Sample records for sources current challenges

  1. The Mock LISA Data Challenge Round 3: New and Improved Sources

    NASA Technical Reports Server (NTRS)

    Baker, John

    2008-01-01

    The Mock LISA Data Challenges are a program to demonstrate and encourage the development of data-analysis capabilities for LISA. Each round of challenges consists of several data sets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants are asked to analyze the data sets and report the maximum information they can infer about the source parameters. The challenges are being released in rounds of increasing complexity and realism. Challenge 3. currently in progress, brings new source classes, now including cosmic-string cusps and primordial stochastic backgrounds, and more realistic signal models for supermassive black-hole inspirals and galactic double white dwarf binaries.

  2. Challenges/issues of NIS used in particle accelerator facilities

    NASA Astrophysics Data System (ADS)

    Faircloth, Dan

    2013-09-01

    High current, high duty cycle negative ion sources are an essential component of many high power particle accelerators. This talk gives an overview of the state-of-the-art sources used around the world. Volume, surface and charge exchange negative ion production processes are detailed. Cesiated magnetron and Penning surface plasma sources are discussed along with surface converter sources. Multicusp volume sources with filament and LaB6 cathodes are described before moving onto RF inductively coupled volume sources with internal and external antennas. The major challenges facing accelerator facilities are detailed. Beam current, source lifetime and reliability are the most pressing. The pros and cons of each source technology is discussed along with their development programs. The uncertainties and unknowns common to these sources are discussed. The dynamics of cesium surface coverage and the causes of source variability are still unknown. Minimizing beam emittance is essential to maximizing the transport of high current beams; space charge effects are very important. The basic physics of negative ion production is still not well understood, theoretical and experimental programs continue to improve this, but there are still many mysteries to be solved.

  3. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa)

    NASA Astrophysics Data System (ADS)

    Booske, John H.

    2008-05-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave (mmw) to terahertz (THz) regime electromagnetic radiation, from 0.1 to 10THz. While vacuum electronic sources are a natural choice for high power, the challenges have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, high resolution radar, next generation acceleration drivers, and analysis of fluids and condensed matter. The compact size requirements for many of these high frequency sources require miniscule, microfabricated slow wave circuits. This necessitates electron beams with tiny transverse dimensions and potentially very high current densities for adequate gain. Thus, an emerging family of microfabricated, vacuum electronic devices share many of the same plasma physics challenges that are currently confronting "classic" high power microwave (HPM) generators including long-life bright electron beam sources, intense beam transport, parasitic mode excitation, energetic electron interaction with surfaces, and rf air breakdown at output windows. The contemporary plasma physics and other related issues of compact, high power mmw-to-THz sources are compared and contrasted to those of HPM generation, and future research challenges and opportunities are discussed.

  4. Liquid-metal-ion source development for space propulsion at ARC.

    PubMed

    Tajmar, M; Scharlemann, C; Genovese, A; Buldrini, N; Steiger, W; Vasiljevich, I

    2009-04-01

    The Austrian Research Centers have a long history of developing indium Liquid-Metal-Ion Source (LMIS) for space applications including spacecraft charging compensators, SIMS and propulsion. Specifically the application as a thruster requires long-term operation as well as high-current operation which is very challenging. Recently, we demonstrated the operation of a cluster of single LMIS at an average current of 100muA each for more than 4800h and developed models for tip erosion and droplet deposition suggesting that such a LMIS can operate up to 20,000h or more. In order to drastically increase the current, a porous multi-tip source that allows operation up to several mA was developed. Our paper will highlight the problem areas and challenges from our LMIS development focusing on space propulsion applications.

  5. Development of New Energy Cane Culitvars

    USDA-ARS?s Scientific Manuscript database

    Research into alternative energy sources has been on the rise since the 1970s. Novel sources of carbon-neutral energy are currently in high demand, but can pose different challenges in their development. Energy cane is a relatively new generation crop being bred as a source for biofuel feedstock and...

  6. External amplification of OCT swept-sources for challenging applications: from 10 mW to more than 120 mW

    NASA Astrophysics Data System (ADS)

    Rivard, Maxime; Villeneuve, Alain; Lamouche, Guy

    2017-02-01

    For bioimaging applications, commercial swept-sources currently provide enough power (tens of milliwatts) insuring good imaging condition without damaging the tissues. For industrial applications, more power is needed since the amount of light collected can be very low due to challenging measurement conditions or due to poor sample reflectivity. To address this challenge, we explore three different setups to externally amplify the output of a commercial swept-source: a booster semiconductor optical amplifier (BOA), an erbium-doped fiber amplifier (EDFA) and a combination of both. These external amplification setups allow the exploration of emerging OCT applications without the need to develop new hardware.

  7. Advanced Breeding, Development, and Release of High Biomass Energy Cane Cultivars in Florida

    USDA-ARS?s Scientific Manuscript database

    Research into alternative energy sources has been on the rise since the 1970s. Novel sources of carbon-neutral energy are currently in high demand, but can pose different challenges in their development. Energy cane is a relatively new generation crop being bred as a source for biofuel feedstock and...

  8. Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation

    NASA Astrophysics Data System (ADS)

    Booske, John

    2007-11-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).

  9. Mileage-Based User Fees : Prospects and Challenges

    DOT National Transportation Integrated Search

    2012-06-01

    This report reviews the current research regarding mileage-based user fees for vehicle travel (MBUF), possibly as a replacement or supplement to fuel taxes, which is currently the primary source of transportation revenues in New York State and the na...

  10. Neutron Imaging Control Report: FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, D. J.

    2016-11-30

    During the 2016 fiscal year, work began on the supervision and control systems for the neutron source currently under construction in the B194 accelerator caves. This source relies on a deuteron beam colliding with a high-speed stream of deuterium gas to create neutrons, which poses significant technical challenges. To help overcome those challenges, an integrated, operator-focused control architecture is required to collect and assimilate disparate data from a variety of measurement points, as well as provide the means to remotely control the system hardware.

  11. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    ScienceCinema

    Damour, Thibault

    2018-05-22

    A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  12. Graduate Students' Mental Health: Departmental Contexts as a Source of Differential Risk

    ERIC Educational Resources Information Center

    La Touche, Rachel A.

    2017-01-01

    Research in higher education acknowledges academic performance, progress and general health as adversely impacted by mental health challenges. These challenges are consistent with numerous life changes that accompany the student experience, including changes related to work, finances, social interactions and living conditions. Current scholarship…

  13. Tensions and Challenges in China's Education Policy Borrowing

    ERIC Educational Resources Information Center

    Tan, Charlene

    2016-01-01

    Background: This article critically discusses the key tensions and challenges arising from the educational policy borrowing in China, through its current education reform. Focussing on the new curriculum reform (NCR), the paper highlights the interactions and conflicts between foreign and local ideologies and practices. Sources of evidence: The…

  14. From California dreaming to California data: Challenging historic models for landfill CH4 emissions

    USDA-ARS?s Scientific Manuscript database

    Improved quantification of diverse CH4 sources at the urban scale is needed to guide local greenhouse gas (GHG) mitigation strategies in the Anthropocene. Herein, we focus on landfill CH4 emissions in California, challenging the current IPCC methodology which focuses on a climate dependency for land...

  15. High-performance semiconductor quantum-dot single-photon sources

    NASA Astrophysics Data System (ADS)

    Senellart, Pascale; Solomon, Glenn; White, Andrew

    2017-11-01

    Single photons are a fundamental element of most quantum optical technologies. The ideal single-photon source is an on-demand, deterministic, single-photon source delivering light pulses in a well-defined polarization and spatiotemporal mode, and containing exactly one photon. In addition, for many applications, there is a quantum advantage if the single photons are indistinguishable in all their degrees of freedom. Single-photon sources based on parametric down-conversion are currently used, and while excellent in many ways, scaling to large quantum optical systems remains challenging. In 2000, semiconductor quantum dots were shown to emit single photons, opening a path towards integrated single-photon sources. Here, we review the progress achieved in the past few years, and discuss remaining challenges. The latest quantum dot-based single-photon sources are edging closer to the ideal single-photon source, and have opened new possibilities for quantum technologies.

  16. Livermore Accelerator Source for Radionuclide Science (LASRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Scott; Bleuel, Darren; Johnson, Micah

    The Livermore Accelerator Source for Radionuclide Science (LASRS) will generate intense photon and neutron beams to address important gaps in the study of radionuclide science that directly impact Stockpile Stewardship, Nuclear Forensics, and Nuclear Material Detection. The co-location of MeV-scale neutral and photon sources with radiochemical analytics provides a unique facility to meet current and future challenges in nuclear security and nuclear science.

  17. Numerical simulations of merging black holes for gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey

    2014-03-01

    Gravitational waves from merging binary black holes (BBHs) are among the most promising sources for current and future gravitational-wave detectors. Accurate models of these waves are necessary to maximize the number of detections and our knowledge of the waves' sources; near the time of merger, the waves can only be computed using numerical-relativity simulations. For optimal application to gravitational-wave astronomy, BBH simulations must achieve sufficient accuracy and length, and all relevant regions of the BBH parameter space must be covered. While great progress toward these goals has been made in the almost nine years since BBH simulations became possible, considerable challenges remain. In this talk, I will discuss current efforts to meet these challenges, and I will present recent BBH simulations produced using the Spectral Einstein Code, including a catalog of publicly available gravitational waveforms [black-holes.org/waveforms]. I will also discuss simulations of merging black holes with high mass ratios and with spins nearly as fast as possible, the most challenging regions of the BBH parameter space.

  18. 4th Generation ECR Ion Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyneis, Claude M.; Leitner, D.; Todd, D.S.

    2008-12-01

    The concepts and technical challenges related to developing a 4th generation ECR ion source with an RF frequency greater than 40 GHz and magnetic confinement fields greater than twice Becr will be explored in this paper. Based on the semi-empirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current 3rd generation ECR ion sources, which operate at RF frequencies between 20 and 30 GHz. While the 3rd generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materialsmore » such as Nb3Sn to reach the required magnetic confinement, which scales linearly with RF frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continue to make this a promising avenue for development.« less

  19. The Europa Mission: Multiple Europa Flyby Trajectory Design Trades and Challenges

    NASA Technical Reports Server (NTRS)

    Lam, Try; Arrieta-Camacho, Juan J.; Buffington, Brent B.

    2015-01-01

    With potential sources of water, energy and other chemicals essential for life, Europa is a top candidate for finding current life in our Solar System outside of Earth. This paper describes the current trajectory design concept for a multiple Europa flyby mission and discusses several trajectory design challenges. The candidate reference trajectory utilizes multiple Europa flybys while around Jupiter to enable near global coverage of Europa while balancing science requirements, radiation dose, propellant usage, and flight time. Trajectory design trades and robustness are also discussed.

  20. Evaluation of Current Water Treatment and Distribution System Optimization to Provide Safe Drinking Water from Various Source Water Types and Conditions (Deliverable 5.2.C.1)

    EPA Science Inventory

    Increasingly, drinking water treatment plants (DWTPs) are being challenged by changes in the quality of their source waters and by their aging treatment and distribution system infrastructure. Individually or in combination, factors such as shrinking water and financial resources...

  1. ACTDs: Management Plans as Predictors of Transition

    DTIC Science & Technology

    2007-12-01

    phase. Figure 2 shows the current ACTD funding model in place today and highlights the challenges involved in the process. Current ACTD Funding ... Model All other Sources (~70%) OSD AS&C Cash Resources (~30%) Army PE x PE x PE x PE x Navy PE x PE x PE x PE x USAF PE x PE x

  2. Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users

    USGS Publications Warehouse

    Collins, A.L; Pulley, S.; Foster, I.D.L; Gellis, Allen; Porto, P.; Horowitz, A.J.

    2017-01-01

    The growing awareness of the environmental significance of fine-grained sediment fluxes through catchment systems continues to underscore the need for reliable information on the principal sources of this material. Source estimates are difficult to obtain using traditional monitoring techniques, but sediment source fingerprinting or tracing procedures, have emerged as a potentially valuable alternative. Despite the rapidly increasing numbers of studies reporting the use of sediment source fingerprinting, several key challenges and uncertainties continue to hamper consensus among the international scientific community on key components of the existing methodological procedures. Accordingly, this contribution reviews and presents recent developments for several key aspects of fingerprinting, namely: sediment source classification, catchment source and target sediment sampling, tracer selection, grain size issues, tracer conservatism, source apportionment modelling, and assessment of source predictions using artificial mixtures. Finally, a decision-tree representing the current state of knowledge is presented, to guide end-users in applying the fingerprinting approach.

  3. A cookbook for building a high-current dimpled H – magnetron source for accelerators

    DOE PAGES

    Bollinger, Daniel S.; Karns, Patrick R.; Tan, Cheng -Yang

    2015-10-30

    A high-current (>50 mA) dimpled H – magnetron source has been built at Fermilab for supplying H – beam to the entire accelerator complex. Despite many decades of expertise with slit H – magnetron sources at Fermilab, we were faced with many challenges from the dimpled H – magnetron source, which needed to be overcome in order to make it operational. Dimpled H – sources for high-energy physics are not new: Brookhaven National Laboratory has operated a dimpled H- source for more than two decades. However, the transference of that experience to Fermilab took about two years because a cookbookmore » for building this type of source did not exist and seemingly innocuous or undocumented choices had a huge impact on the success or failure for this type of source. Moreover, it is the goal of this paper to document the reasons for these choices and to present a cookbook for building and operating dimpled H – magnetron sources.« less

  4. Nuclear Explosion Monitoring Advances and Challenges

    NASA Astrophysics Data System (ADS)

    Baker, G. E.

    2015-12-01

    We address the state-of-the-art in areas important to monitoring, current challenges, specific efforts that illustrate approaches addressing shortcomings in capabilities, and additional approaches that might be helpful. The exponential increase in the number of events that must be screened as magnitude thresholds decrease presents one of the greatest challenges. Ongoing efforts to exploit repeat seismic events using waveform correlation, subspace methods, and empirical matched field processing holds as much "game-changing" promise as anything being done, and further efforts to develop and apply such methods efficiently are critical. Greater accuracy of travel time, signal loss, and full waveform predictions are still needed to better locate and discriminate seismic events. Important developments include methods to model velocities using multiple types of data; to model attenuation with better separation of source, path, and site effects; and to model focusing and defocusing of surface waves. Current efforts to model higher frequency full waveforms are likely to improve source characterization while more effective estimation of attenuation from ambient noise holds promise for filling in gaps. Censoring in attenuation modeling is a critical problem to address. Quantifying uncertainty of discriminants is key to their operational use. Efforts to do so for moment tensor (MT) inversion are particularly important, and fundamental progress on the statistics of MT distributions is the most important advance needed in the near term in this area. Source physics is seeing great progress through theoretical, experimental, and simulation studies. The biggest need is to accurately predict the effects of source conditions on seismic generation. Uniqueness is the challenge here. Progress will depend on studies that probe what distinguishes mechanisms, rather than whether one of many possible mechanisms is consistent with some set of observations.

  5. Mobile Source Mitigation Opportunities

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge The objective of this chapter is to review this history, focusing initially on the historical growth patterns and the resulting environmental consequences; then on the current control efforts around the ...

  6. Sustainable engineered processes to mitigate the global arsenic crisis in drinking water: challenges and progress.

    PubMed

    Sarkar, Sudipta; Greenleaf, John E; Gupta, Anirban; Uy, Davin; Sengupta, Arup K

    2012-01-01

    Millions of people around the world are currently living under the threat of developing serious health problems owing to ingestion of dangerous concentrations of arsenic through their drinking water. In many places, treatment of arsenic-contaminated water is an urgent necessity owing to a lack of safe alternative sources. Sustainable production of arsenic-safe water from an arsenic-contaminated raw water source is currently a challenge. Despite the successful development in the laboratory of technologies for arsenic remediation, few have been successful in the field. A sustainable arsenic-remediation technology should be robust, composed of local resources, and user-friendly as well as must attach special consideration to the social, economic, cultural, traditional, and environmental aspects of the target community. One such technology is in operation on the Indian subcontinent. Wide-scale replication of this technology with adequate improvisation can solve the arsenic crisis prevalent in the developing world.

  7. Achieving Transformational Materials Performance in a New Era of Science

    ScienceCinema

    Sarrao, John

    2017-12-22

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  8. DESIGN OF A GAMMA-RAY SOURCE BASED ON INVERSE COMPTON SCATTERING AT THE FAST SUPERCONDUCTING LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, D.; Jacobson, B.; Murokh, A.

    2016-10-10

    A watt-level average-power gamma-ray source is currently under development at the Fermilab Accelerator Science & Technology (FAST) facility. The source is based on the Inverse Compton Scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performances, and the main challenges ahead.

  9. Nuclear Forensics and Attribution: A National Laboratory Perspective

    NASA Astrophysics Data System (ADS)

    Hall, Howard L.

    2008-04-01

    Current capabilities in technical nuclear forensics - the extraction of information from nuclear and/or radiological materials to support the attribution of a nuclear incident to material sources, transit routes, and ultimately perpetrator identity - derive largely from three sources: nuclear weapons testing and surveillance programs of the Cold War, advances in analytical chemistry and materials characterization techniques, and abilities to perform ``conventional'' forensics (e.g., fingerprints) on radiologically contaminated items. Leveraging that scientific infrastructure has provided a baseline capability to the nation, but we are only beginning to explore the scientific challenges that stand between today's capabilities and tomorrow's requirements. These scientific challenges include radically rethinking radioanalytical chemistry approaches, developing rapidly deployable sampling and analysis systems for field applications, and improving analytical instrumentation. Coupled with the ability to measure a signature faster or more exquisitely, we must also develop the ability to interpret those signatures for meaning. This requires understanding of the physics and chemistry of nuclear materials processes well beyond our current level - especially since we are unlikely to ever have direct access to all potential sources of nuclear threat materials.

  10. Wearable energy sources based on 2D materials.

    PubMed

    Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan

    2018-05-08

    Wearable energy sources are in urgent demand due to the rapid development of wearable electronics. Besides flexibility and ultrathin thickness, emerging 2D materials present certain extraordinary properties that surpass the properties of conventional materials, which make them advantageous for high-performance wearable energy sources. Here, we provide a comprehensive review of recent advances in 2D material based wearable energy sources including wearable batteries, supercapacitors, and different types of energy harvesters. The crucial roles of 2D materials in the wearable energy sources are highlighted. Based on the current progress, the existing challenges and future prospects are outlined and discussed.

  11. Argonne OutLoud presents: The Solar Energy Challenge

    ScienceCinema

    Darling, Seth

    2018-02-19

    To better understand the current and future role of solar energy, Argonne's Seth Darling framed the global energy supply and demand outlook over the next 40 years while examining potential energy sources from a feasibility and sustainability perspective. He also discussed the promise and challenges of solar energy while providing a broad overview of related research taking place at Argonne as well as his group's work on organic solar cells.

  12. Argonne OutLoud presents: The Solar Energy Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Seth

    To better understand the current and future role of solar energy, Argonne's Seth Darling framed the global energy supply and demand outlook over the next 40 years while examining potential energy sources from a feasibility and sustainability perspective. He also discussed the promise and challenges of solar energy while providing a broad overview of related research taking place at Argonne as well as his group's work on organic solar cells.

  13. Recent Advances and Future Challenges in Risk-Based Radiation Engineering

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2016-01-01

    We cover a top-level introduction to hardness assurance (HA) from a robotic space system perspective, starting at the piece-part level. We discuss error sources inherent to presently-accepted HA practices and why they cause us to be risk-averse. We conclude by reviewing current proposals that move towards more risk-tolerant system design approaches as well as future challenges that will require these advanced techniques.

  14. Field Trials of the Multi-Source Approach for Resistivity and Induced Polarization Data Acquisition

    NASA Astrophysics Data System (ADS)

    LaBrecque, D. J.; Morelli, G.; Fischanger, F.; Lamoureux, P.; Brigham, R.

    2013-12-01

    Implementing systems of distributed receivers and transmitters for resistivity and induced polarization data is an almost inevitable result of the availability of wireless data communication modules and GPS modules offering precise timing and instrument locations. Such systems have a number of advantages; for example, they can be deployed around obstacles such as rivers, canyons, or mountains which would be difficult with traditional 'hard-wired' systems. However, deploying a system of identical, small, battery powered, transceivers, each capable of injecting a known current and measuring the induced potential has an additional and less obvious advantage in that multiple units can inject current simultaneously. The original purpose for using multiple simultaneous current sources (multi-source) was to increase signal levels. In traditional systems, to double the received signal you inject twice the current which requires you to apply twice the voltage and thus four times the power. Alternatively, one approach to increasing signal levels for large-scale surveys collected using small, battery powered transceivers is it to allow multiple units to transmit in parallel. In theory, using four 400 watt transmitters on separate, parallel dipoles yields roughly the same signal as a single 6400 watt transmitter. Furthermore, implementing the multi-source approach creates the opportunity to apply more complex current flow patterns than simple, parallel dipoles. For a perfect, noise-free system, multi-sources adds no new information to a data set that contains a comprehensive set of data collected using single sources. However, for realistic, noisy systems, it appears that multi-source data can substantially impact survey results. In preliminary model studies, the multi-source data produced such startling improvements in subsurface images that even the authors questioned their veracity. Between December of 2012 and July of 2013, we completed multi-source surveys at five sites with depths of exploration ranging from 150 to 450 m. The sites included shallow geothermal sites near Reno Nevada, Pomarance Italy, and Volterra Italy; a mineral exploration site near Timmins Quebec; and a landslide investigation near Vajont Dam in northern Italy. These sites provided a series of challenges in survey design and deployment including some extremely difficult terrain and a broad range of background resistivity and induced values. Despite these challenges, comparison of multi-source results to resistivity and induced polarization data collection with more traditional methods support the thesis that the multi-source approach is capable of providing substantial improvements in both depth of penetration and resolution over conventional approaches.

  15. Foundations for Protecting Renewable-Rich Distribution Systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Abraham; Brahma, Sukumar; Ranade, Satish

    High proliferation of Inverter Interfaced Distributed Energy Resources (IIDERs) into the electric distribution grid introduces new challenges to protection of such systems. This is because the existing protection systems are designed with two assumptions: 1) system is single-sourced, resulting in unidirectional fault current, and (2) fault currents are easily detectable due to much higher magnitudes compared to load currents. Due to the fact that most renewables interface with the grid though inverters, and inverters restrict their current output to levels close to the full load currents, both these assumptions are no longer valid - the system becomes multi-sourced, and overcurrent-basedmore » protection does not work. The primary scope of this study is to analyze the response of a grid-tied inverter to different faults in the grid, leading to new guidelines on protecting renewable-rich distribution systems.« less

  16. Centennial Challenges Program Overview: How NASA Successfully Involves the General Public in the Solving of Current Technology Gaps

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Kim, Tony; Sudnik, Janet; Sivak, Amy; Porter, Molly; Cylar, Rosaling; Cavanaugh, Dominique; Krome, Kim

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Centennial Challenges Program, part of the Space Technology Mission Directorate (STMD), addresses key technology needs of NASA and the nation, while facilitating new sources of innovation outside the traditional community. This is done by the direct engagement of the public at large, through the offering of Congressional authorized prize purses and associated challenges developed by NASA and the aerospace community and set up as a competition awarding the prize money for achieving the specified technology goal.

  17. Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users.

    PubMed

    Collins, A L; Pulley, S; Foster, I D L; Gellis, A; Porto, P; Horowitz, A J

    2017-06-01

    The growing awareness of the environmental significance of fine-grained sediment fluxes through catchment systems continues to underscore the need for reliable information on the principal sources of this material. Source estimates are difficult to obtain using traditional monitoring techniques, but sediment source fingerprinting or tracing procedures, have emerged as a potentially valuable alternative. Despite the rapidly increasing numbers of studies reporting the use of sediment source fingerprinting, several key challenges and uncertainties continue to hamper consensus among the international scientific community on key components of the existing methodological procedures. Accordingly, this contribution reviews and presents recent developments for several key aspects of fingerprinting, namely: sediment source classification, catchment source and target sediment sampling, tracer selection, grain size issues, tracer conservatism, source apportionment modelling, and assessment of source predictions using artificial mixtures. Finally, a decision-tree representing the current state of knowledge is presented, to guide end-users in applying the fingerprinting approach. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, D.; Murokh, A.; Piot, P.

    2017-07-01

    A high-brilliance (~10 22 photon s -1 mm -2 mrad -2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (E γ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.

  19. Integrated and Translational Nonclinical In Vivo Cardiovascular Risk Assessment: Gaps and Opportunities

    EPA Science Inventory

    Cardiovascular (CV) safety concerns are a significant source of drug development attrition in the pharmaceutical industry today. Though current nonclinical testing paradigms have largely prevented catastrophic CV events in Phase I studies, many challenges relating to the inabil...

  20. Opportunities on the state highway system to generate revenue or offset expenditures for the state of Florida : [summary].

    DOT National Transportation Integrated Search

    2013-10-01

    The Florida Department of Transportation : (FDOT) and many other transportation agencies : are increasingly challenged by the shortfall in : resources from traditional sources, especially : fuel taxes. The current system of fuel taxes was : conceived...

  1. Modeling Watershed Mercury Response to Atmospheric Loadings: Response Time and Challenges

    EPA Science Inventory

    The relationship between sources of mercury to watersheds and its fate in surface waters is invariably complex. Large scale monitoring studies, such as the METAALICUS project, have advanced current understanding of the links between atmospheric deposition of mercury and accumulat...

  2. The Chandra Source Catalog : Automated Source Correlation

    NASA Astrophysics Data System (ADS)

    Hain, Roger; Evans, I. N.; Evans, J. D.; Glotfelty, K. J.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Primini, F. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-01-01

    Chandra Source Catalog (CSC) master source pipeline processing seeks to automatically detect sources and compute their properties. Since Chandra is a pointed mission and not a sky survey, different sky regions are observed for a different number of times at varying orientations, resolutions, and other heterogeneous conditions. While this provides an opportunity to collect data from a potentially large number of observing passes, it also creates challenges in determining the best way to combine different detection results for the most accurate characterization of the detected sources. The CSC master source pipeline correlates data from multiple observations by updating existing cataloged source information with new data from the same sky region as they become available. This process sometimes leads to relatively straightforward conclusions, such as when single sources from two observations are similar in size and position. Other observation results require more logic to combine, such as one observation finding a single, large source and another identifying multiple, smaller sources at the same position. We present examples of different overlapping source detections processed in the current version of the CSC master source pipeline. We explain how they are resolved into entries in the master source database, and examine the challenges of computing source properties for the same source detected multiple times. Future enhancements are also discussed. This work is supported by NASA contract NAS8-03060 (CXC).

  3. Modeling of Photoionized Plasmas

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy R.

    2010-01-01

    In this paper I review the motivation and current status of modeling of plasmas exposed to strong radiation fields, as it applies to the study of cosmic X-ray sources. This includes some of the astrophysical issues which can be addressed, the ingredients for the models, the current computational tools, the limitations imposed by currently available atomic data, and the validity of some of the standard assumptions. I will also discuss ideas for the future: challenges associated with future missions, opportunities presented by improved computers, and goals for atomic data collection.

  4. Powering nanorobotic devices: challenges and future strategies

    NASA Astrophysics Data System (ADS)

    Sankar, Krishna Moorthi

    2014-04-01

    Nanotechnology, even after 55 years since its foundation (1959 Richard Feynman's speech - `There is lot of space in the bottom'), is still in its infancy. However, of late, there has been a large increase in the research being done in this field in many prominent Universities and Research institutions across the globe. Nanorobotics is the combination of Nanotechnology and the science of Robotics, to create robots that are only a few nanometres (10-9 metres) in size. Nanobots are yet to be made. But with the current pace of ongoing researches, scientists predict that nanobots will be made a reality by next ten years. The main proposed function of nanobots is to use them in the medical field to interact with cells or intra-cellular substances and prevent or reverse structural and genetical problems and diseases. One of the major challenges faced while creating a nanobot to travel through human body is to power it. Nanobots would require a very small yet highly potential source of energy. There are many hypothesised energy sources for nanobots which are either already available within the human body naturally or which are to be supplied externally. But, all of these energy sources pose a few challenges which need to be addressed if they are to be used to power nanobots. These challenges can be overcome using a number of strategies that can be used to make an economically, ecologically and medically viable energy source.

  5. Use of Biological and Non-biological Surrogates for Evaluating Cryptosporidium Removal by Filtration

    EPA Science Inventory

    Water treatment plants are currently facing increasing challenges in monitoring Cryptosporidium in source and treated water because of complex analytical techniques and associated health risks. Surrogates may be easier to analyze than Cryptosporidium, but they must also be reliab...

  6. An overview of the challenges in designing, integrating, and delivering BARD: a public chemical biology resource and query portal across multiple organizations, locations, and disciplines

    PubMed Central

    de Souza, Andrea; Bittker, Joshua; Lahr, David; Brudz, Steve; Chatwin, Simon; Oprea, Tudor I.; Waller, Anna; Yang, Jeremy; Southall, Noel; Guha, Rajarshi; Schurer, Stephan; Vempati, Uma; Southern, Mark R.; Dawson, Eric S.; Clemons, Paul A.; Chung, Thomas D.Y.

    2015-01-01

    Recent industry-academic partnerships involve collaboration across disciplines, locations, and organizations using publicly funded “open-access” and proprietary commercial data sources. These require effective integration of chemical and biological information from diverse data sources, presenting key informatics, personnel, and organizational challenges. BARD (BioAssay Research Database) was conceived to address these challenges and to serve as a community-wide resource and intuitive web portal for public-sector chemical biology data. Its initial focus is to enable scientists to more effectively use the NIH Roadmap Molecular Libraries Program (MLP) data generated from 3-year pilot and 6-year production phases of the Molecular Libraries Probe Production Centers Network (MLPCN), currently in its final year. BARD evolves the current data standards through structured assay and result annotations that leverage the BioAssay Ontology (BAO) and other industry-standard ontologies, and a core hierarchy of assay definition terms and data standards defined specifically for small-molecule assay data. We have initially focused on migrating the highest-value MLP data into BARD and bringing it up to this new standard. We review the technical and organizational challenges overcome by the inter-disciplinary BARD team, veterans of public and private sector data-integration projects, collaborating to describe (functional specifications), design (technical specifications), and implement this next-generation software solution. PMID:24441647

  7. The United States and Vietnam Relationship: Benefits and Challenges for Vietnam

    DTIC Science & Technology

    2016-06-10

    the current stage in their bilateral relations. The U.S.-Vietnam relationship has been increasingly cemented in the context of the contemporary...reach the current stage in their bilateral relations. The U.S.-Vietnam relationship has been increasingly cemented in the context of the contemporary...Major Exports to Vietnam aircraft, mining equipment, electronic machinery, steel wire, raw cotton, plastics Source: Mark E. Manyin, The Vietnam

  8. Evaluation and Management Strategies for Per- and Polyfluoroalkyl Substances (PFASs) in Drinking Water Aquifers: Perspectives from Impacted U.S. Northeast Communities.

    PubMed

    Guelfo, Jennifer L; Marlow, Thomas; Klein, David M; Savitz, David A; Frickel, Scott; Crimi, Michelle; Suuberg, Eric M

    2018-06-01

    Multiple Northeast U.S. communities have discovered per- and polyfluoroalkyl substances (PFASs) in drinking water aquifers in excess of health-based regulatory levels or advisories. Regional stakeholders (consultants, regulators, and others) need technical background and tools to mitigate risks associated with exposure to PFAS-affected groundwater. The aim was to identify challenges faced by stakeholders to extend best practices to other regions experiencing PFAS releases and to establish a framework for research strategies and best management practices. Management challenges were identified during stakeholder engagement events connecting attendees with PFAS experts in focus areas, including fate/transport, toxicology, and regulation. Review of the literature provided perspective on challenges in all focus areas. Publicly available data were used to characterize sources of PFAS impacts in groundwater and conduct a geospatial case study of potential source locations relative to drinking water aquifers in Rhode Island. Challenges in managing PFAS impacts in drinking water arise from the large number of relevant PFASs, unconsolidated information regarding sources, and limited studies on some PFASs. In particular, there is still considerable uncertainty regarding human health impacts of PFASs. Frameworks sequentially evaluating exposure, persistence, and treatability can prioritize PFASs for evaluation of potential human health impacts. A regional case study illustrates how risk-based, geospatial methods can help address knowledge gaps regarding potential sources of PFASs in drinking water aquifers and evaluate risk of exposure. Lessons learned from stakeholder engagement can assist in developing strategies for management of PFASs in other regions. However, current management practices primarily target a subset of PFASs for which in-depth studies are available. Exposure to less-studied, co-occurring PFASs remains largely unaddressed. Frameworks leveraging the current state of science can be applied toward accelerating this process and reducing exposure to total PFASs in drinking water, even as research regarding health effects continues. https://doi.org/10.1289/EHP2727.

  9. Electroencephalography (EEG) forward modeling via H(div) finite element sources with focal interpolation.

    PubMed

    Pursiainen, S; Vorwerk, J; Wolters, C H

    2016-12-21

    The goal of this study is to develop focal, accurate and robust finite element method (FEM) based approaches which can predict the electric potential on the surface of the computational domain given its structure and internal primary source current distribution. While conducting an EEG evaluation, the placement of source currents to the geometrically complex grey matter compartment is a challenging but necessary task to avoid forward errors attributable to tissue conductivity jumps. Here, this task is approached via a mathematically rigorous formulation, in which the current field is modeled via divergence conforming H(div) basis functions. Both linear and quadratic functions are used while the potential field is discretized via the standard linear Lagrangian (nodal) basis. The resulting model includes dipolar sources which are interpolated into a random set of positions and orientations utilizing two alternative approaches: the position based optimization (PBO) and the mean position/orientation (MPO) method. These results demonstrate that the present dipolar approach can reach or even surpass, at least in some respects, the accuracy of two classical reference methods, the partial integration (PI) and St. Venant (SV) approach which utilize monopolar loads instead of dipolar currents.

  10. Hydrogen storage and fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Di-Jia

    2018-01-01

    Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.

  11. Coping and resilience among ethnoracial individuals experiencing homelessness and mental illness.

    PubMed

    Paul, Sayani; Corneau, Simon; Boozary, Tanya; Stergiopoulos, Vicky

    2018-03-01

    The multiple challenges that ethnoracial homeless individuals experiencing mental illness face are well documented. However, little is known about how this homeless subpopulation copes with the compounding stressors of racial discrimination, homelessness and mental illness. This study is an in-depth investigation of the personal perceived strengths, attitudes and coping behaviors of homeless adults of diverse ethnoracial backgrounds experiencing homelessness and mental illness in Toronto, Canada. Using qualitative methods, 36 in-depth semi-structured interviews were conducted to capture the perspectives of ethnoracial homeless participants with mental illness on coping and resilience. Transcripts were analyzed using thematic analysis. Similar to prior findings in the general homeless population, study participants recognized personal strengths and attitudes as great sources of coping and resilience, describing hope and optimism, self-esteem and confidence, insight into their challenges and spirituality as instrumental to overcoming current challenges. In addition, participants described several coping strategies, including seeking support from family, friends and professionals; socializing with peers; engaging in meaningful activities; distancing from overwhelming challenges; and finding an anchor. Findings suggest that homeless adults with mental illness from ethnoracial groups use similar coping strategies and sources of resilience with the general homeless population and highlight the need for existing services to foster hope, recognize and support individual coping strategies and sources of resilience of homeless individuals experiencing complex challenges.

  12. Developing Modern Information Systems and Services: Africa's Challenges for the Future.

    ERIC Educational Resources Information Center

    Chowdhury, G. G.

    1996-01-01

    Discusses the current state of information systems and services in Africa, examines future possibilities, and suggests areas for improvement. Topics include the lack of automation; CD-ROM databases for accessibility to information sources; developing low-cost electronic communication facilities; Internet connectivity; dependence on imported…

  13. Sediment tracers in water erosion studies: Current approaches and challenges

    USDA-ARS?s Scientific Manuscript database

    The interest in the use of sediment tracers as a complementary tool to traditional water soil erosion or deposition measurements or assessment has increased due to the additional information they may provide such as sediment source identification and tracking of sediment movement over the landscape ...

  14. Transportation Fuels and the Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Gabbard, Alex

    2004-11-01

    An energy analysis of transportation fuels is performed for comparing automobiles and fuels currently in the marketplace as real world benchmarks projected as "hydrogen economy" requirements. Comparisons are made for ideal case average energy values at Standard Temperature and Pressure (STP) at 20°C, 1 atmosphere with no loses. "Real world" benchmarks currently in the marketplace illuminate the challenges to be met if an equivalent "hydrogen economy" is to become reality. The idea of a "hydrogen economy" is that, at some time in the future, world energy needs will be supplied in part or totally from hydrogen; in part as compared to the current "petroleum economy" that is the source of most of the world's transportation fuels and only a portion of total energy use, or hydrogen as the source of all energy consumption.

  15. Library construction for next-generation sequencing: Overviews and challenges

    PubMed Central

    Head, Steven R.; Komori, H. Kiyomi; LaMere, Sarah A.; Whisenant, Thomas; Van Nieuwerburgh, Filip; Salomon, Daniel R.; Ordoukhanian, Phillip

    2014-01-01

    High-throughput sequencing, also known as next-generation sequencing (NGS), has revolutionized genomic research. In recent years, NGS technology has steadily improved, with costs dropping and the number and range of sequencing applications increasing exponentially. Here, we examine the critical role of sequencing library quality and consider important challenges when preparing NGS libraries from DNA and RNA sources. Factors such as the quantity and physical characteristics of the RNA or DNA source material as well as the desired application (i.e., genome sequencing, targeted sequencing, RNA-seq, ChIP-seq, RIP-seq, and methylation) are addressed in the context of preparing high quality sequencing libraries. In addition, the current methods for preparing NGS libraries from single cells are also discussed. PMID:24502796

  16. Size scaling of negative hydrogen ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-01

    The RF-driven negative hydrogen ion source (H-, D-) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  17. Terahertz: the Far-Ir Challenge

    NASA Astrophysics Data System (ADS)

    Dispenza, Massimiliano; Fiorello, Annamaria; Secchi, Alberto; Varasi, Mauro

    This chapter is an overview on terahertz technologies and applications for sensing. The most advanced imaging and spectroscopy techniques are described, considering current opportunities and limitations in comparison to probes in the adjacent regions of the e.m. spectrum. Potential applications are highlighted, with a specific focus on security for detection of illicit substances and revealing of hidden objects. The technological status and current bottlenecks on sources and detectors are reviewed and future trends discussed.

  18. 75 FR 25270 - Administration for Children and Families; Single-Source Program Expansion Supplement Grant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ...--(i) To assist refugees in obtaining the skills which are necessary for economic self-sufficiency... the Ethiopian Community Development Council, Inc. (ECDC), located in Arlington, VA. Current economic... collaboration to meet these challenges. Provision of technical assistance is essential to support the long- term...

  19. Nitrogen Balance and Use Efficiency in the Calapooia River Watershed, Oregon, United States

    EPA Science Inventory

    Reducing nitrogen (N) release into the environment through greater N use efficiencies (NUE) is a current challenge in watershed management. Examining N sources and sinks at local scales allows for better watershed-scale N use, for example when considering the tradeoffs between th...

  20. Microbial fuel cells: Running on gas

    NASA Astrophysics Data System (ADS)

    Ren, Zhiyong Jason

    2017-06-01

    Methane is an abundant energy source that is used for power generation in thermal power plants via combustion, but direct conversion to electricity in fuel cells remains challenging. Now, a microbial fuel cell is demonstrated to efficiently convert methane directly to current by careful selection of a consortium of microorganisms.

  1. Funding strategies for wilderness management

    Treesearch

    Carolyn Alkire

    2000-01-01

    Funding wilderness protection will continue to be a challenge for public land managers. With continuing competition for federal funds and balanced budget goals, other sources of funds may be necessary to supplement annual federal appropriations. This paper identifies and evaluates five potential funding strategies and provides examples of each that are currently in use...

  2. Fish-Eye Observing with Phased Array Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Wijnholds, S. J.

    The radio astronomical community is currently developing and building several new radio telescopes based on phased array technology. These telescopes provide a large field-of-view, that may in principle span a full hemisphere. This makes calibration and imaging very challenging tasks due to the complex source structures and direction dependent radio wave propagation effects. In this thesis, calibration and imaging methods are developed based on least squares estimation of instrument and source parameters. Monte Carlo simulations and actual observations with several prototype show that this model based approach provides statistically and computationally efficient solutions. The error analysis provides a rigorous mathematical framework to assess the imaging performance of current and future radio telescopes in terms of the effective noise, which is the combined effect of propagated calibration errors, noise in the data and source confusion.

  3. Oropharyngeal Dysphagia in children: mechanism, source, and management.

    PubMed

    Durvasula, Venkata S P B; O'Neill, Ashley C; Richter, Gresham T

    2014-10-01

    Oropharyngeal dysphagia (OPD) is a challenging and relatively common condition in children. Both developmentally normal and delayed children may be affected. The etiology of OPD is frequently multifactorial with neurologic, inflammatory, and anatomic conditions contributing to discoordination of the pharyngeal phase of swallowing. Depending on the severity and source, OPD may persist for several years with significant burden to a patient's health and family. This article details current understanding of the mechanism and potential sources of OPD in children while providing an algorithm for managing it in the acute and chronic setting. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Record productions establish RF-driven sources as the standard for generating high-duty-factor, high-current H- beams for accelerators (Winner of the ICIS 2017 Brightness Award)

    NASA Astrophysics Data System (ADS)

    Stockli, Martin P.; Welton, Robert F.; Han, Baoxi

    2018-05-01

    The Spallation Neutron Source operates reliably at 1.2 MW and will gradually ramp to 1.4 MW. This paper briefly recalls some of the struggles when the unprecedented project was started and ramped to 1 MW over a 3½ year period. This was challenging, especially for the H- ion source and the low-energy beam transport system, which make up the H- injector. It took several more years to push the H- injector to the 1.4 MW requirements, and even longer to reach close to 100% injector availability. An additional breakthrough was the carefully staged, successful extension of the H- source service cycle so that disruptive source changes became rare events. More than 7 A.h of extracted H- ions have been demonstrated with a single source without maintenance, more than twice the single-source quantity of ions produced by any other high-current H- accelerator facility. Achieving the 1.4 MW requirements with close to 100% availability and record-breaking source service cycles were the basis for the 2017 Brightness Award.

  5. Current Challenges in Geothermal Reservoir Simulation

    NASA Astrophysics Data System (ADS)

    Driesner, T.

    2016-12-01

    Geothermal reservoir simulation has long been introduced as a valuable tool for geothermal reservoir management and research. Yet, the current generation of simulation tools faces a number of severe challenges, in particular in the application for novel types of geothermal resources such as supercritical reservoirs or hydraulic stimulation. This contribution reviews a number of key problems: Representing the magmatic heat source of high enthalpy resources in simulations. Current practice is representing the deeper parts of a high enthalpy reservoir by a heat flux or temperature boundary condition. While this is sufficient for many reservoir management purposes it precludes exploring the chances of very high enthalpy resources in the deepest parts of such systems as well as the development of reliable conceptual models. Recent 2D simulations with the CSMP++ simulation platform demonstrate the potential of explicitly including the heat source, namely for understanding supercritical resources. Geometrically realistic incorporation of discrete fracture networks in simulation. A growing number of simulation tools can, in principle, handle flow and heat transport in discrete fracture networks. However, solving the governing equations and representing the physical properties are often biased by introducing strongly simplifying assumptions. Including proper fracture mechanics in complex fracture network simulations remains an open challenge. Improvements of the simulating chemical fluid-rock interaction in geothermal reservoirs. Major improvements have been made towards more stable and faster numerical solvers for multicomponent chemical fluid rock interaction. However, the underlying thermodynamic models and databases are unable to correctly address a number of important regions in temperature-pressure-composition parameter space. Namely, there is currently no thermodynamic formalism to describe relevant chemical reactions in supercritical reservoirs. Overcoming this unsatisfactory situation requires fundamental research in high temperature physical chemistry rather than further numerical development.

  6. An Overview of the Challenges in Designing, Integrating, and Delivering BARD: A Public Chemical-Biology Resource and Query Portal for Multiple Organizations, Locations, and Disciplines.

    PubMed

    de Souza, Andrea; Bittker, Joshua A; Lahr, David L; Brudz, Steve; Chatwin, Simon; Oprea, Tudor I; Waller, Anna; Yang, Jeremy J; Southall, Noel; Guha, Rajarshi; Schürer, Stephan C; Vempati, Uma D; Southern, Mark R; Dawson, Eric S; Clemons, Paul A; Chung, Thomas D Y

    2014-06-01

    Recent industry-academic partnerships involve collaboration among disciplines, locations, and organizations using publicly funded "open-access" and proprietary commercial data sources. These require the effective integration of chemical and biological information from diverse data sources, which presents key informatics, personnel, and organizational challenges. The BioAssay Research Database (BARD) was conceived to address these challenges and serve as a community-wide resource and intuitive web portal for public-sector chemical-biology data. Its initial focus is to enable scientists to more effectively use the National Institutes of Health Roadmap Molecular Libraries Program (MLP) data generated from the 3-year pilot and 6-year production phases of the Molecular Libraries Probe Production Centers Network (MLPCN), which is currently in its final year. BARD evolves the current data standards through structured assay and result annotations that leverage BioAssay Ontology and other industry-standard ontologies, and a core hierarchy of assay definition terms and data standards defined specifically for small-molecule assay data. We initially focused on migrating the highest-value MLP data into BARD and bringing it up to this new standard. We review the technical and organizational challenges overcome by the interdisciplinary BARD team, veterans of public- and private-sector data-integration projects, who are collaborating to describe (functional specifications), design (technical specifications), and implement this next-generation software solution. © 2014 Society for Laboratory Automation and Screening.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouhard, Margaret MEG G; Steed, Chad A; Hahn, Steven E

    In this paper, we propose strategies and objectives for immersive data visualization with applications in materials science using the Oculus Rift virtual reality headset. We provide background on currently available analysis tools for neutron scattering data and other large-scale materials science projects. In the context of the current challenges facing scientists, we discuss immersive virtual reality visualization as a potentially powerful solution. We introduce a prototype immersive visual- ization system, developed in conjunction with materials scientists at the Spallation Neutron Source, which we have used to explore large crystal structures and neutron scattering data. Finally, we offer our perspective onmore » the greatest challenges that must be addressed to build effective and intuitive virtual reality analysis tools that will be useful for scientists in a wide range of fields.« less

  8. Photon Science for Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard

    2010-03-31

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's lightmore » sources possible scientific directions for addressing these profound yet urgent challenges.« less

  9. Managing Water Quality in Wetlands with Foresty BMP's

    Treesearch

    Bob Rummer

    2004-01-01

    Forested wetlands are uniquely critical areas in forest operations that present special challenges to protect water quality. These locations are a direct interface between the impacts of forest operations and water. BMP's are designed to minimize nonpoint source pollution, but much of the science behind current guidelines is based on an understanding of erosion...

  10. Inequality for All: The Challenge of Unequal Opportunity in American Schools

    ERIC Educational Resources Information Center

    Schmidt, William; McKnight, Curtis

    2012-01-01

    "Inequality for All" makes an important contribution to current debates about economic inequalities and the growing achievement gap, particularly in mathematics and science education. The authors argue that the greatest source of variation in opportunity to learn is not between local communities, or even schools, but between classrooms.…

  11. Capitalize on the benefits of OAB - looking beyond the standard setup

    NASA Technical Reports Server (NTRS)

    Phan, Voung Gia; Yousef, Sahar

    2004-01-01

    Going beyond the initial setup of OAB, how to customize and maintain OAB to fit your current business process. There are many challenges in mapping data from outside sources into OAB and interfacing it to Payroll. Also, life events and fast formulas play a critical role in the customization of OAB.

  12. Sexual Orientation and School Discipline: New Evidence from a Population-Based Sample

    ERIC Educational Resources Information Center

    Mittleman, Joel

    2018-01-01

    Sexual minorities' risk for exclusionary discipline is a commonly cited indicator of the challenges that these students face. The current study addresses this issue by introducing a new data source for research on sexual minority students: the Fragile Families and Childhood Wellbeing Study. In this geographically diverse, population-based sample,…

  13. Practitioners Who Work with Parents with Intellectual Disability: Stress, Coping and Training Needs

    ERIC Educational Resources Information Center

    Clayton, Olivia; Chester, Andrea; Mildon, Robyn; Matthews, Jan

    2008-01-01

    Background: Challenges for practitioners who work with parents with intellectual disability arise from several sources. The purpose of the current study was to identify the stressors experienced by practitioners who work with parents with intellectual disability in Australia, investigate coping strategies and explore training needs so as to inform…

  14. Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species?

    USDA-ARS?s Scientific Manuscript database

    There are approximately 55,000 described Acari species, accounting for almost half of all known Arachnida species, but total estimated Acari diversity is reckoned to be far greater. One important source of currently hidden Acari diversity is cryptic speciation, which poses challenges to taxonomists ...

  15. An alternative animal protein source: cultured beef.

    PubMed

    Post, Mark J

    2014-11-01

    Alternative sources of animal proteins are needed that can be produced efficiently, thereby providing food security with diminished ecological burden. It is feasible to culture beef from bovine skeletal muscle stem cells, but the technology is still under development. The aim is to create a beef mimic with equivalent taste, texture, and appearance and with the same nutritional value as livestock-produced beef. More specifically, there is a need for optimization of protein content and fat content. In addition, scalability of production requires modification of current small-scale bioreactors to the largest possible scale. The necessary steps and current progress suggest that this aim is achievable, but formal evidence is still required. Similarly, we can be optimistic about consumer acceptance based on initial data, but detailed studies are needed to gain more insight into potential psychological obstacles that could lead to rejection. These challenges are formidable but likely surmountable. The severity of upcoming food-security threats warrants serious research and development efforts to address the challenges that come with bringing cultured beef to the market. © 2014 New York Academy of Sciences.

  16. Quantity and unit extraction for scientific and technical intelligence analysis

    NASA Astrophysics Data System (ADS)

    David, Peter; Hawes, Timothy

    2017-05-01

    Scientific and Technical (S and T) intelligence analysts consume huge amounts of data to understand how scientific progress and engineering efforts affect current and future military capabilities. One of the most important types of information S and T analysts exploit is the quantities discussed in their source material. Frequencies, ranges, size, weight, power, and numerous other properties and measurements describing the performance characteristics of systems and the engineering constraints that define them must be culled from source documents before quantified analysis can begin. Automating the process of finding and extracting the relevant quantities from a wide range of S and T documents is difficult because information about quantities and their units is often contained in unstructured text with ad hoc conventions used to convey their meaning. Currently, even simple tasks, such as searching for documents discussing RF frequencies in a band of interest, is a labor intensive and error prone process. This research addresses the challenges facing development of a document processing capability that extracts quantities and units from S and T data, and how Natural Language Processing algorithms can be used to overcome these challenges.

  17. Energy sources of polycyclic aromatic hydrocarbons. [Carcinogenicity of PAHs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerin, M. R.

    1977-01-01

    Combustion is the predominant end-process by which fossil fuels are converted to energy. Combustion, particularly when inefficient, is also the primary technological source of polycyclic aromatic hydrocarbons (PAHs) released into the environment. The need for liquid fuels to supply the transportation industry and for nonpolluting fuels for heat and power generation provide the incentive to commercialize processes to convert coal to substitute natural gas and oil. These processes represent a potentially massive new source of environmental PAHs. Insuring an adequate supply of energy with minimum impact on the environment and on health is one of the most important, urgent, andmore » challenging goals currently facing science and technology. Polycyclic aromatic hydrocarbon related carcinogenesis is among the most important of possible occupational- and environmental-health impacts of much of the current and projected national energy base. An understanding of the relationship of polycyclic aromatic hydrocarbons (PAHs) to human cancer and a continued surveillance of energy sources for PAH content are necessary to minimize this impact.« less

  18. STANDARD REFERENCE MATERIALS FOR THE POLYMERS INDUSTRY.

    PubMed

    McDonough, Walter G; Orski, Sara V; Guttman, Charles M; Migler, Kalman D; Beers, Kathryn L

    2016-01-01

    The National Institute of Standards and Technology (NIST) provides science, industry, and government with a central source of well-characterized materials certified for chemical composition or for some chemical or physical property. These materials are designated Standard Reference Materials ® (SRMs) and are used to calibrate measuring instruments, to evaluate methods and systems, or to produce scientific data that can be referred readily to a common base. In this paper, we discuss the history of polymer based SRMs, their current status, and challenges and opportunities to develop new standards to address industrial measurement challenges.

  19. Design and Performance of a Triple Source Air Mass Zero Solar Simulator

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Snyder, David

    2005-01-01

    Simulating the sun in a laboratory for the purpose of measuring solar cells has long been a challenge for engineers and scientists. Multi-junction cells demand higher fidelity of a solar simulator than do single junction cells, due to a need for close spectral matching as well as AM0 intensity. A GaInP/GaAs/Ge solar cell for example, requires spectral matching in three distinct spectral bands (figure 1). A commercial single source high-pressure xenon arc solar simulator such as the Spectrolab X-25 at NASA Glenn Research Center, can match the top two junctions of a GaInP/GaAs/Ge cell to within 1.3% mismatch, with the GaAs cell receiving slightly more current than required. The Ge bottom cell however, is mismatched +8.8%. Multi source simulators are designed to match the current for all junctions but typically have small illuminated areas, less uniformity and less beam collimation compared to an X-25 simulator. It was our intent when designing a multi source simulator to preserve as many aspects of the X-25 while adding multi-source capability.

  20. The potential for gamma-emitting radionuclides to contribute to an understanding of erosion processes in South Africa

    NASA Astrophysics Data System (ADS)

    Foster, Ian D. L.; Boardman, John; Collins, Adrian L.; Copeland-Phillips, Ruth; Kuhn, Nikolaus J.; Mighall, Tim M.; Pulley, Simon; Rowntree, Kate M.

    2017-03-01

    Several research projects undertaken by the authors and others over the last 14 years have used fallout and geogenic radionuclides for understanding erosion processes and sediment yield dynamics in South Africa over the last 100-200 years as European settlers colonised the interior plains and plateaux of the country and imported new livestock and farming techniques to the region. These projects have used two fallout radionuclides (210Pb and 137Cs) to date sediments accumulating in reservoirs, farm dams, wetlands, alluvial fans and floodouts and have used other fallout nuclides (7Be) and long-lived geogenic radionuclides (e.g. 40K, 235U) as part of a composite fingerprint exploring contemporary sediment sources and changes to sources through time. While successful in many parts of the world, applying these techniques in Southern Africa has posed a number of challenges often not encountered elsewhere. Here we explore some of the benefits and challenges in using gamma-emitting radionuclides, especially 137Cs, in these landscapes. Benefits include the potential for discriminating gully sidewall from topsoil sources, which has helped to identify contemporary gully systems as sediment conduits, rather than sources, and for providing a time-synchronous marker horizon in a range of sedimentary environments that has helped to develop robust chronologies. Challenges include the spatial variability in soil cover on steep rocky hillslopes, which is likely to challenge assumptions about the uniformity of initial fallout nuclide distribution, the paucity of stable (non-eroding) sites in order to estimate atmospheric fallout inventories, and the limited success of 210Pb dating in some rapidly accumulating high altitude catchments where sediments often comprise significant amounts of sand and gravel. Despite these challenges we present evidence suggesting that the use of gamma-emitting radionuclides can make a significant contribution to our understanding of erosion processes and sediment yield dynamics. Future research highlighted in the conclusion will try to address current challenges and outline new projects established to address them more fully.

  1. Beyond Hammers and Nails: Mitigating and Verifying Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Gurney, Kevin Robert

    2013-05-01

    One of the biggest challenges to future international agreements on climate change is an independent, science-driven method of verifying reductions in greenhouse gas emissions (GHG) [Niederberger and Kimble, 2011]. The scientific community has thus far emphasized atmospheric measurements to assess changes in emissions. An alternative is direct measurement or estimation of fluxes at the source. Given the many challenges facing the approach that uses "top-down" atmospheric measurements and recent advances in "bottom-up" estimation methods, I challenge the current doctrine, which has the atmospheric measurement approach "validating" bottom-up, "good-faith" emissions estimation [Balter, 2012] or which holds that the use of bottom-up estimation is like "dieting without weighing oneself" [Nisbet and Weiss, 2010].

  2. Seafood traceability: current needs, available tools, and biotechnological challenges for origin certification.

    PubMed

    Leal, Miguel Costa; Pimentel, Tânia; Ricardo, Fernando; Rosa, Rui; Calado, Ricardo

    2015-06-01

    Market globalization and recurring food safety alerts have resulted in a growing consumer awareness of the need for food traceability. This is particularly relevant for seafood due to its perishable nature and importance as a key protein source for the population of the world. Here, we provide an overview of the current needs for seafood origin traceability, along with the limitations and challenges for its implementation. We focus on geochemical, biochemical, and molecular tools and how they should be optimized to be implemented globally and to address our societal needs. We suggest that seafood traceability is key to enforcing food safety regulations and fisheries control, combat fraud, and fulfill present and future expectations of conscientious producers, consumers, and authorities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Case for the Application of Worldwide Marine Radioactivity Studies In the Search for Undeclared Facilities and Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Schanfein

    2013-06-01

    Undeclared nuclear facilities unequivocally remain the most difficult safeguards challenge facing the International Atomic Energy Agency (IAEA). Recent cases of undeclared facilities revealed in Iran and Syria, which are NPT signatory States, show both the difficulty and the seriousness of this threat to nonproliferation. In the case of undeclared nuclear facilities, the most effective deterrent against proliferation is the application of Wide-Area Environmental Sampling (WAES); however, WAES is currently cost-prohibitive. As with any threat, the most effective countering strategy is a multifaceted approach. Some of the approaches applied by the IAEA include: open source analysis, satellite imagery, on-site environmental sampling,more » complementary access under the Additional Protocol (where in force), traditional safeguards inspections, and information provided by member States. These approaches, naturally, are focused on specific States. Are there other opportunities not currently within the IAEA purview to assess States that may provide another opportunity to detect clandestine facilities? In this paper, the author will make the case that the IAEA Department of Safeguards should explore the area of worldwide marine radioactivity studies as one possible opportunity. One such study was released by the IAEA Marine Environment Laboratory in January 2005. This technical document focused on 90Sr, 137Cs, and 239/240Pu. It is clearly a challenging area because of the many sources of anthropogenic radionuclides in the world’s oceans and seas including: nuclear weapons testing, reprocessing, accidents, waste dumping, and industrial and medical radioisotopes, whose distributions change based on oceanographic, geochemical, and biological processes, and their sources. It is additionally challenging where multiple States share oceans, seas, and rivers. But with the application of modern science, historical sampling to establish baselines, and a focus on the most relevant radionuclides, the potential is there to support this challenging IAEA safeguards mission.« less

  4. Source identification and apportionment of heavy metals in urban soil profiles.

    PubMed

    Luo, Xiao-San; Xue, Yan; Wang, Yan-Ling; Cang, Long; Xu, Bo; Ding, Jing

    2015-05-01

    Because heavy metals (HMs) occurring naturally in soils accumulate continuously due to human activities, identifying and apportioning their sources becomes a challenging task for pollution prevention in urban environments. Besides the enrichment factors (EFs) and principal component analysis (PCA) for source classification, the receptor model (Absolute Principal Component Scores-Multiple Linear Regression, APCS-MLR) and Pb isotopic mixing model were also developed to quantify the source contribution for typical HMs (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) in urban park soils of Xiamen, a representative megacity in southeast China. Furthermore, distribution patterns of their concentrations and sources in 13 soil profiles (top 20 cm) were investigated by different depths (0-5, 5-10, 10-20 cm). Currently the principal anthropogenic source for HMs in urban soil of China is atmospheric deposition from coal combustion rather than vehicle exhaust. Specifically for Pb source by isotopic model ((206)Pb/(207)Pb and (208)Pb/(207)Pb), the average contributions were natural (49%)>coal combustion (45%)≫traffic emissions (6%). Although the urban surface soils are usually more contaminated owing to recent and current human sources, leaching effects and historic vehicle emissions can also make deep soil layer contaminated by HMs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Integrating Academic Management with Business Planning Activities: The Case of University of Education, Winneba (UEW), Ghana

    ERIC Educational Resources Information Center

    Owusu-Ansah, Collins; Afful, Deborah

    2015-01-01

    Currently, public universities are facing chronic problem of underfunding. In a bid to explore more alternative and innovative ways of addressing such underfunding challenges, authorities of universities have sought to inject business activities into the management of the universities. They are now forced to search for additional sources of income…

  6. Sharing British Columbia's Water Resources. A Teaching Unit for Secondary Schools.

    ERIC Educational Resources Information Center

    Gunn, Angus M.

    Seventeen student worksheets form a secondary school unit which focuses on the challenge of shared usage of water resources. Pressure currently exists for a more balanced approach in which all legitimate interests in a water source are served. The worksheets include readings which focus on enough water for all, the water cycle (including a…

  7. Evaluating the sources of potential migrant species: implications under climate change

    Treesearch

    Ines Ibanez; James S. Clark; Michael C. Dietze

    2008-01-01

    As changes in climate become more apparent, ecologists face the challenge of predicting species responses to the new conditions. Most forecasts are based on climate envelopes (CE), correlative approaches that project future distributions on the basis of the current climate often assuming some dispersal lag. One major caveat with this approach is that it ignores the...

  8. Boom, Bust & Beyond: The State of Working Arkansas. Arkansas Working Families Project.

    ERIC Educational Resources Information Center

    Huddleston, Richard; Duran, Angela

    Using data from several government and private sources and interviews with working families, this report examines the Arkansas economy, how Arkansas working families have fared economically in recent years, and their current challenges. The report offers suggestions about how the state can provide the tools families need to continue to move up the…

  9. An Ensemble Approach in Converging Contents of LMS and KMS

    ERIC Educational Resources Information Center

    Sabitha, A. Sai; Mehrotra, Deepti; Bansal, Abhay

    2017-01-01

    Currently the challenges in e-Learning are converging the learning content from various sources and managing them within e-learning practices. Data mining learning algorithms can be used and the contents can be converged based on the Metadata of the objects. Ensemble methods use multiple learning algorithms and it can be used to converge the…

  10. Proceedings of the sixth California oak symposium: today's challenges, tomorrow's opportunities

    Treesearch

    Adina Merenlender; Douglas McCreary; Kathryn L. Purcell

    2008-01-01

    The Sixth Oak Symposium provided a forum for current research and outstanding case studies on oak woodland science and sustainability in California. This symposium was the latest in a series of conferences on this subject held every 5 years since 1979. The proceedings from this conference series represent the most comprehensive source of scientific and management...

  11. High current polarized electron source

    NASA Astrophysics Data System (ADS)

    Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.

    2018-05-01

    Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.

  12. Assessment of Ethanol Trends on the ISS

    NASA Technical Reports Server (NTRS)

    Perry, Jay; Carter, Layne; Kayatin, Matthew; Gazda, Daniel; McCoy, Torin; Limero, Thomas

    2016-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) provides a working environment for six crewmembers through atmosphere revitalization and water recovery systems. In the last year, elevated ethanol levels have presented a unique challenge for the ISS ECLSS. Ethanol is monitored on the ISS by the Air Quality Monitor (AQM). The source of this increase is currently unknown. This paper documents the credible sources for the increased ethanol concentration, the monitoring provided by the AQM, and the impact on the atmosphere revitalization and water recovery systems.

  13. Making an anechoic choral recording

    NASA Astrophysics Data System (ADS)

    Freiheit, Ron; Alexander, John; Ferguson, John

    2005-09-01

    The utilization of auralization as a tool for acoustic analysis continues to grow and develop. An important element for successful auralization listening experiences is the selection of anechoic source material. In researching the current library of anechoically recorded source material, it was discovered that choral material was not readily available. The Wenger Corporation, St. Olaf College, and 3M undertook a joint project to create an anechoic choral recording. The paper describes the challenges of this recording project-from the technological, logistical, and musical standpoints-and the solutions that were successfully implemented.

  14. An Outlook on Lithium Ion Battery Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manthiram, Arumugam

    Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along withmore » solid electrolytes and lithium metal anode are being intensively pursued. In conclusion, this article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies.« less

  15. An Outlook on Lithium Ion Battery Technology

    DOE PAGES

    Manthiram, Arumugam

    2017-09-07

    Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along withmore » solid electrolytes and lithium metal anode are being intensively pursued. In conclusion, this article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies.« less

  16. An Outlook on Lithium Ion Battery Technology

    PubMed Central

    2017-01-01

    Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along with solid electrolytes and lithium metal anode are being intensively pursued. This article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies. PMID:29104922

  17. Rapid development of entity-based data models for bioinformatics with persistence object-oriented design and structured interfaces.

    PubMed

    Ezra Tsur, Elishai

    2017-01-01

    Databases are imperative for research in bioinformatics and computational biology. Current challenges in database design include data heterogeneity and context-dependent interconnections between data entities. These challenges drove the development of unified data interfaces and specialized databases. The curation of specialized databases is an ever-growing challenge due to the introduction of new data sources and the emergence of new relational connections between established datasets. Here, an open-source framework for the curation of specialized databases is proposed. The framework supports user-designed models of data encapsulation, objects persistency and structured interfaces to local and external data sources such as MalaCards, Biomodels and the National Centre for Biotechnology Information (NCBI) databases. The proposed framework was implemented using Java as the development environment, EclipseLink as the data persistency agent and Apache Derby as the database manager. Syntactic analysis was based on J3D, jsoup, Apache Commons and w3c.dom open libraries. Finally, a construction of a specialized database for aneurysms associated vascular diseases is demonstrated. This database contains 3-dimensional geometries of aneurysms, patient's clinical information, articles, biological models, related diseases and our recently published model of aneurysms' risk of rapture. Framework is available in: http://nbel-lab.com.

  18. The DNAPL challenge: Is there a case for partial source removal?

    NASA Astrophysics Data System (ADS)

    Kavanaugh, M. C.; Rao, P. S. C.

    2003-04-01

    Despite significant advances in the science and technology of DNAPL source zone characterization, and DNAPL removal technologies over the past two decades, source remediation has not become a standard objective at most DNAPL sites. Few documented cases of DNAPL source removal have been published, and achievement of the usual cleanup metric in these source zones, namely, meeting Maximum Contaminant Levels ("MCLs") is rare. At most DNAPL sites, removal of sufficient amounts of DNAPL from the source zones to achieve MCLs is considered technically impracticable, taking cost into consideration. Leaving substantial quantities of DNAPL in source zones and instituting appropriate technologies to eliminate continued migration of groundwater plumes emanating from these source zones requires long-term reliability of barrier technologies (hydraulic or physical), and the permanence institutional controls. This strategy runs the risk of technical or institutional failures and possible liabilities associated with natural resource damage claims. To address this challenge, the U.S. Environmental Protection Agency ("EPA") established a panel of experts ("Panel") on DNAPL issues to provide their opinions on the overarching question of whether DNAPL source remediation is feasible. This Panel, co-chaired by the authors of this paper, has now prepared a report summarizing the opinions of the Panel on the key question of whether DNAPL source removal is achievable. This paper will present the findings of the Panel, addressing such issues as the current status of DNAPL source characterization and remediation technologies, alternative metrics of success for DNAPL source remediation, the potential benefits of partial DNAPL source depletion, and research needs to address data gaps that hinder the more widespread implementation of source removal strategies.

  19. Hemorrhagic cystitis: A challenge to the urologist

    PubMed Central

    Manikandan, R.; Kumar, Santosh; Dorairajan, Lalgudi N.

    2010-01-01

    Severe hemorrhagic cystitis often arises from anticancer chemotherapy or radiotherapy for pelvic malignancies. Infectious etiologies are less common causes except in immunocompromised hosts. These cases can be challenging problems for the urologist and a source of substantial morbidity and sometimes mortality for the patients. A variety of modalities of treatment have been described for the management of hemorrhagic cystitis but there is none that is uniformly effective. Some progress has been made in the understanding and management of viral hemorrhagic cystitis. This article reviews the common causes of severe hemorrhagic cystitis and the currently available management options. PMID:20877590

  20. Moral injury: A new challenge for complementary and alternative medicine.

    PubMed

    Kopacz, Marek S; Connery, April L; Bishop, Todd M; Bryan, Craig J; Drescher, Kent D; Currier, Joseph M; Pigeon, Wilfred R

    2016-02-01

    Moral injury represents an emerging clinical construct recognized as a source of morbidity in current and former military personnel. Finding effective ways to support those affected by moral injury remains a challenge for both biomedical and complementary and alternative medicine. This paper introduces the concept of moral injury and suggests two complementary and alternative medicine, pastoral care and mindfulness, which may prove useful in supporting military personnel thought to be dealing with moral injury. Research strategies for developing an evidence-base for applying these, and other, complementary and alternative medicine modalities to moral injury are discussed. Published by Elsevier Ltd.

  1. Challenges and Strategies for Breeding Resistance in Capsicum annuum to the Multifarious Pathogen, Phytophthora capsici

    PubMed Central

    Barchenger, Derek W.; Lamour, Kurt H.; Bosland, Paul W.

    2018-01-01

    Phytophthora capsici is the most devastating pathogen for chile pepper production worldwide and current management strategies are not effective. The population structure of the pathogen is highly variable and few sources of widely applicable host resistance have been identified. Recent genomic advancements in the host and the pathogen provide important insights into the difficulties reported by epidemiological and physiological studies published over the past century. This review highlights important challenges unique to this complex pathosystem and suggests strategies for resistance breeding to help limit losses associated with P. capsici. PMID:29868083

  2. Something's Got to Give: California Can't Improve College Completions without Rethinking Developmental Education at Its Community Colleges

    ERIC Educational Resources Information Center

    Perry, Mary; Rosin, Matthew

    2010-01-01

    This report draws from a recent EdSource study that was commissioned by the California Community Colleges Chancellor's Office (CCCCO) to provide a deeper understanding of the system's challenges and opportunities related to developmental education. It provides some insights into how well the community colleges are currently positioned to respond…

  3. An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data

    Treesearch

    Rachel Riemann; Barry Tyler Wilson; Andrew Lister; Sarah Parks

    2010-01-01

    Geospatial datasets of forest characteristics are modeled representations of real populations on the ground. The continuous spatial character of such datasets provides an incredible source of information at the landscape level for ecosystem research, policy analysis, and planning applications, all of which are critical for addressing current challenges related to...

  4. Scalable Energy Networks to Promote Energy Security

    DTIC Science & Technology

    2011-07-01

    commodity. Consider current challenges of converting energy and synchronizing sources with loads—for example, capturing solar energy to provide hot water...distributed micro-generation1 (for example, roof-mounted solar panels) and plug-in elec- tric/hybrid vehicles. The imperative extends to our national...transformers, battery chargers ■■ distribution: pumps, pipes, switches, cables ■■ applications: lighting, automobiles, personal electronic devices

  5. Group Multilateral Relation Analysis Based on Large Data

    NASA Astrophysics Data System (ADS)

    LIU, Qiang; ZHOU, Guo-min; CHEN, Guang-xuan; XU, Yong

    2017-09-01

    Massive, multi-source, heterogeneous police data and social data brings challenges to the current police work. The existing massive data resources are studied as the research object to excavate the group of multilateral relations by using large data technology for data archiving. The results of the study could provide technical support to police enforcement departments for fighting crime and preventing crime.

  6. Spinoff, 1984

    NASA Technical Reports Server (NTRS)

    Haggerty, J. J.

    1984-01-01

    A pictorial resume that underlines the challenging nature of NASA programs and their extraordinary demands for technological input, is presented. Also, NASA's current mainline programs, which require development of new technology, are given. A representative sampling of spinoff products and processes resulting from technology utiliization, or secondary application, and the mechanisms NASA employs to stimulate technology utilization are provided. Contact sources for further information are presented.

  7. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges.

    PubMed

    Banerjee, Chiranjib; Dubey, Kashyap K; Shukla, Pratyoosh

    2016-01-01

    The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.

  8. The development of large-scale de-identified biomedical databases in the age of genomics-principles and challenges.

    PubMed

    Dankar, Fida K; Ptitsyn, Andrey; Dankar, Samar K

    2018-04-10

    Contemporary biomedical databases include a wide range of information types from various observational and instrumental sources. Among the most important features that unite biomedical databases across the field are high volume of information and high potential to cause damage through data corruption, loss of performance, and loss of patient privacy. Thus, issues of data governance and privacy protection are essential for the construction of data depositories for biomedical research and healthcare. In this paper, we discuss various challenges of data governance in the context of population genome projects. The various challenges along with best practices and current research efforts are discussed through the steps of data collection, storage, sharing, analysis, and knowledge dissemination.

  9. Opportunities and challenges in leveraging electronic health record data in oncology.

    PubMed

    Berger, Marc L; Curtis, Melissa D; Smith, Gregory; Harnett, James; Abernethy, Amy P

    2016-05-01

    The widespread adoption of electronic health records (EHRs) and the growing wealth of digitized information sources about patients is ushering in an era of 'Big Data' that may revolutionize clinical research in oncology. Research will likely be more efficient and potentially more accurate than the current gold standard of manual chart review studies. However, EHRs as they exist today have significant limitations: important data elements are missing or are only captured in free text or PDF documents. Using two case studies, we illustrate the challenges of leveraging the data that are routinely collected by the healthcare system in EHRs (e.g., real-world data), specific challenges encountered in the cancer domain and opportunities that can be achieved when these are overcome.

  10. X-ray detectors at the Linac Coherent Light Source.

    PubMed

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-05-01

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  11. X-ray detectors at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  12. X-ray detectors at the Linac Coherent Light Source

    DOE PAGES

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; ...

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  13. X-ray detectors at the Linac Coherent Light Source

    PubMed Central

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-01-01

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced. PMID:25931071

  14. Technological challenges for boosting coal production with environmental sustainability.

    PubMed

    Ghose, Mrinal K

    2009-07-01

    The global energy requirement has grown at a phenomenon rate and the consumption of primary energy sources has been a very high positive growth. This paper focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy source in foreseeable future. It examines the energy requirement perspective for India and demand of coal as the prime energy source. Economic development and poverty alleviation depend on securing affordable energy sources and Indian coal mining industry offers a bright future for the country's energy security, provided the industry is allowed to develop by supportive government policies and adopts latest technologies for mining. It is an irony that in-spite of having a plentiful reserves, India is not able to jack up coal production to meet its current and future demand. It discusses the strategies to be adopted for growth and meeting the coal demand. But such energy are very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively The paper highlights the emissions of greenhouse gases due to burning of fossil fuels and environmental consequences of global warming and sea-level rise. Technological solutions for environment friendly coal mining and environmental laws for the abatement of environmental degradation are discussed in this paper.

  15. Subsurface Hydrology: Data Integration for Properties and Processes

    NASA Astrophysics Data System (ADS)

    Hyndman, David W.; Day-Lewis, Frederick D.; Singha, Kamini

    Groundwater is a critical resource and the PrinciPal source of drinking water for over 1.5 billion people. In 2001, the National Research Council cited as a "grand challenge" our need to understand the processes that control water movement in the subsurface. This volume faces that challenge in terms of data integration between complex, multi-scale hydrologie processes, and their links to other physical, chemical, and biological processes at multiple scales. Subsurface Hydrology: Data Integration for Properties and Processes presents the current state of the science in four aspects: • Approaches to hydrologie data integration • Data integration for characterization of hydrologie properties • Data integration for understanding hydrologie processes • Meta-analysis of current interpretations Scientists and researchers in the field, the laboratory, and the classroom will find this work an important resource in advancing our understanding of subsurface water movement.

  16. Biofield Science: Current Physics Perspectives.

    PubMed

    Kafatos, Menas C; Chevalier, Gaétan; Chopra, Deepak; Hubacher, John; Kak, Subhash; Theise, Neil D

    2015-11-01

    This article briefly reviews the biofield hypothesis and its scientific literature. Evidence for the existence of the biofield now exists, and current theoretical foundations are now being developed. A review of the biofield and related topics from the perspective of physical science is needed to identify a common body of knowledge and evaluate possible underlying principles of origin of the biofield. The properties of such a field could be based on electromagnetic fields, coherent states, biophotons, quantum and quantum-like processes, and ultimately the quantum vacuum. Given this evidence, we intend to inquire and discuss how the existence of the biofield challenges reductionist approaches and presents its own challenges regarding the origin and source of the biofield, the specific evidence for its existence, its relation to biology, and last but not least, how it may inform an integrated understanding of consciousness and the living universe.

  17. Gravitational wave searches using the DSN (Deep Space Network)

    NASA Technical Reports Server (NTRS)

    Nelson, S. J.; Armstrong, J. W.

    1988-01-01

    The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed.

  18. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China.

    PubMed

    Cheng, Hefa; Hu, Yuanan

    2010-06-01

    With rapid economic growth and massive urbanization, China faces the problem of municipal solid waste (MSW) disposal and the pressing need for development of alternative energy. Waste-to-energy (WTE) incineration, which recovers energy from discarded MSW and produces electricity and/or steam for heating, is recognized as a renewable source of energy and is playing an increasingly important role in MSW management in China. This article provides an overview of the WTE industry, discusses the major challenges in expanding WTE incineration in China, namely, high capital and operational costs, equipment corrosion, air pollutant emissions, and fly ash disposal. A perspective on MSW as a renewable energy source in China is also presented. Currently, only approximately 13% of MSW generated in China is disposed in WTE facilities. With the significant benefits of environmental quality, the reduction of greenhouse gas (GHG) emissions, and government policies and financial incentives as a renewable energy source, WTE incineration industry is expected to experience significant growth in the coming decade and make greater contribution to supplying renewable energy in China. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Biomedical informatics: development of a comprehensive data warehouse for clinical and genomic breast cancer research.

    PubMed

    Hu, Hai; Brzeski, Henry; Hutchins, Joe; Ramaraj, Mohan; Qu, Long; Xiong, Richard; Kalathil, Surendran; Kato, Rand; Tenkillaya, Santhosh; Carney, Jerry; Redd, Rosann; Arkalgudvenkata, Sheshkumar; Shahzad, Kashif; Scott, Richard; Cheng, Hui; Meadow, Stephen; McMichael, John; Sheu, Shwu-Lin; Rosendale, David; Kvecher, Leonid; Ahern, Stephen; Yang, Song; Zhang, Yonghong; Jordan, Rick; Somiari, Stella B; Hooke, Jeffrey; Shriver, Craig D; Somiari, Richard I; Liebman, Michael N

    2004-10-01

    The Windber Research Institute is an integrated high-throughput research center employing clinical, genomic and proteomic platforms to produce terabyte levels of data. We use biomedical informatics technologies to integrate all of these operations. This report includes information on a multi-year, multi-phase hybrid data warehouse project currently under development in the Institute. The purpose of the warehouse is to host the terabyte-level of internal experimentally generated data as well as data from public sources. We have previously reported on the phase I development, which integrated limited internal data sources and selected public databases. Currently, we are completing phase II development, which integrates our internal automated data sources and develops visualization tools to query across these data types. This paper summarizes our clinical and experimental operations, the data warehouse development, and the challenges we have faced. In phase III we plan to federate additional manual internal and public data sources and then to develop and adapt more data analysis and mining tools. We expect that the final implementation of the data warehouse will greatly facilitate biomedical informatics research.

  20. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  1. Model-Based Systems Engineering Approach to Managing Mass Margin

    NASA Technical Reports Server (NTRS)

    Chung, Seung H.; Bayer, Todd J.; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Christopher; Lam, Doris

    2012-01-01

    When designing a flight system from concept through implementation, one of the fundamental systems engineering tasks ismanaging the mass margin and a mass equipment list (MEL) of the flight system. While generating a MEL and computing a mass margin is conceptually a trivial task, maintaining consistent and correct MELs and mass margins can be challenging due to the current practices of maintaining duplicate information in various forms, such as diagrams and tables, and in various media, such as files and emails. We have overcome this challenge through a model-based systems engineering (MBSE) approach within which we allow only a single-source-of-truth. In this paper we describe the modeling patternsused to capture the single-source-of-truth and the views that have been developed for the Europa Habitability Mission (EHM) project, a mission concept study, at the Jet Propulsion Laboratory (JPL).

  2. High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing

    NASA Astrophysics Data System (ADS)

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  3. High-Capacity Hydrogen-Based Green-Energy Storage Solutions for the Grid Balancing

    NASA Astrophysics Data System (ADS)

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  4. Source water assessment and nonpoint sources of acutely toxic contaminants: A review of research related to survival and transport of Cryptosporidium parvum

    NASA Astrophysics Data System (ADS)

    Walker, Mark J.; Montemagno, Carlo D.; Jenkins, Michael B.

    1998-12-01

    Amendments to the Safe Drinking Water Act (PL-930123) in 1996 required that public water supply managers identify potential sources of contamination within contributing areas. Nonpoint sources of acutely toxic microbial contaminants, such as Cryptosporidium parvum, challenge current approaches to source identification and management as a first step toward developing management plans for public water supply protection. Little may be known about survival and transport in the field environment, prescribed practices may not be designed to manage such substances, and infective stages may be present in vast numbers and may resist water treatment and disinfection processes. This review summarizes research related to survival and transport of C. parvum oocysts, as an example of an acutely toxic contaminant with nonpoint sources in animal agriculture. It discusses ∥1) significance of infected domesticated animals as potential sources of C. parvum, (2) laboratory and field studies of survival and transport, and (3) approaches to source control in the context of public health protection.

  5. Bambus 2: scaffolding metagenomes.

    PubMed

    Koren, Sergey; Treangen, Todd J; Pop, Mihai

    2011-11-01

    Sequencing projects increasingly target samples from non-clonal sources. In particular, metagenomics has enabled scientists to begin to characterize the structure of microbial communities. The software tools developed for assembling and analyzing sequencing data for clonal organisms are, however, unable to adequately process data derived from non-clonal sources. We present a new scaffolder, Bambus 2, to address some of the challenges encountered when analyzing metagenomes. Our approach relies on a combination of a novel method for detecting genomic repeats and algorithms that analyze assembly graphs to identify biologically meaningful genomic variants. We compare our software to current assemblers using simulated and real data. We demonstrate that the repeat detection algorithms have higher sensitivity than current approaches without sacrificing specificity. In metagenomic datasets, the scaffolder avoids false joins between distantly related organisms while obtaining long-range contiguity. Bambus 2 represents a first step toward automated metagenomic assembly. Bambus 2 is open source and available from http://amos.sf.net. mpop@umiacs.umd.edu. Supplementary data are available at Bioinformatics online.

  6. Bambus 2: scaffolding metagenomes

    PubMed Central

    Koren, Sergey; Treangen, Todd J.; Pop, Mihai

    2011-01-01

    Motivation: Sequencing projects increasingly target samples from non-clonal sources. In particular, metagenomics has enabled scientists to begin to characterize the structure of microbial communities. The software tools developed for assembling and analyzing sequencing data for clonal organisms are, however, unable to adequately process data derived from non-clonal sources. Results: We present a new scaffolder, Bambus 2, to address some of the challenges encountered when analyzing metagenomes. Our approach relies on a combination of a novel method for detecting genomic repeats and algorithms that analyze assembly graphs to identify biologically meaningful genomic variants. We compare our software to current assemblers using simulated and real data. We demonstrate that the repeat detection algorithms have higher sensitivity than current approaches without sacrificing specificity. In metagenomic datasets, the scaffolder avoids false joins between distantly related organisms while obtaining long-range contiguity. Bambus 2 represents a first step toward automated metagenomic assembly. Availability: Bambus 2 is open source and available from http://amos.sf.net. Contact: mpop@umiacs.umd.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21926123

  7. Development of a Slow Positron Facility at Hebrew University of Jerusalem

    NASA Astrophysics Data System (ADS)

    Kelleher, Aidan

    2013-03-01

    Positron annihilation spectroscopy provides both depth of penetration to study bulk defects in materials as well as nano-scale resolution. This measurement range is achieved by slowing positrons from a radioactive source, typically 22Na, by sending them through a moderator, typically W or solid Ne. The nearly thermal positrons are then accelerated to the desired energy by means of an electrostatic potential. The SPOT project at The Hebrew University of Jerusalem proposes to increase the luminosity of the beam by applying the best practices currently in us, as well as using a short-lived source of positrons, 18F. Simulations based on our current designs indicate this project will be able to deliver positrons in the energy range of 50-50000eV with an energy resolution of 1eV is possible. We will present the unique technical challenges of using this source of positrons, how we plan to overcome them, the results of simulations, and facility construction progress.

  8. Tsunami Risk Management in Pacific Island Countries and Territories (PICTs): Some Issues, Challenges and Ways Forward

    NASA Astrophysics Data System (ADS)

    Dominey-Howes, Dale; Goff, James

    2013-09-01

    The Pacific is well known for producing tsunamis, and events such as the 2011 Tōhoku-oki, Japan disaster demonstrate the vulnerability of coastal communities. We review what is known about the current state of tsunami risk management for Pacific Island countries and territories (PICTs), identify the issues and challenges associated with affecting meaningful tsunami disaster risk reduction (DRR) efforts and outline strategies and possible ways forward. Small island states are scattered across the vast Pacific region and these states have to varying degrees been affected by not only large tsunamis originating in circum-Pacific subduction zones, but also more regionally devastating events. Having outlined and described what is meant by the risk management process, the various problems associated with our current understanding of this process are examined. The poorly understood hazard related to local, regional and distant sources is investigated and the dominant focus on seismic events at the expense of other tsunami source types is noted. We reflect on the challenges of undertaking numerical modelling from generation to inundation and specifically detail the problems as they relate to PICTs. This is followed by an exploration of the challenges associated with mapping exposure and estimating vulnerability in low-lying coastal areas. The latter part of the paper is devoted to exploring what mitigation of the tsunami risk can look like and draw upon good practice cases as exemplars of the actions that can be taken from the local to regional level. Importantly, given the diversity of PICTs, no one approach will suit all places. The paper closes by making a series of recommendations to assist PICTs and the wider tsunami research community in thinking through improvements to their tsunami risk management processes and the research that can underpin these efforts.

  9. Using QMRA-based regulation as a water quality management tool in the water security challenge: experience from the Netherlands and Australia.

    PubMed

    Bichai, Françoise; Smeets, Patrick W M H

    2013-12-15

    Innovation in the water sector is at play when addressing the global water security challenge. This paper highlights an emerging role for Quantitative Microbial Risk Assessment (QMRA) and health-based targets in the design and application of robust and flexible water quality regulation to protect public health. This role is especially critical as traditional supply sources are subject to increased contamination, and recycled wastewater and stormwater become a crucial contribution to integrated water supply strategies. Benefits and weaknesses of QMRA-based regulation are likely to be perceived differently by the multiple stakeholders involved. The goal of the current study is to evaluate the experience of QMRA-based regulation implementation in the Netherlands and Australia, and to draw some lessons learned for regulators, policy makers, the industry and scientists. Water experts from regulatory bodies, government, water utilities, and scientists were interviewed in both countries. This paper explores how QMRA-based regulation has helped decision-making in the Netherlands in drinking water safety management over the past decade. Implementation is more recent in Australia: an analysis of current institutional barriers to nationally harmonized implementation for water recycling regulation is presented. This in-depth retrospective analysis of experiences and perceptions highlights the benefits of QMRA-based regulation and the challenges of implementation. QMRA provides a better assessment of water safety than the absence of indicators. Setting a health target addresses the balance between investments and public safety, and helps understand risks from alternative water sources. Challenges lie in efficient monitoring, institutional support for utilities, interpretation of uncertainty by regulators, and risk communication to consumers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Lessons learned from national food fortification projects: experiences from Morocco, Uzbekistan, and Vietnam.

    PubMed

    Wirth, James P; Laillou, Arnaud; Rohner, Fabian; Northrop-Clewes, Christine A; Macdonald, Barbara; Moench-Pfanner, Regina

    2012-12-01

    Fortification of staple foods has been repeatedly recommended as an effective approach to reduce micronutrient deficiencies. With the increased number of fortification projects globally, there is a need to share practical lessons learned relating to their implementation and responses to project-related and external challenges. To document the achievements, challenges, lessons learned, and management responses associated with national fortification projects in Morocco, Uzbekistan, and Vietnam. Independent end-of-project evaluations conducted for each project served as the primary data source and contain the history of and project activities undertaken for, each fortification project. Other sources, including national policy documents, project reports from the Global Alliance for Improved Nutrition (GAIN) and other stakeholders, industry assessments, and peer-reviewed articles, were used to document the current responses to challenges and future project plans. All projects had key achievements related to the development of fortification standards and the procurement of equipment for participating industry partners. Mandatory fortification of wheat flour was a key success in Morocco and Uzbekistan. Ensuring the quality of fortified foods was a common challenge experienced across the projects, as were shifts in consumption patterns and market structures. Adjustments were made to the projects' design to address the challenges faced. National fortification projects are dynamic and must be continually modified in response to specific performance issues and broader shifts in market structure and consumption patterns.

  11. Promises and challenges in solid-state lighting

    NASA Astrophysics Data System (ADS)

    Schubert, Fred

    2010-03-01

    Lighting technologies based on semiconductor light-emitting diodes (LEDs) offer unprecedented promises that include three major benefits: (i) Gigantic energy savings enabled by efficient conversion of electrical energy to optical energy; (ii) Substantial positive contributions to sustainability through reduced emissions of global-warming gases, acid-rain gases, and toxic substances such as mercury; and (iii) The creation of new paradigms in lighting driven by the unique controllability of solid-state lighting sources. Due to the powerful nature of these benefits, the transition from conventional lighting sources to solid-state lighting is virtually assured. This presentation will illustrate the new world of lighting and illustrate the pervasive changes to be expected in lighting, displays, communications, and biotechnology. The presentation will also address the formidable challenges that must be addressed to continue the further advancement of solid-state lighting technology. These challenges offer opportunities for research and innovation. Specific challenges include light management, carrier transport, and optical design. We will present some innovative approaches in order to solve known technical challenges faced by solid-state lighting. These approaches include the demonstration and use of new optical thin-film materials with a continuously tunable refractive index. These approaches also include the use of polarization-matched structures that reduce the polarization fields in GaInN LEDs and the hotly debated efficiency droop, that is, the decreasing LED efficiency at high currents.

  12. Short-wavelength free-electron laser sources and science: a review.

    PubMed

    Seddon, E A; Clarke, J A; Dunning, D J; Masciovecchio, C; Milne, C J; Parmigiani, F; Rugg, D; Spence, J C H; Thompson, N R; Ueda, K; Vinko, S M; Wark, J S; Wurth, W

    2017-11-01

    This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.

  13. Ultra-low output impedance RF power amplifier for parallel excitation.

    PubMed

    Chu, Xu; Yang, Xing; Liu, Yunfeng; Sabate, Juan; Zhu, Yudong

    2009-04-01

    Inductive coupling between coil elements of a transmit array is one of the key challenges faced by parallel RF transmission. An ultra-low output impedance RF power amplifier (PA) concept was introduced to address this challenge. In an example implementation, an output-matching network was designed to transform the drain-source impedance of the metallic oxide semiconductor field effect transistor (MOSFET) into a very low value for suppressing interelement coupling effect, and meanwhile, to match the input impedance of the coil to the optimum load of the MOSFET for maximizing the available output power. Two prototype amplifiers with 500-W output rating were developed accordingly, and were further evaluated with a transmit array in phantom experiments. Compared to the conventional 50-Omega sources, the new approach exhibited considerable effectiveness suppressing the effects of interelement coupling. The experiments further indicated that the isolation performance was comparable to that achieved by optimized overlap decoupling. The new approach, benefiting from a distinctive current-source characteristic, also exhibited a superior robustness against load variation. Feasibility of the new approach in high-field MR was demonstrated on a 3T clinical scanner.

  14. Addressing Medicaid/marketplace churn through multimarket plans: assessing the current state of play.

    PubMed

    Rosenbaum, Sara

    2015-02-01

    Both before and after the Affordable Care Act (ACA), the US health insurance system is characterized by fragmentation. Pre-ACA, this fragmentation included major coverage gaps, causing significant periods of coverage interruption, especially for lower-income people. The ACA does not end the problem of churning among sources of public financing, but it does hold the potential for enabling people to move among sources of coverage rather than go without insurance. Several strategies for reducing coverage churn exist, but none is foolproof and all are in their early stages. Thus the ability of issuers to participate across multiple public financing arrangements and to offer stable provider networks becomes crucial to achieving continuity of care. Interviews with nine companies involved in developing or operating multimarket strategies confirm the feasibility of this approach while revealing major challenges, especially the challenge of finding providers willing to treat members regardless of the source of coverage. Strategies for increasing multimarket plans and networks represent one of the great areas of future policy and operational focus. Copyright © 2015 by Duke University Press.

  15. Natural products as reservoirs of novel therapeutic agents.

    PubMed

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it.

  16. Laser Based Phosphor Converted Solid State White Light Emitters

    NASA Astrophysics Data System (ADS)

    Cantore, Michael

    Artificial lighting and as a consequence the ability to be productive when the sun does not shine may be a profound achievement in society that is largely taken for granted. As concerns arise due to our dependence on energy sources with finite lifespan or environmentally negative effects, efforts to reduce energy consumption and create clean renewable alternatives has become highly valued. In the scope of artificial lighting, the use of incandescent lamps has shifted to more efficient light sources. Fluorescent lighting made the first big gains in efficiency over incandescent lamps with peak efficiency for mature designs reaching luminous efficacy of approximately 90 lm/W; more than three times as efficient as an incandescent lamp. Lamps based on light emitting diodes (LEDs) which can produce light at even greater efficiency, color quality and without the potential for hazardous chemical release from lamp failure. There is a significant challenge with LED based light sources. Their peak efficiency occurs at low current densities and then droops as the current density increases. Laser diodes (LDs) do not suffer from decreasing efficiency due to increased current. An alternative solid state light source using LDs has potential to make further gains in efficiency as well as allow novel illuminant designs which may be impractical or even impossible even with LED or other conventional sources. While similar to LEDS, the use of LDs does present new challenges largely due to the increased optical power density which must be accommodated in optics and phosphor materials. Single crystal YAG:Ce has been shown to be capable of enduring this more extreme operating environment while retaining the optical and fluorescing qualities desired for use as a wavelength converter in phosphor converted LD based white emitting systems. The incorporation of this single crystal phosphor in a system with a commercial laser diode with peak wall plug efficiency of 31% resulted in emission of white light with a luminous efficacy of 86.7 lm/W at a current of 1.4A. A total luminous flux of 1100 lm with luminous efficacy of 76 lm/W at 3.0 A current was achieved. Simulations have been conducted which show that as the InGaN LD technology matures towards the efficiencies of about 75%, which has been observed in the GaAs material system, luminous efficacy of similar blue LD with single crystal YAG:Ce systems will exceed 200 lm/W.

  17. Near earth tracking/data exploration

    NASA Technical Reports Server (NTRS)

    Spearing, Robert

    1990-01-01

    The future challenges facing NASA's data acquisition program are examined, with emphasis on the near-earth exploration activity and the associated data systems. It is noted that the process that is being followed is an evolutionary one: new technologies are being gradually integrated into currently operating systems. For example, advanced handling is already being introduced into such programs as the Space Telescope and the Gamma Ray Source Observatory System.

  18. Design challenges and gaps in standards in developing an interoperable zero footprint DI thin client for use in image-enabled electronic health record solutions

    NASA Astrophysics Data System (ADS)

    Agrawal, Arun; Koff, David; Bak, Peter; Bender, Duane; Castelli, Jane

    2015-03-01

    The deployment of regional and national Electronic Health Record solutions has been a focus of many countries throughout the past decade. A major challenge for these deployments has been support for ubiquitous image viewing. More specifically, these deployments require an imaging solution that can work over the Internet, leverage any point of service device: desktop, tablet, phone; and access imaging data from any source seamlessly. Whereas standards exist to enable ubiquitous image viewing, few if any solutions exist that leverage these standards and meet the challenge. Rather, most of the currently available web based DI viewing solutions are either proprietary solutions or require special plugins. We developed a true zero foot print browser based DI viewing solution based on the Web Access DICOM Objects (WADO) and Cross-enterprise Document Sharing for Imaging (XDS-I.b) standards to a) demonstrate that a truly ubiquitous image viewer can be deployed; b) identify the gaps in the current standards and the design challenges for developing such a solution. The objective was to develop a viewer, which works on all modern browsers on both desktop and mobile devices. The implementation allows basic viewing functionalities of scroll, zoom, pan and window leveling (limited). The major gaps identified in the current DICOM WADO standards are a lack of ability to allow any kind of 3D reconstruction or MPR views. Other design challenges explored include considerations related to optimization of the solution for response time and low memory foot print.

  19. Spatial-temporal variability in groundwater abstraction across Uganda: Implications to sustainable water resources management

    NASA Astrophysics Data System (ADS)

    Nanteza, J.; Thomas, B. F.; Mukwaya, P. I.

    2017-12-01

    The general lack of knowledge about the current rates of water abstraction/use is a challenge to sustainable water resources management in many countries, including Uganda. Estimates of water abstraction/use rates over Uganda, currently available from the FAO are not disaggregated according to source, making it difficult to understand how much is taken out of individual water stores, limiting effective management. Modelling efforts have disaggregated water use rates according to source (i.e. groundwater and surface water). However, over Sub-Saharan Africa countries, these model use estimates are highly uncertain given the scale limitations in applying water use (i.e. point versus regional), thus influencing model calibration/validation. In this study, we utilize data from the water supply atlas project over Uganda to estimate current rates of groundwater abstraction across the country based on location, well type and other relevant information. GIS techniques are employed to demarcate areas served by each water source. These areas are combined with past population distributions and average daily water needed per person to estimate water abstraction/use through time. The results indicate an increase in groundwater use, and isolate regions prone to groundwater depletion where improved management is required to sustainably management groundwater use.

  20. NASA's EOSDIS Near Term Challenges

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne

    2018-01-01

    Given the long-term requirements, and the rapid pace of information technology and changing expectations of the user community, the ESDIS Project has had to evolve EOSDIS continually over the past three decades. However, many challenges remain. One near-term challenge is the enormous quantity of new data that will need to be managed by the EOSDIS. With the upcoming launch of the latest NASA missions coupled with existing operational missions and field campaigns, EOSDIS can expect to handle as much as 50 petabytes of data per year. In perspective, this is twice the size of the current existing archive, which took over 21 years to collect. Another continuing challenge is the disparate requirements of a diverse science community. Maintaining rigorous long-term data preservation, supporting ease of discovery and access, incorporating user feedback, enabling reanalysis/ reprocessing, and agile integration of new data sources, continue to be the Project's objectives.

  1. Design and Development of High Voltage Direct Current (DC) Sources for the Solar Array Module Plasma Interaction Experiment

    NASA Technical Reports Server (NTRS)

    Bibyk, Irene K.; Wald, Lawrence W.

    1995-01-01

    Two programmable, high voltage DC power supplies were developed as part of the flight electronics for the Solar Array Module Plasma Interaction Experiment (SAMPIE). SAMPIE's primary objectives were to study and characterize the high voltage arcing and parasitic current losses of various solar cells and metal samples within the space plasma of low earth orbit (LEO). High voltage arcing can cause large discontinuous changes in spacecraft potential which lead to damage of the power system materials and significant Electromagnetic Interference (EMI). Parasitic currents cause a change in floating potential which lead to reduced power efficiency. These primary SAMPIE objectives were accomplished by applying artificial biases across test samples over a voltage range from -600 VDC to +300 VDC. This paper chronicles the design, final development, and test of the two programmable high voltage sources for SAMPIE. The technical challenges to the design for these power supplies included vacuum, space plasma effects, thermal protection, Shuttle vibrations and accelerations.

  2. A review on technological options of waste to energy for effective management of municipal solid waste.

    PubMed

    Kumar, Atul; Samadder, S R

    2017-11-01

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Acoustic Localization with Infrasonic Signals

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  4. Drugs for Neglected Diseases initiative model of drug development for neglected diseases: current status and future challenges.

    PubMed

    Ioset, Jean-Robert; Chang, Shing

    2011-09-01

    The Drugs for Neglected Diseases initiative (DNDi) is a patients' needs-driven organization committed to the development of new treatments for neglected diseases. Created in 2003, DNDi has delivered four improved treatments for malaria, sleeping sickness and visceral leishmaniasis. A main DNDi challenge is to build a solid R&D portfolio for neglected diseases and to deliver preclinical candidates in a timely manner using an original model based on partnership. To address this challenge DNDi has remodeled its discovery activities from a project-based academic-bound network to a fully integrated process-oriented platform in close collaboration with pharmaceutical companies. This discovery platform relies on dedicated screening capacity and lead-optimization consortia supported by a pragmatic, structured and pharmaceutical-focused compound sourcing strategy.

  5. Discovery and resupply of pharmacologically active plant-derived natural products: A review

    PubMed Central

    Linder, Thomas; Wawrosch, Christoph; Uhrin, Pavel; Temml, Veronika; Wang, Limei; Schwaiger, Stefan; Heiss, Elke H.; Rollinger, Judith M.; Schuster, Daniela; Breuss, Johannes M.; Bochkov, Valery; Mihovilovic, Marko D.; Kopp, Brigitte; Bauer, Rudolf; Dirsch, Verena M.; Stuppner, Hermann

    2016-01-01

    Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a “screening hit” through a “drug lead” to a “marketed drug” is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future. PMID:26281720

  6. Discovery and resupply of pharmacologically active plant-derived natural products: A review.

    PubMed

    Atanasov, Atanas G; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Linder, Thomas; Wawrosch, Christoph; Uhrin, Pavel; Temml, Veronika; Wang, Limei; Schwaiger, Stefan; Heiss, Elke H; Rollinger, Judith M; Schuster, Daniela; Breuss, Johannes M; Bochkov, Valery; Mihovilovic, Marko D; Kopp, Brigitte; Bauer, Rudolf; Dirsch, Verena M; Stuppner, Hermann

    2015-12-01

    Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a "screening hit" through a "drug lead" to a "marketed drug" is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Approaches to advancescientific understanding of macrosystems ecology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Ofir; Ball, Becky; Bond-Lamberty, Benjamin

    Macrosystem ecological studies inherently investigate processes that interact across multiple spatial and temporal scales, requiring intensive sampling and massive amounts of data from diverse sources to incorporate complex cross-scale and hierarchical interactions. Inherent challenges associated with these characteristics include high computational demands, data standardization and assimilation, identification of important processes and scales without prior knowledge, and the need for large, cross-disciplinary research teams that conduct long-term studies. Therefore, macrosystem ecology studies must utilize a unique set of approaches that are capable of encompassing these methodological characteristics and associated challenges. Several case studies demonstrate innovative methods used in current macrosystem ecologymore » studies.« less

  8. Biofield Science: Current Physics Perspectives

    PubMed Central

    Chevalier, Gaétan; Chopra, Deepak; Hubacher, John; Kak, Subhash; Theise, Neil D.

    2015-01-01

    This article briefly reviews the biofield hypothesis and its scientific literature. Evidence for the existence of the biofield now exists, and current theoretical foundations are now being developed. A review of the biofield and related topics from the perspective of physical science is needed to identify a common body of knowledge and evaluate possible underlying principles of origin of the biofield. The properties of such a field could be based on electromagnetic fields, coherent states, biophotons, quantum and quantum-like processes, and ultimately the quantum vacuum. Given this evidence, we intend to inquire and discuss how the existence of the biofield challenges reductionist approaches and presents its own challenges regarding the origin and source of the biofield, the specific evidence for its existence, its relation to biology, and last but not least, how it may inform an integrated understanding of consciousness and the living universe. PMID:26665039

  9. Wireless Multimedia Sensor Networks: Current Trends and Future Directions

    PubMed Central

    Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.; Morillo-Pozo, Julian

    2010-01-01

    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers. PMID:22163571

  10. Microbial pigments as natural color sources: current trends and future perspectives.

    PubMed

    Tuli, Hardeep S; Chaudhary, Prachi; Beniwal, Vikas; Sharma, Anil K

    2015-08-01

    Synthetic colors have been widely used in various industries including food, textile, cosmetic and pharmaceuticals. However toxicity problems caused by synthetic pigments have triggered intense research in natural colors and dyes. Among the natural Sources, pigment producing microorganisms hold a promising potential to meet present day challenges. Furthermore natural colors not only improve the marketability of the product but also add extra features like anti oxidant, anti cancer properties etc. In this review, we present various sources of microbial pigments and to explore their biological and clinical properties like antimicrobial, antioxidant, anticancer and anti inflammatory. The study also emphasizes upon key parameters to improve the bioactivity and production of microbial pigments for their commercial use in pharmacological and medical fields.

  11. Energy harvesting for the implantable biomedical devices: issues and challenges.

    PubMed

    Hannan, Mahammad A; Mutashar, Saad; Samad, Salina A; Hussain, Aini

    2014-06-20

    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries.

  12. On the Adaptive Protection of Microgrids: A Review on How to Mitigate Cyber Attacks and Communication Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Hany F; Lashway, Christopher R; Mohammed, Osama A

    One main challenge in the practical implementation of a microgrid is the design of an adequate protection scheme in both grid connected and islanded modes. Conventional overcurrent protection schemes face selectivity and sensitivity issues during grid and microgrid faults since the fault current level is different in both cases for the same relay. Various approaches have been implemented in the past to deal with this problem, yet the most promising ones are the implementation of adaptive protection techniques abiding by the IEC 61850 communication standard. This paper presents a critical review of existing adaptive protection schemes, the technical challenges formore » the use of classical protection techniques and the need for an adaptive, smart protection system. However, the risk of communication link failures and cyber security threats still remain a challenge in implementing a reliable adaptive protection scheme. A contingency is needed where a communication issue prevents the relay from adjusting to a lower current level during islanded mode. An adaptive protection scheme is proposed that utilizes energy storage (ES) and hybrid ES (HESS) already available in the network as a mechanism to source the higher fault current. Four common grid ES and HESS are reviewed for their suitability in feeding the fault while some solutions are proposed.« less

  13. Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges

    PubMed Central

    Chong, Mark Seow Khoon; Ng, Wei Kai

    2016-01-01

    Endothelial progenitor cells (EPCs) are currently being studied as candidate cell sources for revascularization strategies. Significant advances have been made in understanding the biology of EPCs, and preclinical studies have demonstrated the vasculogenic, angiogenic, and beneficial paracrine effects of transplanted EPCs in the treatment of ischemic diseases. Despite these promising results, widespread clinical acceptance of EPCs for clinical therapies remains hampered by several challenges. The present study provides a concise summary of the different EPC populations being studied for ischemic therapies and their known roles in the healing of ischemic tissues. The challenges and issues surrounding the use of EPCs and the current strategies being developed to improve the harvest efficiency and functionality of EPCs for application in regenerative medicine are discussed. Significance Endothelial progenitor cells (EPCs) have immense clinical value for cardiovascular therapies. The present study provides a concise description of the EPC subpopulations being evaluated for clinical applications. The current major lines of investigation involving preclinical and clinical evaluations of EPCs are discussed, and significant gaps limiting the translation of EPCs are highlighted. The present report could be useful for clinicians and clinical researchers with interests in ischemic therapy and for basic scientists working in the related fields of tissue engineering and regenerative medicine. PMID:26956207

  14. Energy harvesting for the implantable biomedical devices: issues and challenges

    PubMed Central

    2014-01-01

    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries. PMID:24950601

  15. Crowd Sourcing to Improve Urban Stormwater Management

    NASA Astrophysics Data System (ADS)

    Minsker, B. S.; Band, L. E.; Heidari Haratmeh, B.; Law, N. L.; Leonard, L. N.; Rai, A.

    2017-12-01

    Over half of the world's population currently lives in urban areas, a number predicted to grow to 60 percent by 2030. Urban areas face unprecedented and growing challenges that threaten society's long-term wellbeing, including poverty; chronic health problems; widespread pollution and resource degradation; and increased natural disasters. These are "wicked" problems involving "systems of systems" that require unprecedented information sharing and collaboration across disciplines and organizational boundaries. Cities are recognizing that the increasing stream of data and information ("Big Data"), informatics, and modeling can support rapid advances on these challenges. Nonetheless, information technology solutions can only be effective in addressing these challenges through deeply human and systems perspectives. A stakeholder-driven approach ("crowd sourcing") is needed to develop urban systems that address multiple needs, such as parks that capture and treat stormwater while improving human and ecosystem health and wellbeing. We have developed informatics- and Cloud-based collaborative methods that enable crowd sourcing of green stormwater infrastructure (GSI: rain gardens, bioswales, trees, etc.) design and management. The methods use machine learning, social media data, and interactive design tools (called IDEAS-GI) to identify locations and features of GSI that perform best on a suite of objectives, including life cycle cost, stormwater volume reduction, and air pollution reduction. Insights will be presented on GI features that best meet stakeholder needs and are therefore most likely to improve human wellbeing and be well maintained.

  16. Gelatin controversies in food, pharmaceuticals, and personal care products: Authentication methods, current status, and future challenges.

    PubMed

    Ali, Eaqub; Sultana, Sharmin; Hamid, Sharifah Bee Abd; Hossain, Motalib; Yehya, Wageeh A; Kader, Abdul; Bhargava, Suresh K

    2018-06-13

    Gelatin is a highly purified animal protein of pig, cow, and fish origins and is extensively used in food, pharmaceuticals, and personal care products. However, the acceptability of gelatin products greatly depends on the animal sources of the gelatin. Porcine and bovine gelatins have attractive features but limited acceptance because of religious prohibitions and potential zoonotic threats, whereas fish gelatin is welcomed in all religions and cultures. Thus, source authentication is a must for gelatin products but it is greatly challenging due to the breakdown of both protein and DNA biomarkers in processed gelatins. Therefore, several methods have been proposed for gelatin identification, but a comprehensive and systematic document that includes all of the techniques does not exist. This up-to-date review addresses this research gap and presents, in an accessible format, the major gelatin source authentication techniques, which are primarily nucleic acid and protein based. Instead of presenting these methods in paragraph form which needs much attention in reading, the major methods are schematically depicted, and their comparative features are tabulated. Future technologies are forecasted, and challenges are outlined. Overall, this review paper has the merit to serve as a reference guide for the production and application of gelatin in academia and industry and will act as a platform for the development of improved methods for gelatin authentication.

  17. Through-silicon via plating void metrology using focused ion beam mill

    NASA Astrophysics Data System (ADS)

    Rudack, A. C.; Nadeau, J.; Routh, R.; Young, R. J.

    2012-03-01

    3D IC integration continues to increase in complexity, employing advanced interconnect technologies such as throughsilicon vias (TSVs), wafer-to-wafer (W2W) bonding, and multi-chip stacking. As always, the challenge with developing new processes is to get fast, effective feedback to the integration engineer. Ideally this data is provided by nondestructive in-line metrology, but this is not always possible. For example, some form of physical cross-sectioning is still the most practical way to detect and characterize TSV copper plating voids. This can be achieved by cleaving, followed by scanning electron microscope (SEM) inspection. A more effective physical cross-sectioning method has been developed using an automated dual-beam focused ion beam (FIB)-SEM system, in which multiple locations can be sectioned and imaged while leaving the wafer intact. This method has been used routinely to assess copper plating voids over the last 24 months at SEMATECH. FIB-SEM feedback has been used to evaluate new plating chemistries, plating recipes, and process tool requalification after downtime. The dualbeam FIB-SEM used for these studies employs a gallium-based liquid metal ion source (LMIS). The overall throughput of relatively large volumes being milled is limited to 3-4 hours per section due to the maximum available beam current of 20 nA. Despite the larger volumetric removal rates of other techniques (e.g., mechanical polishing, broad-ion milling, and laser ablation), the value of localized, site-specific, and artifact-free FIB milling is well appreciated. The challenge, therefore, has been to reap the desired FIB benefits, but at faster volume removal rates. This has led to several system and technology developments for improving the throughput of the FIB technique, the most recent being the introduction of FIBs based on an inductively coupled plasma (ICP) ion source. The ICP source offers much better performance than the LMIS at very high beam currents, enabling more than 1 μA of ion beam current for fast material removal. At a lower current, the LMIS outperforms the ICP source, but imaging resolution below 30 nm has been demonstrated with ICP-based systems. In addition, the ICP source allows a wide range of possible ion species, with Xe currently the milling species of choice, due to its high mass and favorable ion source performance parameters. Using a 1 μA Xe beam will have an overall milling rate for silicon some 20X higher than a Ga beam operating at 65 nA. This paper will compare the benefits already seen using the Ga-based FIB-SEM approach to TSV metrology, with the improvements in throughput and time-to-data obtained by using the faster material removal capabilities of a FIB based on an ICP ion source. Plasma FIB (PFIB) is demonstrated to be a feasible tool for TSV plating void metrology.

  18. Encapsulation of Active Compounds in Fruit and Vegetable Juice Processing: Current State and Perspectives.

    PubMed

    Speranza, Barbara; Petruzzi, Leonardo; Bevilacqua, Antonio; Gallo, Mariangela; Campaniello, Daniela; Sinigaglia, Milena; Corbo, Maria Rosaria

    2017-06-01

    The production of value-added and/or functional juices has increased significantly in recent years, following an increased consumer demand to promote health and/or prevent disease through diet and nutrition. Micro and nano-encapsulation are promising technologies to protect and deliver sensitive compounds, allowing a controlled release in the target sites. This paper offers an overview of current applications, limits and challenges of encapsulation technologies in the production of fruit and vegetable juices, with a particular emphasis on products derived from different botanical sources. © 2017 Institute of Food Technologists®.

  19. Quantifying the Sources and Sinks of Greenhouse Gases: What Does It Take to Satisfy Scientific and Decision-Making Needs?

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Keller, K.; Ogle, S. M.; Smith, S.

    2014-12-01

    Changes in the sources and sinks of greenhouse gases (GHGs) are key drivers of anthropogenic climate change. It is hence not surprising that current and emerging U.S. governmental science priorities and programs focused on climate change (e.g. a U.S. Carbon Cycle Science Plan; the U.S. Carbon Cycle Science Program, the U.S. Global Change Research Program, Executive Order 13653 'Preparing the U.S. for the Impacts of Climate Change') all call for an improved understanding of these sources and sinks.. Measurements of the total atmospheric burden of these gases are well established, but measurements of their sources and sinks are difficult to make over spatial and temporal scales that are relevant for scientific and decisionmaking needs. Quantifying the uncertainty in these measurements is particularly challenging. This talk reviews the intersection of the state of knowledge of GHG sources and sinks, focusing in particular on CO2 and CH4, and science and decision-making needs for this information. Different science and decision-making needs require differing levels of uncertainty. A number of high-priority needs (early detection of changes in the Earth system, projections of future climate, support of markets or regulations) often require a high degree of accuracy and/or precision. We will critically evaluate current U.S. planning to documents to infer current perceived needs for GHG source/sink quantification, attempting to translate these needs into quantitative uncertainty metrics. We will compare these perceived needs with the current state of the art of GHG source/sink quantification, including the apparent pattern of systematic differences between so-called "top down" and "bottom-up" flux estimates. This comparison will enable us to identify where needs can be readily satisfied, and where gaps in technology exist. Finally, we will examine what steps could be taken to close existing gaps.

  20. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits.

    PubMed

    Bie, Ya-Qing; Grosso, Gabriele; Heuck, Mikkel; Furchi, Marco M; Cao, Yuan; Zheng, Jiabao; Bunandar, Darius; Navarro-Moratalla, Efren; Zhou, Lin; Efetov, Dmitri K; Taniguchi, Takashi; Watanabe, Kenji; Kong, Jing; Englund, Dirk; Jarillo-Herrero, Pablo

    2017-12-01

    One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe 2 , a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

  1. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Bie, Ya-Qing; Grosso, Gabriele; Heuck, Mikkel; Furchi, Marco M.; Cao, Yuan; Zheng, Jiabao; Bunandar, Darius; Navarro-Moratalla, Efren; Zhou, Lin; Efetov, Dmitri K.; Taniguchi, Takashi; Watanabe, Kenji; Kong, Jing; Englund, Dirk; Jarillo-Herrero, Pablo

    2017-12-01

    One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

  2. Hybrid Warfare: A Military Revolution or Revolution in Military Affairs?

    DTIC Science & Technology

    2012-12-14

    instructions , searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information...some of history’s earlier teaching arguably lacks current applications. As an example, the phalanx of the Greek era or the lines and columns of the...minor role; instead, areas such as C2, organization, logistics, doctrine, and other non- material improvements are what define MRs. The challenge of

  3. Sources and sinks of carbon in boreal ecosystems of interior Alaska: a review

    USGS Publications Warehouse

    Douglas, Thomas A.; Jones, Miriam C.; Hiemstra, Christopher A.

    2014-01-01

    Boreal regions store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region, underlain by discontinuous permafrost, presents a challenging landscape for itemizing current and potential carbon sources and sinks in the boreal soil and vegetation. The roles of fire, forest succession, and the presence (or absence) of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in this area for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape process changes over the next 20 to 50 years. This provides a major challenge for predicting how the interplay between land management activities and impacts of climate warming will affect carbon sources and sinks in Interior Alaska. To assist land managers in adapting and managing for potential changes in the Interior Alaska carbon cycle we developed this review paper incorporating an overview of the climate, ecosystem processes, vegetation types, and soil regimes in Interior Alaska with a focus on ramifications for the carbon cycle. Our objective is to provide a synthesis of the most current carbon storage estimates and measurements to support policy and land management decisions on how to best manage carbon sources and sinks in Interior Alaska. To support this we have surveyed relevant peer reviewed estimates of carbon stocks in aboveground and belowground biomass for Interior Alaska boreal ecosystems. We have also summarized methane and carbon dioxide fluxes from the same ecosystems. These data have been converted into the same units to facilitate comparison across ecosystem compartments. We identify potential changes in the carbon cycle with climate change and human disturbance including how compounding disturbances can affect the boreal system. Finally, we provide recommendations to address the challenges facing land managers in efforts to manage carbon cycle processes. The results of this study can be used for carbon cycle management in other locations within the boreal biome which encompass a broad distribution from 45° to 83° north.

  4. Current perspectives in drug discovery against tuberculosis from natural products.

    PubMed

    Nguta, Joseph Mwanzia; Appiah-Opong, Regina; Nyarko, Alexander K; Yeboah-Manu, Dorothy; Addo, Phyllis G A

    2015-09-01

    Currently, one third of the world's population is latently infected with Mycobacterium tuberculosis (MTB), while 8.9-9.9 million new and relapse cases of tuberculosis (TB) are reported yearly. The renewed research interests in natural products in the hope of discovering new and novel antitubercular leads have been driven partly by the increased incidence of multidrug-resistant strains of MTB and the adverse effects associated with the first- and second-line antitubercular drugs. Natural products have been, and will continue to be a rich source of new drugs against many diseases. The depth and breadth of therapeutic agents that have their origins in the secondary metabolites produced by living organisms cannot be compared with any other source of therapeutic agents. Discovery of new chemical molecules against active and latent TB from natural products requires an interdisciplinary approach, which is a major challenge facing scientists in this field. In order to overcome this challenge, cutting edge techniques in mycobacteriology and innovative natural product chemistry tools need to be developed and used in tandem. The present review provides a cross-linkage to the most recent literature in both fields and their potential to impact the early phase of drug discovery against TB if seamlessly combined. Copyright © 2015 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  5. Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives.

    PubMed

    Hennebel, Tom; Boon, Nico; Maes, Synthia; Lenz, Markus

    2015-01-25

    Europe is confronted with an increasing supply risk of critical raw materials. These can be defined as materials of which the risks of supply shortage and their impacts on the economy are higher compared to most of other raw materials. Within the framework of the EU Innovation Partnership on raw materials Initiative, a list of 14 critical materials was defined, including some bulk metals, industrial minerals, the platinum group metals and rare earth elements. To tackle the supply risk challenge, innovation is required with respect to sustainable primary mining, substitution of critical metals, and urban mining. In these three categories, biometallurgy can play a crucial role. Indeed, microbe-metal interactions have been successfully applied on full scale to win materials from primary sources, but are not sufficiently explored for metal recovery or recycling. On the one hand, this article gives an overview of the microbial strategies that are currently applied on full scale for biomining; on the other hand it identifies technologies, currently developed in the laboratory, which have a perspective for large scale metal recovery and the needs and challenges on which bio-metallurgical research should focus to achieve this ambitious goal. Copyright © 2013. Published by Elsevier B.V.

  6. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine.

    PubMed

    Lee, Charlotte A; Sinha, Siddharth; Fitzpatrick, Emer; Dhawan, Anil

    2018-06-01

    Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.

  7. Gate Drain Underlapped-PNIN-GAA-TFET for Comprehensively Upgraded Analog/RF Performance

    NASA Astrophysics Data System (ADS)

    Madan, Jaya; Chaujar, Rishu

    2017-02-01

    This work integrates the merits of gate-drain underlapping (GDU) and N+ source pocket on cylindrical gate all around tunnel FET (GAA-TFET) to form GDU-PNIN-GAA-TFET. It is analysed that the source pocket located at the source-channel junction narrows the tunneling barrier width at the tunneling junction and thereby enhances the ON-state current of GAA-TFET. Further, it is obtained that the GDU resists the extension of carrier density (built-up under the gated region) towards the drain side (under the underlapped length), thereby suppressing the ambipolar current and reducing the parasitic capacitances of GAA-TFET. Consequently, the amalgamated merits of both engineering schemes are obtained in GDU-PNIN-GAA-TFET that thus conquers the greatest challenges faced by TFET. Thus, GDU-PNIN-GAA-TFET results in an up-gradation in the overall performance of GAA-TFET. Moreover, it is realised that the RF figure of merits FOMs such as cut-off frequency (fT) and maximum oscillation frequency (fMAX) are also considerably improved with integration of source pocket on GAA-TFET. Thus, the improved analog and RF performance of GDU-PNIN-GAA-TFET makes it ideal for low power and high-speed applications.

  8. Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review

    PubMed Central

    Uzma, Fazilath; Mohan, Chakrabhavi D.; Hashem, Abeer; Konappa, Narasimha M.; Rangappa, Shobith; Kamath, Praveen V.; Singh, Bhim P.; Mudili, Venkataramana; Gupta, Vijai K.; Siddaiah, Chandra N.; Chowdappa, Srinivas; Alqarawi, Abdulaziz A.; Abd_Allah, Elsayed F.

    2018-01-01

    Cancer is a major cause of death worldwide, with an increasing number of cases being reported annually. The elevated rate of mortality necessitates a global challenge to explore newer sources of anticancer drugs. Recent advancements in cancer treatment involve the discovery and development of new and improved chemotherapeutics derived from natural or synthetic sources. Natural sources offer the potential of finding new structural classes with unique bioactivities for cancer therapy. Endophytic fungi represent a rich source of bioactive metabolites that can be manipulated to produce desirable novel analogs for chemotherapy. This review offers a current and integrative account of clinically used anticancer drugs such as taxol, podophyllotoxin, camptothecin, and vinca alkaloids in terms of their mechanism of action, isolation from endophytic fungi and their characterization, yield obtained, and fungal strain improvement strategies. It also covers recent literature on endophytic fungal metabolites from terrestrial, mangrove, and marine sources as potential anticancer agents and emphasizes the findings for cytotoxic bioactive compounds tested against specific cancer cell lines. PMID:29755344

  9. The effect of brain lesions on sound localization in complex acoustic environments.

    PubMed

    Zündorf, Ida C; Karnath, Hans-Otto; Lewald, Jörg

    2014-05-01

    Localizing sound sources of interest in cluttered acoustic environments--as in the 'cocktail-party' situation--is one of the most demanding challenges to the human auditory system in everyday life. In this study, stroke patients' ability to localize acoustic targets in a single-source and in a multi-source setup in the free sound field were directly compared. Subsequent voxel-based lesion-behaviour mapping analyses were computed to uncover the brain areas associated with a deficit in localization in the presence of multiple distracter sound sources rather than localization of individually presented sound sources. Analyses revealed a fundamental role of the right planum temporale in this task. The results from the left hemisphere were less straightforward, but suggested an involvement of inferior frontal and pre- and postcentral areas. These areas appear to be particularly involved in the spectrotemporal analyses crucial for effective segregation of multiple sound streams from various locations, beyond the currently known network for localization of isolated sound sources in otherwise silent surroundings.

  10. Challenges in healthcare delivery in an economic downturn, in the Republic of Ireland.

    PubMed

    Carney, Marie

    2010-07-01

    The purpose of the present study was to discuss some of effects of the downturn in the Irish economy and to demonstrate that in the face of economic difficulties innovation in health care is still occurring. Staff that are managing and delivering healthcare need to know the challenges facing them and have an awareness of the importance of maintaining interest in innovative practice in turbulent times. Information obtained from several sources including government papers, the nursing regulatory board and quality authority documents and current best practice articles. Information was evaluated based on the study's aim. Issues emerging were that current challenges facing Irish health care delivery relate mainly to economic, clinical management, education and information technology factors and further reductions in the cost base of health care delivery remains focused on value for money. In the face of the economic downturn Ireland is achieving health targets and is now sitting in 13th place on the European health index, down from number 28 in 2008. This improvement in position has resulted from several new innovative work practices. As a result of cost reduction measures in place nurse managers will face greater challenges than ever before in meeting the objectives of the healthcare transformation programme.

  11. EUV tools: hydrogen gas purification and recovery strategies

    NASA Astrophysics Data System (ADS)

    Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah

    2015-03-01

    The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.

  12. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products.

    PubMed

    Khan, Muhammad Imran; Shin, Jin Hyuk; Kim, Jong Deog

    2018-03-05

    Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO 2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.

  13. Mathematical Constraints on the Use of Transmission Line Models for Simulating Initial Breakdown Pulses in Lightning Discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Merrill, R. A.; Pasko, V. P.

    2015-12-01

    A significant portion of the in-cloud lightning development is observed as a series of initial breakdown pulses (IBPs) that are characterized by an abrupt change in the electric field at a remote sensor. Recent experimental and theoretical studies have attributed this process to the stepwise elongation of an initial lightning leader inside the thunderstorm [da Silva and Pasko, JGR, 120, 4989-5009, 2015, and references therein]. Attempts to visually observe these events are hampered due to the fact that clouds are opaque to optical radiation. Due to this reason, throughout the last decade, a number of researchers have used the so-called transmission line models (also commonly referred to as engineering models), widely employed for return stroke simulations, to simulate the waveshapes of IBPs, and also of narrow bipolar events. The transmission line (TL) model approach is to prescribe the source current dynamics in a certain manner to match the measured E-field change waveform, with the purpose of retrieving key information about the source, such as its height, peak current, size, speed of charge motion, etc. Although the TL matching method is not necessarily physics-driven, the estimated source characteristics can give insights on the dominant length- and time-scales, as well as, on the energetics of the source. This contributes to better understanding of the environment where the onset and early stages of lightning development takes place.In the present work, we use numerical modeling to constrain the number of source parameters that can be confidently inferred from the observed far-field IBP waveforms. We compare different modified TL models (i.e., with different attenuation behaviors) to show that they tend to produce similar waveforms in conditions where the channel is short. We also demonstrate that it is impossible to simultaneously retrieve the speed of source current propagation and channel length from an observed IBP waveform, in contrast to what has been previously done in the literature. Finally, we demonstrate that the simulated field-to-current conversion factor in IBP sources can vary by more than one order of magnitude, making peak current estimates for intracloud lightning processes a challenging task.

  14. Realizing Steady State Tokamak Operation for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2009-11-01

    Continuous operation of a tokamak for fusion energy has obvious engineering advantages, but also presents physics challenges beyond the achievement of conditions needed for a burning plasma. The power from fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually in the present generation of tokamaks, and significant progress has been made in the last decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are now operated routinely without disruptions close to the ideal MHD pressure limit, as needed for steady-state operation. Scenarios that project to high fusion gain have been demonstrated where more than half of the current is supplied by the ``bootstrap'' current generated by the pressure gradient in the plasma. Fully noninductive sustainment has been obtained for about a resistive time (the longest intrinsic time scale in the confined plasma) with normalized pressure and confinement approaching those needed for demonstration of steady-state conditions in ITER. One key challenge remaining to be addressed is how to handle the demanding heat and particle fluxes expected in a steady-state tokamak without compromising the high level of core plasma performance. Rather than attempt a comprehensive historical survey, this review will start from the plasma requirements of a steady-state tokamak powerplant, illustrate with examples the progress made in both experimental and theoretical understanding, and point to the remaining physics challenges.

  15. Natural products as reservoirs of novel therapeutic agents

    PubMed Central

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it. PMID:29805348

  16. The Role of Bioreactors in Ligament and Tendon Tissue Engineering.

    PubMed

    Mace, James; Wheelton, Andy; Khan, Wasim S; Anand, Sanj

    2016-01-01

    Bioreactors are pivotal to the emerging field of tissue engineering. The formation of neotissue from pluripotent cell lineages potentially offers a source of tissue for clinical use without the significant donor site morbidity associated with many contemporary surgical reconstructive procedures. Modern bioreactor design is becoming increasingly complex to provide a both an expandable source of readily available pluripotent cells and to facilitate their controlled differentiation into a clinically applicable ligament or tendon like neotissue. This review presents the need for such a method, challenges in the processes to engineer neotissue and the current designs and results of modern bioreactors in the pursuit of engineered tendon and ligament.

  17. Anchoring historical sequences using a new source of astro-chronological tie-points

    NASA Astrophysics Data System (ADS)

    Dee, Michael W.; Pope, Benjamin J. S.

    2016-08-01

    The discovery of past spikes in atmospheric radiocarbon activity, caused by major solar energetic particle events, has opened up new possibilities for high-precision chronometry. The two spikes, or Miyake Events, have now been widely identified in tree-rings that grew in the years 775 and 994 CE. Furthermore, all other plant material that grew in these years would also have incorporated the anomalously high concentrations of radiocarbon. Crucially, some plant-based artefacts, such as papyrus documents, timber beams and linen garments, can also be allocated to specific positions within long, currently unfixed, historical sequences. Thus, Miyake Events represent a new source of tie-points that could provide the means for anchoring early chronologies to the absolute timescale. Here, we explore this possibility, outlining the most expeditious approaches, the current challenges and obstacles, and how they might best be overcome.

  18. The Challenge of Human Spermatozoa Proteome: A Systematic Review.

    PubMed

    Gilany, Kambiz; Minai-Tehrani, Arash; Amini, Mehdi; Agharezaee, Niloofar; Arjmand, Babak

    2017-01-01

    Currently, there are 20,197 human protein-coding genes in the most expertly curated database (UniProtKB/Swiss-Pro). Big efforts have been made by the international consortium, the Chromosome-Centric Human Proteome Project (C-HPP) and independent researchers, to map human proteome. In brief, anno 2017 the human proteome was outlined. The male factor contributes to 50% of infertility in couples. However, there are limited human spermatozoa proteomic studies. Firstly, the development of the mapping of the human spermatozoa was analyzed. The human spermatozoa have been used as a model for missing proteins. It has been shown that human spermatozoa are excellent sources for finding missing proteins. Y chromosome proteome mapping is led by Iran. However, it seems that it is extremely challenging to map the human spermatozoa Y chromosome proteins based on current mass spectrometry-based proteomics technology. Post-translation modifications (PTMs) of human spermatozoa proteome are the most unexplored area and currently the exact role of PTMs in male infertility is unknown. Additionally, the clinical human spermatozoa proteomic analysis, anno 2017 was done in this study.

  19. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air.

    PubMed

    Jain, Vishal; Visani, Anand; Srinivasan, R; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (∼0.28 W/cm 2 ) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (∼50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  20. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air

    NASA Astrophysics Data System (ADS)

    Jain, Vishal; Visani, Anand; Srinivasan, R.; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (˜0.28 W/cm2) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (˜50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  1. Interactions between biomass-burning aerosols and clouds over Southeast Asia: current status, challenges, and perspectives.

    PubMed

    Lin, Neng-Huei; Sayer, Andrew M; Wang, Sheng-Hsiang; Loftus, Adrian M; Hsiao, Ta-Chih; Sheu, Guey-Rong; Hsu, N Christina; Tsay, Si-Chee; Chantara, Somporn

    2014-12-01

    The interactions between aerosols, clouds, and precipitation remain among the largest sources of uncertainty in the Earth's energy budget. Biomass-burning aerosols are a key feature of the global aerosol system, with significant annually-repeating fires in several parts of the world, including Southeast Asia (SEA). SEA in particular provides a "natural laboratory" for these studies, as smoke travels from source regions downwind in which it is coupled to persistent stratocumulus decks. However, SEA has been under-exploited for these studies. This review summarizes previous related field campaigns in SEA, with a focus on the ongoing Seven South East Asian Studies (7-SEAS) and results from the most recent BASELInE deployment. Progress from remote sensing and modeling studies, along with the challenges faced for these studies, are also discussed. We suggest that improvements to our knowledge of these aerosol/cloud effects require the synergistic use of field measurements with remote sensing and modeling tools. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Enhancing crisis leadership in public health emergencies.

    PubMed

    Deitchman, Scott

    2013-10-01

    Reviews of public health emergency responses have identified a need for crisis leadership skills in health leaders, but these skills are not routinely taught in public health curricula. To develop criteria for crisis leadership in public health, published sources were reviewed to identify attributes of successful crisis leadership in aviation, public safety, military operations, and mining. These sources were abstracted to identify crisis leadership attributes associated with those disciplines and compare those attributes with crisis leadership challenges in public health. Based on this review, the following attributes are proposed for crisis leadership in public health: competence in public health science; decisiveness with flexibility; ability to maintain situational awareness and provide situational assessment; ability to coordinate diverse participants across very different disciplines; communication skills; and the ability to inspire trust. Of these attributes, only competence in public health science is currently a goal of public health education. Strategies to teach the other proposed attributes of crisis leadership will better prepare public health leaders to meet the challenges of public health crises.

  3. The chemotherapeutic agent paclitaxel selectively impairs learning while sparing source memory and spatial memory.

    PubMed

    Smith, Alexandra E; Slivicki, Richard A; Hohmann, Andrea G; Crystal, Jonathon D

    2017-03-01

    Chemotherapeutic agents are widely used to treat patients with systemic cancer. The efficacy of these therapies is undermined by their adverse side-effect profiles such as cognitive deficits that have a negative impact on the quality of life of cancer survivors. Cognitive side effects occur across a variety of domains, including memory, executive function, and processing speed. Such impairments are exacerbated under cognitive challenges and a subgroup of patients experience long-term impairments. Episodic memory in rats can be examined using a source memory task. In the current study, rats received paclitaxel, a taxane-derived chemotherapeutic agent, and learning and memory functioning was examined using the source memory task. Treatment with paclitaxel did not impair spatial and episodic memory, and paclitaxel treated rats were not more susceptible to cognitive challenges. Under conditions in which memory was not impaired, paclitaxel treatment impaired learning of new rules, documenting a decreased sensitivity to changes in experimental contingencies. These findings provide new information on the nature of cancer chemotherapy-induced cognitive impairments, particularly regarding the incongruent vulnerability of episodic memory and new learning following treatment with paclitaxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Creating Economic Incentives for Waste Disposal in Developing Countries Using the MixAlco Process.

    PubMed

    Lonkar, Sagar; Fu, Zhihong; Wales, Melinda; Holtzapple, Mark

    2017-01-01

    In rapidly growing developing countries, waste disposal is a major challenge. Current waste disposal methods (e.g., landfills and sewage treatment) incur costs and often are not employed; thus, wastes accumulate in the environment. To address this challenge, it is advantageous to create economic incentives to collect and process wastes. One approach is the MixAlco process, which uses methane-inhibited anaerobic fermentation to convert waste biomass into carboxylate salts, which are chemically converted to industrial chemicals and fuels. In this paper, humanure (raw human feces and urine) is explored as a possible nutrient source for fermentation. This work focuses on fermenting municipal solid waste (energy source) and humanure (nutrient source) in batch fermentations. Using the Continuum Particle Distribution Model (CPDM), the performance of continuous countercurrent fermentation was predicted at different volatile solid loading rates (VSLR) and liquid residence times (LRT). For a four-stage countercurrent fermentation system at VSLR = 4 g/(L∙day), LRT = 30 days, and solids concentration = 100 g/L liquid, the model predicts carboxylic acid concentration of 68 g/L and conversion of 78.5 %.

  5. High power, electrically tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Slivken, Steven; Razeghi, Manijeh

    2016-02-01

    Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser.

  6. An exploratory study of recycled sputtering and CsF2- current enhancement for AMS

    NASA Astrophysics Data System (ADS)

    Zhao, X.-L.; Charles, C. R. J.; Cornett, R. J.; Kieser, W. E.; MacDonald, C.; Kazi, Z.; St-Jean, N.

    2016-01-01

    The analysis of 135Cs/Cs ratios at levels below 10-12 by accelerator mass spectrometry (AMS) would preferably use commonly available negative ion injection systems. The sputter ion sources in these injectors should ideally produce currents of Cs- or Cs-containing molecular anions approaching μA levels from targets containing mg quantities of Cs. However, since Cs is the most electro-positive stable element in nature with a low electron affinity, the generation of large negative atomic, or molecular beams containing Cs, has been very challenging. In addition, the reduction of the interferences from the 135Ba isobar and the primary 133Cs+ beam used for sputtering are also necessary. The measurement of a wide range of the isotope ratios also requires the ion source memory of previous samples be minimized. This paper describes some progresses towards a potential solution of all these problems by recycled sputtering using fluorinating targets of PbF2 with mg CsF mixed in. The problems encountered indicate that considerable further studies and some redesign of the present ion sources will be desirable.

  7. Advantages of III-nitride laser diodes in solid-state lighting: Advantages of III-nitride laser diodes in solid-state lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierer, Jonathan J.; Tsao, Jeffrey Y.

    2015-01-14

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less

  8. Design Science Methodology Applied to a Chemical Surveillance Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhuanyi; Han, Kyungsik; Charles-Smith, Lauren E.

    Public health surveillance systems gain significant benefits from integrating existing early incident detection systems,supported by closed data sources, with open source data.However, identifying potential alerting incidents relies on finding accurate, reliable sources and presenting the high volume of data in a way that increases analysts work efficiency; a challenge for any system that leverages open source data. In this paper, we present the design concept and the applied design science research methodology of ChemVeillance, a chemical analyst surveillance system.Our work portrays a system design and approach that translates theoretical methodology into practice creating a powerful surveillance system built for specificmore » use cases.Researchers, designers, developers, and related professionals in the health surveillance community can build upon the principles and methodology described here to enhance and broaden current surveillance systems leading to improved situational awareness based on a robust integrated early warning system.« less

  9. Quantitative measurement of pass-by noise radiated by vehicles running at high speeds

    NASA Astrophysics Data System (ADS)

    Yang, Diange; Wang, Ziteng; Li, Bing; Luo, Yugong; Lian, Xiaomin

    2011-03-01

    It has been a challenge in the past to accurately locate and quantify the pass-by noise source radiated by the running vehicles. A system composed of a microphone array is developed in our current work to do this work. An acoustic-holography method for moving sound sources is designed to handle the Doppler effect effectively in the time domain. The effective sound pressure distribution is reconstructed on the surface of a running vehicle. The method has achieved a high calculation efficiency and is able to quantitatively measure the sound pressure at the sound source and identify the location of the main sound source. The method is also validated by the simulation experiments and the measurement tests with known moving speakers. Finally, the engine noise, tire noise, exhaust noise and wind noise of the vehicle running at different speeds are successfully identified by this method.

  10. Hydrological research in Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebremichael, M.

    2012-12-01

    Almost all major development problems in Ethiopia are water-related: food insecurity, low economic development, recurrent droughts, disastrous floods, poor health conditions, and low energy condition. In order to develop and manage existing water resources in a sustainable manner, knowledge is required about water availability, water quality, water demand in various sectors, and the impacts of water resource projects on health and the environment. The lack of ground-based data has been a major challenge for generating this knowledge. Current advances in remote sensing and computer simulation technology could provide alternative source of datasets. In this talk, I will present the challenges and opportunities in using remote sensing datasets and hydrological models in regions such as Africa where ground-based datasets are scarce.

  11. A Nuclear Energy Renaissance: Challenges to Nuclear Weapon Nonproliferation

    DTIC Science & Technology

    2009-03-30

    carbon dioxide every second.12 Nuclear energy is currently the only energy source capable of significant expansion to replace the many terawatts of...environmental lobby, which for decades opposed nuclear power, has now to a significant part come to support it as an important answer to reduce carbon ...power produced by burning fossil fuels. The 4 likely addition of carbon emission taxes and tax credits will only make nuclear power more economically

  12. Performance of unified power quality conditioner (UPQC) based on fuzzy controller for attenuating of voltage and current harmonics

    NASA Astrophysics Data System (ADS)

    Milood Almelian, Mohamad; Mohd, Izzeldin I.; Asghaiyer Omran, Mohamed; Ullah Sheikh, Usman

    2018-04-01

    Power quality-related issues such as current and voltage distortions can adversely affect home and industrial appliances. Although several conventional techniques such as the use of passive and active filters have been developed to increase power quality standards, these methods have challenges and are inadequate due to the increasing number of applications. The Unified Power Quality Conditioner (UPQC) is a modern strategy towards correcting the imperfections of voltage and load current supply. A UPQC is a combination of both series and shunt active power filters in a back-to-back manner with a common DC link capacitor. The control of the voltage of the DC link capacitor is important in achieving a desired UPQC performance. In this paper, the UPQC with a Fuzzy logic controller (FLC) was used to precisely eliminate the imperfections of voltage and current harmonics. The results of the simulation studies using MATLAB/Simulink and Simpower system programming for R-L load associated through an uncontrolled bridge rectifier was used to assess the execution process. The UPQC with FLC was simulated for a system with distorted load current and a system with distorted source voltage and load current. The outcome of the comparison of %THD in the load current and source voltage before and after using UPQC for the two cases was presented.

  13. Absolute calorimetric calibration of low energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Stump, Kurt E.

    In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of the current instrument to direct further work in this field. It has been found that for sources with powers above approximately 2 muW the instrument is able to determine the source power in agreement to within less than 7% of what is expected based upon the current source strength standard. For lower power sources, the agreement is still within the uncertainty of the power measurement, but the calorimeter noise dominates. Thus, to provide absolute calibration of lower power sources additional measures must be taken. The conclusion of this thesis describes these measures and how they will improve the factors that limit the current instrument. The results of the work presented in this thesis establish the methodology of active radiometric calorimetey for the absolute calibration of radioactive sources. The method is an improvement over previous techniques in that there is no reliance upon the thermal properties of the materials used or the heat flow pathways on the source measurements. The initial work presented here will help to shape future refinements of this technique to allow lower power sources to be calibrated with high precision and high accuracy.

  14. Photonic sources and detectors for quantum information protocols: A trilogy in eight parts

    NASA Astrophysics Data System (ADS)

    Rangarajan, Radhika

    Quantum information processing (QIP) promises to revolutionize existing methods of manipulating data, via truly unique paradigms based on fundamental nonclassical physical phenomenon. However, the eventual success of optical QIP depends critically on the available technologies. Currently, creating multiple-photon states is extremely inefficient because almost no source thus far has been well optimized. Additionally, high-efficiency single-photon detectors can drastically improve multi-photon QIP (typical efficiencies are ˜70%). In fact, it has been shown that scalable linear optical quantum computing is possible only if the product of the source and detector efficiencies exceeds ˜67%. The research presented here focuses on developing optimized source and detector technologies for enabling scalable QIP. The goal of our source research is to develop an ideal " indistinguishable" source of ultrabright polarization-entangled but spatially- and spectrally-unentangled photon pairs. We engineer such an ideal source by first designing spatio-spectrally unentangled photons using optimized and group-velocity matched spontaneous parametric down conversion (SPDC). Next, we generate polarization-entangled photons using the engineered SPDC. Here we present solutions to the various challenges encountered during the indistinguishable source development. We demonstrate high-fidelity ultrafast pulsed and cw-diode laser-pumped sources of polarization-entangled photons, as well as the first production of polarization-entanglement directly from the highly nonlinear biaxial crystal BiB3O6 (BiBO). We also discuss the first experimental confirmation of the emission-angle dependence of the downconversion polarization (the Migdall effect), and a novel scheme for polarization-dependent focusing. The goal of our single-photon detector research is to develop a very high-efficiency detection system that can also resolve incident photon number, a feature absent from the typical detectors employed for QIP. We discuss the various cryogenic, optical and electronic challenges encountered en route to detector development and present details on detector characterization, ultra-short electronics design and photon-number-resolution studies. The source and detector technologies developed here share a common goal: to enhance the efficiency of existing quantum protocols and pave the way for new ones. Here we discuss some of the possible benefits via a popular quantum protocol---teleportation---as well as a novel quantum communication technique---hyper-fingerprinting. Taken as a whole, this dissertation explores viable technological options for enhancing optical quantum information protocols, offers a perspective on the current status and limitations of existing technologies, and highlights the possibilities enabled by optimized photonic sources and detectors.

  15. Modeling of Dual Gate Material Hetero-dielectric Strained PNPN TFET for Improved ON Current

    NASA Astrophysics Data System (ADS)

    Kumari, Tripty; Saha, Priyanka; Dash, Dinesh Kumar; Sarkar, Subir Kumar

    2018-01-01

    The tunnel field effect transistor (TFET) is considered to be a promising alternative device for future low-power VLSI circuits due to its steep subthreshold slope, low leakage current and its efficient performance at low supply voltage. However, the main challenging issue associated with realizing TFET for wide scale applications is its low ON current. To overcome this, a dual gate material with the concept of dielectric engineering has been incorporated into conventional TFET structure to tune the tunneling width at source-channel interface allowing significant flow of carriers. In addition to this, N+ pocket is implanted at source-channel junction of the proposed structure and the effect of strain is added for exploring the performance of the model in nanoscale regime. All these added features upgrade the device characteristics leading to higher ON current, low leakage and low threshold voltage. The present work derives the surface potential, electric field expression and drain current by solving 2D Poisson's equation at different boundary conditions. A comparative analysis of proposed model with conventional TFET has been done to establish the superiority of the proposed structure. All analytical results have been compared with the results obtained in SILVACO ATLAS device simulator to establish the accuracy of the derived analytical model.

  16. Realizing steady-state tokamak operation for fusion energy

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2011-03-01

    Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.

  17. Emission Inventory for PFOS in China: Review of Past Methodologies and Suggestions

    PubMed Central

    Lim, Theodore Chao; Wang, Bin; Huang, Jun; Deng, Shubo; Yu, Gang

    2011-01-01

    Perfluorooctane sulfonate (PFOS) is a persistent, bioaccumulative, and toxic chemical that has the potential for long-range transport in the environment. Its use in a wide variety of consumer products and industrial processes makes a detailed characterization of its emissions sources very challenging. These varied emissions sources all contribute to PFOS' existence within nearly all environmental media. Currently, China is the only country documented to still be producing PFOS, though there is no China PFOS emission inventory available. This study reviews the inventory methodologies for PFOS in other countries to suggest a China-specific methodology framework for a PFOS emission inventory. The suggested framework combines unknowns for PFOS-containing product penetration into the Chinese market with product lifecycle assumptions, centralizing these diverse sources into municipal sewage treatment plants. Releases from industrial sources can be quantified separately using another set of emission factors. Industrial sources likely to be relevant to the Chinese environment are identified. PMID:22125449

  18. Cascaded H-bridge multilevel inverter for renewable energy generation

    NASA Astrophysics Data System (ADS)

    Pandey, Ravikant; Nath Tripathi, Ravi; Hanamoto, Tsuyoshi

    2016-04-01

    In this paper cascaded H-bridge multilevel inverter (CHBMLI) has been investigated for the application of renewable energy generation. Energy sources like solar, wind, hydro, biomass or combination of these can be manipulated to obtain alternative sources for renewable energy generation. These renewable energy sources have different electrical characteristics like DC or AC level so it is challenging to use generated power by connecting to grid or load directly. The renewable energy source require specific power electronics converter as an interface for conditioning generated power .The multilevel inverter can be utilized for renewable energy sources in two different modes, the power generation mode (stand-alone mode), and compensator mode (statcom). The performance of the multilevel inverter has been compared with two level inverter. In power generation mode CHBMLI supplies the active and reactive power required by the different loads. For operation in compensator mode the indirect current control based on synchronous reference frame theory (SRFT) ensures the grid operating in unity power factor and compensate harmonics and reactive power.

  19. Cell sources for in vitro human liver cell culture models.

    PubMed

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. © 2016 by the Society for Experimental Biology and Medicine.

  20. Cell sources for in vitro human liver cell culture models

    PubMed Central

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  1. Current status of treating neurodegenerative disease with induced pluripotent stem cells.

    PubMed

    Pen, A E; Jensen, U B

    2017-01-01

    Degenerative diseases of the brain have proven challenging to treat, let alone cure. One of the treatment options is the use of stem cell therapy, which has been under investigation for several years. However, treatment with stem cells comes with a number of drawbacks, for instance the source of these cells. Currently, a number of options are tested to produce stem cells, although the main issues of quantity and ethics remain for most of them. Over recent years, the potential of induced pluripotent stem cells (iPSCs) has been widely investigated and these cells seem promising for production of numerous different tissues both in vitro and in vivo. One of the major advantages of iPSCs is that they can be made autologous and can provide a sufficient quantity of cells by culturing, making the use of other stem cell sources unnecessary. As the first descriptions of iPSC production with the transcription factors Sox2, Klf4, Oct4 and C-Myc, called the Yamanaka factors, a variety of methods has been developed to convert somatic cells from all germ layers to pluripotent stem cells. Improvement of these methods is necessary to increase the efficiency of reprogramming, the quality of pluripotency and the safety of these cells before use in human trials. This review focusses on the current accomplishments and remaining challenges in the production and use of iPSCs for treatment of neurodegenerative diseases of the brain such as Alzheimer's disease and Parkinson's disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Processing challenges in the XMM-Newton slew survey

    NASA Astrophysics Data System (ADS)

    Saxton, Richard D.; Altieri, Bruno; Read, Andrew M.; Freyberg, Michael J.; Esquej, M. P.; Bermejo, Diego

    2005-08-01

    The great collecting area of the mirrors coupled with the high quantum efficiency of the EPIC detectors have made XMM-Newton the most sensitive X-ray observatory flown to date. This is particularly evident during slew exposures which, while giving only 15 seconds of on-source time, actually constitute a 2-10 keV survey ten times deeper than current "all-sky" catalogues. Here we report on progress towards making a catalogue of slew detections constructed from the full, 0.2-12 keV energy band and discuss the challenges associated with processing the slew data. The fast (90 degrees per hour) slew speed results in images which are smeared, by different amounts depending on the readout mode, effectively changing the form of the point spread function. The extremely low background in slew images changes the optimum source searching criteria such that searching a single image using the full energy band is seen to be more sensitive than splitting the data into discrete energy bands. False detections due to optical loading by bright stars, the wings of the PSF in very bright sources and single-frame detector flashes are considered and techniques for identifying and removing these spurious sources from the final catalogue are outlined. Finally, the attitude reconstruction of the satellite during the slewing maneuver is complex. We discuss the implications of this on the positional accuracy of the catalogue.

  3. The learning and mentoring experiences of Paralympic coaches.

    PubMed

    Fairhurst, Katherine E; Bloom, Gordon A; Harvey, William J

    2017-04-01

    Participation in the Paralympic Games has grown substantially, yet the same growth and development has not occurred with empirical literature for coaching in disability sport. The purpose of the current study was to explore Paralympic coaches' perceptions of their learning and educational experiences, including their formal and informal mentoring opportunities. Six highly successful and experienced Paralympic coaches were individually interviewed in this qualitative study. The interview data were analyzed following Braun and Clarke's guidelines for thematic analysis. Results demonstrated that Paralympic coaches faced several challenges to acquire disability specific coaching knowledge and skills. These challenges led the participants to utilize an array of informal learning situations, such as actively seeking mentoring relationships when they first entered the field. After becoming expert coaches, they gave back to their sport by making mentoring opportunities available for aspiring coaches. The results of the current study address the value and importance of mentoring as a structured source of education and career development for aspiring Paralympic coaches. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  4. Reference-Frame-Independent and Measurement-Device-Independent Quantum Key Distribution Using One Single Source

    NASA Astrophysics Data System (ADS)

    Li, Qian; Zhu, Changhua; Ma, Shuquan; Wei, Kejin; Pei, Changxing

    2018-04-01

    Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.

  5. Fabrication and assembly of a superconducting undulator for the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasse, Quentin; Fuerst, J. D.; Ivanyushenkov, Y.

    2014-01-29

    A prototype superconducting undulator magnet (SCU0) has been built at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL) and has successfully completed both cryogenic performance and magnetic measurement test programs. The SCU0 closed loop, zero-boil-off cryogenic system incorporates high temperature superconducting (HTS) current leads, cryocoolers, a LHe reservoir supplying dual magnetic cores, and an integrated cooled beam chamber. This system presented numerous challenges in the design, fabrication, and assembly of the device. Aspects of this R and D relating to both the cryogenic and overall assembly of the device are presented here. The SCU0 magnet has been installedmore » in the APS storage ring.« less

  6. Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications

    PubMed Central

    Hill, Stephen

    2017-01-01

    Fluorescent carbon dots (FCDs) are an emerging class of nanomaterials made from carbon sources that have been hailed as potential non-toxic replacements to traditional semiconductor quantum dots (QDs). Particularly in the areas of live imaging and drug delivery, due to their water solubility, low toxicity and photo- and chemical stability. Carbohydrates are readily available chiral biomolecules in nature which offer an attractive and cheap starting material from which to synthesise FCDs with distinct features and interesting applications. This mini-review article will cover the progress in the development of FCDs prepared from carbohydrate sources with an emphasis on their synthesis, functionalization and technical applications, including discussions on current challenges. PMID:28503203

  7. Cross-field diffusion in Hall thrusters and other plasma thrusters

    NASA Astrophysics Data System (ADS)

    Boeuf, J. P.

    2012-10-01

    Understanding and quantifying electron transport perpendicular to the magnetic field is a challenge in many low temperature plasma applications. Hall effect thrusters (HETs) provide an excellent example of cross-field transport. The HET is a very successful concept that can be considered both as a gridless ion source and an electromagnetic thruster. In HETs, the electric field E accelerating the ions is a consequence of the Lorentz force due to an external magnetic field B acting on the ExB Hall electron current. An essential aspect of HETs is that the ExB drift is closed, i.e. is in the azimuthal direction of a cylindrical channel. In the first part of this presentation we will discuss the physics of cross-field electron transport in HETs, and the current understanding (or non-understanding) of the possible role of turbulence and wall collisions on cross-field diffusion. We will also briefly comment on alternative designs of ion sources based on the same principles as the conventional HET (Anode Layer Thruster, Diverging Cusp Field Thrusters, End-Hall ion sources). In a second part of the presentation we show that the Lorentz force acting on diamagnetic currents (associated with the ∇PexB term in the electron momentum equation) can also provide thrust. This is the case for example in helicon thrusters where the plasma expands in a magnetic nozzle. We will report and discuss recent work on helicon thrusters and other devices where the diamagnetic current is dominant (with some examples where the ∇PexB current is not closed and is directed toward a wall!).

  8. Visualization and Enabling Science at PO.DAAC

    NASA Astrophysics Data System (ADS)

    Tauer, E.; To, C.

    2017-12-01

    Facilitating the identification of appropriate data for scientific inquiry is important for efficient progress, but mechanisms for that identification vary, as does the effectiveness of those mechanisms. Appropriately crafted visualizations provide the means to quickly assess science data and scientific features, but providing the right visualization to the right application can present challenges. Even greater is the challenge of generating and/or re-constituting visualizations on the fly, particularly for large datasets. One avenue to mitigate the challenge is to arrive at an optimized intermediate data format that is tuned for rapid processing without sacrificing the provenance trace back to the original source data. This presentation will discuss the results of trading several current approaches towards an intermediate data format, and suggest a list of key attributes that will facilitate rapid visualization, and in the process, facilitate the identification of the right data for a given application.

  9. Integrating Social Media and Mobile Sensor Data for Clinical Decision Support: Concept and Requirements.

    PubMed

    Denecke, Kerstin

    2016-01-01

    Social media are increasingly used by individuals for the purpose of collecting data and reporting on the personal health status, on health issues, symptoms and experiences with treatments. Beyond, fitness trackers are more used by individuals to monitor their fitness and health. The health data that is becoming available due to these developments could provide a valuable source for continuous health monitoring, prevention of unexpected health events and clinical decision making since it gives insights into behavior and life habits. However, an integration of the data is challenging. This paper aims triggering the discussion about this current topic. We present a concept for integrating social media data with mobile sensor data and clinical data using digital patient modelling. Further, we collect requirements and challenges for a possible realization of the concept. Challenges include the data volume, reliability and semantic interoperability.

  10. Clostridium difficile Drug Pipeline: Challenges in Discovery and Development of New Agents

    PubMed Central

    2015-01-01

    In the past decade Clostridium difficile has become a bacterial pathogen of global significance. Epidemic strains have spread throughout hospitals, while community acquired infections and other sources ensure a constant inoculation of spores into hospitals. In response to the increasing medical burden, a new C. difficile antibiotic, fidaxomicin, was approved in 2011 for the treatment of C. difficile-associated diarrhea. Rudimentary fecal transplants are also being trialed as effective treatments. Despite these advances, therapies that are more effective against C. difficile spores and less damaging to the resident gastrointestinal microbiome and that reduce recurrent disease are still desperately needed. However, bringing a new treatment for C. difficile infection to market involves particular challenges. This review covers the current drug discovery pipeline, including both small molecule and biologic therapies, and highlights the challenges associated with in vitro and in vivo models of C. difficile infection for drug screening and lead optimization. PMID:25760275

  11. THE CHALLENGING ROLE OF A READING COACH, A CAUTIONARY TALE.

    PubMed

    Al Otaiba, Stephanie; Hosp, John L; Smartt, Susan; Dole, Janice A

    2008-04-01

    The purpose of this case study is to describe the challenges one coach faced during the initial implementation of a coaching initiative involving 33 teachers in an urban, high-poverty elementary school. Reading coaches are increasingly expected to play a key role in the professional development efforts to improve reading instruction in order to improve reading achievement for struggling readers. Data sources included initial reading scores for kindergarten and first-graders, pretest and posttest scores of teachers' knowledge, a teacher survey, focus group interviews, project documents, and field notes. Data were analyzed using a mixed methods approach. Findings revealed several challenges that have important implications for research and practice: that teachers encountered new information about teaching early reading that conflicted with their current knowledge, this new information conflicted with their core reading program, teachers had differing perceptions of the role of the reading coach that affected their feelings about the project, and reform efforts are time-intensive.

  12. Hydrogen production from algal biomass - Advances, challenges and prospects.

    PubMed

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Numerical Relativity for Space-Based Gravitational Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2011-01-01

    In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.

  14. Visualization, documentation, analysis, and communication of large scale gene regulatory networks

    PubMed Central

    Longabaugh, William J.R.; Davidson, Eric H.; Bolouri, Hamid

    2009-01-01

    Summary Genetic regulatory networks (GRNs) are complex, large-scale, and spatially and temporally distributed. These characteristics impose challenging demands on computational GRN modeling tools, and there is a need for custom modeling tools. In this paper, we report on our ongoing development of BioTapestry, an open source, freely available computational tool designed specifically for GRN modeling. We also outline our future development plans, and give some examples of current applications of BioTapestry. PMID:18757046

  15. Implementing a Nurse Manager Profile to Improve Unit Performance.

    PubMed

    Krugman, Mary E; Sanders, Carolyn L

    2016-06-01

    Nurse managers face significant pressures in the rapidly changing healthcare environment. Staying current with multiple sources of data, including reports that detail institutional and unit performance outcomes, is particularly challenging. A Nurse Manager Customized Profile was developed at a western academic hospital to provide a 1-page visual of pertinent data to help managers and director supervisors focus coaching to improve unit performance. Use of the Decisional Involvement Scale provided new insights into measuring manager performance.

  16. U.S.-Brazil Security Cooperation and the Challenge of Technology Transfer

    DTIC Science & Technology

    2014-03-01

    Long Road of Unmet Expectations (New York: Routledge, 2005). 17 Russell Crandall and Britta Crandall, “Brazil: Ally or Rival?” in The United States...Several authors have written on the current sources of friction in Brazil- U.S. relations. Russell and Britta Crandall, in “Brazil: Ally or Rival...Following the discovery of vast uranium resources, Brazilian President Getulio Vargas signed a number of agreements with the United States in the 1940s to

  17. Functionalization of mesoporous materials for lanthanide and actinide extraction.

    PubMed

    Florek, Justyna; Giret, Simon; Juère, Estelle; Larivière, Dominic; Kleitz, Freddy

    2016-10-14

    Among the energy sources currently available that could address our insatiable appetite for energy and minimize our CO2 emission, solar, wind, and nuclear energy currently occupy an increasing portion of our energy portfolio. The energy associated with these sources can however only be harnessed after mineral resources containing valuable constituents such as actinides (Ac) and rare earth elements (REEs) are extracted, purified and transformed into components necessary for the conversion of energy into electricity. Unfortunately, the environmental impacts resulting from their manufacture including the generation of undesirable and, sometimes, radioactive wastes and the non-renewable nature of the mineral resources, to name a few, have emerged as challenges that should be addressed by the scientific community. In this perspective, the recent development of functionalized solid materials dedicated to selective elemental separation/pre-concentration could provide answers to several of the above-mentioned challenges. This review focuses on recent advances in the field of mesoporous solid-phase (SP) sorbents designed for REEs and Ac liquid-solid extraction. Particular attention will be devoted to silica and carbon sorbents functionalized with commonly known ligands, such as phosphorus or amide-containing functionalities. The extraction performances of these new systems are discussed in terms of sorption capacity and selectivity. In order to support potential industrial applications of the silica and carbon-based sorbents, their main drawbacks and advantages are highlighted and discussed.

  18. Anthropogenic Trace Compounds (ATCs) in aquatic habitats - research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management.

    PubMed

    Gerbersdorf, Sabine U; Cimatoribus, Carla; Class, Holger; Engesser, Karl-H; Helbich, Steffen; Hollert, Henner; Lange, Claudia; Kranert, Martin; Metzger, Jörg; Nowak, Wolfgang; Seiler, Thomas-Benjamin; Steger, Kristin; Steinmetz, Heidrun; Wieprecht, Silke

    2015-06-01

    Anthropogenic Trace Compounds (ATCs) that continuously grow in numbers and concentrations are an emerging issue for water quality in both natural and technical environments. The complex web of exposure pathways as well as the variety in the chemical structure and potency of ATCs represents immense challenges for future research and policy initiatives. This review summarizes current trends and identifies knowledge gaps in innovative, effective monitoring and management strategies while addressing the research questions concerning ATC occurrence, fate, detection and toxicity. We highlight the progressing sensitivity of chemical analytics and the challenges in harmonization of sampling protocols and methods, as well as the need for ATC indicator substances to enable cross-national valid monitoring routine. Secondly, the status quo in ecotoxicology is described to advocate for a better implementation of long-term tests, to address toxicity on community and environmental as well as on human-health levels, and to adapt various test levels and endpoints. Moreover, we discuss potential sources of ATCs and the current removal efficiency of wastewater treatment plants (WWTPs) to indicate the most effective places and elimination strategies. Knowledge gaps in transport and/or detainment of ATCs through their passage in surface waters and groundwaters are further emphasized in relation to their physico-chemical properties, abiotic conditions and biological interactions in order to highlight fundamental research needs. Finally, we demonstrate the importance and remaining challenges of an appropriate ATC risk assessment since this will greatly assist in identifying the most urgent calls for action, in selecting the most promising measures, and in evaluating the success of implemented management strategies. Copyright © 2015. Published by Elsevier Ltd.

  19. ADMS State of the Industry and Gap Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agalgaonkar, Yashodhan P.; Marinovici, Maria C.; Vadari, Subramanian V.

    2016-03-31

    An Advanced distribution management system (ADMS) is a platform for optimized distribution system operational management. This platform comprises of distribution management system (DMS) applications, supervisory control and data acquisition (SCADA), outage management system (OMS), and distributed energy resource management system (DERMS). One of the primary objectives of this work is to study and analyze several ADMS component and auxiliary systems. All the important component and auxiliary systems, SCADA, GISs, DMSs, AMRs/AMIs, OMSs, and DERMS, are discussed in this report. Their current generation technologies are analyzed, and their integration (or evolution) with an ADMS technology is discussed. An ADMS technology statemore » of the art and gap analysis is also presented. There are two technical gaps observed. The integration challenge between the component operational systems is the single largest challenge for ADMS design and deployment. Another significant challenge noted is concerning essential ADMS applications, for instance, fault location, isolation, and service restoration (FLISR), volt-var optimization (VVO), etc. There are a relatively small number of ADMS application developers as ADMS software platform is not open source. There is another critical gap and while not being technical in nature (when compared the two above) is still important to consider. The data models currently residing in utility GIS systems are either incomplete or inaccurate or both. This data is essential for planning and operations because it is typically one of the primary sources from which power system model are created. To achieve the full potential of ADMS, the ability to execute acute Power Flow solution is an important pre-requisite. These critical gaps are hindering wider Utility adoption of an ADMS technology. The development of an open architecture platform can eliminate many of these barriers and also aid seamless integration of distribution Utility legacy systems with an ADMS.« less

  20. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    PubMed

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  1. Financing Renewable Energy Projects in Developing Countries: A Critical Review

    NASA Astrophysics Data System (ADS)

    Donastorg, A.; Renukappa, S.; Suresh, S.

    2017-08-01

    Access to clean and stable energy, meeting sustainable development goals, the fossil fuel dependency and depletion are some of the reasons that have impacted developing countries to transform the business as usual economy to a more sustainable economy. However, access and availability of finance is a major challenge for many developing countries. Financing renewable energy projects require access to significant resources, by multiple parties, at varying points in the project life cycles. This research aims to investigate sources and new trends in financing RE projects in developing countries. For this purpose, a detail and in-depth literature review have been conducted to explore the sources and trends of current RE financial investment and projects, to understand the gaps and limitations. This paper concludes that there are various internal and external sources of finance available for RE projects in developing countries.

  2. Radiological Studies for the LCLS Beam Abort System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana Leitner, M.; Vollaire, J.; Mao, X.S.

    2008-03-25

    The Linac Coherent Light Source (LCLS), a pioneer hard x-ray free electron laser is currently under construction at the Stanford Linear Accelerator Center. It is expected that by 2009 LCLS will deliver laser pulses of unprecedented brightness and short length, which will be used in several forefront research applications. This ambitious project encompasses major design challenges to the radiation protection like the numerous sources and the number of surveyed objects. In order to sort those, the showers from various loss sources have been tracked along a detailed model covering 1/2 mile of LCLS accelerator by means of the Monte Carlomore » intra nuclear cascade codes FLUKA and MARS15. This article covers the FLUKA studies of heat load; prompt and residual dose and environmental impact for the LCLS beam abort system.« less

  3. Experimental realization of underdense plasma photocathode wakefield acceleration at FACET

    NASA Astrophysics Data System (ADS)

    Scherkl, Paul

    2017-10-01

    Novel electron beam sources from compact plasma accelerator concepts currently mature into the driving technology for next generation high-energy physics and light source facilities. Particularly electron beams of ultra-high brightness could pave the way for major advances for both scientific and commercial applications, but their generation remains tremendously challenging. The presentation outlines the experimental demonstration of the world's first bright electron beam source from spatiotemporally synchronized laser pulses injecting electrons into particle-driven plasma wakefields at FACET. Two distinctive types of operation - laser-triggered density downramp injection (``Plasma Torch'') and underdense plasma photocathode acceleration (``Trojan Horse'') - and their intermediate transitions are characterized and contrasted. Extensive particle-in-cell simulations substantiate the presentation of experimental results. In combination with novel techniques to minimize the beam energy spread, the acceleration scheme presented here promises ultra-high beam quality and brightness.

  4. Recent Approaches to Estimate Associations Between Source-Specific Air Pollution and Health.

    PubMed

    Krall, Jenna R; Strickland, Matthew J

    2017-03-01

    Estimating health effects associated with source-specific exposure is important for better understanding how pollution impacts health and for developing policies to better protect public health. Although epidemiologic studies of sources can be informative, these studies are challenging to conduct because source-specific exposures (e.g., particulate matter from vehicles) often are not directly observed and must be estimated. We reviewed recent studies that estimated associations between pollution sources and health to identify methodological developments designed to address important challenges. Notable advances in epidemiologic studies of sources include approaches for (1) propagating uncertainty in source estimation into health effect estimates, (2) assessing regional and seasonal variability in emissions sources and source-specific health effects, and (3) addressing potential confounding in estimated health effects. Novel methodological approaches to address challenges in studies of pollution sources, particularly evaluation of source-specific health effects, are important for determining how source-specific exposure impacts health.

  5. Integrating Mercury Science and Policy in the Marine Context: Challenges and Opportunities

    PubMed Central

    Lambert, Kathleen F.; Evers, David C.; Warner, Kimberly A.; King, Susannah L.; Selin, Noelle E.

    2014-01-01

    Mercury is a global pollutant and presents policy challenges at local, regional, and global scales. Mercury poses risks to the health of people, fish, and wildlife exposed to elevated levels of mercury, most commonly from the consumption of methylmercury in marine and estuarine fish. The patchwork of current mercury abatement efforts limits the effectiveness of national and multi-national policies. This paper provides an overview of the major policy challenges and opportunities related to mercury in coastal and marine environments, and highlights science and policy linkages of the past several decades. The U.S. policy examples explored here point to the need for a full life cycle approach to mercury policy with a focus on source reduction and increased attention to: (1) the transboundary movement of mercury in air, water, and biota; (2) the coordination of policy efforts across multiple environmental media; (3) the cross-cutting issues related to pollutant interactions, mitigation of legacy sources, and adaptation to elevated mercury via improved communication efforts; and (4) the integration of recent research on human and ecological health effects into benefits analyses for regulatory purposes. Stronger science and policy integration will benefit national and international efforts to prevent, control, and minimize exposure to methylmercury. PMID:22901766

  6. SET: a pupil detection method using sinusoidal approximation

    PubMed Central

    Javadi, Amir-Homayoun; Hakimi, Zahra; Barati, Morteza; Walsh, Vincent; Tcheang, Lili

    2015-01-01

    Mobile eye-tracking in external environments remains challenging, despite recent advances in eye-tracking software and hardware engineering. Many current methods fail to deal with the vast range of outdoor lighting conditions and the speed at which these can change. This confines experiments to artificial environments where conditions must be tightly controlled. Additionally, the emergence of low-cost eye tracking devices calls for the development of analysis tools that enable non-technical researchers to process the output of their images. We have developed a fast and accurate method (known as “SET”) that is suitable even for natural environments with uncontrolled, dynamic and even extreme lighting conditions. We compared the performance of SET with that of two open-source alternatives by processing two collections of eye images: images of natural outdoor scenes with extreme lighting variations (“Natural”); and images of less challenging indoor scenes (“CASIA-Iris-Thousand”). We show that SET excelled in outdoor conditions and was faster, without significant loss of accuracy, indoors. SET offers a low cost eye-tracking solution, delivering high performance even in challenging outdoor environments. It is offered through an open-source MATLAB toolkit as well as a dynamic-link library (“DLL”), which can be imported into many programming languages including C# and Visual Basic in Windows OS (www.eyegoeyetracker.co.uk). PMID:25914641

  7. The successes and challenges of open-source biopharmaceutical innovation.

    PubMed

    Allarakhia, Minna

    2014-05-01

    Increasingly, open-source-based alliances seek to provide broad access to data, research-based tools, preclinical samples and downstream compounds. The challenge is how to create value from open-source biopharmaceutical innovation. This value creation may occur via transparency and usage of data across the biopharmaceutical value chain as stakeholders move dynamically between open source and open innovation. In this article, several examples are used to trace the evolution of biopharmaceutical open-source initiatives. The article specifically discusses the technological challenges associated with the integration and standardization of big data; the human capacity development challenges associated with skill development around big data usage; and the data-material access challenge associated with data and material access and usage rights, particularly as the boundary between open source and open innovation becomes more fluid. It is the author's opinion that the assessment of when and how value creation will occur, through open-source biopharmaceutical innovation, is paramount. The key is to determine the metrics of value creation and the necessary technological, educational and legal frameworks to support the downstream outcomes of now big data-based open-source initiatives. The continued focus on the early-stage value creation is not advisable. Instead, it would be more advisable to adopt an approach where stakeholders transform open-source initiatives into open-source discovery, crowdsourcing and open product development partnerships on the same platform.

  8. Understanding Supply Chain Management Practices for Small and Medium-Sized Enterprises

    NASA Astrophysics Data System (ADS)

    Thoo, AC; Sulaiman, Z.; Choi, SL; Kohar, UHA

    2017-06-01

    Small and medium enterprises (SMEs) are a major source of dynamism, innovation and flexibility for emerging and developing countries, as well as for the economies of the most industrialised nations. However, the survival and growth of SMEs can be difficult in the current competitive business environment and global marketplace. It can be a real challenge to deliver the right product and service at the most opportune time and at the lowest possible cost to the right customer. The challenge stresses the importance of managing cross-boundary relationships between business partners. For gaining a competitive advantage, supply chain management (SCM) is an effective tool to SMEs. Therefore, this paper aims to review the tenet of SCM, its benefits and practices to SMEs.

  9. Personality disorder assessment: the challenge of construct validity.

    PubMed

    Clark, L A; Livesley, W J; Morey, L

    1997-01-01

    We begin with a review of the data that challenge the current categorical system for classifying personality disorder, focusing on the central assessment issues of convergent and discriminant validity. These data indicate that while there is room for improvement in assessment, even greater change is needed in conceptualization than in instrumentation. Accordingly, we then refocus the categorical-dimensional debate in assessment terms, and place it in the broader context of such issues as the hierarchical structure of personality, overlap and distinctions between normal and abnormal personality, sources of information in personality disorder assessment, and overlap and discrimination of trait and state assessment. We conclude that more complex conceptual models that can incorporate both biological and environmental influences on the development of adaptive and maladaptive personality are needed.

  10. Hematopoietic cell transplantation in Fanconi anemia: current evidence, challenges and recommendations.

    PubMed

    Ebens, Christen L; MacMillan, Margaret L; Wagner, John E

    2017-01-01

    Hematopoietic cell transplantation for Fanconi Anemia (FA) has improved dramatically over the past 40 years. With an enhanced understanding of the intrinsic DNA-repair defect and pathophysiology of hematopoietic failure and leukemogenesis, sequential changes to conditioning and graft engineering have significantly improved the expectation of survival after allogeneic hematopoietic cell transplantation (alloHCT) with incidence of graft failure decreased from 35% to <10% and acute graft-versus-host disease (GVHD) from >40% to <10%. Today, five-year overall survival exceeds 90% in younger FA patients with bone marrow failure but remains about 50% in those with hematologic malignancy. Areas covered: We review the evolution of alloHCT contributing to decreased rates of transplant related complications; highlight current challenges including poorer outcomes in cases of clonal hematologic disorders, alloHCT impact on endocrine function and intrinsic FA risk of epithelial malignancies; and describe investigational therapies for prevention and treatment of the hematologic manifestations of FA. Expert commentary: Current methods allow for excellent survival following alloHCT for FA associated BMF irrespective of donor hematopoietic cell source. Alternative curative approaches, such as gene therapy, are being explored to eliminate the risks of GVHD and minimize therapy-related adverse effects.

  11. Variable-source flood pulsing in a semi-arid transboundary watershed: the Chobe River, Botswana and Namibia.

    PubMed

    Pricope, Narcisa G

    2013-02-01

    The Chobe River, characterized by an unusual flood pulsing regime and shared between Botswana and Namibia, lies at the heart of the world's largest transfrontier conservation area (the Kavango-Zambezi Transfrontier Conservation Area). Significant ecological changes and vegetation conversions are occurring along its floodplains. Various scenarios for agricultural and urban water use are currently being proposed by the government of Botswana. However, the understanding of the river's annual flow regime and timing of the relative contributions of water from three different sources is relatively poor. In light of past and future climate change and variability, this means that allocating water between ecological flows and economic and domestic uses will become increasingly challenging. We reconstruct the inundation history in this basin to help ease this challenge. This paper presents a spatiotemporal approach to estimate the contribution of water from various sources and the magnitude of changes in the flooding extent in the basin between 1985 and 2010. We used time series analysis of bimonthly NOAA AVHRR and NASA MODIS data and climatologic and hydrologic records to determine the flooding timing and extent. The results indicate that between 12 and 62 % of the basin is flooded on an annual basis and that the spatial extent of the flooding varies throughout the year as a function of the timing of peak discharge in two larger basins. A 30-year trend analysis indicates a consistent decline in the average monthly flooded area in the basin. The results may prove useful in future water utilization feasibility studies, in determining measures for protecting ecological flows and levels, and in ecosystem dynamics studies in the context of current and future climate change and variability.

  12. Membranes for bioelectrochemical systems: challenges and research advances.

    PubMed

    Dhar, Bipro Ranjan; Lee, Hyung-Sool

    2013-01-01

    Increasing energy demand has been a big challenge for current society, as the fossil fuel sources are gradually decreasing. Hence, development of renewable and sustainable energy sources for the future is considered one of the top priorities in national strategic plans. Bioenergy can meet future energy requirements - renewability, sustainability, and even carbon-neutrality. Bioenergy production from wastes and wastewaters is especially attractive because of dual benefits of energy generation and contaminant stabilization. There are several bioenergy technologies using wastes and wastewaters as electron donor, which include anaerobic digestion, dark biohydrogen fermentation, biohydrogen production using photosynthetic microorganisms, and bioelectrochemical systems (BESs). Among them BES seems to be very promising as we can produce a variety of value-added products from wastes and wastewaters, such as electric power, hydrogen gas, hydrogen peroxide, acetate, ethanol etc. Most ofthe traditional BES uses a membrane to separate the anode and cathode chamber, which is essential for improving microbial metabolism on the anode and the recovery of value-added products on the cathode. Performance of BES lacking a membrane can be seriously deteriorated, due to oxygen diffusion or substantial loss of synthesized products. For this reason, usage of a membrane seems essential to facilitate BES performance. However, a membrane can bring several technical challenges to BES application compared to membrane-less BES. These challenges include poor proton permeability, substrate loss, oxygen back diffusion, pH gradient, internal resistance, biofouling, etc. This paper aims to review the major technical barriers associated with membranes and future research directions for their application in BESs.

  13. Short-wavelength free-electron laser sources and science: a review

    NASA Astrophysics Data System (ADS)

    Seddon, E. A.; Clarke, J. A.; Dunning, D. J.; Masciovecchio, C.; Milne, C. J.; Parmigiani, F.; Rugg, D.; Spence, J. C. H.; Thompson, N. R.; Ueda, K.; Vinko, S. M.; Wark, J. S.; Wurth, W.

    2017-11-01

    This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area. Dedicated to John M J Madey (1943-2016) and Rodolfo Bonifacio (1940-2016) whose perception, drive and perseverance paved the way for the realisation and development of short-wavelength free-electron lasers.

  14. Open-Source as a strategy for operational software - the case of Enki

    NASA Astrophysics Data System (ADS)

    Kolberg, Sjur; Bruland, Oddbjørn

    2014-05-01

    Since 2002, SINTEF Energy has been developing what is now known as the Enki modelling system. This development has been financed by Norway's largest hydropower producer Statkraft, motivated by a desire for distributed hydrological models in operational use. As the owner of the source code, Statkraft has recently decided on Open Source as a strategy for further development, and for migration from an R&D context to operational use. A current cooperation project is currently carried out between SINTEF Energy, 7 large Norwegian hydropower producers including Statkraft, three universities and one software company. Of course, the most immediate task is that of software maturing. A more important challenge, however, is one of gaining experience within the operational hydropower industry. A transition from lumped to distributed models is likely to also require revision of measurement program, calibration strategy, use of GIS and modern data sources like weather radar and satellite imagery. On the other hand, map based visualisations enable a richer information exchange between hydrologic forecasters and power market traders. The operating context of a distributed hydrology model within hydropower planning is far from settled. Being both a modelling framework and a library of plugin-routines to build models from, Enki supports the flexibility needed in this situation. Recent development has separated the core from the user interface, paving the way for a scripting API, cross-platform compilation, and front-end programs serving different degrees of flexibility, robustness and security. The open source strategy invites anyone to use Enki and to develop and contribute new modules. Once tested, the same modules are available for the operational versions of the program. A core challenge is to offer rigid testing procedures and mechanisms to reject routines in an operational setting, without limiting the experimentation with new modules. The Open Source strategy also has implications for building and maintaining competence around the source code and the advanced hydrological and statistical routines in Enki. Originally developed by hydrologists, the Enki code is now approaching a state where maintenance requires a background in professional software development. Without the advantage of proprietary source code, both hydrologic improvements and software maintenance depend on donations or development support on a case-to-case basis, a situation well known within the open source community. It remains to see whether these mechanisms suffice to keep Enki at the maintenance level required by the hydropower sector. ENKI is available from www.opensource-enki.org.

  15. Estimation of Acoustic Particle Motion and Source Bearing Using a Drifting Hydrophone Array Near a River Current Turbine to Assess Disturbances to Fish

    NASA Astrophysics Data System (ADS)

    Murphy, Paul G.

    River hydrokinetic turbines may be an economical alternative to traditional energy sources for small communities on Alaskan rivers. However, there is concern that sound from these turbines could affect sockeye salmon (Oncorhynchus nerka), an important resource for small, subsistence based communities, commercial fisherman, and recreational anglers. The hearing sensitivity of sockeye salmon has not been quantified, but behavioral responses to sounds at frequencies less than a few hundred Hertz have been documented for Atlantic salmon (Salmo salar), and particle motion is thought to be the primary mode of stimulation. Methods of measuring acoustic particle motion are well-established, but have rarely been necessary in energetic areas, such as river and tidal current environments. In this study, the acoustic pressure in the vicinity of an operating river current turbine is measured using a freely drifting hydrophone array. Analysis of turbine sound reveals tones that vary in frequency and magnitude with turbine rotation rate, and that may sockeye salmon may sense. In addition to pressure, the vertical components of particle acceleration and velocity are estimated by calculating the finite difference of the pressure signals from the hydrophone array. A method of determining source bearing using an array of hydrophones is explored. The benefits and challenges of deploying drifting hydrophone arrays for marine renewable energy converter monitoring are discussed.

  16. Foundations for offshore wind turbines.

    PubMed

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  17. A tiered approach to distinguish sources of gasoline and diesel spills.

    PubMed

    Xiong, Wenhui; Bernesky, Ryan; Bechard, Robert; Michaud, Guy; Lang, Jeremy

    2014-07-15

    Approximately 11% and 25% of annual Canadian oil spill accidents are gasoline and diesel spills, respectively. Gasoline and diesel spills are a challenge to conventional environmental forensic techniques because refinery processes remove most of the higher molecular weight biomarkers. This study presents a tiered environmental forensics strategy that includes such information as site operational history, geology/hydrogeology, GC/FID pre-screening, volatile GC/MS, semi-volatile GC/MS, and GC/MS selected ion monitoring (SIM) chromatograms for fingerprinting of gasoline and diesel spills. GC/FID pre-screening analysis identified the presence of two individual gasoline and diesel plumes at a fuel service station (study site). The gasoline plume is present between the upgradient fuel underground storage tanks (USTs) and the downgradient diesel plume, suggesting that the diesel impacts to groundwater may not be originated from the current UST leakage. Similar distribution of C3-alkylbenzenes (the most stable chemicals in gasoline) and the consistent diagnostic ratios of the analyte pairs with similar solubility indicate that the source for the dissolved gasoline constituents in the gasoline impacted zone likely originated from a gasoline leakage from the current USTs on the study site. In the diesel impacted zone, the distinct distribution and diagnostic ratios of sesquiterpanes (biomarkers for diesel) and alkylated PAHs confirm that the diesel plume originate from different crude oil sources than the current USTs. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Requirements for Coregistration Accuracy in On-Scalp MEG.

    PubMed

    Zetter, Rasmus; Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri

    2018-06-22

    Recent advances in magnetic sensing has made on-scalp magnetoencephalography (MEG) possible. In particular, optically-pumped magnetometers (OPMs) have reached sensitivity levels that enable their use in MEG. In contrast to the SQUID sensors used in current MEG systems, OPMs do not require cryogenic cooling and can thus be placed within millimetres from the head, enabling the construction of sensor arrays that conform to the shape of an individual's head. To properly estimate the location of neural sources within the brain, one must accurately know the position and orientation of sensors in relation to the head. With the adaptable on-scalp MEG sensor arrays, this coregistration becomes more challenging than in current SQUID-based MEG systems that use rigid sensor arrays. Here, we used simulations to quantify how accurately one needs to know the position and orientation of sensors in an on-scalp MEG system. The effects that different types of localisation errors have on forward modelling and source estimates obtained by minimum-norm estimation, dipole fitting, and beamforming are detailed. We found that sensor position errors generally have a larger effect than orientation errors and that these errors affect the localisation accuracy of superficial sources the most. To obtain similar or higher accuracy than with current SQUID-based MEG systems, RMS sensor position and orientation errors should be [Formula: see text] and [Formula: see text], respectively.

  19. Full-Scale Turbofan-Engine Turbine-Transfer Function Determination Using Three Internal Sensors

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    Noise-source separation techniques, using three engine-internal sensors, are applied to existing static-engine test data to determine the turbine transfer function for the currently subdominant combustion noise. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP) and an improvement to the combustion-noise module GECOR is suggested. The work was carried out in response to the NASA Fundamental Aeronautics Subsonic Fixed Wing Program s Reduced-Perceived-Noise Technical Challenge.

  20. Composite annotations: requirements for mapping multiscale data and models to biomedical ontologies

    PubMed Central

    Cook, Daniel L.; Mejino, Jose L. V.; Neal, Maxwell L.; Gennari, John H.

    2009-01-01

    Current methods for annotating biomedical data resources rely on simple mappings between data elements and the contents of a variety of biomedical ontologies and controlled vocabularies. Here we point out that such simple mappings are inadequate for large-scale multiscale, multidomain integrative “virtual human” projects. For such integrative challenges, we describe a “composite annotation” schema that is simple yet sufficiently extensible for mapping the biomedical content of a variety of data sources and biosimulation models to available biomedical ontologies. PMID:19964601

  1. Current and emerging laser sensors for greenhouse gas sensing and leak detection

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.

    2014-05-01

    To reduce atmospheric accumulation of the greenhouse gases methane and carbon dioxide, networks of continuously operating sensors that monitor and map their sources are desirable. In this paper, we discuss advances in laser-based open-path leak detectors, as well as technical and economic challenges inhibiting widespread sensor deployment for "ubiquitous monitoring". We describe permanently-installed, wireless, solar-powered sensors that overcome previous installation and maintenance difficulties while providing autonomous real-time leak reporting without false alarms.

  2. Hospital nurse staffing and public health emergency preparedness: implications for policy.

    PubMed

    McHugh, Matthew D

    2010-01-01

    Hospital restructuring policies and an impending nursing workforce shortage have threatened the nation's emergency preparedness. Current emergency response plans rely on sources of nurses that are limited and overestimated. A national investment in nursing education and workforce infrastructure, as well as incentives for hospitals to efficiently maximize nurse staffing, are needed to ensure emergency preparedness in the United States. This review highlights the challenges of maintaining hospital nursing surge capacity and policy implications of a nursing shortage.

  3. Hospital Nurse Staffing and Public Health Emergency Preparedness: Implications for Policy

    PubMed Central

    McHugh, Matthew D.

    2010-01-01

    Hospital restructuring policies and an impending nursing workforce shortage have threatened the nation’s emergency preparedness. Current emergency response plans rely on sources of nurses that are limited and overestimated. A national investment in nursing education and workforce infrastructure, as well as incentives for hospitals to efficiently maximize nurse staffing, are needed to ensure emergency preparedness in the United States. This review highlights the challenges of maintaining hospital nursing surge capacity and policy implications of a nursing shortage. PMID:20840714

  4. Gastrointestinal Bleeding.

    PubMed

    Nable, Jose V; Graham, Autumn C

    2016-05-01

    Acute gastrointestinal bleeding is a commonly encountered chief complaint with a high morbidity and mortality. The emergency physician is challenged with prompt diagnosis, accurate risk assessment, and appropriate resuscitation of patients with gastrointestinal bleeding. Goals of care aim to prevent end-organ injury, manage comorbid illnesses, identify the source of bleeding, stop continued bleeding, support oxygen carrying capacity, and prevent rebleeding. This article reviews current strategies for risk stratification, diagnostic modalities, localization of bleeding, transfusion strategies, adjunct therapies, and reversal of anticoagulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Observation of Repetition-Rate Dependent Emission From an Un-Gated Thermionic Cathode Rf Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Sun, Y.; Harris, J.R.

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionicmore » cathode RF gun to high average current.« less

  6. Application of MEMS Microphone Array Technology to Airframe Noise Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Shams, Qamar A.; Graves, Sharon S.; Sealey, Bradley S.; Bartram, Scott M.; Comeaux, Toby

    2005-01-01

    Current generation microphone directional array instrumentation is capable of extracting accurate noise source location and directivity data on a variety of aircraft components, resulting in significant gains in test productivity. However, with this gain in productivity has come the desire to install larger and more complex arrays in a variety of ground test facilities, creating new challenges for the designers of array systems. To overcome these challenges, a research study was initiated to identify and develop hardware and fabrication technologies which could be used to construct an array system exhibiting acceptable measurement performance but at much lower cost and with much simpler installation requirements. This paper describes an effort to fabricate a 128-sensor array using commercially available Micro-Electro-Mechanical System (MEMS) microphones. The MEMS array was used to acquire noise data for an isolated 26%-scale high-fidelity Boeing 777 landing gear in the Virginia Polytechnic Institute and State University Stability Tunnel across a range of Mach numbers. The overall performance of the array was excellent, and major noise sources were successfully identified from the measurements.

  7. Challenges and strategies to facilitate formulation development of pediatric drug products: Safety qualification of excipients.

    PubMed

    Buckley, Lorrene A; Salunke, Smita; Thompson, Karen; Baer, Gerri; Fegley, Darren; Turner, Mark A

    2018-02-05

    A public workshop entitled "Challenges and strategies to facilitate formulation development of pediatric drug products" focused on current status and gaps as well as recommendations for risk-based strategies to support the development of pediatric age-appropriate drug products. Representatives from industry, academia, and regulatory agencies discussed the issues within plenary, panel, and case-study breakout sessions. By enabling practical and meaningful discussion between scientists representing the diversity of involved disciplines (formulators, nonclinical scientists, clinicians, and regulators) and geographies (eg, US, EU), the Excipients Safety workshop session was successful in providing specific and key recommendations for defining paths forward. Leveraging orthogonal sources of data (eg. food industry, agro science), collaborative data sharing, and increased awareness of the existing sources such as the Safety and Toxicity of Excipients for Paediatrics (STEP) database will be important to address the gap in excipients knowledge needed for risk assessment. The importance of defining risk-based approaches to safety assessments for excipients vital to pediatric formulations was emphasized, as was the need for meaningful stakeholder (eg, patient, caregiver) engagement. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. When organ donation from living donors serves as the main source of organ procurement: a critical examination of the ethical and legal challenges to Turkey's recent efforts to overcome organ shortage.

    PubMed

    Sert, G; Guven, T; Gorkey, S

    2013-01-01

    Despite the fact that Turkey has implemented a number of legislative and regulatory efforts to increase cadaveric donations, live donors still serve as the main source of organ procurement in this country. To address this problem, Turkey's regulatory authorities have sought to increase the number of brain death declarations. A new regulation issued in 2012 repeats the criteria for brain death that were first issued in 1993. This paper argues that these efforts are far from adequate owing to a number of complicated, ethical, and legal challenges that must be addressed to increase cadaveric organ donations. After examining these factors, which are completely neglected in current policies, we conclude that Turkey needs a realistic ethically justifiable organ procurement policy that must be supported by a framework of patient rights to implement the concept of patient autonomy and respect for human dignity in health care services as the primary goal. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Assessing the public health risk of microbial intrusion events in distribution systems: conceptual model, available data, and challenges.

    PubMed

    Besner, Marie-Claude; Prévost, Michèle; Regli, Stig

    2011-01-01

    Low and negative pressure events in drinking water distribution systems have the potential to result in intrusion of pathogenic microorganisms if an external source of contamination is present (e.g., nearby leaking sewer main) and there is a pathway for contaminant entry (e.g., leaks in drinking water main). While the public health risk associated with such events is not well understood, quantitative microbial risk assessment can be used to estimate such risk. A conceptual model is provided and the state of knowledge, current assumptions, and challenges associated with the conceptual model parameters are presented. This review provides a characterization of the causes, magnitudes, durations and frequencies of low/negative pressure events; pathways for pathogen entry; pathogen occurrence in external sources of contamination; volumes of water that may enter through the different pathways; fate and transport of pathogens from the pathways of entry to customer taps; pathogen exposure to populations consuming the drinking water; and risk associated with pathogen exposure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Will our Current Data Rescue, Curation and Preservation Practices bring us out of the Digital Dark Ages and into the Renaissance of Multi-Source Science? (Invited)

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.

    2013-12-01

    The emergence of the fourth paradigm of data intensive science in 2007 showed great promise: it offered a new fundamental methodology in scientific exploration in which researchers would be able to harness the huge increase in data volumes coming from new and more powerful instruments that were collecting data at unprecedented rates and at ever increasing resolutions. Given the potential this new methodology offered, decadal challenges were issued to the Earth and Space Science community to come together and work on problems such as impacts of climate change; sustainably exploiting scarce water, mineral and petroleum resources; and protecting our communities through better prediction of the behaviour of natural hazards. Such challenges require the capability to integrate heterogeneous data sets, from multiple sources, across multiple domains and at low transactional cost. To help realise these visions significant investments were made globally in cyberinfrastructures (computer centres, research clouds, data stores, high speed networks, etc.). Combined, these infrastructures are now capable of analysing petabyte size chunks of data, and the climate community is close to operating at exascale. But have we actually realised the vision of data intensive science? The simple reality is that data intensive science requires the capability to find and analyse large volumes of data in real time via machine to machine interactions. It is not necessarily just about ';Big Data' sets collected from remote instruments such as satellites or sensor networks. ';Long Tail' data sets, traditionally the output of small science campaigns, are vital to calibrating large data sets and need to be stored so that they can be reused and repurposed in ways beyond what the original collector of the data intended they be used for. Particularly for meaningful time series analysis in environmental sciences, there is the additional challenge to store and manage data through decades of multiple evolutions of both hardware and software. The move to data intensive science has driven the realisation that we need to put more effort and resources into rescuing, curating and preserving data and properly preserved data sets are now being use to resolve the real world issues of today. However, as the capacity of computational systems increases relentlessly we need to question if our current efforts in data curation and preservation will scale to these ever growing systems. For Earth and Space Sciences to come out of the digital dark ages and into the renaissance of multi-source science, it is time to take stock and question our current data rescue, curation and preservation initiatives. Will the data store I am using be around in 50 years' time? What measures is this data store taking to avoid bit-rot and/or deal with software and hardware obsolescence. Is my data self-describing? Have I paid enough attention to cross domain data standards so my data can be reused and repurposed for the current decadal challenges? More importantly, as the capacity of computational systems scale beyond exascale to zettascale and yottascale, will my data sets that I have rescued, curated and preserved in my lifetime, no matter whether they are small or large, be able to contribute to addressing the decadal challenges that are as yet undefined.

  11. Mind the Gap. A systematic review to identify usability and safety challenges and practices during electronic health record implementation.

    PubMed

    Ratwani, Raj; Fairbanks, Terry; Savage, Erica; Adams, Katie; Wittie, Michael; Boone, Edna; Hayden, Andrew; Barnes, Janey; Hettinger, Zach; Gettinger, Andrew

    2016-11-16

    Decisions made during electronic health record (EHR) implementations profoundly affect usability and safety. This study aims to identify gaps between the current literature and key stakeholders' perceptions of usability and safety practices and the challenges encountered during the implementation of EHRs. Two approaches were used: a literature review and interviews with key stakeholders. We performed a systematic review of the literature to identify usability and safety challenges and best practices during implementation. A total of 55 articles were reviewed through searches of PubMed, Web of Science and Scopus. We used a qualitative approach to identify key stakeholders' perceptions; semi-structured interviews were conducted with a diverse set of health IT stakeholders to understand their current practices and challenges related to usability during implementation. We used a grounded theory approach: data were coded, sorted, and emerging themes were identified. Conclusions from both sources of data were compared to identify areas of misalignment. We identified six emerging themes from the literature and stakeholder interviews: cost and resources, risk assessment, governance and consensus building, customization, clinical workflow and usability testing, and training. Across these themes, there were misalignments between the literature and stakeholder perspectives, indicating major gaps. Major gaps identified from each of six emerging themes are discussed as critical areas for future research, opportunities for new stakeholder initiatives, and opportunities to better disseminate resources to improve the implementation of EHRs. Our analysis identified practices and challenges across six different emerging themes, illustrated important gaps, and results suggest critical areas for future research and dissemination to improve EHR implementation.

  12. Informed Source Separation of Atmospheric and Surface Signal Contributions in Shortwave Hyperspectral Imagery using Non-negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2015-12-01

    Current challenges in Earth remote sensing require improved instrument spectral resolution, spectral coverage, and radiometric accuracy. Hyperspectral instruments, deployed on both aircraft and spacecraft, are a growing class of Earth observing sensors designed to meet these challenges. They collect large amounts of spectral data, allowing thorough characterization of both atmospheric and surface properties. The higher accuracy and increased spectral and spatial resolutions of new imagers require new numerical approaches for processing imagery and separating surface and atmospheric signals. One potential approach is source separation, which allows us to determine the underlying physical causes of observed changes. Improved signal separation will allow hyperspectral instruments to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. In this work, we investigate a Non-negative Matrix Factorization (NMF) method for the separation of atmospheric and land surface signal sources. NMF offers marked benefits over other commonly employed techniques, including non-negativity, which avoids physically impossible results, and adaptability, which allows the method to be tailored to hyperspectral source separation. We adapt our NMF algorithm to distinguish between contributions from different physically distinct sources by introducing constraints on spectral and spatial variability and by using library spectra to inform separation. We evaluate our NMF algorithm with simulated hyperspectral images as well as hyperspectral imagery from several instruments including, the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), NASA Hyperspectral Imager for the Coastal Ocean (HICO) and National Ecological Observatory Network (NEON) Imaging Spectrometer.

  13. Conversion of HSPF Legacy Model to a Platform-Independent, Open-Source Language

    NASA Astrophysics Data System (ADS)

    Heaphy, R. T.; Burke, M. P.; Love, J. T.

    2015-12-01

    Since its initial development over 30 years ago, the Hydrologic Simulation Program - FORTAN (HSPF) model has been used worldwide to support water quality planning and management. In the United States, HSPF receives widespread endorsement as a regulatory tool at all levels of government and is a core component of the EPA's Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) system, which was developed to support nationwide Total Maximum Daily Load (TMDL) analysis. However, the model's legacy code and data management systems have limitations in their ability to integrate with modern software, hardware, and leverage parallel computing, which have left voids in optimization, pre-, and post-processing tools. Advances in technology and our scientific understanding of environmental processes that have occurred over the last 30 years mandate that upgrades be made to HSPF to allow it to evolve and continue to be a premiere tool for water resource planners. This work aims to mitigate the challenges currently facing HSPF through two primary tasks: (1) convert code to a modern widely accepted, open-source, high-performance computing (hpc) code; and (2) convert model input and output files to modern widely accepted, open-source, data model, library, and binary file format. Python was chosen as the new language for the code conversion. It is an interpreted, object-oriented, hpc code with dynamic semantics that has become one of the most popular open-source languages. While python code execution can be slow compared to compiled, statically typed programming languages, such as C and FORTRAN, the integration of Numba (a just-in-time specializing compiler) has allowed this challenge to be overcome. For the legacy model data management conversion, HDF5 was chosen to store the model input and output. The code conversion for HSPF's hydrologic and hydraulic modules has been completed. The converted code has been tested against HSPF's suite of "test" runs and shown good agreement and similar execution times while using the Numba compiler. Continued verification of the accuracy of the converted code against more complex legacy applications and improvement upon execution times by incorporating an intelligent network change detection tool is currently underway, and preliminary results will be presented.

  14. Fast computation of quadrupole and hexadecapole approximations in microlensing with a single point-source evaluation

    NASA Astrophysics Data System (ADS)

    Cassan, Arnaud

    2017-07-01

    The exoplanet detection rate from gravitational microlensing has grown significantly in recent years thanks to a great enhancement of resources and improved observational strategy. Current observatories include ground-based wide-field and/or robotic world-wide networks of telescopes, as well as space-based observatories such as satellites Spitzer or Kepler/K2. This results in a large quantity of data to be processed and analysed, which is a challenge for modelling codes because of the complexity of the parameter space to be explored and the intensive computations required to evaluate the models. In this work, I present a method that allows to compute the quadrupole and hexadecapole approximations of the finite-source magnification with more efficiency than previously available codes, with routines about six times and four times faster, respectively. The quadrupole takes just about twice the time of a point-source evaluation, which advocates for generalizing its use to large portions of the light curves. The corresponding routines are available as open-source python codes.

  15. Core-Noise Research

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Quiet-Aircraft Subproject aims to develop concepts and technologies to reduce perceived community noise attributable to aircraft with minimal impact on weight and performance. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.

  16. Titan Airship Surveyor

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V.; Yavrouian, A.; Cutts, J.; Colozza, A.; Fairbrother, D.

    2001-01-01

    Saturn's moon Titan is considered to be one of the prime candidates for studying prebiotic materials - the substances that precede the formation of life but have disappeared from the Earth as a result of the evolution of life. A unique combination of a dense, predominantly nitrogen, atmosphere (more than four times that of the Earth), low gravity (six times less than on the Earth) and small temperature variations makes Titan the almost ideal planet for studies with lighter-than-air aerial platforms (aerobots). Moreover, since methane clouds and photochemical haze obscure the surface, low-altitude aerial platforms are the only practical means that can provide global mapping of the Titan surface at visible and infrared wavelengths. One major challenge in Titan exploration is the extremely cold atmosphere (approx. 90 K). However, current material technology the capability to operate aerobots at these very low temperatures. A second challenge is the remoteness from the Sun (10 AU) that makes the nuclear (radioisotopic) energy the only practical source of power. A third challenge is remoteness from the Earth (approx. 10 AU, two-way light-time approx. 160 min) which imposes restrictions on data rates and makes impractical any meaningful real-time control. A small-size airship (approx. 25 cu m) can carry a payload approximately 100 kg. A Stirling engine coupled to a radioisotope heat source would be the prime choice for producing both mechanical and electrical power for sensing, control, and communications. The cold atmospheric temperature makes Stirling machines especially effective. With the radioisotope power source the airship may fly with speed approximately 5 m/s for a year or more providing an excellent platform for in situ atmosphere measurements and a high-resolution remote sensing with unlimited access on a global scale. In a station-keeping mode the airship can be used for in situ studies on the surface by winching down an instrument package. Floating above the surface allows relatively simple means for flight control. Mission requirements and possible methods of navigation, control, data acquisition, and communications are discussed. The presentation describes also the state-of-the art and current progress in aerial deployed aerobots.

  17. Energy Recovery Linacs for Light Source Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the statusmore » of worldwide programs and discuss the technology challenges to provide such beams for photon production.« less

  18. Drugs and Cosmetics from the Sea

    PubMed Central

    Kijjoa, Anake; Sawangwong, Pichan

    2004-01-01

    The marine environment is a rich source of both biological and chemical diversity. This diversity has been the source of unique chemical compounds with the potential for industrial development as pharmaceuticals, cosmetics, nutritional supplements, molecular probes, fine chemicals and agrochemicals. In recent years, a significant number of novel metabolites with potent pharmacological properties has been discovered from the marine organisms. Although there are only a few marine-derived products currently on the market, several robust new compounds derived from marine natural products are now in the clinical pipeline, with more clinical development. While the marine world offers an extremely rich resource for novel compounds, it also represents a great challenge that requires inputs from various scientific areas to bring the marine chemical diversity up to its therapeutic potential.

  19. Status of Solid State Lighting Product Development and Future Trends for General Illumination.

    PubMed

    Katona, Thomas M; Pattison, P Morgan; Paolini, Steve

    2016-06-07

    After decades of research and development on fabrication of efficient light-emitting diodes (LEDs) throughout the visible spectrum, LED-based lighting has reached unparalleled performance with respect to energy efficiency and has become the light source for virtually all new lighting products being designed today. The development of the core light sources and their subsequent integration into lighting systems continue to present unique challenges and opportunities for product designers. We review these systems and the current development status, as well as provide context for the trends in solid state lighting that are leading to the development of value-added lighting solutions that extend the domain of lighting beyond light generation, into fields as diverse as communications, healthcare, and agricultural production.

  20. Hyperspectral retinal imaging with a spectrally tunable light source

    NASA Astrophysics Data System (ADS)

    Francis, Robert P.; Zuzak, Karel J.; Ufret-Vincenty, Rafael

    2011-03-01

    Hyperspectral retinal imaging can measure oxygenation and identify areas of ischemia in human patients, but the devices used by current researchers are inflexible in spatial and spectral resolution. We have developed a flexible research prototype consisting of a DLP®-based spectrally tunable light source coupled to a fundus camera to quickly explore the effects of spatial resolution, spectral resolution, and spectral range on hyperspectral imaging of the retina. The goal of this prototype is to (1) identify spectral and spatial regions of interest for early diagnosis of diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR); and (2) define required specifications for commercial products. In this paper, we describe the challenges and advantages of using a spectrally tunable light source for hyperspectral retinal imaging, present clinical results of initial imaging sessions, and describe how this research can be leveraged into specifying a commercial product.

  1. Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review.

    PubMed

    Pu, Yi; Cheyne, Douglas O; Cornwell, Brian R; Johnson, Blake W

    2018-01-01

    Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms. This paper systematically reviews simulation studies and empirical evidence of the current capacities and limitations of MEG "deep source imaging" of the human hippocampus. Overall, these studies confirm that MEG provides a unique avenue to investigate human hippocampal rhythms in cognition, and can bridge the gap between animal studies and human hippocampal research, as well as elucidate the functional role and the behavioral correlates of human hippocampal oscillations.

  2. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review

    PubMed Central

    Teodoro, Guilherme R.; Ellepola, Kassapa; Seneviratne, Chaminda J.; Koga-Ito, Cristiane Y.

    2015-01-01

    There has been a sharp rise in the occurrence of Candida infections and associated mortality over the last few years, due to the growing body of immunocompromised population. Limited number of currently available antifungal agents, undesirable side effects and toxicity, as well as emergence of resistant strains pose a considerable clinical challenge for the treatment of candidiasis. Therefore, molecules that derived from natural sources exhibiting considerable antifungal properties are a promising source for the development of novel anti-candidal therapy. Phenolic compounds isolated from natural sources possess antifungal properties of interest. Particularly, phenolic acids have shown promising in vitro and in vivo activity against Candida species. However, studies on their mechanism of action alone or in synergism with known antifungals are still scarce. This review attempts to discuss the potential use, proposed mechanisms of action and limitations of the phenolic acids in anti-candidal therapy. PMID:26733965

  3. Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review

    PubMed Central

    Pu, Yi; Cheyne, Douglas O.; Cornwell, Brian R.; Johnson, Blake W.

    2018-01-01

    Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms. This paper systematically reviews simulation studies and empirical evidence of the current capacities and limitations of MEG “deep source imaging” of the human hippocampus. Overall, these studies confirm that MEG provides a unique avenue to investigate human hippocampal rhythms in cognition, and can bridge the gap between animal studies and human hippocampal research, as well as elucidate the functional role and the behavioral correlates of human hippocampal oscillations. PMID:29755314

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less

  5. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development.

    PubMed

    Radke, Daniel; Jia, Wenkai; Sharma, Dhavan; Fena, Kemin; Wang, Guifang; Goldman, Jeremy; Zhao, Feng

    2018-05-07

    Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Current applications of human pluripotent stem cells: possibilities and challenges.

    PubMed

    Ho, Pai-Jiun; Yen, Men-Luh; Yet, Shaw-Fang; Yen, B Linju

    2012-01-01

    Stem cells are self-renewable cells with the differentiation capacity to develop into somatic cells with biological functions. This ability to sustain a renewable source of multi- and/or pluripotential differentiation has brought new hope to the field of regenerative medicine in terms of cell therapy and tissue engineering. Moreover, stem cells are invaluable tools as in vitro models for studying diverse fields, from basic scientific questions such as developmental processes and lineage commitment, to practical application including drug screening and testing. The stem cells with widest differentiation potential are pluripotent stem cells (PSCs), which are rare cells with the ability to generate somatic cells from all three germ layers. PSCs are considered the most optimal choice for therapeutic potential of stem cells, bringing new impetus to the field of regenerative medicine. In this article, we discuss the therapeutic potential of human PSCs (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), reviewing the current preclinical and clinical data using these stem cells. We describe the classification of different sources of hPSCs, ongoing research, and currently encountered clinical obstacles of these novel and versatile human stem cells.

  7. Improvement in the performance of graphene nanoribbon p-i-n tunneling field effect transistors by applying lightly doped profile on drain region

    NASA Astrophysics Data System (ADS)

    Naderi, Ali

    2017-12-01

    In this paper, an efficient structure with lightly doped drain region is proposed for p-i-n graphene nanoribbon field effect transistors (LD-PIN-GNRFET). Self-consistent solution of Poisson and Schrödinger equation within Nonequilibrium Green’s function (NEGF) formalism has been employed to simulate the quantum transport of the devices. In proposed structure, source region is doped by constant doping density, channel is an intrinsic GNR, and drain region contains two parts with lightly and heavily doped doping distributions. The important challenge in tunneling devices is obtaining higher current ratio. Our simulations demonstrate that LD-PIN-GNRFET is a steep slope device which not only reduces the leakage current and current ratio but also enhances delay, power delay product, and cutoff frequency in comparison with conventional PIN GNRFETs with uniform distribution of impurity and with linear doping profile in drain region. Also, the device is able to operate in higher drain-source voltages due to the effectively reduced electric field at drain side. Briefly, the proposed structure can be considered as a more reliable device for low standby-power logic applications operating at higher voltages and upper cutoff frequencies.

  8. Harvesting energy from the natural vibration of human walking.

    PubMed

    Yang, Weiqing; Chen, Jun; Zhu, Guang; Yang, Jin; Bai, Peng; Su, Yuanjie; Jing, Qingsheng; Cao, Xia; Wang, Zhong Lin

    2013-12-23

    The triboelectric nanogenerator (TENG), a unique technology for harvesting ambient mechanical energy based on the triboelectric effect, has been proven to be a cost-effective, simple, and robust approach for self-powered systems. However, a general challenge is that the output current is usually low. Here, we demonstrated a rationally designed TENG with integrated rhombic gridding, which greatly improved the total current output owing to the structurally multiplied unit cells connected in parallel. With the hybridization of both the contact-separation mode and sliding electrification mode among nanowire arrays and nanopores fabricated onto the surfaces of two contact plates, the newly designed TENG produces an open-circuit voltage up to 428 V, and a short-circuit current of 1.395 mA with the peak power density of 30.7 W/m(2). Relying on the TENG, a self-powered backpack was developed with a vibration-to-electric energy conversion efficiency up to 10.62(±1.19) %. And it was also demonstrated as a direct power source for instantaneously lighting 40 commercial light-emitting diodes by harvesting the vibration energy from natural human walking. The newly designed TENG can be a mobile power source for field engineers, explorers, and disaster-relief workers.

  9. Development of a surgical educational research program-fundamental principles and challenges.

    PubMed

    Ahmed, Kamran; Ibrahim, Amel; Anderson, Oliver; Patel, Vanash M; Zacharakis, Emmanouil; Darzi, Ara; Paraskeva, Paraskevas; Athanasiou, Thanos

    2011-05-15

    Surgical educational research is the scientific investigation of any aspect of surgical learning, teaching, training, and assessment. The research into development and validation of educational tools is vital to optimize patient care. This can be accomplished by establishing high quality educational research programs within academic surgical departments. This article aims to identify the components involved in educational research and describes the challenges as well as solutions to establishing a high quality surgical educational research program. A variety of sources including journal articles, books, and online literature were reviewed in order to determine the pathways involved in conducting educational research and establishing a research program. It is vital to ensure that educational research is acceptable, innovative, robust in design, funded correctly, and disseminated successfully. Challenges faced by the current surgical research programs include structural organization, academic support, credibility, time, funding, relevance, and growth. The solutions to these challenges have been discussed. To ensure research in surgical education is of high quality and yields credible results, strong leadership in the organization of an educational research program is necessary. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Positive emotion can protect against source memory impairment.

    PubMed

    MacKenzie, Graham; Powell, Tim F; Donaldson, David I

    2015-01-01

    Despite widespread belief that memory is enhanced by emotion, evidence also suggests that emotion can impair memory. Here we test predictions inspired by object-based binding theory, which states that memory enhancement or impairment depends on the nature of the information to be retrieved. We investigated emotional memory in the context of source retrieval, using images of scenes that were negative, neutral or positive in valence. At study each scene was paired with a colour and during retrieval participants reported the source colour for recognised scenes. Critically, we isolated effects of valence by equating stimulus arousal across conditions. In Experiment 1 colour borders surrounded scenes at study: memory impairment was found for both negative and positive scenes. Experiment 2 used colours superimposed over scenes at study: valence affected source retrieval, with memory impairment for negative scenes only. These findings challenge current theories of emotional memory by showing that emotion can impair memory for both intrinsic and extrinsic source information, even when arousal is equated between emotional and neutral stimuli, and by dissociating the effects of positive and negative emotion on episodic memory retrieval.

  11. THE CHALLENGE OF QUALITY ASSURANCE FOR EMISSION FLUX MEASUREMENTS OF LARGE AREA SOURCES BY OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper examines the quality assurance challenges associated with open path Fourier transform infrared (OPFTIR) measurements of large area pollution sources with plume reconstruction by computed tomography (CT) and how each challenge may be met. Traditionally, pollutant concent...

  12. Capture and Three Dimensional Projection of New South Wales Strata Plans in Landxml Format

    NASA Astrophysics Data System (ADS)

    Harding, B.; Foreman, A.

    2017-10-01

    New South Wales is embarking on a major reform program named Cadastre NSW. This reform aims to move to a single source of truth for the digital representation of cadastre. The current lack of a single source cadastre has hindered users from government and industry due to duplication of effort and misalignment between databases from different sources. For this reform to be successful, there are some challenges that need to be addressed. "Cadastre 2034 - Powering Land & Real Property" (2015) published by the Intergovernmental Committee on Surveying and Mapping (ICSM) identifies that current cadastres do not represent real property in three dimensions. In future vertical living lifestyles will create complex property scenarios that the Digital Cadastral Database (DCDB) will need to contend with. While the NSW DCDB currently holds over 3 million lots and 5 million features, one of its limitations is that it does not indicate land ownership above or below the ground surface. NSW Spatial Services is currently capturing survey plans into LandXML format. To prepare for the future, research is being undertaken to also capture multi-level Strata Plans through a modified recipe. During this research, multiple Strata Plans representing a range of ages and development types have been investigated and converted to LandXML. Since it is difficult to visualise the plans in a two dimensional format, quality control purposes require a method to display these plans in three dimensions. Overall investigations have provided Spatial Services with enough information to confirm that the capture and display of Strata Plans in the LandXML format is possible.

  13. Progress and challenges in electrically pumped GaN-based VCSELs

    NASA Astrophysics Data System (ADS)

    Haglund, A.; Hashemi, E.; Bengtsson, J.; Gustavsson, J.; Stattin, M.; Calciati, M.; Goano, M.

    2016-04-01

    ABSTRACT The Vertical-Cavity Surface-Emitting Laser (VCSEL) is an established optical source in short-distance optical communication links, computer mice and tailored infrared power heating systems. Its low power consumption, easy integration into two-dimensional arrays, and low-cost manufacturing also make this type of semiconductor laser suitable for application in areas such as high-resolution printing, medical applications, and general lighting. However, these applications require emission wavelengths in the blue-UV instead of the established infrared regime, which can be achieved by using GaN-based instead of GaAs-based materials. The development of GaN-based VCSELs is challenging, but during recent years several groups have managed to demonstrate electrically pumped GaN-based VCSELs with close to 1 mW of optical output power and threshold current densities between 3-16 kA/cm2. The performance is limited by challenges such as achieving high-reflectivity mirrors, vertical and lateral carrier confinement, efficient lateral current spreading, accurate cavity length control and lateral optical mode confinement. This paper summarizes different strategies to solve these issues in electrically pumped GaN-VCSELs together with state-of-the-art results. We will highlight our work on combined transverse current and optical mode confinement, where we show that many structures used for current confinement result in unintentionally optically anti-guided resonators. Such resonators can have a very high optical loss, which easily doubles the threshold gain for lasing. We will also present an alternative to the use of distributed Bragg reflectors as high-reflectivity mirrors, namely TiO2/air high contrast gratings (HCGs). Fabricated HCGs of this type show a high reflectivity (>95%) over a 25 nm wavelength span.

  14. Regulatory Technology Development Plan - Sodium Fast Reactor: Mechanistic Source Term – Trial Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-10-01

    The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is notmore » without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.« less

  15. Open Source GIS based integrated watershed management

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address challenging resource management issues in industry, government and nongovernmental agencies. Current research and analysis tools were developed to manage meteorological, climatological, and land and water resource data efficiently at high resolution in space and time. The deliverable for this work is a Whitebox-GENESYS open-source resource management capacity with routines for GIS based watershed management including water in agriculture and food production. We are adding urban water management routines through GENESYS in 2013-15 with an engineering PhD candidate. Both Whitebox-GAT and GENESYS are already well-established tools. The proposed research will combine these products to create an open-source geomatics based water resource management tool that is revolutionary in both capacity and availability to a wide array of Canadian and global users

  16. Increasing Diversity in the Sciences: a Partial Solution to the Challenge and the Benefits it Produces

    NASA Astrophysics Data System (ADS)

    Givan, A. V.

    2009-12-01

    Science is supposed to be about talent devoid of the bias’ and judgments generated by background, gender, ethnicity or any culturally determined discriminators. The scientific, academic, corporate and government communities have a vested interest in developing models, practices and policies that significantly increase the number of U.S. graduates in scientific disciplines. Additionally, it is crucial that these graduates possess the essential competencies and creative problem solving skills to compete in the current global economy. The stakeholders (corporations, researchers, educational practitioners, policymakers and funders) who have the common goal of producing highly qualified scientists must commit to collaborate in developing innovative strategies and solutions to this complex challenge. Volumes of research data from a variety of sources such the social and cognitive sciences, educational psychology, National Science Foundation and non-profit groups have been and are available for use enabling us to rise to the challenge we have been charged with, and are responsible for the outcome. A proposed solution to part of the challenge and discussion of the impacts of increasing diversity in science will be discussed in this paper. The paper will address one element of the issue - strategies for the recruitment and retention of under-represented groups in science focusing on the historical and current culture, climate and barriers encountered by minorities as they progress through the educational system and career pathways. The paper will examine the benefits of diversity to the individual and society as a whole.

  17. Turning Participatory Microbiome Research into Usable Data: Lessons from the American Gut Project

    PubMed Central

    Debelius, Justine W.; Vázquez-Baeza, Yoshiki; McDonald, Daniel; Xu, Zhenjiang; Wolfe, Elaine; Knight, Rob

    2016-01-01

    The role of the human microbiome is the subject of continued investigation resulting in increased understanding. However, current microbiome research has only scratched the surface of the variety of healthy microbiomes. Public participation in science through crowdsourcing and crowdfunding microbiome research provides a novel opportunity for both participants and investigators. However, turning participatory science into publishable data can be challenging. Clear communication with the participant base and among researchers can ameliorate some challenges. Three major aspects need to be considered: recruitment and ongoing interaction, sample collection, and data analysis. Usable data can be maximized through diligent participant interaction, careful survey design, and maintaining an open source pipeline. While participatory science will complement rather than replace traditional avenues, it presents new opportunities for studies in the microbiome and beyond. PMID:27047589

  18. Turning Participatory Microbiome Research into Usable Data: Lessons from the American Gut Project.

    PubMed

    Debelius, Justine W; Vázquez-Baeza, Yoshiki; McDonald, Daniel; Xu, Zhenjiang; Wolfe, Elaine; Knight, Rob

    2016-03-01

    The role of the human microbiome is the subject of continued investigation resulting in increased understanding. However, current microbiome research has only scratched the surface of the variety of healthy microbiomes. Public participation in science through crowdsourcing and crowdfunding microbiome research provides a novel opportunity for both participants and investigators. However, turning participatory science into publishable data can be challenging. Clear communication with the participant base and among researchers can ameliorate some challenges. Three major aspects need to be considered: recruitment and ongoing interaction, sample collection, and data analysis. Usable data can be maximized through diligent participant interaction, careful survey design, and maintaining an open source pipeline. While participatory science will complement rather than replace traditional avenues, it presents new opportunities for studies in the microbiome and beyond.

  19. Challenges in scaling up biofuels infrastructure.

    PubMed

    Richard, Tom L

    2010-08-13

    Rapid growth in demand for lignocellulosic bioenergy will require major changes in supply chain infrastructure. Even with densification and preprocessing, transport volumes by mid-century are likely to exceed the combined capacity of current agricultural and energy supply chains, including grain, petroleum, and coal. Efficient supply chains can be achieved through decentralized conversion processes that facilitate local sourcing, satellite preprocessing and densification for long-distance transport, and business models that reward biomass growers both nearby and afar. Integrated systems that are cost-effective and energy-efficient will require new ways of thinking about agriculture, energy infrastructure, and rural economic development. Implementing these integrated systems will require innovation and investment in novel technologies, efficient value chains, and socioeconomic and policy frameworks; all are needed to support an expanded biofuels infrastructure that can meet the challenges of scale.

  20. Robotics for Nuclear Material Handling at LANL:Capabilities and Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harden, Troy A; Lloyd, Jane A; Turner, Cameron J

    Nuclear material processing operations present numerous challenges for effective automation. Confined spaces, hazardous materials and processes, particulate contamination, radiation sources, and corrosive chemical operations are but a few of the significant hazards. However, automated systems represent a significant safety advance when deployed in place of manual tasks performed by human workers. The replacement of manual operations with automated systems has been desirable for nearly 40 years, yet only recently are automated systems becoming increasingly common for nuclear materials handling applications. This paper reviews several automation systems which are deployed or about to be deployed at Los Alamos National Laboratory formore » nuclear material handling operations. Highlighted are the current social and technological challenges faced in deploying automated systems into hazardous material handling environments and the opportunities for future innovations.« less

  1. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  2. Approaching the new reality

    NASA Technical Reports Server (NTRS)

    Diaz, Al V.

    1993-01-01

    I'm very pleased to be here and to have this opportunity to discuss with you what I view as the current challenges in space science. Today, NASA finds itself at a major crossroads. We are in the process of moving from one era in our existence into another. As we continue to launch important science missions, we are simultaneously changing the way we do business, in a very fundamental way. We are again focusing on more frequent access to space through smaller, less costly missions. We are again focusing on NASA's role as a source of technological advancement within the U.S. economy. And we are returning to the leaner, more flexible approach to managing our projects. In short, NASA has embarked on a new journey, and a challenging journey it will be.

  3. Current challenges in meeting global iodine requirements.

    PubMed

    Eastman, Creswell J; Jooste, Pieter

    2012-01-01

    Iodine deficiency is a global problem of immense magnitude afflicting 2 billion of the world's population. The adverse effects of iodine deficiency in humans, collectively termed iodine deficiency disorders, result from decreased thyroid hormone production and action, and vary in severity from thyroid enlargement (goiter) to severe, irreversible brain damage, termed endemic cretinism. Thyroid hormone is essential throughout life, but it is critical for normal brain development in the fetus and throughout childhood. During pregnancy, maternal thyroid hormone production must increase by 25-50% to meet maternal-fetal requirements. The principal sources of iodine in the diet include milk and dairy products, seafoods and foods with added iodized salt. Vegetables, fruits and cereals are generally poor sources of iodine because most of our soils and water supplies are deficient in iodine. The accepted solution to the problem is Universal Salt Iodization where all salt for human and animal consumption is iodized at a level of 20-40 µg/g. In principle, mandatory fortification represents the most effective public health strategy where safety and efficacy can be assured and there is a demonstrated need for the nutrient in the population. Voluntary fortification of salt and other foods has many limitations and few benefits. Iodine supplementation is a useful, but expensive, inefficient and unsustainable strategy for preventing iodine deficiency. The current worldwide push to decrease salt intake to prevent cardiovascular disease presents an entirely new challenge in addressing iodine deficiency in both developing and developed countries. Copyright © 2012 S. Karger AG, Basel.

  4. Back to the basics: Identifying and addressing underlying challenges in achieving high quality and relevant health statistics for indigenous populations in Canada

    PubMed Central

    Smylie, Janet; Firestone, Michelle

    2015-01-01

    Canada is known internationally for excellence in both the quality and public policy relevance of its health and social statistics. There is a double standard however with respect to the relevance and quality of statistics for Indigenous populations in Canada. Indigenous specific health and social statistics gathering is informed by unique ethical, rights-based, policy and practice imperatives regarding the need for Indigenous participation and leadership in Indigenous data processes throughout the spectrum of indicator development, data collection, management, analysis and use. We demonstrate how current Indigenous data quality challenges including misclassification errors and non-response bias systematically contribute to a significant underestimate of inequities in health determinants, health status, and health care access between Indigenous and non-Indigenous people in Canada. The major quality challenge underlying these errors and biases is the lack of Indigenous specific identifiers that are consistent and relevant in major health and social data sources. The recent removal of an Indigenous identity question from the Canadian census has resulted in further deterioration of an already suboptimal system. A revision of core health data sources to include relevant, consistent, and inclusive Indigenous self-identification is urgently required. These changes need to be carried out in partnership with Indigenous peoples and their representative and governing organizations. PMID:26793283

  5. Optics Developments for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  6. Making the Health Insurance Flexibility and Accountability (HIFA) waiver work through collaborative governance.

    PubMed

    Zabawa, Barbara J

    2003-01-01

    This paper argues that collaborative governance should be an essential component in any HIFA waiver proposal, due to the fact that the health care system is moving away from a federal and hierarchical program design and implementation towards a more local, collaborative approach. As several current collaborative projects demonstrate, collaboration may overcome barriers to health expansion program success, such as stakeholder buy-in, notice, and state access to private health coverage information. Furthermore, collaboration within the context of the HIFA waiver process may maximize the strengths of current collaborations, such as providing: (a) access to greater and more stable funding sources; (b) access to a facilitator that can collect and distribute data; and (c) an avenue for accountability. Multiple challenges in ensuring collaborative governance are reviewed. Ms. Zabawa argues that these challenges are not insurmountable if states adopt a truly collaborative approach to designing and implementing programs under the HIFA waiver; there may be hope in expanding and improving health coverage, since collaboration is the most appropriate mechanism to address the complexity of health system reform.

  7. THE CHALLENGING ROLE OF A READING COACH, A CAUTIONARY TALE

    PubMed Central

    AL OTAIBA, STEPHANIE; HOSP, JOHN L.; SMARTT, SUSAN; DOLE, JANICE A.

    2011-01-01

    The purpose of this case study is to describe the challenges one coach faced during the initial implementation of a coaching initiative involving 33 teachers in an urban, high-poverty elementary school. Reading coaches are increasingly expected to play a key role in the professional development efforts to improve reading instruction in order to improve reading achievement for struggling readers. Data sources included initial reading scores for kindergarten and first-graders, pretest and posttest scores of teachers’ knowledge, a teacher survey, focus group interviews, project documents, and field notes. Data were analyzed using a mixed methods approach. Findings revealed several challenges that have important implications for research and practice: that teachers encountered new information about teaching early reading that conflicted with their current knowledge, this new information conflicted with their core reading program, teachers had differing perceptions of the role of the reading coach that affected their feelings about the project, and reform efforts are time-intensive. PMID:23794791

  8. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  9. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  10. The aspiration for holism in the medical humanities: Some historical and philosophical sources of reflection.

    PubMed

    Pilgrim, David

    2016-07-01

    The relationship between the arts and health is now of interest to policy makers, patients, professionals and health researchers. This article historicises the potential for holism, a current aspiration within the medical humanities. This contemporary debate in the research community reflects philosophical positions about idealism and realism, with their traceable historical roots. This article summarises those roots and draws attention to their current relevance for health researchers. Starting with the recognition within the medical humanities that biomedical reductionism now attracts criticism, it moves to exploring the history of ideas in philosophy, the arts and science about holism and the challenge of researching health and illness within the complexity of being fully human. © The Author(s) 2015.

  11. A review of computer-aided oral and maxillofacial surgery: planning, simulation and navigation.

    PubMed

    Chen, Xiaojun; Xu, Lu; Sun, Yi; Politis, Constantinus

    2016-11-01

    Currently, oral and maxillofacial surgery (OMFS) still poses a significant challenge for surgeons due to the anatomic complexity and limited field of view of the oral cavity. With the great development of computer technologies, he computer-aided surgery has been widely used for minimizing the risks and improving the precision of surgery. Areas covered: The major goal of this paper is to provide a comprehensive reference source of current and future development of computer-aided OMFS including surgical planning, simulation and navigation for relevant researchers. Expert commentary: Compared with the traditional OMFS, computer-aided OMFS overcomes the disadvantage that the treatment on the region of anatomically complex maxillofacial depends almost exclusively on the experience of the surgeon.

  12. OBSERVATION OF REPETITION-RATE DEPENDANT EMISSION FROM AN UN-GATED THERMIONIC CATHODE RF GUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Sun, Y.; Harris, J. R.

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionicmore » cathode RF gun to high average current machines.« less

  13. Noninvasive Fetal ECG: the PhysioNet/Computing in Cardiology Challenge 2013.

    PubMed

    Silva, Ikaro; Behar, Joachim; Sameni, Reza; Zhu, Tingting; Oster, Julien; Clifford, Gari D; Moody, George B

    2013-03-01

    The PhysioNet/CinC 2013 Challenge aimed to stimulate rapid development and improvement of software for estimating fetal heart rate (FHR), fetal interbeat intervals (FRR), and fetal QT intervals (FQT), from multichannel recordings made using electrodes placed on the mother's abdomen. For the challenge, five data collections from a variety of sources were used to compile a large standardized database, which was divided into training, open test, and hidden test subsets. Gold-standard fetal QRS and QT interval annotations were developed using a novel crowd-sourcing framework. The challenge organizers used the hidden test subset to evaluate 91 open-source software entries submitted by 53 international teams of participants in three challenge events, estimating FHR, FRR, and FQT using the hidden test subset, which was not available for study by participants. Two additional events required only user-submitted QRS annotations to evaluate FHR and FRR estimation accuracy using the open test subset available to participants. The challenge yielded a total of 91 open-source software entries. The best of these achieved average estimation errors of 187bpm 2 for FHR, 20.9 ms for FRR, and 152.7 ms for FQT. The open data sets, scoring software, and open-source entries are available at PhysioNet for researchers interested on working on these problems.

  14. WE-H-BRB-03: Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNutt, T.

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at themore » NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.« less

  15. Health Information System Role-Based Access Control Current Security Trends and Challenges.

    PubMed

    de Carvalho Junior, Marcelo Antonio; Bandiera-Paiva, Paulo

    2018-01-01

    This article objective is to highlight implementation characteristics, concerns, or limitations over role-based access control (RBAC) use on health information system (HIS) using industry-focused literature review of current publishing for that purpose. Based on the findings, assessment for indication of RBAC is obsolete considering HIS authorization control needs. We have selected articles related to our investigation theme "RBAC trends and limitations" in 4 different sources related to health informatics or to the engineering technical field. To do so, we have applied the following search query string: "Role-Based Access Control" OR "RBAC" AND "Health information System" OR "EHR" AND "Trends" OR "Challenges" OR "Security" OR "Authorization" OR "Attacks" OR "Permission Assignment" OR "Permission Relation" OR "Permission Mapping" OR "Constraint". We followed PRISMA applicable flow and general methodology used on software engineering for systematic review. 20 articles were selected after applying inclusion and exclusion criteria resulting contributions from 10 different countries. 17 articles advocate RBAC adaptations. The main security trends and limitations mapped were related to emergency access, grant delegation, and interdomain access control. Several publishing proposed RBAC adaptations and enhancements in order to cope current HIS use characteristics. Most of the existent RBAC studies are not related to health informatics industry though. There is no clear indication of RBAC obsolescence for HIS use.

  16. Optoelectronic retinal prosthesis: system design and performance

    NASA Astrophysics Data System (ADS)

    Loudin, J. D.; Simanovskii, D. M.; Vijayraghavan, K.; Sramek, C. K.; Butterwick, A. F.; Huie, P.; McLean, G. Y.; Palanker, D. V.

    2007-03-01

    The design of high-resolution retinal prostheses presents many unique engineering and biological challenges. Ever smaller electrodes must inject enough charge to stimulate nerve cells, within electrochemically safe voltage limits. Stimulation sites should be placed within an electrode diameter from the target cells to prevent 'blurring' and minimize current. Signals must be delivered wirelessly from an external source to a large number of electrodes, and visual information should, ideally, maintain its natural link to eye movements. Finally, a good system must have a wide range of stimulation currents, external control of image processing and the option of either anodic-first or cathodic-first pulses. This paper discusses these challenges and presents solutions to them for a system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a head-mounted near-to-eye projection system operating at near-infrared wavelengths. Photodiodes convert light into pulsed electric current, with charge injection maximized by applying a common biphasic bias waveform. The resulting prosthesis will provide stimulation with a frame rate of up to 50 Hz in a central 10° visual field, with a full 30° field accessible via eye movements. Pixel sizes are scalable from 100 to 25 µm, corresponding to 640-10 000 pixels on an implant 3 mm in diameter.

  17. Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.

    PubMed

    Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju

    2011-03-01

    Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.

  18. Application and development of ion-source technology for radiation-effects testing of electronics

    NASA Astrophysics Data System (ADS)

    Kalvas, T.; Javanainen, A.; Kettunen, H.; Koivisto, H.; Tarvainen, O.; Virtanen, A.

    2017-09-01

    Studies of heavy-ion induced single event effect (SEE) on space electronics are necessary to verify the operation of the components in the harsh radiation environment. These studies are conducted by using high-energy heavy-ion beams to simulate the radiation effects in space. The ion beams are accelerated as so-called ion cocktails, containing several ion beam species with similar mass-to-charge ratio, covering a wide range of linear energy transfer (LET) values also present in space. The use of cocktails enables fast switching between beam species during testing. Production of these high-energy ion cocktails poses challenging requirements to the ion sources because in most laboratories reaching the necessary beam energies requires very high charge state ions. There are two main technologies producing these beams: The electron beam ion source EBIS and the electron cyclotron resonance ion source ECRIS. The EBIS is most suitable for pulsed accelerators, while ECRIS is most suitable for use with cyclotrons, which are the most common accelerators used in these applications. At the Accelerator Laboratory of the University of Jyväskylä (JYFL), radiation effects testing is currently performed using a K130 cyclotron and a 14 GHz ECRIS at a beam energy of 9.3 MeV/u. A new 18 GHz ECRIS, pushing the limits of the normal conducting ECR technology is under development at JYFL. The performances of existing 18 GHz ion sources have been compared, and based on this analysis, a 16.2 MeV/u beam cocktail with 1999 MeV 126Xe44+ being the most challenging component to has been chosen for development at JYFL. The properties of the suggested beam cocktail are introduced and discussed.

  19. Coherent diffractive imaging methods for semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Helfenstein, Patrick; Mochi, Iacopo; Rajeev, Rajendran; Fernandez, Sara; Ekinci, Yasin

    2017-12-01

    The paradigm shift of the semiconductor industry moving from deep ultraviolet to extreme ultraviolet lithography (EUVL) brought about new challenges in the fabrication of illumination and projection optics, which constitute one of the core sources of cost of ownership for many of the metrology tools needed in the lithography process. For this reason, lensless imaging techniques based on coherent diffractive imaging started to raise interest in the EUVL community. This paper presents an overview of currently on-going research endeavors that use a number of methods based on lensless imaging with coherent light.

  20. Assessment of Biomass Resources in Afghanistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistanmore » for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.« less

  1. Opportunities and Challenges for Natural Products as Novel Antituberculosis Agents.

    PubMed

    Farah, Shrouq I; Abdelrahman, Abd Almonem; North, E Jeffrey; Chauhan, Harsh

    2016-01-01

    Current tuberculosis (TB) treatment suffers from complexity of the dosage regimens, length of treatment, and toxicity risks. Many natural products have shown activity against drug-susceptible, drug-resistant, and latent/dormant Mycobacterium tuberculosis, the pathogen responsible for TB infections. Natural sources, including plants, fungi, and bacteria, provide a rich source of chemically diverse compounds equipped with unique pharmacological, pharmacokinetic, and pharmacodynamic properties. This review focuses on natural products as starting points for the discovery and development of novel anti-TB chemotherapy and classifies them based on their chemical nature. The classes discussed are divided into alkaloids, chalcones, flavonoids, peptides, polyketides, steroids, and terpenes. This review also highlights the importance of collaboration between phytochemistry, medicinal chemistry, and physical chemistry, which is very important for the development of these natural compounds.

  2. Getting Open Source Software into Schools: Strategies and Challenges

    ERIC Educational Resources Information Center

    Hepburn, Gary; Buley, Jan

    2006-01-01

    In this article Gary Hepburn and Jan Buley outline different approaches to implementing open source software (OSS) in schools; they also address the challenges that open source advocates should anticipate as they try to convince educational leaders to adopt OSS. With regard to OSS implementation, they note that schools have a flexible range of…

  3. Medical costs and quality-adjusted life years associated with smoking: a systematic review.

    PubMed

    Feirman, Shari P; Glasser, Allison M; Teplitskaya, Lyubov; Holtgrave, David R; Abrams, David B; Niaura, Raymond S; Villanti, Andrea C

    2016-07-27

    Estimated medical costs ("T") and QALYs ("Q") associated with smoking are frequently used in cost-utility analyses of tobacco control interventions. The goal of this study was to understand how researchers have addressed the methodological challenges involved in estimating these parameters. Data were collected as part of a systematic review of tobacco modeling studies. We searched five electronic databases on July 1, 2013 with no date restrictions and synthesized studies qualitatively. Studies were eligible for the current analysis if they were U.S.-based, provided an estimate for Q, and used a societal perspective and lifetime analytic horizon to estimate T. We identified common methods and frequently cited sources used to obtain these estimates. Across all 18 studies included in this review, 50 % cited a 1992 source to estimate the medical costs associated with smoking and 56 % cited a 1996 study to derive the estimate for QALYs saved by quitting or preventing smoking. Approaches for estimating T varied dramatically among the studies included in this review. T was valued as a positive number, negative number and $0; five studies did not include estimates for T in their analyses. The most commonly cited source for Q based its estimate on the Health Utilities Index (HUI). Several papers also cited sources that based their estimates for Q on the Quality of Well-Being Scale and the EuroQol five dimensions questionnaire (EQ-5D). Current estimates of the lifetime medical care costs and the QALYs associated with smoking are dated and do not reflect the latest evidence on the health effects of smoking, nor the current costs and benefits of smoking cessation and prevention. Given these limitations, we recommend that researchers conducting economic evaluations of tobacco control interventions perform extensive sensitivity analyses around these parameter estimates.

  4. In their own words: A qualitative study exploring influences on the food choices of university students.

    PubMed

    Lambert, Michelle; Chivers, Paola; Farringdon, Fiona

    2018-06-11

    University students generally make independent decisions regarding food choices. Current research about knowledge of Australian Dietary Guidelines (ADG), sources of nutrition information and influences on food choices for this group is scarce. Qualitative data was collected from gender separated focus groups comprising four female (n=31) and four male (n=18) to identify: knowledge of ADG, sources of nutrition information; factors that influence food choices; perceived relevant nutrition messages and how best to deliver them. Gaps in knowledge were identified particularly regarding number of serves and serving size for food groups. Social media was the most commonly reported source of knowledge. Social media was also a major influence on food choice due to its impact on body ideals. Current health promotion nutrition messages were perceived irrelevant given the focus on long-term health risks. Health and adhering to the ADG were not identified as important. The desire to look a particular way was the major influence on food choices. SO WHAT?: While there is an awareness of ADG, our participants made a deliberate decision not to follow them. This provides a challenge for developing relevant preventive health messages for this target audience. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Radio Sources in the NCP Region Observed with the 21 Centimeter Array

    NASA Astrophysics Data System (ADS)

    Zheng, Qian; Wu, Xiang-Ping; Johnston-Hollitt, Melanie; Gu, Jun-hua; Xu, Haiguang

    2016-12-01

    We present a catalog of 624 radio sources detected around the North Celestial Pole (NCP) with the 21 Centimeter Array (21CMA), a radio interferometer dedicated to the statistical measurement of the epoch of reionization (EoR). The data are taken from a 12 hr observation made on 2013 April 13, with a frequency coverage from 75 to 175 MHz and an angular resolution of ˜4‧. The catalog includes flux densities at eight sub-bands across the 21CMA bandwidth and provides the in-band spectral indices for the detected sources. To reduce the complexity of interferometric imaging from the so-called “w” term and ionospheric effects, the present analysis is restricted to the east-west baselines within 1500 m only. The 624 radio sources are found within 5° around the NCP down to ˜0.1 Jy. Our source counts are compared, and also exhibit a good agreement, with deep low-frequency observations made recently with the GMRT and MWA. In particular, for fainter radio sources below ˜1 Jy, we find a flattening trend of source counts toward lower frequencies. While the thermal noise (˜0.4 mJy) is well controlled to below the confusion limit, the dynamical range (˜104) and sensitivity of current 21CMA imaging are largely limited by calibration and deconvolution errors, especially the grating lobes of very bright sources, such as 3C061.1, in the NCP field, which result from the regular spacings of the 21CMA. We note that particular attention should be paid to the extended sources, and their modeling and removal may constitute a large technical challenge for current EoR experiments. Our analysis may serve as a useful guide to the design of next generation low-frequency interferometers like the Square Kilometre Array.

  6. Progress on MEVVA source VARIS at GSI

    NASA Astrophysics Data System (ADS)

    Adonin, A.; Hollinger, R.

    2018-05-01

    For the last few years, the development of the VARIS (vacuum arc ion source) was concentrated on several aspects. One of them was the production of high current ion beams of heavy metals such as Au, Pb, and Bi. The requested ion charge state for these ion species is 4+. This is quite challenging to produce in vacuum arc driven sources for reasonable beam pulse length (>120 µs) due to the physical properties of these elements. However, the situation can be dramatically improved by using the composite materials or alloys with enhanced physical properties of the cathodes. Another aspect is an increase of the beam brilliance for intense U4+ beams by the optimization of the geometry of the extraction system. A new 7-hole triode extraction system allows an increase of the extraction voltage from 30 kV to 40 kV and also reduces the outer aperture of the extracted ion beam. Thus, a record beam brilliance for the U4+ beam in front of the RFQ (Radio-Frequency Quadrupole) has been achieved, exceeding the RFQ space charge limit for an ion current of 15 mA. Several new projectiles in the middle-heavy region have been successfully developed from VARIS to fulfill the requirements of the future FAIR (Facility for Antiproton and Ion Research) programs. An influence of an auxiliary gas on the production performance of certain ion charge states as well as on operation stability has been investigated. The optimization of the ion source parameters for a maximum production efficiency and highest particle current in front of the RFQ has been performed. The next important aspect of the development will be the increase of the operation repetition rate of VARIS for all elements especially for uranium to 2.7 Hz in order to provide the maximum availability of high current ion beams for future FAIR experiments.

  7. Safety Surveillance of Traditional Chinese Medicine: Current and Future

    PubMed Central

    Liu, Shwu-Huey; Chuang, Wu-Chang; Lam, Wing; Jiang, Zaoli

    2015-01-01

    Herbal medicine, including traditional Chinese medicine, has been used for the prevention, treatment, and cure of disorders or diseases for centuries. In addition to being used directly as therapeutic agents, medicinal plants are also important sources for pharmacological drug research and development. With the increasing consumption of herbal products intended to promote better health, it is extremely important to assure the safety and quality of herbal preparations. However, under current regulation surveillance, herbal preparations may not meet expectations in safety, quality, and efficacy. The challenge is how to assure the safety and quality of herbal products for consumers. It is the responsibility of producers to minimize hazardous contamination and additives during cultivation, harvesting, handling, processing, storage, and distribution. This article reviews the current safety obstacles that have been involved in traditional Chinese herbal medicine preparations with examples of popular herbs. Approaches to improve the safety of traditional Chinese medicine are proposed. PMID:25647717

  8. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives.

    PubMed

    Zhou, Li; Wang, Kui; Li, Qifu; Nice, Edouard C; Zhang, Haiyuan; Huang, Canhua

    2016-01-01

    Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.

  9. Generation of a U.S. national urban land use product

    USGS Publications Warehouse

    Falcone, James A.; Homer, Collin G.

    2012-01-01

    Characterization of urban land uses is essential for many applications. However, differentiating among thematically-detailed urban land uses (residential, commercial, industrial, institutional, recreational, etc.) over broad areas is challenging, in part because image-based solutions are not ideal for establishing the contextual basis for identifying economic function and use. At present no current United States national-scale mapping exists for urban land uses similar to the classical Anderson Level II classification. This paper describes a product that maps urban land uses, and is linked to and corresponds with the National Land Cover Database (NLCD) 2006. In this product, NLCD urban pixels, in addition to their current imperviousness intensity classification, are assigned one of nine urban use classes based on information drawn from multiple data sources. These sources include detailed infrastructure information, population characteristics, and historical land use. The result is a method for creating a 30 m national-scale grid providing thematically-detailed urban land use information which complements the NLCD. Initial results for 10 major metropolitan areas are provided as an on-line link. Accuracy assessment of initial products yielded an overall accuracy of 81.6 percent.

  10. MyDiabetesMyWay: An Evolving National Data Driven Diabetes Self-Management Platform.

    PubMed

    Wake, Deborah J; He, Jinzhang; Czesak, Anna Maria; Mughal, Fezan; Cunningham, Scott G

    2016-09-01

    MyDiabetesMyWay (MDMW) is an award-wining national electronic personal health record and self-management platform for diabetes patients in Scotland. This platform links multiple national institutional and patient-recorded data sources to provide a unique resource for patient care and self-management. This review considers the current evidence for online interventions in diabetes and discusses these in the context of current and ongoing developments for MDMW. Evaluation of MDMW through patient reported outcomes demonstrates a positive impact on self-management. User feedback has highlighted barriers to uptake and has guided platform evolution from an education resource website to an electronic personal health record now encompassing remote monitoring, communication tools and personalized education links. Challenges in delivering digital interventions for long-term conditions include integration of data between institutional and personal recorded sources to perform big data analytics and facilitating technology use in those with disabilities, low digital literacy, low socioeconomic status and in minority groups. The potential for technology supported health improvement is great, but awareness and adoption by health workers and patients remains a significant barrier. © 2016 Diabetes Technology Society.

  11. MyDiabetesMyWay

    PubMed Central

    Wake, Deborah J.; He, Jinzhang; Czesak, Anna Maria; Mughal, Fezan; Cunningham, Scott G.

    2016-01-01

    MyDiabetesMyWay (MDMW) is an award-wining national electronic personal health record and self-management platform for diabetes patients in Scotland. This platform links multiple national institutional and patient-recorded data sources to provide a unique resource for patient care and self-management. This review considers the current evidence for online interventions in diabetes and discusses these in the context of current and ongoing developments for MDMW. Evaluation of MDMW through patient reported outcomes demonstrates a positive impact on self-management. User feedback has highlighted barriers to uptake and has guided platform evolution from an education resource website to an electronic personal health record now encompassing remote monitoring, communication tools and personalized education links. Challenges in delivering digital interventions for long-term conditions include integration of data between institutional and personal recorded sources to perform big data analytics and facilitating technology use in those with disabilities, low digital literacy, low socioeconomic status and in minority groups. The potential for technology supported health improvement is great, but awareness and adoption by health workers and patients remains a significant barrier. PMID:27162192

  12. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence

    NASA Astrophysics Data System (ADS)

    Cho, Chang-Hee; Aspetti, Carlos O.; Park, Joohee; Agarwal, Ritesh

    2013-04-01

    To address the limitations in device speed and performance in silicon-based electronics, there have been extensive studies on silicon optoelectronics with a view to achieving ultrafast optical data processing. The biggest challenge has been to develop an efficient silicon-based light source, because the indirect bandgap of silicon gives rise to extremely low emission efficiencies. Although light emission in quantum-confined silicon at sub-10 nm length scales has been demonstrated, there are difficulties in integrating quantum structures with conventional electronics. It is desirable to develop new concepts to obtain emission from silicon at length scales compatible with current electronic devices (20-100 nm), which therefore do not utilize quantum-confinement effects. Here, we demonstrate an entirely new method to achieve bright visible light emission in `bulk-sized' silicon coupled with plasmon nanocavities at room temperature, from non-thermalized carrier recombination. The highly enhanced emission (internal quantum efficiency of >1%) in plasmonic silicon, together with its size compatibility with current silicon electronics, provides new avenues for developing monolithically integrated light sources on conventional microchips.

  13. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale.

    PubMed

    Kissling, W Daniel; Ahumada, Jorge A; Bowser, Anne; Fernandez, Miguel; Fernández, Néstor; García, Enrique Alonso; Guralnick, Robert P; Isaac, Nick J B; Kelling, Steve; Los, Wouter; McRae, Louise; Mihoub, Jean-Baptiste; Obst, Matthias; Santamaria, Monica; Skidmore, Andrew K; Williams, Kristen J; Agosti, Donat; Amariles, Daniel; Arvanitidis, Christos; Bastin, Lucy; De Leo, Francesca; Egloff, Willi; Elith, Jane; Hobern, Donald; Martin, David; Pereira, Henrique M; Pesole, Graziano; Peterseil, Johannes; Saarenmaa, Hannu; Schigel, Dmitry; Schmeller, Dirk S; Segata, Nicola; Turak, Eren; Uhlir, Paul F; Wee, Brian; Hardisty, Alex R

    2018-02-01

    Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence-absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  14. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions.

    PubMed

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.

  15. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions

    PubMed Central

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436

  16. EMIC wave events during the four QARBM challenge intervals

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Posch, J. L.; Braun, D.; Li, W.; Angelopoulos, V.; Kellerman, A. C.; Kletzing, C.; Lessard, M.; Mann, I. R.; Tero, R.; Shiokawa, K.; Wygant, J. R.

    2017-12-01

    We present observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM focus group on Quantitative Assessment of Radiation Belt Modeling: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes and THEMIS spacecraft in the inner magnetosphere and from several arrays of ground-based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from the low-altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination reveals consistent occurrence patterns, which are then used to evaluate the effectiveness of EMIC waves in causing dropouts of radiation belt electrons during these GEM events.

  17. Trends in occupational hygiene in Finland.

    PubMed

    Pääkkönen, Rauno; Koponen, Milja

    2018-03-01

    The aim of this work is to evaluate and describe the current status of, and prospects for, the future of occupational hygiene in Finland. The main sources of information include a seminar held in the annual meeting of Finnish Occupational Hygiene Society and interviews with different stakeholders. Nanotechnology and other new materials, changing work environments, circular economy including green jobs, new medical methods and advances of construction methods were recognized as future challenges. Future work opportunities for occupational hygiene experts included exposure assessments in indoor air surveys, private consulting and entrepreneurship in general, international activities and product safety issues. Unclear topics needing more attention in the future were thought to be in new exposures, sensitive persons, combined effects, skin exposures and applicability of personal protective equipment. Occupational hygiene should broaden its view; occupational hygienists should have to cooperate with other specialists and grasp new challenges.

  18. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction

    NASA Astrophysics Data System (ADS)

    Ye, Sheng; Wang, Rong; Wu, Ming-Zai; Yuan, Yu-Peng

    2015-12-01

    Solar fuel generation through water splitting and CO2 photoreduction is an ideal route to provide the renewable energy sources and mitigate global warming. The main challenge in photocatalysis is finding a low-cost photocatalyst that can work efficiently to split water into hydrogen and reduce CO2 to hydrocarbon fuels. Metal-free g-C3N4 photocatalyst shows great potentials for solar fuel production. In this mini review, we summarize the most current advances on novel design idea and new synthesis strategy for g-C3N4 preparation, insightful ideas on extending optical absorption of pristine g-C3N4, overall water splitting and CO2 photoreduction over g-C3N4 based systems. The research challenges and perspectives on g-C3N4 based photocatalysts were also suggested.

  19. Constructing a philosophy of chiropractic: evolving worldviews and modern foundation().

    PubMed

    Senzon, Simon A

    2011-12-01

    The purpose of this article is to trace the foundations of DD Palmer's sense of self and philosophy of chiropractic to its sources in modern Western philosophy as well as current metatheories about modernity. DD Palmer's sense of self was indicative of a modern self. A modern self is characterized as a self that developed after the Western Enlightenment and must come to terms with the insights of modernity such as Cartesian dualism, Spinoza's substance, Rousseau's expressivism, and Kant's critiques. It is argued that Palmer's philosophy can be viewed as part of the this tradition alongside his involvement in the 19th century American metaphysical religious culture, which was itself a response to these challenges of the modern self of modernity. Palmer's development of chiropractic and its philosophy was a reaction to the challenges and promises of modernity.

  20. A Method Based on Wavelet Transforms for Source Detection in Photon-counting Detector Images. II. Application to ROSAT PSPC Images

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.

    1997-07-01

    We apply to the specific case of images taken with the ROSAT PSPC detector our wavelet-based X-ray source detection algorithm presented in a companion paper. Such images are characterized by the presence of detector ``ribs,'' strongly varying point-spread function, and vignetting, so that their analysis provides a challenge for any detection algorithm. First, we apply the algorithm to simulated images of a flat background, as seen with the PSPC, in order to calibrate the number of spurious detections as a function of significance threshold and to ascertain that the spatial distribution of spurious detections is uniform, i.e., unaffected by the ribs; this goal was achieved using the exposure map in the detection procedure. Then, we analyze simulations of PSPC images with a realistic number of point sources; the results are used to determine the efficiency of source detection and the accuracy of output quantities such as source count rate, size, and position, upon a comparison with input source data. It turns out that sources with 10 photons or less may be confidently detected near the image center in medium-length (~104 s), background-limited PSPC exposures. The positions of sources detected near the image center (off-axis angles < 15') are accurate to within a few arcseconds. Output count rates and sizes are in agreement with the input quantities, within a factor of 2 in 90% of the cases. The errors on position, count rate, and size increase with off-axis angle and for detections of lower significance. We have also checked that the upper limits computed with our method are consistent with the count rates of undetected input sources. Finally, we have tested the algorithm by applying it on various actual PSPC images, among the most challenging for automated detection procedures (crowded fields, extended sources, and nonuniform diffuse emission). The performance of our method in these images is satisfactory and outperforms those of other current X-ray detection techniques, such as those employed to produce the MPE and WGA catalogs of PSPC sources, in terms of both detection reliability and efficiency. We have also investigated the theoretical limit for point-source detection, with the result that even sources with only 2-3 photons may be reliably detected using an efficient method in images with sufficiently high resolution and low background.

  1. Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding

    NASA Astrophysics Data System (ADS)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-07-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  2. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding

    USGS Publications Warehouse

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-01-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  3. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    PubMed

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Open source modular ptosis crutch for the treatment of myasthenia gravis.

    PubMed

    Saidi, Trust; Sivarasu, Sudesh; Douglas, Tania S

    2018-02-01

    Pharmacologic treatment of Myasthenia Gravis presents challenges due to poor tolerability in some patients. Conventional ptosis crutches have limitations such as interference with blinking which causes ocular surface drying, and frequent irritation of the eyes. To address this problem, a modular and adjustable ptosis crutch for elevating the upper eyelid in Myasthenia Gravis patients has been proposed as a non-surgical and low-cost solution. Areas covered: This paper reviews the literature on the challenges in the treatment of Myasthenia Gravis globally and focuses on a modular and adjustable ptosis crutch that has been developed by the Medical Device Laboratory at the University of Cape Town. Expert commentary: The new medical device has potential as a simple, effective and unobtrusive solution to elevate the drooping upper eyelid(s) above the visual axis without the need for medication and surgery. Access to the technology is provided through an open source platform which makes it available globally. Open access provides opportunities for further open innovation to address the current limitations of the device, ultimately for the benefit not only of people suffering from Myasthenia Gravis but also of those with ptosis from other aetiologies.

  5. Multi-Sourced Satellite Observations of Land Cover and Land Use Change in South and Southeast Asia with Challenging Environmental and Socioeconomic Impacts

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Small, C.; Jacobson, M. Z.; Brakenridge, G. R.; Balk, D.; Sorichetta, A.; Masetti, M.; Gaughan, A. E.; Stevens, F. R.; Mathews, A.; Frazier, A. E.; Das, N. N.

    2017-12-01

    An innovative paradigm to observe the rural-urban transformation over the landscape using multi-sourced satellite data is formulated as a time and space continuum, extensively in space across South and Southeast Asia and in time over a decadal scale. Rather than a disparate array of individual cities and their vicinities in separated areas and in a discontinuous collection of points in time, the time-space continuum paradigm enables significant advances in addressing rural-urban change as a continuous gradient across the landscape from the wilderness to rural to urban areas to study challenging environmental and socioeconomic issues. We use satellite data including QuikSCAT scatterometer, SRTM and Sentinel-1 SAR, Landsat, WorldView, MODIS, and SMAP together with environmental and demographic data and modeling products to investigate land cover and land use change in South and Southeast Asia and associated impacts. Utilizing the new observational advances and effectively capitalizing current capabilities, we will present interdisciplinary results on urbanization in three dimensions, flood and drought, wildfire, air and water pollution, urban change, policy effects, population dynamics and vector-borne disease, agricultural assessment, and land degradation and desertification.

  6. Changes to International Nonproprietary Names for antibody therapeutics 2017 and beyond: of mice, men and more.

    PubMed

    Parren, Paul W H I; Carter, Paul J; Plückthun, Andreas

    Active pharmaceutical substances require an International Nonproprietary Name (INN) assigned by the World Health Organization (WHO) to obtain market authorization as a medicinal product. INNs are selected to represent a unique, generic name for a drug enabling unambiguous identification by stakeholders worldwide. INNs may be requested after initiating clinical development of an investigational drug. Pharmaceutical classes are indicated by a common stem or suffix. Currently, INNs for monoclonal antibody-based drugs are recognized by the suffix, -mab, preceded by a source infix such as -xi- (chimeric), -zu- (humanized) or -u- (human) designating the species from which the antibody was derived. However, many technological advances have made it increasingly difficult to accurately capture an antibody's source in its name. In 2014, the WHO and the United States Adopted Names (USAN) Council approached this challenge by implementing changes to antibody source infix definitions. Unfortunately, gaps and ambiguities in the definitions and procedures resulted in inconsistent source category assignments and widespread confusion. The Antibody Society, extensively supported by academic and industry scientists, voiced concerns leading to constructive dialog during scheduled consultations with WHO and USAN Council representatives. In June 2017, the WHO announced that use of the source infix will be discontinued for new antibody INNs effective immediately. We fully support this change as it better aligns antibody INNs with current and foreseeable future innovations in antibody therapeutics. Here we review the changes implemented. Additionally, we analyzed antibody INNs recently assigned under the previous 2014 definitions and provide recommendations for further alignment.

  7. Hydrology and water quality of forested lands in eastern North Carolina

    Treesearch

    G.M. Chescheir; M.E. Lebo; D.M. Amatya; J. Hughes; J.W. Gilliam; R.W. Skaggs; R.B. Herrmann

    2003-01-01

    Nonpoint sources of nutrients (NPS) are a widespread source of surface water pollution throu&out the United States. Characterizing the sources of this NPS nutrient loading is challenging due to variation in land management practices, physioyaphic setting, site conditions such as soil type, and climatic variation. For nutrients, there is the added challenge of...

  8. A Community Cultural Wealth Examination of Sources of Support and Challenges among Latino First- and Second-Generation College Students at a Hispanic Serving Institution

    ERIC Educational Resources Information Center

    Kouyoumdjian, Claudia; Guzmán, Bianca L.; Garcia, Nichole M.; Talavera-Bustillos, Valerie

    2017-01-01

    Growth of Latino students in postsecondary education merits an examination of their resources/challenges. A community cultural wealth model provided a framework to examine unacknowledged student resources and challenges. A mixed method approach found that first- and second-generation college students report equal numbers of sources of…

  9. Mind the Gap

    PubMed Central

    Fairbanks, Terry; Savage, Erica; Adams, Katie; Wittie, Michael; Boone, Edna; Hayden, Andrew; Barnes, Janey; Hettinger, Zach; Gettinger, Andrew

    2016-01-01

    Summary Objective Decisions made during electronic health record (EHR) implementations profoundly affect usability and safety. This study aims to identify gaps between the current literature and key stakeholders’ perceptions of usability and safety practices and the challenges encountered during the implementation of EHRs. Materials and Methods Two approaches were used: a literature review and interviews with key stakeholders. We performed a systematic review of the literature to identify usability and safety challenges and best practices during implementation. A total of 55 articles were reviewed through searches of PubMed, Web of Science and Scopus. We used a qualitative approach to identify key stakeholders’ perceptions; semi-structured interviews were conducted with a diverse set of health IT stakeholders to understand their current practices and challenges related to usability during implementation. We used a grounded theory approach: data were coded, sorted, and emerging themes were identified. Conclusions from both sources of data were compared to identify areas of misalignment. Results We identified six emerging themes from the literature and stakeholder interviews: cost and resources, risk assessment, governance and consensus building, customization, clinical work-flow and usability testing, and training. Across these themes, there were misalignments between the literature and stakeholder perspectives, indicating major gaps. Discussion Major gaps identified from each of six emerging themes are discussed as critical areas for future research, opportunities for new stakeholder initiatives, and opportunities to better disseminate resources to improve the implementation of EHRs. Conclusion Our analysis identified practices and challenges across six different emerging themes, illustrated important gaps, and results suggest critical areas for future research and dissemination to improve EHR implementation. PMID:27847961

  10. Nanoscale MOS devices: device parameter fluctuations and low-frequency noise (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Wong, Hei; Iwai, Hiroshi; Liou, J. J.

    2005-05-01

    It is well-known in conventional MOS transistors that the low-frequency noise or flicker noise is mainly contributed by the trapping-detrapping events in the gate oxide and the mobility fluctuation in the surface channel. In nanoscale MOS transistors, the number of trapping-detrapping events becomes less important because of the large direct tunneling current through the ultrathin gate dielectric which reduces the probability of trapping-detrapping and the level of leakage current fluctuation. Other noise sources become more significant in nanoscale devices. The source and drain resistance noises have greater impact on the drain current noise. Significant contribution of the parasitic bipolar transistor noise in ultra-short channel and channel mobility fluctuation to the channel noise are observed. The channel mobility fluctuation in nanoscale devices could be due to the local composition fluctuation of the gate dielectric material which gives rise to the permittivity fluctuation along the channel and results in gigantic channel potential fluctuation. On the other hand, the statistical variations of the device parameters across the wafer would cause the noise measurements less accurate which will be a challenge for the applicability of analytical flicker noise model as a process or device evaluation tool for nanoscale devices. Some measures for circumventing these difficulties are proposed.

  11. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettry J.; Alessi J.; Faircloth, D.

    2012-02-23

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible aftermore » extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.« less

  12. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettry, J.; Gerardin, A.; Pereira, H.

    2012-02-15

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible aftermore » extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.« less

  13. Magnetars: Challenging the Extremes of Nature

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2011-01-01

    Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They are discovered and emit predominantly in the X- and gamma-rays. Very few sources (roughly 15) have been found since their discovery in 1987. NASA s Fermi Observatory was launched June 11, 2009; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. Since then, we recorded emission from four magnetar sources; of these, only one was an old magnetar: SGR 1806+20. The other three detections were two brand new sources, SGR J0501+4516, discovered with Swift and extensively monitored with both Swift and GBM, SGR J0418+5729, discovered with GBM and the Interplanetary Network (IPN), and SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP 1E1547.0-5408). In my talk I will give a short history of the discovery of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts. Finally, I will describe the properties of these sources and the current status of our knowledge of the magnetar population and birth rate.

  14. Power conversion apparatus and method

    DOEpatents

    Su, Gui-Jia [Knoxville, TN

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  15. Open source and healthcare in Europe - time to put leading edge ideas into practice.

    PubMed

    Murray, Peter J; Wright, Graham; Karopka, Thomas; Betts, Helen; Orel, Andrej

    2009-01-01

    Free/Libre and Open Source Software (FLOSS) is a process of software development, a method of licensing and a philosophy. Although FLOSS plays a significant role in several market areas, the impact in the health care arena is still limited. FLOSS is promoted as one of the most effective means for overcoming fragmentation in the health care sector and providing a basis for more efficient, timely and cost effective health care provision. The 2008 European Federation for Medical Informatics (EFMI) Special Topic Conference (STC) explored a range of current and future issues related to FLOSS in healthcare (FLOSS-HC). In particular, there was a focus on health records, ubiquitous computing, knowledge sharing, and current and future applications. Discussions resulted in a list of main barriers and challenges for use of FLOSS-HC. Based on the outputs of this event, the 2004 Open Steps events and subsequent workshops at OSEHC2009 and Med-e-Tel 2009, a four-step strategy has been proposed for FLOSS-HC: 1) a FLOSS-HC inventory; 2) a FLOSS-HC collaboration platform, use case database and knowledge base; 3) a worldwide FLOSS-HC network; and 4) FLOSS-HC dissemination activities. The workshop will further refine this strategy and elaborate avenues for FLOSS-HC from scientific, business and end-user perspectives. To gain acceptance by different stakeholders in the health care industry, different activities have to be conducted in collaboration. The workshop will focus on the scientific challenges in developing methodologies and criteria to support FLOSS-HC in becoming a viable alternative to commercial and proprietary software development and deployment.

  16. Human resources for health (and rehabilitation): Six Rehab-Workforce Challenges for the century.

    PubMed

    Jesus, Tiago S; Landry, Michel D; Dussault, Gilles; Fronteira, Inês

    2017-01-23

    People with disabilities face challenges accessing basic rehabilitation health care. In 2006, the United Nations Convention on the Rights of Persons with Disabilities (CRPD) outlined the global necessity to meet the rehabilitation needs of people with disabilities, but this goal is often challenged by the undersupply and inequitable distribution of rehabilitation workers. While the aggregate study and monitoring of the physical rehabilitation workforce has been mostly ignored by researchers or policy-makers, this paper aims to present the 'challenges and opportunities' for guiding further long-term research and policies on developing the relatively neglected, highly heterogeneous physical rehabilitation workforce. The challenges were identified through a two-phased investigation. Phase 1: critical review of the rehabilitation workforce literature, organized by the availability, accessibility, acceptability and quality (AAAQ) framework. Phase 2: integrate reviewed data into a SWOT framework to identify the strengths and opportunities to be maximized and the weaknesses and threats to be overcome. The critical review and SWOT analysis have identified the following global situation: (i) needs-based shortages and lack of access to rehabilitation workers, particularly in lower income countries and in rural/remote areas; (ii) deficiencies in the data sources and monitoring structures; and (iii) few exemplary innovations, of both national and international scope, that may help reduce supply-side shortages in underserved areas. Based on the results, we have prioritized the following 'Six Rehab-Workforce Challenges': (1) monitoring supply requirements: accounting for rehabilitation needs and demand; (2) supply data sources: the need for structural improvements; (3) ensuring the study of a whole rehabilitation workforce (i.e. not focused on single professions), including across service levels; (4) staffing underserved locations: the rising of education, attractiveness and tele-service; (5) adapt policy options to different contexts (e.g. rural vs urban), even within a country; and (6) develop international solutions, within an interdependent world. Concrete examples of feasible local, global and research action toward meeting the Six Rehab-Workforce Challenges are provided. Altogether, these may help advance a policy and research agenda for ensuring that an adequate rehabilitation workforce can meet the current and future rehabilitation health needs.

  17. The Privacy and Security Implications of Open Data in Healthcare.

    PubMed

    Kobayashi, Shinji; Kane, Thomas B; Paton, Chris

    2018-04-22

     The International Medical Informatics Association (IMIA) Open Source Working Group (OSWG) initiated a group discussion to discuss current privacy and security issues in the open data movement in the healthcare domain from the perspective of the OSWG membership.  Working group members independently reviewed the recent academic and grey literature and sampled a number of current large-scale open data projects to inform the working group discussion.  This paper presents an overview of open data repositories and a series of short case reports to highlight relevant issues present in the recent literature concerning the adoption of open approaches to sharing healthcare datasets. Important themes that emerged included data standardisation, the inter-connected nature of the open source and open data movements, and how publishing open data can impact on the ethics, security, and privacy of informatics projects.  The open data and open source movements in healthcare share many common philosophies and approaches including developing international collaborations across multiple organisations and domains of expertise. Both movements aim to reduce the costs of advancing scientific research and improving healthcare provision for people around the world by adopting open intellectual property licence agreements and codes of practice. Implications of the increased adoption of open data in healthcare include the need to balance the security and privacy challenges of opening data sources with the potential benefits of open data for improving research and healthcare delivery. Georg Thieme Verlag KG Stuttgart.

  18. Using Commercially available Tools for multi-faceted health assessment: Data Integration Lessons Learned

    PubMed Central

    Wilamowska, Katarzyna; Le, Thai; Demiris, George; Thompson, Hilaire

    2013-01-01

    Health monitoring data collected from multiple available intake devices provide a rich resource to support older adult health and wellness. Though large amounts of data can be collected, there is currently a lack of understanding on integration of these various data sources using commercially available products. This article describes an inexpensive approach to integrating data from multiple sources from a recently completed pilot project that assessed older adult wellness, and demonstrates challenges and benefits in pursuing data integration using commercially available products. The data in this project were sourced from a) electronically captured participant intake surveys, and existing commercial software output for b) vital signs and c) cognitive function. All the software used for data integration in this project was freeware and was chosen because of its ease of comprehension by novice database users. The methods and results of this approach provide a model for researchers with similar data integration needs to easily replicate this effort at a low cost. PMID:23728444

  19. Physics design of the injector source for ITER neutral beam injector (invited).

    PubMed

    Antoni, V; Agostinetti, P; Aprile, D; Cavenago, M; Chitarin, G; Fonnesu, N; Marconato, N; Pilan, N; Sartori, E; Serianni, G; Veltri, P

    2014-02-01

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented.

  20. The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting

    DOE PAGES

    Wierer, Jonathan; Tsao, Jeffrey Y.

    2014-09-01

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less

  1. Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics?

    PubMed

    de Lázaro, Irene; Yilmazer, Açelya; Kostarelos, Kostas

    2014-07-10

    The generation of induced pluripotent stem (iPS) cells from somatic cells by the ectopic expression of defined transcription factors has provided the regenerative medicine field with a new tool for cell replacement strategies. The advantages that these pluripotent cells can offer in comparison to other sources of stem cells include the generation of patient-derived cells and the lack of embryonic tissue while maintaining a versatile differentiation potential. The promise of iPS cell derivatives for therapeutic applications is encouraging albeit very early in development, with the first clinical study currently ongoing in Japan. Many challenges are yet to be circumvented before this technology can be clinically translated widely though. The delivery and expression of the reprogramming factors, the genomic instability, epigenetic memory and impact of cell propagation in culture are only some of the concerns. This article aims to critically discuss the potential of iPS cells as a new source of cell therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Sen, Satyabrata; Berry, M. L..

    Domestic Nuclear Detection Office s (DNDO) Intelligence Radiation Sensors Systems (IRSS) program supported the development of networks of commercial-off-the-shelf (COTS) radiation counters for detecting, localizing, and identifying low-level radiation sources. Under this program, a series of indoor and outdoor tests were conducted with multiple source strengths and types, different background profiles, and various types of source and detector movements. Following the tests, network algorithms were replayed in various re-constructed scenarios using sub-networks. These measurements and algorithm traces together provide a rich collection of highly valuable datasets for testing the current and next generation radiation network algorithms, including the ones (tomore » be) developed by broader R&D communities such as distributed detection, information fusion, and sensor networks. From this multiple TeraByte IRSS database, we distilled out and packaged the first batch of canonical datasets for public release. They include measurements from ten indoor and two outdoor tests which represent increasingly challenging baseline scenarios for robustly testing radiation network algorithms.« less

  3. Trends and drivers of marine debris on the Atlantic coast of the United States 1997-2007

    USGS Publications Warehouse

    Ribic, C.A.; Sheavly, S.B.; Rugg, D.J.; Erdmann, Eric S.

    2010-01-01

    For the first time, we documented regional differences in amounts and long-term trends of marine debris along the US Atlantic coast. The Southeast Atlantic had low land-based and general-source debris loads as well as no increases despite a 19% increase in coastal population. The Northeast (8% population increase) also had low land-based and general-source debris loads and no increases. The Mid-Atlantic (10% population increase) fared the worst, with heavy land-based and general-source debris loads that increased over time. Ocean-based debris did not change in the Northeast where the fishery is relatively stable; it declined over the Mid-Atlantic and Southeast and was correlated with declining regional fisheries. Drivers, including human population, land use status, fishing activity, and oceanic current systems, had complex relationships with debris loads at local and regional scales. Management challenges remain undeniably large but solid information from long-term programs is one key to addressing this pressing pollution issue. ?? 2010.

  4. Trends and drivers of marine debris on the Atlantic coast of the United States 1997-2007.

    PubMed

    Ribic, Christine A; Sheavly, Seba B; Rugg, David J; Erdmann, Eric S

    2010-08-01

    For the first time, we documented regional differences in amounts and long-term trends of marine debris along the US Atlantic coast. The Southeast Atlantic had low land-based and general-source debris loads as well as no increases despite a 19% increase in coastal population. The Northeast (8% population increase) also had low land-based and general-source debris loads and no increases. The Mid-Atlantic (10% population increase) fared the worst, with heavy land-based and general-source debris loads that increased over time. Ocean-based debris did not change in the Northeast where the fishery is relatively stable; it declined over the Mid-Atlantic and Southeast and was correlated with declining regional fisheries. Drivers, including human population, land use status, fishing activity, and oceanic current systems, had complex relationships with debris loads at local and regional scales. Management challenges remain undeniably large but solid information from long-term programs is one key to addressing this pressing pollution issue. Published by Elsevier Ltd.

  5. Integrated sUAS Greenhouse Gas Measurements and Imagery for Land Use Emissions Monitoring

    NASA Astrophysics Data System (ADS)

    Barbieri, L.; Wyngaard, J.; Galford, G. L.; Adair, C.

    2016-12-01

    Agriculture, Forestry and Other Land Uses (AFOLU) constitute the second largest anthropogenic source of greenhouse gas (GHG) emissions globally. Agriculture is the dominant source of emissions within that sector. There are a variety of agricultural land management strategies that can be implemented to reduce GHG emissions, but determining the best strategies is challenging. Emissions estimates are currently derived from GHG monitoring methods (e.g., static chambers, eddy flux towers) that are time and labor intensive, expensive, and use in-situ equipment. These methods lack the flexible, spatio-temporal monitoring necessary to reduce the high uncertainty in regional GHG emissions estimates. Small Unmanned Aerial Systems (sUAS) provide the rapid response data collection needed to monitor important field management events (e.g., manure spreading). Further, the ease of deployment of sUAS makes monitoring large regional extents over full-seasons more viable. To our knowledge, we present the first integration of sUAS remotely sensed imagery and GHG concentrations in agriculture and land use monitoring. We have developed and tested open-source hardware and software utilizing low-cost equipment (e.g., NDIR gas sensors and Canon cameras). Initial results show agreement with more traditional, proprietary equipment but at a fraction of the costs. Here we present data from test flights over agricultural areas under various management practices. The suite of data includes sUAS overpasses for imagery and CO2 concentration measurements, paired with field-based GHG measurements (static chambers). We have developed a set of best practices for sUAS data collection (e.g., time of day effects variability in localized atmospheric GHG concentrations) and discuss currently known challenges (e.g., accounting for external environmental factors such as wind speed). We present results on all sUAS GHG sampling methods paired with imagery and simultaneous static chamber monitoring for a comprehensive assessment of methods for use in GHG emission hotspot detection across landscapes.

  6. Search for a Neutron Electric Dipole Moment

    PubMed Central

    Golub, R.; Huffman, P. R.

    2005-01-01

    The possible existence of a nonzero electric dipole moment (EDM) of the neutron is of great fundamental interest in itself and directly impacts our understanding of the nature of electro-weak and strong interactions. The experimental search for this moment has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The goal of the current experiment is to significantly improve the measurement sensitivity to the neutron EDM over what is reported in the literature. The experiment has the potential to either measure the magnitude of the neutron EDM or to lower the current experimental limit by two orders of magnitude. Achieving these objectives will have a major impact on our understanding of the physics of both weak and strong interactions. PMID:27308116

  7. Spin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton.

    PubMed

    Fu, Hua-Hua; Wu, Dan-Dan; Zhang, Zu-Quan; Gu, Lei

    2015-05-22

    Spin-dependent Seebeck effect (SDSE) is one of hot topics in spin caloritronics, which examine the relationships between spin and heat transport in materials. Meanwhile, it is still a huge challenge to obtain thermally induced spin current nearly without thermal electron current. Here, we construct a hydrogen-terminated zigzag silicene nanoribbon heterojunction, and find that by applying a temperature difference between the source and the drain, spin-up and spin-down currents are generated and flow in opposite directions with nearly equal magnitudes, indicating that the thermal spin current dominates the carrier transport while the thermal electron current is much suppressed. By modulating the temperature, a pure thermal spin current can be achieved. Moreover, a thermoelectric rectifier and a negative differential thermoelectric resistance can be obtained in the thermal electron current. Through the analysis of the spin-dependent transport characteristics, a phase diagram containing various spin caloritronic phenomena is provided. In addition, a thermal magnetoresistance, which can reach infinity, is also obtained. Our results put forward an effective route to obtain a spin caloritronic material which can be applied in future low-power-consumption technology.

  8. Constrained circulation at Endeavour ridge facilitates colonization by vent larvae.

    PubMed

    Thomson, Richard E; Mihály, Steven F; Rabinovich, Alexander B; McDuff, Russell E; Veirs, Scott R; Stahr, Frederick R

    2003-07-31

    Understanding how larvae from extant hydrothermal vent fields colonize neighbouring regions of the mid-ocean ridge system remains a major challenge in oceanic research. Among the factors considered important in the recruitment of deep-sea larvae are metabolic lifespan, the connectivity of the seafloor topography, and the characteristics of the currents. Here we use current velocity measurements from Endeavour ridge to examine the role of topographically constrained circulation on larval transport along-ridge. We show that the dominant tidal and wind-generated currents in the region are strongly attenuated within the rift valley that splits the ridge crest, and that hydrothermal plumes rising from vent fields in the valley drive a steady near-bottom inflow within the valley. Extrapolation of these findings suggests that the suppression of oscillatory currents within rift valleys of mid-ocean ridges shields larvae from cross-axis dispersal into the inhospitable deep ocean. This effect, augmented by plume-driven circulation within rift valleys having active hydrothermal venting, helps retain larvae near their source. Larvae are then exported preferentially down-ridge during regional flow events that intermittently over-ride the currents within the valley.

  9. An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings.

    PubMed

    Dessì, Alessia; Pani, Danilo; Raffo, Luigi

    2014-08-01

    Non-invasive fetal electrocardiography is still an open research issue. The recent publication of an annotated dataset on Physionet providing four-channel non-invasive abdominal ECG traces promoted an international challenge on the topic. Starting from that dataset, an algorithm for the identification of the fetal QRS complexes from a reduced number of electrodes and without any a priori information about the electrode positioning has been developed, entering into the top ten best-performing open-source algorithms presented at the challenge.In this paper, an improved version of that algorithm is presented and evaluated exploiting the same challenge metrics. It is mainly based on the subtraction of the maternal QRS complexes in every lead, obtained by synchronized averaging of morphologically similar complexes, the filtering of the maternal P and T waves and the enhancement of the fetal QRS through independent component analysis (ICA) applied on the processed signals before a final fetal QRS detection stage. The RR time series of both the mother and the fetus are analyzed to enhance pseudoperiodicity with the aim of correcting wrong annotations. The algorithm has been designed and extensively evaluated on the open dataset A (N = 75), and finally evaluated on datasets B (N = 100) and C (N = 272) to have the mean scores over data not used during the algorithm development. Compared to the results achieved by the previous version of the algorithm, the current version would mark the 5th and 4th position in the final ranking related to the events 1 and 2, reserved to the open-source challenge entries, taking into account both official and unofficial entrants. On dataset A, the algorithm achieves 0.982 median sensitivity and 0.976 median positive predictivity.

  10. Hazardous and toxic waste management in Botswana: practices and challenges.

    PubMed

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  11. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.

    PubMed

    Parte, S; Sirisha, V L; D'Souza, J S

    Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine ecosystem is avoided. © 2017 Elsevier Inc. All rights reserved.

  12. Gardening practices in a rural village in South Africa 10 years after completion of a home garden project.

    PubMed

    Zimpita, Tisungeni; Biggs, Chara; Faber, Mieke

    2015-03-01

    Few studies have documented whether the behavior changes produced by home garden projects have been maintained after completion of the projects. To determine the benefits and challenges affecting production and consumption of β-carotene-rich vegetables and fruits in a rural South African village 10 years after completion of a home garden project. This cross-sectional survey assessed gardening practices and household consumption of β-carotene-rich vegetables and fruits using a questionnaire (n = 186). Benefits and challenges affecting production and consumption of β-carotene-rich vegetables and fruits were assessed through focus group discussions. Thirty-nine percent of the households currently planted β-carotene-rich vegetables and fruits. Major challenges included lack of fencing, animals eating crops, and lack or shortage of water. Planting materials for β-carotene-rich vegetables were sourced from the community nursery, while papaya was grown from its own seed. Shops were the most likely alternative sources of β-carotene-rich vegetables. The frequency of consumption of orange-fleshed sweet potato, butternut, spinach, and papaya when in season differed significantly, with households planting β-carotene-rich vegetables and fruits having more frequent consumption than households not planting these vegetables and fruits. Households planting β-carotene-rich vegetables and fruits were perceived as "well-to-do" and "healthy" households and as "givers". This study showed that 10 years after the endline evaluation of a home garden project, approximately one-third of the households in the village planted β-carotene-rich vegetables and fruits, which is very similar to the proportion at project completion and a postintervention study that was done 6 years later, despite various challenges, indicating that the practice of planting these vegetables and fruits was continued over the years.

  13. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges

    PubMed Central

    Neutze, Richard; Moffat, Keith

    2012-01-01

    X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today’s synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics. PMID:23021004

  14. Environmental Testing of Tritium-Phosphor Glass Vials for Use in Long-Life Radioisotope Power Conversion Units

    NASA Technical Reports Server (NTRS)

    Zemcov, Michael; Cardona, Pedro; Parkus, James; Patru, Dorin; Yost, Valerie

    2017-01-01

    Power generation in extreme environments, such as the outer solar system, the night side of planets, or other low-illumination environments, currently presents a technology gap that challenges NASA's ambitious scientific goals. We are developing a radioisotope power cell (RPC) that utilizes commercially available tritium light sources and standard 1.85 eV InGaP2 photovoltaic cells to convert beta particle energy to electric energy. In the test program described here, we perform environmental tests on commercially available borosilicate glass vials internally coated with a ZnS luminescent phosphor that are designed to contain gaseous tritium in our proposed power source. Such testing is necessary to ensure that the glass containing the radioactive tritium is capable of withstanding the extreme environments of launch and space for extended periods of time.

  15. Dental and Nondental Stem Cell Based Regeneration of the Craniofacial Region: A Tissue Based Approach

    PubMed Central

    Hughes, Declan; Song, Bing

    2016-01-01

    Craniofacial reconstruction may be a necessary treatment for those who have been affected by trauma, disease, or pathological developmental conditions. The use of stem cell therapy and tissue engineering shows massive potential as a future treatment modality. Currently in the literature, there is a wide variety of published experimental studies utilising the different stem cell types available and the plethora of available scaffold materials. This review investigates different stem cell sources and their unique characteristics to suggest an ideal cell source for regeneration of individual craniofacial tissues. At present, understanding and clinical applications of stem cell therapy remain in their infancy with numerous challenges to overcome. In spite of this, the field displays immense capacity and will no doubt be utilised in future clinical treatments of craniofacial regeneration. PMID:27143979

  16. Chemistry and Biology of the Caged Garcinia Xanthones

    PubMed Central

    Chantarasriwong, Oraphin; Batova, Ayse; Chavasiri, Warinthorn

    2011-01-01

    Natural products have been a great source of many small molecule drugs for various diseases. In spite of recent advances in biochemical engineering and fermentation technologies that allow us to explore microorganisms and the marine environment as alternative sources of drugs, more than 70% of the current small molecule therapeutics derive their structures from plants used in traditional medicine. Natural-product-based drug discovery relies heavily on advances made in the sciences of biology and chemistry. Whereas biology aims to investigate the mode of action of a natural product, chemistry aims to overcome challenges related to its supply, bioactivity, and target selectivity. This review summarizes the explorations of the caged Garcinia xanthones, a family of plant metabolites that possess a unique chemical structure, potent bioactivities, and a promising pharmacology for drug design and development. PMID:20648491

  17. Understanding the Lives and Challenges of Women in Poverty after TANF.

    PubMed

    Hildebrandt, Eugenie

    2016-08-01

    Welfare Reform has caused a dramatic change in the lives and health of single mothers living in poverty. This qualitative study explored the health and socioeconomic lives of 22 community-dwelling women in poverty in the years after they were terminated from the current work-based welfare program intended to move women from welfare to work and independence. The instruments were a semistructured interview guide, the HANES General Well-Being Schedule, and a demographic data form. Data were analyzed using multistage narrative analysis and descriptive statistics. These primary source data showed participants had multiple barriers that precede or follow poverty. Their voices of how they survive are a rich source of data to assist providers and policy makers in devising evidence-based solutions for reducing poverty in America. © The Author(s) 2016.

  18. Electron Transport at the Microbe–Mineral Interface: A Synthesis of Current Research Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, David; Fredrickson, Jim K.; Zachara, John M.

    2012-12-01

    Many bacterial and archaeal species can couple growth to the respiratory reduction or oxidation of insoluble mineral oxides of transition metals. These solid substrates are abundant electron sinks and sources for life on Earth, but, since they are insoluble in water, they cannot enter the bacterial cells. So, to exploit these electron sinks and sources, specific respiratory electron-transfer mechanisms must overcome the physical limitations associated with electron transfer between a microbe and extracellular metal oxides. Recent microbiological, geochemical, biochemical, spectroscopic and structural work is beginning to shed light on the molecular mechanism and impacts of electron transfer at themicrobe–mineral interfacemore » from a nanometre to kilometre scale. The research field is attracting attention in applied quarters from those with interests in nanowires, microbial fuel cells, bioremediation and microbial cell factories.« less

  19. Data Visualization Challenges and Opportunities in User-Oriented Application Development

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Quinn, P.; Mitchell, A. E.; Baynes, K.; Shum, D.

    2015-12-01

    This talk introduces the audience to some of the very real challenges associated with visualizing data from disparate data sources as encountered during the development of real world applications. In addition to the fundamental challenges of dealing with the data and imagery, this talk discusses usability problems encountered while trying to provide interactive and user-friendly visualization tools. At the end of this talk the audience will be aware of some of the pitfalls of data visualization along with tools and techniques to help mitigate them. There are many sources of variable resolution visualizations of science data available to application developers including NASA's Global Imagery Browse Services (GIBS), however integrating and leveraging visualizations in modern applications faces a number of challenges, including: - Varying visualized Earth "tile sizes" resulting in challenges merging disparate sources - Multiple visualization frameworks and toolkits with varying strengths and weaknesses - Global composite imagery vs. imagery matching EOSDIS granule distribution - Challenges visualizing geographically overlapping data with different temporal bounds - User interaction with overlapping or collocated data - Complex data boundaries and shapes combined with multi-orbit data and polar projections - Discovering the availability of visualizations and the specific parameters, color palettes, and configurations used to produce them In addition to discussing the challenges and approaches involved in visualizing disparate data, we will discuss solutions and components we'll be making available as open source to encourage reuse and accelerate application development.

  20. Reconstructing Forty Years of Landsat Observations

    NASA Astrophysics Data System (ADS)

    Meyer, D. J.; Dwyer, J. L.; Steinwand, D.

    2013-12-01

    In July 1972, NASA launched the Earth Resource Technology Satellite (ERTS), the first of what was to be the series of Earth-observing satellites we now know as the Landsat system. This system, originally conceived in the 1960's within the US Department of the Interior and US Geological Survey (USGS), has continued with little interruption for over 40 years, creating the longest record of satellite-based global land observations. The current USGS archive of Landsat images exceeds 4 million scenes, and the recently launched Landsat 8 platform will extend that archive to nearly 50 years of observations. Clearly, these observations are critical to the study of Earth system processes, and the interaction between these processes and human activities. However, the seven successful Landsat missions represent more of an ad hoc program than a long-term record of consistent observations, due largely to changing Federal policies and challenges finding an operational home for the program. Technologically, these systems evolved from the original Multispectral Scanning System (MSS) through the Thematic Mapper and Enhanced Thematic Mapper Plus (ETM+) systems, to the current Observational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) systems. Landsat data were collected globally by a network of international cooperators having diverse data management policies. Much of the oldest data were stored on archaic media that could not be retrieved using modern media readers. Collecting these data from various sensors and sources, and reconstructing them into coherent Earth observation records, posed numerous challenges. We present here a brief overview of work done to overcome these challenges and create a consistent, long-term Landsat observation record. Much of the current archive was 'repatriated' from international cooperators and often required the reconstruction of (sometimes absent) metadata for geo-location and radiometric calibration. The older MSS data, some of which had been successfully retrieved from outdated wide band video media, required similar metadata reconstruction. TM data from Landsats 4 and 5 relied on questionable on-board lamp data for calibration, thus the calibration history for these missions was reconstructed to account for sensor degradation over time. To improve continuity between platforms, Landsat 7 and 8 missions employed 'under-flight' maneuvers to reduce inter-calibration error. Data from the various sensors, platforms and sources were integrated into a common metadata standard, with quality assurance information, to ensure understandability of the data for long-term preservation. Because of these efforts, the current Landsat archive can now support the creation of the long-term climate data records and essential climate variables required to monitor changes on the Earth's surface quantitatively over decades of observations.

  1. Application of the NASCAP Spacecraft Simulation Tool to Investigate Electrodynamic Tether Current Collection in LEO

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi; HabashKrause, Linda

    2012-01-01

    Recent interest in using electrodynamic tethers (EDTs) for orbital maneuvering in Low Earth Orbit (LEO) has prompted the development of the Marshall ElectroDynamic Tether Orbit Propagator (MEDTOP) model. The model is comprised of several modules which address various aspects of EDT propulsion, including calculation of state vectors using a standard orbit propagator (e.g., J2), an atmospheric drag model, realistic ionospheric and magnetic field models, space weather effects, and tether librations. The natural electromotive force (EMF) attained during a radially-aligned conductive tether results in electrons flowing down the tether and accumulating on the lower-altitude spacecraft. The energy that drives this EMF is sourced from the orbital energy of the system; thus, EDTs are often proposed as de-orbiting systems. However, when the current is reversed using satellite charged particle sources, then propulsion is possible. One of the most difficult challenges of the modeling effort is to ascertain the equivalent circuit between the spacecraft and the ionospheric plasma. The present study investigates the use of the NASA Charging Analyzer Program (NASCAP) to calculate currents to and from the tethered satellites and the ionospheric plasma. NASCAP is a sophisticated set of computational tools to model the surface charging of three-dimensional (3D) spacecraft surfaces in a time-varying space environment. The model's surface is tessellated into a collection of facets, and NASCAP calculates currents and potentials for each one. Additionally, NASCAP provides for the construction of one or more nested grids to calculate space potential and time-varying electric fields. This provides for the capability to track individual particles orbits, to model charged particle wakes, and to incorporate external charged particle sources. With this study, we have developed a model of calculating currents incident onto an electrodynamic tethered satellite system, and first results are shown here.

  2. The mining sector of Liberia: current practices and environmental challenges.

    PubMed

    Wilson, Samuel T K; Wang, Hongtao; Kabenge, Martin; Qi, Xuejiao

    2017-08-01

    Liberia is endowed with an impressive stock of mineral reserves and has traditionally relied on mining, namely iron ore, gold, and diamonds, as a major source of income. The recent growth in the mining sector has the potential to contribute significantly to employment, income generation, and infrastructure development. However, the development of these mineral resources has significant environmental impacts that often go unnoticed. This paper presents an overview of the Liberian mining sector from historical, current development, and economic perspectives. The efforts made by government to address issues of environmental management and sustainable development expressed in national and international frameworks, as well as some of the environmental challenges in the mining sector are analyzed. A case study was conducted on one of the iron ore mines (China Union Bong Mines Investment) to analyze the effects of the water quality on the local water environment. The results show that the analyzed water sample concentrations were all above the WHO and Liberia water standard Class I guidelines for drinking water. Finally the paper examines the application of water footprint from a life cycle perspective in the Liberian mining sector and suggests some policy options for water resources management.

  3. Particle Beam Radiography

    NASA Astrophysics Data System (ADS)

    Peach, Ken; Ekdahl, Carl

    2014-02-01

    Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.

  4. Health and social media: perfect storm of information.

    PubMed

    Fernández-Luque, Luis; Bau, Teresa

    2015-04-01

    The use of Internet in the health domain is becoming a major worldwide trend. Millions of citizens are searching online health information and also publishing content about their health. Patients are engaging with other patients in online communities using different types of social media. The boundaries between mobile health, social media, wearable, games, and big data are becoming blurrier due the integration of all those technologies. In this paper we provide an overview of the major research challenges with the area of health social media. We use several study cases to exemplify the current trends and highlight future research challenges. Internet is exploding and is being used for health purposes by a great deal of the population. Social networks have a powerful influence in health decisions. Given the lack of knowledge on the use of health social media, there is a need for complex multidisciplinary research to help us understand how to use social networks in favour of public health. A bigger understanding of social media will give health authorities new tools to help decision-making at global, national, local, and corporate level. There is an unprecedented amount of data that can be used in public health due the potential combination of data acquired from mobile phones, Electronic Health Records, social media, and other sources. To identify meaningful information from those data sources it is not trial. Moreover, new analytics tools will need to be developed to analyse those sources of data in a way that it can benefit healthcare professionals and authorities.

  5. Methods for determining manning's coefficients for Illinois streams

    USGS Publications Warehouse

    Soong, D.T.; Halfar, T.M.; Jupin, M.A.; Wobig, L.A.; ,

    2004-01-01

    Determination of Manning's coefficient, n, for natural streams remains a challenge in practices. One source for determining the n-values that has received practitioners' attention is presenting the n-values determined from field data (measured discharge and water-surface slope) in combination of photographs and site descriptions (ancillary information). Further improvements in the visual approach can be made in presenting site characteristics and describing site ancillary information. In this manner, users can use the presented information for sites of interest with similar features. This approach in a current project on the subject for Illinois streams is discussed.

  6. Metabolomics relative quantitation with mass spectrometry using chemical derivatization and isotope labeling

    DOE PAGES

    O'Maille, Grace; Go, Eden P.; Hoang, Linh; ...

    2008-01-01

    Comprehensive detection and quantitation of metabolites from a biological source constitute the major challenges of current metabolomics research. Two chemical derivatization methodologies, butylation and amination, were applied to human serum for ionization enhancement of a broad spectrum of metabolite classes, including steroids and amino acids. LC-ESI-MS analysis of the derivatized serum samples provided a significant signal elevation across the total ion chromatogram to over a 100-fold increase in ionization efficiency. It was also demonstrated that derivatization combined with isotopically labeled reagents facilitated the relative quantitation of derivatized metabolites from individual as well as pooled samples.

  7. A Comprehensive Analysis of the Current Status and Unmet Needs in Kidney Transplantation in Southeast Asia

    PubMed Central

    Chan-on, Chitranon; Sarwal, Minnie M.

    2017-01-01

    To address the unmet needs in the face of a growing demand for end-stage renal failure management and kidney transplantation in Asia, we have conducted a critical analysis of published literature and national registries to evaluate clinical outcomes and the rates of organ donation in Southeast Asia and the challenges facing these regions with regards to regulation, choice of donor source, and funding. Based on the available data, suggestions are proposed for an advancement of rates of organ donation and access, with emphasis on improved regulation and public education. PMID:28691007

  8. Remote Sensing, Air Quality, and Public Health

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Rickman, Douglas; Mohammad, Al-Hamdan; Crosson, William; Estes, Maurice, Jr.; Limaye, Ashutosh; Qualters, Judith

    2008-01-01

    HELIX-Atlanta was developed to support current and future state and local EPHT programs to implement data linking demonstratio'n projects which could be part of the EPHT Network. HELIX-Atlanta is a pilot linking project in Atlanta for CDC to learn about the challenges the states will encounter. NASA/MSFC and the CDC are partners in linking environmental and health data to enhance public health surveillance. The use of NASA technology creates value - added geospatial products from existing environmental data sources to facilitate public health linkages. Proving the feasibility of the approach is the main objective

  9. Deep tissue single cell MSC ablation using a fiber laser source to evaluate therapeutic potential in osteogenesis imperfecta

    NASA Astrophysics Data System (ADS)

    Tehrani, Kayvan F.; Pendleton, Emily G.; Lin, Charles P.; Mortensen, Luke J.

    2016-04-01

    Osteogenesis imperfecta (OI) is a currently uncurable disease where a mutation in collagen type I yields brittle bones. One potential therapy is transplantation of mesenchymal stem cells (MSCs), but controlling and enhancing transplanted cell survival has proven challenging. Therefore, we use a 2- photon imaging system to study individual transplanted cells in the living bone marrow. We ablated cells deep in the bone marrow and observed minimal collateral damage to surrounding tissue. Future work will evaluate the local impact of transplanted MSCs on bone deposition in vivo.

  10. Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges.

    PubMed

    Sneddon, Julie B; Tang, Qizhi; Stock, Peter; Bluestone, Jeffrey A; Roy, Shuvo; Desai, Tejal; Hebrok, Matthias

    2018-06-01

    Restoration of insulin independence and normoglycemia has been the overarching goal in diabetes research and therapy. While whole-organ and islet transplantation have become gold-standard procedures in achieving glucose control in diabetic patients, the profound lack of suitable donor tissues severely hampers the broad application of these therapies. Here, we describe current efforts aimed at generating a sustainable source of functional human stem cell-derived insulin-producing islet cells for cell transplantation and present state-of-the-art efforts to protect such cells via immune modulation and encapsulation strategies. Copyright © 2018. Published by Elsevier Inc.

  11. 150 {mu}A 18F{sup -} target and beam port upgrade for the IBA 18/9 cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stokely, M. H.; Peeples, J. L.; Poorman, M. C.

    2012-12-19

    A high power ({approx}3 kW) target platform has been developed for the IBA 18/9 cyclotron. New designs for the airlock, collimator and target subsystems have been fabricated and deployed. The primary project goal is reliable commercial production of 18F{sup -} at 150 {mu}A or greater, while secondary goals include improving serviceability and extending service intervals relative to OEM systems. Reliable operation in a production environment has been observed at beam currents up to 140 {mu}A. Challenges include ion source lifetime and localized peaking in the beam intensity distribution.

  12. AMERICAN INDIAN AND ALASKA NATIVE BOYS: EARLY CHILDHOOD RISK AND RESILIENCE AMIDST CONTEXT AND CULTURE.

    PubMed

    Sarche, Michelle; Tafoya, Greg; Croy, Calvin D; Hill, Kyle

    2017-01-01

    American Indian and Alaska Native (AIAN) adolescent and adult men experience a range of health disparities relative to their non-AIAN counterparts and AIAN women. Given the relatively limited literature on early development in tribal contexts, however, indicators of risk during early childhood specific to AIAN boys are not well-known. The current article reviews sources of strength and challenge within AIAN communities for AIAN children in general, including cultural beliefs and practices that support development, and contextual challenges related to socioeconomic and health disparities and historical trauma affecting the AIAN population as a whole. The research literature on early development is reviewed, highlighting what this literature reveals about early gender differences. The article concludes with calls to action on behalf of AIAN boys that align with each of the five tiers of R. Frieden's (2010) Public Health Pyramid. © 2016 Michigan Association for Infant Mental Health.

  13. Two Challenges to Communicating Climate Science

    NASA Astrophysics Data System (ADS)

    Oreskes, N.; Evans, J. H.; Feng, J.

    2011-12-01

    Climate scientists have been frustrated by the persistence of public opinion at odds with established scientific evidence about anthropogenic climate change. Traditionally, scientists have attributed the gap between scientific knowledge and public perception to scientific illiteracy, which could be remedied by a better and more abundant supply of well-communicated scientific information. Social scientific research, however, illustrates that this "deficit model" is insufficient to explain the current state of affairs: many individuals who reject the conclusions of climate scientists are highly educated, and some evidence suggests that, among certain demographics, more educated people are more likely than less educated ones to reject climate science. This talk explores two possible sources of resistance to, or outright rejection of, scientific conclusions about climate change: 1) the effects of long-standing organized efforts to challenge climate science and the credibility of climate scientists; 2) conservative Protestant religious beliefs concerning how factual claims about the earth are determined and how their significance is judged.

  14. Genetic engineering for skeletal regenerative medicine.

    PubMed

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  15. Hybrid modeling for quality by design and PAT-benefits and challenges of applications in biopharmaceutical industry.

    PubMed

    von Stosch, Moritz; Davy, Steven; Francois, Kjell; Galvanauskas, Vytautas; Hamelink, Jan-Martijn; Luebbert, Andreas; Mayer, Martin; Oliveira, Rui; O'Kennedy, Ronan; Rice, Paul; Glassey, Jarka

    2014-06-01

    This report highlights the drivers, challenges, and enablers of the hybrid modeling applications in biopharmaceutical industry. It is a summary of an expert panel discussion of European academics and industrialists with relevant scientific and engineering backgrounds. Hybrid modeling is viewed in its broader sense, namely as the integration of different knowledge sources in form of parametric and nonparametric models into a hybrid semi-parametric model, for instance the integration of fundamental and data-driven models. A brief description of the current state-of-the-art and industrial uptake of the methodology is provided. The report concludes with a number of recommendations to facilitate further developments and a wider industrial application of this modeling approach. These recommendations are limited to further exploiting the benefits of this methodology within process analytical technology (PAT) applications in biopharmaceutical industry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges.

    PubMed

    Badgujar, Kirtikumar C; Bhanage, Bhalchandra M

    2015-02-01

    The utilisation of non-feed lignocellulosic biomass as a source of renewable bio-energy and synthesis of fine chemical products is necessary for the sustainable development. The methods for the dissolution of lignocellulosic biomass in conventional solvents are complex and tedious due to the complex chemical ultra-structure of biomass. In view of this, recent developments for the use of ionic liquid solvent (IL) has received great attention, as ILs can solubilise such complex biomass and thus provides industrial scale-up potential. In this review, we have discussed the state-of-art for the dissolution of lignocellulosic material in representative ILs. Furthermore, various process parameters and their influence for biomass dissolution were reviewed. In addition to this, overview of challenges and opportunities related to this interesting area is presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Constructing a philosophy of chiropractic: evolving worldviews and modern foundation☆

    PubMed Central

    Senzon, Simon A.

    2011-01-01

    Objective The purpose of this article is to trace the foundations of DD Palmer's sense of self and philosophy of chiropractic to its sources in modern Western philosophy as well as current metatheories about modernity. Discussion DD Palmer's sense of self was indicative of a modern self. A modern self is characterized as a self that developed after the Western Enlightenment and must come to terms with the insights of modernity such as Cartesian dualism, Spinoza's substance, Rousseau's expressivism, and Kant's critiques. It is argued that Palmer's philosophy can be viewed as part of the this tradition alongside his involvement in the 19th century American metaphysical religious culture, which was itself a response to these challenges of the modern self of modernity. Conclusion Palmer's development of chiropractic and its philosophy was a reaction to the challenges and promises of modernity. PMID:22693479

  18. Meeting the challenges of developing LED-based projection displays

    NASA Astrophysics Data System (ADS)

    Geißler, Enrico

    2006-04-01

    The main challenge in developing a LED-based projection system is to meet the brightness requirements of the market. Therefore a balanced combination of optical, electrical and thermal parameters must be reached to achieve these performance and cost targets. This paper describes the system design methodology for a digital micromirror display (DMD) based optical engine using LEDs as the light source, starting at the basic physical and geometrical parameters of the DMD and other optical elements through characterization of the LEDs to optimizing the system performance by determining optimal driving conditions. LEDs have a luminous flux density which is just at the threshold of acceptance in projection systems and thus only a fully optimized optical system with a matched set of LEDs can be used. This work resulted in two projection engines, one for a compact pocket projector and the other for a rear projection television, both of which are currently in commercialization.

  19. The significance of cell-related challenges in the clinical application of tissue engineering.

    PubMed

    Almela, Thafar; Brook, Ian M; Moharamzadeh, Keyvan

    2016-12-01

    Tissue engineering is increasingly being recognized as a new approach that could alleviate the burden of tissue damage currently managed with transplants or synthetic devices. Making this novel approach available in the future for patients who would potentially benefit is largely dependent on understanding and addressing all those factors that impede the translation of this technology to the clinic. Cell-associated factors in particular raise many challenges, including those related to cell sources, up- and downstream techniques, preservation, and the creation of in vitro microenvironments that enable cells to grow and function as far as possible as they would in vivo. This article highlights the main confounding issues associated with cells in tissue engineering and how these issues may hinder the advancement of therapeutic tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3157-3163, 2016. © 2016 Wiley Periodicals, Inc.

  20. The utility of copy number variation (CNV) in studies of hypertension-related left ventricular hypertrophy (LVH): rationale, potential and challenges.

    PubMed

    Boonpeng, Hoh; Yusoff, Khalid

    2013-03-01

    The ultimate goal of human genetics is to understand the role of genome variation in elucidating human traits and diseases. Besides single nucleotide polymorphism (SNP), copy number variation (CNV), defined as gains or losses of a DNA segment larger than 1 kb, has recently emerged as an important tool in understanding heritable source of human genomic differences. It has been shown to contribute to genetic susceptibility of various common and complex diseases. Despite a handful of publications, its role in cardiovascular diseases remains largely unknown. Here, we deliberate on the currently available technologies for CNV detection. The possible utility and the potential roles of CNV in exploring the mechanisms of cardiac remodeling in hypertension will also be addressed. Finally, we discuss the challenges for investigations of CNV in cardiovascular diseases and its possible implications in diagnosis of hypertension-related left ventricular hypertrophy (LVH).

  1. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels.

    PubMed

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-12-01

    Terpenoids represent a large class of natural products with significant commercial applications. These chemicals are currently mainly obtained through extraction from plants and microbes or through chemical synthesis. However, these sources often face challenges of unsustainability and low productivity. In order to address these issues, Escherichia coli and yeast have been metabolic engineered to produce non-native terpenoids. With recent reports of engineering yeast metabolism to produce several terpenoids at high yields, it has become possible to establish commercial yeast production of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce different terpenoids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Kwame Nkrumah University of Science and Technology School of Veterinary Medicine (KNUST SVM) A Model of "One-Health Concept" Application to Veterinary Education in West Africa.

    PubMed

    Folitse, R D; Agyemang, T Opoku; Emikpe, B O; Evarefe, O D; Atawalna, J

    2014-12-01

    Veterinary education in West Africa had been skewed over decades with Nigeria and Senegal leading in the training of veterinarians in the subregion. Most nationals from Ghana, Sierra Leone, Gambia as well as francophone countries within the subregion were trained in East Africa, Europe and South America. The aim of this paper is to provide an insight into the need for veterinary education in other West African countries including Ghana Information was sourced from individuals, literatures and other relevant archives on the history, current state and future approaches to veterinary education in Ghana. The advantages, challenges and coping strategies for application of the Principles of "The One World One Health concept" to veterinary education with the use of the medical professionals in the delivery were presented. This approach to veterinary education by Kwame Nkrumah University of Science and Technology School of Veterinary Medicine showcases a means to meet the health challenges of the twenty first century which demand pragmatic innovation to solve disease challenges.

  3. History of Neurosurgery in Palestine.

    PubMed

    Darwazeh, Rami; Darwazeh, Mazhar; Sun, Xiaochuan

    2017-08-01

    Palestinian neurosurgery started with Dr. Antone Tarazi as the first Palestinian neurosurgeon. Before that, there was no organized neurosurgery specialty, and general surgeons performed neurosurgical procedures. Here we review the history of neurosurgery and neurosurgical applications in Palestine, evaluate some limitations of the current system, and discuss major challenges to improving this system. We collected information from various sources in either English or Arabic. The development of neurosurgery and neurosurgical training in Palestine began in 1960 with the first center established in Jerusalem, which provided much-needed neurosurgical services and training in the fields of neurosurgery and neurology. Palestine has produced a number of its own neurosurgeons and has promoted further progress by establishing the Palestinian Neurosurgical Society in 2014. Today, there are 34 neurosurgeons (including 1 female neurosurgeon) and 17 residents providing expert care in 17 centers across Palestine, along with 1 neurosurgical residency program. Neurosurgery in Palestine has faced many challenges, some of which have been overcome. However, there remain many challenges, which will require much time and effort to surmount. Political stabilization is a significant factor in the progress of neurosurgery in Palestine. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Specialty pharmacy cost management strategies of private health care payers.

    PubMed

    Stern, Debbie; Reissman, Debi

    2006-01-01

    The rate of increase in spending on specialty pharmaceuticals is outpacing by far the rate of increase in spending for other drugs. To explore the strategies payers are using in response to challenges related to coverage, cost, clinical management, and access of specialty pharmaceuticals and to describe the potential implications for key stakeholders, including patients, physicians, and health care purchasers. Sources of information were identified in the course of providing consulting services in the subject area of specialty pharmaceuticals to health plans, pharmacy benefit managers, employers, and pharmaceutical manufacturers. Specialty pharmaceuticals represent the fastest growing segment of drug spending due to new product approvals, high unit costs, and increasing use. Health care payers are faced with significant challenges related to coverage, cost, clinical management, and access. A variety of short- and long-term strategies have been employed to address these challenges. Current management techniques for specialty pharmaceuticals often represent a stop-gap approach for controlling rising drug costs. Optimum cost and care management methods will evolve as further research identifies the true clinical and economic value of various specialty pharmaceuticals.

  5. Next-generation biofuels: a new challenge for yeast.

    PubMed

    Petrovič, Uroš

    2015-09-01

    Economic growth depends strongly on the availability and price of fuels. There are various reasons in different parts of the world for efforts to decrease the consumption of fossil fuels, but biofuels are one of the main solutions considered towards achieving this aim globally. As the major bioethanol producer, the yeast Saccharomyces cerevisiae has a central position among biofuel-producing organisms. However, unprecedented challenges for yeast biotechnology lie ahead, as future biofuels will have to be produced on a large scale from sustainable feedstocks that do not interfere with food production, and which are generally not the traditional carbon source for S. cerevisiae. Additionally, the current trend in the development of biofuels is to synthesize molecules that can be used as drop-in fuels for existing engines. Their properties should therefore be more similar to those of oil-derived fuels than those of ethanol. Recent developments and challenges lying ahead for cost-effective production of such designed biofuels, using S. cerevisiae-based cell factories, are presented in this review. Copyright © 2015 John Wiley & Sons, Ltd.

  6. EPOS: Integrating seismological Research Infrastructures within Europe

    NASA Astrophysics Data System (ADS)

    Eck Van, Torild; Clinton, John; Haslinger, Florian; Michelini, Alberto

    2013-04-01

    Seismological data, products and models are currently produced in Europe within individual countries or research organizations, and with the contribution of coordinating organizations like ORFEUS and EMSC. In spite of these partly scattered resources, significant scientific results are obtained, excellent monitoring and information systems are operational and a huge amount of research quality data is being archived and disseminated. The seismological community, however, realizes that an effective European-scale integration of seismological and related geophysical data, products and models, combined with broad and easy access, is needed to facilitate future top level geoscience, for example, to appropriately harness the technological advancements enabling large scale and near-real time data processing. Here we present the technical concepts and developments within European seismology that will build the next generation of integrated services. Within the EPOS initiative and a number of related projects, where seismology infrastructure and IT developments are merging, in depth discussions are on-going on how to realize an effective integration. Concepts and visions addressing the obviously complex challenges resulting from the current highly distributed facilities and resources in Europe are emerging and are already partly being implemented. We will provide an overview of developments within key EU projects (NERA, VERCE, COOPEUS, EUDAT, REAKT, COMMIT, etc) and demonstrate how these are in coherence with EPOS and other on-going global initiatives. Within seismology current focus is on addressing IT related challenges to a) organize distributed data archives, develop metadata attributes for improved data searching, specifically including quality indicators, and define products from data and/or models, and b) define and create(on-line) monitoring, data access and processing tools. While developments to meet those challenges originate partly from within the community itself, it is important to harvest relevant ideas and tools from other scientific communities dealing with similar issues. We will present a short summary of those developments and how they fit within the proposed visions and concepts. These integration developments address a wide framework of seismological services that include: basic seismological data services (waveform data from velocity and acceleration sensors from land and underwater sites); seismological data products (source mechanism and process estimates, earthquake catalogues, structural and tomography model estimations); seismological models (synthetic waveforms, earth and earthquake source models, hazard models).Our aim is to build significantlyimproved seismological services and valuable products for multidisciplinary earth science research.

  7. An incentive-based source separation model for sustainable municipal solid waste management in China.

    PubMed

    Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin

    2015-05-01

    Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. © The Author(s) 2015.

  8. Wavelength-agile high-power sources via four-wave mixing in higher-order fiber modes.

    PubMed

    Demas, J; Prabhakar, G; He, T; Ramachandran, S

    2017-04-03

    Frequency doubling of conventional fiber lasers in the near-infrared remains the most promising method for generating integrated high-peak-power lasers in the visible, while maintaining the benefits of a fiber geometry; but since the shortest wavelength power-scalable fiber laser sources are currently restricted to either the 10XX nm or 15XX nm wavelength ranges, accessing colors other than green or red remains a challenge with this schematic. Four-wave mixing using higher-order fiber modes allows for control of dispersion while maintaining large effective areas, thus enabling a power-scalable method to extend the bandwidth of near-infrared fiber lasers, and in turn, the bandwidth of potential high-power sources in the visible. Here, two parametric sources using the LP0,7 and LP0,6 modes of two step-index multi-mode fibers are presented. The output wavelengths for the sources are 880, 974, 1173, and 1347 nm with peak powers of 10.0, 16.2, 14.7, and 6.4 kW respectively, and ~300-ps pulse durations. The efficiencies of the sources are analyzed, along with a discussion of wavelength tuning and further power scaling, representing an advance in increasing the bandwidth of near-infrared lasers as a step towards high-peak-power sources at wavelengths across the visible spectrum.

  9. DStat: A Versatile, Open-Source Potentiostat for Electroanalysis and Integration.

    PubMed

    Dryden, Michael D M; Wheeler, Aaron R

    2015-01-01

    Most electroanalytical techniques require the precise control of the potentials in an electrochemical cell using a potentiostat. Commercial potentiostats function as "black boxes," giving limited information about their circuitry and behaviour which can make development of new measurement techniques and integration with other instruments challenging. Recently, a number of lab-built potentiostats have emerged with various design goals including low manufacturing cost and field-portability, but notably lacking is an accessible potentiostat designed for general lab use, focusing on measurement quality combined with ease of use and versatility. To fill this gap, we introduce DStat (http://microfluidics.utoronto.ca/dstat), an open-source, general-purpose potentiostat for use alone or integrated with other instruments. DStat offers picoampere current measurement capabilities, a compact USB-powered design, and user-friendly cross-platform software. DStat is easy and inexpensive to build, may be modified freely, and achieves good performance at low current levels not accessible to other lab-built instruments. In head-to-head tests, DStat's voltammetric measurements are much more sensitive than those of "CheapStat" (a popular open-source potentiostat described previously), and are comparable to those of a compact commercial "black box" potentiostat. Likewise, in head-to-head tests, DStat's potentiometric precision is similar to that of a commercial pH meter. Most importantly, the versatility of DStat was demonstrated through integration with the open-source DropBot digital microfluidics platform. In sum, we propose that DStat is a valuable contribution to the "open source" movement in analytical science, which is allowing users to adapt their tools to their experiments rather than alter their experiments to be compatible with their tools.

  10. Tracking speech comprehension in space and time.

    PubMed

    Pulvermüller, Friedemann; Shtyrov, Yury; Ilmoniemi, Risto J; Marslen-Wilson, William D

    2006-07-01

    A fundamental challenge for the cognitive neuroscience of language is to capture the spatio-temporal patterns of brain activity that underlie critical functional components of the language comprehension process. We combine here psycholinguistic analysis, whole-head magnetoencephalography (MEG), the Mismatch Negativity (MMN) paradigm, and state-of-the-art source localization techniques (Equivalent Current Dipole and L1 Minimum-Norm Current Estimates) to locate the process of spoken word recognition at a specific moment in space and time. The magnetic MMN to words presented as rare "deviant stimuli" in an oddball paradigm among repetitive "standard" speech stimuli, peaked 100-150 ms after the information in the acoustic input, was sufficient for word recognition. The latency with which words were recognized corresponded to that of an MMN source in the left superior temporal cortex. There was a significant correlation (r = 0.7) of latency measures of word recognition in individual study participants with the latency of the activity peak of the superior temporal source. These results demonstrate a correspondence between the behaviorally determined recognition point for spoken words and the cortical activation in left posterior superior temporal areas. Both the MMN calculated in the classic manner, obtained by subtracting standard from deviant stimulus response recorded in the same experiment, and the identity MMN (iMMN), defined as the difference between the neuromagnetic responses to the same stimulus presented as standard and deviant stimulus, showed the same significant correlation with word recognition processes.

  11. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives

    NASA Astrophysics Data System (ADS)

    Andrade, Maria de Fatima; Kumar, Prashant; de Freitas, Edmilson Dias; Ynoue, Rita Yuri; Martins, Jorge; Martins, Leila D.; Nogueira, Thiago; Perez-Martinez, Pedro; de Miranda, Regina Maura; Albuquerque, Taciana; Gonçalves, Fabio Luiz Teixeira; Oyama, Beatriz; Zhang, Yang

    2017-06-01

    We present a comprehensive review of published results from the last 30 years regarding the sources and atmospheric characteristics of particles and ozone in the Metropolitan Area of São Paulo (MASP). During the last 30 years, many efforts have been made to describe the emissions sources and to analyse the primary and secondary formation of pollutants under a process of increasing urbanisation in the metropolitan area. From the occurrence of frequent violations of air quality standards in the 1970s and 1980s (due to the uncontrolled air pollution sources) to a substantial decrease in the concentrations of the primary pollutants, many regulations have been imposed and enforced, although those concentrations do not yet conform to the World Health Organization guidelines. The greatest challenge currently faced by the São Paulo State Environmental Protection Agency and the local community is controlling secondary pollutants such as ozone and fine particles. Understanding the formation of these secondary pollutants, by experimental or modelling approaches, requires the description of the atmospheric chemical processes driven by biofuel, ethanol and biodiesel emissions. Exposure to air pollution is the cause of many injuries to human health, according to many studies performed not only in the region but also worldwide, and affects susceptible populations such as children and the elderly. The MASP is the biggest megacity in the Southern Hemisphere, and its specifics are important for other urban areas that are facing the challenge of intensive growth that puts pressure on natural resources and worsens the living conditions in urban areas. This text discusses how imposing regulations on air quality and emission sources, mainly related to the transportation sector, has affected the evolution of pollutant concentrations in the MASP.

  12. Multiwavelength Challenges in the Fermi Era

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2010-01-01

    The gamma-ray surveys of the sky by AGILE and the Fermi Gamma-ray Space Telescope offer both opportunities and challenges for multiwavelength and multi-messenger studies. Gamma-ray bursts, pulsars, binary sources, flaring Active Galactic Nuclei, and Galactic transient sources are all phenomena that can best be studied with a wide variety of instruments simultaneously or contemporaneously. From the gamma-ray side, a principal challenge is the latency from the time of an astrophysical event to the recognition of this event in the data. Obtaining quick and complete multiwavelength coverage of gamma-ray sources of interest can be difficult both in terms of logistics and in terms of generating scientific interest.

  13. Drivers, challenges and opportunities of forage technology adoption by smallholder cattle households in Cambodia.

    PubMed

    Ashley, K; Wilson, S; Young, J R; Chan, H P; Vitou, S; Suon, S; Windsor, P A; Bush, R D

    2018-01-01

    Forage technology has been successfully introduced into smallholder cattle systems in Cambodia as an alternative feed source to the traditional rice straw and native pastures, improving animal nutrition and reducing labour requirements of feeding cattle. Previous research has highlighted the positive impacts of forage technology including improved growth rates of cattle and household time savings. However, further research is required to understand the drivers, challenges and opportunities of forage technology for smallholder cattle households in Cambodia to facilitate widespread adoption and identify areas for further improvement. A survey of forage-growing households (n = 40) in July-September 2016 examined forage technology adoption experiences, including reasons for forage establishment, use of inputs and labour requirements of forage plot maintenance and use of forages (feeding, fattening, sale of grass or seedlings and silage). Time savings was reported as the main driver of forage adoption with household members spending approximately 1 h per day maintaining forages and feeding it to cattle. Water availability was reported as the main challenge to this activity. A small number of households also reported lack of labour, lack of fencing, competition from natural grasses, cost of irrigation and lack of experience as challenges to forage growing. Cattle fattening and sale of cut forage grass and seedlings was not found to be a widespread activity by interviewed households, with 25 and 10% of households reporting use of forages for these activities, respectively. Currently, opportunities exist for these households to better utilise forages through expansion of forage plots and cattle activities, although assistance is required to support these households in addressing current constraints, particularly availability of water, if the sustainability of this feed technology for smallholder cattle household is to be established in Cambodia.

  14. Candida Biofilms: Threats, Challenges, and Promising Strategies.

    PubMed

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis , and Candida parapsilosis , highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.

  15. Preclinical magnetic resonance imaging and systems biology in cancer research: current applications and challenges.

    PubMed

    Albanese, Chris; Rodriguez, Olga C; VanMeter, John; Fricke, Stanley T; Rood, Brian R; Lee, YiChien; Wang, Sean S; Madhavan, Subha; Gusev, Yuriy; Petricoin, Emanuel F; Wang, Yue

    2013-02-01

    Biologically accurate mouse models of human cancer have become important tools for the study of human disease. The anatomical location of various target organs, such as brain, pancreas, and prostate, makes determination of disease status difficult. Imaging modalities, such as magnetic resonance imaging, can greatly enhance diagnosis, and longitudinal imaging of tumor progression is an important source of experimental data. Even in models where the tumors arise in areas that permit visual determination of tumorigenesis, longitudinal anatomical and functional imaging can enhance the scope of studies by facilitating the assessment of biological alterations, (such as changes in angiogenesis, metabolism, cellular invasion) as well as tissue perfusion and diffusion. One of the challenges in preclinical imaging is the development of infrastructural platforms required for integrating in vivo imaging and therapeutic response data with ex vivo pathological and molecular data using a more systems-based multiscale modeling approach. Further challenges exist in integrating these data for computational modeling to better understand the pathobiology of cancer and to better affect its cure. We review the current applications of preclinical imaging and discuss the implications of applying functional imaging to visualize cancer progression and treatment. Finally, we provide new data from an ongoing preclinical drug study demonstrating how multiscale modeling can lead to a more comprehensive understanding of cancer biology and therapy. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Candida Biofilms: Threats, Challenges, and Promising Strategies

    PubMed Central

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed. PMID:29487851

  17. Contribution of Clinical Archetypes, and the Challenges, towards Achieving Semantic Interoperability for EHRs.

    PubMed

    Tapuria, Archana; Kalra, Dipak; Kobayashi, Shinji

    2013-12-01

    The objective is to introduce 'clinical archetype' which is a formal and agreed way of representing clinical information to ensure interoperability across and within Electronic Health Records (EHRs). The paper also aims at presenting the challenges building quality labeled clinical archetypes and the challenges towards achieving semantic interoperability between EHRs. Twenty years of international research, various European healthcare informatics projects and the pioneering work of the openEHR Foundation have led to the following results. The requirements for EHR information architectures have been consolidated within ISO 18308 and adopted within the ISO 13606 EHR interoperability standard. However, a generic EHR architecture cannot ensure that the clinical meaning of information from heterogeneous sources can be reliably interpreted by receiving systems and services. Therefore, clinical models called 'clinical archetypes' are required to formalize the representation of clinical information within the EHR. Part 2 of ISO 13606 defines how archetypes should be formally represented. The current challenge is to grow clinical communities to build a library of clinical archetypes and to identify how evidence of best practice and multi-professional clinical consensus should best be combined to define archetypes at the optimal level of granularity and specificity and quality label them for wide adoption. Standardizing clinical terms within EHRs using clinical terminology like Systematized Nomenclature of Medicine Clinical Terms is also a challenge. Clinical archetypes would play an important role in achieving semantic interoperability within EHRs. Attempts are being made in exploring the design and adoption challenges for clinical archetypes.

  18. Implications of Deep Decarbonization for Carbon Cycle Science

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Williams, J.; Torn, M. S.

    2016-12-01

    The energy-system transformations required to achieve deep decarbonization in the United States, defined as a reduction of greenhouse gas emissions of 80% or more below 1990 levels by 2050, have profound implications for carbon cycle science, particularly with respect to 4 key objectives: understanding and enhancing the terrestrial carbon sink, using bioenergy sustainably, controlling non-CO2 GHGs, and emissions monitoring and verification. (1) As a source of mitigation, the terrestrial carbon sink is pivotal but uncertain, and changes in the expected sink may significantly affect the overall cost of mitigation. Yet the dynamics of the sink under changing climatic conditions, and the potential to protect and enhance the sink through land management, are poorly understood. Policy urgently requires an integrative research program that links basic science knowledge to land management practices. (2) Biomass resources can fill critical energy needs in a deeply decarbonized system, but current understanding of sustainability and lifecycle carbon aspects is limited. Mitigation policy needs better understanding of the sustainable amount, types, and cost of bioenergy feedstocks, their interactions with other land uses, and more efficient and reliable monitoring of embedded carbon. (3) As CO2 emissions from energy decrease under deep decarbonization, the relative share of non-CO2 GHGs grows larger and their mitigation more important. Because the sources tend to be distributed, variable, and uncertain, they have been under-researched. Policy needs a better understanding of mitigation priorities and costs, informed by deeper research in key areas such as fugitive CH4, fertilizer-derived N2O, and industrial F-gases. (4) The M&V challenge under deep decarbonization changes with a steep decrease in the combustion CO2 sources due to widespread electrification, while a greater share of CO2 releases is net-carbon-neutral. Similarly, gas pipelines may carry an increasing share of methane from biogenic or other net carbon-neutral sources. Improved lifecycle analysis will be needed to verify carbon neutrality, while the signal-to-noise challenge for attributing CO2 to fossil or biogenic fuels becomes more challenging.

  19. A novel drill design for photoacoustic guided surgeries

    NASA Astrophysics Data System (ADS)

    Shubert, Joshua; Lediju Bell, Muyinatu A.

    2018-02-01

    Fluoroscopy is currently the standard approach for image guidance of surgical drilling procedures. In addition to the harmful radiation dose to the patient and surgeon, fluoroscopy fails to visualize critical structures such as blood vessels and nerves within the drill path. Photoacoustic imaging is a well-suited imaging method to visualize these structures and it does not require harmful ionizing radiation. However, there is currently no clinical system available to deliver light to occluded drill bit tips. To address this challenge, a prototype drill was designed, built, and tested using an internal light delivery system that allows laser energy to be transferred from a stationary laser source to the tip of a spinning drill bit. Photoacoustic images were successfully obtained with the drill bit submerged in water and with the drill tip inserted into a thoracic vertebra from a human cadaver.

  20. A Survey of Current Rotorcraft Propulsion Health Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Dempsey, Paula J.; Simon, Donald L.

    2012-01-01

    A brief review is presented on the state-of-the-art in rotorcraft engine health monitoring technologies including summaries on current practices in the area of sensors, data acquisition, monitoring and analysis. Also, presented are guidelines for verification and validation of Health Usage Monitoring System (HUMS) and specifically for maintenance credits to extend part life. Finally, a number of new efforts in HUMS are summarized as well as lessons learned and future challenges. In particular, gaps are identified to supporting maintenance credits to extend rotorcraft engine part life. A number of data sources were consulted and include results from a survey from the HUMS community, Society of Automotive Engineers (SAE) documents, American Helicopter Society (AHS) papers, as well as references from Defence Science & Technology Organization (DSTO), Civil Aviation Authority (CAA), and Federal Aviation Administration (FAA).

  1. Augmented Reality in Neurosurgery: A Review of Current Concepts and Emerging Applications.

    PubMed

    Guha, Daipayan; Alotaibi, Naif M; Nguyen, Nhu; Gupta, Shaurya; McFaul, Christopher; Yang, Victor X D

    2017-05-01

    Augmented reality (AR) superimposes computer-generated virtual objects onto the user's view of the real world. Among medical disciplines, neurosurgery has long been at the forefront of image-guided surgery, and it continues to push the frontiers of AR technology in the operating room. In this systematic review, we explore the history of AR in neurosurgery and examine the literature on current neurosurgical applications of AR. Significant challenges to surgical AR exist, including compounded sources of registration error, impaired depth perception, visual and tactile temporal asynchrony, and operator inattentional blindness. Nevertheless, the ability to accurately display multiple three-dimensional datasets congruently over the area where they are most useful, coupled with future advances in imaging, registration, display technology, and robotic actuation, portend a promising role for AR in the neurosurgical operating room.

  2. Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Kritcher, A. L.; Yi, S. A.; Zylstra, A. B.; Haan, S. W.; Weber, C. R.

    2018-03-01

    Indirect drive implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] have now tested three different ablator materials: glow discharge polymer plastic, high density carbon, and beryllium. How do these different ablators compare in current and proposed implosion experiments on NIF? What are the relative advantages and disadvantages of each? This paper compares these different ablator options in capsule-only simulations of current NIF experiments and potential future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition on NIF.

  3. Negative differential transconductance in silicon quantum well metal-oxide-semiconductor field effect/bipolar hybrid transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naquin, Clint; Lee, Mark; Edwards, Hal

    2014-11-24

    Introducing explicit quantum transport into Si transistors in a manner amenable to industrial fabrication has proven challenging. Hybrid field-effect/bipolar Si transistors fabricated on an industrial 45 nm process line are shown to demonstrate explicit quantum transport signatures. These transistors incorporate a lateral ion implantation-defined quantum well (QW) whose potential depth is controlled by a gate voltage (V{sub G}). Quantum transport in the form of negative differential transconductance (NDTC) is observed to temperatures >200 K. The NDTC is tied to a non-monotonic dependence of bipolar current gain on V{sub G} that reduces drain-source current through the QW. These devices establish the feasibility ofmore » exploiting quantum transport to transform the performance horizons of Si devices fabricated in an industrially scalable manner.« less

  4. Cultured meat from stem cells: challenges and prospects.

    PubMed

    Post, Mark J

    2012-11-01

    As one of the alternatives for livestock meat production, in vitro culturing of meat is currently studied. The generation of bio-artificial muscles from satellite cells has been ongoing for about 15 years, but has never been used for generation of meat, while it already is a great source of animal protein. In order to serve as a credible alternative to livestock meat, lab or factory grown meat should be efficiently produced and should mimic meat in all of its physical sensations, such as visual appearance, smell, texture and of course, taste. This is a formidable challenge even though all the technologies to create skeletal muscle and fat tissue have been developed and tested. The efficient culture of meat will primarily depend on culture conditions such as the source of medium and its composition. Protein synthesis by cultured skeletal muscle cells should further be maximized by finding the optimal combination of biochemical and physical conditions for the cells. Many of these variables are known, but their interactions are numerous and need to be mapped. This involves a systematic, if not systems, approach. Given the urgency of the problems that the meat industry is facing, this endeavor is worth undertaking. As an additional benefit, culturing meat may provide opportunities for production of novel and healthier products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Evaluation of Methods for In-Situ Calibration of Field-Deployable Microphone Phased Arrays

    NASA Technical Reports Server (NTRS)

    Humphreys, William M.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.

    2017-01-01

    Current field-deployable microphone phased arrays for aeroacoustic flight testing require the placement of hundreds of individual sensors over a large area. Depending on the duration of the test campaign, the microphones may be required to stay deployed at the testing site for weeks or even months. This presents a challenge in regards to tracking the response (i.e., sensitivity) of the individual sensors as a function of time in order to evaluate the health of the array. To address this challenge, two different methods for in-situ tracking of microphone responses are described. The first relies on the use of an aerial sound source attached as a payload on a hovering small Unmanned Aerial System (sUAS) vehicle. The second relies on the use of individually excited ground-based sound sources strategically placed throughout the array pattern. Testing of the two methods was performed in microphone array deployments conducted at Fort A.P. Hill in 2015 and at Edwards Air Force Base in 2016. The results indicate that the drift in individual sensor responses can be tracked reasonably well using both methods. Thus, in-situ response tracking methods are useful as a diagnostic tool for monitoring the health of a phased array during long duration deployments.

  6. Vascularisation to improve translational potential of tissue engineering systems for cardiac repair.

    PubMed

    Dilley, Rodney J; Morrison, Wayne A

    2014-11-01

    Cardiac tissue engineering is developing as an alternative approach to heart transplantation for treating heart failure. Shortage of organ donors and complications arising after orthotopic transplant remain major challenges to the modern field of heart transplantation. Engineering functional myocardium de novo requires an abundant source of cardiomyocytes, a biocompatible scaffold material and a functional vasculature to sustain the high metabolism of the construct. Progress has been made on several fronts, with cardiac cell biology, stem cells and biomaterials research particularly promising for cardiac tissue engineering, however currently employed strategies for vascularisation have lagged behind and limit the volume of tissue formed. Over ten years we have developed an in vivo tissue engineering model to construct vascularised tissue from various cell and tissue sources, including cardiac tissue. In this article we review the progress made with this approach and others, together with their potential to support a volume of engineered tissue for cardiac tissue engineering where contractile mass impacts directly on functional outcomes in translation to the clinic. It is clear that a scaled-up cardiac tissue engineering solution required for clinical treatment of heart failure will include a robust vascular supply for successful translation. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Escherichia coli as a fatty acid and biodiesel factory: current challenges and future directions.

    PubMed

    Rahman, Ziaur; Rashid, Naim; Nawab, Javed; Ilyas, Muhammad; Sung, Bong Hyun; Kim, Sun Chang

    2016-06-01

    Biodiesel has received widespread attention as a sustainable, environment-friendly, and alternative source of energy. It can be derived from plant, animal, and microbial organisms in the form of vegetable oil, fats, and lipids, respectively. However, biodiesel production from such sources is not economically feasible due to extensive downstream processes, such as trans-esterification and purification. To obtain cost-effective biodiesel, these bottlenecks need to be overcome. Escherichia coli, a model microorganism, has the potential to produce biodiesel directly from ligno-cellulosic sugars, bypassing trans-esterification. In this process, E. coli is engineered to produce biodiesel using metabolic engineering technology. The entire process of biodiesel production is carried out in a single microbial cell, bypassing the expensive downstream processing steps. This review focuses mainly on production of fatty acid and biodiesel in E. coli using metabolic engineering approaches. In the first part, we describe fatty acid biosynthesis in E. coli. In the second half, we discuss bottlenecks and strategies to enhance the production yield. A complete understanding of current developments in E. coli-based biodiesel production and pathway optimization strategies would reduce production costs for biofuels and plant-derived chemicals.

  8. Imaging the Crab nebula when it is flaring in gamma-rays

    NASA Astrophysics Data System (ADS)

    De Luca, Andrea

    2013-10-01

    One of the most intriguing results of the gamma-ray instruments currently in orbit has been the detection of powerful flares from the Crab Nebula. Such events, detected roughly once per year, can be very spectacular. Indeed, in April 2011, for a few days the Crab was by far the brightest source in the gamma-ray sky. Such a dramatic variability challenges our understanding of how pulsar wind nebulae work and defies current astrophysical models for particle acceleration. With the aim of locating the site{s} of the flares, an ad hoc HST strategy must be put in place to be prepared and react promptly in case of a new brightening in gamma rays. We ask here for a triggered TOO observation of the Crab Nebula with ACS/WFC in case a gamma-ray flare is announced by the Agile and/or Fermi missions. This is a crucial part of a multiwavelength program that we are organizing, based on lessons learnt from our follow-up observations of previous flares, including a regular {monthly} monitoring of the source both in X-ray and optical through a joint Chandra-HST proposal.

  9. Imaging the Crab nebula when it is flaring in gamma-rays

    NASA Astrophysics Data System (ADS)

    De Luca, Andrea

    2014-10-01

    One of the most intriguing results of the gamma-ray instruments currently in orbit has been the detection of powerful flares from the Crab Nebula. Such events, with a recurrence time of about once per year, can be so dramatic to make the system the brightest source in the gamma-ray sky, as it occurred in April 2011. Such a discovery challenges our understanding of how pulsar wind nebulae work and defies current astrophysical models for particle acceleration. With the aim of locating the site(s) of the flares, an ad hoc HST strategy have been put in place to be prepared and react promptly in case of a new brightening in gamma rays. We ask here for a triggered TOO observation of the Crab Nebula with ACS/WFC in case a gamma-ray flare is announced by the Agile and/or the Fermi missions. This TOO is crucial part of a multiwavelength program that we have organized, based on lessons learnt from our follow-up observations of previous flares, including a regular (quarterly) monitoring of the source both in X-rays and optical through a joint Chandra-HST proposal.

  10. The emission function of ground-based light sources: State of the art and research challenges

    NASA Astrophysics Data System (ADS)

    Solano Lamphar, Héctor Antonio

    2018-05-01

    To understand the night sky radiance generated by the light emissions of urbanised areas, different researchers are currently proposing various theoretical approaches. The distribution of the radiant intensity as a function of the zenith angle is one of the most unknown properties on modelling skyglow. This is due to the collective effects of the artificial radiation emitted from the ground-based light sources. The emission function is a key property in characterising the sky brightness under arbitrary conditions, therefore it is required by modellers, environmental engineers, urban planners, light pollution researchers, and experimentalists who study the diffuse light of the night sky. As a matter of course, the emission function considers the public lighting system, which is in fact the main generator of the skyglow. Still, another class of light-emitting devices are gaining importance since their overuse and the urban sprawl of recent years. This paper will address the importance of the emission function in modelling skyglow and the factors involved in its characterization. On this subject, the author's intention is to organise, integrate, and evaluate previously published research in order to state the progress of current research toward clarifying this topic.

  11. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics.

    PubMed

    Kirwan, Alan; Utratna, Marta; O'Dwyer, Michael E; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques.

  12. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics

    PubMed Central

    Kirwan, Alan; Utratna, Marta; O'Dwyer, Michael E.; Joshi, Lokesh

    2015-01-01

    Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques. PMID:26509158

  13. Rising to the Forensic Analytical Challenges Associated with the Global Increase in Seizures of Cathinone-derived "Legal Highs"

    NASA Astrophysics Data System (ADS)

    Sutcliffe, O.; Daeid, N. Nic; Kemp, H. F.; Meier-Augenstein, W.

    2012-04-01

    Substances touted as "legal highs" and known by names such as "ivory wave" or "NRG-1" mimic the effects of illegal drugs such as amphetamine, cocaine and ecstasy. Sold as "bath salts", plant food or incense these so-called "designer drugs" can be dangerous but despite this health danger many have not yet been made illegal and are difficult to detect with current drug tests. These "bath salts" can cause euphoria, paranoia, anxiety and hallucinations. They often contain mephedrone, a synthetic compound structurally related to methcathinone, which is found in Khat - a plant that, like mephedrone itself, is illegal to possess in many countries. "Bath salts" are usually labelled as being "not for human consumption" and the name "bath salts" is used by those who sell these substances as a way of circumventing legislation when supplying them. Mephedrone (a synthetic cathinone) was legal (or at least not illegal) in the UK until April 2010 when it was classified as a Class B, Schedule 1 substance (UK Misuse of Drugs Act 1971). The current challenges to law enforcement agencies are: (1) Identification and quantification of new and emerging illicit substances. (2) Tracing or linking product to precursor (i.e. source identification). Here, we present as a potential way of tracing the source of the raw materials, and consequently providing information as to who is making the "bath salts", which is based on identification of products and/or adulterants/excipients by GCMS in combination with isotopic profiling of both precursor and product to determine characteristic shifts or linkages in isotopic composition between starting material used, synthetic processes employed and resultant drug produced.

  14. dLocAuth: a dynamic multifactor authentication scheme for mCommerce applications using independent location-based obfuscation

    NASA Astrophysics Data System (ADS)

    Kuseler, Torben; Lami, Ihsan A.

    2012-06-01

    This paper proposes a new technique to obfuscate an authentication-challenge program (named LocProg) using randomly generated data together with a client's current location in real-time. LocProg can be used to enable any handsetapplication on mobile-devices (e.g. mCommerce on Smartphones) that requires authentication with a remote authenticator (e.g. bank). The motivation of this novel technique is to a) enhance the security against replay attacks, which is currently based on using real-time nonce(s), and b) add a new security factor, which is location verified by two independent sources, to challenge / response methods for authentication. To assure a secure-live transaction, thus reducing the possibility of replay and other remote attacks, the authors have devised a novel technique to obtain the client's location from two independent sources of GPS on the client's side and the cellular network on authenticator's side. The algorithm of LocProg is based on obfuscating "random elements plus a client's data" with a location-based key, generated on the bank side. LocProg is then sent to the client and is designed so it will automatically integrate into the target application on the client's handset. The client can then de-obfuscate LocProg if s/he is within a certain range around the location calculated by the bank and if the correct personal data is supplied. LocProg also has features to protect against trial/error attacks. Analysis of LocAuth's security (trust, threat and system models) and trials based on a prototype implementation (on Android platform) prove the viability and novelty of LocAuth.

  15. Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California

    NASA Astrophysics Data System (ADS)

    Trugman, Daniel T.; Shearer, Peter M.

    2017-04-01

    Earthquake source spectra contain fundamental information about the dynamics of earthquake rupture. However, the inherent tradeoffs in separating source and path effects, when combined with limitations in recorded signal bandwidth, make it challenging to obtain reliable source spectral estimates for large earthquake data sets. We present here a stable and statistically robust spectral decomposition method that iteratively partitions the observed waveform spectra into source, receiver, and path terms. Unlike previous methods of its kind, our new approach provides formal uncertainty estimates and does not assume self-similar scaling in earthquake source properties. Its computational efficiency allows us to examine large data sets (tens of thousands of earthquakes) that would be impractical to analyze using standard empirical Green's function-based approaches. We apply the spectral decomposition technique to P wave spectra from five areas of active contemporary seismicity in Southern California: the Yuha Desert, the San Jacinto Fault, and the Big Bear, Landers, and Hector Mine regions of the Mojave Desert. We show that the source spectra are generally consistent with an increase in median Brune-type stress drop with seismic moment but that this observed deviation from self-similar scaling is both model dependent and varies in strength from region to region. We also present evidence for significant variations in median stress drop and stress drop variability on regional and local length scales. These results both contribute to our current understanding of earthquake source physics and have practical implications for the next generation of ground motion prediction assessments.

  16. Urban Water Services in Fragile States: An Analysis of Drinking Water Sources and Quality in Port Harcourt, Nigeria, and Monrovia, Liberia.

    PubMed

    Kumpel, Emily; Albert, Jeff; Peletz, Rachel; de Waal, Dominick; Hirn, Maximilian; Danilenko, Alexander; Uhl, Vincent; Daw, Ashish; Khush, Ranjiv

    2016-07-06

    Establishing and maintaining public water services in fragile states is a significant development challenge. In anticipation of water infrastructure investments, this study compares drinking water sources and quality between Port Harcourt, Nigeria, and Monrovia, Liberia, two cities recovering from political and economic instability. In both cities, access to piped water is low, and residents rely on a range of other private and public water sources. In Port Harcourt, geographic points for sampling were randomly selected and stratified by population density, whereas in Monrovia, locations for sampling were selected from a current inventory of public water sources. In Port Harcourt, the sampling frame demonstrated extensive reliance on private boreholes and a preference, in both planned and unplanned settlements, for drinking bottled and sachet water. In Monrovia, sample collection focused on public sources (predominantly shallow dug wells). In Port Harcourt, fecal indicator bacteria (FIB) were detected in 25% of sources (N = 566), though concentrations were low. In Monrovia, 57% of sources contained FIB and 22% of sources had nitrate levels that exceeded standards (N = 204). In Monrovia, the convenience of piped water may promote acceptance of the associated water tariffs. However, in Port Harcourt, the high prevalence of self-supply and bottled and sachet drinking water suggests that the consumer's willingness to pay for ongoing municipal water supply improvements may be determined by service reliability and perceptions of water quality. © The American Society of Tropical Medicine and Hygiene.

  17. Urban Water Services in Fragile States: An Analysis of Drinking Water Sources and Quality in Port Harcourt, Nigeria, and Monrovia, Liberia

    PubMed Central

    Kumpel, Emily; Albert, Jeff; Peletz, Rachel; de Waal, Dominick; Hirn, Maximilian; Danilenko, Alexander; Uhl, Vincent; Daw, Ashish; Khush, Ranjiv

    2016-01-01

    Establishing and maintaining public water services in fragile states is a significant development challenge. In anticipation of water infrastructure investments, this study compares drinking water sources and quality between Port Harcourt, Nigeria, and Monrovia, Liberia, two cities recovering from political and economic instability. In both cities, access to piped water is low, and residents rely on a range of other private and public water sources. In Port Harcourt, geographic points for sampling were randomly selected and stratified by population density, whereas in Monrovia, locations for sampling were selected from a current inventory of public water sources. In Port Harcourt, the sampling frame demonstrated extensive reliance on private boreholes and a preference, in both planned and unplanned settlements, for drinking bottled and sachet water. In Monrovia, sample collection focused on public sources (predominantly shallow dug wells). In Port Harcourt, fecal indicator bacteria (FIB) were detected in 25% of sources (N = 566), though concentrations were low. In Monrovia, 57% of sources contained FIB and 22% of sources had nitrate levels that exceeded standards (N = 204). In Monrovia, the convenience of piped water may promote acceptance of the associated water tariffs. However, in Port Harcourt, the high prevalence of self-supply and bottled and sachet drinking water suggests that the consumer's willingness to pay for ongoing municipal water supply improvements may be determined by service reliability and perceptions of water quality. PMID:27114291

  18. Model-Based Least Squares Reconstruction of Coded Source Neutron Radiographs: Integrating the ORNL HFIR CG1D Source Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J; Gregor, Jens; Bingham, Philip R

    2014-01-01

    At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. Tomore » overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.« less

  19. Near Real Time Integration of Satellite and Radar Data for Probabilistic Nearcasting of Severe Weather

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Quinn, P.; Mitchell, A. E.; Baynes, K.; Shum, D.

    2014-12-01

    This talk introduces the audience to some of the very real challenges associated with visualizing data from disparate data sources as encountered during the development of real world applications. In addition to the fundamental challenges of dealing with the data and imagery, this talk discusses usability problems encountered while trying to provide interactive and user-friendly visualization tools. At the end of this talk the audience will be aware of some of the pitfalls of data visualization along with tools and techniques to help mitigate them. There are many sources of variable resolution visualizations of science data available to application developers including NASA's Global Imagery Browse Services (GIBS), however integrating and leveraging visualizations in modern applications faces a number of challenges, including: - Varying visualized Earth "tile sizes" resulting in challenges merging disparate sources - Multiple visualization frameworks and toolkits with varying strengths and weaknesses - Global composite imagery vs. imagery matching EOSDIS granule distribution - Challenges visualizing geographically overlapping data with different temporal bounds - User interaction with overlapping or collocated data - Complex data boundaries and shapes combined with multi-orbit data and polar projections - Discovering the availability of visualizations and the specific parameters, color palettes, and configurations used to produce them In addition to discussing the challenges and approaches involved in visualizing disparate data, we will discuss solutions and components we'll be making available as open source to encourage reuse and accelerate application development.

  20. An overview of negative hydrogen ion sources for accelerators

    NASA Astrophysics Data System (ADS)

    Faircloth, Dan; Lawrie, Scott

    2018-02-01

    An overview of high current (>1 mA) negative hydrogen ion (H-) sources that are currently used on particle accelerators. The current understanding of how H- ions are produced is summarised. Issues relating to caesium usage are explored. The different ways of expressing emittance and beam currents are clarified. Source technology naming conventions are defined and generalised descriptions of each source technology are provided. Examples of currently operating sources are outlined, with their current status and future outlook given. A comparative table is provided.

  1. Gold-Coated M13 Bacteriophage as a Template for Glucose Oxidase Biofuel Cells with Direct Electron Transfer.

    PubMed

    Blaik, Rita A; Lan, Esther; Huang, Yu; Dunn, Bruce

    2016-01-26

    Glucose oxidase-based biofuel cells are a promising source of alternative energy for small device applications, but still face the challenge of achieving robust electrical contact between the redox enzymes and the current collector. This paper reports on the design of an electrode consisting of glucose oxidase covalently attached to gold nanoparticles that are assembled onto a genetically engineered M13 bacteriophage using EDC-NHS chemistry. The engineered phage is modified at the pIII protein to attach onto a gold substrate and serves as a high-surface-area template. The resulting "nanomesh" architecture exhibits direct electron transfer (DET) and achieves a higher peak current per unit area of 1.2 mA/cm(2) compared to most other DET attachment schemes. The final enzyme surface coverage on the electrode was calculated to be approximately 4.74 × 10(-8) mol/cm(2), which is a significant improvement over most current glucose oxidase (GOx) DET attachment methods.

  2. Nuclear Energy Present and Future

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.

    2006-10-01

    Nuclear power plants currently generate about 20% of US and 17% of world electricity, which makes nuclear the largest non-emitting energy source in current use. Concerns about global climate change have led to a remarkable transformation of attitudes towards nuclear energy. There remain key challenges that must be faced when considering expansion of its contribution. In summary they are: Economics, Safety, Waste Disposal, and Proliferation. Electricity from legacy fission plants is highly competitive with fossil, but perceived financial risks make the large capital cost fraction a key hurdle to new-construction, and costs of 2 per installed Watt electrical are currently considered only just economically attractive. Proliferation of nuclear-weapons-enabling technology is a major concern for global stability, in which fusion may have significant technical advantages over fission. But proliferation control requires a combination of both technical and political initiatives. The feasibility of supplying process heat or hydrogen from nuclear energy inspires additional research into novel reactor concepts and associated technologies. The presentation will lay out this overall context of the nuclear energy renaissance.

  3. Can fungi compete with marine sources for chitosan production?

    PubMed

    Ghormade, V; Pathan, E K; Deshpande, M V

    2017-11-01

    Chitosan, a β-1,4-linked glucosamine polymer is formed by deacetylation of chitin. It has a wide range of applications from agriculture to human health care products. Chitosan is commercially produced from shellfish, shrimp waste, crab and lobster processing using strong alkalis at high temperatures for long time periods. The production of chitin and chitosan from fungal sources has gained increased attention in recent years due to potential advantages in terms of homogenous polymer length, high degree of deacetylation and solubility over the current marine source. Zygomycetous fungi such as Absidia coerulea, Benjaminiella poitrasii, Cunninghamella elegans, Gongrenella butleri, Mucor rouxii, Mucor racemosus and Rhizopus oryzae have been studied extensively. Isolation of chitosan are reported from few edible basidiomycetous fungi like Agaricus bisporus, Lentinula edodes and Pleurotus sajor-caju. Other organisms from mycotech industries explored for chitosan production are Aspergillus niger, Penicillium chrysogenum, Saccharomyces cerevisiae and other wine yeasts. Number of aspects such as value addition to the existing applications of fungi, utilization of waste from agriculture sector, and issues and challenges for the production of fungal chitosan to compete with existing sources, metabolic engineering and novel applications have been discussed to adjudge the potential of fungal sources for commercial chitosan production. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Measuring impairment when diagnosing adolescent ADHD: Differentiating problems due to ADHD versus other sources.

    PubMed

    Vazquez, Alejandro L; H Sibley, Margaret; Campez, Mileini

    2018-06-01

    The DSM-5 requires clinicians to link ADHD symptoms to clinically meaningful impairments in daily life functioning. Measuring impairment during ADHD assessments may be particularly challenging in adolescence, when ADHD is often not the sole source of a youth's difficulties. Existing impairment rating scales are criticized for not specifying ADHD as the source of impairment in their instructions, leading to potential problems with rating scale specificity. The current study utilized a within subjects design (N = 107) to compare parent report of impairment on two versions of a global impairment measure: one that specified ADHD as the source of impairment (Impairment Rating Scale-ADHD) and a standard version that did not (Impairment Rating Scale). On the standard family impairment item, parents endorsed greater impairment as compared to the IRS-ADHD. This finding was particularly pronounced when parents reported high levels of parenting stress. More severe ADHD symptoms were associated with greater concordance between the two versions. Findings indicate that adolescent family related impairments reported during ADHD assessments may be due to sources other than ADHD symptoms, such as developmental maladjustment. To prevent false positive diagnoses, symptom-specific wording may optimize impairment measures when assessing family functioning in diagnostic assessments for adolescents with ADHD. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Northern Regions of Russia as Alternative Sources of Pure Water for Sustainable Development: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Tsukerman, V. A.; Gudkov, A. V.; Ivanov, S. V.

    The paper discusses problems associated with the existing crisis of water scarcity in the modern conditions of the global water use. Available alternative sources of fresh water may be underground and surface waters of the North and the Arctic. Investigated the current situation and condition of fresh water resources in the technological and industrial development of the North and Arctic. The necessity of developing and using green technologies and measures to prevent pollution of surface and ground water from industrial sectors of the Northern regions is shown. Studied modern technologies and techniques for monitoring groundwater and determination of their age in order to avoid and prevent the effects of environmental contaminants. The ways of use of innovative production technologies of fresh and clean water of north Russia for sustainable development, and delivery of water in the needy regions of the world are investigated.

  6. Reduced Graphene Oxide Anodes for Potential Application in Algae Biophotovoltaic Platforms

    PubMed Central

    Ng, Fong-Lee; Jaafar, Muhammad Musoddiq; Phang, Siew-Moi; Chan, Zhijian; Salleh, Nurul Anati; Azmi, Siti Zulfikriyah; Yunus, Kamran; Fisher, Adrian C.; Periasamy, Vengadesh

    2014-01-01

    The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm−2 using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems. PMID:25531093

  7. High-harmonic generation in amorphous solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yong Sing; Yin, Yanchun; Wu, Yi

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  8. Flexible and stretchable power sources for wearable electronics

    PubMed Central

    Zamarayeva, Alla M.; Ostfeld, Aminy E.; Wang, Michael; Duey, Jerica K.; Deckman, Igal; Lechêne, Balthazar P.; Davies, Greg; Steingart, Daniel A.; Arias, Ana Claudia

    2017-01-01

    Flexible and stretchable power sources represent a key technology for the realization of wearable electronics. Developing flexible and stretchable batteries with mechanical endurance that is on par with commercial standards and offer compliance while retaining safety remains a significant challenge. We present a unique approach that demonstrates mechanically robust, intrinsically safe silver-zinc batteries. This approach uses current collectors with enhanced mechanical design, such as helical springs and serpentines, as a structural support and backbone for all battery components. We show wire-shaped batteries based on helical band springs that are resilient to fatigue and retain electrochemical performance over 17,000 flexure cycles at a 0.5-cm bending radius. Serpentine-shaped batteries can be stretched with tunable degree and directionality while maintaining their specific capacity. Finally, the batteries are integrated, as a wearable device, with a photovoltaic module that enables recharging of the batteries. PMID:28630897

  9. Antibody mimetics: promising complementary agents to animal-sourced antibodies.

    PubMed

    Baloch, Abdul Rasheed; Baloch, Abdul Wahid; Sutton, Brian J; Zhang, Xiaoying

    2016-01-01

    Despite their wide use as therapeutic, diagnostic and detection agents, the limitations of polyclonal and monoclonal antibodies have inspired scientists to design the next generation biomedical agents, so-called antibody mimetics that offer many advantages over conventional antibodies. Antibody mimetics can be constructed by protein-directed evolution or fusion of complementarity-determining regions through intervening framework regions. Substantial progress in exploiting human, butterfly (Pieris brassicae) and bacterial systems to design and select mimetics using display technologies has been made in the past 10 years, and one of these mimetics [Kalbitor® (Dyax)] has made its way to market. Many challenges lie ahead to develop mimetics for various biomedical applications, especially those for which conventional antibodies are ineffective, and this review describes the current characteristics, construction and applications of antibody mimetics compared to animal-sourced antibodies. The possible limitations of mimetics and future perspectives are also discussed.

  10. Text Detection, Tracking and Recognition in Video: A Comprehensive Survey.

    PubMed

    Yin, Xu-Cheng; Zuo, Ze-Yu; Tian, Shu; Liu, Cheng-Lin

    2016-04-14

    Intelligent analysis of video data is currently in wide demand because video is a major source of sensory data in our lives. Text is a prominent and direct source of information in video, while recent surveys of text detection and recognition in imagery [1], [2] focus mainly on text extraction from scene images. Here, this paper presents a comprehensive survey of text detection, tracking and recognition in video with three major contributions. First, a generic framework is proposed for video text extraction that uniformly describes detection, tracking, recognition, and their relations and interactions. Second, within this framework, a variety of methods, systems and evaluation protocols of video text extraction are summarized, compared, and analyzed. Existing text tracking techniques, tracking based detection and recognition techniques are specifically highlighted. Third, related applications, prominent challenges, and future directions for video text extraction (especially from scene videos and web videos) are also thoroughly discussed.

  11. THz Local Oscillator Technology

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran

    2004-01-01

    The last decade has seen a number of technological advancements that have now made it possible to implement fully solid state local oscillator chains up to 2 THz. These chains are composed of cascaded planar multiplier stages that are pumped with W-band high power sources. The high power W-band sources are achieved by power combining MMIC amplifiers and can provide in access of 150 mW with about 10% bandwidth. Planar diode technology has also enabled novel circuit topologies that can take advantage of the high input power and demonstrate significant efficiencies well into the THz range. Cascaded chains to 1.9 THz have now been demonstrated with enough output power to successfully pump hot-electron bolometer mixers in this frequency range. An overview of the current State-of-the-Art of the local oscillator technology will be presented along with highlighting future trends and challenges.

  12. Coastal aquifers: Scientific advances in the face of global environmental challenges

    NASA Astrophysics Data System (ADS)

    Post, Vincent E. A.; Werner, Adrian D.

    2017-08-01

    Coastal aquifers embody the subsurface transition between terrestrial and marine systems, and form the almost invisible pathway for tremendous volumes of freshwater that flow to the ocean. Changing conditions of the earth's landscapes and oceans can disrupt the fragile natural equilibrium between fresh and saltwater that exists in coastal zones. Among these, over-abstraction of groundwater is considered the leading man-made cause of seawater intrusion. Moreover, many of the world's largest urban settings, where sources of contamination are profuse, have been built over the freshwater in coastal aquifers. Thus, coastal aquifers are important receptors of human impacts to water on Earth (Michael et al., 2017). This Special Issue on 'Investigation and Management of Coastal Aquifers' contains current scientific advances on the topic, dealing with the storage and quality of water, affected by stressors ranging in scale from point source contamination to global climate change.

  13. Reduced graphene oxide anodes for potential application in algae biophotovoltaic platforms.

    PubMed

    Ng, Fong-Lee; Jaafar, Muhammad Musoddiq; Phang, Siew-Moi; Chan, Zhijian; Salleh, Nurul Anati; Azmi, Siti Zulfikriyah; Yunus, Kamran; Fisher, Adrian C; Periasamy, Vengadesh

    2014-12-22

    The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm(-2) using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems.

  14. A mini review on renewable sources for biofuel.

    PubMed

    Ho, Dang P; Ngo, Huu Hao; Guo, Wenshan

    2014-10-01

    Rapid growth in both global energy demand and carbon dioxide emissions associated with the use of fossil fuels has driven the search for alternative sources which are renewable and have a lower environmental impact. This paper reviews the availability and bioenergy potentials of the current biomass feedstocks. These include (i) food crops such as sugarcane, corn and vegetable oils, classified as the first generation feedstocks, and (ii) lignocellulosic biomass derived from agricultural and forestry residues and municipal waste, as second generation feedstocks. The environmental and socioeconomic limitations of the first generation feedstocks have placed greater emphasis on the lignocellulosic biomass, of which the conversion technologies still faces major constraints to full commercial deployment. Key technical challenges and opportunities of the lignocellulosic biomass-to-bioenergy production are discussed in comparison with the first generation technologies. The potential of the emerging third generation biofuel from algal biomass is also reviewed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Municipal solid waste management in Malaysia: practices and challenges.

    PubMed

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  16. Anomalous Galactic Cosmic Rays in the Framework of AMS-02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khiali, Behrouz; Haino, Sadakazu; Feng, Jie, E-mail: behrouz.khiali@cern.ch

    2017-02-01

    The cosmic-ray (CR) energy spectra of protons and helium nuclei, which are the most abundant components of cosmic radiation, exhibit a remarkable hardening at energies above 100 GeV/nucleon. Recent data from AMS-02 confirm this feature with a higher significance. These data challenge the current models of CR acceleration in Galactic sources and propagation in the Galaxy. Here, we explain the observed break in the spectra of protons and helium nuclei in light of recent advances in CR diffusion theories in turbulent astrophysical sources as being a result of a transition between different CR diffusion regimes. We reconstruct the observed CRmore » spectra using the fact that a transition from normal diffusion to superdiffusion changes the efficiency of particle acceleration and causes the change in the spectral index. We find that calculated proton and helium spectra match the data very well.« less

  17. High-harmonic generation in amorphous solids

    DOE PAGES

    You, Yong Sing; Yin, Yanchun; Wu, Yi; ...

    2017-09-28

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  18. Challenges facing translational research organizations in China: a qualitative multiple case study

    PubMed Central

    2013-01-01

    Background Translational medicine is attracting much attention worldwide and many translational research organizations (TROs) have been established. In China, translational medicine has developed rapidly, but faces many challenges. This study was aimed at exploring these challenges faced by emerging TROs in China. Method A qualitative, multiple case study approach was used to assess the challenges faced by TROs in China. Data were collected between May and August 2012. Results Eight cases were identified. Overall, four themes that characterized TROs in China emerged from analyses: 1. objectives, organizer, and funding resources, 2. participating partners and research teams, 3. management, and 4. achievements. All TROs had objectives related to translating basic discovery to clinic treatment and cultivating translational researchers. In terms of organizer and funding resources, 7 out of 8 TROs were launched only by universities and/or hospitals, and funded mostly through research grants. As for participating partners and multidisciplinary research teams, all but one of the TROs only involved biomedical research institutions who were interested in translational research, and characterized as clinical research centers; 7 out of 8 TROs involved only researchers from biomedicine and clinical disciplines and none involved disciplines related to education, ethnicity, and sociology, or engaged the community. Current management of the TROs were generally nested within the traditional research management paradigms, and failed to adapt to the tenets of translational research. Half of the TROs were at developmental stages defined as infrastructure construction and recruitment of translational researchers. Conclusions TROs in China face the challenge of attracting sustainable funding sources, widening multidisciplinary cooperation, cultivating multi-disciplinary translational researchers and adapting current research management to translational research. Greater emphasis should be placed on increasing multidisciplinary cooperation, and innovating in education programs to cultivate of translational researchers. Efforts should be made to reform research management in TROs, and establish sustainable funding resources. PMID:24119837

  19. Optimising the use of observational electronic health record data: Current issues, evolving opportunities, strategies and scope for collaboration.

    PubMed

    Liaw, Siaw-Teng; Powell-Davies, Gawaine; Pearce, Christopher; Britt, Helena; McGlynn, Lisa; Harris, Mark F

    2016-03-01

    With increasing computerisation in general practice, national primary care networks are mooted as sources of data for health services and population health research and planning. Existing data collection programs - MedicinesInsight, Improvement Foundation, Bettering the Evaluation and Care of Health (BEACH) - vary in purpose, governance, methodologies and tools. General practitioners (GPs) have significant roles as collectors, managers and users of electronic health record (EHR) data. They need to understand the challenges to their clinical and managerial roles and responsibilities. The aim of this article is to examine the primary and secondary use of EHR data, identify challenges, discuss solutions and explore directions. Representatives from existing programs, Medicare Locals, Local Health Districts and research networks held workshops on the scope, challenges and approaches to the quality and use of EHR data. Challenges included data quality, interoperability, fragmented governance, proprietary software, transparency, sustainability, competing ethical and privacy perspectives, and cognitive load on patients and clinicians. Proposed solutions included effective change management; transparent governance and management of intellectual property, data quality, security, ethical access, and privacy; common data models, metadata and tools; and patient/community engagement. Collaboration and common approaches to tools, platforms and governance are needed. Processes and structures must be transparent and acceptable to GPs.

  20. The Challenges Facing School Governing Bodies in England: A "Perfect Storm"?

    ERIC Educational Resources Information Center

    James, Chris; Brammer, Steve; Connolly, Michael; Spicer, David Eddy; James, Jane; Jones, Jeff

    2013-01-01

    The governing bodies of publicly funded schools in England are currently facing a number of substantive challenges of various kinds. Many of the challenges are long-standing, while others relate to the current context for governing wrought by recent education policy developments initiated by central government. A number of the challenges are…

  1. Web catalog of oceanographic data using GeoNetwork

    NASA Astrophysics Data System (ADS)

    Marinova, Veselka; Stefanov, Asen

    2017-04-01

    Most of the data collected, analyzed and used by Bulgarian oceanographic data center (BgODC) from scientific cruises, argo floats, ferry boxes and real time operating systems are spatially oriented and need to be displayed on the map. The challenge is to make spatial information more accessible to users, decision makers and scientists. In order to meet this challenge, BgODC concentrate its efforts on improving dynamic and standardized access to their geospatial data as well as those from various related organizations and institutions. BgODC currently is implementing a project to create a geospatial portal for distributing metadata and search, exchange and harvesting spatial data. There are many open source software solutions able to create such spatial data infrastructure (SDI). Finally, the GeoNetwork open source is chosen, as it is already widespread. This software is free, effective and "cheap" solution for implementing SDI at organization level. It is platform independent and runs under many operating systems. Filling of the catalog goes through these practical steps: • Managing and storing data reliably within MS SQL spatial data base; • Registration of maps and data of various formats and sources in GeoServer (most popular open source geospatial server embedded with GeoNetwork) ; • Filling added meta data and publishing geospatial data at the desktop of GeoNetwork. GeoServer and GeoNetwork are based on Java so they require installing of a servlet engine like Tomcat. The experience gained from the use of GeoNetwork Open Source confirms that the catalog meets the requirements for data management and is flexible enough to customize. Building the catalog facilitates sustainable data exchange between end users. The catalog is a big step towards implementation of the INSPIRE directive due to availability of many features necessary for producing "INSPIRE compliant" metadata records. The catalog now contains all available GIS data provided by BgODC for Internet access. Searching data within the catalog is based upon geographic extent, theme type and free text search.

  2. Pharmacopollution and Household Waste Medicine (HWM): how reverse logistics is environmentally important to Brazil.

    PubMed

    Pereira, André Luiz; de Vasconcelos Barros, Raphael Tobias; Pereira, Sandra Rosa

    2017-11-01

    Pharmacopollution is a public health and environmental outcome of some active pharmaceutical ingredients (API) and endocrine-disrupting compounds (EDC) dispersed through water and/or soil. Its most important sources are the pharmaceutical industry, healthcare facilities (e.g., hospitals), livestock, aquaculture, and households (patients' excretion and littering). The last source is the focus of this article. Research questions are "What is the Household Waste Medicine (HWM) phenomenon?", "How HWM and pharmacopollution are related?", and "Why is a reverse logistic system necessary for HWM in Brazil?" This article followed the seven steps proposed by Rother (2007) for a systematic review based on the Cochrane Handbook and the National Health Service (NHS) Center for Reviews Dissemination (CDR) Report. The HWM phenomenon brings many environmental, public health, and, social challenges. The insufficient data is a real challenge to assessing potential human health risks and API concentrations. Therefore, the hazard of long-term exposure to low concentrations of pharmacopollutants and the combined effects of API mixtures is still uncertain. HWM are strongly related to pharmacopollution, as this review shows. The Brazilian HWM case is remarkable because it is the fourth pharmaceutical market (US$ 65,971 billion), with a wide number of private pharmacies and drugstores (3.3: 10,000 pharmacy/inhabitants), self-medication habits, and no national take-back program. The HWM generation is estimated in 56.6 g/per capita, or 10,800 t/year. The absence of a reverse logistics for HWM can lead to serious environmental and public health challenges. The sector agreement for HWM is currently under public consultation.

  3. Production and supply of high-quality food protein for human consumption: sustainability, challenges, and innovations.

    PubMed

    Wu, Guoyao; Fanzo, Jessica; Miller, Dennis D; Pingali, Prabhu; Post, Mark; Steiner, Jean L; Thalacker-Mercer, Anna E

    2014-08-01

    The Food and Agriculture Organization of the United Nations estimates that 843 million people worldwide are hungry and a greater number suffer from nutrient deficiencies. Approximately one billion people have inadequate protein intake. The challenge of preventing hunger and malnutrition will become even greater as the global population grows from the current 7.2 billion people to 9.6 billion by 2050. With increases in income, population, and demand for more nutrient-dense foods, global meat production is projected to increase by 206 million tons per year during the next 35 years. These changes in population and dietary practices have led to a tremendous rise in the demand for food protein, especially animal-source protein. Consuming the required amounts of protein is fundamental to human growth and health. Protein needs can be met through intakes of animal and plant-source foods. Increased consumption of food proteins is associated with increased greenhouse gas emissions and overutilization of water. Consequently, concerns exist regarding impacts of agricultural production, processing and distribution of food protein on the environment, ecosystem, and sustainability. To address these challenging issues, the New York Academy of Sciences organized the conference "Frontiers in Agricultural Sustainability: Studying the Protein Supply Chain to Improve Dietary Quality" to explore sustainable innovations in food science and programming aimed at producing the required quality and quantity of protein through improved supply chains worldwide. This report provides an extensive discussion of these issues and summaries of the presentations from the conference. © 2014 New York Academy of Sciences.

  4. Current Source Logic Gate

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)

    2017-01-01

    A current source logic gate with depletion mode field effect transistor ("FET") transistors and resistors may include a current source, a current steering switch input stage, and a resistor divider level shifting output stage. The current source may include a transistor and a current source resistor. The current steering switch input stage may include a transistor to steer current to set an output stage bias point depending on an input logic signal state. The resistor divider level shifting output stage may include a first resistor and a second resistor to set the output stage point and produce valid output logic signal states. The transistor of the current steering switch input stage may function as a switch to provide at least two operating points.

  5. OGLE-2015-BLG-1459L: The Challenges of Exo-moon Microlensing

    NASA Astrophysics Data System (ADS)

    Hwang, K.-H.; Udalski, A.; Bond, I. A.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Pawlak, M.; Poleski, R.; Szymański, M. K.; Skowron, J.; Soszyński, I.; Mróz, P.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; OGLE Collaboration; Abe, F.; Asakura, Y.; Barry, R.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Kawasaki, K.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyazaki, S.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; MOA Collaboration

    2018-06-01

    We show that dense OGLE and KMTNet I-band survey data require four bodies (sources plus lenses) to explain the microlensing light curve of OGLE-2015-BLG-1459. However, these can equally well consist of three lenses and one source (3L1S), two lenses and two sources (2L2S), or one lens and three sources (1L3S). In the 3L1S and 2L2S interpretations, the host is a brown dwarf and the dominant companion is a Neptune-class planet, with the third body (in the 3L1S case) being a Mars-class object that could have been a moon of the planet. In the 1L3S solution, the light curve anomalies are explained by a tight (five stellar radii) low-luminosity binary source that is offset from the principal source of the event by ∼ 0.17 {au}. These degeneracies are resolved in favor of the 1L3S solution by color effects derived from comparison to MOA data, which are taken in a slightly different (R/I) passband. To enable current and future (WFIRST) surveys to routinely characterize exo-moons and distinguish among such exotic systems requires an observing strategy that includes both a cadence faster than 9 minute‑1 and observations in a second band on a similar timescale.

  6. Something Old, Something New, Something Borrowed, and Something Blue. New Ideas for Challenge and Adventure Programs.

    ERIC Educational Resources Information Center

    Cain, Jim

    This paper provides information sources and ideas for challenge and adventure activities. Main information sources are listed: libraries, ERIC, and several publishers and programs. Some useful publications are described that provide activities and ideas related to outdoor education, environmental issues, games, special populations, educational…

  7. Automated Source-Code-Based Testing of Object-Oriented Software

    NASA Astrophysics Data System (ADS)

    Gerlich, Ralf; Gerlich, Rainer; Dietrich, Carsten

    2014-08-01

    With the advent of languages such as C++ and Java in mission- and safety-critical space on-board software, new challenges for testing and specifically automated testing arise. In this paper we discuss some of these challenges, consequences and solutions based on an experiment in automated source- code-based testing for C++.

  8. Iterative Strategies for Aftershock Classification in Automatic Seismic Processing Pipelines

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Kværna, Tormod; Harris, David B.; Dodge, Douglas A.

    2016-04-01

    Aftershock sequences following very large earthquakes present enormous challenges to near-realtime generation of seismic bulletins. The increase in analyst resources needed to relocate an inflated number of events is compounded by failures of phase association algorithms and a significant deterioration in the quality of underlying fully automatic event bulletins. Current processing pipelines were designed a generation ago and, due to computational limitations of the time, are usually limited to single passes over the raw data. With current processing capability, multiple passes over the data are feasible. Processing the raw data at each station currently generates parametric data streams which are then scanned by a phase association algorithm to form event hypotheses. We consider the scenario where a large earthquake has occurred and propose to define a region of likely aftershock activity in which events are detected and accurately located using a separate specially targeted semi-automatic process. This effort may focus on so-called pattern detectors, but here we demonstrate a more general grid search algorithm which may cover wider source regions without requiring waveform similarity. Given many well-located aftershocks within our source region, we may remove all associated phases from the original detection lists prior to a new iteration of the phase association algorithm. We provide a proof-of-concept example for the 2015 Gorkha sequence, Nepal, recorded on seismic arrays of the International Monitoring System. Even with very conservative conditions for defining event hypotheses within the aftershock source region, we can automatically remove over half of the original detections which could have been generated by Nepal earthquakes and reduce the likelihood of false associations and spurious event hypotheses. Further reductions in the number of detections in the parametric data streams are likely using correlation and subspace detectors and/or empirical matched field processing.

  9. Kidney regeneration: Where we are and future perspectives

    PubMed Central

    Zambon, Joao Paulo; Magalhaes, Renata S; Ko, Inkap; Ross, Christina L; Orlando, Giuseppe; Peloso, Andrea; Atala, Anthony; Yoo, James J

    2014-01-01

    In 2012, about 16487 people received kidney transplants in the United States, whereas 95022 candidates were on the waiting list by the end of the year. Despite advances in renal transplant immunology, approximately 40% of recipients will die or lose graft within 10 years. The limitations of current therapies for renal failure have led researchers to explore the development of modalities that could improve, restore, or replace the renal function. The aim of this paper is to describe a reasonable approach for kidney regeneration and review the current literature regarding cell sources and mechanisms to develop a bioengineering kidney. Due to kidneys peculiar anatomy, extracellular matrix based scaffolds are rational starting point for their regeneration. The perfusion of detergents through the kidney vasculature is an efficient method for delivering decellularizing agents to cells and for removing of cellular material from the tissue. Many efforts have focused on the search of a reliable cell source to provide enrichment for achieving stable renal cell systems. For an efficient bioengineered kidney, these cells must be attached to the organ and then maturated into the bioractors, which simulates the human body environment. A functional bioengineered kidney is still a big challenge for scientists. In the last ten years we have got many improvements on the field of solid organ regeneration; however, we are still far away from the main target. Currently, regenerative centers worldwide have been striving to find feasible strategies to develop bioengineered kidneys. Cell-scaffold technology gives hope to end-stage renal disease patients who struggle with morbidity and mortality due to extended periods on dialysis or immunosupression. The potential of bioengineered organ is to provide a reliable source of organs, which can be refunctionalized and transplanted. PMID:25332894

  10. Integrated tokamak modeling: when physics informs engineering and research planning

    NASA Astrophysics Data System (ADS)

    Poli, Francesca

    2017-10-01

    Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.

  11. A new approach for design and investigation of junction-less tunnel FET using electrically doped mechanism

    NASA Astrophysics Data System (ADS)

    Nigam, Kaushal; Kondekar, Pravin; Sharma, Dheeraj; Raad, Bhagwan Ram

    2016-10-01

    For the first time, a distinctive approach based on electrically doped concept is used for the formation of novel double gate tunnel field effect transistor (TFET). For this, the initially heavily doped n+ substrate is converted into n+-i-n+-i (Drain-Channel-Source) by the selection of appropriate work functions of control gate (CG) and polarity gate (PG) as 4.7 eV. Further, the formation of p+ region for source is performed by applying -1.2 V at PG. Hence, the structure behave like a n+-i-n+-p+ gated TFET, whereas, the control gate is used to modulate the effective tunneling barrier width. The physical realization of delta doped n+ layer near to source region is a challenging task for improving the device performance in terms of ON current and subthreshold slope. So, the proposed work will provide a better platform for fabrication of n+-i-n+-p+ TFET with low cost and suppressed random dopant fluctuation (RDF) effects. ATLAS TCAD device simulator is used to carry out the simulation work.

  12. Using Model Point Spread Functions to Identifying Binary Brown Dwarf Systems

    NASA Astrophysics Data System (ADS)

    Matt, Kyle; Stephens, Denise C.; Lunsford, Leanne T.

    2017-01-01

    A Brown Dwarf (BD) is a celestial object that is not massive enough to undergo hydrogen fusion in its core. BDs can form in pairs called binaries. Due to the great distances between Earth and these BDs, they act as point sources of light and the angular separation between binary BDs can be small enough to appear as a single, unresolved object in images, according to Rayleigh Criterion. It is not currently possible to resolve some of these objects into separate light sources. Stephens and Noll (2006) developed a method that used model point spread functions (PSFs) to identify binary Trans-Neptunian Objects, we will use this method to identify binary BD systems in the Hubble Space Telescope archive. This method works by comparing model PSFs of single and binary sources to the observed PSFs. We also use a method to compare model spectral data for single and binary fits to determine the best parameter values for each component of the system. We describe these methods, its challenges and other possible uses in this poster.

  13. Design and implementation of an open source indexing solution for a large set of radiological reports and images.

    PubMed

    Voet, T; Devolder, P; Pynoo, B; Vercruysse, J; Duyck, P

    2007-11-01

    This paper hopes to share the insights we experienced during designing, building, and running an indexing solution for a large set of radiological reports and images in a production environment for more than 3 years. Several technical challenges were encountered and solved in the course of this project. One hundred four million words in 1.8 million radiological reports from 1989 to the present were indexed and became instantaneously searchable in a user-friendly fashion; the median query duration is only 31 ms. Currently, our highly tuned index holds 332,088 unique words in four languages. The indexing system is feature-rich and language-independent and allows for making complex queries. For research and training purposes it certainly is a valuable and convenient addition to our radiology informatics toolbox. Extended use of open-source technology dramatically reduced both implementation time and cost. All software we developed related to the indexing project has been made available to the open-source community covered by an unrestricted Berkeley Software Distribution-style license.

  14. Whiskers aid anemotaxis in rats.

    PubMed

    Yu, Yan S W; Graff, Matthew M; Bresee, Chris S; Man, Yan B; Hartmann, Mitra J Z

    2016-08-01

    Observation of terrestrial mammals suggests that they can follow the wind (anemotaxis), but the sensory cues underlying this ability have not been studied. We identify a significant contribution to anemotaxis mediated by whiskers (vibrissae), a modality previously studied only in the context of direct tactile contact. Five rats trained on a five-alternative forced-choice airflow localization task exhibited significant performance decrements after vibrissal removal. In contrast, vibrissal removal did not disrupt the performance of control animals trained to localize a light source. The performance decrement of individual rats was related to their airspeed threshold for successful localization: animals that found the task more challenging relied more on the vibrissae for localization cues. Following vibrissal removal, the rats deviated more from the straight-line path to the air source, choosing sources farther from the correct location. Our results indicate that rats can perform anemotaxis and that whiskers greatly facilitate this ability. Because air currents carry information about both odor content and location, these findings are discussed in terms of the adaptive significance of the interaction between sniffing and whisking in rodents.

  15. Numerical Simulations of Reacting Flows Using Asynchrony-Tolerant Schemes for Exascale Computing

    NASA Astrophysics Data System (ADS)

    Cleary, Emmet; Konduri, Aditya; Chen, Jacqueline

    2017-11-01

    Communication and data synchronization between processing elements (PEs) are likely to pose a major challenge in scalability of solvers at the exascale. Recently developed asynchrony-tolerant (AT) finite difference schemes address this issue by relaxing communication and synchronization between PEs at a mathematical level while preserving accuracy, resulting in improved scalability. The performance of these schemes has been validated for simple linear and nonlinear homogeneous PDEs. However, many problems of practical interest are governed by highly nonlinear PDEs with source terms, whose solution may be sensitive to perturbations caused by communication asynchrony. The current work applies the AT schemes to combustion problems with chemical source terms, yielding a stiff system of PDEs with nonlinear source terms highly sensitive to temperature. Examples shown will use single-step and multi-step CH4 mechanisms for 1D premixed and nonpremixed flames. Error analysis will be discussed both in physical and spectral space. Results show that additional errors introduced by the AT schemes are negligible and the schemes preserve their accuracy. We acknowledge funding from the DOE Computational Science Graduate Fellowship administered by the Krell Institute.

  16. Whiskers aid anemotaxis in rats

    PubMed Central

    Yu, Yan S. W.; Graff, Matthew M.; Bresee, Chris S.; Man, Yan B.; Hartmann, Mitra J. Z.

    2016-01-01

    Observation of terrestrial mammals suggests that they can follow the wind (anemotaxis), but the sensory cues underlying this ability have not been studied. We identify a significant contribution to anemotaxis mediated by whiskers (vibrissae), a modality previously studied only in the context of direct tactile contact. Five rats trained on a five-alternative forced-choice airflow localization task exhibited significant performance decrements after vibrissal removal. In contrast, vibrissal removal did not disrupt the performance of control animals trained to localize a light source. The performance decrement of individual rats was related to their airspeed threshold for successful localization: animals that found the task more challenging relied more on the vibrissae for localization cues. Following vibrissal removal, the rats deviated more from the straight-line path to the air source, choosing sources farther from the correct location. Our results indicate that rats can perform anemotaxis and that whiskers greatly facilitate this ability. Because air currents carry information about both odor content and location, these findings are discussed in terms of the adaptive significance of the interaction between sniffing and whisking in rodents. PMID:27574705

  17. Emerging materials for lowering atmospheric carbon

    DOE PAGES

    Barkakaty, Balaka; Sumpter, Bobby G.; Ivanov, Ilia N.; ...

    2016-12-08

    CO 2 emissions from anthropogenic sources and the rate at which they increase could have deep global ramifications such as irreversible climate change and increased natural disasters. Because greater than 50% of anthropogenic CO 2 emissions come from small, distributed sectors such as homes, offices, and transportation sources, most renewable energy systems and on-site carbon capture technologies for reducing future CO 2 emissions cannot be effectively utilized. This problem might be mediated by considering novel materials and technologies for directly capturing/removing CO 2 from air. But, compared to materials for capturing CO 2 at on-site emission sources, materials for capturingmore » CO 2 directly from air must be more selective to CO 2, and should operate and be stable at near ambient conditions. Here, we briefly summarize the recent developments in materials for capturing carbon dioxide directly from air. Furthermore, we discuss the challenges in this field and offer a perspective for developing the current state-of-art and also highlight the potential of a few recent discoveries in materials science that show potential for advanced application of air capture technology.« less

  18. Crowd Sourcing for Challenging Technical Problems and Business Model

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth

    2011-01-01

    Crowd sourcing may be defined as the act of outsourcing tasks that are traditionally performed by an employee or contractor to an undefined, generally large group of people or community (a crowd) in the form of an open call. The open call may be issued by an organization wishing to find a solution to a particular problem or complete a task, or by an open innovation service provider on behalf of that organization. In 2008, the Space Life Sciences Directorate (SLSD), with the support of Wyle Integrated Science and Engineering, established and implemented pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical challenges. These unsolved technical problems were converted to problem statements, also called "Challenges" or "Technical Needs" by the various open innovation service providers, and were then posted externally to seek solutions. In addition, an open call was issued internally to NASA employees Agency wide (10 Field Centers and NASA HQ) using an open innovation service provider crowd sourcing platform to post NASA challenges from each Center for the others to propose solutions). From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external problems or challenges were posted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive crowd sourcing platform designed for internal use by an organization. This platform was customized for NASA use and promoted as NASA@Work. The results were significant. Of the seven InnoCentive external challenges, two full and five partial awards were made in complex technical areas such as predicting solar flares and long-duration food packaging. Similarly, the TopCoder challenge yielded an optimization algorithm for designing a lunar medical kit. The Yet2.com challenges yielded many new industry and academic contacts in bone imaging, microbial detection and even the use of pharmaceuticals for radiation protection. The internal challenges through NASA@Work drew over 6000 participants across all NASA centers. Challenges conducted by each NASA center elicited ideas and solutions from several other NASA centers and demonstrated rapid and efficient participation from employees at multiple centers to contribute to problem solving. Finally, on January 19, 2011, the SLSD conducted a workshop on open collaboration and innovation strategies and best practices through the newly established NASA Human Health and Performance Center (NHHPC). Initial projects will be described leading to a new business model for SLSD.

  19. Analysis of High Switching Frequency Quasi-Z-Source Photovoltaic Inverter Using Wide Bandgap Devices

    NASA Astrophysics Data System (ADS)

    Kayiranga, Thierry

    Power inverters continue to play a key role in todays electrical system more than ever. Power inverters employ power semiconductors to converter direct current (DC) into alternating current (AC). The performance of the semiconductors is based on speed and efficiency. Until recently, Silicon (Si) semiconductors had been established as mature. However, the continuous optimization and improvements in the production process of Si to meet today technology requirements have pushed Si materials to their theoretical limits. In an effort to find a suitable replacement, wide bandgap devices mainly Gallium Nitride (GaN) and Silicon Carbide (SiC), have proved to be excellent candidates offering high operation temperature, high blocking voltage and high switching frequency; of which the latter makes GaN a better candidate in high switching low voltage in Distributed Generations (DG). The single stage Quasi-Z-Source Inverter (qZSI) is also able to draw continuous and constant current from the source making ideal for PV applications in addition to allowing shoot-through states. The qZSI find best applications in medium level ranges where multiples qZS inverters can be cascaded (qZS-CMI) by combining the benefit of the qZSI, boost capabilities and continuous and constant input current, and those of the CMI, low output harmonic content and independent MPPT. When used with GaN devices operating at very high frequency, the qZS network impedance can be significantly reduced. However, the impedance network becomes asymmetric. The asymmetric impedance network (AIN-qZSI) has several advantages such as increased power density, increases system lifetime, small size volume and size making it more attractive for module integrated converter (MIC) concepts. However, there are technical challenges. With asymmetric component, resonance is introduced in the system leading to more losses and audible noise. With small inductances, new operation states become available further increasing the system complexity. This report investigates the AIN-qZSI and present solutions to aforementioned issues.

  20. Practical Semantic Astronomy

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Gray, N.; Burke, D.

    2010-01-01

    Many activities in the era of data-intensive astronomy are predicated upon some transference of domain knowledge and expertise from human to machine. The semantic infrastructure required to support this is no longer a pipe dream of computer science but a set of practical engineering challenges, more concerned with deployment and performance details than AI abstractions. The application of such ideas promises to help in such areas as contextual data access, exploiting distributed annotation and heterogeneous sources, and intelligent data dissemination and discovery. In this talk, we will review the status and use of semantic technologies in astronomy, particularly to address current problems in astroinformatics, with such projects as SKUA and AstroCollation.

  1. Latino recruitment to cancer prevention/screening trials in the Southwest: setting a research agenda.

    PubMed

    Larkey, Linda K; Ogden, Sheryl L; Tenorio, Sally; Ewell, Teresa

    2008-02-01

    Examples of cancer prevention and screening trials in the Southwest are reviewed as a platform for highlighting gaps in research on Latino recruitment. Three trials are described, using "message/source/channel" categories as a framework. Each trial engaged community members to facilitate recruitment and developed tailored strategies to meet challenges emerging after recruitment began. Although we affirm that culturally relevant messages, community member referral networks, and adjustment to community realities seem important to Latino recruitment, current anecdotal and research findings do not allow evidence-based recommendations to be made. We suggest a research agenda to further illuminate critical factors for successful Latino recruitment.

  2. Future prospects for measurements of mass hierarchy and CP violation

    NASA Astrophysics Data System (ADS)

    Lang, Karol

    2015-03-01

    We present a brief overview of current plans to pursue two challenging goals, resolution of the neutrino mass hierarchy and determination of the CP phase of the PMNS neutrino mixing matrix. Future prospects include large atmospheric experiments, PINGU, ORCA, and INO-ICAL, medium baseline reactor experiments, JUNO and RENO- 50, and long baseline accelerator experiments, LBNE, LBNO, and Hyper-Kamiokande. There are also new initiatives emerging, ESSνSB at the European Spallation Source, and CHIPS in the NuMI neutrino beam. This is a multifaceted, vigorous, and technically difficult world-wide program. It will likely take more than a decade to start reaping its benefits.

  3. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes.

    PubMed

    Brechwald, Whitney A; Prinstein, Mitchell J

    2011-03-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research.

  4. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications

    PubMed Central

    Narsing Rao, Manik Prabhu; Xiao, Min; Li, Wen-Jun

    2017-01-01

    The demand for natural colors is increasing day by day due to harmful effects of some synthetic dyes. Bacterial and fungal pigments provide a readily available alternative source of naturally derived pigments. In contrast to other natural pigments, they have enormous advantages including rapid growth, easy processing, and independence of weather conditions. Apart from colorant, bacterial and fungal pigments possess many biological properties such as antioxidant, antimicrobial and anticancer activity. This review outlines different types of pigments. It lists some bacterial and fungal pigments and current bacterial and fungal pigment status and challenges. It also focuses on possible fungal and bacterial pigment applications. PMID:28690593

  5. Solar photovoltaic power systems: an electric utility R & d perspective.

    PubMed

    Demeo, E A; Taylor, R W

    1984-04-20

    Solar photovoltaic technology is receiving increasing attention as a prospective source of bulk, electric utility power within the next 10 to 20 years. Successful development will require solar energy conversion efficiencies of about 15 percent for photovoltaic flat-plate modules, or about 25 percent for photovoltaic cells using highly concentrated sunlight. Three different cell technologies have a better than even chance of achieving these target efficiencies with costs and operating lifetimes that would allow significant use by electric utilities. The challenge for the next decade is to push photovoltaic technology to its physical limits while expanding markets and user confidence with currently available systems.

  6. Clinical operations generation next… The age of technology and outsourcing

    PubMed Central

    Temkar, Priya

    2015-01-01

    Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT) industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA) guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations. PMID:26623386

  7. Emerging Trends in the Discovery of Natural Product Antibacterials

    PubMed Central

    Bologa, Cristian G.; Ursu, Oleg; Oprea, Tudor; Melançon, Charles E.; Tegos, George P.

    2013-01-01

    This article highlights current trends and advances in exploiting natural sources for the deployment of novel and potent anti-infective countermeasures. The key challenge is to therapeutically target microbial pathogens exhibiting a variety of puzzling and evolutionary complex resistance mechanisms. Special emphasis is given to the strengths, weaknesses, and opportunities in the natural product antimicrobial drug discovery arena, and to emerging applications driven by advances in bioinformatics, chemical biology, and synthetic biology in concert with exploiting the microbial phenotype. These orchestrated efforts have identified a critical mass of lead natural antimicrobials chemical scaffolds and discovery technologies with high probability of successful implementation against emerging microbial pathogens. PMID:23890825

  8. Health and Environment Linked for Information Exchange (HELIX)-Atlanta: A CDC-NASA Joint Environmental Public Health Tracking Collaborative Project

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Luvall, Jeff; Crosson, Bill; Estes, Maury; Limaye, Ashutosh; Quattrochi, Dale; Rickman, Doug

    2008-01-01

    HELIX-Atlanta was developed to support current and future state and local EPHT programs to implement data linking demonstration projects which could be part of the CDC EPHT Network. HELIX-Atlanta is a pilot linking project in Atlanta for CDC to learn about the challenges the states will encounter. NASA/MSFC and the CDC are partners in linking environmental and health data to enhance public health surveillance. The use of NASA technology creates value added geospatial products from existing environmental data sources to facilitate public health linkages. Proving the feasibility of the approach is the main objective

  9. Status of international optical disk standards

    NASA Astrophysics Data System (ADS)

    Chen, Di; Neumann, John

    1999-11-01

    Optical technology for data storage offers media removability with unsurpassed reliability. As the media are removable, data interchange between the media and drives from different sources is a major concern. The optical recording community realized, at the inception of this new storage technology development, that international standards for all optical recording disk/cartridge must be established to insure the healthy growth of this industry and for the benefit of the users. Many standards organizations took up the challenge and numerous international standards were established which are now being used world-wide. This paper provides a brief summary of the current status of the international optical disk standards.

  10. Long-distance measurement-device-independent multiparty quantum communication.

    PubMed

    Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

    2015-03-06

    The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

  11. Clinical operations generation next… The age of technology and outsourcing.

    PubMed

    Temkar, Priya

    2015-01-01

    Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT) industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA) guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations.

  12. Challenges facing lithium batteries and electrical double-layer capacitors.

    PubMed

    Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A; Ji, Xiulei; Sun, Yang-Kook; Amine, Khalil; Yushin, Gleb; Nazar, Linda F; Cho, Jaephil; Bruce, Peter G

    2012-10-01

    Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and "load leveling" of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Detecting circular RNAs: bioinformatic and experimental challenges

    PubMed Central

    Szabo, Linda; Salzman, Julia

    2017-01-01

    The pervasive expression of circular RNAs (circRNAs) is a recently discovered feature of gene expression in highly diverged eukaryotes. Numerous algorithms that are used to detect genome-wide circRNA expression from RNA sequencing (RNA-seq) data have been developed in the past few years, but there is little overlap in their predictions and no clear gold-standard method to assess the accuracy of these algorithms. We review sources of experimental and bioinformatic biases that complicate the accurate discovery of circRNAs and discuss statistical approaches to address these biases. We conclude with a discussion of the current experimental progress on the topic. PMID:27739534

  14. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    PubMed Central

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2013-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research. PMID:23730122

  15. Digital Pharmacovigilance and Disease Surveillance: Combining Traditional and Big-Data Systems for Better Public Health

    PubMed Central

    Salathé, Marcel

    2016-01-01

    The digital revolution has contributed to very large data sets (ie, big data) relevant for public health. The two major data sources are electronic health records from traditional health systems and patient-generated data. As the two data sources have complementary strengths—high veracity in the data from traditional sources and high velocity and variety in patient-generated data—they can be combined to build more-robust public health systems. However, they also have unique challenges. Patient-generated data in particular are often completely unstructured and highly context dependent, posing essentially a machine-learning challenge. Some recent examples from infectious disease surveillance and adverse drug event monitoring demonstrate that the technical challenges can be solved. Despite these advances, the problem of verification remains, and unless traditional and digital epidemiologic approaches are combined, these data sources will be constrained by their intrinsic limits. PMID:28830106

  16. Health and Social Media: Perfect Storm of Information

    PubMed Central

    Bau, Teresa

    2015-01-01

    Objectives The use of Internet in the health domain is becoming a major worldwide trend. Millions of citizens are searching online health information and also publishing content about their health. Patients are engaging with other patients in online communities using different types of social media. The boundaries between mobile health, social media, wearable, games, and big data are becoming blurrier due the integration of all those technologies. In this paper we provide an overview of the major research challenges with the area of health social media. Methods We use several study cases to exemplify the current trends and highlight future research challenges. Results Internet is exploding and is being used for health purposes by a great deal of the population. Social networks have a powerful influence in health decisions. Given the lack of knowledge on the use of health social media, there is a need for complex multidisciplinary research to help us understand how to use social networks in favour of public health. A bigger understanding of social media will give health authorities new tools to help decision-making at global, national, local, and corporate level. Conclusions There is an unprecedented amount of data that can be used in public health due the potential combination of data acquired from mobile phones, Electronic Health Records, social media, and other sources. To identify meaningful information from those data sources it is not trial. Moreover, new analytics tools will need to be developed to analyse those sources of data in a way that it can benefit healthcare professionals and authorities. PMID:25995958

  17. Impact of future energy policy on water resources in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Rivotti, Pedro; Karatayev, Marat; Sobral Mourão, Zenaida; Shah, Nilay; Clarke, Michèle; Konadu, D. Dennis

    2017-04-01

    As part of its commitment to become one of the top-30 developed countries in the world, Kazakhstan set out an ambitious target of increasing the share of renewables and alternative sources of energy in its power generation mix to 50% by 2050. This vision greatly contrasts with the current situation, with coal and natural gas power plants producing around 90% of total electricity in 2016. While this transition provides a unique opportunity to improve the sustainability of the national energy system, major natural resources challenges currently faced in the country should be taken into account. Particularly in the case of water resources management, the current system is characterised by significant losses, heavy reliance on irrigation for the agricultural sector, unevenly distributed surface water, vulnerability to climate change and variations in transboundary inflows, amongst other issues. In this context, this study aims to investigate the future availability of water resources to support food production and the transition to a new energy system. Given the challenges mentioned above, tackling this question requires an integrated analysis of the water-energy-food systems in Kazakhstan. This is done in three stages: (1) characterising the water supply and demand in the country; (2) establishing the linkages between water resources and activities in the power production and agricultural sectors; and (3) identifying potential conflicts at the nexus between water, energy and food, taking into account future energy policy scenarios, trends for food production and water resource use.

  18. Challenges for Professional Organizations: Lessons from the Past

    ERIC Educational Resources Information Center

    O'Neil, Sharon Lund; Willis, Cheryl L.

    2005-01-01

    Many challenges face professional organizations. This study focused on the contributions, challenges, and trends in business education professional organizations over the years. Data was gathered from formal and informal sources associated with 17 business education professional organizations. The study showed that primary challenges were…

  19. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process.

    PubMed

    Korotta-Gamage, Shashika Madushi; Sathasivan, Arumugam

    2017-01-01

    The use of biologically activated carbon (BAC) in drinking water purification is reviewed. In the past BAC is seen mostly as a polishing treatment. However, BAC has the potential to provide solution to recent challenges faced by water utilities arising from change in natural organic matter (NOM) composition in drinking water sources - increased NOM concentration with a larger fraction of hydrophilic compounds and ever increasing trace level organic pollutants. Hydrophilic NOM is not removed by traditional coagulation process and causes bacterial regrowth and increases disinfection by-products (DBPs) formation during disinfection. BAC can offer many advantages by removing hydrophilic fraction and many toxic and endocrine compounds which are not otherwise removed. BAC can also aid the other downstream processes if used as a pre-treatment. Major drawback of BAC was longer empty bed contact time (EBCT) required for an effective NOM removal. This critical review analyses the strategies that have been adopted to enhance the biological activity of the carbon by operational means and summarises the surface modification methods. To maximize the benefit of the BAC, a rethink of current treatment plant configuration is proposed. If the process can be expedited and adopted appropriately, BAC can solve many of the current problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Warpgroup: increased precision of metabolomic data processing by consensus integration bound analysis

    PubMed Central

    Mahieu, Nathaniel G.; Spalding, Jonathan L.; Patti, Gary J.

    2016-01-01

    Motivation: Current informatic techniques for processing raw chromatography/mass spectrometry data break down under several common, non-ideal conditions. Importantly, hydrophilic liquid interaction chromatography (a key separation technology for metabolomics) produces data which are especially challenging to process. We identify three critical points of failure in current informatic workflows: compound specific drift, integration region variance, and naive missing value imputation. We implement the Warpgroup algorithm to address these challenges. Results: Warpgroup adds peak subregion detection, consensus integration bound detection, and intelligent missing value imputation steps to the conventional informatic workflow. When compared with the conventional workflow, Warpgroup made major improvements to the processed data. The coefficient of variation for peaks detected in replicate injections of a complex Escherichia Coli extract were halved (a reduction of 19%). Integration regions across samples were much more robust. Additionally, many signals lost by the conventional workflow were ‘rescued’ by the Warpgroup refinement, thereby resulting in greater analyte coverage in the processed data. Availability and implementation: Warpgroup is an open source R package available on GitHub at github.com/nathaniel-mahieu/warpgroup. The package includes example data and XCMS compatibility wrappers for ease of use. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: nathaniel.mahieu@wustl.edu or gjpattij@wustl.edu PMID:26424859

  1. Virtual Inertia: Current Trends and Future Directions

    DOE PAGES

    Tamrakar, Ujjwol; Shrestha, Dipesh; Maharjan, Manisha; ...

    2017-06-26

    The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with a large-scale penetration of renewable energy sources (RESs) like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating themas grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. Our paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directionsmore » and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. We present a discussion on the challenges and research directions which points out several research needs, especially for systems level integration of virtual inertia systems.« less

  2. Web-based access to near real-time and archived high-density time-series data: cyber infrastructure challenges & developments in the open-source Waveform Server

    NASA Astrophysics Data System (ADS)

    Reyes, J. C.; Vernon, F. L.; Newman, R. L.; Steidl, J. H.

    2010-12-01

    The Waveform Server is an interactive web-based interface to multi-station, multi-sensor and multi-channel high-density time-series data stored in Center for Seismic Studies (CSS) 3.0 schema relational databases (Newman et al., 2009). In the last twelve months, based on expanded specifications and current user feedback, both the server-side infrastructure and client-side interface have been extensively rewritten. The Python Twisted server-side code-base has been fundamentally modified to now present waveform data stored in cluster-based databases using a multi-threaded architecture, in addition to supporting the pre-existing single database model. This allows interactive web-based access to high-density (broadband @ 40Hz to strong motion @ 200Hz) waveform data that can span multiple years; the common lifetime of broadband seismic networks. The client-side interface expands on it's use of simple JSON-based AJAX queries to now incorporate a variety of User Interface (UI) improvements including standardized calendars for defining time ranges, applying on-the-fly data calibration to display SI-unit data, and increased rendering speed. This presentation will outline the various cyber infrastructure challenges we have faced while developing this application, the use-cases currently in existence, and the limitations of web-based application development.

  3. Virtual Inertia: Current Trends and Future Directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamrakar, Ujjwol; Shrestha, Dipesh; Maharjan, Manisha

    The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with a large-scale penetration of renewable energy sources (RESs) like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating themas grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. Our paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directionsmore » and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. We present a discussion on the challenges and research directions which points out several research needs, especially for systems level integration of virtual inertia systems.« less

  4. Cells as advanced therapeutics: State-of-the-art, challenges, and opportunities in large scale biomanufacturing of high-quality cells for adoptive immunotherapies.

    PubMed

    Dwarshuis, Nate J; Parratt, Kirsten; Santiago-Miranda, Adriana; Roy, Krishnendu

    2017-05-15

    Therapeutic cells hold tremendous promise in treating currently incurable, chronic diseases since they perform multiple, integrated, complex functions in vivo compared to traditional small-molecule drugs or biologics. However, they also pose significant challenges as therapeutic products because (a) their complex mechanisms of actions are difficult to understand and (b) low-cost bioprocesses for large-scale, reproducible manufacturing of cells have yet to be developed. Immunotherapies using T cells and dendritic cells (DCs) have already shown great promise in treating several types of cancers, and human mesenchymal stromal cells (hMSCs) are now extensively being evaluated in clinical trials as immune-modulatory cells. Despite these exciting developments, the full potential of cell-based therapeutics cannot be realized unless new engineering technologies enable cost-effective, consistent manufacturing of high-quality therapeutic cells at large-scale. Here we review cell-based immunotherapy concepts focused on the state-of-the-art in manufacturing processes including cell sourcing, isolation, expansion, modification, quality control (QC), and culture media requirements. We also offer insights into how current technologies could be significantly improved and augmented by new technologies, and how disciplines must converge to meet the long-term needs for large-scale production of cell-based immunotherapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Magnetoencephalography as a Tool in Psychiatric Research: Current Status and Perspective.

    PubMed

    Uhlhaas, Peter J; Liddle, Peter; Linden, David E J; Nobre, Anna C; Singh, Krish D; Gross, Joachim

    2017-04-01

    The application of neuroimaging to provide mechanistic insights into circuit dysfunctions in major psychiatric conditions and the development of biomarkers are core challenges in current psychiatric research. We propose that recent technological and analytic advances in magnetoencephalography (MEG), a technique that allows measurement of neuronal events directly and noninvasively with millisecond resolution, provides novel opportunities to address these fundamental questions. Because of its potential in delineating normal and abnormal brain dynamics, we propose that MEG provides a crucial tool to advance our understanding of pathophysiological mechanisms of major neuropsychiatric conditions, such as schizophrenia, autism spectrum disorders, and the dementias. We summarize the mechanisms underlying the generation of MEG signals and the tools available to reconstruct generators and underlying networks using advanced source-reconstruction techniques. We then surveyed recent studies that have used MEG to examine aberrant rhythmic activity in neuropsychiatric disorders. This was followed by links with preclinical research that has highlighted possible neurobiological mechanisms, such as disturbances in excitation/inhibition parameters, that could account for measured changes in neural oscillations. Finally, we discuss challenges as well as novel methodological developments that could pave the way for widespread application of MEG in translational research with the aim of developing biomarkers for early detection and diagnosis.

  6. Knowledge representation and management: benefits and challenges of the semantic web for the fields of KRM and NLP.

    PubMed

    Rassinoux, A-M

    2011-01-01

    To summarize excellent current research in the field of knowledge representation and management (KRM). A synopsis of the articles selected for the IMIA Yearbook 2011 is provided and an attempt to highlight the current trends in the field is sketched. This last decade, with the extension of the text-based web towards a semantic-structured web, NLP techniques have experienced a renewed interest in knowledge extraction. This trend is corroborated through the five papers selected for the KRM section of the Yearbook 2011. They all depict outstanding studies that exploit NLP technologies whenever possible in order to accurately extract meaningful information from various biomedical textual sources. Bringing semantic structure to the meaningful content of textual web pages affords the user with cooperative sharing and intelligent finding of electronic data. As exemplified by the best paper selection, more and more advanced biomedical applications aim at exploiting the meaningful richness of free-text documents in order to generate semantic metadata and recently to learn and populate domain ontologies. These later are becoming a key piece as they allow portraying the semantics of the Semantic Web content. Maintaining their consistency with documents and semantic annotations that refer to them is a crucial challenge of the Semantic Web for the coming years.

  7. Circulating smooth muscle progenitor cells in atherosclerosis and plaque rupture: current perspective and methods of analysis.

    PubMed

    Bentzon, Jacob F; Falk, Erling

    2010-01-01

    Smooth muscle cells play a critical role in the development of atherosclerosis and its clinical complications. They were long thought to derive entirely from preexisting smooth muscle cells in the arterial wall, but this understanding has been challenged by the claim that circulating bone marrow-derived smooth muscle progenitor cells are an important source of plaque smooth muscle cells in human and experimental atherosclerosis. This theory is today accepted by many cardiovascular researchers and authors of contemporary review articles. Recently, however, we and others have refuted the existence of bone marrow-derived smooth muscle cells in animal models of atherosclerosis and other arterial diseases based on new experiments with high-resolution microscopy and improved techniques for smooth muscle cell identification and tracking. These studies have also pointed to a number of methodological deficiencies in some of the seminal papers in the field. For those unaccustomed with the methods used in this research area, it must be difficult to decide what to believe and why to do so. In this review, we summarize current knowledge about the origin of smooth muscle cells in atherosclerosis and direct the reader's attention to the methodological challenges that have contributed to the confusion in the field. 2009 Elsevier Inc. All rights reserved.

  8. Communicating science in politicized environments.

    PubMed

    Lupia, Arthur

    2013-08-20

    Many members of the scientific community attempt to convey information to policymakers and the public. Much of this information is ignored or misinterpreted. This article describes why these outcomes occur and how science communicators can achieve better outcomes. The article focuses on two challenges associated with communicating scientific information to such audiences. One challenge is that people have less capacity to pay attention to scientific presentations than many communicators anticipate. A second challenge is that people in politicized environments often make different choices about whom to believe than do people in other settings. Together, these challenges cause policymakers and the public to be less responsive to scientific information than many communicators desire. Research on attention and source credibility can help science communicators better adapt to these challenges. Attention research clarifies when, and to what type of stimuli, people do (and do not) pay attention. Source credibility research clarifies the conditions under which an audience will believe scientists' descriptions of phenomena rather than the descriptions of less-valid sources. Such research can help communicators stay true to their science while making their findings more memorable and more believable to more audiences.

  9. Communicating science in politicized environments

    PubMed Central

    Lupia, Arthur

    2013-01-01

    Many members of the scientific community attempt to convey information to policymakers and the public. Much of this information is ignored or misinterpreted. This article describes why these outcomes occur and how science communicators can achieve better outcomes. The article focuses on two challenges associated with communicating scientific information to such audiences. One challenge is that people have less capacity to pay attention to scientific presentations than many communicators anticipate. A second challenge is that people in politicized environments often make different choices about whom to believe than do people in other settings. Together, these challenges cause policymakers and the public to be less responsive to scientific information than many communicators desire. Research on attention and source credibility can help science communicators better adapt to these challenges. Attention research clarifies when, and to what type of stimuli, people do (and do not) pay attention. Source credibility research clarifies the conditions under which an audience will believe scientists’ descriptions of phenomena rather than the descriptions of less-valid sources. Such research can help communicators stay true to their science while making their findings more memorable and more believable to more audiences. PMID:23940336

  10. Why primary care practices should become digital health information hubs for their patients.

    PubMed

    Baird, Aaron; Nowak, Samantha

    2014-11-25

    Two interesting health care trends are currently occurring: 1) patient-facing technologies, such as personal health records, patient portals, and mobile health apps, are being adopted at rapid rates, and 2) primary care, which includes family practice, is being promoted as essential to reducing health care costs and improving health care outcomes. While these trends are notable and commendable, both remain subject to significant fragmentation and incentive misalignments, which has resulted in significant data coordination and value generation challenges. In particular, patient-facing technologies designed to increase care coordination, often fall prey to the very digital fragmentation issues they are supposed to overcome. Additionally, primary care providers are treating patients that may have considerable health information histories, but generating a single view of such multi-source data is nearly impossible. We contribute to this debate by proposing that primary care practices become digital health information hubs for their patients. Such hubs would offer health data coordination in a medically professional setting with the benefits of expert, trustworthy advice coupled with active patient engagement. We acknowledge challenges including: costs, information quality and provenance, willingness-to-share information and records, willingness-to-use (by both providers and patients), primary care scope creep, and determinations of technical and process effectiveness. Even with such potential challenges, we strongly believe that more debate is needed on this topic prior to full implementation of various health information technology incentives and reform programs currently being designed and enacted throughout the world. Ultimately, if we do not provide a meaningful way for the full spectrum of health information to be used by both providers and patients, especially early in the health care continuum, effectively improving health outcomes may remain elusive. We view the primary care practice as a central component of digital information coordination, especially when considering the current challenges of digital health information fragmentation. Given these fragmentation issues and the emphasis on primary care as central to improving health and lower overall health care costs, we suggest that primary care practices should embrace their evolving role and should seek to become digital health information hubs for their patients.

  11. Toward the next generation of negative symptom assessments: the collaboration to advance negative symptom assessment in schizophrenia.

    PubMed

    Blanchard, Jack J; Kring, Ann M; Horan, William P; Gur, Raquel

    2011-03-01

    Negative symptoms in schizophrenia are related to poor functional outcome, persistent over time, a source of burden for caregivers, and only minimally responsive to currently available medications. A major challenge to developing efficacious interventions concerns the valid and reliable assessment of negative symptoms. In a recent consensus statement on negative symptoms, a central recommendation was the need to develop new assessment approaches that address the limitations of existing instruments. In the current report, we summarize the background and rationale for the Collaboration to Advance Negative Symptom Assessment in Schizophrenia (CANSAS). The CANSAS project is an National Institute of Mental Health-funded multisite study that is constructing a next-generation negative symptom scale, the Clinical Assessment Interview for Negative Symptoms (CAINS). The CAINS is being developed within a data-driven iterative process that seeks to ensure the measure's reliability, validity, and utility for both basic psychopathology and treatment development research.

  12. Radiological and Radionuclide Imaging of Degenerative Disease of the Facet Joints

    PubMed Central

    Shur, Natalie; Corrigan, Alexis; Agrawal, Kanhaiyalal; Desai, Amidevi; Gnanasegaran, Gopinath

    2015-01-01

    The facet joint has been increasingly implicated as a potential source of lower back pain. Diagnosis can be challenging as there is not a direct correlation between facet joint disease and clinical or radiological features. The purpose of this article is to review the diagnosis, treatment, and current imaging modality options in the context of degenerative facet joint disease. We describe each modality in turn with a pictorial review using current evidence. Newer hybrid imaging techniques such as single photon emission computed tomography/computed tomography (SPECT/CT) provide additional information relative to the historic gold standard magnetic resonance imaging. The diagnostic benefits of SPECT/CT include precise localization and characterization of spinal lesions and improved diagnosis for lower back pain. It may have a role in selecting patients for local therapeutic injections, as well as guiding their location with increased precision. PMID:26170560

  13. An object-oriented programming system for the integration of internet-based bioinformatics resources.

    PubMed

    Beveridge, Allan

    2006-01-01

    The Internet consists of a vast inhomogeneous reservoir of data. Developing software that can integrate a wide variety of different data sources is a major challenge that must be addressed for the realisation of the full potential of the Internet as a scientific research tool. This article presents a semi-automated object-oriented programming system for integrating web-based resources. We demonstrate that the current Internet standards (HTML, CGI [common gateway interface], Java, etc.) can be exploited to develop a data retrieval system that scans existing web interfaces and then uses a set of rules to generate new Java code that can automatically retrieve data from the Web. The validity of the software has been demonstrated by testing it on several biological databases. We also examine the current limitations of the Internet and discuss the need for the development of universal standards for web-based data.

  14. MNE software for processing MEG and EEG data

    PubMed Central

    Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.; Strohmeier, D.; Brodbeck, C.; Parkkonen, L.; Hämäläinen, M.

    2013-01-01

    Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals originating from neural currents in the brain. Using these signals to characterize and locate brain activity is a challenging task, as evidenced by several decades of methodological contributions. MNE, whose name stems from its capability to compute cortically-constrained minimum-norm current estimates from M/EEG data, is a software package that provides comprehensive analysis tools and workflows including preprocessing, source estimation, time–frequency analysis, statistical analysis, and several methods to estimate functional connectivity between distributed brain regions. The present paper gives detailed information about the MNE package and describes typical use cases while also warning about potential caveats in analysis. The MNE package is a collaborative effort of multiple institutes striving to implement and share best methods and to facilitate distribution of analysis pipelines to advance reproducibility of research. Full documentation is available at http://martinos.org/mne. PMID:24161808

  15. Capsule physics comparison of different ablators for NIF implosion designs

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Kritcher, Andrea; Yi, Austin; Zylstra, Alex; Haan, Steven; Ralph, Joseph; Weber, Christopher

    2017-10-01

    Indirect drive implosion experiments on the Naitonal Ignition Facility (NIF) have now tested three different ablator materials: glow discharge polymer (GDP) plastic, high density carbon (HDC), and beryllium. How do these different ablator choices compare in current and future implosion experiments on NIF? What are the relative advantages and disadvantages of each? This talk compares these different ablator options in capsule-only simulations of current NIF experiments and proposed future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. The state of autotrophic ethanol production in Cyanobacteria.

    PubMed

    Dexter, J; Armshaw, P; Sheahan, C; Pembroke, J T

    2015-07-01

    Ethanol production directly from CO2 , utilizing genetically engineered photosynthetic cyanobacteria as a biocatalyst, offers significant potential as a renewable and sustainable source of biofuel. Despite the current absence of a commercially successful production system, significant resources have been deployed to realize this goal. Utilizing the pyruvate decarboxylase from Zymomonas species, metabolically derived pyruvate can be converted to ethanol. This review of both peer-reviewed and patent literature focuses on the genetic modifications utilized for metabolic engineering and the resultant effect on ethanol yield. Gene dosage, induced expression and cassette optimizat-ion have been analyzed to optimize production, with production rates of 0·1-0·5 g L(-1) day(-1) being achieved. The current 'toolbox' of molecular manipulations and future directions focusing on applicability, addressing the primary challenges facing commercialization of cyanobacterial technologies are discussed. © 2015 The Society for Applied Microbiology.

  17. How Conjunctive Use of Surface and Ground Water could Increase Resiliency in US?

    NASA Astrophysics Data System (ADS)

    Josset, L.; Rising, J. A.; Russo, T. A.; Troy, T. J.; Lall, U.; Allaire, M.

    2016-12-01

    Optimized management practices are crucial to ensuring water availability in the future. However this presents a tremendous challenge due to the many functions of water: water is not only central for our survival as drinking water or for irrigation, but it is also valued for industrial and recreational use. Sources of water meeting these needs range from rain water harvesting to reservoirs, water reuse, groundwater abstraction and desalination. A global conjunctive management approach is thus necessary to develop sustainable practices as all sectors are strongly coupled. Policy-makers and researchers have identified pluralism in water sources as a key solution to reach water security. We propose a novel approach to sustainable water management that accounts for multiple sources of water in an integrated manner. We formulate this challenge as an optimization problem where the choice of water sources is driven both by the availability of the sources and their relative cost. The results determine the optimal operational decisions for each sources (e.g. reservoirs releases, surface water withdrawals, groundwater abstraction and/or desalination water use) at each time step for a given time horizon. The physical surface and ground water systems are simulated inside the optimization by setting state equations as constraints. Additional constraints may be added to the model to represent the influence of policy decisions. To account for uncertainty in weather conditions and its impact on availability, the optimization is performed for an ensemble of climate scenarios. While many sectors and their interactions are represented, the computational cost is limited as the problem remains linear and thus enables large-scale applications and the propagation of uncertainty. The formulation is implemented within the model "America's Water Analysis, Synthesis and Heuristic", an integrated model for the conterminous US discretized at the county-scale. This enables a systematic evaluation of stresses on water resources. We explore in particular geographic and temporal trends in function of user-types to develop a better understanding of the dynamics at play. We conclude with a comparison between the optimization results and current water use to identify potential solutions to increase resiliency.

  18. Biomarker patterns in present-day vegetation: consistency and variation - A study on plaggen soils

    NASA Astrophysics Data System (ADS)

    Kirkels, Frédérique; Jansen, Boris; Kalbitz, Karsten

    2013-04-01

    Biomarker patterns in present-day vegetation are commonly used as proxies to reconstruct paleo-vegetation composition, land use history and to elucidate carbon cycling. Plaggen soils are formed by diverse vegetational inputs during century-long plaggen (i.e. sod) application associated with plaggen-agriculture on poor soils in north-western Europe. This resulted in remarkably stable organic matter. Plant source identification by biomarkers could provide insight in yet unknown stabilization mechanisms and the fate of organic matter upon ongoing land use change. The current rationale behind biomarker-based source identification is that patterns observed in present-day vegetation are generally representative with little random variation. However, our knowledge on variability and consistency of biomarker patterns is yet scarce. Therefore, to assess the applicability of biomarkers for source identification in plaggen soils, we analyzed published n-alkane and n-alcohol patterns of species and their various parts which contribute(d) input to plaggen soils. We considered shrubs, trees and grass species and evaluated rescaled patterns (i.e. relative abundances in chain-length range C17-36), odd-over-even predominance (OEP) and predominant n-alkanes. In addition, we explicitly looked into potential sources of systematic variation, e.g. spatial variation (climate, site conditions), temporal variation (seasonality, ontogeny) and laboratory methodology (extraction technique: washing/shaking, Soxhlet/ASE, saponification). We found meaningful clustering of n-alkanes C27, C29, C31 and C33, allowing for clear distinction of input by shrubs, trees and grasses to plaggen soils. Combination of these homologues with complete n-alkane patterns (C17-36) and OEP enabled further differentiation, while n-alcohols patterns were less distinct. Current limitation is the lack of extended and diverse quantitative records on biomarker patterns, especially for n-alcohols, non-leaf and belowground tissues, which hindered full statistical analysis. On species level we also recognized outliers and spreading. Systematic variation was indicated among tree species according to spatial conditions and by ontogeny. Yet, observed effects were ambiguous for other variation sources. This study highlights clear opportunities for application of biomarker patterns for source identification and elucidation of stabilization processes in (plaggen) soils. At the same time, application is challenged by systematic variation. Further research is key to quantify controls, magnitude and potential correction factors for such systematic variation. This would validate the use of n-alkane and n-alcohol patterns across broad spatial and temporal scales or identify boundaries wherein their consistency is ensured. Likely, these challenges apply to vegetation in a broad perspective, transcending plaggen vegetation, as assessment and application of present-day vegetation patterns is emerging.

  19. Flux balance analysis indicates that methane is the lowest cost feedstock for microbial cell factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comer, Austin D.; Long, Matthew R.; Reed, Jennifer L.

    The low cost of natural gas has driven significant interest in using C 1 carbon sources (e.g. methane, methanol, CO, syngas) as feedstocks for producing liquid transportation fuels and commodity chemicals. Given the large contribution of sugar and lignocellulosic feedstocks to biorefinery operating costs, natural gas and other C 1 sources may provide an economic advantage. To assess the relative costs of these feedstocks, we performed flux balance analysis on genome-scale metabolic models to calculate the maximum theoretical yields of chemical products from methane, methanol, acetate, and glucose. Yield calculations were performed for every metabolite (as a proxy for desiredmore » products) in the genome-scale metabolic models of three organisms: Escherichia coli (bacterium), Saccharomyces cerevisiae (yeast), and Synechococcus sp. PCC 7002 (cyanobacterium). The calculated theoretical yields and current feedstock prices provided inputs to create comparative feedstock cost surfaces. Our analysis shows that, at current market prices, methane feedstock costs are consistently lower than glucose when used as a carbon and energy source for microbial chemical production. Conversely, methanol is costlier than glucose under almost all price scenarios. Acetate feedstock costs could be less than glucose given efficient acetate production from low-cost syngas using nascent biological gas to liquids (BIO-GTL) technologies. Furthermore, our analysis suggests that research should focus on overcoming the technical challenges of methane assimilation and/or yield of acetate via BIO-GTL to take advantage of low-cost natural gas rather than using methanol as a feedstock.« less

  20. Mitigation of multipacting, enhanced by gas condensation on the high power input coupler of a superconducting RF module, by comprehensive warm aging

    NASA Astrophysics Data System (ADS)

    Wang, Chaoen; Chang, Lung-Hai; Chang, Mei-Hsia; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Liu, Zong-Kai; Lo, Chih-Hung; Tsai, Chi-Lin; Yeh, Meng-Shu; Yu, Tsung-Chi

    2017-11-01

    Excitation of multipacting, enhanced by gas condensation on cold surfaces of the high power input coupler in a SRF module poses the highest challenge for reliable SRF operation under high average RF power. This could prevent the light source SRF module from being operated with a desired high beam current. Off-line long-term reliability tests have been conducted for the newly constructed 500-MHz SRF KEKB type modules at an accelerating RF voltage of 1.6-MV to enable prediction of their operational reliability in the 3-GeV Taiwan Photon Source (TPS), since prediction from mere production performance by conventional horizontal test is presently unreliable. As expected, operational difficulties resulting from multipacting, enhanced by gas condensation, have been identified in the course of long-term reliability test. Our present hypothesis is that gas condensation can be slowed down by preserving the vacuum pressure at the power coupler close to that reached just after its cool down to liquid helium temperatures. This is achievable by reduction of the power coupler out-gassing rate through comprehensive warm aging. Its feasibility and effectiveness has been experimentally verified in a second long term reliability test. Our success opens the possibility to operate the SRF module free of multipacting trouble and opens a new direction to improve the operational performance of next generation SRF modules in light sources with high beam currents.

Top