louis; Laloi, Maryse; Coutos-Thévenot, Pierre; Maurousset, Laurence; Faucher, Mireille; Girousse, Christine; Lemonnier, Pauline; Parrilla, Jonathan; Durand, Mickael

    2013-01-01

    Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favored in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses…) also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.

  19. Honeycomb-Fin Heat Sink

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1989-01-01

    Improved finned heat sink for electronic components more lightweight, inexpensive, and efficient. Designed for use with forced air, easily scaled up to dissipate power up to few hundred watts. Fins are internal walls of aluminum honeycomb structure. Cell structure gives strength to thin aluminum foil. Length of channels chosen for thermodynamic efficency; columns of cells combined in any reasonable number because flowing air distributed to all. Heat sink cools nearly as effectively at ends as near its center, no matter how many columns of cells combined.

  20. Seeking potential contributions to future carbon budget in conterminous US forests considering disturbances

    Treesearch

    Fangmin Zhang; Yude Pan; Richard A. Birdsey; Jing M. Chen; Alexa Dugan

    2017-01-01

    Currently, US forests constitute a large carbon sink, comprising about 9 % of the global terrestrial carbon sink. Wildfire is the most significant disturbance influencing carbon dynamics in US forests. Our objective is to estimate impacts of climate change, CO2 concentration, and nitrogen deposition on the future net biome productivity (NBP) of...

  1. Data-driven diagnostics of terrestrial carbon dynamics over North America

    Treesearch

    Jingfeng Xiao; Scott V. Ollinger; Steve Frolking; George C. Hurtt; David Y. Hollinger; Kenneth J. Davis; Yude Pan; Xiaoyang Zhang; Feng Deng; Jiquan Chen; Dennis D. Baldocchi; Bevery E. Law; M. Altaf Arain; Ankur R. Desai; Andrew D. Richardson; Ge Sun; Brian Amiro; Hank Margolis; Lianhong Gu; Russell L. Scott; Peter D. Blanken; Andrew E. Suyker

    2014-01-01

    The exchange of carbon dioxide is a key measure of ecosystem metabolism and a critical intersection between the terrestrial biosphere and the Earth's climate. Despite the general agreement that the terrestrial ecosystems in North America provide a sizeable carbon sink, the size and distribution of the sink remain uncertain. We use a data-driven approach to upscale...

  2. Genome-Wide Identification, 3D Modeling, Expression and Enzymatic Activity Analysis of Cell Wall Invertase Gene Family from Cassava (Manihot esculenta Crantz)

    PubMed Central

    Yao, Yuan; Geng, Meng-Ting; Wu, Xiao-Hui; Liu, Jiao; Li, Rui-Mei; Hu, Xin-Wen; Guo, Jian-Chun

    2014-01-01

    The cell wall invertases play a crucial role on the sucrose metabolism in plant source and sink organs. In this research, six cell wall invertase genes (MeCWINV1-6) were cloned from cassava. All the MeCWINVs contain a putative signal peptide with a predicted extracellular location. The overall predicted structures of the MeCWINV1-6 are similar to AtcwINV1. Their N-terminus domain forms a β-propeller module and three conserved sequence domains (NDPNG, RDP and WECP(V)D), in which the catalytic residues are situated in these domains; while the C-terminus domain consists of a β-sandwich module. The predicted structure of Pro residue from the WECPD (MeCWINV1, 2, 5, and 6), and Val residue from the WECVD (MeCWINV3 and 4) are different. The activity of MeCWINV1 and 3 were higher than other MeCWINVs in leaves and tubers, which suggested that sucrose was mainly catalyzed by the MeCWINV1 and 3 in the apoplastic space of cassava source and sink organs. The transcriptional levels of all the MeCWINVs and their enzymatic activity were lower in tubers than in leaves at all the stages during the cassava tuber development. It suggested that the major role of the MeCWINVs was on the regulation of carbon exportation from source leaves, and the ratio of sucrose to hexose in the apoplasts; the role of these enzymes on the sucrose unloading to tuber was weaker. PMID:24786092

  3. Genome-wide identification, 3D modeling, expression and enzymatic activity analysis of cell wall invertase gene family from cassava (Manihot esculenta Crantz).

    PubMed

    Yao, Yuan; Geng, Meng-Ting; Wu, Xiao-Hui; Liu, Jiao; Li, Rui-Mei; Hu, Xin-Wen; Guo, Jian-Chun

    2014-04-28

    The cell wall invertases play a crucial role on the sucrose metabolism in plant source and sink organs. In this research, six cell wall invertase genes (MeCWINV1-6) were cloned from cassava. All the MeCWINVs contain a putative signal peptide with a predicted extracellular location. The overall predicted structures of the MeCWINV1-6 are similar to AtcwINV1. Their N-terminus domain forms a β-propeller module and three conserved sequence domains (NDPNG, RDP and WECP(V)D), in which the catalytic residues are situated in these domains; while the C-terminus domain consists of a β-sandwich module. The predicted structure of Pro residue from the WECPD (MeCWINV1, 2, 5, and 6), and Val residue from the WECVD (MeCWINV3 and 4) are different. The activity of MeCWINV1 and 3 were higher than other MeCWINVs in leaves and tubers, which suggested that sucrose was mainly catalyzed by the MeCWINV1 and 3 in the apoplastic space of cassava source and sink organs. The transcriptional levels of all the MeCWINVs and their enzymatic activity were lower in tubers than in leaves at all the stages during the cassava tuber development. It suggested that the major role of the MeCWINVs was on the regulation of carbon exportation from source leaves, and the ratio of sucrose to hexose in the apoplasts; the role of these enzymes on the sucrose unloading to tuber was weaker.

  4. Spatial aggregation query in dynamic geosensor networks

    NASA Astrophysics Data System (ADS)

    Yi, Baolin; Feng, Dayang; Xiao, Shisong; Zhao, Erdun

    2007-11-01

    Wireless sensor networks have been widely used for civilian and military applications, such as environmental monitoring and vehicle tracking. In many of these applications, the researches mainly aim at building sensor network based systems to leverage the sensed data to applications. However, the existing works seldom exploited spatial aggregation query considering the dynamic characteristics of sensor networks. In this paper, we investigate how to process spatial aggregation query over dynamic geosensor networks where both the sink node and sensor nodes are mobile and propose several novel improvements on enabling techniques. The mobility of sensors makes the existing routing protocol based on information of fixed framework or the neighborhood infeasible. We present an improved location-based stateless implicit geographic forwarding (IGF) protocol for routing a query toward the area specified by query window, a diameter-based window aggregation query (DWAQ) algorithm for query propagation and data aggregation in the query window, finally considering the location changing of the sink node, we present two schemes to forward the result to the sink node. Simulation results show that the proposed algorithms can improve query latency and query accuracy.

  5. The southeastern continental shelf of the United States as an atmospheric CO 2 source and an exporter of inorganic carbon to the ocean

    NASA Astrophysics Data System (ADS)

    Aleck Wang, Zhaohui; Cai, Wei-Jun; Wang, Yongchen; Ji, Hongwei

    2005-10-01

    The US southeastern continental shelf, also known as the South Atlantic Bight (SAB), is a strong source of CO 2 to the atmosphere, which is in direct contrast to recent reports regarding other major continental shelves. Both spatial (cross-shelf) and seasonal variations of the CO 2 system were pronounced in the SAB. Sea surface pCO 2 in winter was undersaturated relative to the atmosphere, while oversaturation of pCO 2 dominated the entire shelf water in all other seasons. Annually, the SAB releases CO 2 to the atmosphere at an average rate of 30 g C m -2 (2.5 mol C m -2). This system also discharges dissolved inorganic carbon to the open ocean (30 g C m -2 yr -1). Methods of estimating CO 2 flux and DIC flux are critically evaluated and compared. A carbon mass balance model in the SAB is presented based on inorganic carbon fluxes from this study and organic carbon fluxes from literature. The carbon budget is much closer to balance by using this carbon flux approach than by direct measurements of primary production and respiration. It is concluded that the SAB is a net heterotrophic system annually. Intensified heating, elevated input of inorganic carbon from coastal salt marshes, microbial respiration of marsh-exported organic carbon and the lack of annual spring blooms all contribute to maintaining the SAB as a strong CO 2 source to the atmosphere during the warm seasons. In winter, the primary factor that governs the CO 2 sink in the SAB is likely the cooling process. Strong heterotrophy during warm seasons also sustains the SAB to be an exporter of inorganic carbon to the open ocean annually. The SAB shelf functions differently from the East China Sea, the North Atlantic European Shelves, and the Mid-Atlantic Bight as a source or sink of atmospheric CO 2. The SAB is classified as a "marsh-dominated" shelf as compared to other shelves in terms of carbon dynamics. Further work to study carbon dynamics in coastal margins is warranted to interpret their roles in the global CO 2 budget.

  6. Carbon Transformations and Source - Sink Dynamics along a River, Marsh, Estuary, Ocean Continuum

    NASA Astrophysics Data System (ADS)

    Anderson, I. C.; Crosswell, J.; Czapla, K.; Van Dam, B.

    2017-12-01

    Estuaries, the transition zone between land and the coastal ocean, are highly dynamic systems in which carbon sourced from watersheds, marshes, atmosphere, and ocean may be transformed, sequestered, or exported. The net fate of carbon in estuaries, governed by the interactions of biotic and physical drivers varying on spatial and temporal scales, is currently uncertain because of limited observational data. In this study, conducted in a temperate, microtidal, and shallow North Carolina USA estuary, carbon exchanges via river, tributary, and fringing salt marsh, air-water fluxes, sediment C accumulation, and metabolism were monitored over two-years, with sharply different amounts of rainfall. Air-water CO2 fluxes and metabolic variables were simultaneously measured in channel and shoal by conducting high-resolution surveys at dawn, dusk and the following dawn. Marsh CO2 exchanges, sediment C inputs, and lateral exports of DIC and DOC were also measured. Carbon flows between estuary regions and export to the coastal ocean were calculated by quantifying residual transport of DIC and TOC down-estuary as flows were modified by sources, sinks and internal transformations. Variation in metabolic rates, CO2, TOC and DIC exchanges were large when determined for short time and limited spatial scales. However, when scaled to annual and whole estuarine scales, variation tended to decrease because of counteracting metabolic rates and fluxes between channel and shoal or between seasons. Although overall salt marshes accumulated OC, they were a negligible source of DIC and DOC to the estuary, and net inputs of C to the marsh were mainly derived from sediment OC. These results, as observed in other observational studies of estuaries, show that riverine input, light, temperature and metabolism are major controls on carbon cycling. Comparison of our results with other types of estuaries varying in depth, latitude, and nutrification demonstrates large discrepancies underscoring the limitations of current sampling designs, models and datasets in representing system-scale diversity; thus, a more practical approach may be to choose a small number of representative coastal systems, coordinate research efforts to quantify the relevant fluxes and constrain a range of environmental conditions that influence carbon cycling.

  7. Changes in the carbon cycle of northern Eurasia simulated by process models

    NASA Astrophysics Data System (ADS)

    Rawlins, M. A.

    2013-12-01

    Pronounced warming across the northern high latitudes is impacting water and carbon cycles and raising concern over possible feedbacks to global climate. Recent model studied point toward a weakening of the terrestrial land carbon sink across the northern high latitudes, one notable manifestation of a warming Arctic. We explore links between regional climate and the carbon cycle using data from models participating in the Vulnerability of Permafrost Carbon Research Coordination Network (RCN). The domain of interest is the drainage basin within the Northern Eurasia Earth Science Partnership Initiative (NEESPI) region. Model outputs examined include gross primary production (GPP), heterotrophic respiration (RH), net ecosystem exchange (NEE), and total soil carbon storage. Mean flux budgets and their changes over the period 1960-2009 are calculated from the model estimates for the entire NEESPI region and for each major land cover category within the region. Use of an independent model, which captures well the spatial pattern in soil freeze/thaw dynamics, indicates that the reduction in permafrost extent over the NEESPI basin was 4-6% over recent decades. Modeled influences of permafrost thaw on the region's water and carbon cycles are evaluated in the context of recent measurements. Estimates of the flux of CO2 due to fire are also examined in order to better understand how these disturbances are altering regional carbon sink/source dynamics.

  8. Modelling past, present and future peatland carbon accumulation across the pan-Arctic region

    NASA Astrophysics Data System (ADS)

    Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin

    2017-09-01

    Most northern peatlands developed during the Holocene, sequestering large amounts of carbon in terrestrial ecosystems. However, recent syntheses have highlighted the gaps in our understanding of peatland carbon accumulation. Assessments of the long-term carbon accumulation rate and possible warming-driven changes in these accumulation rates can therefore benefit from process-based modelling studies. We employed an individual-based dynamic global ecosystem model with dynamic peatland and permafrost functionalities and patch-based vegetation dynamics to quantify long-term carbon accumulation rates and to assess the effects of historical and projected climate change on peatland carbon balances across the pan-Arctic region. Our results are broadly consistent with published regional and global carbon accumulation estimates. A majority of modelled peatland sites in Scandinavia, Europe, Russia and central and eastern Canada change from carbon sinks through the Holocene to potential carbon sources in the coming century. In contrast, the carbon sink capacity of modelled sites in Siberia, far eastern Russia, Alaska and western and northern Canada was predicted to increase in the coming century. The greatest changes were evident in eastern Siberia, north-western Canada and in Alaska, where peat production hampered by permafrost and low productivity due the cold climate in these regions in the past was simulated to increase greatly due to warming, a wetter climate and higher CO2 levels by the year 2100. In contrast, our model predicts that sites that are expected to experience reduced precipitation rates and are currently permafrost free will lose more carbon in the future.

  9. Mantle dynamics and seismic tomography

    PubMed Central

    Tanimoto, Toshiro; Lay, Thorne

    2000-01-01

    Three-dimensional imaging of the Earth's interior, called seismic tomography, has achieved breakthrough advances in the last two decades, revealing fundamental geodynamical processes throughout the Earth's mantle and core. Convective circulation of the entire mantle is taking place, with subducted oceanic lithosphere sinking into the lower mantle, overcoming the resistance to penetration provided by the phase boundary near 650-km depth that separates the upper and lower mantle. The boundary layer at the base of the mantle has been revealed to have complex structure, involving local stratification, extensive structural anisotropy, and massive regions of partial melt. The Earth's high Rayleigh number convective regime now is recognized to be much more interesting and complex than suggested by textbook cartoons, and continued advances in seismic tomography, geodynamical modeling, and high-pressure–high-temperature mineral physics will be needed to fully quantify the complex dynamics of our planet's interior. PMID:11035784

  10. Generation and precise control of dynamic biochemical gradients for cellular assays

    NASA Astrophysics Data System (ADS)

    Saka, Yasushi; MacPherson, Murray; Giuraniuc, Claudiu V.

    2017-03-01

    Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device eliminates cross-flow between the source and sink channels, thereby stabilizing gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. A model with the first approximation of diffusion and surface adsorption of molecules recapitulates the experimentally observed gradients. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.

  11. Transition to a Source with Modified Physical Parameters by Energy Supply or Using an External Force

    NASA Astrophysics Data System (ADS)

    Kucherov, A. N.

    2017-11-01

    A study has been made of the possibility for the physical parameters of a source/sink, i.e., for the enthalpy, temperature, total pressure, maximum velocity, and minimum dimension, at a constant radial Mach number to be changed by energy or force action on the gas in a bounded zone. It has been shown that the parameters can be controlled at a subsonic, supersonic, and transonic (sonic in the limit) radial Mach number. In the updated source/sink, all versions of a vortex-source combination can be implemented: into a vacuum, out of a vacuum, into a submerged space, and out of a submerged space, partially or fully.

  12. Watershed nitrogen and phosphorus balance: The upper Potomac River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaworski, N.A.; Groffman, P.M.; Keller, A.A.

    1992-01-01

    Nitrogen and phosphorus mass balances were estimated for the portion of the Potomac River basin watershed located above Washington, D.C. The total nitrogen (N) balance included seven input source terms, six sinks, and one 'change-in-storage' term, but was simplified to five input terms and three output terms. The phosphorus (P) baance had four input and three output terms. The estimated balances are based on watershed data from seven information sources. Major sources of nitrogen are animal waste and atmospheric deposition. The major sources of phosphorus are animal waste and fertilizer. The major sink for nitrogen is combined denitrification, volatilization, andmore » change-in-storage. The major sink for phosphorus is change-in-storage. River exports of N and P were 17% and 8%, respectively, of the total N and P inputs. Over 60% of the N and P were volatilized or stored. The major input and output terms on the budget are estimated from direct measurements, but the change-in-storage term is calculated by difference. The factors regulating retention and storage processes are discussed and research needs are identified.« less

  13. Research in atmospheric chemistry and transport

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.

    1982-01-01

    The carbon monoxide cycle was studied by incorporating the known CO sources and sinks in a tracer model which used the winds generated by a general circulation model. The photochemical production and loss terms, which depended on OH radical concentrations, were calculated in an interactive fashion. Comparison of the computed global distribution and seasonal variations of CO with observations was used to yield constraints on the distribution and magnitude of the sources and sinks of CO, and the abundance of OH radicals in the troposphere.

  14. Evolvable circuit with transistor-level reconfigurability

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)

    2004-01-01

    An evolvable circuit includes a plurality of reconfigurable switches, a plurality of transistors within a region of the circuit, the plurality of transistors having terminals, the plurality of transistors being coupled between a power source terminal and a power sink terminal so as to be capable of admitting power between the power source terminal and the power sink terminal, the plurality of transistors being coupled so that every transistor terminal to transistor terminal coupling within the region of the circuit comprises a reconfigurable switch.

  15. Evolutionary Technique for Automated Synthesis of Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)

    2007-01-01

    An evolvable circuit includes a plurality of reconfigurable switches, a plurality of transistors within a region of the circuit, the plurality of transistors having terminals, the plurality of transistors being coupled between a power source terminal and a power sink terminal so as to be capable of admitting power between the power source terminal and the power sink terminal, the plurality of transistors being coupled so that every transistor to transistor terminal coupling within the region of the circuit comprises a reconfigurable switch.

  16. Carbon Consequences of Forest Disturbance and Recovery Across the Conterminous United States

    NASA Technical Reports Server (NTRS)

    Williams, Christopher A.; Collatz, G. James; Masek, Jeffrey; Goward, Samuel N.

    2012-01-01

    Forests of North America are thought to constitute a significant long term sink for atmospheric carbon. The United States Forest Service Forest Inventory and Analysis (FIA) program has developed a large data base of stock changes derived from consecutive estimates of growing stock volume in the US. These data reveal a large and relatively stable increase in forest carbon stocks over the last two decades or more. The mechanisms underlying this national increase in forest stocks may include recovery of forests from past disturbances, net increases in forest area, and growth enhancement driven by climate or fertilization by CO2 and Nitrogen. Here we estimate the forest recovery component of the observed stock changes using FIA data on the age structure of US forests and carbon stocks as a function of age. The latter are used to parameterize forest disturbance and recovery processes in a carbon cycle model. We then apply resulting disturbance/recovery dynamics to landscapes and regions based on the forest age distributions. The analysis centers on 28 representative climate settings spread about forested regions of the conterminous US. We estimate carbon fluxes for each region and propagate uncertainties in calibration data through to the predicted fluxes. The largest recovery-driven carbon sinks are found in the South central, Pacific Northwest, and Pacific Southwest regions, with spatially averaged net ecosystem productivity (NEP) of about 100 g C / square m / a driven by forest age structure. Carbon sinks from recovery in the Northeast and Northern Lake States remain moderate to large owing to the legacy of historical clearing and relatively low modern disturbance rates from harvest and fire. At the continental scale, we find a conterminous U.S. forest NEP of only 0.16 Pg C/a from age structure in 2005, or only 0.047 Pg C/a of forest stock change after accounting for fire emissions and harvest transfers. Recent estimates of NEP derived from inventory stock change, harvest, and fire data show twice the NEP sink we derive from forest age distributions. We discuss possible reasons for the discrepancies including modeling errors and the possibility of climate and/or fertilization (CO2 or N) growth enhancements.

  17. Collective organization in aerotactic motion

    NASA Astrophysics Data System (ADS)

    Mazza, Marco G.

    Some bacteria exhibit interesting behavior in the presence of an oxygen concentration. They perform an aerotactic motion along the gradient until they reach their optimal oxygen concentration. But they often organize collectively by forming dense regions, called 'bands', that travel towards the oxygen source. We have developed a model of swimmers with stochastic interaction rules moving in proximity of an air bubble. We perform molecular dynamics simulations and also solve advection-diffusion equations that reproduce the aerotactic behavior of mono-flagellated, facultative anaerobic bacteria. If the oxygen concentration in the system sinks locally below a threshold value, the formation of a migrating aerotactic band toward the bubble can be observed.

  18. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.

    PubMed

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.

  19. Does phloem loading strategy and capacity alter plant response to elevated atmospheric [CO2]?

    USDA-ARS?s Scientific Manuscript database

    A better understanding of the interactions between photosynthesis, photoassimilate translocation and sink activity is necessary to improve crop productivity. Rising atmospheric [CO2] perturbs source-sink balance which needs to be addressed to adapt crops to future growing conditions. This project ta...

  20. CARPET AS A SINK FOR CHLORPYRIFOS FOLLOWING THE USE OF TOTAL RELEASE AEROSOLS IN THE EPA TEST HOUSE

    EPA Science Inventory

    Pesticides may be found in homes from indoor applications to control pests or by their translocation from outdoor sources. Contaminants may persist adsorbed to surfaces and/or particles in "sinks" where over time they may dissociate as airborne vapors. Experiments wer...

  1. Is phloem loading a driver of plant photosynthetic responses to elevated atmospheric [CO2]? 

    USDA-ARS?s Scientific Manuscript database

    A better understanding of the interactions between photosynthesis, photoassimilate translocation and sink activity is necessary to improve crop productivity. Rising atmospheric [CO2] is perturbing source-sink balance in a manner not experienced by crops during the history of their cultivation, so ne...

  2. Isolation of Phyllosilicate–Iron Redox Cycling Microorganisms from an Illite–Smectite Rich Hydromorphic Soil

    PubMed Central

    Shelobolina, Evgenya; Konishi, Hiromi; Xu, Huifang; Benzine, Jason; Xiong, Mai Yia; Wu, Tao; Blöthe, Marco; Roden, Eric

    2012-01-01

    The biogeochemistry of phyllosilicate–Fe redox cycling was studied in a Phalaris arundinacea (reed canary grass) dominated redoximorphic soil from Shovelers Sink, a small glacial depression near Madison, WI. The clay size fraction of Shovelers Sink soil accounts for 16% of the dry weight of the soil, yet contributes 74% of total Fe. The dominant mineral in the clay size fraction is mixed layer illite–smectite, and in contrast to many other soils and sediments, Fe(III) oxides are present in low abundance. We examined the Fe biogeochemistry of Shovelers Sink soils, estimated the abundance of Fe redox cycling microorganisms, and isolated in pure culture representative phyllosilicate–Fe oxidizing and reducing organisms. The abundance of phyllosilicate–Fe reducing and oxidizing organisms was low compared to culturable aerobic heterotrophs. Both direct isolation and dilution-to-extinction approaches using structural Fe(II) in Bancroft biotite as a Fe(II) source, and O2 as the electron acceptor, resulted in recovery of common rhizosphere organisms including Bradyrhizobium spp. and strains of Cupriavidus necator and Ralstonia solanacearum. In addition to oxidizing biotite and soluble Fe(II) with O2, each of these isolates was able to oxidize Fe(II) in reduced NAu-2 smectite with NO3- as the electron acceptor. Oxidized NAu-2 smectite or amorphous Fe(III) oxide served as electron acceptors for enrichment and isolation of Fe(III)-reducing microorganisms, resulting in recovery of a strain related to Geobacter toluenoxydans. The ability of the recovered microorganisms to cycle phyllosilicate–Fe was verified in an experiment with native Shovelers Sink clay. This study confirms that Fe in the native Shovelers Sink clay is readily available for microbial redox transformation and can be cycled by the Fe(III)-reducing and Fe(II)-oxidizing microorganisms recovered from the soil. PMID:22493596

  3. Isolation of phyllosilicate-iron redox cycling microorganisms from an illite-smectite rich hydromorphic soil.

    PubMed

    Shelobolina, Evgenya; Konishi, Hiromi; Xu, Huifang; Benzine, Jason; Xiong, Mai Yia; Wu, Tao; Blöthe, Marco; Roden, Eric

    2012-01-01

    The biogeochemistry of phyllosilicate-Fe redox cycling was studied in a Phalaris arundinacea (reed canary grass) dominated redoximorphic soil from Shovelers Sink, a small glacial depression near Madison, WI. The clay size fraction of Shovelers Sink soil accounts for 16% of the dry weight of the soil, yet contributes 74% of total Fe. The dominant mineral in the clay size fraction is mixed layer illite-smectite, and in contrast to many other soils and sediments, Fe(III) oxides are present in low abundance. We examined the Fe biogeochemistry of Shovelers Sink soils, estimated the abundance of Fe redox cycling microorganisms, and isolated in pure culture representative phyllosilicate-Fe oxidizing and reducing organisms. The abundance of phyllosilicate-Fe reducing and oxidizing organisms was low compared to culturable aerobic heterotrophs. Both direct isolation and dilution-to-extinction approaches using structural Fe(II) in Bancroft biotite as a Fe(II) source, and O(2) as the electron acceptor, resulted in recovery of common rhizosphere organisms including Bradyrhizobium spp. and strains of Cupriavidus necator and Ralstonia solanacearum. In addition to oxidizing biotite and soluble Fe(II) with O(2), each of these isolates was able to oxidize Fe(II) in reduced NAu-2 smectite with [Formula: see text] as the electron acceptor. Oxidized NAu-2 smectite or amorphous Fe(III) oxide served as electron acceptors for enrichment and isolation of Fe(III)-reducing microorganisms, resulting in recovery of a strain related to Geobacter toluenoxydans. The ability of the recovered microorganisms to cycle phyllosilicate-Fe was verified in an experiment with native Shovelers Sink clay. This study confirms that Fe in the native Shovelers Sink clay is readily available for microbial redox transformation and can be cycled by the Fe(III)-reducing and Fe(II)-oxidizing microorganisms recovered from the soil.

  4. Effects of low sink demand on leaf photosynthesis under potassium deficiency.

    PubMed

    Pan, Yonghui; Lu, Zhifeng; Lu, Jianwei; Li, Xiaokun; Cong, Rihuan; Ren, Tao

    2017-04-01

    The interaction between low sink demand and potassium (K) deficiency in leaf photosynthesis was not intensively investigated, therefore this interaction was investigated in winter oilseed rape (Brassica napus L.). Plants subjected to sufficient (+K) or insufficient (-K) K supply treatments were maintained or removed their flowers and pods; these conditions were defined as high sink demand (HS) or low sink demand (LS), respectively. The low sink demand induced a lower photosynthetic rate (P n ), especially in the -K treatment during the first week. A negative relationship between P n and carbohydrate concentration was observed in the -K treatment but not in the +K treatment, suggesting that the decrease in P n in the -K treatment was the result of sink feedback regulation under low sink demand. Longer sink removal duration increased carbohydrate concentration, but the enhanced assimilate did not influence P n . On the contrary, low sink demand resulted in a high K concentration, slower chloroplast degradation rate and better PSII activity, inducing a higher P n compared with HS. Consequently, low sink demand decreased leaf photosynthesis over the short term due to sink feedback regulation, and potassium deficiency enhanced the photosynthetic decrease through carbohydrate accumulation and a lower carbohydrate concentration threshold for initiating photosynthesis depression. A longer duration of limited sink demand and sufficient potassium supply resulted in a higher photosynthesis rate because of delayed chloroplast degradation. This finding indicates that the nutritional status plays a role in leaf photosynthesis variations due to sink-source manipulation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Plant growth modelling and applications: the increasing importance of plant architecture in growth models.

    PubMed

    Fourcaud, Thierry; Zhang, Xiaopeng; Stokes, Alexia; Lambers, Hans; Körner, Christian

    2008-05-01

    Modelling plant growth allows us to test hypotheses and carry out virtual experiments concerning plant growth processes that could otherwise take years in field conditions. The visualization of growth simulations allows us to see directly and vividly the outcome of a given model and provides us with an instructive tool useful for agronomists and foresters, as well as for teaching. Functional-structural (FS) plant growth models are nowadays particularly important for integrating biological processes with environmental conditions in 3-D virtual plants, and provide the basis for more advanced research in plant sciences. In this viewpoint paper, we ask the following questions. Are we modelling the correct processes that drive plant growth, and is growth driven mostly by sink or source activity? In current models, is the importance of soil resources (nutrients, water, temperature and their interaction with meristematic activity) considered adequately? Do classic models account for architectural adjustment as well as integrating the fundamental principles of development? Whilst answering these questions with the available data in the literature, we put forward the opinion that plant architecture and sink activity must be pushed to the centre of plant growth models. In natural conditions, sinks will more often drive growth than source activity, because sink activity is often controlled by finite soil resources or developmental constraints. PMA06: This viewpoint paper also serves as an introduction to this Special Issue devoted to plant growth modelling, which includes new research covering areas stretching from cell growth to biomechanics. All papers were presented at the Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), held in Beijing, China, from 13-17 November, 2006. Although a large number of papers are devoted to FS models of agricultural and forest crop species, physiological and genetic processes have recently been included and point the way to a new direction in plant modelling research.

  6. Extreme late-summer drought causes neutral annual carbon balance in southwestern ponderosa pine forests and grasslands

    NASA Astrophysics Data System (ADS)

    Kolb, Thomas; Dore, Sabina; Montes-Helu, Mario

    2013-03-01

    We assessed the impacts of extreme late-summer drought on carbon balance in a semi-arid forest region in Arizona. To understand drought impacts over extremes of forest cover, we measured net ecosystem production (NEP), gross primary production (GPP), and total ecosystem respiration (TER) with eddy covariance over five years (2006-10) at an undisturbed ponderosa pine (Pinus ponderosa) forest and at a former forest converted to grassland by intense burning. Drought shifted annual NEP from a weak source of carbon to the atmosphere to a neutral carbon balance at the burned site and from a carbon sink to neutral at the undisturbed site. Carbon fluxes were particularly sensitive to drought in August. Drought shifted August NEP at the undisturbed site from sink to source because the reduction of GPP (70%) exceeded the reduction of TER (35%). At the burned site drought shifted August NEP from weak source to neutral because the reduction of TER (40%) exceeded the reduction of GPP (20%). These results show that the lack of forest recovery after burning and the exposure of undisturbed forests to late-summer drought reduce carbon sink strength and illustrate the high vulnerability of forest carbon sink strength in the southwest US to predicted increases in intense burning and precipitation variability.

  7. Are the Laurentian Great Lakes a CO2 Source or Sink?

    NASA Astrophysics Data System (ADS)

    Fernandez, J.; Townsend-Small, A.

    2016-12-01

    As concentrations of CO2 increase in our atmosphere, large bodies of water are prone to an accompanying increase in CO2. Accruing CO2 sinking into the Great Lakes can create more acidic waters, which is detrimental to the healthy growth of organisms producing calcium carbonate skeletons - a phenomenon that has been confirmed in modern oceans. Recent estimates suggests that Lake Huron, Lake Michigan, and Lake Superior are sources of atmospheric CO2, while Lake Erie and Lake Ontario are CO2 sinks, although this is based largely on water volume and little research has been done to validate these predictions. Water samples were collected aboard the University National Oceanographic Laboratory System RV Blue Heron and the Canadian Coast Guard RV Limnos from Lake Superior, Lake Michigan, and Lake Erie during the summer of 2016. Alkalinity and pCO2 were analyzed in lab to further calculate dissolved concentrations and fluxes of CO2, providing more information to resolve whether the Great Lakes are a CO2 source or sink. Additional work involves sampling all five of the Great lakes throughout the year to determine any seasonal trends in CO2. 13C-DIC will also be measured in order to differentiate methane oxidation and respiration to the CO2 pool.

  8. Striate cortical contribution to the transcorneal electrically evoked response of the visual system.

    PubMed

    Shimazu, K; Miyake, Y; Fukatsu, Y; Watanabe, S

    1996-01-01

    Analyses of current-source-density (CSD) and multiple unit activity (MUA) in area 17 of the cat were performed to determine the sources of the cortical transcorneal electrically evoked response. Cortical field potential, CSD and MUA profiles were obtained with multi-electrodes. CSD findings include: current sinks (inward cell membrane current) within 20 ms latency, in layers 4 and 6 of the striate cortex; current sinks corresponding to N3 (negative component of the EER; latency, 35 ms) in layer 4 and lower layer 3 with current sources (outward cell membrane current) for N3 in the supragranular layers; current sinks with latency over 40 ms in the supragranular layers. In the layers 4 and 6, simultaneous MUA was seen. When the stimulus frequency was increased or with dual stimulation, the N3 current sinks were decreased. This indicates that N1 (latency, 9 ms) and N2 (latency, 20 ms) reflect near-field potentials in layers 4 and 6, generated by geniculocortical afferents, and that N3 is a post- and polysynaptic component. It is also suggested that dipoles composed of cell bodies and the apical dendrites of pyramidal cells of layer 3, generated by satellite cells in layer 4, play a major role in generating N3.

  9. Investigating the sources and sinks of water of Congo's wetlands

    NASA Astrophysics Data System (ADS)

    Paiva, R. C. D.; O'Loughlin, F.; Alsdorf, D. E.; Durand, M. T.; Beighley, E., II; Calmant, S.; Lee, H.; Santos Da Silva, J.

    2014-12-01

    The Congo is the second largest river basin in the world and indeed there is still a lot to be investigated about the hydrology of this system. This region presents extensive wetlands that may play an important role on the hydrology, carbon and ecological dynamics of the Congo. However, previous studies indicate that these wetlands behave differently from the Amazon, other major rainforest basin, and how water enters and leaves the Cuvette Centrale wetland is still to be quantified. We investigate the sources and sinks of water to the Congo's wetlands. Our analyses range from simple examinations of precipitation and evaporation historical data to remote sensing datasets and 2 D hydrodynamic modelling of Congo wetlands. Early results show that water levels at wetlands are usually higher than adjacent Congo River water levels and amplitude of variation is considerably smaller. Also, floodplain channels are not observed in this region indicating that surface flows are diffusive. Mean annual precipitation range from 1600 to 2000 mm/year, evapotranspiration estimates are approximately 1100 mm/year while some estimates of groundwater recharge indicate values larger than 300 mm/year. These assessments suggest that volumes coming from local water balance could flood the wetlands to depths of only a few centimeters. Preliminary 2D hydrodynamic simulations show that water coming from main rivers produces at upstream areas can flood only a small part of wetland, mainly alongside these rivers.

  10. UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring

    PubMed Central

    Ammad Uddin, Mohammad; Mansour, Ali; Le Jeune, Denis; Ayaz, Mohammad; Aggoune, el-Hadi M.

    2018-01-01

    In this study, a crop health monitoring system is developed by using state of the art technologies including wireless sensors and Unmanned Aerial Vehicles (UAVs). Conventionally data is collected from sensor nodes either by fixed base stations or mobile sinks. Mobile sinks are considered a better choice nowadays due to their improved network coverage and energy utilization. Usually, the mobile sink is used in two ways: either it goes for random walk to find the scattered nodes and collect data, or follows a pre-defined path established by the ground network/clusters. Neither of these options is suitable in our scenario due to the factors like dynamic data collection, the strict targeted area required to be scanned, unavailability of a large number of nodes, dynamic path of the UAV, and most importantly, none of these are known in advance. The contribution of this paper is the formation of dynamic runtime clusters of field sensors by considering the above mentioned factors. Furthermore a mechanism (Bayesian classifier) is defined to select best node as cluster head. The proposed system is validated through simulation results, lab and infield experiments using concept devices. The obtained results are encouraging, especially in terms of deployment time, energy, efficiency, throughput and ease of use. PMID:29439496

  11. UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring.

    PubMed

    Uddin, Mohammad Ammad; Mansour, Ali; Jeune, Denis Le; Ayaz, Mohammad; Aggoune, El-Hadi M

    2018-02-11

    In this study, a crop health monitoring system is developed by using state of the art technologies including wireless sensors and Unmanned Aerial Vehicles (UAVs). Conventionally data is collected from sensor nodes either by fixed base stations or mobile sinks. Mobile sinks are considered a better choice nowadays due to their improved network coverage and energy utilization. Usually, the mobile sink is used in two ways: either it goes for random walk to find the scattered nodes and collect data, or follows a pre-defined path established by the ground network/clusters. Neither of these options is suitable in our scenario due to the factors like dynamic data collection, the strict targeted area required to be scanned, unavailability of a large number of nodes, dynamic path of the UAV, and most importantly, none of these are known in advance. The contribution of this paper is the formation of dynamic runtime clusters of field sensors by considering the above mentioned factors. Furthermore a mechanism (Bayesian classifier) is defined to select best node as cluster head. The proposed system is validated through simulation results, lab and infield experiments using concept devices. The obtained results are encouraging, especially in terms of deployment time, energy, efficiency, throughput and ease of use.

  12. Nitrous oxide and methane dynamics in a coral reef lagoon driven by pore water exchange: Insights from automated high-frequency observations

    NASA Astrophysics Data System (ADS)

    O'Reilly, Chiara; Santos, Isaac R.; Cyronak, Tyler; McMahon, Ashly; Maher, Damien T.

    2015-04-01

    Automated cavity ring down spectroscopy was used to make continuous measurements of dissolved methane, nitrous oxide, and carbon dioxide in a coral reef lagoon for 2 weeks (Heron Island, Great Barrier Reef). Radon (222Rn) was used to trace the influence of tidally driven pore water exchange on greenhouse gas dynamics. Clear tidal variation was observed for CH4, which correlated to 222Rn in lagoon waters. N2O correlated to 222Rn during the day only, which appears to be a response to coupled nitrification-denitrification in oxic sediments, fueled by nitrate derived from bird guano. The lagoon was a net source of CH4 and N2O to the atmosphere and a sink for atmospheric CO2. The estimated pore water-derived CH4 and N2O fluxes were 3.2-fold and 24.0-fold greater than the fluxes to the atmosphere. Overall, pore water and/or groundwater exchange were the only important sources of CH4 and major controls of N2O in the coral reef lagoon.

  13. ARE GIANT TORNADOES THE LEGS OF SOLAR PROMINENCES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wedemeyer, Sven; Scullion, Eamon; Rouppe van der Voort, Luc

    Observations in the 171 A channel of the Atmospheric Imaging Assembly of the space-borne Solar Dynamics Observatory show tornado-like features in the atmosphere of the Sun. These giant tornadoes appear as dark, elongated, and apparently rotating structures in front of a brighter background. This phenomenon is thought to be produced by rotating magnetic field structures that extend throughout the atmosphere. We characterize giant tornadoes through a statistical analysis of properties such as spatial distribution, lifetimes, and sizes. A total number of 201 giant tornadoes are detected in a period of 25 days, suggesting that, on average, about 30 events aremore » present across the whole Sun at a time close to solar maximum. Most tornadoes appear in groups and seem to form the legs of prominences, thus serving as plasma sources/sinks. Additional H{alpha} observations with the Swedish 1 m Solar Telescope imply that giant tornadoes rotate as a structure, although they clearly exhibit a thread-like structure. We observe tornado groups that grow prior to the eruption of the connected prominence. The rotation of the tornadoes may progressively twist the magnetic structure of the prominence until it becomes unstable and erupts. Finally, we investigate the potential relation of giant tornadoes to other phenomena, which may also be produced by rotating magnetic field structures. A comparison to cyclones, magnetic tornadoes, and spicules implies that such events are more abundant and short-lived the smaller they are. This comparison might help to construct a power law for the effective atmospheric heating contribution as a function of spatial scale.« less

  14. Are Giant Tornadoes the Legs of Solar Prominences?

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Scullion, Eamon; Rouppe van der Voort, Luc; Bosnjak, Antonija; Antolin, Patrick

    2013-09-01

    Observations in the 171 Å channel of the Atmospheric Imaging Assembly of the space-borne Solar Dynamics Observatory show tornado-like features in the atmosphere of the Sun. These giant tornadoes appear as dark, elongated, and apparently rotating structures in front of a brighter background. This phenomenon is thought to be produced by rotating magnetic field structures that extend throughout the atmosphere. We characterize giant tornadoes through a statistical analysis of properties such as spatial distribution, lifetimes, and sizes. A total number of 201 giant tornadoes are detected in a period of 25 days, suggesting that, on average, about 30 events are present across the whole Sun at a time close to solar maximum. Most tornadoes appear in groups and seem to form the legs of prominences, thus serving as plasma sources/sinks. Additional Hα observations with the Swedish 1 m Solar Telescope imply that giant tornadoes rotate as a structure, although they clearly exhibit a thread-like structure. We observe tornado groups that grow prior to the eruption of the connected prominence. The rotation of the tornadoes may progressively twist the magnetic structure of the prominence until it becomes unstable and erupts. Finally, we investigate the potential relation of giant tornadoes to other phenomena, which may also be produced by rotating magnetic field structures. A comparison to cyclones, magnetic tornadoes, and spicules implies that such events are more abundant and short-lived the smaller they are. This comparison might help to construct a power law for the effective atmospheric heating contribution as a function of spatial scale.

  15. Loss of dendritic connectivity in southern California's urban riverscape facilitates decline of an endemic freshwater fish

    USGS Publications Warehouse

    Richmond, Jonathan Q.; Backlin, Adam R.; Galst-Cavalcante, Carey; O'Brien, John W.; Fisher, Robert N.

    2018-01-01

    Life history adaptations and spatial configuration of metapopulation networks allow certain species to persist in extreme fluctuating environments, yet long-term stability within these systems relies on the maintenance of linkage habitat. Degradation of such linkages in urban riverscapes can disrupt this dynamic in aquatic species, leading to increased extinction debt in local populations experiencing environment-related demographic flux. We used microsatellites and mtDNA to examine the effects of collapsed network structure in the endemic Santa Ana sucker Catostomus santaanae of southern California, a threatened species affected by natural flood-drought cycles, ‘boom-and-bust’ demography, hybridization, and presumed artificial transplantation. Our results show a predominance of drift-mediated processes in shaping population structure, and that reverse mechanisms for counterbalancing the genetic effects of these phenomena have dissipated with the collapse of dendritic connectivity. We use approximate Bayesian models to support two cases of artificial transplantation, and provide evidence that one of the invaded systems better represents the historic processes that maintained genetic variation within watersheds than any remaining drainages where C. santaanae is considered native. We further show that a stable dry gap in the northern range is preventing genetic dilution of pure C. santaanae persisting upstream of a hybrid assemblage involving a non-native sucker, and that local accumulation of genetic variation in the same drainage is influenced by position within the network. This work has important implications for declining species that have historically relied on dendritic metapopulation networks to maintain source-sink dynamics in phasic environments, but no longer possess this capacity in urban-converted landscapes.

  16. Thermophoresis on boundary layer heat and mass transfer flow of Walters-B fluid past a radiate plate with heat sink/source

    NASA Astrophysics Data System (ADS)

    Vasu, B.; Gorla, Rama Subba Reddy; Murthy, P. V. S. N.

    2017-05-01

    The Walters-B liquid model is employed to simulate medical creams and other rheological liquids encountered in biotechnology and chemical engineering. This rheological model introduces supplementary terms into the momentum conservation equation. The combined effects of thermal radiation and heat sink/source on transient free convective, laminar flow and mass transfer in a viscoelastic fluid past a vertical plate are presented by taking thermophoresis effect into account. The transformed conservation equations are solved using a stable, robust finite difference method. A parametric study illustrating the influence of viscoelasticity parameter ( Γ), thermophoretic parameter ( τ), thermal radiation parameter ( F), heat sink/source ( ϕ), Prandtl number ( Pr), Schmidt number ( Sc), thermal Grashof number ( Gr), solutal Grashof number ( Gm), temperature and concentration profiles as well as local skin-friction, Nusselt and Sherwood number is conducted. The results of this parametric study are shown graphically and inform of table. The study has applications in polymer materials processing.

  17. A low-power reversible alkali atom source

    NASA Astrophysics Data System (ADS)

    Kang, Songbai; Mott, Russell P.; Gilmore, Kevin A.; Sorenson, Logan D.; Rakher, Matthew T.; Donley, Elizabeth A.; Kitching, John; Roper, Christopher S.

    2017-06-01

    An electrically controllable, solid-state, reversible device for sourcing and sinking alkali vapor is presented. When placed inside an alkali vapor cell, both an increase and decrease in the rubidium vapor density by a factor of two are demonstrated through laser absorption spectroscopy on 10-15 s time scales. The device requires low voltage (5 V), low power (<3.4 mW peak power), and low energy (<10.7 mJ per 10 s pulse). The absence of oxygen emission during operation is shown through residual gas analysis, indicating that Rb is not lost through chemical reaction but rather by ion transport through the designed channel. This device is of interest for atomic physics experiments and, in particular, for portable cold-atom systems where dynamic control of alkali vapor density can enable advances in science and technology.

  18. Emulating natural disturbances for declining late-successional species: a case study of the consequences for cerulean warblers (Setophaga cerulea).

    PubMed

    Boves, Than J; Buehler, David A; Sheehan, James; Wood, Petra Bohall; Rodewald, Amanda D; Larkin, Jeffrey L; Keyser, Patrick D; Newell, Felicity L; George, Gregory A; Bakermans, Marja H; Evans, Andrea; Beachy, Tiffany A; McDermott, Molly E; Perkins, Kelly A; White, Matthew; Wigley, T Bently

    2013-01-01

    Forest cover in the eastern United States has increased over the past century and while some late-successional species have benefited from this process as expected, others have experienced population declines. These declines may be in part related to contemporary reductions in small-scale forest interior disturbances such as fire, windthrow, and treefalls. To mitigate the negative impacts of disturbance alteration and suppression on some late-successional species, strategies that emulate natural disturbance regimes are often advocated, but large-scale evaluations of these practices are rare. Here, we assessed the consequences of experimental disturbance (using partial timber harvest) on a severely declining late-successional species, the cerulean warbler (Setophaga cerulea), across the core of its breeding range in the Appalachian Mountains. We measured numerical (density), physiological (body condition), and demographic (age structure and reproduction) responses to three levels of disturbance and explored the potential impacts of disturbance on source-sink dynamics. Breeding densities of warblers increased one to four years after all canopy disturbances (vs. controls) and males occupying territories on treatment plots were in better condition than those on control plots. However, these beneficial effects of disturbance did not correspond to improvements in reproduction; nest success was lower on all treatment plots than on control plots in the southern region and marginally lower on light disturbance plots in the northern region. Our data suggest that only habitats in the southern region acted as sources, and interior disturbances in this region have the potential to create ecological traps at a local scale, but sources when viewed at broader scales. Thus, cerulean warblers would likely benefit from management that strikes a landscape-level balance between emulating natural disturbances in order to attract individuals into areas where current structure is inappropriate, and limiting anthropogenic disturbance in forests that already possess appropriate structural attributes in order to maintain maximum productivity.

  19. Emulating natural disturbances for declining late-successional species: A case study of the consequences for Cerulean Warblers (Setophaga cerulea)

    USGS Publications Warehouse

    Boves, Than J.; Buehler, David A.; Sheehan, James; Wood, Petra Bohall; Rodewald, Amanda D.; Larkin, Jeffrey L.; Keyser, Patrick D.; Newell, Felicity L.; George, Gregory A.; Bakermans, Marja H.; Evans, Andrea; Beachy, Tiffany A.; McDermott, Molly E.; Perkins, Kelly A.; White, Matthew; Wigley, T. Bently

    2013-01-01

    Forest cover in the eastern United States has increased over the past century and while some late-successional species have benefited from this process as expected, others have experienced population declines. These declines may be in part related to contemporary reductions in small-scale forest interior disturbances such as fire, windthrow, and treefalls. To mitigate the negative impacts of disturbance alteration and suppression on some late-successional species, strategies that emulate natural disturbance regimes are often advocated, but large-scale evaluations of these practices are rare. Here, we assessed the consequences of experimental disturbance (using partial timber harvest) on a severely declining late-successional species, the cerulean warbler (Setophaga cerulea), across the core of its breeding range in the Appalachian Mountains. We measured numerical (density), physiological (body condition), and demographic (age structure and reproduction) responses to three levels of disturbance and explored the potential impacts of disturbance on source-sink dynamics. Breeding densities of warblers increased one to four years after all canopy disturbances (vs. controls) and males occupying territories on treatment plots were in better condition than those on control plots. However, these beneficial effects of disturbance did not correspond to improvements in reproduction; nest success was lower on all treatment plots than on control plots in the southern region and marginally lower on light disturbance plots in the northern region. Our data suggest that only habitats in the southern region acted as sources, and interior disturbances in this region have the potential to create ecological traps at a local scale, but sources when viewed at broader scales. Thus, cerulean warblers would likely benefit from management that strikes a landscape-level balance between emulating natural disturbances in order to attract individuals into areas where current structure is inappropriate, and limiting anthropogenic disturbance in forests that already possess appropriate structural attributes in order to maintain maximum productivity.

  20. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.

    PubMed

    Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P

    2015-01-06

    Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide improved insights into sediment P dynamics, particularly the rapid remineralization of organic P and the stability of Fe minerals and the ferric Fe-bound P pool in anoxic sediments in the Chesapeake Bay.

Top