Sample records for soybean lines lacking

  1. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content.

    PubMed

    Goettel, Wolfgang; Xia, Eric; Upchurch, Robert; Wang, Ming-Li; Chen, Pengyin; An, Yong-Qiang Charles

    2014-04-23

    Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.

  2. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content

    PubMed Central

    2014-01-01

    Background Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. Results In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. Conclusions As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality. PMID:24755115

  3. Registration of three soybean germplasm lines resistant to Phakopsora pachyrhizi (soybean rust)

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by Phakopsora pachyrhizi Sydow, is one of the most important foliar diseases of soybean [Glycine max (L.)Merr.]. Development of rust resistant lines is one objective of many soybean breeding programs. Three soybean germplasm lines esignated as TGx 1987-76F (Reg. No. xxx, PI 6577...

  4. Resistance to Soybean Aphid Among Soybean Lines, Growth-chamber Tests, 2006 Through 2008

    USDA-ARS?s Scientific Manuscript database

    We tested for resistance to the soybean aphid (SBA, Aphis glycines) among several soybean lines, and rated lines as resistant or susceptible in seven tests. The ratings of plants with respect to SBA infestation differed among lines in all tests. Kosamame (PI 171451, test II), Bhart (PI 165989, tes...

  5. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family.

    PubMed

    Haun, William; Coffman, Andrew; Clasen, Benjamin M; Demorest, Zachary L; Lowy, Anita; Ray, Erin; Retterath, Adam; Stoddard, Thomas; Juillerat, Alexandre; Cedrone, Frederic; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2014-09-01

    Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Protein and quality analyses of accessions from the USDA soybean germplasm collection for tofu production

    USDA-ARS?s Scientific Manuscript database

    Food-grade soybeans with large seed size, uniformity, clear hilum, and high 11S/7S ratio are favored by the food industry for making tofu. In order to search for soybean lines with desirable characteristics for making foods, twenty-two soybean lines were selected from the USDA-Soybean Germplasm Coll...

  7. Genome Re-Sequencing of Semi-Wild Soybean Reveals a Complex Soja Population Structure and Deep Introgression

    PubMed Central

    Wu, Sanling; Wang, Ying-Ying; Ye, Chu-Yu; Bai, Xuefei; Li, Zefeng; Yan, Chenghai; Wang, Weidi; Wang, Ziqiang; Shu, Qingyao; Xie, Jiahua; Lee, Suk-Ha; Fan, Longjiang

    2014-01-01

    Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou) and a wild line (Lanxi 1) collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1) no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2) besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3) high heterozygous rates (0.19–0.49) were observed in several semi-wild lines; and (4) over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure. PMID:25265539

  8. Field and laboratory evaluations of soybean lines against soybean aphid (Hemiptera: Aphididae).

    PubMed

    Hesler, Louis S; Prischmann, Deirdre A; Dashiell, Kenton E

    2012-04-01

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid-resistance gene is limited for soybean aphid management, and that deployment strategies relying on multiple resistance genes may be needed to effectively use plant resistance against soybean aphid.

  9. Identification of soybean proteins and genes differentially regulated in near isogenic lines differing in resistance to aphid infestation

    USDA-ARS?s Scientific Manuscript database

    The soybean aphid, a plant sap sucking insect, is an important soybean pest in the USA causing significant yield losses. The Rag2 gene of soybean provides resistance to soybean aphid biotypes 1 and 2. Transcriptomic and proteomic analyses were performed on near isogenic lines (NILs) with the Rag2 al...

  10. Evaluation of soybean breeding lines for resistance to phomopsis seed decay in stoneville mississippi 2014

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean is a major cause of poor seed quality in most soybean production areas, especially in the mid-southern region of the United States. Breeding for PSD-resistance is the most effective long-term strategy to control this disease. To breed soybean lines with resistan...

  11. Registration of DT99-16864 soybean germplasm line with moderate resistance to charcoal rot [Macrophomina phaseolina (Tassi) Goid

    USDA-ARS?s Scientific Manuscript database

    Charcoal rot, caused by Macrophomina phaseolina (Tassi) Goidanich, is a disease that is a world-wide problem in soybean production for which no highly resistant cultivars are currently available. Soybean germplasm line DT99-16864, a maturity group V line, was developed by the U.S. Department of Ag...

  12. Fluorescence In Situ Hybridization–Based Karyotyping of Soybean Translocation Lines

    PubMed Central

    Findley, Seth D.; Pappas, Allison L.; Cui, Yaya; Birchler, James A.; Palmer, Reid G.; Stacey, Gary

    2011-01-01

    Soybean (Glycine max [L.] Merr.) is a major crop species and, therefore, a major target of genomic and genetic research. However, in contrast to other plant species, relatively few chromosomal aberrations have been identified and characterized in soybean. This is due in part to the difficulty of cytogenetic analysis of its small, morphologically homogeneous chromosomes. The recent development of a fluorescence in situ hybridization –based karyotyping system for soybean has enabled our characterization of most of the chromosomal translocation lines identified to date. Utilizing genetic data from existing translocation studies in soybean, we identified the chromosomes and approximate breakpoints involved in five translocation lines. PMID:22384324

  13. Registration of soybean germplasm line DB0638-70 with high yield potential and diverse genetic background

    USDA-ARS?s Scientific Manuscript database

    The release of soybean [Glycine max (L.) Merr.] germplasm line ‘DB0638-70’ is part of an effort to broaden the genetic base of soybean germplasm in North American soybean breeding programs. DB0638-70 was developed and released by the U.S. Department of Agriculture-Agricultural Research Service, Ston...

  14. Environmental Stability of Seed Carbohydrate Profiles in Soybeans Containing Different Alleles of the Raffinose Synthase 2 (RS2) Gene.

    PubMed

    Bilyeu, Kristin D; Wiebold, William J

    2016-02-10

    Soybean [Glycine max (L.) Merr.] is important for the high protein meal used for livestock feed formulations. Carbohydrates contribute positively or negatively to the potential metabolizable energy in soybean meal. The positive carbohydrate present in soybean meal consists primarily of sucrose, whereas the negative carbohydrate components are the raffinose family of oligosaccharides (RFOs), raffinose and stachyose. Increasing sucrose and decreasing raffinose and stachyose are critical targets to improve soybean. In three recently characterized lines, variant alleles of the soybean raffinose synthase 2 (RS2) gene were associated with increased sucrose and decreased RFOs. The objective of this research was to compare the environmental stability of seed carbohydrates in soybean lines containing wild-type or variant alleles of RS2 utilizing a field location study and a date of planting study. The results define the carbohydrate variation in distinct regional and temporal environments using soybean lines with different alleles of the RS2 gene.

  15. Comparative Profiling of microRNA Expression in Soybean Seeds from Genetically Modified Plants and their Near-Isogenic Parental Lines.

    PubMed

    Wang, Yong; Lan, Qingkuo; Zhao, Xin; Xu, Wentao; Li, Feiwu; Wang, Qinying; Chen, Rui

    2016-01-01

    MicroRNAs (miRNAs) have been widely demonstrated to play fundamental roles in gene regulation in most eukaryotes. To date, there has been no study describing the miRNA composition in genetically modified organisms (GMOs). In this study, small RNAs from dry seeds of two GM soybean lines and their parental cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, several differentially expressed gma-miRNAs were found between the GM and non-GM soybeans. Meanwhile, more differentially expressed gma-miRNAs were identified between distantly relatednon-GM soybeans, indicating that the miRNA components of soybean seeds varied among different soybean lines, including the GM and non-GM soybeans, and the extent of difference might be related to their genetic relationship. Additionally, fourteen novel gma-miRNA candidates were predicted in soybean seeds including a potential bidirectionally transcribed miRNA family with two genomic loci (gma-miR-N1). Our findings firstly provided useful data for miRNA composition in edible GM crops and also provided valuable information for soybean miRNA research.

  16. Protein and quality analyses of accessions from the USDA soybean germplasm collection for tofu production.

    PubMed

    Meng, Shi; Chang, Sam; Gillen, Anne M; Zhang, Yan

    2016-12-15

    Food-grade soybeans with large seed size, uniformity, clear hilum and a high 11S/7S ratio are favoured by the food industry for making tofu. In order to search for soybean lines with desirable characteristics for making foods, 22 soybean lines were selected from the USDA-Soybean Germplasm Collection, were grown in Stoneville, MS for biochemical analysis and tofu texture and sensory quality tests. Eight lines were identified, from 22 lines harvested in 2014, to be suitable for tofu making, as judged by chemical composition and sensory quality of pressed tofu. In the filled tofu making and texture analysis study, the correlation between A3 subunit content and filled tofu firmness was significant (N=22, r=0.77, P<0.001). The results indicated that the A3 subunit could be an indicator for predicting the firmness of tofu. The results provided important food quality information for the selection of soybean genotypes for improving food quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Relationship between Mutations of the Pectin Methylesterase Gene in Soybean and the Hardness of Cooked Beans.

    PubMed

    Toda, Kyoko; Hirata, Kaori; Masuda, Ryoichi; Yasui, Takeshi; Yamada, Tetsuya; Takahashi, Koji; Nagaya, Taiko; Hajika, Makita

    2015-10-14

    Hardness of cooked soybeans [Glycine max (L). Merr.] is an important attribute in food processing. We found one candidate gene, Glyma03g03360, to be associated with the hardness of cotyledons of cooked soybeans, based on a quantitative trait locus and fine-scale mapping analyses using a recombinant inbred line population developed from a cross between two Japanese cultivars, "Natto-shoryu" and "Hyoukei-kuro 3". Analysis of the DNA sequence of Glyma03g03360, a pectin methylesterase gene homologue, revealed three patterns of mutations, two of which result in truncated proteins and one of which results in an amino acid substitution. The truncated proteins are presumed to lack the enzymatic activity of Glyma03g03360. We classified 24 cultivars into four groups based on the sequence of Glyma03g03360. The texture analysis using the 22 cultivars grown in different locations indicated that protein truncation of Glyma03g03360 resulted in softer cotyledons of cooked soybeans, which was further confirmed by texture analysis performed using F2 populations of a cross between "Enrei" and "LD00-3309", and between "Satonohohoemi" and "Sakukei 98". A positive correlation between hardness and calcium content implies the possible effect of calcium binding to pectins on the hardness of cooked soybean cotyledons.

  18. Development of soybeans with low P34 allergen protein concentration for reduced allergenicity of soy foods.

    PubMed

    Watanabe, Daisuke; Adányi, Nóra; Takács, Krisztina; Maczó, Anita; Nagy, András; Gelencsér, Éva; Pachner, Martin; Lauter, Kathrin; Baumgartner, Sabine; Vollmann, Johann

    2017-02-01

    In soybean, at least 16 seed proteins have been identified as causing allergenic reactions in sensitive individuals. As a soybean genebank accession low in the immunodominant protein P34 (Gly m Bd 30K) has recently been found, introgression of the low-P34 trait into adapted soybean germplasm has been attempted in order to improve the safety of food products containing soybean protein. Therefore, marker-assisted selection and proteomics were applied to identify and characterize low-P34 soybeans. In low-P34 lines selected from a cross-population, concentrations of the P34 protein as identified with a polyclonal antibody were reduced by 50-70% as compared to P34-containing controls. Using 2D electrophoresis and immunoblotting, the reduction of P34 protein was verified in low-P34 lines. This result was confirmed by liquid chromatographic-tandem mass spectrometric analysis, which revealed either a reduction or complete absence of the authentic P34 protein as suggested from presence or absence of a unique peptide useful for discriminating between conventional and low-P34 lines. Marker-assisted selection proved useful for identifying low-P34 soybean lines for the development of hypoallergenic soy foods. The status of the P34 protein in low-P34 lines needs further characterization. In addition, the food safety relevance of low-P34 soybeans should be tested in clinical studies. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. A comparative study of human IgE binding to proteins of a genetically modified (GM) soybean and six non-GM soybeans grown in multiple locations.

    PubMed

    Lu, Mei; Jin, Yuan; Ballmer-Weber, Barbara; Goodman, Richard E

    2018-02-01

    Prior to commercialization, genetically modified (GM) crops are evaluated to determine the allergenicity of the newly expressed protein. Some regulators require an evaluation of endogenous allergens in commonly allergenic crops including soybean to determine if genetic transformation increased endogenous allergen concentrations, even asking for IgE testing using sera from individual sensitized subjects. Little is known about the variability of the expression of endogenous allergens among non-GM varieties or under different environmental conditions. We tested IgE binding to endogenous allergenic proteins in an experimental non-commercial GM line, a non-GM near-isoline control, and five non-GM commercial soybean lines replicated at three geographically separated locations. One-dimensional (1D) and two-dimensional (2D) immunoblotting and ELISA were performed using serum or plasma from eleven soybean allergic patients. The results of immunoblots and ELISA showed no significant differences in IgE binding between the GM line and its non-GM near-isoline control. However, some distinct differences in IgE binding patterns were observed among the non-GM commercial soybean lines and between different locations, highlighting the inherent variability in endogenous allergenic proteins. Understanding the potential variability in the levels of endogenous allergens is necessary to establish a standard of acceptance for GM soybeans compared to non-GM soybean events and lines. Copyright © 2018. Published by Elsevier Ltd.

  20. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    PubMed

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.

  1. Evaluating soybean breeding lines developed from differenct sources of resistance to phomopsis seed decay

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) causes poor soybean seed quality worldwide. The primary causal agent of PSD is Phomopsis longicolla (syn. Diaporthe longicolla). Breeding for PSD-resistance is the most effective long-term strategy to control this disease. To develop soybean lines with resistance to PSD, m...

  2. Identification of Proteins Differentially Regulated in Response to Soybean Aphid Infestation of Soybean Near Isogenic Lines differing in Aphid Resistance

    USDA-ARS?s Scientific Manuscript database

    The soybean aphid, a plant sap sucking insect, has become an important soybean pest in the USA and infestation of soybean by this insect can lead to significant yield losses. The Rag2 gene of soybean, providing resistance to soybean aphid biotypes I (IL) and II (OH), was identified by researchers in...

  3. Evaluation of exotically-derived soybean breeding lines for seed yield, germination, damage, and composition under dryland production in the midsouthern USA

    USDA-ARS?s Scientific Manuscript database

    Although the Early Soybean Production System (ESPS) in the Midsouthern USA increased seed yield under irrigated and non-irrigated conditions, heat stress and drought still lead to poor seed quality in heat sensitive soybean cultivars. Our goal was to identify breeding lines that possess high germin...

  4. Newly identified resistance to soybean aphid (Aphis glycines) in soybean plant introduction lines

    USDA-ARS?s Scientific Manuscript database

    Host-plant resistance is potentially efficacious in managing the soybean aphid (SA, Aphis glycines Matsumura), a major invasive pest in northern soybean-production regions of North America. However, development of aphid-resistant soybean has been complicated by the presence of virulent SA biotypes,...

  5. Inclusion of various amounts of steam-flaked soybeans in lactating dairy cattle diets

    USDA-ARS?s Scientific Manuscript database

    While most soybean feedstuffs have been extensively investigated for use in ruminant diets, there is a lack of information regarding steam-flaked soybeans. This research evaluated various inclusion rates of steam-flaked soybeans (SFSB) in lactating dairy cattle diets. Twelve multiparous Holstein cow...

  6. Resistance to phomopsis seed decay identified in maturity group V soybean plant introductions

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean is the major cause of poor seed quality in most soybean-growing countries. This disease is primarily caused by the fungus Phomopsis longicolla. Few soybean cultivars currently available for planting in the U.S. have resistance to PSD. To identify soybean lines w...

  7. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait

    PubMed Central

    2010-01-01

    Background The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Results Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. Conclusions We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the mutant alleles. The resources described here for the creation of high oleic acid soybeans provide a framework to efficiently develop soybean varieties to meet changing market demands. PMID:20828382

  8. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait.

    PubMed

    Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D

    2010-09-09

    The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the mutant alleles. The resources described here for the creation of high oleic acid soybeans provide a framework to efficiently develop soybean varieties to meet changing market demands.

  9. Variation of unsaturated fatty acids in soybean sprout of high oleic acid accessions.

    PubMed

    Dhakal, Krishna Hari; Jung, Ki-Hwal; Chae, Jong-Hyun; Shannon, J Grover; Lee, Jeong-Dong

    2014-12-01

    Oleic acid and oleic acid rich foods may have beneficial health effects in humans. Soybeans with high oleic acid (around 80% in seed oil) have been developed. Soybean sprouts are an important vegetable in Korea, Japan and China. The objective of this study was to investigate the variation of unsaturated fatty acids, oleic, linoleic and α-linolenic acids, in sprouts from soybeans with normal and high oleic acid concentration. Twelve soybean accessions with six high oleic acid lines, three parents of high oleic acid lines, and three checks with normal and high oleic acid concentration were used in this study. The unsaturated fatty acid concentration in sprouts from each genotype was similar to the concentration in the ungerminated seed. The oleic acid concentration in the sprouts of high oleic acid lines (up to 80%) was still high (>70%) compared to the ungerminated seed. Thus, high oleic soybean varieties developed for sprout production could add valuable health benefits to sprouts and the individuals who consume this vegetable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean.

    PubMed

    Weber, Ricardo Luís Mayer; Wiebke-Strohm, Beatriz; Bredemeier, Christian; Margis-Pinheiro, Márcia; de Brito, Giovani Greigh; Rechenmacher, Ciliana; Bertagnolli, Paulo Fernando; de Sá, Maria Eugênia Lisei; Campos, Magnólia de Araújo; de Amorim, Regina Maria Santos; Beneventi, Magda Aparecida; Margis, Rogério; Grossi-de-Sa, Maria Fátima; Bodanese-Zanettini, Maria Helena

    2014-12-10

    Drought is by far the most important environmental factor contributing to yield losses in crops, including soybeans [Glycine max (L.) Merr.]. To address this problem, a gene that encodes an osmotin-like protein isolated from Solanum nigrum var. americanum (SnOLP) driven by the UBQ3 promoter from Arabidopsis thaliana was transferred into the soybean genome by particle bombardment. Two independently transformed soybean lines expressing SnOLP were produced. Segregation analyses indicated single-locus insertions for both lines. qPCR analysis suggested a single insertion of SnOLP in the genomes of both transgenic lines, but one copy of the hpt gene was inserted in the first line and two in the second line. Transgenic plants exhibited no remarkable phenotypic alterations in the seven analyzed generations. When subjected to water deficit, transgenic plants performed better than the control ones. Leaf physiological measurements revealed that transgenic soybean plants maintained higher leaf water potential at predawn, higher net CO2 assimilation rate, higher stomatal conductance and higher transpiration rate than non-transgenic plants. Grain production and 100-grain weight were affected by water supply. Decrease in grain productivity and 100-grain weight were observed for both transgenic and non-transgenic plants under water deficit; however, it was more pronounced for non-transgenic plants. Moreover, transgenic lines showed significantly higher 100-grain weight than non-transgenic plants under water shortage. This is the first report showing that expression of SnOLP in transgenic soybeans improved physiological responses and yield components of plants when subjected to water deficit, highlighting the potential of this gene for biotechnological applications.

  11. The Soybean Rhg1 Locus for Resistance to the Soybean Cyst Nematode Heterodera glycines Regulates the Expression of a Large Number of Stress- and Defense-Related Genes in Degenerating Feeding Cells1[C][W][OA

    PubMed Central

    Kandoth, Pramod Kaitheri; Ithal, Nagabhushana; Recknor, Justin; Maier, Tom; Nettleton, Dan; Baum, Thomas J.; Mitchum, Melissa G.

    2011-01-01

    To gain new insights into the mechanism of soybean (Glycine max) resistance to the soybean cyst nematode (Heterodera glycines), we compared gene expression profiles of developing syncytia in soybean near-isogenic lines differing at Rhg1 (for resistance to Heterodera glycines), a major quantitative trait locus for resistance, by coupling laser capture microdissection with microarray analysis. Gene expression profiling revealed that 1,447 genes were differentially expressed between the two lines. Of these, 241 (16.8%) were stress- and defense-related genes. Several stress-related genes were up-regulated in the resistant line, including those encoding homologs of enzymes that lead to increased levels of reactive oxygen species and proteins associated with the unfolded protein response. These results indicate that syncytia induced in the resistant line are undergoing severe oxidative stress and imbalanced endoplasmic reticulum homeostasis, both of which likely contribute to the resistance reaction. Defense-related genes up-regulated within syncytia of the resistant line included those predominantly involved in apoptotic cell death, the plant hypersensitive response, and salicylic acid-mediated defense signaling; many of these genes were either partially suppressed or not induced to the same level by a virulent soybean cyst nematode population for successful nematode reproduction and development on the resistant line. Our study demonstrates that a network of molecular events take place during Rhg1-mediated resistance, leading to a highly complex defense response against a root pathogen. PMID:21335526

  12. Growing season variability in carbon dioxide exchange of irrigated and rainfed soybean in the southern United States

    USDA-ARS?s Scientific Manuscript database

    Measurement of carbon dynamics of soybean (Glycine max L.) ecosystems outside Corn Belt of the United States (U.S.) is lacking. This study reports carbon dioxide (CO2) fluxes from a rainfed soybean field in El Reno, Oklahoma and an irrigated soybean field in Stoneville, Mississippi during the 2016 g...

  13. Evaluation of diverse soybean germplasm for resistance to Phomopsis Seed Decay

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is a major cause of poor quality soybean seeds. The disease is caused primarily by the fungal pathogen, Phomopsis longicolla. To identify soybean lines with resistance to PSD, a total of 135 selected soybean germplasm accessions originally from 28 countries and in maturity...

  14. Infestation ratings database for soybean aphid on early-maturity wild soybean lines

    USDA-ARS?s Scientific Manuscript database

    Soybean aphid (Aphis glycines Matsumura; SA) is a major invasive pest of soybean [Glycine max (L.) Merr.] in northern production regions of North America. Although insecticides are currently the main method for controlling this pest, SA-resistant cultivars are being developed to sustainably manage ...

  15. Genome-wide comparative analysis of DNA methylation between soybean cytoplasmic male-sterile line NJCMS5A and its maintainer NJCMS5B.

    PubMed

    Li, Yanwei; Ding, Xianlong; Wang, Xuan; He, Tingting; Zhang, Hao; Yang, Longshu; Wang, Tanliu; Chen, Linfeng; Gai, Junyi; Yang, Shouping

    2017-08-10

    DNA methylation is an important epigenetic modification. It can regulate the expression of many key genes without changing the primary structure of the genomic DNA, and plays a vital role in the growth and development of the organism. The genome-wide DNA methylation profile of the cytoplasmic male sterile (CMS) line in soybean has not been reported so far. In this study, genome-wide comparative analysis of DNA methylation between soybean CMS line NJCMS5A and its maintainer NJCMS5B was conducted by whole-genome bisulfite sequencing. The results showed 3527 differentially methylated regions (DMRs) and 485 differentially methylated genes (DMGs), including 353 high-credible methylated genes, 56 methylated genes coding unknown protein and 76 novel methylated genes with no known function were identified. Among them, 25 DMRs were further validated that the genome-wide DNA methylation data were reliable through bisulfite treatment, and 9 DMRs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. Finally, 8 key DMGs possibly associated with soybean CMS were identified. Genome-wide DNA methylation profile of the soybean CMS line NJCMS5A and its maintainer NJCMS5B was obtained for the first time. Several specific DMGs which participated in pollen and flower development were further identified to be probably associated with soybean CMS. This study will contribute to further understanding of the molecular mechanism behind soybean CMS.

  16. A novel FAD2-1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content.

    PubMed

    Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D

    2011-09-01

    The alteration of fatty acid profiles in soybean to improve soybean oil quality has been a long-time goal of soybean researchers. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of soybean oil compared to other oils. In the lipid biosynthetic pathway, the enzyme fatty acid desaturase 2 (FAD2) is responsible for the conversion of oleic acid precursors to linoleic acid precursors in developing soybean seeds. Two genes encoding FAD2-1A and FAD2-1B were identified to be expressed specifically in seeds during embryogenesis and have been considered to hold an important role in controlling the seed oleic acid content. A total of 22 soybean plant introduction (PI) lines identified to have an elevated oleic acid content were characterized for sequence mutations in the FAD 2-1A and FAD2-1B genes. PI 603452 was found to contain a deletion of a nucleotide in the second exon of FAD2-1A. These important SNPs were used in developing molecular marker genotyping assays. The assays appear to be a reliable and accurate tool to identify the FAD 2-1A and FAD2-1B genotype of wild-type and mutant plants. PI 603452 was subsequently crossed with PI 283327, a soybean line that has a mutation in FAD2-1B. Interestingly, soybean lines carrying both homozygous insertion/deletion mutation (indel) FAD2-1A alleles and mutant FAD2-1B alleles have an average of 82-86% oleic acid content, compared to 20% in conventional soybean, and low levels of linoleic and linolenic acids. The newly identified indel mutation in the FAD2-1A gene offers a simple method for the development of high oleic acid commercial soybean varieties.

  17. Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean.

    PubMed

    Yin, Xiaojian; Hiraga, Susumu; Hajika, Makita; Nishimura, Minoru; Komatsu, Setsuko

    2017-03-01

    Soybean is highly sensitive to flooding stress and exhibits markedly reduced plant growth and grain yield under flooding conditions. To explore the mechanisms underlying initial flooding tolerance in soybean, RNA sequencing-based transcriptomic analysis was performed using a flooding-tolerant line and ABA-treated soybean. A total of 31 genes included 12 genes that exhibited similar temporal patterns were commonly changed in these plant groups in response to flooding and they were mainly involved in RNA regulation and protein metabolism. The mRNA expression of matrix metalloproteinase, glucose-6-phosphate isomerase, ATPase family AAA domain-containing protein 1, and cytochrome P450 77A1 was up-regulated in wild-type soybean under flooding conditions; however, no changes were detected in the flooding-tolerant line or ABA-treated soybean. The mRNA expression of cytochrome P450 77A1 was specifically up-regulated in root tips by flooding stress, but returned to the level found in control plants following treatment with the P450 inhibitor uniconazole. The survival ratio and root fresh weight of plants were markedly improved by 3-h uniconazole treatment under flooding stress. Taken together, these results suggest that cytochrome P450 77A1 is suppressed by uniconazole treatment and that this inhibition may enhance soybean tolerance to flooding stress.

  18. Volatile Organic Compounds Induced by Herbivory of the Soybean Looper Chrysodeixis includens in Transgenic Glyphosate-Resistant Soybean and the Behavioral Effect on the Parasitoid, Meteorus rubens.

    PubMed

    Strapasson, Priscila; Pinto-Zevallos, Delia M; Da Silva Gomes, Sandra M; Zarbin, Paulo H G

    2016-08-01

    Transgenic soybean plants (RR) engineered to express resistance to glyphosate harbor a variant of the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) involved in the shikimic acid pathway, the biosynthetic route of three aromatic amino acids: phenylalanine, tyrosine, and tryptophan. The insertion of the variant enzyme CP4 EPSPS confers resistance to glyphosate. During the process of genetic engineering, unintended secondary effects are likely to occur. In the present study, we quantified volatile organic compounds (VOCs) emitted constitutively or induced in response to herbivory by the soybean looper Chrysodeixis includens in transgenic soybean and its isogenic (untransformed) line. Since herbivore-induced plant volatiles (HIPVs) are known to play a role in the recruitment of natural enemies, we assessed whether changes in VOC profiles alter the foraging behavior of the generalist endoparasitic larval parasitoid, Meteorus rubens in the transgenic line. Additionally, we assessed whether there was a difference in plant quality by measuring the weight gain of the soybean looper. In response to herbivory, several VOCs were induced in both the conventional and the transgenic line; however, larger quantities of a few compounds were emitted by transgenic plants. Meteorus rubens females were able to discriminate between the odors of undamaged and C. includens-damaged plants in both lines, but preferred the odors emitted by herbivore-damaged transgenic plants over those emitted by herbivore-damaged conventional soybean plants. No differences were observed in the weight gain of the soybean looper. Our results suggest that VOC-mediated tritrophic interactions in this model system are not negatively affected. However, as the preference of the wasps shifted towards damaged transgenic plants, the results also suggest that genetic modification affects that tritrophic interactions in multiple ways in this model system.

  19. Identificatoin and confirmation of resistance against soybean aphid (Aphis glycines) in eight wild soybean lines

    USDA-ARS?s Scientific Manuscript database

    The development and use of aphid-resistant soybean (Glycine max) cultivars has been complicated by the presence of multiple virulent biotypes of the soybean aphid (SA, Aphis glycines Matsumura). Ultimately, a variety of unique resistance sources may be needed to develop cultivars with a broad spectr...

  20. Molecular genetic analysis of seed protein control at Linkage Group I in soybean near-isogenic lines

    USDA-ARS?s Scientific Manuscript database

    The molecular mechanisms that influence soybean seed composition are not well understood. Because the profitability of the soybean crop is affected by seed protein and oil content, insight into the genetic controls involved in these traits is important for future soybean improvement. Here we examine...

  1. Integrating Microarray Analysis and the Soybean Genome to Understand the Soybean's Iron Deficiency Response

    USDA-ARS?s Scientific Manuscript database

    Transcriptional profiles of soybean (Glycine max, L. Merr) near isogenic lines Clark (PI548553, iron efficient) and IsoClark (PI547430, iron inefficient) were analyzed and compared using the Affymetrix® GeneChip® Soybean Genome Array. A comparison of plants grown under Fe-sufficient and Fe-limited ...

  2. The development and use of a molecular model for soybean maturity groups.

    PubMed

    Langewisch, Tiffany; Lenis, Julian; Jiang, Guo-Liang; Wang, Dechun; Pantalone, Vince; Bilyeu, Kristin

    2017-05-30

    Achieving appropriate maturity in a target environment is essential to maximizing crop yield potential. In soybean [Glycine max (L.) Merr.], the time to maturity is largely dependent on developmental response to dark periods. Once the critical photoperiod is reached, flowering is initiated and reproductive development proceeds. Therefore, soybean adaptation has been attributed to genetic changes and natural or artificial selection to optimize plant development in specific, narrow latitudinal ranges. In North America, these regions have been classified into twelve maturity groups (MG), with lower MG being shorter season than higher MG. Growing soybean lines not adapted to a particular environment typically results in poor growth and significant yield reductions. The objective of this study was to develop a molecular model for soybean maturity based on the alleles underlying the major maturity loci: E1, E2, and E3. We determined the allelic variation and diversity of the E maturity genes in a large collection of soybean landraces, North American ancestors, Chinese cultivars, North American cultivars or expired Plant Variety Protection lines, and private-company lines. The E gene status of accessions in the USDA Soybean Germplasm Collection with SoySNP50K Beadchip data was also predicted. We determined the E allelic combinations needed to adapt soybean to different MGs in the United States (US) and discovered a strong signal of selection for E genotypes released in North America, particularly the US and Canada. The E gene maturity model proposed will enable plant breeders to more effectively transfer traits into different MGs and increase the overall efficiency of soybean breeding in the US and Canada. The powerful yet simple selection strategy for increasing soybean breeding efficiency can be used alone or to directly enhance genomic prediction/selection schemes. The results also revealed previously unrecognized aspects of artificial selection in soybean imposed by soybean breeders based on geography that highlights the need for plant breeding that is optimized for specific environments.

  3. Validation of a hairy roots system to study soybean-soybean aphid interactions

    PubMed Central

    Morriss, Stephanie C.; Studham, Matthew E.; Tylka, Gregory L.

    2017-01-01

    The soybean aphid (Aphis glycines) is one of the main insect pests of soybean (Glycine max) worldwide. Genomics approaches have provided important data on transcriptome changes, both in the insect and in the plant, in response to the plant-aphid interaction. However, the difficulties to transform soybean and to rear soybean aphid on artificial media have hindered our ability to systematically test the function of genes identified by those analyses as mediators of plant resistance to the insect. An efficient approach to produce transgenic soybean material is the production of transformed hairy roots using Agrobacterium rhizogenes; however, soybean aphids colonize leaves or stems and thus this approach has not been utilized. Here, we developed a hairy root system that allowed effective aphid feeding. We show that this system supports aphid performance similar to that observed in leaves. The use of hairy roots to study plant resistance is validated by experiments showing that roots generated from cotyledons of resistant lines carrying the Rag1 or Rag2 resistance genes are also resistant to aphid feeding, while related susceptible lines are not. Our results demonstrate that hairy roots are a good system to study soybean aphid-soybean interactions, providing a quick and effective method that could be used for functional analysis of the resistance response to this insect. PMID:28358854

  4. Genomic heterogeneity and structural variation in soybean near-isogenic lines

    USDA-ARS?s Scientific Manuscript database

    Near-isogenic lines (NILs) are a critical genetic resource for the soybean research community. The ability to identify and characterize the genes driving the phenotypic differences between NILs is limited by the degree to which differential genetic introgressions can be resolved. Furthermore, the ...

  5. Evaluation of soybean commercial varieties for resistance to Phomopsis seed decay in the Mississippi Delta, 2012

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major cause of poor seed quality in the United States, especially in the mid-southern region. To identify new sources of soybean lines resistant to PSD, 16 commercial soybean varieties (MG IV and MGV) were planted on ...

  6. 1,1-Diphenyl-2-picrylhydrazyl radical-scavenging compounds from soybean miso and antiproliferative activity of isoflavones from soybean miso toward the cancer cell lines.

    PubMed

    Hirota, A; Taki, S; Kawaii, S; Yano, M; Abe, N

    2000-05-01

    Guided by their DPPH radical-scavenging activity, nine compounds were isolated from soybean miso. Of these, 8-hydroxydaidzein, 8-hydroxygenistein and syringic acid had as high DPPH radical-scavenging activity as that of alpha-tocopherol. The antiproliferative activity of four of the isolated isoflavones toward three cancer cell lines was examined. 8-Hydroxygenistein showed the highest activity (IC50=5.2 microM) toward human promyelocytic leukemia cells (HL-60).

  7. Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase.

    PubMed

    Lozovaya, Vera V; Lygin, Anatoliy V; Zernova, Olga V; Ulanov, Alexander V; Li, Shuxian; Hartman, Glen L; Widholm, Jack M

    2007-02-01

    Soybean hairy roots, transformed with the soybean chalcone synthase (CHS6) or isoflavone synthase (IFS2) genes, with dramatically decreased capacity to synthesize isoflavones were produced to determine what effects these changes would have on susceptibility to a fungal pathogen. The isoflavone and coumestrol concentrations were decreased by about 90% in most lines apparently due to gene silencing. The IFS2 transformed lines had very low IFS enzyme activity in microsomal fractions as measured by the conversion of naringenin to genistein. The CHS6 lines with decreased isoflavone concentrations had 5 to 20-fold lower CHS enzyme activities than the appropriate controls. Both IFS2 and CHS transformed lines accumulated higher concentrations of both soluble and cell wall bound phenolic acids compared to controls with higher levels found in the CHS6 lines indicating alterations in the lignin biosynthetic branch of the pathway. Induction of the soybean phytoalexin glyceollin, of which the precursor is the isoflavone daidzein, by the fungal pathogen Fusarium solani f. sp. glycines (FSG) that causes soybean sudden death syndrome (SDS) showed that the low isoflavone transformed lines did not accumulate glyceollin while the control lines did. The (iso)liquritigenin content increased upon FSG induction in the IFS2 transformed roots indicating that the pathway reactions before this point can control isoflavonoid synthesis. The lowest fungal growth rate on hairy roots was found on the FSG partially resistant control roots followed by the SDS sensitive control roots and the low isoflavone transformants. The results indicate the importance of phytoalexin synthesis in root resistance to the pathogen.

  8. Genomic heterogeneity and structural variation in soybean near isogenic lines

    USDA-ARS?s Scientific Manuscript database

    Near-isogenic lines (NILs) are a critical genetic resource for the soybean research community. The ability to identify and characterize the genes driving the phenotypic differences between NILs is limited by the degree to which differential genetic introgressions can be resolved. Furthermore, the ge...

  9. Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB

    USDA-ARS?s Scientific Manuscript database

    Soybean C3 photosynthesis can suffer a severe loss in efficiency due to photorespiration and the lack of a carbon concentrating mechanism (CCM) such as those present in other plant species or cyanobacteria. Transgenic soybean (Glycine max cv. Thorne) plants constitutively expressing cyanobacterial i...

  10. SOYBEAN.APHID.LH.2009

    USDA-ARS?s Scientific Manuscript database

    Expression of soybean aphid (SA) resistance was characterized among 496 soybean lines in a twice-replicated field-plot test at the Eastern South Dakota Soil and Water Research Farm near Brookings, SD, in 2009. Natural infestations of SA occurred but were supplemented by placing individual stems of ...

  11. SOYBEAN.DEFOLIATION.1.SD.2011

    USDA-ARS?s Scientific Manuscript database

    Various chewing insects feed upon soybean plants, and their infestations may be economically significant in some years in the north-central United States. Soybean lines that are resistant to defoliation may be useful for management of chewing insect pests. Levels of defoliation from chewing insec...

  12. Introgression of leginsulin, a cysteine-rich protein, and high-protein trait from an Asian soybean plant introduction genotype into a North American experimental soybean line

    USDA-ARS?s Scientific Manuscript database

    Soybean is an important protein source for both humans and animals. However, soybean proteins are relatively poor in the sulfur-containing amino acids, cysteine and methionine. Improving the content of endogenous proteins rich in sulfur containing amino acids could enhance the nutritive value of soy...

  13. Quantitative trait locus analysis of seed sulfur containing amino acids in two recombinant inbred line populations of soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max (L.) Merr.) is a major source of plant protein for humans and livestock. Low levels of sulfur containing amino acids (cysteine and methionine) in soybean protein is the main limitation of soybean meal as animal food. The objectives of this study were to identify and validate Q...

  14. Seed nutrition and quality, seed coat boron and lignin are influenced by delayed harvest in exotically-derived soybean breeding lines under high heat

    USDA-ARS?s Scientific Manuscript database

    Growing heat sensitive soybean under the high heat and humid environment of the Early Soybean Production System (ESPS) in the Midsouthern USA often leads to poor seed quality. Therefore, breeding for heat tolerant soybeans that maintain high quality of seed nutrition, high germination, and high prot...

  15. Soybean lines evaluated for resistance to reniform nematode

    USDA-ARS?s Scientific Manuscript database

    Seventy-four wild and domestic soybean (Glycine max and G. soja) lines were evaluated for resistance to reniform nematode (Rotylenchulus reniformis) in growth chamber tests with a day length of 16 hours and temperature held constant at 28 C. Several entries for which reactions to reniform nematode w...

  16. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    PubMed

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds.

  17. Quantitative trait loci underlying resistance to sudden death syndrome (SDS) in MD96-5722 by 'Spencer' recombinant inbred line population of soybean.

    PubMed

    Anderson, J; Akond, M; Kassem, M A; Meksem, K; Kantartzi, S K

    2015-04-01

    The best way to protect yield loss of soybean [Glycine max (L.) Merr.] due to sudden death syndrome (SDS), caused by Fusarium virguliforme (Aoki, O'Donnel, Homma & Lattanzi), is the development and use of resistant lines. Mapping quantitative trait loci (QTL) linked to SDS help developing resistant soybean germplasm through molecular marker-assisted selection strategy. QTL for SDS presented herein are from a high-density SNP-based genetic linkage map of MD 96-5722 (a.k.a 'Monocacy') by 'Spencer' recombinant inbred line using SoySNP6K Illumina Infinium BeadChip genotyping array. Ninety-four F 5:7 lines were evaluated for 2 years (2010 and 2011) at two locations (Carbondale and Valmeyer) in southern Illinois, USA to identify QTL controlling SDS resistance using disease index (DX). Composite interval mapping identified 19 SDS controlling QTL which were mapped on 11 separate linkage group (LG) or chromosomes (Chr) out of 20 LG or Chr of soybean genome. Many of these significant QTL identified in one environment/year were confirmed in another year or environment, which suggests a common genetic effects and modes of the pathogen. These new QTL are useful sources for SDS resistance studies in soybean breeding, complementing previously reported loci.

  18. SOYBEAN.DEFOLIATION.2.SD.2011

    USDA-ARS?s Scientific Manuscript database

    Several types of chewing insects feed upon soybean plants, and their infestations may be economically significant in some years in the north-central United States. Soybean lines that are resistant to defoliation may be useful in the management of chewing insect pests. Levels of defoliation from c...

  19. Identification of genes that mediate protection against soybean pathogens

    USDA-ARS?s Scientific Manuscript database

    In the last twenty years, over 40 resistance genes (R-genes) have been cloned and characterized from plants. Of these, only three have been cloned in soybean. Cloning of resistance genes in soybean has been hampered by a complex, duplicated genome, clustering of R-genes, and lack of tools to charac...

  20. Novel FAD2-1A alleles confer an elevated oleic acid phenotype in soybean seeds

    USDA-ARS?s Scientific Manuscript database

    To identify novel sources of genetic variation for the high oleic acid seed trait, soybean lines containing a higher fraction than normal of oleic acid were identified through a forward-genetic screen of a chemically mutagenized population. Mutant lines contained 30%- 40% of the oil fraction as olei...

  1. Inositol metabolism and phytase activity in normal and low phytic acid soybean seed

    USDA-ARS?s Scientific Manuscript database

    The genetic basis for the low seed phytic acid trait in soybean lines derived from the low phytic acid line (CX1834) of Wilcox et al (2000) is under investigation in several laboratories. Our objective was to measure metabolite levels associated with the phytic acid and raffinosaccharide biosyntheti...

  2. Effects of proteome rebalancing and sulfur nutrition on the accumulation of methionine rich δ-zein in transgenic soybeans

    PubMed Central

    Kim, Won-Seok; Jez, Joseph M.; Krishnan, Hari B.

    2014-01-01

    Expression of heterologous methionine-rich proteins to increase the overall sulfur amino acid content of soybean seeds has been only marginally successful, presumably due to low accumulation of transgenes in soybeans or due to gene silencing. Proteome rebalancing of seed proteins has been shown to promote the accumulation of foreign proteins. In this study, we have utilized RNAi technology to suppress the expression of the β-conglycinin, the abundant 7S seed storage proteins of soybean. Western blot and 2D-gel analysis revealed that β-conglycinin knockdown line (SAM) failed to accumulate the α′, α, and β-subunits of β-conglycinin. The proteome rebalanced SAM retained the overall protein and oil content similar to that of wild-type soybean. We also generated transgenic soybean lines expressing methionine-rich 11 kDa δ-zein under the control of either the glycinin or β-conglycinin promoter. The introgression of the 11 kDa δ-zein into β-conglycinin knockdown line did not enhance the accumulation of the 11 kDa δ-zein. However, when the same plants were grown in sulfur-rich medium, we observed 3- to 16-fold increased accumulation of the 11 kDa δ-zein. Transmission electron microscopy observation revealed that seeds grown in sulfur-rich medium contained numerous endoplasmic reticulum derived protein bodies. Our findings suggest that sulfur availability, not proteome rebalancing, is needed for high-level accumulation of heterologous methionine-rich proteins in soybean seeds. PMID:25426134

  3. Characterization of disease resistance loci in the USDA soybean germplasm collection using genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    Genetic resistance is a key strategy for soybean disease management. In past decades, soybean germplasm has been phenotyped for resistance to many different pathogens and genes for resistance have been incorporated into elite breeding lines often resulting in commercial cultivars with disease resist...

  4. Fluorescence in situ hybridization-based karyotyping of soybean translocation lines

    USDA-ARS?s Scientific Manuscript database

    Soybean [Glycine max (L.) Merr.] is a major crop species and a target of a substantial investment of genomic and genetic studies; yet, in contrast to other plant species, relatively few chromosomal aberrations have been identified and characterized in soybean. This is due in part to the difficulty ...

  5. Heterotic Patterns of Soybean Lines from 3-Way, 4-Way and 5-way Crosses, and Backcross Populations

    USDA-ARS?s Scientific Manuscript database

    Identifying heterotic patterns in self-pollinated crops such as soybean [Glycine max (L.) Merr.], requires, among other items, development of different populations types. Male-sterility systems combined with insect-mediated cross-pollination in soybean have been shown to produce large quantities of...

  6. Registration of N6001 soybean germplasm with enhanced yield derived from Japanese cultivar Suzuyutaka

    USDA-ARS?s Scientific Manuscript database

    The genetic base of U.S. soybean (Glycine max (L.) Merr.) is relatively narrow, with Chinese ancestors providing most of the genetic base. Japanese lines have made relatively small contributions, suggesting that incorporation of novel Japanese genetics into USA breeding populations may aid soybean ...

  7. Genomic evaluation of oxalate-degrading transgenic soybean in response to Sclerotinia sclerotiorum infection

    USDA-ARS?s Scientific Manuscript database

    Oxalate oxidases catalyze the degradation of oxalic acid (OA). Highly resistant transgenic soybean carrying an oxalate oxidase (OxO) gene and its susceptible parent soybean line, AC Colibri, were tested for genome-wide gene expression in response to the necrotrophic, OA producing pathogen Sclerotini...

  8. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean

    USDA-ARS?s Scientific Manuscript database

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect mineral content (especially Mg, Mn, and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at si...

  9. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, a perennial wild relative of soybean in the subgenus Glycine Willd., shows high levels of resistan...

  10. Characterization of the fan1 locus in soybean line A5 and development of molecular assays for high-throughput genotyping of FAD3 genes

    USDA-ARS?s Scientific Manuscript database

    Soybean is one of the most important oil crops in the world, and reduced linolenic acid content of soybean oil will provide increased stability of the oil to consumers and food manufacturers and limit the amount of trans-fat to be used in the processed foods. The linolenic content in soybean seeds i...

  11. Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach.

    PubMed

    Rouquié, David; Capt, Annabelle; Eby, William H; Sekar, Vaithilingam; Hérouet-Guicheney, Corinne

    2010-12-01

    As part of the safety assessment of genetically modified (GM) soybean, 2-dimensional gel electrophoresis analyses were performed with the isoxaflutole and glyphosate tolerant soybean FG72, its non-GM near-isogenic counterpart (Jack) and three commercial non-GM soybean lines. The objective was to compare the known endogenous human food allergens in seeds in the five different soybean lines in order to evaluate any potential unintended effect(s) of the genetic modification. In total, 37 protein spots representing five well known soybean food allergen groups were quantified in each genotype. Qualitatively, all the allergenic proteins were detected in the different genetic backgrounds. Quantitatively, among 37 protein spots, the levels of accumulation of three allergens were slightly lower in the GM soybean than in the non-GM counterparts. Specifically, while the levels of two of these three allergens fell within the normal range of variation observed in the four non-GM varieties, the level of the third allergen was slightly below the normal range. Overall, there was no significant increase in the level of allergens in FG72 soybean seeds. Therefore, the FG72 soybean can be considered as safe as its non-GM counterpart with regards to endogenous allergenicity. Additional research is needed to evaluate the biological variability in the levels of endogenous soybean allergens and the correlation between level of allergens and allergenic potential in order to improve the interpretation of these data in the safety assessment of GM soybean context. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. The Effect of Temperature and Host Plant Resistance on Population Growth of the Soybean Aphid Biotype 1 (Hemiptera: Aphididae).

    PubMed

    Hough, Ashley R; Nechols, James R; McCornack, Brian P; Margolies, David C; Sandercock, Brett K; Yan, Donglin; Murray, Leigh

    2017-02-01

    A laboratory experiment was conducted to evaluate direct and indirect effects of temperature on demographic traits and population growth of biotype 1 of the soybean aphid, Aphis glycines Matsumura. Our objectives were to better understand how temperature influences the expression of host plant resistance, quantify the individual and interactive effects of plant resistance and temperature on soybean aphid population growth, and generate thermal constants for predicting temperature-dependent development on both susceptible and resistant soybeans. To assess indirect (plant-mediated) effects, soybean aphids were reared under a range of temperatures (15-30 °C) on soybean seedlings from a line expressing a Rag1 gene for resistance, and life history traits were quantified and compared to those obtained for soybean aphids on a susceptible soybean line. Direct effects of temperature were obtained by comparing relative differences in the magnitude of life-history traits among temperatures on susceptible soybeans. We predicted that temperature and host plant resistance would have a combined, but asymmetrical, effect on soybean aphid fitness and population growth. Results showed that temperature and plant resistance influenced preimaginal development and survival, progeny produced, and adult longevity. There also appeared to be a complex interaction between temperature and plant resistance for survival and developmental rate. Evidence suggested that the level of plant resistance increased at higher, but not lower, temperature. Soybean aphids required about the same number of degree-days to develop on resistant and susceptible plants. Our results will be useful for making predictions of soybean aphid population growth on resistant plants under different seasonal temperatures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Inheritance and molecular mapping of an allele providing resistance to Cowpea mild mottle virus-like symptoms in soybean

    USDA-ARS?s Scientific Manuscript database

    Damage to soybean [Glycine max (L.) Merr.] from Cowpea mild mottle virus-like (CPMMV-L) symptoms (family: Betaflexiviridae, genus: Carlavirus) has been of increasing concern in Argentina, Brazil, Mexico, and Puerto Rico. Soybean cultivars and lines differing in their reaction to the virus have been ...

  14. Assessment of soybean breeding lines for resistance to Phomopsis seed decay from field trials in Stoneville, Mississippi

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is one of the most important seed diseases in soybean. A fungal pathogen, Phomopsis longicolla (syn. Diaporthe longicolla), is the primary causal agent of PSD. Planting PSD-resistant soybean cultivars is the most effective strategy to manage this disease. However, few comm...

  15. Registration of TN09-008 soybean cyst nematode resistant cultivar

    USDA-ARS?s Scientific Manuscript database

    The conventional soybean line TN09-008 (Reg. No. CV- , PI ) was released by University of Tennessee Agricultural Research in 2017 as a cultivar, based on high seed yield potential in Tennessee and the southern region. Soybean cultivar TN09-008 is resistant to HG types 1.2.5.7, 5.7, a...

  16. The Path for the Development and Release of Heat Tolerant Soybean Lines

    USDA-ARS?s Scientific Manuscript database

    High ambient temperatures can damage soybean seed. Heat is recognized by the crop insurance industry as a major cause for monetary losses to producers. The USDA Risk Management Agency reported payouts to soybean farmers of more than $247 million on over 1.62 million hectares for losses due to heat...

  17. Soybean Ferritin Expression in Saccharomyces cerevisiae Modulates Iron Accumulation and Resistance to Elevated Iron Concentrations

    PubMed Central

    de Llanos, Rosa; Martínez-Garay, Carlos Andrés; Fita-Torró, Josep; Romero, Antonia María; Martínez-Pastor, María Teresa

    2016-01-01

    ABSTRACT Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations. IMPORTANCE Iron deficiency is a worldwide nutritional disorder to which women and children are especially vulnerable. A common strategy to combat iron deficiency consists of dietary supplementation with inorganic iron salts, whose bioavailability is very low. Iron-enriched yeasts and cereals are alternative strategies to diminish iron deficiency. Animals and plants possess large ferritin complexes that accumulate, detoxify, or buffer excess cellular iron. However, the yeast Saccharomyces cerevisiae lacks ferritin and uses vacuoles as iron storage organelles. Here, we explored how soybean ferritin expression influenced yeast iron metabolism, confirming that yeasts that express soybean seed ferritin could be explored as a novel strategy to increase dietary iron absorption. PMID:26969708

  18. Comparison of genetic diversity between Canadian adapted genotypes and exotic germplasm of soybean.

    PubMed

    Iquira, Elmer; Gagnon, Eric; Belzile, François

    2010-05-01

    Soybean (Glycine max (L.) Merr.) was domesticated in China and the greatest genetic diversity for this species is found in Asia. In contrast, in North America, soybean cultivars trace back to a small number of plant introductions from Asia and genetic diversity is typically quite limited. The purpose of this work was to measure and compare the genetic diversity in two sets of soybean lines. The first set (termed "local") was composed of 100 lines used in a private breeding program in Quebec. The second set (termed "exotic") was composed of 200 lines from elsewhere in the world (but mostly from Asia) and included a few lines of Glycine soja, the wild progenitor of cultivated soybean. Almost all the genotypes belonged to maturity groups between 000 and II. A total of 39 microsatellites (SSRs) were used to genotype the two collections. The number of alleles per locus was almost twice as great in the exotic set compared with the local set. Also, the number of "unique" alleles, i.e., those uniquely present in one set and absent in the other, was almost fivefold greater (191 vs. 37) in a subset of 108 exotic lines with good adaptation than among the local set. A genetic distance matrix, a UPGMA cluster analysis, and a principal coordinate analysis were conducted based on the SSR data. These analyses all indicated that the exotic set was much more diverse and formed a clearly distinct group from the local set. Interestingly, some of the lines showing the best adaptation to local conditions were quite distinctive in terms of their genotype and could potentially contribute useful novel genetic variation within the breeding program.

  19. Transcript profiling reveals expression differences in wild-type and glabrous soybean lines

    PubMed Central

    2011-01-01

    Background Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for Arabidopsis thaliana, but their applicability to important crops such as cotton and soybean is not fully known. Results Two high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. Conclusion Although not a candidate for the P1 locus, a BURP family member (Glyma04g35130) from soybean has been shown to be abundantly expressed in the CS line and very weakly expressed in the glabrous CG line. RNA-Seq and DGE data are compared and provide experimental data on the expression of predicted soybean gene models as well as an overview of the genes expressed in young shoot tips of two closely related isolines. PMID:22029708

  20. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    DOE PAGES

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; ...

    2016-05-23

    Soybean ( Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCNmore » resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Furthermore, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.« less

  1. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan

    Soybean ( Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCNmore » resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Furthermore, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.« less

  2. Mapping of new quantitative trait loci for sudden death syndrome and soybean cyst nematode resistance in two soybean populations.

    PubMed

    Swaminathan, Sivakumar; Abeysekara, Nilwala S; Knight, Joshua M; Liu, Min; Dong, Jia; Hudson, Matthew E; Bhattacharyya, Madan K; Cianzio, Silvia R

    2018-05-01

    Novel QTL conferring resistance to both the SDS and SCN was detected in two RIL populations. Dual resistant RILs could be used in breeding programs for developing resistant soybean cultivars. Soybean cultivars, susceptible to the fungus Fusarium virguliforme, which causes sudden death syndrome (SDS), and to the soybean cyst nematode (SCN) (Heterodera glycines), suffer yield losses valued over a billion dollars annually. Both pathogens may occur in the same production fields. Planting of cultivars genetically resistant to both pathogens is considered one of the most effective means to control the two pathogens. The objective of the study was to map quantitative trait loci (QTL) underlying SDS and SCN resistances. Two recombinant inbred line (RIL) populations were developed by crossing 'A95-684043', a high-yielding maturity group (MG) II line resistant to SCN, with 'LS94-3207' and 'LS98-0582' of MG IV, resistant to both F. virguliforme and SCN. Two hundred F 7 derived recombinant inbred lines from each population AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582) were screened for resistance to each pathogen under greenhouse conditions. Five hundred and eighty and 371 SNP markers were used for mapping resistance QTL in each population. In AX19286, one novel SCN resistance QTL was mapped to chromosome 8. In AX19287, one novel SDS resistance QTL was mapped to chromosome 17 and one novel SCN resistance QTL was mapped to chromosome 11. Previously identified additional SDS and SCN resistance QTL were also detected in the study. Lines possessing superior resistance to both pathogens were also identified and could be used as germplasm sources for breeding SDS- and SCN-resistant soybean cultivars.

  3. Tnt1 Retrotransposon Mutagenesis: A Tool for Soybean Functional Genomics1[W][OA

    PubMed Central

    Cui, Yaya; Barampuram, Shyam; Stacey, Minviluz G.; Hancock, C. Nathan; Findley, Seth; Mathieu, Melanie; Zhang, Zhanyuan; Parrott, Wayne A.; Stacey, Gary

    2013-01-01

    Insertional mutagenesis is a powerful tool for determining gene function in both model and crop plant species. Tnt1, the transposable element of tobacco (Nicotiana tabacum) cell type 1, is a retrotransposon that replicates via an RNA copy that is reverse transcribed and integrated elsewhere in the plant genome. Based on studies in a variety of plants, Tnt1 appears to be inactive in normal plant tissue but can be reactivated by tissue culture. Our goal was to evaluate the utility of the Tnt1 retrotransposon as a mutagenesis strategy in soybean (Glycine max). Experiments showed that the Tnt1 element was stably transformed into soybean plants by Agrobacterium tumefaciens-mediated transformation. Twenty-seven independent transgenic lines carrying Tnt1 insertions were generated. Southern-blot analysis revealed that the copy number of transposed Tnt1 elements ranged from four to 19 insertions, with an average of approximately eight copies per line. These insertions showed Mendelian segregation and did not transpose under normal growth conditions. Analysis of 99 Tnt1 flanking sequences revealed insertions into 62 (62%) annotated genes, indicating that the element preferentially inserts into protein-coding regions. Tnt1 insertions were found in all 20 soybean chromosomes, indicating that Tnt1 transposed throughout the soybean genome. Furthermore, fluorescence in situ hybridization experiments validated that Tnt1 inserted into multiple chromosomes. Passage of transgenic lines through two different tissue culture treatments resulted in Tnt1 transposition, significantly increasing the number of insertions per line. Thus, our data demonstrate the Tnt1 retrotransposon to be a powerful system that can be used for effective large-scale insertional mutagenesis in soybean. PMID:23124322

  4. Correlation, path analysis and heritability estimation for agronomic traits contribute to yield on soybean

    NASA Astrophysics Data System (ADS)

    Sulistyo, A.; Purwantoro; Sari, K. P.

    2018-01-01

    Selection is a routine activity in plant breeding programs that must be done by plant breeders in obtaining superior plant genotypes. The use of appropriate selection criteria will determine the effectiveness of selection activities. The purpose of this study was to analysis the inheritable agronomic traits that contribute to soybean yield. A total of 91 soybean lines were planted in Muneng Experimental Station, Probolinggo District, East Java Province, Indonesia in 2016. All soybean lines were arranged in randomized complete block design with two replicates. Correlation analysis, path analysis and heritability estimation were performed on days to flowering, days to maturing, plant height, number of branches, number of fertile nodes, number of filled pods, weight of 100 seeds, and yield to determine selection criteria on soybean breeding program. The results showed that the heritability value of almost all agronomic traits observed is high except for the number of fertile nodes with low heritability. The result of correlation analysis shows that days to flowering, plant height and number of fertile nodes have positive correlation with seed yield per plot (0.056, 0.444, and 0.100, respectively). In addition, path analysis showed that plant height and number of fertile nodes have highest positive direct effect on soybean yield. Based on this result, plant height can be selected as one of selection criteria in soybean breeding program to obtain high yielding soybean variety.

  5. Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping.

    PubMed

    Cao, Yongce; Li, Shuguang; Wang, Zili; Chang, Fangguo; Kong, Jiejie; Gai, Junyi; Zhao, Tuanjie

    2017-01-01

    Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the genetic basis of seed oil content of Chinese soybean cultivars in various environments in the Jiang-Huai River Valley. One recombinant inbred line (RIL) population (NJMN-RIL), with 104 lines developed from a cross between M8108 and NN1138-2 , was planted in five environments to investigate phenotypic data, and a new genetic map with 2,062 specific-locus amplified fragment markers was constructed to map oil content QTLs. A derived F 2 population between MN-5 (a line of NJMN-RIL) and NN1138-2 was also developed to confirm one major QTL. A soybean breeding germplasm population (279 lines) was established to perform a genome-wide association study (GWAS) using 59,845 high-quality single nucleotide polymorphism markers. In the NJMN-RIL population, 8 QTLs were found that explained a range of phenotypic variance from 6.3 to 26.3% in certain planting environments. Among them, qOil-5-1, qOil-10-1 , and qOil-14-1 were detected in different environments, and qOil-5-1 was further confirmed using the secondary F 2 population. Three loci located on chromosomes 5 and 20 were detected in a 2-year long GWAS, and one locus that overlapped with qOil-5-1 was found repeatedly and treated as the same locus. qOil-5-1 was further localized to a linkage disequilibrium block region of approximately 440 kb. These results will not only increase our understanding of the genetic control of seed oil content in soybean, but will also be helpful in marker-assisted selection for breeding high seed oil content soybean and gene cloning to elucidate the mechanisms of seed oil content.

  6. Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping

    PubMed Central

    Cao, Yongce; Li, Shuguang; Wang, Zili; Chang, Fangguo; Kong, Jiejie; Gai, Junyi; Zhao, Tuanjie

    2017-01-01

    Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the genetic basis of seed oil content of Chinese soybean cultivars in various environments in the Jiang-Huai River Valley. One recombinant inbred line (RIL) population (NJMN-RIL), with 104 lines developed from a cross between M8108 and NN1138-2, was planted in five environments to investigate phenotypic data, and a new genetic map with 2,062 specific-locus amplified fragment markers was constructed to map oil content QTLs. A derived F2 population between MN-5 (a line of NJMN-RIL) and NN1138-2 was also developed to confirm one major QTL. A soybean breeding germplasm population (279 lines) was established to perform a genome-wide association study (GWAS) using 59,845 high-quality single nucleotide polymorphism markers. In the NJMN-RIL population, 8 QTLs were found that explained a range of phenotypic variance from 6.3 to 26.3% in certain planting environments. Among them, qOil-5-1, qOil-10-1, and qOil-14-1 were detected in different environments, and qOil-5-1 was further confirmed using the secondary F2 population. Three loci located on chromosomes 5 and 20 were detected in a 2-year long GWAS, and one locus that overlapped with qOil-5-1 was found repeatedly and treated as the same locus. qOil-5-1 was further localized to a linkage disequilibrium block region of approximately 440 kb. These results will not only increase our understanding of the genetic control of seed oil content in soybean, but will also be helpful in marker-assisted selection for breeding high seed oil content soybean and gene cloning to elucidate the mechanisms of seed oil content. PMID:28747922

  7. Evaluation of maturity group III soybean lines for resistance to purple seed stain in Mississippi, 2010

    USDA-ARS?s Scientific Manuscript database

    Purple seed stain (PSS) of soybean is an important disease caused by Cercospora kikuchii. PSS reduces seed quality and market grade, affects seed germination and vigor, and has been reported wherever soybeans are grown worldwide. In 2009, PSS caused 6.4 million bushels of yield losses in 16 southern...

  8. Evaluation of maturity group IV soybean lines for resistance to purple seed stains in Mississippi 2010

    USDA-ARS?s Scientific Manuscript database

    Purple seed stain (PSS) of soybean is an important disease caused by Cercospora kikuchii. PSS reduces seed quality and market grade, affects seed germination and vigor, and has been reported wherever soybeans are grown worldwide. In 2009, PSS caused 6.4 million bushels of yield losses in 16 southern...

  9. Resistance to Phakopsora pachyrhizi in soybean PI 587905 maps to the Rpp1 locus and exhibits variable dominance associated with plant ontogeny

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by Phakopsora pachyrhizi Sydow, results in significant yield loss worldwide. Soybean accession PI 587905, previously identified as having resistance to P. pachyrhizi, was used to create two independent populations (F2 plants and F2-derived F3 lines) segregating for resistance. ...

  10. Methodology for creating alloplasmic soybean lines by using Glycine tomentella as a maternal parent

    USDA-ARS?s Scientific Manuscript database

    Soybean breeders have not exploited the diversity of the 26 wild perennial species of the subgenus Glycine Willd. that are distantly related to soybean [G. max (L.) Merr.]. The objectives of this study were to introgress cytoplasmic and genetic diversity from G. tomentella PI 441001 (2n=78) into the...

  11. Quantitative trait loci underlying seed sugars content in MD96-5722 by spencer recombinant inbred line population of soybean

    USDA-ARS?s Scientific Manuscript database

    Sucrose, raffinose, and stachyose are important soluble sugars in soybean [Glycine max (L.) Merr.] seeds, and soybean seeds with higher sucrose and lower raffinose and stachyose are desirable. Therefore, optimizing sugars biosynthesis is a major goal for soy food industry. The objective of this stud...

  12. Quantitative trait loci for seed isoflavones contents in 'MD96-5722' by 'Spencer' recombinant inbred lines of soybean

    USDA-ARS?s Scientific Manuscript database

    Isoflavones from soybeans (Glycine max L. Merr.) have significant impact on human health in reducing the risk of several major diseases. Breeding soybean for high isoflavones content in the seed is possible through marker assisted selection (MAS), which can be based on quantitative trait loci (QTL)....

  13. Mapping QTLs for 100-seed weight in an interspecific soybean cross of Williams 82 (Glycine max) x PI 366121 (Glycine soja)

    USDA-ARS?s Scientific Manuscript database

    100-seed weight is a critical component for soybean quality and yield. The objective of the present study was to identify quantitative trait loci (QTLs) for 100-seed weight using 169 recombinant inbred lines (RILs) derived from the cross of Williams 82 x PI 366121. The parental lines and RILs were g...

  14. Genetic mapping of QTLs associated with seed macronutrients accumulation in 'MD96-5722' by 'Spencer' recombinant inbred lines of soybean

    USDA-ARS?s Scientific Manuscript database

    Research of genetic mapping of QTLs for macronutrient accumulation in soybean seed is limited. Therefore, the objective of this research was to identify QTLs related to macronutrients (N, C, S, P, K, Ca, and Mg) in seeds in 92 F5:7 recombinant inbred lines developed from a cross between MD 96-5722 (...

  15. A SNP genetic linkage map based on the ‘Hamilton’ by ‘Spencer’ recombinant inbred line (RIL) population identified QTL for seed Isoflavone contents in soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean is one of the most important crops worldwide for its protein, oil as well as the health beneficial phytoestrogens or isoflavone. This study reports a relatively dense SNP-Based genetic map based on ‘Hamilton’ by ‘Spencer’ recombinant inbred line (RIL) population and quantitative t...

  16. Comparison of soybean cultivars for enhancement of the polyamine contents in the fermented soybean natto using Bacillus subtilis (natto).

    PubMed

    Kobayashi, Kazuya; Horii, Yuichiro; Watanabe, Satoshi; Kubo, Yuji; Koguchi, Kumiko; Hoshi, Yoshihiro; Matsumoto, Ken-Ichi; Soda, Kuniyasu

    2017-03-01

    Polyamines have beneficial properties to prevent aging-associated diseases. Raw soybean has relatively high polyamine contents; and the fermented soybean natto is a good source of polyamines. However, detailed information of diversity of polyamine content in raw soybean is lacking. The objectives of this study were to evaluate differences of polyamines among raw soybeans and select the high polyamine-containing cultivar for natto production. Polyamine contents were measured chromatographically in 16 samples of soybean, which showed high variation among soybeans as follows: 93-861 nmol/g putrescine, 1055-2306 nmol/g spermidine, and 177-578 nmol/g spermine. We then confirmed the high correlations of polyamine contents between raw soybean and natto (r = 0.96, 0.95, and 0.94 for putrescine, spermidine, and spermine, respectively). Furthermore, comparison of the polyamine contents among 9 Japanese cultivars showed that 'Nakasen-nari' has the highest polyamine contents, suggesting its suitability for enhancement of polyamine contents of natto.

  17. Lines Developed from New Genetic Source PI 567516C Provide Broader Resistance to Heterodera glycines and Potential for Sustainable Soybean Production

    USDA-ARS?s Scientific Manuscript database

    Worldwide, soybean [Glycine max (L.) Merr] is the most used legume crop, providing 71% of protein meal, as well as food oil, and a renewable source of fuel. In the United States alone, the annual production value exceeds $35 billion. Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the m...

  18. Evaluation of soybean breeding lines for resistance to Phomopsis seed decay: Results of 2014, 2015, and 2016 field trials in Stoneville, Mississippi

    USDA-ARS?s Scientific Manuscript database

    Soybean [Glycine max (L.) Merr.] is one of the most important crops in the world. Phomopsis seed decay (PSD) is a soybean seed disease that causes poor seed quality. This disease is caused primarily by a fungal pathogen, Phomopsis longicolla (syn. Diaporthe longicolla). Planting PSD-resistant soybea...

  19. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines.

    PubMed

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Hatcher, Catherine N; Wuddineh, Wegi A; Rudis, Mary; Tschaplinski, Timothy J; Pantalone, Vincent R; Arelli, Prakash R; Hewezi, Tarek; Chen, Feng; Stewart, Charles Neal

    2016-11-01

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. An (E,E)-α-farnesene synthase gene of soybean has a role in defence against nematodes and is involved in synthesizing insect-induced volatiles.

    PubMed

    Lin, Jingyu; Wang, Dan; Chen, Xinlu; Köllner, Tobias G; Mazarei, Mitra; Guo, Hong; Pantalone, Vincent R; Arelli, Prakash; Stewart, Charles Neal; Wang, Ningning; Chen, Feng

    2017-04-01

    Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here, we report the functional characterization of one member of the soybean TPS gene family, which was designated GmAFS. Recombinant GmAFS produced in Escherichia coli catalysed the formation of a sesquiterpene (E,E)-α-farnesene. GmAFS is closely related to (E,E)-α-farnesene synthase gene from apple, both phylogenetically and structurally. GmAFS was further investigated for its biological role in defence against nematodes and insects. Soybean cyst nematode (SCN) is the most important pathogen of soybean. The expression of GmAFS in a SCN-resistant soybean was significantly induced by SCN infection compared with the control, whereas its expression in a SCN-susceptible soybean was not changed by SCN infection. Transgenic hairy roots overexpressing GmAFS under the control of the CaMV 35S promoter were generated in an SCN-susceptible soybean line. The transgenic lines showed significantly higher resistance to SCN, which indicates that GmAFS contributes to the resistance of soybean to SCN. In soybean leaves, the expression of GmAFS was found to be induced by Tetranychus urticae (two-spotted spider mites). Exogenous application of methyl jasmonate to soybean plants also induced the expression of GmAFS in leaves. Using headspace collection combined with gas chromatography-mass spectrometry analysis, soybean plants that were infested with T. urticae were shown to emit a mixture of volatiles with (E,E)-α-farnesene as one of the most abundant constituents. In summary, this study showed that GmAFS has defence roles in both below-ground and above-ground organs of soybean against nematodes and insects, respectively. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Silencing of Soybean Raffinose Synthase Gene Reduced Raffinose Family Oligosaccharides and Increased True Metabolizable Energy of Poultry Feed

    PubMed Central

    Valentine, Michelle F.; De Tar, Joann R.; Mookkan, Muruganantham; Firman, Jeffre D.; Zhang, Zhanyuan J.

    2017-01-01

    Soybean [Glycine max (L.) Merr.] is the number one oil and protein crop in the United States, but the seed contains several anti-nutritional factors that are toxic to both humans and livestock. RNA interference technology has become an increasingly popular technique in gene silencing because it allows for both temporal and spatial targeting of specific genes. The objective of this research is to use RNA-mediated gene silencing to down-regulate the soybean gene raffinose synthase 2 (RS2), to reduce total raffinose content in mature seed. Raffinose is a trisaccharide that is indigestible to humans and monogastric animals, and as monogastric animals are the largest consumers of soy products, reducing raffinose would improve the nutritional quality of soybean. An RNAi construct targeting RS2 was designed, cloned, and transformed to the soybean genome via Agrobacterium-mediated transformation. Resulting plants were analyzed for the presence and number of copies of the transgene by PCR and Southern blot. The efficiency of mRNA silencing was confirmed by real-time quantitative PCR. Total raffinose content was determined by HPLC analysis. Transgenic plant lines were recovered that exhibited dramatically reduced levels of raffinose in mature seed, and these lines were further analyzed for other phenotypes such as development and yield. Additionally, a precision-fed rooster assay was conducted to measure the true metabolizable energy (TME) in full-fat soybean meal made from the wild-type or transgenic low-raffinose soybean lines. Transgenic low-raffinose soy had a measured TME of 2,703 kcal/kg, an increase as compared with 2,411 kcal/kg for wild-type. As low digestible energy is a major limiting factor in the percent of soybean meal that can be used in poultry diets, these results may substantiate the use of higher concentrations of low-raffinose, full-fat soy in formulated livestock diets. PMID:28559898

  2. Identify and validate a quantitative trait locus underlying stearic acid on chromosome 14 in a soybean landrace using recombinant inbred lines and resident heterozygous lines

    USDA-ARS?s Scientific Manuscript database

    Stearic acid (ST) is one of the saturated fatty acids (FAs) in soybean oil and great efforts have been made to elevate ST content through plant breeding. Improving ST content will be helpful to reduce the health risk of coronary heart diseases and breast, colon and prostate cancer. In this study, re...

  3. Ncl Synchronously Regulates Na+, K+, and Cl- in Soybean and Greatly Increases the Grain Yield in Saline Field Conditions.

    PubMed

    Do, Tuyen Duc; Chen, Huatao; Hien, Vu Thi Thu; Hamwieh, Aladdin; Yamada, Tetsuya; Sato, Tadashi; Yan, Yongliang; Cong, Hua; Shono, Mariko; Suenaga, Kazuhiro; Xu, Donghe

    2016-01-08

    Salt stress inhibits soybean growth and reduces gain yield. Genetic improvement of salt tolerance is essential for sustainable soybean production in saline areas. In this study, we isolated a gene (Ncl) that could synchronously regulate the transport and accumulation of Na(+), K(+), and Cl(-) from a Brazilian soybean cultivar FT-Abyara using map-based cloning strategy. Higher expression of the salt tolerance gene Ncl in the root resulted in lower accumulations of Na(+), K(+), and Cl(-) in the shoot under salt stress. Transfer of Ncl with the Agrobacterium-mediated transformation method into a soybean cultivar Kariyutaka significantly enhanced its salt tolerance. Introgression of the tolerance allele into soybean cultivar Jackson, using DNA marker-assisted selection (MAS), produced an improved salt tolerance line. Ncl could increase soybean grain yield by 3.6-5.5 times in saline field conditions. Using Ncl in soybean breeding through gene transfer or MAS would contribute to sustainable soybean production in saline-prone areas.

  4. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean

    PubMed Central

    Patil, Gunvant; Do, Tuyen; Vuong, Tri D.; Valliyodan, Babu; Lee, Jeong-Dong; Chaudhary, Juhi; Shannon, J. Grover; Nguyen, Henry T.

    2016-01-01

    Soil salinity is a limiting factor of crop yield. The soybean is sensitive to soil salinity, and a dominant gene, Glyma03g32900 is primarily responsible for salt-tolerance. The identification of high throughput and robust markers as well as the deployment of salt-tolerant cultivars are effective approaches to minimize yield loss under saline conditions. We utilized high quality (15x) whole-genome resequencing (WGRS) on 106 diverse soybean lines and identified three major structural variants and allelic variation in the promoter and genic regions of the GmCHX1 gene. The discovery of single nucleotide polymorphisms (SNPs) associated with structural variants facilitated the design of six KASPar assays. Additionally, haplotype analysis and pedigree tracking of 93 U.S. ancestral lines were performed using publically available WGRS datasets. Identified SNP markers were validated, and a strong correlation was observed between the genotype and salt treatment phenotype (leaf scorch, chlorophyll content and Na+ accumulation) using a panel of 104 soybean lines and, an interspecific bi-parental population (F8) from PI483463 x Hutcheson. These markers precisely identified salt-tolerant/sensitive genotypes (>91%), and different structural-variants (>98%). These SNP assays, supported by accurate phenotyping, haplotype analyses and pedigree tracking information, will accelerate marker-assisted selection programs to enhance the development of salt-tolerant soybean cultivars. PMID:26781337

  5. 7 CFR 810.1605 - Special grades and special grade requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... bulblets in a 1,000 gram portion. (b) Purple mottled or stained soybeans. Soybeans with pink or purple seed coats as determined on a portion of approximately 400 grams with the use of an FGIS Interpretive Line...

  6. 7 CFR 810.1605 - Special grades and special grade requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... bulblets in a 1,000 gram portion. (b) Purple mottled or stained soybeans. Soybeans with pink or purple seed coats as determined on a portion of approximately 400 grams with the use of an FGIS Interpretive Line...

  7. 7 CFR 810.1605 - Special grades and special grade requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... bulblets in a 1,000 gram portion. (b) Purple mottled or stained soybeans. Soybeans with pink or purple seed coats as determined on a portion of approximately 400 grams with the use of an FGIS Interpretive Line...

  8. 7 CFR 810.1605 - Special grades and special grade requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... bulblets in a 1,000 gram portion. (b) Purple mottled or stained soybeans. Soybeans with pink or purple seed coats as determined on a portion of approximately 400 grams with the use of an FGIS Interpretive Line...

  9. 7 CFR 810.1605 - Special grades and special grade requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bulblets in a 1,000 gram portion. (b) Purple mottled or stained soybeans. Soybeans with pink or purple seed coats as determined on a portion of approximately 400 grams with the use of an FGIS Interpretive Line...

  10. Quantitative Trait Loci (QTL) that Underlie SCN Resistance in the Soybean [Glycine max (L.) Merr.] ‘PI438489B’ by ‘Hamilton’ Recombinant Inbred Line Population

    USDA-ARS?s Scientific Manuscript database

    Soybean cyst nematode caused by Heterodera glycines is the most devastating pest in soybean [Glycine max (L.) Merr.]. Resistance to SCN is complex, polygenic, race-cultivar specific, and controlled by several QTL. Our objective was to identify and map QTL for SCN resistance to races 3 and 5 using a ...

  11. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor.

    PubMed

    Cheng, Nan; Shang, Ying; Xu, Yuancong; Zhang, Li; Luo, Yunbo; Huang, Kunlun; Xu, Wentao

    2017-05-15

    Stacked genetically modified organisms (GMO) are becoming popular for their enhanced production efficiency and improved functional properties, and on-site detection of stacked GMO is an urgent challenge to be solved. In this study, we developed a cascade system combining event-specific tag-labeled multiplex LAMP with a DNAzyme-lateral flow biosensor for reliable detection of stacked events (DP305423× GTS 40-3-2). Three primer sets, both event-specific and soybean species-specific, were newly designed for the tag-labeled multiplex LAMP system. A trident-like lateral flow biosensor displayed amplified products simultaneously without cross contamination, and DNAzyme enhancement improved the sensitivity effectively. After optimization, the limit of detection was approximately 0.1% (w/w) for stacked GM soybean, which is sensitive enough to detect genetically modified content up to a threshold value established by several countries for regulatory compliance. The entire detection process could be shortened to 120min without any large-scale instrumentation. This method may be useful for the in-field detection of DP305423× GTS 40-3-2 soybean on a single kernel basis and on-site screening tests of stacked GM soybean lines and individual parent GM soybean lines in highly processed foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance

    PubMed Central

    Kim, Yoon-Ha; Hwang, Sun-Joo; Waqas, Muhammad; Khan, Abdul L.; Lee, Joon-Hee; Lee, Jeong-Dong; Nguyen, Henry T.; Lee, In-Jung

    2015-01-01

    Waterlogged condition due to flooding is one of the major abiotic stresses that drastically affect the soybean growth and yield around the world. As a result, many breeders have focused on the development of waterlogging tolerance in soybean varieties, and thus, several tolerant varieties were developed. However, the physiological mechanism of waterlogging tolerance is not yet fully understood. We particularly studied the endogenous hormones regulation during waterlogging in two contrasting soybean genotypes. According to our results, adventitious roots were better developed in the waterlogging tolerant line (WTL) than in the waterlogging susceptible line (WSL). Endogenous hormones also showed significant differences between WTL and WSL. The ethylene production ratio was higher in WTL than in WSL, and methionine was higher in WTL than in WSL. Other endogenous abscisic acid (ABA) contents were lower in WTL than in WSL. Conversely, gibberellic acid (GA) showed a tendency to be high in WTL, especially the levels of the bioactive GA4. The ratio of total GA and ABA was significantly higher in WTL than in WSL. Anatomical study of the root revealed that aerenchyma cells in the stele were better developed in WTL than in WSL. PMID:26442028

  13. Likelihood assessment for gene flow of transgenes from imported genetically modified soybean (Glycine max (L.) Merr.) to wild soybean (Glycine soja Seib. et Zucc.) in Japan as a component of environmental risk assessment

    PubMed Central

    Goto, Hidetoshi; McPherson, Marc A.; Comstock, Bradley A.; Stojšin, Duška; Ohsawa, Ryo

    2017-01-01

    Environmental risk assessment is required for genetically modified (GM) crops before their import into Japan. Annual roadside monitoring along transportation routes from ports to processing facilities for GM soybean (Glycine max (L.) Merr.) have been requested as a condition of import only approval because of lack of information on the likelihood of persistence of imported GM soybean for food, feed and processing and the potential for transfer of transgenes into wild soybean (Glycine soja Seib. et Zucc.) through gene flow under the Japanese environment. The survey of soybean seeds, plants and wild soybean populations were conducted along transportation routes from unloading ports to processing facilities that provided data to help quantify actual exposure. The survey indicated that the opportunities for co-existence and subsequent crossing between wild soybean populations and imported soybean are highly unlikely. Together the survey results and the comprehensive literature review demonstrated low exposure of imported GM soybean used for food, feed and processing in Japan. This evaluation of exposure level is not specific to particular GM soybean event but can apply to any GM soybean traits used for food, feed and processing if their weediness or invasiveness are the same as those of the conventional soybean. PMID:29085244

  14. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping.

    PubMed

    Patil, Gunvant; Vuong, Tri D; Kale, Sandip; Valliyodan, Babu; Deshmukh, Rupesh; Zhu, Chengsong; Wu, Xiaolei; Bai, Yonghe; Yungbluth, Dennis; Lu, Fang; Kumpatla, Siva; Shannon, J Grover; Varshney, Rajeev K; Nguyen, Henry T

    2018-04-04

    The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil, and high sucrose. In this study, an interspecific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3× depth. Based on 91 342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4070 bins). In addition to bin mapping, quantitative trait loci (QTL) analysis for protein, oil, and sucrose was performed using 3343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared, and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next-generation sequencing technology enhanced mapping resolution (from 1325 to 50 Kb). A total of five, nine, and four QTLs were identified for protein, oil, and sucrose content, respectively, and some of the QTLs coincided with soybean domestication-related genomic loci. The major QTL for protein and oil were mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL were identified on Chr. 8 (qSuc_08) and harbours putative genes involved in sugar transport. In addition, genome-wide association using 91 342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL-based haplotype using whole-genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Assessment of Genetically Modified Soybean in Relation to Natural Variation in the Soybean Seed Metabolome

    PubMed Central

    Clarke, Joseph D.; Alexander, Danny C.; Ward, Dennis P.; Ryals, John A.; Mitchell, Matthew W.; Wulff, Jacob E.; Guo, Lining

    2013-01-01

    Genetically modified (GM) crops currently constitute a significant and growing part of agriculture. An important aspect of GM crop adoption is to demonstrate safety and equivalence with respect to conventional crops. Untargeted metabolomics has the ability to profile diverse classes of metabolites and thus could be an adjunct for GM crop substantial equivalence assessment. To account for environmental effects and introgression of GM traits into diverse genetic backgrounds, we propose that the assessment for GM crop metabolic composition should be understood within the context of the natural variation for the crop. Using a non-targeted metabolomics platform, we profiled 169 metabolites and established their dynamic ranges from the seeds of 49 conventional soybean lines representing the current commercial genetic diversity. We further demonstrated that the metabolome of a GM line had no significant deviation from natural variation within the soybean metabolome, with the exception of changes in the targeted engineered pathway. PMID:24170158

  16. Evaluation of Exotically-Derived Soybean Breeding Lines for Seed Yield, Germination, Damage, and Composition under Dryland Production in the Midsouthern USA

    PubMed Central

    Bellaloui, Nacer; Smith, James R.; Mengistu, Alemu; Ray, Jeffery D.; Gillen, Anne M.

    2017-01-01

    Although the Early Soybean Production System (ESPS) in the Midsouthern USA increased seed yield under irrigated and non-irrigated conditions, heat stress and drought still lead to poor seed quality in heat sensitive soybean cultivars. Our breeding goal was to identify breeding lines that possess high germination, nutritional quality, and yield potential under high heat and dryland production conditions. Our hypothesis was that breeding lines derived from exotic germplasm might possess physiological and genetic traits allowing for higher seed germinability under high heat conditions. In a 2-year field experiment, breeding lines derived from exotic soybean accessions, previously selected for adaptability to the ESPS in maturity groups (MG) III and IV, were grown under non-irrigated conditions. Results showed that three exotic breeding lines had consistently superior germination across 2 years. These lines had a mean germination percentage of >80%. Two (25-1-1-4-1-1 and 34-3-1-2-4-1) out of the three lines with ≥80% germination in both years maintained high seed protein, oleic acid, N, P, K, B, Cu, and Mo in both years. Significant (P < 0.05) positive correlations were found between germination and oleic acid and with K and Cu in both years. Significant negative correlations were found between germination and linoleic acid, Ca, and hard seed in both years. There were positive correlations between germination and N, P, B, Mo, and palmitic acid only in 2013. A negative correlation was found between germination and green seed damage and linolenic acid in 2013 only. Seed wrinkling was significantly negatively correlated with germination in 2012 only. A lower content of Ca in the seed of high germinability genotypes may explain the lower rates of hard seed in those lines, which could lead to higher germination. Many of the differences in yield, germination, diseases, and seed composition between years are likely due to heat and rainfall differences between years. The results also showed the potential roles of seed minerals, especially K, Ca, B, Cu, and Mo, in maintaining high seed quality. The knowledge gained from this research will help breeders to select for soybean with high seed nutritional qualities and high germinability. PMID:28289420

  17. Development and application of a novel genome-wide SNP array reveals domestication history in soybean

    PubMed Central

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-01-01

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean. PMID:26856884

  18. Development and application of a novel genome-wide SNP array reveals domestication history in soybean.

    PubMed

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-02-09

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean.

  19. The Tgm9-induced indexed insertional mutant collection to conduct community-based reverse genetics studies in soybean

    USDA-ARS?s Scientific Manuscript database

    Until now, functional analyses of soybean genes have been very arduous because of the lack of a rapid transformation procedure. Recently identified the active endogenous type II transposable element, Tgm9, excises from insertion sites and restores wild-type phenotypes. Thus, this element provides a ...

  20. Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves

    USDA-ARS?s Scientific Manuscript database

    Iron is an essential micronutrient for all living things, required in plants for photosynthesis, respiration and metabolism. A lack of bioavailable iron in soil leads to iron deficiency chlorosis (IDC), causing a reduction in photosynthesis and interveinal yellowing of leaves. Soybeans (Glycine ma...

  1. Validation of reference genes for gene expression studies in soybean aphid, Aphis glycines Matsumura

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time PCR (qRT-PCR) is a common tool for quantifying mRNA transcripts. To normalize results, a reference gene is mandatory. Aphis glycines is a significant soybean pest, yet gene expression and functional genomics studies are hindered by a lack of stable reference genes. We evalu...

  2. Changes in Amino Acid Profile in Roots of Glyphosate Resistant and Susceptible Soybean (Glycine max) Induced by Foliar Glyphosate Application.

    PubMed

    Moldes, Carlos Alberto; Cantarelli, Miguel Angel; Camiña, José Manuel; Tsai, Siu Mui; Azevedo, Ricardo Antunes

    2017-10-11

    Amino acid profiles are useful to analyze the responses to glyphosate in susceptible and resistant soybean lines. Comparisons of profiles for 10 amino acids (Asp, Asn, Glu, Gln, Ser, His, Gly, Thr, Tyr, Leu) by HPLC in soybean roots were performed in two near isogenic pairs (four varieties). Foliar application of glyphosate was made to soybean plants after 5 weeks of seeding. Roots of four varieties were collected at 0 and 72 h after glyphosate application (AGA) for amino acid analysis by HPLC. Univariate analysis showed a significant increase of several amino acids in susceptible as well as resistant soybean lines; however, amino acids from the major pathways of carbon (C) and nitrogen (N) metabolism, such as Asp, Asn, Glu and Gln, and Ser, increased significantly in susceptible varieties at 72 h AGA. Multivariate analysis using principal component analysis (2D PCA and 3D PCA) allowed different groups to be identified and discriminated based on the soybean genetic origin, showing the amino acid responses on susceptible and resistant varieties. Based on the results, it is possible to infer that the increase of Asn, Asp, Glu, Gln, and Ser in susceptible varieties would be related to the deregulation of C and N metabolism, as well as changes in the growth mechanisms regulated by Ser.

  3. Comparison of the Rhizosphere Bacterial Communities of Zigongdongdou Soybean and a High-Methionine Transgenic Line of This Cultivar

    PubMed Central

    Ji, Jun; Wu, Haiying; Meng, Fang; Zhang, Mingrong; Zheng, Xiaobo; Wu, Cunxiang; Zhang, Zhengguang

    2014-01-01

    Previous studies have shown that methionine from root exudates affects the rhizosphere bacterial population involved in soil nitrogen fixation. A transgenic line of Zigongdongdou soybean cultivar (ZD91) that expresses Arabidopsis cystathionine γ-synthase resulting in an increased methionine production was examined for its influence to the rhizosphere bacterial population. Using 16S rRNA gene-based pyrosequencing analysis of the V4 region and DNA extracted from bacterial consortia collected from the rhizosphere of soybean plants grown in an agricultural field at the pod-setting stage, we characterized the populational structure of the bacterial community involved. In total, 87,267 sequences (approximately 10,908 per sample) were analyzed. We found that Acidobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, Planctomycetes, Gemmatimonadetes, Firmicutes, and Verrucomicrobia constitute the dominant taxonomic groups in either the ZD91 transgenic line or parental cultivar ZD, and that there was no statistically significant difference in the rhizosphere bacterial community structure between the two cultivars. PMID:25079947

  4. Identical substitutions in magnesium chelatase paralogs result in chlorophyll deficient soybean mutants

    USDA-ARS?s Scientific Manuscript database

    The soybean (Glycine max (L.) Merr.) chlorophyll deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a non-synonymous nucleotide substitution in the third exon of a Mg-chelat...

  5. Agronomic effects of mutations in two soybean Stearoyl-ACP-Desaturases

    USDA-ARS?s Scientific Manuscript database

    Soybean [Glycine max (L.) Merr.] oil normally contains 2-4% stearic acid. Oil with higher levels of stearic acid is desired for use in the baking industry, for both its chemical properties and human health benefits. Several lines with increased stearic acid have been identified; however, the agronom...

  6. Morpho-physiological parameters affecting iron deficiency chlorosis response in soybean (Glycine max L.)

    USDA-ARS?s Scientific Manuscript database

    Iron deficiency chlorosis (IDC) leads to severe leaf chlorosis, low photosynthetic rates, and yield reductions of several million metric tons each year. In order to devise breeding and genetic transformation programs that aim at generating high-yielding and IDC-tolerant soybean lines, it is necessar...

  7. Whole-genome resequencing identifies the molecular genetic cause for the absence of a Gy5 glycinin protein in soybean PI 603408

    USDA-ARS?s Scientific Manuscript database

    During ongoing proteomic analysis of the soybean (Glycine max (L.) Merr) germplasm collection, PI 603408 was identified as a landrace whose seeds lack accumulation of one of the major seed storage glycinin protein subunits. Whole genomic resequencing was used to identify a two-base deletion affectin...

  8. Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes.

    PubMed

    Nanjo, Yohei; Jang, Hee-Young; Kim, Hong-Sig; Hiraga, Susumu; Woo, Sun-Hee; Komatsu, Setsuko

    2014-10-01

    Flooding of fields due to heavy and/or continuous rainfall influences soybean production. To identify soybean varieties with flooding tolerance at the seedling emergence stage, 128 soybean varieties were evaluated using a flooding tolerance index, which is based on plant survival rates, the lack of apparent damage and lateral root development, and post-flooding radicle elongation rate. The soybean varieties were ranked according to their flooding tolerance index, and it was found that the tolerance levels of soybean varieties exhibit a continuum of differences between varieties. Subsequently, tolerant, moderately tolerant and sensitive varieties were selected and subjected to comparative proteomic analysis to clarify the tolerance mechanism. Proteomic analysis of the radicles, combined with correlation analysis, showed that the ratios of RNA binding/processing related proteins and flooding stress indicator proteins were significantly correlated with flooding tolerance index. The RNA binding/processing related proteins were positively correlated in untreated soybeans, whereas flooding stress indicator proteins were negatively correlated in flooded soybeans. These results suggest that flooding tolerance is regulated by mechanisms through multiple factors and is associated with abundance levels of the identified proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line.

    PubMed

    Lin, Chuan-Chuan; Lin, Hung-Yin; Chi, Ming-Hung; Shen, Chin-Min; Chen, Hwan-Wen; Yang, Wen-Jen; Lee, Mei-Hwa

    2014-07-01

    The choice of surfactants and cosurfactants for preparation of oral formulation in microemulsions is limited. In this report, a curcumin-encapsulated phospholipids-based microemulsion (ME) using food-grade ingredients soybean oil and soybean lecithin to replace ethyl oleate and purified lecithin from our previous study was established and compared. The results indicated soybean oil is superior to ethyl oleate as the oil phase in curcumin microemulsion, as proven by the broadened microemulsion region with increasing range of surfactant/soybean oil ratio (approx. 1:1-12:1). Further preparation of two formula with different particle sizes of formula A (30nm) and B (80nm) exhibited differential effects on the cytotoxicity of hepatocellular HepG2 cell lines. At 15μM of concentration, curcumin-ME in formula A with smaller particle size resulted in the lowest viability (approx. 5%), which might be explained by increasing intake of curcumin, as observed by fluorescence microscopy. In addition, the cytotoxic effect of curcumin-ME is exclusively prominent on HepG2, not on HEK293, which showed over 80% of viability at 15μM. The results from this study might provide an innovative applied technique in the area of nutraceuticals and functional foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Identification of Genomic Insertion and Flanking Sequence of G2-EPSPS and GAT Transgenes in Soybean Using Whole Genome Sequencing Method.

    PubMed

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Qiu, Li-Juan

    2016-01-01

    Molecular characterization of sequence flanking exogenous fragment insertion is essential for safety assessment and labeling of genetically modified organism (GMO). In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS) method. More than 22.4 Gb sequence data (∼21 × coverage) for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundaries of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767-50543792 and Chr17: 7980527-7980541 in these two transgenic lines. Identification of genomic insertion sites of G2-EPSPS and GAT transgenes will facilitate the utilization of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS was a cost-effective and rapid method for identifying sites of T-DNA insertions and flanking sequences in soybean.

  11. Adaptability and stability of soybean genotypes in off-season cultivation.

    PubMed

    Batista, R O; Hamawaki, R L; Sousa, L B; Nogueira, A P O; Hamawaki, O T

    2015-08-14

    The oil and protein contents of soybean grains are important quantitative traits for use in breeding. However, few breeding programs perform selection based on these traits in different environments. This study assessed the adaptability and stability of 14 elite early soybean breeding lines in off-season cultivation with respect to yield, and oil and protein contents. A range of statistical methods was applied and these analyses indicated that for off-season cultivation, the lines UFUS 5 and UFUS 10 could be recommended due to their superior performance in grain yield, oil content, and specific adaptability to unfavorable environments along with high stability in these characteristics. Also recommended were UFUS 06, which demonstrated superior performance in all three tested characteristics and showed adaptation to favorable environments, and UFUS 13, which showed high adaptability and stability and a superior performance for protein content.

  12. The stay green mutations d1 and d2 increase water stress susceptibility in soybeans.

    PubMed

    Luquez, Virginia M; Guiamét, Juan J

    2002-06-01

    The stay green mutant genotype d1d1d2d2 inhibits the breakdown of chloroplast components in senescing leaves of soybean (Glycine max L. Merr.). Together with G (a gene that preserves chlorophyll in the seed coat) they may extend photosynthetic activity in some conditions. While wild-type soybeans maintain high leaf water potentials right up to abscission, leaves of (GG)d1d1d2d2 dehydrate late in senescence, which suggests that water relations may be altered in the mutant. Three-week-old plants were subjected to a moderate water deficit (soil water potential=-0.7 MPa) for 7-10 d. Leaf water potential and relative water content decreased significantly more in response to water deficit in unifoliate leaves of GGd1d1d2d2 than in a near-isogenic wild-type line. Down-regulation of stomatal conductance in response to drought was similar in mutant and wild-type leaves. Likewise, exogenously applied ABA reduced stomatal conductance to a similar extent in the mutant and the wild type, and applied ABA failed to restore water deficit tolerance in GGd1d1d2d2. Experiments with explants lacking roots indicate that the accelerated dehydration of GGd1d1d2d2 is probably not due to alterations in the roots. In a comparison of near-isogenic lines carrying different combinations of d1, d2 and G, only d1d1d2d2 and GGd1d1d2d2 (i.e. the genotypes that cause the stay green phenotype) were more susceptible to water deficit than the wild type. These data suggest that pathways involved in chloroplast disassembly and in the regulation of stress responses may be intertwined and controlled by the same factors.

  13. Lack of glyphosate resistance gene transfer from Roundup Ready soybean to Bradyrhizobium japonicum under field and laboratory conditions.

    PubMed

    Isaza, Laura Arango; Opelt, Katja; Wagner, Tobias; Mattes, Elke; Bieber, Evi; Hatley, Elwood O; Roth, Greg; Sanjuán, Juan; Fischer, Hans-Martin; Sandermann, Heinrich; Hartmann, Anton; Ernst, Dieter

    2011-01-01

    A field study was conducted at the Russell E. Larson Agricultural Research Center to determine the effect of transgenic glyphosate-resistant soybean in combination with herbicide (Roundup) application on its endosymbiont Bradyrhizobium japonicum. DNA of bacteroids from isolated nodules was analysed for the presence of the transgenic 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) DNA sequence using polymerase chain reaction (PCR). To further assess the likelihood that the EPSPS gene may be transferred from the Roundup Ready (RR) soybean to B. japonicum, we have examined the natural transformation efficiency of B. japonicum strain 110spc4. Analyses of nodules showed the presence of the transgenic EPSPS DNA sequence. In bacteroids that were isolated from nodules of transgenic soybean plants and then cultivated in the presence of glyphosate this sequence could not be detected. This indicates that no stable horizontal gene transfer (HGT) of the EPSPS gene had occurred under field conditions. Under laboratory conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various amounts of recombinant plasmid DNA. Our results indicate that no natural competence state exists in B. japonicum 110spc4. Results from field and laboratory studies indicate the lack of functional transfer of the CP4-EPSPS gene from glyphosate-tolerant soybean treated with glyphosate to root-associated B. japonicum.

  14. Field evaluation of soybean lines from a new source of resistance to Cercospora kikuchii, 2013

    USDA-ARS?s Scientific Manuscript database

    Purple seed stain, which is caused by the fungus Cercospora kikuchii, is an important seed disease which causes soybean seed quality losses when environmental conditions favor its growth, and harvest is delayed due to wet field conditions. Frogeye leaf spot caused by the fungus Cercospora sojina is...

  15. Field evaluations of soybean lines from a new source of resistance to Phomopsis seed decay, 2012

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is an important disease which causes large soybean quality losses when environmental conditions favor its growth, and harvest is delayed due to wet field conditions. High humidity, free water and warm temperatures during pod development favor PSD development and are commo...

  16. Field evaluation of soybean lines from a new souorce of resistance to Phomopsis seed decay, 2013

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is an important disease which causes large soybean quality losses when environmental conditions favor its growth, and harvest is delayed due to wet field conditions. High humidity, free water and warm temperatures during pod development favor PSD development and are commo...

  17. Costs and benefits of jasmonic acid induced responses in soybean.

    PubMed

    Accamando, A K; Cronin, J T

    2012-06-01

    In response to herbivory, plants have evolved defense strategies to reduce herbivore preference and performance. A strategy whereby defenses are induced only upon herbivory can mitigate costs of defense when herbivores are scarce. Although costs and benefits of induced responses are generally assumed, empirical evidence for many species is lacking. Soybean (Glycine max L. Merr.) has emerged as a model species with which to address questions about induced responses. To our knowledge, this is the first study to examine the fitness costs and benefits of jasmonic acid-induced responses by soybean in the absence and presence of soybean loopers (Chrysodeix includens Walker) (Lepidoptera: Noctuidae). In a greenhouse experiment we demonstrated that soybean induction was costly. Induced plants produced 10.1% fewer seeds that were 9.0% lighter, and had 19.2% lower germination rates than noninduced plants. However, induction provided only modest benefits to soybeans. In a choice experiment, soybean loopers significantly preferred leaves from noninduced plants, consuming 62% more tissue than from induced plants. Soybean loopers that fed on plants that were previously subjected to treatment with jasmonic acid matured at the same rate and to the same size as those that fed on control plants. However, at high conspecific density, soybean looper survivorship was reduced by 44% on previously induced relative to control plants. Reduced soybean looper preference and survivorship did not translate into fitness benefits for soybeans. Our findings support theoretical predictions of costly induced defenses and highlight the importance of considering the environmental context in studies of plant defense.

  18. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites

    PubMed Central

    Reinprecht, Yarmilla; Arif, Muhammad; Simon, Leonardo C.; Pauls, K. Peter

    2015-01-01

    Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP) matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs) grown in different environments were incorporated into PP at 20% (wt/wt) by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL) for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue. PMID:26167917

  19. Development and Evaluation of Glycine max Germplasm Lines with Quantitative Resistance to Sclerotinia sclerotiorum

    PubMed Central

    McCaghey, Megan; Willbur, Jaime; Ranjan, Ashish; Grau, Craig R.; Chapman, Scott; Diers, Brian; Groves, Carol; Kabbage, Mehdi; Smith, Damon L.

    2017-01-01

    Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot, is a devastating fungal pathogen of soybean that can cause significant yield losses to growers when environmental conditions are favorable for the disease. The development of resistant varieties has proven difficult. However, poor resistance in commercial cultivars can be improved through additional breeding efforts and understanding the genetic basis of resistance. The objective of this project was to develop soybean germplasm lines that have a high level of Sclerotinia stem rot resistance to be used directly as cultivars or in breeding programs as a source of improved Sclerotinia stem rot resistance. Sclerotinia stem rot-resistant soybean germplasm was developed by crossing two sources of resistance, W04-1002 and AxN-1-55, with lines exhibiting resistance to Heterodera glycines and Cadophora gregata in addition to favorable agronomic traits. Following greenhouse evaluations of 1,076 inbred lines derived from these crosses, 31 lines were evaluated for resistance in field tests during the 2014 field season. Subsequently, 11 Sclerotinia stem rot resistant breeding lines were moved forward for field evaluation in 2015, and seven elite breeding lines were selected and evaluated in the 2016 field season. To better understand resistance mechanisms, a marker analysis was conducted to identify quantitative trait loci linked to resistance. Thirteen markers associated with Sclerotinia stem rot resistance were identified on chromosomes 15, 16, 17, 18, and 19. Our markers confirm previously reported chromosomal regions associated with Sclerotinia stem rot resistance as well as a novel region of chromosome 16. The seven elite germplasm lines were also re-evaluated within a greenhouse setting using a cut petiole technique with multiple S. sclerotiorum isolates to test the durability of physiological resistance of the lines in a controlled environment. This work presents a novel and comprehensive classical breeding method for selecting lines with physiological resistance to Sclerotinia stem rot and a range of agronomic traits. In these studies, we identify four germplasm lines; 91–38, 51–23, SSR51–70, and 52–82B exhibiting a high level of Sclerotinia stem rot resistance combined with desirable agronomic traits, including high protein and oil contents. The germplasm identified in this study will serve as a valuable source of physiological resistance to Sclerotinia stem rot that could be improved through further breeding to generate high-yielding commercial soybean cultivars. PMID:28912790

  20. Proteomic analysis by iTRAQ-MRM of soybean resistance to Lamprosema Indicate.

    PubMed

    Zeng, Weiying; Sun, Zudong; Cai, Zhaoyan; Chen, Huaizhu; Lai, Zhenguang; Yang, Shouzhen; Tang, Xiangmin

    2017-06-06

    Lamprosema indicate is a major leaf feeding insect pest to soybean, which has caused serious yield losses in central and southern China. To explore the defense mechanisms of soybean resistance to Lamprosema indicate, a highly resistant line (Gantai-2-2) and a highly susceptible line (Wan 82-178) were exposed to Lamprosema indicate larval feedings for 0 h and 48 h, and the differential proteomic analyses of these two lines were carried out. The results showed that 31 differentially expressed proteins (DEPs) were identified in the Gantai-2-2 when comparing 48 h feeding with 0 h feeding, and 53 DEPs were identified in the Wan 82-178. 28 DEPs were identified when comparing Gantai-2-2 with Wan 82-178 at 0 h feeding. The bioinformatic analysis results showed that most of the DEPs were associated with ribosome, linoleic acid metabolism, flavonoid biosynthesis, phenylpropanoid biosynthesis, peroxisome, stilbenoid, diarylheptanoid and gingerol biosynthesis, glutathione metabolism, pant hormone signal transduction, and flavone and flavonol biosynthesis, as well as other resistance related metabolic pathways. The MRM analysis showed that the iTRAQ results were reliable. According to the analysis of the DEPs results, the soybean defended or resisted the Lamprosema indicate damage by the induction of a synthesis of anti-digestive proteins which inhibit the growth and development of insects, reactive oxygen species scavenging, signaling pathways, secondary metabolites synthesis, and so on.

  1. Nodulation-dependent communities of culturable bacterial endophytes from stems of field-grown soybeans.

    PubMed

    Okubo, Takashi; Ikeda, Seishi; Kaneko, Takakazu; Eda, Shima; Mitsui, Hisayuki; Sato, Shusei; Tabata, Satoshi; Minamisawa, Kiwamu

    2009-01-01

    Endophytic bacteria (247 isolates) were randomly isolated from surface-sterilized stems of non-nodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans (Glycine max [L.] Merr) on three agar media (R2A, nutrient agar, and potato dextrose agar). Their diversity was compared on the basis of 16S rRNA gene sequences. The phylogenetic composition depended on the soybean nodulation phenotype, although diversity indexes were not correlated with nodulation phenotype. The most abundant phylum throughout soybean lines tested was Proteobacteria (58-79%). Gammaproteobacteria was the dominant class (21-72%) with a group of Pseudomonas sp. significantly abundant in Nod(+) soybeans. A high abundance of Alphaproteobacteria was observed in Nod(-) soybeans, which was explained by the increase in bacterial isolates of the families Rhizobiaceae and Sphingomonadaceae. A far greater abundance of Firmicutes was observed in Nod(-) and Nod(++) mutant soybeans than in Nod(+) soybeans. An impact of culture media on the diversity of isolated endophytic bacteria was also observed: The highest diversity indexes were obtained on the R2A medium, which enabled us to access Alphaproteobacteria and other phyla more frequently. The above results indicated that the extent of nodulation changes the phylogenetic composition of culturable bacterial endophytes in soybean stems.

  2. Comparison of CRD, APU, and state models for Iowa corn and soybeans and North Dakota barley and spring wheat

    NASA Technical Reports Server (NTRS)

    French, V.

    1983-01-01

    A comparison was made among the CEAS crop reporting district (CRD), agrophysical unit (APU), and state level multiple regression yield models for corn and soybeans in Iowa and barley and spring wheat in North Dakota. The best predictions were made by the state model for North Dakota spring wheat, by the APU models for barley, by the CRD models for Iowa soybeans, and by APU covariance models for Iowa corn. Because of this lack of consistency of model performance, CRD models would be recommended due to the availability of the data.

  3. Pseudomonas fluorescens N21.4 metabolites enhance secondary metabolism isoflavones in soybean (Glycine max) calli cultures.

    PubMed

    Algar, Elena; Gutierrez-Mañero, Francisco Javier; Bonilla, Alfonso; Lucas, Jose Antonio; Radzki, Wojtek; Ramos-Solano, Beatriz

    2012-11-07

    Phytopharmaceuticals are plant secondary metabolites that are strongly inducible and especially sensitive to biotic changes. Plant cell cultures are a good alternative to obtain secondary metabolites, in case effective stimulation can be achieved. In this study, metabolic elicitors from two rhizobacteria able to enhance isoflavone content in soybean seedlings were tested on three different soybean calli cell lines. Results show that metabolic elicitors from Chryseobacterium balustinum Aur9 were not effective. However, there are at least two different metabolic elicitors from Pseudomonas fluorescens N21.4, one under 10 kDa and another over 10 kDa, that trigger isoflavone metabolism in the three cell lines with different isoflavone content. Elicitors from N21.4 achieved total isoflavone increases up to 29.7% (0.205 mg/g), 64.5% (0.487 mg/g), and 23.4% (0.726 mg/g) in the low-, intermediate-, and high-yield lines, respectively. Therefore, these elicitors have a great potential to enhance isoflavone production in cell cultures for development of functional ingredients.

  4. Genotyping by sequencing for genomic prediction in a soybean breeding population.

    PubMed

    Jarquín, Diego; Kocak, Kyle; Posadas, Luis; Hyma, Katie; Jedlicka, Joseph; Graef, George; Lorenz, Aaron

    2014-08-29

    Advances in genotyping technology, such as genotyping by sequencing (GBS), are making genomic prediction more attractive to reduce breeding cycle times and costs associated with phenotyping. Genomic prediction and selection has been studied in several crop species, but no reports exist in soybean. The objectives of this study were (i) evaluate prospects for genomic selection using GBS in a typical soybean breeding program and (ii) evaluate the effect of GBS marker selection and imputation on genomic prediction accuracy. To achieve these objectives, a set of soybean lines sampled from the University of Nebraska Soybean Breeding Program were genotyped using GBS and evaluated for yield and other agronomic traits at multiple Nebraska locations. Genotyping by sequencing scored 16,502 single nucleotide polymorphisms (SNPs) with minor-allele frequency (MAF) > 0.05 and percentage of missing values ≤ 5% on 301 elite soybean breeding lines. When SNPs with up to 80% missing values were included, 52,349 SNPs were scored. Prediction accuracy for grain yield, assessed using cross validation, was estimated to be 0.64, indicating good potential for using genomic selection for grain yield in soybean. Filtering SNPs based on missing data percentage had little to no effect on prediction accuracy, especially when random forest imputation was used to impute missing values. The highest accuracies were observed when random forest imputation was used on all SNPs, but differences were not significant. A standard additive G-BLUP model was robust; modeling additive-by-additive epistasis did not provide any improvement in prediction accuracy. The effect of training population size on accuracy began to plateau around 100, but accuracy steadily climbed until the largest possible size was used in this analysis. Including only SNPs with MAF > 0.30 provided higher accuracies when training populations were smaller. Using GBS for genomic prediction in soybean holds good potential to expedite genetic gain. Our results suggest that standard additive G-BLUP models can be used on unfiltered, imputed GBS data without loss in accuracy.

  5. Gene Polymorphism Studies in a Teaching Laboratory

    NASA Astrophysics Data System (ADS)

    Shultz, Jeffry

    2009-02-01

    I present a laboratory procedure for illustrating transcription, post-transcriptional modification, gene conservation, and comparative genetics for use in undergraduate biology education. Students are individually assigned genes in a targeted biochemical pathway, for which they design and test polymerase chain reaction (PCR) primers. In this example, students used genes annotated for the steroid biosynthesis pathway in soybean. The authoritative Kyoto encyclopedia of genes and genomes (KEGG) interactive database and other online resources were used to design primers based first on soybean expressed sequence tags (ESTs), then on ESTs from an alternate organism if soybean sequence was unavailable. Students designed a total of 50 gene-based primer pairs (37 soybean, 13 alternative) and tested these for polymorphism state and similarity between two soybean and two pea lines. Student assessment was based on acquisition of laboratory skills and successful project completion. This simple procedure illustrates conservation of genes and is not limited to soybean or pea. Cost per student estimates are included, along with a detailed protocol and flow diagram of the procedure.

  6. Reaction of maturity group V soybean lines to purple seed stains in Mississippi 2010

    USDA-ARS?s Scientific Manuscript database

    In 2009, soybean purple seed stain (PSS) caused 6.4 million bushels of yield losses in 16 southern states. This disease severely reduces seed market grade and affects seed germination and vigor. PSS is caused by Cercospora kikuchii and is an economy important disease. To identify new sources of resi...

  7. Systemic properties of myclobutanil in soybean plants, affecting control of Asian soybean rust (Phakopsora pachyrhizi).

    PubMed

    Kemmitt, Gregory M; DeBoer, Gerrit; Ouimette, David; Iamauti, Marilene

    2008-12-01

    The demethylation inhibitor (DMI) fungicide myclobutanil can be an effective component of spray programmes designed to control the highly destructive plant pathogen Phakopsora pachyrhizi Syd. & P. Syd., causal agent of Asian soybean rust. Myclobutanil is known from previous studies in grapevines to be xylem mobile. This study investigates the mobility profile of myclobutanil in soybean as an important component of its effective field performance. Over a 12 day period under greenhouse conditions, a constant uptake of myclobutanil from leaflet surfaces into the leaflet tissue was observed. Once in the leaflet, myclobutanil was seen to redistribute throughout the tissue, although no movement out of leaflets occurred owing to a lack of phloem mobility. The ability of myclobutanil to redistribute over distance within the soybean plant was revealed when visualizing movement of the compound to foliage above the point of application on the plant stem. An efficacy bioassay demonstrated that the systemic properties of myclobutanil allow control of disease at a point remote from the initial site of compound application. It is suggested that the high degree of xylem systemicity displayed by myclobutanil in soybean foliage is a contributory factor towards its commercial effectiveness for control of Asian soybean rust.

  8. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines.

    PubMed

    Wang, Ju; McClean, Phillip E; Lee, Rian; Goos, R Jay; Helms, Ted

    2008-04-01

    Association mapping is an alternative to mapping in a biparental population. A key to successful association mapping is to avoid spurious associations by controlling for population structure. Confirming the marker/trait association in an independent population is necessary for the implementation of the marker in other genetic studies. Two independent soybean populations consisting of advanced breeding lines representing the diversity within maturity groups 00, 0, and I were screened in multi-site, replicated field trials to discover molecular markers associated with iron deficiency chlorosis (IDC), a major yield-limiting factor in soybean. Lines with extreme phenotypes were initially screened to identify simple sequence repeat (SSR) markers putatively associated with the IDC. Marker data collected from all lines were used to control for population structure and kinship relationships. Single factor analysis of variance (SFA) and mixed linear model (MLM) analyses were used to discover marker/trait associations. The MLM analyses, which include population structure, kinship or both factors, reduced the number of markers significantly associated with IDC by 50% compared with SFA. With the MLM approach, three markers were found to be associated with IDC in the first population. Two of these markers, Satt114 and Satt239, were also found to be associated with IDC in the second confirmation population. For both populations, those lines with the tolerance allele at both these two marker loci had significantly lower IDC scores than lines with one or no tolerant alleles.

  9. Immunological characterization of recombinant soy protein allergen produced by Escherichia coli expression system.

    PubMed

    Babiker, E E; Azakami, H; Ogawa, T; Kato, A

    2000-02-01

    To elucidate the molecular mechanism of the allergenicity of soybean P34 protein recognized as the most allergenic protein in soybean, the protein was expressed in Escherichia coli transformed with a plasmid carrying P34 cDNA. SDS-PAGE pattern showed that the molecular weight of the recombinant P34 was approximately 2 kDa less than that of the native soybean P34. The difference in the molecular mass between these two proteins could be due to the native P34 in soybean being glycosylated at position Asn(170), whereas the recombinant protein generated in E. coli lacks this post-translational modification. Immunoblot analysis showed that both soybean and recombinant P34 proteins cross-reacted not only with polyclonal and monoclonal antibodies produced against P34 and crude soybean protein but also with patients' sera. The results suggest that the recombinant P34 is immunologically reactive, indicating that both proteins have similar epitope structures. Thus, the recombinant P34 produced by the E. coli expression system can be used as a standard allergen for molecular design to reduce the allergenic structure.

  10. Identification of an active endogenous transposon from the W4 locus in soybean

    USDA-ARS?s Scientific Manuscript database

    In soybean [Glycine max (L.) Merr.], W4 is one of the loci that control anthocyanin biosynthesis in flowers and hypocotyls. A putative transposable element was suggested to reside within or adjacent to this locus in the mutable T322 line resulting in the w4-m allele. We have shown that the W4 locu...

  11. Identification and characterization of the first active endogenous transposable element in soybean

    USDA-ARS?s Scientific Manuscript database

    In soybean [Glycine max (L.) Merr.], W4 is one of the loci that control anthocyanin biosynthesis in flowers and hypocotyls. A putative transposable element was suggested to reside within or adjacent to this locus in the mutable T322 line resulting in the w4-m allele. We have shown that the W4 locu...

  12. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies

    PubMed Central

    Koester, Robert P.; Skoneczka, Jeffrey A.; Cary, Troy R.; Diers, Brian W.; Ainsworth, Elizabeth A.

    2014-01-01

    Soybean (Glycine max Merr.) is the world’s most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha–1 year–1, and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. PMID:24790116

  13. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean.

    PubMed

    Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi

    2017-08-24

    Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.

  14. Symbiotic performance and induction of systemic resistance against Cercospora sojina in soybean plants co-inoculated with Bacillus sp. CHEP5 and Bradyrhizobium japonicum E109.

    PubMed

    Tonelli, María Laura; Magallanes-Noguera, C; Fabra, A

    2017-11-01

    Soybean is an economically very important crop throughout the word and particularly in Argentina. Soybean yield may be affected by many factors such as the lack of some essential nutrients or pathogens attack. In this work we demonstrated that the co-inoculation of the native biocontrol bacterium Bacillus sp. CHEP5 which induces resistance against Cercospora sojina in soybean and the nitrogen fixing strain Bradyrhizobium japonicum E109, was more effective in reducing frog leaf spot severity than the inoculation of the biocontrol agent alone. Probably, this is related with the increase in the ability to form biofilm when both bacteria are growing together. Furthermore, Bacillus sp. CHEP5 inoculation did not affect Bradyrhizobium japonicum E109 symbiotic behavior and flavonoids composition of root exudates in pathogen challenged plants. These results suggest that co-inoculation of plants with rhizobia and biocontrol agents could be a strategy to improve soybean production in a sustainable system.

  15. Allelic variation of soybean flower color gene W4 encoding dihydroflavonol 4-reductase 2.

    PubMed

    Yan, Fan; Di, Shaokang; Rojas Rodas, Felipe; Rodriguez Torrico, Tito; Murai, Yoshinori; Iwashina, Tsukasa; Anai, Toyoaki; Takahashi, Ryoji

    2014-03-06

    Flower color of soybean is primarily controlled by six genes, viz., W1, W2, W3, W4, Wm and Wp. This study was conducted to investigate the genetic and chemical basis of newly-identified flower color variants including two soybean mutant lines, 222-A-3 (near white flower) and E30-D-1 (light purple flower), a near-isogenic line (Clark-w4), flower color variants (T321 and T369) descended from the w4-mutable line and kw4 (near white flower, Glycine soja). Complementation tests revealed that the flower color of 222-A-3 and kw4 was controlled by the recessive allele (w4) of the W4 locus encoding dihydroflavonol 4-reductase 2 (DFR2). In 222-A-3, a single base was deleted in the first exon resulting in a truncated polypeptide consisting of 24 amino acids. In Clark-w4, base substitution of the first nucleotide of the fourth intron abolished the 5' splice site, resulting in the retention of the intron. The DFR2 gene of kw4 was not expressed. The above results suggest that complete loss-of-function of DFR2 gene leads to near white flowers. Light purple flower of E30-D-1 was controlled by a new allele at the W4 locus, w4-lp. The gene symbol was approved by the Soybean Genetics Committee. In E30-D-1, a single-base substitution changed an amino acid at position 39 from arginine to histidine. Pale flowers of T369 had higher expression levels of the DFR2 gene. These flower petals contained unique dihydroflavonols that have not yet been reported to occur in soybean and G. soja. Complete loss-of-function of DFR2 gene leads to near white flowers. A new allele of the W4 locus, w4-lp regulates light purple flowers. Single amino acid substitution was associated with light purple flowers. Flower petals of T369 had higher levels of DFR2 gene expression and contained unique dihydroflavonols that are absent in soybean and G. soja. Thus, mutants of the DFR2 gene have unique flavonoid compositions and display a wide variety of flower color patterns in soybean, from near white, light purple, dilute purple to pale.

  16. Enhanced nutraceutical potential of gamma irradiated black soybean extracts.

    PubMed

    Krishnan, Veda; Gothwal, Santosh; Dahuja, Anil; Vinutha, T; Singh, Bhupinder; Jolly, Monica; Praveen, Shelly; Sachdev, Archana

    2018-04-15

    Radiation processing of soybean, varying in seed coat colour, was carried out at dose levels of 0.25, 0.5 and 1 kGy to evaluate their potential anti-proliferative and cytoprotective effects in an in vitro cell culture system. Irradiated and control black (Kalitur) and yellow (DS9712) soybean extracts were characterized in terms of total phenolics, flavonoids and anthocyanins, especially cyanidin-3-glucoside (C3G). Using an epithelial cell line, BEAS-2B the potential cytoprotective effects of soybean extracts were evaluated in terms of intracellular ROS levels and cell viability. The most relevant scavenging effect was found in Kalitur, with 78% decrease in ROS, which well correlated with a 33% increase in C3G after a 1 kGy dose. Results evidenced a correspondence between in vitro antioxidant activity and a potential health property of black soybean extracts, exemplifying the nutraceutical role of C3G. To our knowledge this study is the first report validating the cytoprotective effects of irradiated black soybean extracts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation of the nutritional equivalency of soybean meal with the genetically modified trait DP-3O5423-1 when fed to laying hens.

    PubMed

    Mejia, L; Jacobs, C M; Utterback, P L; Parsons, C M; Rice, D; Sanders, C; Smith, B; Iiams, C; Sauber, T

    2010-12-01

    An experiment using 336 Hy-Line W-36 Single Comb White Leghorn hens was conducted to evaluate transgenic soybeans containing the gm-fad2-1 gene fragment and the gm-hra gene. Transcription of the gm-fad2-1 gene fragment results in an increased level of oleic acid (18:1) in the seed, and expression of the soybean acetolactate synthase protein (GM-HRA) encoded by the modified gm-hra gene, is used as a selectable marker during transformation. Pullets (20 wk of age) were placed in cage lots (7 hens/cage, 2 cages/lot) and were randomly assigned to 1 of 4 corn-soybean meal dietary treatments (6 lots/treatment) formulated with the following soybean meals: nontransgenic near-isoline control (control), nontransgenic commercial reference soybean meal A (92M72), nontransgenic commercial reference soybean meal B (93B15), or transgenic soybean meal produced from soybeans containing event DP-3Ø5423-1 (305423). Weeks 20 to 24 were a preconditioning period, and the 4 experimental diets were then fed from 25 to 36 wk of age. Differences between the 305423 and control group means were evaluated, with statistical significance at P < 0.05. Body weight, hen-day egg production, egg mass, feed consumption, and feed efficiency for hens fed the 305423 soybean meal were not significantly different from the respective values for hens fed diets formulated with the near-isoline soybean meal. Likewise, egg component weights, Haugh unit measures, and egg weights were similar regardless of the soybean meal source. This research indicates that performance of hens fed diets containing 305423 soybean meal, as measured by egg production and egg quality, was similar to that of hens fed diets formulated with the near-isoline control and commercial soybean meals.

  18. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil.

    PubMed

    Demorest, Zachary L; Coffman, Andrew; Baltes, Nicholas J; Stoddard, Thomas J; Clasen, Benjamin M; Luo, Song; Retterath, Adam; Yabandith, Ann; Gamo, Maria Elena; Bissen, Jeff; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2016-10-13

    The ability to modulate levels of individual fatty acids within soybean oil has potential to increase shelf-life and frying stability and to improve nutritional characteristics. Commodity soybean oil contains high levels of polyunsaturated linoleic and linolenic acid, which contribute to oxidative instability - a problem that has been addressed through partial hydrogenation. However, partial hydrogenation increases levels of trans-fatty acids, which have been associated with cardiovascular disease. Previously, we generated soybean lines with knockout mutations within fatty acid desaturase 2-1A (FAD2-1A) and FAD2-1B genes, resulting in oil with increased levels of monounsaturated oleic acid (18:1) and decreased levels of linoleic (18:2) and linolenic acid (18:3). Here, we stack mutations within FAD2-1A and FAD2-1B with mutations in fatty acid desaturase 3A (FAD3A) to further decrease levels of linolenic acid. Mutations were introduced into FAD3A by directly delivering TALENs into fad2-1a fad2-1b soybean plants. Oil from fad2-1a fad2-1b fad3a plants had significantly lower levels of linolenic acid (2.5 %), as compared to fad2-1a fad2-1b plants (4.7 %). Furthermore, oil had significantly lower levels of linoleic acid (2.7 % compared to 5.1 %) and significantly higher levels of oleic acid (82.2 % compared to 77.5 %). Transgene-free fad2-1a fad2-1b fad3a soybean lines were identified. The methods presented here provide an efficient means for using sequence-specific nucleases to stack quality traits in soybean. The resulting product comprised oleic acid levels above 80 % and linoleic and linolenic acid levels below 3 %.

  19. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil.

    PubMed

    Pham, Anh-Tung; Shannon, J Grover; Bilyeu, Kristin D

    2012-08-01

    High oleic acid soybeans were produced by combining mutant FAD2-1A and FAD2-1B genes. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6 %, which may be high enough to cause oxidative instability of the oil. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high oleic acid background to further reduce the linolenic acid content. As a result, soybean lines with high oleic acid and low linolenic acid (HOLL) content were produced using different sources of mutant FAD2-1A genes. While oleic acid content of these HOLL lines was stable across two testing environments, the reduction of linolenic acid content varied depending on the number of mutant FAD3 genes combined with mutant FAD2-1 genes, on the severity of mutation in the FAD2-1A gene, and on the testing environment. Combination of two mutant FAD2-1 genes and one mutant FAD3 gene resulted in less than 2 % linolenic acid content in Portageville, Missouri (MO) while four mutant genes were needed to achieve the same linolenic acid in Columbia, MO. This study generated non-transgenic soybeans with the highest oleic acid content and lowest linolenic acid content reported to date, offering a unique alternative to produce a fatty acid profile similar to olive oil.

  20. Integrating microarray analysis and the soybean genome to understand the soybeans iron deficiency response

    PubMed Central

    2009-01-01

    Background Soybeans grown in the upper Midwestern United States often suffer from iron deficiency chlorosis, which results in yield loss at the end of the season. To better understand the effect of iron availability on soybean yield, we identified genes in two near isogenic lines with changes in expression patterns when plants were grown in iron sufficient and iron deficient conditions. Results Transcriptional profiles of soybean (Glycine max, L. Merr) near isogenic lines Clark (PI548553, iron efficient) and IsoClark (PI547430, iron inefficient) grown under Fe-sufficient and Fe-limited conditions were analyzed and compared using the Affymetrix® GeneChip® Soybean Genome Array. There were 835 candidate genes in the Clark (PI548553) genotype and 200 candidate genes in the IsoClark (PI547430) genotype putatively involved in soybean's iron stress response. Of these candidate genes, fifty-eight genes in the Clark genotype were identified with a genetic location within known iron efficiency QTL and 21 in the IsoClark genotype. The arrays also identified 170 single feature polymorphisms (SFPs) specific to either Clark or IsoClark. A sliding window analysis of the microarray data and the 7X genome assembly coupled with an iterative model of the data showed the candidate genes are clustered in the genome. An analysis of 5' untranslated regions in the promoter of candidate genes identified 11 conserved motifs in 248 differentially expressed genes, all from the Clark genotype, representing 129 clusters identified earlier, confirming the cluster analysis results. Conclusion These analyses have identified the first genes with expression patterns that are affected by iron stress and are located within QTL specific to iron deficiency stress. The genetic location and promoter motif analysis results support the hypothesis that the differentially expressed genes are co-regulated. The combined results of all analyses lead us to postulate iron inefficiency in soybean is a result of a mutation in a transcription factor(s), which controls the expression of genes required in inducing an iron stress response. PMID:19678937

  1. Metabolite Adjustments in Drought Tolerant and Sensitive Soybean Genotypes in Response to Water Stress

    PubMed Central

    Silvente, Sonia; Sobolev, Anatoly P.; Lara, Miguel

    2012-01-01

    Soybean (Glycine max L.) is an important source of protein for human and animal nutrition, as well as a major source of vegetable oil. The soybean crop requires adequate water all through its growth period to attain its yield potential, and the lack of soil moisture at critical stages of growth profoundly impacts the productivity. In this study, utilizing 1H NMR-based metabolite analysis combined with the physiological studies we assessed the effects of short-term water stress on overall growth, nitrogen fixation, ureide and proline dynamics, as well as metabolic changes in drought tolerant (NA5009RG) and sensitive (DM50048) genotypes of soybean in order to elucidate metabolite adjustments in relation to the physiological responses in the nitrogen-fixing plants towards water limitation. The results of our analysis demonstrated critical differences in physiological responses between these two genotypes, and identified the metabolic pathways that are affected by short-term water limitation in soybean plants. Metabolic changes in response to drought conditions highlighted pools of metabolites that play a role in the adjustment of metabolism and physiology of the soybean varieties to meet drought effects. PMID:22685583

  2. Evaluation of the safety of a genetically modified DAS-444Ø6-6 soybean meal and hulls in a 90-day dietary toxicity study in rats.

    PubMed

    Papineni, Sabitha; Murray, Jennifer A; Ricardo, Ekmay; Dunville, Christina M; Sura, Radha Krishna; Thomas, Johnson

    2017-11-01

    A 90-day sub chronic toxicity study was conducted in rats to evaluate the safety of genetically modified DAS-444Ø6-6 soybeans expressing herbicide tolerant proteins when compared with its conventional comparators (non-transgenic near isoline control soybean and three commercially available non-transgenic line control soybeans). Rats were given diets formulated with either 10% or 20% w/w of soybean meal and 1% or 2% hulls of DAS-444Ø6-6 soybean with an equivalent amount of hulls from an isoline non-transgenic control soybean for at least 90 days. In addition, three separate 20% w/w non-transgenic commercially available soybean varieties were also given to groups of rats to serve as reference controls. Animals were evaluated by cage-side and hand-held detailed clinical observations, ophthalmic examinations, body weights/body weight gains, feed consumption, hematology, prothrombin time, urinalysis, clinical chemistry, selected organ weights, and gross and histopathologic examinations. Under the conditions of this study, the genetically modified DAS-444Ø6-6 diets did not cause any treatment-related effects in rats following 90 days of dietary administration as compared with rats fed diets with soybean of isoline control or commercial reference controls and are considered equivalent to the diets prepared from conventional comparators. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies.

    PubMed

    Koester, Robert P; Skoneczka, Jeffrey A; Cary, Troy R; Diers, Brian W; Ainsworth, Elizabeth A

    2014-07-01

    Soybean (Glycine max Merr.) is the world's most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha(-1) year(-1), and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean.

    PubMed

    Fan, Sujie; Dong, Lidong; Han, Dan; Zhang, Feng; Wu, Junjiang; Jiang, Liangyu; Cheng, Qun; Li, Rongpeng; Lu, Wencheng; Meng, Fanshan; Zhang, Shuzhen; Xu, Pengfei

    2017-01-01

    Phytophthora root and stem rot of soybean [ Glycine max (L.) Merr.] caused by the oomycete Phytophthora sojae , is a destructive disease worldwide. The molecular mechanism of the soybean response to P. sojae is largely unclear. We report a novel WRKY transcription factor (TF) in soybean, GmWRKY31, in the host response to P. sojae . Overexpression and RNA interference analysis demonstrated that GmWRKY31 enhanced resistance to P. sojae in transgenic soybean plants. GmWRKY31 was targeted to the nucleus, where it bound to the W-box and acted as an activator of gene transcription. Moreover, we determined that GmWRKY31 physically interacted with GmHDL56, which improved resistance to P. sojae in transgenic soybean roots. GmWRKY31 and GmHDL56 shared a common target GmNPR1 which was induced by P. sojae . Overexpression and RNA interference analysis demonstrated that GmNPR1 enhanced resistance to P. sojae in transgenic soybean plants. Several pathogenesis-related ( PR ) genes were constitutively activated, including GmPR1a , GmPR2 , GmPR3 , GmPR4 , GmPR5a , and GmPR10 , in soybean plants overexpressing GmNPR1 transcripts. By contrast, the induction of PR genes was compromised in transgenic GmNPR1 -RNAi lines. Taken together, these findings suggested that the interaction between GmWRKY31 and GmHDL56 enhances resistance to P. sojae by regulating defense-related gene expression in soybean.

  5. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection.

    PubMed

    Bencke-Malato, Marta; Cabreira, Caroline; Wiebke-Strohm, Beatriz; Bücker-Neto, Lauro; Mancini, Estefania; Osorio, Marina B; Homrich, Milena S; Turchetto-Zolet, Andreia Carina; De Carvalho, Mayra C C G; Stolf, Renata; Weber, Ricardo L M; Westergaard, Gastón; Castagnaro, Atílio P; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C; Margis-Pinheiro, Márcia; Bodanese-Zanettini, Maria Helena

    2014-09-10

    Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes against that fungus. The number of WRKY genes already annotated in soybean genome was underrepresented. In the present study, a genome-wide annotation of the soybean WRKY family was carried out and members involved in the response to P. pachyrhizi were identified. As a result of a soybean genomic databases search, 182 WRKY-encoding genes were annotated and 33 putative pseudogenes identified. Genes involved in the response to P. pachyrhizi infection were identified using superSAGE, RNA-Seq of microdissected lesions and microarray experiments. Seventy-five genes were differentially expressed during fungal infection. The expression of eight WRKY genes was validated by RT-qPCR. The expression of these genes in a resistant genotype was earlier and/or stronger compared with a susceptible genotype in response to P. pachyrhizi infection. Soybean somatic embryos were transformed in order to overexpress or silence WRKY genes. Embryos overexpressing a WRKY gene were obtained, but they were unable to convert into plants. When infected with P. pachyrhizi, the leaves of the silenced transgenic line showed a higher number of lesions than the wild-type plants. The present study reports a genome-wide annotation of soybean WRKY family. The participation of some members in response to P. pachyrhizi infection was demonstrated. The results contribute to the elucidation of gene function and suggest the manipulation of WRKYs as a strategy to increase fungal resistance in soybean plants.

  6. Proteomic Techniques and Management of Flooding Tolerance in Soybean.

    PubMed

    Komatsu, Setsuko; Tougou, Makoto; Nanjo, Yohei

    2015-09-04

    Climate change is considered a major threat to world agriculture and food security. To improve the agricultural productivity and sustainability, the development of high-yielding stress-tolerant, and climate-resilient crops is essential. Of the abiotic stresses, flooding stress is a very serious hazard because it markedly reduces plant growth and grain yield. Proteomic analyses indicate that the effects of flooding stress are not limited to oxygen deprivation but include many other factors. Although many flooding response mechanisms have been reported, flooding tolerance mechanisms have not been fully clarified for soybean. There were limitations in soybean materials, such as mutants and varieties, while they were abundant in rice and Arabidopsis. In this review, plant proteomic technologies are introduced and flooding tolerance mechanisms of soybeans are summarized to assist in the improvement of flooding tolerance in soybeans. This work will expedite transgenic or marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.

  7. Enzymatic Hydrolysis Does Not Reduce the Biological Reactivity of Soybean Proteins for All Allergic Subjects.

    PubMed

    Panda, Rakhi; Tetteh, Afua O; Pramod, Siddanakoppalu N; Goodman, Richard E

    2015-11-04

    Many soybean protein products are processed by enzymatic hydrolysis to attain desirable functional food properties or in some cases to reduce allergenicity. However, few studies have investigated the effects of enzymatic hydrolysis on the allergenicity of soybean products. In this study the allergenicity of soybean protein isolates (SPI) hydrolyzed by Alcalase, trypsin, chymotrypsin, bromelain, or papain was evaluated by IgE immunoblots using eight soybean-allergic patient sera. The biological relevance of IgE binding was evaluated by a functional assay using a humanized rat basophilic leukemia (hRBL) cell line and serum from one subject. Results indicated that hydrolysis of SPI by the enzymes did not reduce the allergenicity, and hydrolysis by chymotrypsin or bromelain has the potential to increase the allergenicity of SPI. Two-dimensional (2D) immunoblot and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of the chymotrypsin-hydrolyzed samples indicated fragments of β-conglycinin protein are responsible for the apparent higher allergenic potential of digested SPI.

  8. Landscape of genomic diversity and trait discovery in soybean.

    PubMed

    Valliyodan, Babu; Dan Qiu; Patil, Gunvant; Zeng, Peng; Huang, Jiaying; Dai, Lu; Chen, Chengxuan; Li, Yanjun; Joshi, Trupti; Song, Li; Vuong, Tri D; Musket, Theresa A; Xu, Dong; Shannon, J Grover; Shifeng, Cheng; Liu, Xin; Nguyen, Henry T

    2016-03-31

    Cultivated soybean [Glycine max (L.) Merr.] is a primary source of vegetable oil and protein. We report a landscape analysis of genome-wide genetic variation and an association study of major domestication and agronomic traits in soybean. A total of 106 soybean genomes representing wild, landraces, and elite lines were re-sequenced at an average of 17x depth with a 97.5% coverage. Over 10 million high-quality SNPs were discovered, and 35.34% of these have not been previously reported. Additionally, 159 putative domestication sweeps were identified, which includes 54.34 Mbp (4.9%) and 4,414 genes; 146 regions were involved in artificial selection during domestication. A genome-wide association study of major traits including oil and protein content, salinity, and domestication traits resulted in the discovery of novel alleles. Genomic information from this study provides a valuable resource for understanding soybean genome structure and evolution, and can also facilitate trait dissection leading to sequencing-based molecular breeding.

  9. Landscape of genomic diversity and trait discovery in soybean

    PubMed Central

    Valliyodan, Babu; Dan Qiu; Patil, Gunvant; Zeng, Peng; Huang, Jiaying; Dai, Lu; Chen, Chengxuan; Li, Yanjun; Joshi, Trupti; Song, Li; Vuong, Tri D.; Musket, Theresa A.; Xu, Dong; Shannon, J. Grover; Shifeng, Cheng; Liu, Xin; Nguyen, Henry T.

    2016-01-01

    Cultivated soybean [Glycine max (L.) Merr.] is a primary source of vegetable oil and protein. We report a landscape analysis of genome-wide genetic variation and an association study of major domestication and agronomic traits in soybean. A total of 106 soybean genomes representing wild, landraces, and elite lines were re-sequenced at an average of 17x depth with a 97.5% coverage. Over 10 million high-quality SNPs were discovered, and 35.34% of these have not been previously reported. Additionally, 159 putative domestication sweeps were identified, which includes 54.34 Mbp (4.9%) and 4,414 genes; 146 regions were involved in artificial selection during domestication. A genome-wide association study of major traits including oil and protein content, salinity, and domestication traits resulted in the discovery of novel alleles. Genomic information from this study provides a valuable resource for understanding soybean genome structure and evolution, and can also facilitate trait dissection leading to sequencing-based molecular breeding. PMID:27029319

  10. QTL that underlie seed protein, oil, fatty and amino acids content in the ‘Hamilton’ by ‘Spencer’ recombinant inbred line population of soybean [Glycine max (L.) Merr.

    USDA-ARS?s Scientific Manuscript database

    Improving seed composition and quality, including protein, oil, fatty acids, and amino acids content is an important goal of soybean farmers and breeders. Our previous research identified novel QTLs associated with seed isoflavones. The aim of this study was to use the ‘Hamilton’ by ‘Spencer’ recomb...

  11. Identification of the molecular genetic basis of the low palmitic acid seed oil trait in soybean mutant line RG3 and association analysis of molecular markers with elevated seed stearic acid and reduced seed palmitic acid

    USDA-ARS?s Scientific Manuscript database

    The fatty acid composition of vegetable oil is becoming increasingly critical for the ultimate functionality and utilization in foods and industrial products. Partial chemical hydrogenation of soybean oil increases oxidative stability and shelf life but also results in the introduction of trans fats...

  12. Detection of soybean in soy-based meat substitutes.

    PubMed

    Abd Allah, M A; Foda, Y H; el-Dashlouty, S; el-Sanafiry, N Y; Abu Salem, F M

    1986-01-01

    The statistical analysis of the available data indicated that the straight line equations of protein, fat, fibre, calcium, methionine, and lysine could successively be used for forecasting the added soy percent in a given recipe. On the other hand, the areas of the identified bands in the electropherograms of the investigated samples were considered a reasonable tool for the quantitative determination of whole soybean in soy-based meat substitutes.

  13. Soybean kinome: functional classification and gene expression patterns

    PubMed Central

    Liu, Jinyi; Chen, Nana; Grant, Joshua N.; Cheng, Zong-Ming (Max); Stewart, C. Neal; Hewezi, Tarek

    2015-01-01

    The protein kinase (PK) gene family is one of the largest and most highly conserved gene families in plants and plays a role in nearly all biological functions. While a large number of genes have been predicted to encode PKs in soybean, a comprehensive functional classification and global analysis of expression patterns of this large gene family is lacking. In this study, we identified the entire soybean PK repertoire or kinome, which comprised 2166 putative PK genes, representing 4.67% of all soybean protein-coding genes. The soybean kinome was classified into 19 groups, 81 families, and 122 subfamilies. The receptor-like kinase (RLK) group was remarkably large, containing 1418 genes. Collinearity analysis indicated that whole-genome segmental duplication events may have played a key role in the expansion of the soybean kinome, whereas tandem duplications might have contributed to the expansion of specific subfamilies. Gene structure, subcellular localization prediction, and gene expression patterns indicated extensive functional divergence of PK subfamilies. Global gene expression analysis of soybean PK subfamilies revealed tissue- and stress-specific expression patterns, implying regulatory functions over a wide range of developmental and physiological processes. In addition, tissue and stress co-expression network analysis uncovered specific subfamilies with narrow or wide interconnected relationships, indicative of their association with particular or broad signalling pathways, respectively. Taken together, our analyses provide a foundation for further functional studies to reveal the biological and molecular functions of PKs in soybean. PMID:25614662

  14. Radar backscatter properties of milo and soybeans

    NASA Technical Reports Server (NTRS)

    Bush, T. F.; Ulaby, F. T.; Metzler, T.

    1975-01-01

    The radar backscatter from fields of milo and soybeans was measured with a ground based radar as a function of frequency (8-18 GHz), polarization (HH and VV) and angle of incidence (0 deg-70 deg) during the summer of 1974. Supporting ground truth was gathered contemporaneously with the backscatter data. At nadir sigma deg of milo correlated highly, r = 0.96, with soil moisture in the milo field at 8.6 GHz but decreased to a value of r = 0.78 at a frequency of 17.0 GHz. Correlation studies of the variations of sigma deg with soil moisture in the soybean fields were not possible due to a lack of a meaningful soil moisture dynamic range. At the larger angles of incidence, however, sigma deg of soybeans did appear to be dependent on precipitation. It is suggested this phenomenon was caused by the rain altering plant geometry. In general sigma deg of both milo and soybeans had a relatively small dynamic range at the higher angles of incidence and showed no significant dependence on the measured crop parameters.

  15. Genome-Wide Small RNA Analysis of Soybean Reveals Auxin-Responsive microRNAs that are Differentially Expressed in Response to Salt Stress in Root Apex

    PubMed Central

    Sun, Zhengxi; Wang, Youning; Mou, Fupeng; Tian, Yinping; Chen, Liang; Zhang, Senlei; Jiang, Qiong; Li, Xia

    2016-01-01

    Root growth and the architecture of the root system in Arabidopsis are largely determined by root meristematic activity. Legume roots show strong developmental plasticity in response to both abiotic and biotic stimuli, including symbiotic rhizobia. However, a global analysis of gene regulation in the root meristem of soybean plants is lacking. In this study, we performed a global analysis of the small RNA transcriptome of root tips from soybean seedlings grown under normal and salt stress conditions. In total, 71 miRNA candidates, including known and novel variants of 59 miRNA families, were identified. We found 66 salt-responsive miRNAs in the soybean root meristem; among them, 22 are novel miRNAs. Interestingly, we found auxin-responsive cis-elements in the promoters of many salt-responsive miRNAs, implying that these miRNAs may be regulated by auxin and auxin signaling plays a key role in regulating the plasticity of the miRNAome and root development in soybean. A functional analysis of miR399, a salt-responsive miRNA in the root meristem, indicates the crucial role of this miRNA in modulating soybean root developmental plasticity. Our data provide novel insight into the miRNAome-mediated regulatory mechanism in soybean root growth under salt stress. PMID:26834773

  16. Lack of formation of heterocyclic amines in fumes from frying French fries.

    PubMed

    Hsu, H Y; Inbaraj, B Stephen; Chen, B H

    2006-09-01

    The formation of heterocyclic amines (HAs) in the fumes from frying French fries in soybean oil or lard was studied. A high-pressure liquid chromatography method was used to determine the various HAs in fumes. Results showed that the yields of fumes produced from soybean oil when heated alone for 2 or 4 h were higher than from lard; however, a reversed trend was found when frying French fries in soybean oil and lard. Most fumes from soybean oil and lard while frying French fries were adsorbed onto the condensation apparatus, while the other portions were adsorbed onto the wool and glass beads, which were incorporated in our experimental design for collecting the fumes. The fumes from soybean oil when heated alone were found to contain three HAs, namely, 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx), 2-amino-3-methylimidazo[4,5-f ]quinoline (IQ), and 1-methyl-9H-pyrido[4,3-b ]indole (Harman), whereas two more HAs, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 3-amino-1,4-dimethyl-5H-pyrido[4,3-b ]indole (Trp-P-1), were generated in lard. Lard was more susceptible to the formation of HAs than soybean oil when both were heated alone. No HAs were detected in the fumes from French fries fried in soybean oil and lard.

  17. Antibiosis in Soybean Genotypes and the Resistance Levels to Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae).

    PubMed

    Souza, B H S; Silva, A G; Janini, J C; Boica Júnior, A L

    2014-12-01

    The southern armyworm (SAW) Spodoptera eridania (Cramer) is one of the most common armyworm species defoliating soybeans. Preliminary screening trials have indicated that some soybean genotypes exhibit resistance to SAW. Therefore, in this study, we evaluated the development of SAW larvae fed on ten soybean genotypes in order to identify genotypes with antibiosis-type resistance. Neonate SAW larvae were daily fed with young leaves collected from plants at the vegetative growth stages V4-V5. Larval development and survival were recorded. Genotypes PI 227687 and PI 227682 delayed larval, pupal, and larva-adult development and yielded larvae with the lowest weight and survival and pupae with the lowest weight. Genotypes IAC 100 and DM 339 also negatively affected larval and pupal development and larval survival but at a lower level. Based on our results, the soybean lines PI 227687 and PI 227682 could be used as sources of genes for soybean breeding programs aiming to develop high yield, SAW-resistant cultivars. Moreover, further trials must be carried out under field conditions to validate if the commercial cultivars IAC 100 and DM 339, which expressed moderate levels of antibiosis-type resistance in the laboratory, are effective in suppressing SAW larvae populations.

  18. Genetic parameters and selection of soybean lines based on selection indexes.

    PubMed

    Teixeira, F G; Hamawaki, O T; Nogueira, A P O; Hamawaki, R L; Jorge, G L; Hamawaki, C L; Machado, B Q V; Santana, A J O

    2017-09-21

    Defining selection criteria is important to obtain promising genotypes in a breeding program. The objective of this study was to estimate genetic parameters for agronomic traits and to perform soybean line selection using selection indices. The experiment was conducted at an experimental area located at Capim Branco farm, belonging to the Federal University of Uberlândia. A total of 37 soybean genotypes were evaluated in randomized complete block design with three replicates, in which twelve agronomic traits were evaluated. Analysis of variance, the Scott-Knott test at the 1 and 5% level of probability, and selection index analyses were performed. There was genetic variability for all agronomic traits, with medium to high levels of genotype determination coefficient. Twelve lines with a total cycle up to 110 days were observed and grouped with the cultivars MSOY 6101 and UFUS 7910. Three lines, UFUS FG 03, UFUS FG 20, and UFUS FG 31, were highlighted regarding grain yield with higher values than the national average of 3072 kg/ha. The direct selection enabled the highest trait individual gains. The Williams (1962) index and the Smith (1936) and Hazel (1943) index presented the highest selection gain for the grain yield character. The genotype-ideotype distance index and the index of the sum of ranks of Mulamba and Mock (1978) presented higher values of total selection gain. The lines UFUS FG 12, UFUS FG 14, UFUS FG 18, UFUS FG 25, and UFUS FG 31 were distinguished as superior genotypes by direct selection methods and selection indexes.

  19. Over-expression of the Pseudomonas syringae harpin-encoding gene hrpZm confers enhanced tolerance to Phytophthora root and stem rot in transgenic soybean.

    PubMed

    Du, Qian; Yang, Xiangdong; Zhang, Jinhua; Zhong, Xiaofang; Kim, Kyung Seok; Yang, Jing; Xing, Guojie; Li, Xiaoyu; Jiang, Zhaoyuan; Li, Qiyun; Dong, Yingshan; Pan, Hongyu

    2018-06-01

    Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most devastating diseases reducing soybean (Glycine max) production all over the world. Harpin proteins in many plant pathogenic bacteria were confirmed to enhance disease and insect resistance in crop plants. Here, a harpin protein-encoding gene hrpZpsta from the P. syringae pv. tabaci strain Psta218 was codon-optimized (renamed hrpZm) and introduced into soybean cultivars Williams 82 and Shennong 9 by Agrobacterium-mediated transformation. Three independent transgenic lines over-expressing hrpZm were obtained and exhibited stable and enhanced tolerance to P. sojae infection in T 2 -T 4 generations compared to the non-transformed (NT) and empty vector (EV)-transformed plants. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of salicylic acid-dependent genes PR1, PR12, and PAL, jasmonic acid-dependent gene PPO, and hypersensitive response (HR)-related genes GmNPR1 and RAR was significantly up-regulated after P. sojae inoculation. Moreover, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), peroxidase, and superoxide dismutase also increased significantly in the transgenic lines compared to the NT and EV-transformed plants after inoculation. Our results suggest that over-expression of the hrpZm gene significantly enhances PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways, thus providing an alternative approach for development of soybean varieties with improved tolerance against the soil-borne pathogen PRR.

  20. GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean

    PubMed Central

    Fan, Sujie; Dong, Lidong; Han, Dan; Zhang, Feng; Wu, Junjiang; Jiang, Liangyu; Cheng, Qun; Li, Rongpeng; Lu, Wencheng; Meng, Fanshan; Zhang, Shuzhen; Xu, Pengfei

    2017-01-01

    Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.] caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. The molecular mechanism of the soybean response to P. sojae is largely unclear. We report a novel WRKY transcription factor (TF) in soybean, GmWRKY31, in the host response to P. sojae. Overexpression and RNA interference analysis demonstrated that GmWRKY31 enhanced resistance to P. sojae in transgenic soybean plants. GmWRKY31 was targeted to the nucleus, where it bound to the W-box and acted as an activator of gene transcription. Moreover, we determined that GmWRKY31 physically interacted with GmHDL56, which improved resistance to P. sojae in transgenic soybean roots. GmWRKY31 and GmHDL56 shared a common target GmNPR1 which was induced by P. sojae. Overexpression and RNA interference analysis demonstrated that GmNPR1 enhanced resistance to P. sojae in transgenic soybean plants. Several pathogenesis-related (PR) genes were constitutively activated, including GmPR1a, GmPR2, GmPR3, GmPR4, GmPR5a, and GmPR10, in soybean plants overexpressing GmNPR1 transcripts. By contrast, the induction of PR genes was compromised in transgenic GmNPR1-RNAi lines. Taken together, these findings suggested that the interaction between GmWRKY31 and GmHDL56 enhances resistance to P. sojae by regulating defense-related gene expression in soybean. PMID:28553307

  1. Transposon tagging of a male-sterility, female-sterility gene, St8, revealed that the meiotic MER3 DNA helicase activity is essential for fertility in soybean

    USDA-ARS?s Scientific Manuscript database

    The W4 locus in soybean encodes a dihydroflavonol-4-reductase (DFR2) that regulates pigmentation patterns in flowers and hypocotyl. The mutable w4-m allele that governs variegated flowers has arisen through insertion of a CACTA-type transposable element, Tgm9, in DFR2. In the w4-m line, reversion fr...

  2. Genetic Analysis of Seed Isoflavones, Protein, and Oil Contents in Soybean [Glycine max (L.) Merr.

    DTIC Science & Technology

    2014-09-13

    high contents of protein , oil, isoflavones, and other bioactive compounds. However, it is susceptible to many biotic stresses such fungal, bacterial...for protein , oil, and isoflavones contents in three recombinant inbred line (RIL) populations of soybean. We have achieved 100% of the goals. We have...Jun-2011 31-May-2014 Approved for Public Release; Distribution Unlimited Final Report: Genetic Analysis of Seed Isoflavones, Protein , and Oil

  3. Comparison of Allergenicity at Gly m 4 and Gly m Bd 30K of Soybean after Genetic Modification.

    PubMed

    Tsai, Jaw-Ji; Chang, Ching-Yun; Liao, En-Chih

    2017-02-15

    Despite rapid growth of genetically modified (GM) crops, effective evaluations of genetic modification on allergenicity are still lacking. Gly m Bd 30K is cross-reactive with cow's milk protein casein, Gly m 4, and with birch pollen allergen Bet v 1. Here we compared the allergenicity between GM and non-GM soybeans with respect to the foci Gly m 4 and Gly m Bd 30K. Recombinant allergens of Gly m Bd 30K and Gly m 4 were generated and polyclonal antibodies raised to identify these two allergenic components in soybeans. GM soybean was first PCR-confirmed using 35S promoter. A total of 20 soybeans (half GM, half non-GM) obtained from a food market were used to assess their allergenicity based on IgE-binding and histamine release. The concentrations of Gly m Bd 30K and Gly m 4 in soybeans were then determined. Most soybean-allergic patients (9 of 10) showed IgE-positive reactions to the allergen of 30 kDa in molecular weight. That allergen turned out to be Glycine max Gly m Bd 30K based on LC-MS/MS analyses. Gly m Bd 30K is therefore the major allergen in the soybean. An increase in the transcription of both the Gly m 4 (stress-induced protein SAM22) and Gly m Bd 28K (soybean allergen precursor) was found after genetic modification. The protein concentrations of Gly m 4 and Gly m Bd 30K were not statistically significant different between non-GM and GM soybeans. There were also no statistical significances between them in the tests of IgE binding and histamine release. In conclusion, soybeans showed similar concentrations of Gly m Bd 30K and Gly m 4 regardless of genetic modification or absence thereof. The allergenicity of both Gly m Bd 30K and Gly m 4 was therefore not altered after genetic modification. Patients showing hypersensitivity to soybeans and who had pre-existing allergy to birch pollen and cow's milk casein might not further increase their allergic reactions following exposures to the GM soybeans.

  4. Impact of Environment on the Biomass Composition of Soybean (Glycine max) seeds.

    PubMed

    McClure, Tamara; Cocuron, Jean-Christophe; Osmark, Veronika; McHale, Leah K; Alonso, Ana Paula

    2017-08-16

    Factors including genetics, fertilization, and climatic conditions, can alter the biomass composition of soybean seeds, consequently impacting their market value and usage. This study specifically determined the content of protein and oil, as well as the composition of proteinogenic amino acids and fatty acids in seeds from 10 diverse soybean cultivars grown in four different sites. The results highlighted that different environments produce a different composition for the 10 cultivars under investigation. Specifically, the levels of oleic and linoleic acids, important contributors to oil stability, were negatively correlated. Although the protein and oil contents were higher in some locations, their "quality" was lower in terms of composition of essential amino acids and oleic acid, respectively. Finally, proteinogenic histidine and glutamate were the main contributors to the separation between Central and Northern growing sites. Taken together, these results can guide future breeding and engineering efforts aiming to develop specialized soybean lines.

  5. Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach.

    PubMed

    Iquira, Elmer; Humira, Sonah; François, Belzile

    2015-01-17

    Sclerotinia stem rot (SSR) is the most important soybean disease in Eastern Canada. The development of resistant cultivars represents the most cost-effective means of limiting the impact of this disease. In view of ensuring durable resistance, it is imperative to identify germplasm harbouring different resistance loci and to provide breeders with closely linked molecular markers to facilitate breeding. With this end in view, we assessed resistance using a highly reproducible artificial inoculation method on a diverse collection of 101 soybean lines, mostly composed of plant introductions (PIs) and some of which had previously been reported to be resistant to sclerotinia stem rot. Overall, 50% of the lines exhibited a level of resistance equal to or better than the resistant checks among elite material. Of the 50 lines previously reported to be resistant, only 20 were in this category and a few were highly susceptible under these inoculation conditions. The collection of lines was genetically characterized using a genotyping by sequencing (GBS) protocol that we have optimized for soybean. A total of 8,397 single nucleotide polymorphisms (SNPs) were obtained and used to perform an association analysis for SSR by using a mixed linear model as implemented in the TASSEL software. Three genomic regions were found to exhibit a significant association at a stringent threshold (q = 0.10) and all of the most highly resistant PIs shared the same alleles at these three QTLs. The strongest association was found on chromosome Gm03 (P-value = 2.03 × 10(-6)). The other significantly associated markers were found on chromosomes Gm08 and Gm20 with P-values <10(-5). This work will facilitate breeding efforts for increased resistance to Sclerotinia stem rot through the use of these PIs.

  6. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana.

    PubMed

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  7. Effects of fish oil, DHA oil and lecithin in microparticulate diets on stress tolerance of larval gilthead seabream ( Sparus aurata)

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Ke; Wang, Wen-Qi; Li, Kui-Ran; Lei, Ji-Lin

    2002-12-01

    The effects of natural fish oil, DHA oil and soybean lecithin in microparticulate diets on stress tolerance of larval gilthead seabream ( Sparus aurata) were investigated after 15 days feeding trials. The tolerance of larval gilthead seabream to various stress factors such as exposure to air (lack of dissolved oxygen), changes in water temperature (low) and salinity (high) were determined. This study showed that microparticulate diet with natural fish oil and soybean lecithin was the most effective for increasing the tolerance of larval gilthead seabream to various stresses, and that microparticulate diet with natural fish oil and palmitic acid (16∶0) was more effective than microparticulate diet with DHA oil and soybean lecithin.

  8. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    PubMed

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed using principal component analysis. The results of the principal component analysis enabled a clear identification of different plant oils. By using this two-dimensional liquid chromatography-mass spectrometry system coupled with principal component analysis, adulterated soybean oils with 5% added lord oil and peanut oils with 5% added soybean oil can be clearly identified. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Aureobasidium pullulans produced β-glucan is effective to enhance Kurosengoku soybean extract induced Thrombospondin-1 expression.

    PubMed

    Muramatsu, Daisuke; Okabe, Mitsuyasu; Takaoka, Akinori; Kida, Hiroshi; Iwai, Atsushi

    2017-06-06

    Black yeast, Aureobasidium pullulans is extracellularly produced β-(1,3), (1,6)-D-glucan (β-glucan) under certain conditions. In this study, using Glycine max cv. Kurosengoku (Kurosengoku soybeans), the production of β-glucan through fermentation of A. pullulans was evaluated, and the effects of A. pullulans cultured fluid (AP-CF) containing β-glucan made with Kurosengoku soybeans (kAP-CF) on a human monocyte derived cell line, Mono Mac 6 cells were investigated. Concentration of β-glucan in kAP-CF reached the same level as normal AP-CF. An anti-angiogenic protein, Thrombospondin-1 (THBS1) was effectively induced after the stimulation with kAP-CF for comparison with AP-CF. The THBS1 is also induced after stimulation with hot water extract of Kurosengoku soybeans (KS-E), while the combined stimulation of β-glucan with KS-E more effectively induced THBS1 than that with KS-E alone. These results suggest effects of A. pullulans-produced β-glucan on the enhancement of Kurosengoku soybean-induced THBS1 expression.

  10. The Potential for Engineering Enhanced Functional-Feed Soybeans for Sustainable Aquaculture Feed.

    PubMed

    Herman, Eliot M; Schmidt, Monica A

    2016-01-01

    Aquaculture is the most rapidly growing segment of global animal production that now surpasses wild-capture fisheries production and is continuing to grow 10% annually. Sustainable aquaculture needs to diminish, and progressively eliminate, its dependence on fishmeal-sourced feed from over-harvested fisheries. Sustainable aquafeed sources will need to be primarily of plant-origin. Soybean is currently the primary global vegetable-origin protein source for aquaculture. Direct exchange of soybean meal for fishmeal in aquafeed has resulted in reduced growth rates due in part to soybean's anti-nutritional proteins. To produce soybeans for use in aquaculture feeds a new conventional line has been bred termed Triple Null by stacking null alleles for the feed-relevant proteins Kunitz Trypsin Inhibitor, lectin, and P34 allergen. Triple Null is now being further enhanced as a platform to build additional transgene traits for vaccines, altered protein composition, and to produce high levels of β-carotene an intrinsic orange-colored aquafeed marker to distinguish the seeds from commodity beans and as the metabolic feedstock precursor of highly valued astaxanthin.

  11. Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress.

    PubMed

    Rodrigues, Simone M; Andrade, Maxuel O; Gomes, Ana Paula Soares; Damatta, Fabio M; Baracat-Pereira, Maria C; Fontes, Elizabeth P B

    2006-01-01

    Despite extensive studies in eukaryotic aldehyde dehydrogenases, functional information about the ALDH7 antiquitin-like proteins is lacking. A soybean antiquitin homologue gene, designated GmTP55, has been isolated which encodes a dehydrogenase motif-containing 55 kDa protein induced by dehydration and salt stress. GmTP55 is closely related to the stress-induced plant antiquitin-like proteins that belong to the ALDH7 family. Transgenic tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana) plants constitutively expressing GmTP55 have been obtained in order to examine the physiological role of this enzyme under a variety of stress conditions. Ectopic expression of GmTP55 in both Arabidopsis and tobacco conferred tolerance to salinity during germination and to water deficit during plant growth. Under salt stress, the germination efficiency of both transgenic tobacco and Arabidopsis seeds was significantly higher than that of their control counterparts. Likewise, under progressive drought, the transgenic tobacco lines apparently kept the shoot turgidity to a normal level, which contrasted with the leaf wilt phenotype of control plants. The transgenic plants also exhibited an enhanced tolerance to H(2)O(2)- and paraquat-induced oxidative stress. Both GmTP55-expressing Arabidopsis and tobacco seeds germinated efficiently in medium supplemented with H(2)O(2), whereas the germination of control seeds was drastically impaired. Similarly, transgenic tobacco leaf discs treated with paraquat displayed a significant reduction in the necrotic lesions as compared with control leaves. These transgenic lines also exhibited a lower concentration of lipid peroxidation-derived reactive aldehydes under oxidative stress. These results suggest that antiquitin may be involved in adaptive responses mediated by a physiologically relevant detoxification pathway in plants.

  12. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).

    PubMed

    Yuan, Feng-Jie; Zhu, Dan-Hua; Deng, Bo; Fu, Xu-Jun; Dong, De-Kun; Zhu, Shen-Long; Li, Bai-Quan; Shu, Qing-Yao

    2009-05-13

    Reduction of phytic acid in soybean seeds has the potential to improve the nutritional value of soybean meal and lessen phosphorus pollution in large scale animal farming. The objective of this study was to assess the effect of two new low phytic acid (LPA) mutations on seed quality and nutritional traits. Multilocation/season comparative analyses showed that the two mutations did not affect the concentration of crude protein, any of the individual amino acids, crude oil, and individual saturated fatty acids. Among other traits, Gm-lpa-TW75-1 had consistently higher sucrose contents (+47.4-86.1%) and lower raffinose contents (-74.2 to -84.3%) than those of wild type (WT) parent Taiwan 75; Gm-lpa-ZC-2 had higher total isoflavone contents (3038.8-4305.4 microg/g) than its parent Zhechun # 3 (1583.6-2644.9 microg/g) in all environments. Further tests of homozygous F(3) progenies of the cross Gm-lpa-ZC-2 x Wuxing # 4 (WT variety) showed that LPA lines had a mean content of total isoflavone significantly higher than WT lines. This study demonstrated that two LPA mutant genes have no negative effects on seed quality and nutritional traits; they instead have the potential to improve a few other properties. Therefore, these two mutant genes are valuable genetic resources for breeding high quality soybean varieties.

  13. Root xylem plasticity to improve water use and yield in water-stressed soybean

    PubMed Central

    Prince, Silvas J.; Murphy, Mackensie; Durnell, Lorellin A.; Shannon, J. Grover

    2017-01-01

    Abstract We tested the hypothesis that increasing the number of metaxylem vessels would enhance the efficiency of water uptake in soybean (Glycine max) and decrease the yield gap in water-limited environments. A panel of 41 soybean accessions was evaluated in greenhouse, rainout shelter, and rain-fed field environments. The metaxylem number influenced the internal capture of CO2 and improved stomatal conductance, enhancing water uptake/use in soybeans exposed to stress during the reproductive stage. We determined that other root anatomical features, such as cortex cell area and the percentage of stele that comprised cortical cells, also affected seed yield under similar growth parameters. Seed yield was also impacted by pod retention rates under drought stress (24–80 pods/plant). We surmise that effective biomass allocation, that is, the transport of available photosynthates to floral structures at late reproductive growth stages (R6–R7), enables yield protection under drought stress. A mesocosm study of contrasting lines for yield under drought stress and root anatomical features revealed that increases in metaxylem number as an adaptation to drought in the high-yielding lines improved root hydraulic conductivity, which reduced the metabolic cost of exploring water in deeper soil strata and enhanced water transport. This allowed the maintenance of shoot physiological processes under water-limited conditions. PMID:28064176

  14. Identification of quantitative trait loci associated with boiled seed hardness in soybean

    PubMed Central

    Hirata, Kaori; Masuda, Ryoichi; Tsubokura, Yasutaka; Yasui, Takeshi; Yamada, Tetsuya; Takahashi, Koji; Nagaya, Taiko; Sayama, Takashi; Ishimoto, Masao; Hajika, Makita

    2014-01-01

    Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding. PMID:25914591

  15. Characterization of a new GmFAD3A allele in Brazilian CS303TNKCA soybean cultivar.

    PubMed

    Silva, Luiz Claudio Costa; Bueno, Rafael Delmond; da Matta, Loreta Buuda; Pereira, Pedro Henrique Scarpelli; Mayrink, Danyelle Barbosa; Piovesan, Newton Deniz; Sediyama, Carlos Sigueyuki; Fontes, Elizabeth Pacheco Batista; Cardinal, Andrea J; Dal-Bianco, Maximiller

    2018-05-01

    We molecularly characterized a new mutation in the GmFAD3A gene associated with low linolenic content in the Brazilian soybean cultivar CS303TNKCA and developed a molecular marker to select this mutation. Soybean is one of the most important crops cultivated worldwide. Soybean oil has 13% palmitic acid, 4% stearic acid, 20% oleic acid, 55% linoleic acid and 8% linolenic acid. Breeding programs are developing varieties with high oleic and low polyunsaturated fatty acids (linoleic and linolenic) to improve the oil oxidative stability and make the varieties more attractive for the soy industry. The main goal of this study was to characterize the low linoleic acid trait in CS303TNKCA cultivar. We sequenced CS303TNKCA GmFAD3A, GmFAD3B and GmFAD3C genes and identified an adenine point deletion in the GmFAD3A exon 5 (delA). This alteration creates a premature stop codon, leading to a truncated protein with just 207 residues that result in a non-functional enzyme. Analysis of enzymatic activity by heterologous expression in yeast support delA as the cause of low linolenic acid content in CS303TNKCA. Thus, we developed a TaqMan genotyping assay to associate delA with low linolenic acid content in segregating populations. Lines homozygous for delA had a linolenic acid content of 3.3 to 4.4%, and the variation at this locus accounted for 50.83 to 73.70% of the phenotypic variation. This molecular marker is a new tool to introgress the low linolenic acid trait into elite soybean cultivars and can be used to combine with high oleic trait markers to produce soybean with enhanced economic value. The advantage of using CS303TNKCA compared to other lines available in the literature is that this cultivar has good agronomic characteristics and is adapted to Brazilian conditions.

  16. Genome-Wide Analysis of the RAV Family in Soybean and Functional Identification of GmRAV-03 Involvement in Salt and Drought Stresses and Exogenous ABA Treatment

    PubMed Central

    Zhao, Shu-Ping; Xu, Zhao-Shi; Zheng, Wei-Jun; Zhao, Wan; Wang, Yan-Xia; Yu, Tai-Fei; Chen, Ming; Zhou, Yong-Bin; Min, Dong-Hong; Ma, You-Zhi; Chai, Shou-Cheng; Zhang, Xiao-Hong

    2017-01-01

    Transcription factors play vital roles in plant growth and in plant responses to abiotic stresses. The RAV transcription factors contain a B3 DNA binding domain and/or an APETALA2 (AP2) DNA binding domain. Although genome-wide analyses of RAV family genes have been performed in several species, little is known about the family in soybean (Glycine max L.). In this study, a total of 13 RAV genes, named as GmRAVs, were identified in the soybean genome. We predicted and analyzed the amino acid compositions, phylogenetic relationships, and folding states of conserved domain sequences of soybean RAV transcription factors. These soybean RAV transcription factors were phylogenetically clustered into three classes based on their amino acid sequences. Subcellular localization analysis revealed that the soybean RAV proteins were located in the nucleus. The expression patterns of 13 RAV genes were analyzed by quantitative real-time PCR. Under drought stresses, the RAV genes expressed diversely, up- or down-regulated. Following NaCl treatments, all RAV genes were down-regulated excepting GmRAV-03 which was up-regulated. Under abscisic acid (ABA) treatment, the expression of all of the soybean RAV genes increased dramatically. These results suggested that the soybean RAV genes may be involved in diverse signaling pathways and may be responsive to abiotic stresses and exogenous ABA. Further analysis indicated that GmRAV-03 could increase the transgenic lines resistance to high salt and drought and result in the transgenic plants insensitive to exogenous ABA. This present study provides valuable information for understanding the classification and putative functions of the RAV transcription factors in soybean. PMID:28634481

  17. Characterization of Soybean Genetically Modified for Drought Tolerance in Field Conditions

    PubMed Central

    Fuganti-Pagliarini, Renata; Ferreira, Leonardo C.; Rodrigues, Fabiana A.; Molinari, Hugo B. C.; Marin, Silvana R. R.; Molinari, Mayla D. C.; Marcolino-Gomes, Juliana; Mertz-Henning, Liliane M.; Farias, José R. B.; de Oliveira, Maria C. N.; Neumaier, Norman; Kanamori, Norihito; Fujita, Yasunari; Mizoi, Junya; Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Nepomuceno, Alexandre L.

    2017-01-01

    Drought is one of the most stressful environmental factor causing yield and economic losses in many soybean-producing regions. In the last decades, transcription factors (TFs) are being used to develop genetically modified plants more tolerant to abiotic stresses. Dehydration responsive element binding (DREB) and ABA-responsive element-binding (AREB) TFs were introduced in soybean showing improved drought tolerance, under controlled conditions. However, these results may not be representative of the way in which plants behave over the entire season in the real field situation. Thus, the objectives of this study were to analyze agronomical traits and physiological parameters of AtDREB1A (1Ab58), AtDREB2CA (1Bb2193), and AtAREB1 (1Ea2939) GM lines under irrigated (IRR) and non-irrigated (NIRR) conditions in a field experiment, over two crop seasons and quantify transgene and drought-responsive genes expression. Results from season 2013/2014 revealed that line 1Ea2939 showed higher intrinsic water use and leaf area index. Lines 1Ab58 and 1Bb2193 showed a similar behavior to wild-type plants in relation to chlorophyll content. Oil and protein contents were not affected in transgenic lines in NIRR conditions. Lodging, due to plentiful rain, impaired yield from the 1Ea2939 line in IRR conditions. qPCR results confirmed the expression of the inserted TFs and drought-responsive endogenous genes. No differences were identified in the field experiment performed in crop season 2014/2015, probably due to the optimum rainfall volume during the cycle. These field screenings showed promising results for drought tolerance. However, additional studies are needed in further crop seasons and other sites to better characterize how these plants may outperform the WT under field water deficit. PMID:28443101

  18. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase.

    PubMed

    Warabi, E; Usui, K; Tanaka, Y; Matsumoto, H

    2001-08-01

    The diphenyl ether herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl 3-ethoxy-4-nitrophenyl ether) inhibits protoporphyrinogen oxidase (Protox) which catalyzes the oxidation of protoporphyrinogen IX (Protogen) to protoporphyrin IX (Proto IX), the last step of the common pathway to chlorophyll and haeme biosynthesis. We have selected an oxyfluorfen-resistant soybean cell line by stepwise selection methods, and the resistance mechanism has been investigated. No growth inhibition was observed in resistant cells at a concentration of 10(-7) M oxyfluorfen, a concentration at which normal cells did not survive. While the degree of inhibition of total extractable Protox by oxyfluorfen was the same in both cell types, the enzyme activity in the mitochondrial fraction from non-treated resistant cells was about nine-fold higher than that from normal cells. Northern analysis of mitochondrial Protox revealed that the concentration of mitochondrial Protox mRNA was much higher in resistant cells than that in normal cells. There were no differences in the absorption and metabolic breakdown of oxyfluorfen. The growth of resistant cells was also insensitive to oxadiazon [5-tert-butyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-(3H)- one], the other chemical class of Protox inhibitor. Therefore, the resistance of the selected soybean cell line to oxyfluorfen is probably mainly due to the overproduction of mitochondrial Protox.

  19. Selecting soybean resistant to the cyst nematode Heterodera glycines using simple sequence repeat (microssatellite) markers.

    PubMed

    Espindola, S M C G; Hamawaki, O T; Oliveira, A P; Hamawaki, C D L; Hamawaki, R L; Takahashi, L M

    2016-03-11

    The soybean cyst nematode (SCN) is a major cause of soybean yield reduction. The objective of this study was to evaluate the efficiency of marker-assisted selection to identify genotypes resistant to SCN race 3 infection, using Sat_168 and Sat-141 resistance quantitative trait loci. The experiment was carried out under greenhouse conditions, using soybean populations originated from crosses between susceptible and resistant parent stock: CD-201 (susceptible) and Foster IAC (resistant), Conquista (susceptible) and S83-30 (resistant), La-Suprema (susceptible) and S57-11 (resistant), and Parecis (susceptible) and S65-50 (resistant). Plants were inoculated with SCN and evaluated according to the female index (FI), those with FI < 10% were classified as resistant to nematode infection. Plants were genotyped for SCN resistance using microsatellite markers Sat-141 and Sat_168. Marker selection efficiency was analyzed by a contingency table, taking into account genotypic versus phenotypic evaluations for each line. These markers were shown to be useful tool for selection of SCN race 3.

  20. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    PubMed Central

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress. PMID:28848576

  1. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis.

    PubMed

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA 1 , GA 3 , and GA 4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA 1 /ABA, GA 3 /ABA, and GA 4 /ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  2. Consumer acceptance of eggs from Hy-Line Brown layers fed soybean or soybean-free diets using cage or free-range rearing systems.

    PubMed

    Al-Ajeeli, M N; Miller, R K; Leyva, H; Hashim, M M; Abdaljaleel, R A; Jameel, Y; Bailey, C A

    2018-05-01

    Consumers have begun to awaken to the food on their plates with respect to human health and the environment, as well as animal welfare. They have become more demanding about what they buy or prefer in their food, such as soy-free, gluten-free, or organic products. The objective of this study was to evaluate consumer acceptance of eggs from hens fed soybean meal or soybean-free diets utilizing cottonseed meal and distillers' dried grains, using cage or free-range rearing systems. All eggs were stored at the sensory lab at Texas A&M University (TAMU) for a d prior to each test at 4°C. A panel of consumers (n = 60) made up of TAMU students, faculty, and staff, ages 18 to 50, were recruited to evaluate consumer acceptance based on 2 tests using scrambled and hard cooked eggs. Samples were placed in separate weigh boats labeled with 3-digit codes to avoid visual bias. Sensory ballots were based on overall like or dislike of flavor, texture, odor, and color using the 9-point hedonic scales. For scrambled eggs, flavor did not differ (P > 0.05), but texture liking was higher (P = 0.064) for scrambled eggs from the soybean-free diet (7.08) vs. scrambled eggs from the soybean meal diet (6.65). With respect to the hard cooked eggs, the consumer panel preferred the flavor of the eggs from the caged rearing system (7.11) vs. eggs from the free-range system (6.60; P = 0.014). Consumers liked the texture (P = 0.018) for eggs collected from hens fed soybean meal (6.91) vs. eggs from hens fed the soybean-free diet (6.30).

  3. Phenology and Seed Yield Performance of Determinate Soybean Cultivars Grown at Elevated Temperatures in a Temperate Region.

    PubMed

    Choi, Doug-Hwan; Ban, Ho-Young; Seo, Beom-Seok; Lee, Kyu-Jong; Lee, Byun-Woo

    2016-01-01

    Increased temperature means and fluctuations associated with climate change are predicted to exert profound effects on the seed yield of soybean. We conducted an experiment to evaluate the impacts of global warming on the phenology and yield of two determinate soybean cultivars in a temperate region (37.27°N, 126.99°E; Suwon, South Korea). These two soybean cultivars, Sinpaldalkong [maturity group (MG) IV] and Daewonkong (MG VI), were cultured on various sowing dates within a four-year period, under no water-stress conditions. Soybeans were kept in greenhouses controlled at the current ambient temperature (AT), AT+1.5°C, AT+3.0°C, and AT+5.0°C throughout the growth periods. Growth periods (VE-R7) were significantly prolonged by the elevated temperatures, especially the R1-R5 period. Cultivars exhibited no significant differences in seed yield at the AT+1.5°C and AT+3.0°C treatments, compared to AT, while a significant yield reduction was observed at the AT+5.0°C treatment. Yield reductions resulted from limited seed number, which was due to an overall low numbers of pods and seeds per pod. Heat stress conditions induced a decrease in pod number to a greater degree than in seed number per pod. Individual seed weight exhibited no significant variation among temperature elevation treatments; thus, seed weight likely had negligible impacts on overall seed yield. A boundary line analysis (using quantile regression) estimated optimum temperatures for seed number at 26.4 to 26.8°C (VE-R5) for both cultivars; the optimum temperatures (R5-R7) for single seed weight were estimated at 25.2°C for the Sinpaldalkong smaller-seeded cultivar, and at 22.3°C for the Daewonkong larger-seeded cultivar. The optimum growing season (VE-R7) temperatures for seed yield, which were estimated by combining the two boundary lines for seed number and seed weight, were 26.4 and 25.0°C for the Sinpaldalkong and Daewonkong cultivars, respectively. Considering the current soybean growing season temperature, which ranges from 21.7 (in the north) to 24.6°C (in the south) in South Korea, and the temperature response of potential soybean yields, further warming of less than approximately 1°C would not become a critical limiting factor for soybean production in South Korea.

  4. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines.

    PubMed

    Redekar, Neelam R; Biyashev, Ruslan M; Jensen, Roderick V; Helm, Richard F; Grabau, Elizabeth A; Maroof, M A Saghai

    2015-12-18

    Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or indirectly associated with PA biosynthesis and accumulation during seed development. These lpa crops typically exhibit altered carbohydrate profiles, increased free phosphate, and lower seedling emergence, the latter of which reduces overall crop yield, hence limiting their large-scale cultivation. Improving lpa crop yield requires an understanding of the downstream effects of the lpa genotype on seed development. Towards that end, we present a comprehensive comparison of gene-expression profiles between lpa and normal PA soybean lines (Glycine max) at five stages of seed development using RNA-Seq approaches. The lpa line used in this study carries single point mutations in a myo-inositol phosphate synthase gene along with two multidrug-resistance protein ABC transporter genes. RNA sequencing data of lpa and normal PA soybean lines from five seed-developmental stages (total of 30 libraries) were used for differential expression and functional enrichment analyses. A total of 4235 differentially expressed genes, including 512-transcription factor genes were identified. Eighteen biological processes such as apoptosis, glucan metabolism, cellular transport, photosynthesis and 9 transcription factor families including WRKY, CAMTA3 and SNF2 were enriched during seed development. Genes associated with apoptosis, glucan metabolism, and cellular transport showed enhanced expression in early stages of lpa seed development, while those associated with photosynthesis showed decreased expression in late developmental stages. The results suggest that lpa-causing mutations play a role in inducing and suppressing plant defense responses during early and late stages of seed development, respectively. This study provides a global perspective of transcriptomal changes during soybean seed development in an lpa mutant. The mutants are characterized by earlier expression of genes associated with cell wall biosynthesis and a decrease in photosynthetic genes in late stages. The biological processes and transcription factors identified in this study are signatures of lpa-causing mutations.

  5. Identification of QTLs underlying seed micronutrients accumulation in 'MD96-5722' by 'Spencer' recombinant inbred lines of soybean

    USDA-ARS?s Scientific Manuscript database

    Genetic mapping of quantitative trait loci (QTL) associated with seed nutrition levels is almost non-existent. The objective of this study was to identify QTLs associated with seed micronutrients accumulation (concentration) in a population of 92 F5:7 recombinant inbred lines (RILs) that derived fro...

  6. Variable Isotopic Compositions of Host Plant Populations Preclude Assessment of Aphid Overwintering Sites

    PubMed Central

    Voegtlin, David J.; Hamilton, Krista L.; Hogg, David B.

    2017-01-01

    Soybean aphid (Aphis glycines Matsumura) is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a regional scale. In this preliminary study, we explored the utility of variation in stable isotopes of carbon and nitrogen to distinguish soybean aphid overwintering origins. We compared variation in bulk 13C and 15N content in buckthorn (Rhamnus cathartica L.) and soybean aphids in Wisconsin, among known overwintering locations in the northern Midwest. Specifically, we looked for associations between buckthorn and environmental variables that could aid in identifying overwintering habitats. We detected significant evidence of correlation between the bulk 13C and 15N signals of soybean aphids and buckthorn, despite high variability in stable isotope composition within and among buckthorn plants. Further, the 15N signal in buckthorn varied predictably with soil composition. However, lack of sufficient differentiation of geographic areas along axes of isotopic and environmental variation appears to preclude the use of carbon and nitrogen isotopic signals as effective predictors of likely aphid overwintering sites. These preliminary data suggest the need for future work that can further account for variability in 13C and 15N within/among buckthorn plants, and that explores the utility of other stable isotopes in assessing likely aphid overwintering sites. PMID:29206134

  7. Lack of galactose or galacturonic acid in Bradyrhizobium japonicum USDA 110 exopolysaccharide leads to different symbiotic responses in soybean.

    PubMed

    Quelas, Juan Ignacio; Mongiardini, Elías J; Casabuono, Adriana; López-García, Silvina L; Althabegoiti, M Julia; Covelli, Julieta M; Pérez-Giménez, Julieta; Couto, Alicia; Lodeiro, Aníbal R

    2010-12-01

    Exopolysaccharide (EPS) and lipopolysaccharide (LPS) from Bradyrhizobium japonicum are important for infection and nodulation of soybean (Glycine max), although their roles are not completely understood. To better understand this, we constructed mutants in B. japonicum USDA 110 impaired in galactose or galacturonic acid incorporation into the EPS without affecting the LPS. The derivative LP 3010 had a deletion of lspL-ugdH and produced EPS without galacturonic acid whereas LP 3013, with an insertion in exoB, produced EPS without galactose. In addition, the strain LP 3017, with both mutations, had EPS devoid of both galactosides. The missing galactosides were not replaced by other sugars. The defects in EPS had different consequences. LP 3010 formed biofilms and nodulated but was defective in competitiveness for nodulation; and, inside nodules, the peribacteroid membranes tended to fuse, leading to the merging of symbiosomes. Meanwhile, LP 3013 and LP 3017 were unable to form biofilms and produced empty pseudonodules but exoB suppressor mutants were obtained when LP 3013 plant inoculation was supplemented with wild-type EPS. Similar phenotypes were observed with all these mutants in G. soja. Therefore, the lack of each galactoside in the EPS has a different functional effect on the B. japonicum-soybean symbiosis.

  8. PGen: large-scale genomic variations analysis workflow and browser in SoyKB.

    PubMed

    Liu, Yang; Khan, Saad M; Wang, Juexin; Rynge, Mats; Zhang, Yuanxun; Zeng, Shuai; Chen, Shiyuan; Maldonado Dos Santos, Joao V; Valliyodan, Babu; Calyam, Prasad P; Merchant, Nirav; Nguyen, Henry T; Xu, Dong; Joshi, Trupti

    2016-10-06

    With the advances in next-generation sequencing (NGS) technology and significant reductions in sequencing costs, it is now possible to sequence large collections of germplasm in crops for detecting genome-scale genetic variations and to apply the knowledge towards improvements in traits. To efficiently facilitate large-scale NGS resequencing data analysis of genomic variations, we have developed "PGen", an integrated and optimized workflow using the Extreme Science and Engineering Discovery Environment (XSEDE) high-performance computing (HPC) virtual system, iPlant cloud data storage resources and Pegasus workflow management system (Pegasus-WMS). The workflow allows users to identify single nucleotide polymorphisms (SNPs) and insertion-deletions (indels), perform SNP annotations and conduct copy number variation analyses on multiple resequencing datasets in a user-friendly and seamless way. We have developed both a Linux version in GitHub ( https://github.com/pegasus-isi/PGen-GenomicVariations-Workflow ) and a web-based implementation of the PGen workflow integrated within the Soybean Knowledge Base (SoyKB), ( http://soykb.org/Pegasus/index.php ). Using PGen, we identified 10,218,140 single-nucleotide polymorphisms (SNPs) and 1,398,982 indels from analysis of 106 soybean lines sequenced at 15X coverage. 297,245 non-synonymous SNPs and 3330 copy number variation (CNV) regions were identified from this analysis. SNPs identified using PGen from additional soybean resequencing projects adding to 500+ soybean germplasm lines in total have been integrated. These SNPs are being utilized for trait improvement using genotype to phenotype prediction approaches developed in-house. In order to browse and access NGS data easily, we have also developed an NGS resequencing data browser ( http://soykb.org/NGS_Resequence/NGS_index.php ) within SoyKB to provide easy access to SNP and downstream analysis results for soybean researchers. PGen workflow has been optimized for the most efficient analysis of soybean data using thorough testing and validation. This research serves as an example of best practices for development of genomics data analysis workflows by integrating remote HPC resources and efficient data management with ease of use for biological users. PGen workflow can also be easily customized for analysis of data in other species.

  9. Comparative Transcriptome Analysis between the Cytoplasmic Male Sterile Line NJCMS1A and Its Maintainer NJCMS1B in Soybean (Glycine max (L.) Merr.)

    PubMed Central

    Li, Jiajia; Han, Shaohuai; Ding, Xianlong; He, Tingting; Dai, Jinying; Yang, Shouping; Gai, Junyi

    2015-01-01

    Background The utilization of soybean heterosis is probably one of the potential approaches in future yield breakthrough as was the situation in rice breeding in China. Cytoplasmic male sterility (CMS) plays an important role in the production of hybrid seeds. However, the molecular mechanism of CMS in soybean remains unclear. Results The comparative transcriptome analysis between cytoplasmic male sterile line NJCMS1A and its near-isogenic maintainer NJCMS1B in soybean was conducted using Illumina sequencing technology. A total of 88,643 transcripts were produced in Illumina sequencing. Then 56,044 genes were obtained matching soybean reference genome. Three hundred and sixty five differentially expressed genes (DEGs) between NJCMS1A and NJCMS1B were screened by threshold, among which, 339 down-regulated and 26 up-regulated in NJCMS1A compared to in NJCMS1B. Gene Ontology (GO) annotation showed that 242 DEGs were annotated to 19 functional categories. Clusters of Orthologous Groups of proteins (COG) annotation showed that 265 DEGs were classified into 19 categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 46 DEGs were assigned to 33 metabolic pathways. According to functional and metabolic pathway analysis combined with reported literatures, the relations between some key DEGs and the male sterility of NJCMS1A were discussed. qRT-PCR analysis validated that the gene expression pattern in RNA-Seq was reliable. Finally, enzyme activity assay showed that energy supply was decreased in NJCMS1A compared to in NJCMS1B. Conclusions We concluded that the male sterility of NJCMS1A might be related to the disturbed functions and metabolism pathways of some key DEGs, such as DEGs involved in carbohydrate and energy metabolism, transcription factors, regulation of pollen development, elimination of reactive oxygen species (ROS), cellular signal transduction, and programmed cell death (PCD) etc. Future research will focus on cloning and transgenic function validation of possible candidate genes associated with soybean CMS. PMID:25985300

  10. Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield.

    PubMed

    Preuss, Sasha B; Meister, Robert; Xu, Qingzhang; Urwin, Carl P; Tripodi, Federico A; Screen, Steven E; Anil, Veena S; Zhu, Shuquan; Morrell, James A; Liu, Grace; Ratcliffe, Oliver J; Reuber, T Lynne; Khanna, Rajnish; Goldman, Barry S; Bell, Erin; Ziegler, Todd E; McClerren, Amanda L; Ruff, Thomas G; Petracek, Marie E

    2012-01-01

    Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to deliver increased agricultural productivity.

  11. Tissue culture specificity of the tobacco ASA2 promoter driving hpt as a selectable marker for soybean transformation selection.

    PubMed

    Zernova, Olga; Zhong, Wei; Zhang, Xing-Hai; Widholm, Jack

    2008-11-01

    This study was carried out to determine if the tobacco anthranilate synthase ASA2 2.3 kb promoter drives tissue culture specific expression and if it is strong enough to drive hpt (hygromycin phosphotransferase) gene expression at a level sufficient to allow selection of transformed soybean embryogenic culture lines. A number of transformed cell lines were selected showing that the promoter was strong enough. Northern blot analysis of plant tissues did not detect hpt mRNA in the untransformed control or in the ASA2-hpt plants except in developing seeds while hpt mRNA was detected in all tissues of the CaMV35S-hpt positive control line plants. However, when the more sensitive RT-PCR assay was used all tissues of the ASA2-hpt plants except roots and mature seeds were found to contain detectable hpt mRNA. Embryogenic tissue cultures initiated from the ASA2-hpt plants contained hpt mRNA detectable by both northern and RT-PCR analysis and the cultures were hygromycin resistant. Friable callus initiated from leaves of ASA2-hpt plants did in some cases contain hpt mRNA that was only barely detectable by northern hybridization even though the callus was very hygromycin resistant. Thus the ASA2 promoter is strong enough to drive sufficient hpt expression in soybean embryogenic cultures for hygromycin selection and only very low levels of expression were found in most plant tissues with none in mature seeds.

  12. Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity.

    PubMed

    Jubery, Talukder Z; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K; Ganapathysubramanian, Baskar

    2016-01-01

    Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy outline traits was observed for origins, and maturity indexes. These results indicate the usefulness of EFT method for reconstruction and study of canopy morphometric traits, and provides opportunities for data reduction of large images for ease in future use.

  13. Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking x 7605 under two ecological sites.

    PubMed

    Li, Yongchun; Guo, Na; Zhao, Jinming; Zhou, Bin; Xu, Ran; Ding, Hui; Zhao, Weiguo; Gai, Junyi; Xing, Han

    2016-12-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a plant-parasitic nematode that feeds on the roots of soybean and most economically devastating pathogen of soybean (Glycine max (L.) Merr.) worldwide. Host plant resistance is the most effective control method. To understand SCN resistance in different environments, two recombinant-inbred lines (RILs) populations NJ(RN)P7 (217 F 2:8:11 lines) and JN(RN)P7 (248 F 2:7:9 lines) were developed from the cross of the cultivars Peking x 7605 in Nanjing and Jinan, respectively, and examined in this study. Peking is resistant to SCN race 1 (HG types 2.5.7), while 7605 is highly susceptible. Chi-square test of frequency distribution of families' female index (FI) showed that resistance to SCN was significantly different between NJ(RN)P7 and JN(RN)P7 populations. Three recessive genes conditioned the inheritance of resistance to SCN race 1 in both populations, but significant difference was detected for the mean of FI on two populations (DM= -16.68, P< 0.01). This indicated that natural selection may affect resistance to SCN. By analysing the variation of phenotype, the genetic structure of the two populations was determined to be different. The inheritance and variation of resistance were confirmed by simple sequence repeat (SSR) markers. For the two populations, 10 SSR markers showed polymorphism of resistant and susceptible DNA bulks. Some markers associated with the resistance of SCN races 1, 2, 3 and 5, and two markers, Satt163 and Satt309, reportedly related to rgh1 were detected both in NJ(RN)P7 and JN(RN)P7 populations. The results support the view that a disease acts as a selective force on plant resistance characteristics, which may alter the relative fitness of resistance alleles.

  14. Seed Nutrition and Quality, Seed Coat Boron and Lignin Are Influenced by Delayed Harvest in Exotically-Derived Soybean Breeding Lines under High Heat.

    PubMed

    Bellaloui, Nacer; Smith, James R; Mengistu, Alemu

    2017-01-01

    The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and lignin, and inform growers of the importance of timely harvest for maintaining high seed quality.

  15. Legumes are valuable sources of tocopherols.

    PubMed

    Boschin, Giovanna; Arnoldi, Anna

    2011-08-01

    Grain legumes contain numerous phytochemicals useful for their nutritional or nutraceutical properties, such as tocopherols, involved in the prevention of cardiovascular disease and eye pathologies. In this work, tocopherols were quantified in soybean, chickpea, lentil, pea, common bean, broad bean, and three lupin species. In all samples, the gamma congener was the most abundant tocopherol, followed by minor quantities of alpha-tocopherol (with the exception of common bean lacking in this congener) and delta-tocopherol (with the exception of Lupinus angustifolius and Lupinus mutabilis). Beta-tocopherol and tocotrienols were never detected. Some samples of soybean, pea, white lupin and chickpea contained over 10mg/100g seeds of total tocopherols. In order to estimate the nutritional value, the vitamin E activity was calculated. Chickpea, soybean and, to a lesser extent, lupin, broad bean and pea may contribute in a relevant way to the daily intake of this vitamin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. High Susceptibility to Cry1Ac and Low Resistance Allele Frequency Reduce the Risk of Resistance of Helicoverpa armigers to Bt Soybean in Brazil.

    PubMed

    Dourado, Patrick M; Bacalhau, Fabiana B; Amado, Douglas; Carvalho, Renato A; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2016-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), was recently introduced into Brazil, where it has caused extensive damage to cotton and soybean crops. MON 87701 × MON 89788 soybean, which expresses the Bt protein Cry1Ac, was recently deployed in Brazil, providing high levels of control against H. armigera. To assess the risk of resistance to the Cry1Ac protein expressed by MON 87701 × MON 89788 soybean in Brazil, we conducted studies to evaluate the baseline susceptibility of H. armigera to Cry1Ac, in planta efficacy including the assessment of the high-dose criterion, and the initial resistance allele frequency based on an F2 screen. The mean Cry1Ac lethal concentration (LC50) ranged from 0.11 to 1.82 μg·mL-1 of diet among all H. armigera field populations collected from crop seasons 2013/14 to 2014/15, which indicated about 16.5-fold variation. MON 87701 × MON 89788 soybean exhibited a high level of efficacy against H. armigera and most likely met the high dose criterion against this target species in leaf tissue dilution bioassays up to 50 times. A total of 212 F2 family lines of H. armigera were established from field collections sampled from seven locations across Brazil and were screened for the presence of MON 87701 × MON 89788 soybean resistance alleles. None of the 212 families survived on MON 87701 × MON 89788 soybean leaf tissue (estimated allele frequency = 0.0011). The responses of H. armigera to Cry1Ac protein, high susceptibility to MON 87701 × MON 89788 soybean, and low frequency of resistance alleles across the main soybean-producing regions support the assumptions of a high-dose/refuge strategy. However, maintenance of reasonable compliance with the refuge recommendation will be essential to delay the evolution of resistance in H. armigera to MON 87701 × MON 89788 soybean in Brazil.

  17. Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes.

    PubMed

    Zhang, Xingzheng; Zhai, Hong; Wang, Yaying; Tian, Xiaojie; Zhang, Yupeng; Wu, Hongyan; Lü, Shixiang; Yang, Guang; Li, Yuqiu; Wang, Lu; Hu, Bo; Bu, Qingyun; Xia, Zhengjun

    2016-07-13

    Gene regulatory networks involved in flowering time and photoperiodic responses in legumes remain unknown. Although the major maturity gene E1 has been successfully deciphered in soybean, knowledge on the functional conservation of this gene is limited to a certain extent to E1 homologs in legumes. The ectopic expression of Phvul.009G204600 (PvE1L), an E1 homolog from common bean, delayed the onset of flowering in soybean. By contrast, the ectopic expression of Medtr2g058520 (MtE1L) from Medicago truncatula did not affect the flowering of soybean. Characterization of the late-flowering mte1l mutant indicated that MtE1L promoted flowering in Medicago truncatula. Moreover, all transgenic E1, PvE1L and MtE1L soybean lines exhibited phenotypic changes in terms of plant height. Transgenic E1 or PvE1L plants were taller than the wild-type, whereas transgenic MtE1L plants produced dwarf phenotype with few nodes and short internode. Thus, functional conservation and diversification of E1 family genes from legumes in the regulation of flowering and plant growth may be associated with lineage specification and genomic duplication.

  18. On-line coupling of physiologically relevant bioaccessibility testing to inductively coupled plasma spectrometry: Proof of concept for fast assessment of gastrointestinal bioaccessibility of micronutrients from soybeans.

    PubMed

    Herrera, Mónica Alejandra; Rosende, María; Arruda, Marco Aurélio Zezzi; Miró, Manuel

    2016-10-05

    In-vitro physiologically relevant gastrointestinal extraction based on the validated Unified BARGE Method (UBM) is in this work hyphenated to inductively coupled plasma optical emission spectrometry in a batch-flow configuration for real-time monitoring of oral bioaccessibility assays with high temporal resolution. A fully automated flow analyzer is designed to foster in-line filtration of gastrointestinal extracts at predefined times (≤15 min) followed by on-line multi-elemental analysis of bioaccessible micro-nutrients, viz., Cu, Fe and Mn, in well-defined volumes of extracts (300 μL) of transgenic and non-transgenic soybean seeds taken as model samples. The hyphenated flow setup allows for recording of temporal extraction profiles to gain full knowledge of the kinetics of the gastrointestinal digestion processes, including element leaching and concomitant precipitation and complexation reactions hindering bioavailability. Simplification of the overall standard procedure is also feasible by identification of steady-state extraction conditions. Our findings indicate that reliable measurement of oral bioaccessible pools of Cu, Fe and Mn in soybean might be obtained in less than 180 min rather than 240 min as endorsed by UBM. Using a matrix-matched external calibration, limits of detection according to the 3s criteria were 0.5 μg/g for Mn, 0.6 μg/g for Cu and 2.3 μg/g for Fe. Trueness of the automatic bioaccessibility method was confirmed by mass balance validation with recoveries ranging from 87 to 116% regardless of the target element and sample. Cu was the micronutrient with the highest oral bioaccessibility ranging from 73% to 83% (7.5-7.9 μg/g) for non-transgenic and transgenic soybeans, respectively, followed by Mn and Fe within the ranges of 29-31% (10.8-11.4 μg/g) and 11-15% (8-14 μg/g), respectively, regardless of transgenesis. The proposed kinetic method is proven suitable for fast and expedient estimation of the nutritional value of soybeans and elucidation of the potential effect of transgenesis onto bioaccessible fractions of elements. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Evaluation of seed chemical quality traits and sensory properties of natto soybean.

    PubMed

    Yoshikawa, Yoko; Chen, Pengyin; Zhang, Bo; Scaboo, Andrew; Orazaly, Moldir

    2014-06-15

    Natto is a popular soyfood in Japan, and the U.S. is the largest supplier of natto soybeans. However, information on natto seed chemical and sensory properties is very limited. The objectives of this study were to evaluate differences of seed chemical and sensory properties among natto types and determine heritability and correlation. A total of 15 small-seeded natto genotypes (three superior, nine moderate and three inferior) were evaluated for protein, oil, calcium, manganese, boron and sugar content and processed into a natto product to evaluate appearance, stickiness, flavor, texture and shelf-life. The superior natto group had a higher sugar content but lower protein plus oil, calcium, manganese and boron content than other two groups. Most seed quality traits exhibited high heritability. The natto sensory preference was positively correlated with sucrose and oil content, but negatively correlated with seed hardness, protein, protein plus oil, calcium, manganese, and boron contents. Selecting soybean lines with low protein, protein plus oil, calcium, manganese, and boron content while with high sucrose will be an effective approach for soybean breeding for natto production. Published by Elsevier Ltd.

  20. Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean, soybean, and Arabidopsis

    PubMed Central

    Chen, Nicolas W. G.; Sévignac, Mireille; Thareau, Vincent; Magdelenat, Ghislaine; David, Perrine; Ashfield, Tom; Innes, Roger W.; Geffroy, Valérie

    2010-01-01

    Summary In plants, the evolution of specific resistance is poorly understood. Pseudomonas syringae effectors AvrB and AvrRpm1 are recognized by phylogenetically distinct resistance (R) proteins in Arabidopsis (Brassicaceae) and soybean (Glycine max, Fabaceae). In soybean, these resistances are encoded by two tightly linked R genes Rpg1-b and Rpg1-r. To study the evolution of these specific resistances, we investigated AvrB- and AvrRpm1-induced responses in common bean (Phaseolus vulgaris, Fabaceae).Common bean genotypes of various geographical origins were inoculated with P. syringae strains expressing AvrB or AvrRpm1. A common bean recombinant-inbred-line (RIL) population was used to map R genes to AvrRpm1.No common bean genotypes recognized AvrB. By contrast, multiple genotypes responded to AvrRpm1, and two independent R genes conferring AvrRpm1-specific resistance were mapped to the ends of linkage group B11 (Rpsar-1) and B8 (Rpsar-2). Rpsar-1 is located in a region syntenic with the soybean Rpg1 cluster. However, mapping of specific Rpg1 homologous genes suggests that AvrRpm1 recognition evolved independently in common bean and soybean.The conservation of genomic position of AvrRpm1-specific genes between soybean and common bean suggests a model whereby specific clusters of R genes are predisposed to evolve recognition of the same effector molecules. PMID:20561214

  1. Identification and Validation of Loci Governing Seed Coat Color by Combining Association Mapping and Bulk Segregation Analysis in Soybean

    PubMed Central

    Ma, Yansong; Tian, Long; Li, Xinxiu; Li, Ying-Hui; Guan, Rongxia; Guo, Yong; Qiu, Li-Juan

    2016-01-01

    Soybean seed coat exists in a range of colors from yellow, green, brown, black, to bicolor. Classical genetic analysis suggested that soybean seed color was a moderately complex trait controlled by multi-loci. However, only a couple of loci could be detected using a single biparental segregating population. In this study, a combination of association mapping and bulk segregation analysis was employed to identify genes/loci governing this trait in soybean. A total of 14 loci, including nine novel and five previously reported ones, were identified using 176,065 coding SNPs selected from entire SNP dataset among 56 soybean accessions. Four of these loci were confirmed and further mapped using a biparental population developed from the cross between ZP95-5383 (yellow seed color) and NY279 (brown seed color), in which different seed coat colors were further dissected into simple trait pairs (green/yellow, green/black, green/brown, yellow/black, yellow/brown, and black/brown) by continuously developing residual heterozygous lines. By genotyping entire F2 population using flanking markers located in fine-mapping regions, the genetic basis of seed coat color was fully dissected and these four loci could explain all variations of seed colors in this population. These findings will be useful for map-based cloning of genes as well as marker-assisted breeding in soybean. This work also provides an alternative strategy for systematically isolating genes controlling relative complex trait by association analysis followed by biparental mapping. PMID:27404272

  2. Midsouth's Changing Hardwood Forests

    Treesearch

    Herbert S. Sternitzke; Robert L. Johnson

    1979-01-01

    Significant changes have occurred in the Midsouth's hardwood resources over the past quarter century. Prime hardwood acreage has declined alarmingly in some areas due to expansion of soybean cropland. Selective cutting and lack of forest management have diminished the overall quality of available hardwood, too.

  3. A Novel Phytase with Sequence Similarity to Purple Acid Phosphatases Is Expressed in Cotyledons of Germinating Soybean Seedlings 1

    PubMed Central

    Hegeman, Carla E.; Grabau, Elizabeth A.

    2001-01-01

    Phytic acid (myo-inositol hexakisphosphate) is the major storage form of phosphorus in plant seeds. During germination, stored reserves are used as a source of nutrients by the plant seedling. Phytic acid is degraded by the activity of phytases to yield inositol and free phosphate. Due to the lack of phytases in the non-ruminant digestive tract, monogastric animals cannot utilize dietary phytic acid and it is excreted into manure. High phytic acid content in manure results in elevated phosphorus levels in soil and water and accompanying environmental concerns. The use of phytases to degrade seed phytic acid has potential for reducing the negative environmental impact of livestock production. A phytase was purified to electrophoretic homogeneity from cotyledons of germinated soybeans (Glycine max L. Merr.). Peptide sequence data generated from the purified enzyme facilitated the cloning of the phytase sequence (GmPhy) employing a polymerase chain reaction strategy. The introduction of GmPhy into soybean tissue culture resulted in increased phytase activity in transformed cells, which confirmed the identity of the phytase gene. It is surprising that the soybean phytase was unrelated to previously characterized microbial or maize (Zea mays) phytases, which were classified as histidine acid phosphatases. The soybean phytase sequence exhibited a high degree of similarity to purple acid phosphatases, a class of metallophosphoesterases. PMID:11500558

  4. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.

    PubMed

    Locke, Anna M; Sack, Lawren; Bernacchi, Carl J; Ort, Donald R

    2013-09-01

    Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.

  5. Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines.

    PubMed

    Košir, Alexandra Bogožalec; Spilsberg, Bjørn; Holst-Jensen, Arne; Žel, Jana; Dobnik, David

    2017-08-17

    Quantification of genetically modified organisms (GMOs) in food and feed products is often required for their labelling or for tolerance thresholds. Standard-curve-based simplex quantitative polymerase chain reaction (qPCR) is the prevailing technology, which is often combined with screening analysis. With the rapidly growing number of GMOs on the world market, qPCR analysis becomes laborious and expensive. Innovative cost-effective approaches are therefore urgently needed. Here, we report the development and inter-laboratory assessment of multiplex assays to quantify GMO soybean using droplet digital PCR (ddPCR). The assays were developed to facilitate testing of foods and feed for compliance with current GMO regulations in the European Union (EU). Within the EU, the threshold for labelling is 0.9% for authorised GMOs per ingredient. Furthermore, the EU has set a technical zero tolerance limit of 0.1% for certain unauthorised GMOs. The novel multiplex ddPCR assays developed target 11 GMO soybean lines that are currently authorised, and four that are tolerated, pending authorisation in the EU. Potential significant improvements in cost efficiency are demonstrated. Performance was assessed for the critical parameters, including limits of detection and quantification, and trueness, repeatability, and robustness. Inter-laboratory performance was also determined on a number of proficiency programme and real-life samples.

  6. Identification of Major Rhizobacterial Taxa Affected by a Glyphosate-Tolerant Soybean Line via Shotgun Metagenomic Approach

    PubMed Central

    Hua, Xiao-Mei; Liang, Li; Wen, Zhong-Ling; Du, Mei-Hang; Meng, Fan-Fan; Pang, Yan-Jun; Tang, Cheng-Yi

    2018-01-01

    The worldwide commercial cultivation of transgenic crops, including glyphosate-tolerant (GT) soybeans, has increased widely during the past 20 years. However, it is accompanied with a growing concern about potential effects of transgenic crops on the soil microbial communities, especially on rhizosphere bacterial communities. Our previous study found that the GT soybean line NZL06-698 (N698) significantly affected rhizosphere bacteria, including some unidentified taxa, through 16S rRNA gene (16S rDNA) V4 region amplicon deep sequencing via Illumina MiSeq. In this study, we performed 16S rDNA V5–V7 region amplicon deep sequencing via Illumina MiSeq and shotgun metagenomic approaches to identify those major taxa. Results of these processes revealed that the species richness and evenness increased in the rhizosphere bacterial communities of N698, the beta diversity of the rhizosphere bacterial communities of N698 was affected, and that certain dominant bacterial phyla and genera were related to N698 compared with its control cultivar Mengdou12. Consistent with our previous findings, this study showed that N698 affects the rhizosphere bacterial communities. In specific, N698 negatively affects Rahnella, Janthinobacterium, Stenotrophomonas, Sphingomonas and Luteibacter while positively affecting Arthrobacter, Bradyrhizobium, Ramlibacter and Nitrospira. PMID:29659545

  7. QTL mapping of soybean oil content for marker-assisted selection in plant breeding program.

    PubMed

    Leite, D C; Pinheiro, J B; Campos, J B; Di Mauro, A O; Unêda-Trevisoli, S H

    2016-03-18

    The present study was undertaken to detect and map the quantitative trait loci (QTL) related to soybean oil content. We used 244 progenies derived from a bi-parental cross of the Lineage 69 (from Universidade Estadual Paulista "Júlio de Mesquita Filho"/Faculdade de Ciências Agrárias e Veterinárias - Breeding Program) and Tucunaré cultivar. A total of 358 simple sequence repeat (SSR; microsatellite) markers were used to investigate the polymorphism between the parental lines, and for the polymorphic lines all the F2 individuals were tested. Evaluation of the oil content and phenotype was performed with the aid of a Tango equipment by near infra-red reflectance spectroscopy, using single F2 seeds and F2:3 progenies, in triplicate. The data were analyzed by QTL Cartographer program for 56 SSR polymorphic markers. Two oil-content related QTLs were detected on K and H linkage groups. The total phenotypic variation explained by QTLs ranged from 7.8 to 46.75% for oil content. New QTLs were identified for the oil content in addition to those previously identified in other studies. The results reported in this study show that regions different from those already known could be involved in the genetic control of soybean oil content.

  8. Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy.

    PubMed

    Li, Jiajia; Ding, Xianlong; Han, Shaohuai; He, Tingting; Zhang, Hao; Yang, Longshu; Yang, Shouping; Gai, Junyi

    2016-04-14

    To further elucidate the molecular mechanism of cytoplasmic male sterility (CMS) in soybean, a differential proteomic analysis was completed between the CMS line NJCMS1A and its maintainer NJCMS1B using iTRAQ-based strategy. As a result, 180 differential abundance proteins (DAPs) were identified, of which, 60 were down-regulated and 120 were up-regulated in NJCMS1A compared with NJCMS1B. Bioinformatic analysis showed that 167 DAPs were annotated in 41 Gene Ontology functional groups, 106 DAPs were classified into 20 clusters of orthologous groups of protein categories, and 128 DAPs were enrichment in 53 KEGG pathways. Fifteen differential level proteins/genes with the same expression pattern were identified in the further conjoint analysis of DAPs and the previously reported differential expression genes. Moreover, multiple reaction monitoring test, qRT-PCR analysis and enzyme activity assay validated that the iTRAQ results were reliable. Based on functional analysis of DAPs, we concluded that male sterility in NJCMS1A might be related to insufficiencies in energy supply, unbalance of protein synthesis and degradation, disruption of flavonoid synthesis, programmed cell death, abnormalities of substance metabolism, etc. These results might facilitate our understanding of the molecular mechanisms behind CMS in soybean. Soybean is an important global crop that provides protein and oil. Heterosis is a significantly potential approach to increase the yield of soybean. Cytoplasmic male sterility (CMS) plays a vital role in the production of hybrid seeds. However, the genetic and molecular mechanisms of male sterility in soybean still need to be further elucidated. In the present paper, a differential proteomic analysis was carried out and the results showed that several key proteins involved in key pathways were associated with male sterility in soybean. This work provides a new insight to understand the genetic and molecular mechanisms underlying CMS in soybean. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil concentration with no significant impact on seed protein concentration.

  10. Future generation energy crops

    USDA-ARS?s Scientific Manuscript database

    Although cropping systems in the Midwest that emphasize corn (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum) are some of the most highly productive in the US, the growing lack of agricultural diversity in this region threatens to jeopardize long-term sustainability. Added to this co...

  11. Monitoring Agricultural Drought Using Geographic Information Systems and Remote Sensing on the Primary Corn and Soybean Belt in the United States

    NASA Astrophysics Data System (ADS)

    Al-Shomrany, Adel

    The study aims to evaluate various remote sensing drought indices to assess those most fitting for monitoring agricultural drought. The objectives are (1) to assess and study the impact of drought effect on (corn and soybean) crop production by crop mapping information and GIS technology; (2) to use Geographical Weighted Regression (GWR) as a technical approach to evaluate the spatial relationships between precipitation vs. irrigated and non-irrigated corn and soybean yield, using a Nebraska county-level case study; (3) to assess agricultural drought indices derived from remote sensing (NDVI, NMDI, NDWI, and NDII6); (4) to develop an optimal approach for agricultural drought detection based on remote sensing measurements to determine the relationship between US county-level yields versus relatively common variables collected. Extreme drought creates low corn and soybean production where irrigation systems are not implemented. This results in a lack of moisture in soil leading to dry land and stale crop yields. When precipitation and moisture is found across all states, corn and soybean production flourishes. For Kansas, Nebraska, and South Dakota, irrigation management methods assist in strong crop yields throughout SPI monthly averages. The data gathered on irrigation consisted of using drought indices gathered by the national agricultural statistics service website. For the SPI levels ranging between one-month and nine-months, Kansas and Nebraska performed the best out of all 12-states contained in the Midwestern primary Corn and Soybean Belt. The reasoning behind Kansas and Nebraska's results was due to a more efficient and sustainable irrigation system, where upon South Dakota lacked. South Dakota was leveled by strong correlations throughout all SPI periods for corn only. Kansas showed its strongest correlations for the two-month and three-month averages, for both corn and soybean. Precipitation regression with irrigated and non-irrigated maize (corn) and soybean levels show yields as a function of precipitation. The GWR models predicted that yields were significantly better than OLS performances for maize (corn) and soybean. The OLS regression model when used showed a general trend of correlation between observed yields and long-term mean precipitation totals, with 84% and 63% of the variability in mean yield explained by the mean annual precipitation for the non-irrigated crops. The GWR technique performance in predicting yields was significantly better than OLS performances. For instance in the months of June, July, and August precipitations had greater impacts on maize (corn) yields than soybeans under non-irrigated conditions as a result of the greater sensitivity maize (corn) had to water stress. SPI is capable of offering various time-scales enabling it to show initial warning signs of drought conditions and accompanying severity levels. SPI calculation techniques used for various locations are reflected upon the precipitation records acquired during those periods. Over the 3, 6, and 9-month periods, NDII6 performed the best out of all of the MODIS indices as shown in its results in monitoring vegetation moisture and drought detection. NDII6 performed the best due to its detection abilities. The 9-month SPI provides an indication of inter-seasonal precipitation patterns over medium timescale duration. A new approach used is to average corn and soybean yields for all counties of the study area in comparison with average anomalies of the MODIS indices for the growing season between May through September from 2006-2012. There was a strong correlation between average corn yields versus MODIS NDII6 averages for these years with R2 equaling 0.62. That means NDII6 is the best indicator to show drought conditions and vegetation moisture monitoring. There was a weak correlation with R2 = 0.16 between averages of soybean yields and averages of precipitation. Irrigation and management systems, technological improvements from hybrids, producer management techniques, and other management practices have an impact on crop yield productions. (Abstract shortened by ProQuest.).

  12. Pyramids of QTLs enhance host-plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean.

    PubMed

    Ortega, María A; All, John N; Boerma, H Roger; Parrott, Wayne A

    2016-04-01

    QTL-M and QTL-E enhance soybean resistance to insects. Pyramiding these QTLs with cry1Ac increases protection against Bt-tolerant pests, presenting an opportunity to effectively deploy Bt with host-plant resistance genes. Plant resistance to leaf-chewing insects minimizes the need for insecticide applications, reducing crop production costs and pesticide concerns. In soybean [Glycine max (L.) Merr.], resistance to a broad range of leaf-chewing insects is found in PI 229358 and PI 227687. PI 229358's resistance is conferred by three quantitative trait loci (QTLs): M, G, and H. PI 227687's resistance is conferred by QTL-E. The letters indicate the soybean Linkage groups (LGs) on which the QTLs are located. This study aimed to determine if pyramiding PI 229358 and PI 227687 QTLs would enhance soybean resistance to leaf-chewing insects, and if pyramiding these QTLs with Bt (cry1Ac) enhances resistance against Bt-tolerant pests. The near-isogenic lines (NILs): Benning(ME), Benning(MGHE), and Benning(ME+cry1Ac) were developed. Benning(ME) and Benning(MGHE) were evaluated in detached-leaf and greenhouse assays with soybean looper [SBL, Chrysodeixis includens (Walker)], corn earworm [CEW, Helicoverpa zea (Boddie)], fall armyworm [FAW, Spodoptera frugiperda (J.E. Smith)], and velvetbean caterpillar [VBC, Anticarsia gemmatalis (Hübner)]; and in field-cage assays with SBL. Benning(ME+cry1Ac) was tested in detached-leaf assays against SBL, VBC, and Southern armyworm [SAW, Spodoptera eridania (Cramer)]. In the detached-leaf assay, Benning(ME) showed the strongest antibiosis against CEW, FAW, and VBC. In field-cage conditions, Benning(ME) and Benning(MGHE) suffered 61 % less defoliation than Benning. Benning(ME+cry1Ac) was more resistant than Benning(ME) and Benning (cry1Ac) against SBL and SAW. Agriculturally relevant levels of resistance in soybean can be achieved with just two loci, QTL-M and QTL-E. ME+cry1Ac could present an opportunity to protect the durability of Bt genes in elite soybean cultivars. These results should assist the development of effective pest management strategies, and sustainable deployment of Bt genes in soybean.

  13. Comparative Effect of Dietary Soybean Oil, Fish Oil, and Coconut Oil on Performance, Egg Quality and Some Blood Parameters in Laying Hens.

    PubMed

    Dong, X F; Liu, S; Tong, J M

    2018-04-14

    Two hundred and sixteen 28-wk-old Hy-line laying hens were randomly distributed to three dietary treatments and fed 1of 3 diets containing 8% soybean oil, fish oil, or coconut oil from 28 to 47 wk of age to investigate comparative effect of dietary soybean oil, fish oil, and coconut oil on the performance, egg quality and blood malondialdehyde (MDA), aspartate transaminase (AST) and uric acid (UA). Hens fed fish oil showed poor performance compared with soybean oil or coconut oil, and especially egg weight throughout the trial was significantly and consistently decreased (P < 0.05) due to dietary fish oil. Unexpectedly, shell reflectivity throughout the majority of the trial was consistently and significantly higher (P < 0.05) when hens fed fish oil than that when fed soybean oil or coconut oil. Dietary treatments affected (P < 0.05) shell shape at 4 of 8 time points tested. Average shell shape in fish oil treatment was higher (P < 0.05) than that of coconut oil group. Albumen height, Haugh unit and yolk color were influenced by dietary treatments only at 1 or 2 time points. However, average albumen height and Haugh unit in fish oil treatment were higher (P < 0.05) than that of soybean oil or coconut oil treatments and average yolk color in coconut oil treatment was higher (P < 0.05) than that of soybean oil group. Serum MDA, AST and UA concentrations were increased (P < 0.05) by fish oil during the majority of the first 2 mo of the trial. These data suggested that the inclusion of fish oil into feed may reduce the performance of laying hens, especially the egg weight, decrease the intensity of egg brown color and increase blood MDA, AST and UA levels compared with soybean oil or coconut oil. As a result, hens fed fish oil may lay smaller, longer and lighter-brown eggs whereas those fed coconut oil produce blunter and darker-brown eggs relative to soybean oil.

  14. Effects of an EPSPS-transgenic soybean line ZUTS31 on root-associated bacterial communities during field growth

    PubMed Central

    Cheng, Jing; Wang, Gu-Hao; Zhu, Yin-Ling; Zhang, Li-Ya; Shou, Hui-Xia; Qi, Jin-Liang

    2018-01-01

    The increased worldwide commercial cultivation of transgenic crops during the past 20 years is accompanied with potential effects on the soil microbial communities, because many rhizosphere and endosphere bacteria play important roles in promoting plant health and growth. Previous studies reported that transgenic plants exert differential effects on soil microbial communities, especially rhizobacteria. Thus, this study compared the soybean root-associated bacterial communities between a 5-enolpyruvylshikimate-3-phosphate synthase -transgenic soybean line (ZUTS31 or simply Z31) and its recipient cultivar (Huachun3 or simply HC3) at the vegetative, flowering, and seed-filling stages. High-throughput sequencing of 16S rRNA gene (16S rDNA) V4 hypervariable region amplicons via Illumina MiSeq and real-time quantitative PCR (qPCR) were performed. Our results revealed no significant differences in the overall alpha diversity of root-associated bacterial communities at the three developmental stages and in the beta diversity of root-associated bacterial communities at the flowering stage between Z31 and HC3 under field growth. However, significant differences in the beta diversity of rhizosphere bacterial communities were found at the vegetative and seed-filling stages between the two groups. Furthermore, the results of next generation sequencing and qPCR showed that the relative abundances of root-associated main nitrogen-fixing bacterial genera, especially Bradyrhizobium in the roots, evidently changed from the flowering stage to the seed-filling stage. In conclusion, Z31 exerts transitory effects on the taxonomic diversity of rhizosphere bacterial communities at the vegetative and seed-filling stages compared to the control under field conditions. In addition, soybean developmental change evidently influences the main symbiotic nitrogen-fixing bacterial genera in the roots from the flowering stage to the seed-filling stage. PMID:29408918

  15. Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean

    PubMed Central

    2010-01-01

    Background The nutritional and economic value of many crops is effectively a function of seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide crop improvement. A quantitative trait locus (QTL) on Linkage Group I (LG I) of soybean (Glycine max (L.) Merrill) has a striking effect on seed protein content. Results A soybean near-isogenic line (NIL) pair contrasting in seed protein and differing in an introgressed genomic segment containing the LG I protein QTL was used as a resource to demarcate the QTL region and to study variation in transcript abundance in developing seed. The LG I QTL region was delineated to less than 8.4 Mbp of genomic sequence on chromosome 20. Using Affymetrix® Soy GeneChip and high-throughput Illumina® whole transcriptome sequencing platforms, 13 genes displaying significant seed transcript accumulation differences between NILs were identified that mapped to the 8.4 Mbp LG I protein QTL region. Conclusions This study identifies gene candidates at the LG I protein QTL for potential involvement in the regulation of protein content in the soybean seed. The results demonstrate the power of complementary approaches to characterize contrasting NILs and provide genome-wide transcriptome insight towards understanding seed biology and the soybean genome. PMID:20199683

  16. Pseudomonas syringae effector avrB confers soybean cultivar-specific avirulence on Soybean mosaic virus adapted for transgene expression but effector avrPto does not.

    PubMed

    Wang, Li; Eggenberger, Alan; Hill, John; Bogdanove, Adam J

    2006-03-01

    Soybean mosaic virus (SMV) was adapted for transgene expression in soybean and used to examine the function of avirulence genes avrB and avrPto of Pseudomonas syringae pvs. glycinea and tomato, respectively. A cloning site was introduced between the P1 and HC-Pro genes in 35S-driven infectious cDNAs of strains SMV-N and SMV-G7. Insertion of the uidA gene or the green fluorescent protein gene into either modified cDNA and bombardment into primary leaves resulted in systemic expression that reflected the pattern of viral movement into uninoculated leaves. Insertion of avrB blocked symptom development and detectable viral movement in cv. Harosoy, which carries the Rpg1-b resistance gene corresponding to avrB, but not in cvs. Keburi or Hurrelbrink, which lack Rpg1-b. In Keburi and Hurrelbrink, symptoms caused by SMV carrying avrB appeared more quickly and were more severe than those caused by the virus without avrB. Insertion of avrPto enhanced symptoms in Harosoy, Hurrelbrink, and Keburi. This result was unexpected because avrPto was reported to confer avirulence on P. syringae pv. glycinea inoculated to Harosoy. We inoculated Harosoy with P syringae pv. glycinea expressing avrPto, but observed no hypersensitive reaction, avrPto-dependent induction of pathogenesis-related protein la, or limitation of bacterial population growth. In Hurrelbrink, avrPto enhanced bacterial multiplication and exacerbated symptoms. Our results establish SMV as an expression vector for soybean. They demonstrate that resistance triggered by avrB is effective against SMV, and that avrB and avrPto have general virulence effects in soybean. The results also led to a reevaluation of the reported avirulence activity of avrPto in this plant.

  17. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field

    PubMed Central

    Locke, Anna M.; Sack, Lawren; Bernacchi, Carl J.; Ort, Donald R.

    2013-01-01

    Background and Aims Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Methods Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. Key results In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Conclusions Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change. PMID:23864003

  18. Immunochemical characterization of Glycine max L. Merr. var Raiden, as a possible hypoallergenic substitute for cow's milk-allergic patients.

    PubMed

    Curciarello, R; Lareu, J F; Fossati, C A; Docena, G H; Petruccelli, S

    2008-09-01

    Cows' milk allergy (CMA) is the most common cause of food allergy in infancy. The only proven treatment is the complete elimination of cows' milk proteins (CMPs) from the diet by means of hypoallergenic formulas. Soybean-based formulae are widely used although intolerance to soy has been reported to occur in 15-40% of infants with CMA. The aim of this work was to analyse the in vitro reactivity of the soybean cultivar Raiden, which naturally lacks glycinin A(4)A(5)B(3), to evaluate whether this genotype could be a safe CMP substitute for CMA patients. The reactivity of conventional soybean (CS) and Raiden soybean (RS) genotypes and also recombinant glycinin A(4)A(5)B(3) and alphabeta-conglycinin with casein-specific monoclonal antibodies and CMP-specific polyclonal serum was evaluated by immunoblotting and ELISA. A sequential competitive ELISA with the polyclonal antiserum and different soluble inhibitors was performed. In addition, an indirect ELISA with sera of atopic children with CMA was carried out to analyse the IgE-binding capacity of the different soybean components. We have shown that CS contains four components that cross-react with CMP, while RS has only one. The remaining cross-reactive component in RS was identified as alpha-subunit beta-conglycinin. By means of inhibitory ELISA, we demonstrated that CS, RS and the alpha-subunit beta-conglycinin extracts inhibited the binding of CMP-specific antibodies to the CMP-coated solid phase. Finally, we showed that CS, RS and the recombinant proteins were recognized by human CMP-specific IgE antibodies. This work shows that although Raiden has fewer cross-reactive components than conventional soybean, it still has a residual cross-reactive component: the alpha-subunit beta-conglycinin. This reactivity might make this genotype unsuitable to treat CMA and also explains adverse reactions to soybean in CMA infants.

  19. Assessment of indigenous Nepalese soybean as a potential germplasm resource for improvement of protein in North American cultivars.

    PubMed

    Krishnan, Hari B; Natarajan, Savithiry S; Mahmoud, Ahmed A; Bennett, John O; Krishnan, Ammulu Hari; Prasad, Braj Nandan

    2006-07-26

    Soybeans contain approximately 40% protein and 20% oil and represents an important source of protein in animal rations and human diets. Attempts are being made to increase further the overall protein content of soybeans by utilization of exotic germplasms. In this study, soybean cultivars from Nepal have been characterized and their potential as a germplasm resource for improvement of the protein content and quality of North American cultivars assessed. Soybean cultivars 'Sathia', 'Seti', 'Kavre', and 'Soida Chiny', indigenous to various regions of Nepal, contained 42-45% protein, which is significantly higher in comparison to that of the North American cultivar 'Williams 82' (39%). Fractionation of seed protein by high-resolution two-dimensional gel electrophoresis revealed differences in the protein profiles of these cultivars. Various isoelectric forms of glycinin and beta-conglycinin were identified by comparing the matrix-assisted laser desorption ionization time-of-flight mass fingerprinting data against the National Center for Biotechnology Information nonredundant database. Nepalese cultivar Sathia was distinct, lacking some isoelectric forms of acidic and basic glycinin subunits while expressing other unique forms. The contribution of these unique protein spots present in either Sathia or Williams 82 to the total protein content was quantified using scanning laser densitometry. Distinct restriction fragment length polymorphisms (RFLP) for group 1 glycinin genes were observed among the tested Nepalese genotypes, indicating sequence variation among the cultivars. Conversely, evaluation of RFLP for the genes encoding group 2 glycinins, beta-conglycinin, and Bowman-Birk proteinase inhibitors indicated a high degree of conservation in these genes. Determination of amino acid composition, a reflection of protein quality, indicated that the arginine content of the Nepalese soybeans ranged from 7.7 to 8.1%, which was 5-10% higher than the 7.4% expressed in Williams 82. Additionally, Karve and Seti contained significantly more cysteine than Williams 82. Nepalese high-protein soybeans having a desirable amino acid composition hold potential to increase the protein quality and diversity of North American cultivars.

  20. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean.

    PubMed

    Duke, Stephen O; Rimando, Agnes M; Reddy, Krishna N; Cizdziel, James V; Bellaloui, Nacer; Shaw, David R; Williams, Martin M; Maul, Jude E

    2018-05-01

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect the content of cationic minerals (especially Mg, Mn and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at sites in Mississippi, USA. There were no effects of glyphosate, the GR transgene or field crop history (for a field with both no history of glyphosate use versus one with a long history of glyphosate use) on grain yield. Furthermore, these factors had no consistent effects on measured mineral (Al, As, Ba, Cd, Ca, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn) content of leaves or harvested seed. Effects on minerals were small and inconsistent between years, treatments and mineral, and appeared to be random false positives. No notable effects on free or protein amino acids of the seed were measured, although glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), were found in the seed in concentrations consistent with previous studies. Neither glyphosate nor the GR transgene affect the content of the minerals measured in leaves and seed, harvested seed amino acid composition, or yield of GR soybean. Furthermore, soils with a legacy of GR crops have no effects on these parameters in soybean. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. [Obtaining marker-free transgenic soybean plants with optimal frequency by constructing three T-DNAs binary vector].

    PubMed

    Ye, Xing-Guo; Qin, Hua

    2007-01-01

    Obtaining marker-free plants with high efficiency will benefit the environmental release of transgenic crops. To achieve this point, a binary vector pNB35SVIP1 with three T-DNAs was constructed by using several mediate plasmids, in which one copy of bar gene expression cassette and two copies of VIP1 gene expression cassette were included. EHA101 Agrobacterium strain harboring the final construct was applied to transform soybean (Glycine max) cotyledon nodes. Through 2 - 3 months regeneration and selection on 3 - 5mg/L glufosinate containing medium, transgenic soybean plants were confirmed to be obtained at 0.83% - 3.16%, and co-transformation efficiency of both gene in the same individual reached up to 86.4%, based on southern blot test. By the analysis of PCR, southern blot and northern blot combining with leaf painting of herbicide in T1 progenies, 41 plants were confirmed to be eliminated of bar gene with the frequency of 7.6% . Among the T1 populations tested, the loss of the alien genes happened in 22.7% lines, the silence of bar gene took place in 27.3% lines, and VIP1 gene silence existed in 37.1% marker-free plants. The result also suggested that the plasmid with three T-DNAs might be an ideal vector to generate maker-free genetic modified organism.

  2. Quantitative Conversion of Phytate to Inorganic Phosphorus in Soybean Seeds Expressing a Bacterial Phytase1[OA

    PubMed Central

    Bilyeu, Kristin D.; Zeng, Peiyu; Coello, Patricia; Zhang, Zhanyuan J.; Krishnan, Hari B.; Bailey, April; Beuselinck, Paul R.; Polacco, Joe C.

    2008-01-01

    Phytic acid (PA) contains the major portion of the phosphorus in the soybean (Glycine max) seed and chelates divalent cations. During germination, both minerals and phosphate are released upon phytase-catalyzed degradation of PA. We generated a soybean line (CAPPA) in which an Escherichia coli periplasmic phytase, the product of the appA gene, was expressed in the cytoplasm of developing cotyledons. CAPPA exhibited high levels of phytase expression, ≥90% reduction in seed PA, and concomitant increases in total free phosphate. These traits were stable, and, although resulted in a trend for reduced emergence and a statistically significant reduction in germination rates, had no effect on the number of seeds per plant or seed weight. Because phytate is not digested by monogastric animals, untreated soymeal does not provide monogastrics with sufficient phosphorus and minerals, and PA in the waste stream leads to phosphorus runoff. The expression of a cytoplasmic phytase in the CAPPA line therefore improves phosphorus availability and surpasses gains achieved by other reported transgenic and mutational strategies by combining in seeds both high phytase expression and significant increases in available phosphorus. Thus, in addition to its value as a high-phosphate meal source, soymeal from CAPPA could be used to convert PA of admixed meals, such as cornmeal, directly to utilizable inorganic phosphorus. PMID:18162589

  3. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    PubMed

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  4. Efficacy of white mustard and soybean meal as a bioherbicide in organic broccoli and spinach production

    USDA-ARS?s Scientific Manuscript database

    Weed control in organic cropping systems generally rely on mechanical or physical methods because of the lack of reliable organically accepted herbicides. Among the several potential bioherbicides being explored, white mustard (Sinapis alba) seed meal is among those bioherbicides that have been sho...

  5. Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB.

    PubMed

    Hay, William T; Bihmidine, Saadia; Mutlu, Nedim; Hoang, Khang Le; Awada, Tala; Weeks, Donald P; Clemente, Tom E; Long, Stephen P

    2017-05-01

    Soybean C 3 photosynthesis can suffer a severe loss in efficiency due to photorespiration and the lack of a carbon concentrating mechanism (CCM) such as those present in other plant species or cyanobacteria. Transgenic soybean (Glycine max cv. Thorne) plants constitutively expressing cyanobacterial ictB (inorganic carbon transporter B) gene were generated using Agrobacterium-mediated transformation. Although more recent data suggest that ictB does not actively transport HCO3-/CO 2 , there is nevertheless mounting evidence that transformation with this gene can increase higher plant photosynthesis. The hypothesis that expression of the ictB gene would improve photosynthesis, biomass production and seed yield in soybean was tested, in two independent replicated greenhouse and field trials. Results showed significant increases in photosynthetic CO 2 uptake (A net ) and dry mass in transgenic relative to wild type (WT) control plants in both the greenhouse and field trials. Transgenic plants also showed increased photosynthetic rates and biomass production during a drought mimic study. The findings presented herein demonstrate that ictB, as a single-gene, contributes to enhancement in various yield parameters in a major commodity crop and point to the significant role that biotechnological approaches to increasing photosynthetic efficiency can play in helping to meet increased global demands for food. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Salinity Improves Performance and Alters Distribution of Soybean Aphids.

    PubMed

    Eichele-Nelson, Jaclyn; DeSutter, Thomas; Wick, Abbey F; Harmon, Erin L; Harmon, Jason P

    2018-05-24

    We know numerous abiotic factors strongly influence crop plants. Yet we often know much less about abiotic effects on closely interacting organisms including herbivorous insects. This lack of a whole-system perspective may lead to underestimating the threats from changing factors. High soil salinity is a specific example that we know threatens crop plants in many places, but we need to know much more about how other organisms are also affected. We investigated how salinity affects the soybean aphid (SBA; Aphis glycines Matsumura; Hemiptera: Aphididae) on soybean plants (Glycine max [L.] Merr.; Fabales: Fabaceae) grown across a range of saline conditions. We performed four complementary greenhouse experiments to understand different aspects of how salinity might affect SBA. We found that as salinity increased both population size and fecundity of SBA increased across electrical conductivity values ranging from 0.84 to 8.07 dS m-1. Tracking individual aphids we also found they lived longer and produced more offspring in high saline conditions compared to the control. Moreover, we found that salinity influenced aphid distribution such that when given the chance aphids accumulated more on high-salinity plants. These results suggest that SBA could become a larger problem in areas with higher salinity and that those aphids may exacerbate the negative effects of salinity for soybean production.

  7. Transcriptome analysis of resistant soybean roots infected by Meloidogyne javanica

    PubMed Central

    de Sá, Maria Eugênia Lisei; Conceição Lopes, Marcus José; de Araújo Campos, Magnólia; Paiva, Luciano Vilela; dos Santos, Regina Maria Amorim; Beneventi, Magda Aparecida; Firmino, Alexandre Augusto Pereira; de Sá, Maria Fátima Grossi

    2012-01-01

    Soybean is an important crop for Brazilian agribusiness. However, many factors can limit its production, especially root-knot nematode infection. Studies on the mechanisms employed by the resistant soybean genotypes to prevent infection by these nematodes are of great interest for breeders. For these reasons, the aim of this work is to characterize the transcriptome of soybean line PI 595099-Meloidogyne javanica interaction through expression analysis. Two cDNA libraries were obtained using a pool of RNA from PI 595099 uninfected and M. javanica (J2) infected roots, collected at 6, 12, 24, 48, 96, 144 and 192 h after inoculation. Around 800 ESTs (Expressed Sequence Tags) were sequenced and clustered into 195 clusters. In silico subtraction analysis identified eleven differentially expressed genes encoding putative proteins sharing amino acid sequence similarities by using BlastX: metallothionein, SLAH4 (SLAC1 Homologue 4), SLAH1 (SLAC1 Homologue 1), zinc-finger proteins, AN1-type proteins, auxin-repressed proteins, thioredoxin and nuclear transport factor 2 (NTF-2). Other genes were also found exclusively in nematode stressed soybean roots, such as NAC domain-containing proteins, MADS-box proteins, SOC1 (suppressor of overexpression of constans 1) proteins, thioredoxin-like protein 4-Coumarate-CoA ligase and the transcription factor (TF) MYBZ2. Among the genes identified in non-stressed roots only were Ser/Thr protein kinases, wound-induced basic protein, ethylene-responsive family protein, metallothionein-like protein cysteine proteinase inhibitor (cystatin) and Putative Kunitz trypsin protease inhibitor. An understanding of the roles of these differentially expressed genes will provide insights into the resistance mechanisms and candidate genes involved in soybean-M. javanica interaction and contribute to more effective control of this pathogen. PMID:22802712

  8. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-02-01

    Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.

  9. Genotyping-by-Sequencing-Based Investigation of the Genetic Architecture Responsible for a ∼Sevenfold Increase in Soybean Seed Stearic Acid.

    PubMed

    Heim, Crystal B; Gillman, Jason D

    2017-01-05

    Soybean oil is highly unsaturated but oxidatively unstable, rendering it nonideal for food applications. Until recently, the majority of soybean oil underwent partial chemical hydrogenation, which produces trans fats as an unavoidable consequence. Dietary intake of trans fats and most saturated fats are conclusively linked to negative impacts on cholesterol levels and cardiovascular health. Two major soybean oil breeding targets are: (1) to reduce or eliminate the need for chemical hydrogenation, and (2) to replace the functional properties of partially hydrogenated soybean oil. One potential solution is the elevation of seed stearic acid, a saturated fat which has no negative impacts on cardiovascular health, from 3 to 4% in typical cultivars to > 20% of the seed oil. We performed QTL analysis of a population developed by crossing two mutant lines, one with a missense mutation affecting a stearoyl-acyl-carrier protein desaturase gene resulting in ∼11% seed stearic acid crossed to another mutant, A6, which has 24-28% seed stearic acid. Genotyping-by-sequencing (GBS)-based QTL mapping identified 21 minor and major effect QTL for six seed oil related traits and plant height. The inheritance of a large genomic deletion affecting chromosome 14 is the basis for largest effect QTL, resulting in ∼18% seed stearic acid. This deletion contains SACPD-C and another gene(s); loss of both genes boosts seed stearic acid levels to ≥ 18%. Unfortunately, this genomic deletion has been shown in previous studies to be inextricably correlated with reduced seed yield. Our results will help inform and guide ongoing breeding efforts to improve soybean oil oxidative stability. Copyright © 2017 Heim and Gillman.

  10. A bean common mosaic virus (BCMV)-resistance gene is fine-mapped to the same region as Rsv1-h in the soybean cultivar Suweon 97.

    PubMed

    Wu, Mian; Wu, Wen-Ping; Liu, Cheng-Chen; Liu, Ying-Na; Wu, Xiao-Yi; Ma, Fang-Fang; Zhu, An-Qi; Yang, Jia-Yin; Wang, Bin; Chen, Jian-Qun

    2018-06-16

    In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens. Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F 2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F 2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F 2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.

  11. Maize 27 kDa gamma-zein is a potential allergen for early weaned pigs.

    PubMed

    Krishnan, Hari B; Kerley, Monty S; Allee, Gary L; Jang, Sungchan; Kim, Won-Seok; Fu, Chunjiang J

    2010-06-23

    Soybean and maize are extensively used in animal feed, primarily in poultry, swine, and cattle diets. Soybean meal can affect pig performance in the first few weeks following weaning and elicit specific antibodies in weaned piglets. Though maize is a major component of pig feed, it is not known if any of the maize proteins can elicit immunological response in young pigs. In this study, we have identified a prominent 27 kDa protein from maize as an immunodominant protein in young pigs. This protein, like some known allergens, exhibited resistance to pepsin digestion in vitro. Several lines of evidence identify the immunodominant 27 kDa protein as a gamma-zein, a maize seed storage protein. First, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of different solubility classes of maize seed proteins revealed the presence of an abundant 27 kDa protein in the prolamin (zein) fraction. Antibodies raised against the purified maize 27 kDa gamma-zein also reacted against the same protein recognized by the young pig serum. Additionally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the peptides generated by trypsin digestion of the immunodominant 27 kDa protein showed significant homology to the maize 27 kDa gamma-zein. Since eliminating the allergenic protein will have a great impact on the nutritive value of the maize meal and expand its use in the livestock industry, it will be highly desirable to develop maize cultivars completely lacking the 27 kDa allergenic protein.

  12. High susceptibility and low resistance allele frequency of Chrysodeixis includens (Lepidoptera: Noctuidae) field populations to Cry1Ac in Brazil.

    PubMed

    Yano, Silvia Ac; Specht, Alexandre; Moscardi, Flávio; Carvalho, Renato A; Dourado, Patrick M; Martinelli, Samuel; Head, Graham P; Sosa-Gómez, Daniel R

    2016-08-01

    The soybean looper (SBL), Chrysodeixis includens (Walker), is one of the most important soybean pests in Brazil. MON 87701 × MON 89788 soybean expressing Cry1Ac has been recently deployed in Brazil, providing high levels of control against the primary lepidopteran pests. To support insect resistance management (IRM) programmes, the baseline susceptibility of SBL to Cry1Ac was assessed, and the resistance allele frequency was estimated on the basis of an F2 screen. The toxicity (LC50 ) of Cry1Ac ranged from 0.39 to 2.01 µg mL(-1) diet among all SBL field populations collected from crop seasons 2008/09 to 2012/13, which indicated approximately fivefold variation. Cry1Ac diagnostic concentrations of 5.6 and 18 µg mL(-1) diet were established for monitoring purposes, and no shift in mortality was observed. A total of 626 F2 family lines derived from SBL collected from locations across Brazil during crop season 2014/15 were screened for the presence of Cry1Ac resistance alleles. None of the 626 families survived on MON 87701 × MON 89788 soybean leaf tissue (joint frequency 0.0004). SBL showed high susceptibility and low resistance allele frequency to Cry1Ac across the main soybean-producing regions in Brazil. These findings meet important criteria for effective IRM strategy. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Identification of Candidate Genes Underlying an Iron Efficiency Quantitative Trait Locus in Soybean1

    PubMed Central

    Peiffer, Gregory A.; King, Keith E.; Severin, Andrew J.; May, Gregory D.; Cianzio, Silvia R.; Lin, Shun Fu; Lauter, Nicholas C.; Shoemaker, Randy C.

    2012-01-01

    Prevalent on calcareous soils in the United States and abroad, iron deficiency is among the most common and severe nutritional stresses in plants. In soybean (Glycine max) commercial plantings, the identification and use of iron-efficient genotypes has proven to be the best form of managing this soil-related plant stress. Previous studies conducted in soybean identified a significant iron efficiency quantitative trait locus (QTL) explaining more than 70% of the phenotypic variation for the trait. In this research, we identified candidate genes underlying this QTL through molecular breeding, mapping, and transcriptome sequencing. Introgression mapping was performed using two related near-isogenic lines in which a region located on soybean chromosome 3 required for iron efficiency was identified. The region corresponds to the previously reported iron efficiency QTL. The location was further confirmed through QTL mapping conducted in this study. Transcriptome sequencing and quantitative real-time-polymerase chain reaction identified two genes encoding transcription factors within the region that were significantly induced in soybean roots under iron stress. The two induced transcription factors were identified as homologs of the subgroup lb basic helix-loop-helix (bHLH) genes that are known to regulate the strategy I response in Arabidopsis (Arabidopsis thaliana). Resequencing of these differentially expressed genes unveiled a significant deletion within a predicted dimerization domain. We hypothesize that this deletion disrupts the Fe-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT)/bHLH heterodimer that has been shown to induce known iron acquisition genes. PMID:22319075

  14. Transgenesis affects endogenous soybean allergen levels less than traditional breeding.

    PubMed

    Hill, Ryan C; Fast, Brandon J; Herman, Rod A

    2017-10-01

    The regulatory body that oversees the safety assessment of genetically modified (GM) crops in the European Union, the European Food Safety Authority (EFSA), uniquely requires that endogenous allergen levels be quantified as part of the compositional characterization of GM versions of crops, such as soybean, that are considered to be major allergenic foods. The value of this requirement for assessing food safety has been challenged for multiple reasons including negligible risk of altering allergen levels compared with traditional non-GM breeding. Scatter plots comparing the mean endogenous allergen levels in non-GM soybean isoline grain with the respective levels in GM grain or concurrently grown non-GM commercial reference varieties clearly show that transgenesis causes less change compared with traditional breeding. This visual assessment is confirmed by the quantitative fit of the line of identity (y = x) to the datasets. The current science on allergy does not support the requirement for quantifying allergen levels in GM crops to support safety assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effects of soybean resistance on variability in life history traits of the higher trophic level parasitoid Meteorus pulchricornis (Hymenoptera: Braconidae).

    PubMed

    Li, X; Li, B; Xing, G; Meng, L

    2017-02-01

    To extrapolate the influence of plant cultivars varying in resistance levels to hosts on parasitoid life history traits, we estimated variation in parasitoid developmental and reproductive performances as a function of resistance in soybean cultivars, which were randomly chosen from a line of resistant genotypes. Our study showed that the parasitoid Meteorus pulchricornis varied widely in offspring survival and lifetime fecundity, but varied slightly in development time and adult body size, in response to the soybean cultivars that varied in resistance to the host Spodoptera litura. Furthermore, the variability in survival and lifetime fecundity was different between attacking the 2nd and the 4th instar host larvae, varying more in survival but less in lifetime fecundity when attacking the 4th than 2nd instar larvae. Our study provides further evidence supporting that plant resistance to herbivorous hosts have variable effects on different life history traits of higher trophic level parasitoids.

  16. Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene.

    PubMed

    Rao, Suryadevara S; Hildebrand, David

    2009-10-01

    The wild type (Wt) and mutant form of yeast (sphingolipid compensation) genes, SLC1 and SLC1-1, have been shown to have lysophosphatidic acid acyltransferase (LPAT) activities (Nageic et al. in J Biol Chem 269:22156-22163, 1993). Expression of these LPAT genes was reported to increase oil content in transgenic Arabidopsis and Brassica napus. It is of interest to determine if the TAG content increase would also be seen in soybeans. Therefore, the wild type SLC1 was expressed in soybean somatic embryos under the control of seed specific phaseolin promoter. Some transgenic somatic embryos and in both T2 and T3 transgenic seeds showed higher oil contents. Compared to controls, the average increase in triglyceride values went up by 1.5% in transgenic somatic embryos. A maximum of 3.2% increase in seed oil content was observed in a T3 line. Expression of the yeast Wt LPAT gene did not alter the fatty acid composition of the seed oil.

  17. Economic Thresholds in Soybean-Integrated Pest Management: Old Concepts, Current Adoption, and Adequacy.

    PubMed

    Bueno, A F; Paula-Moraes, S V; Gazzoni, D L; Pomari, A F

    2013-10-01

    Increasing global demands for food underline the need for higher crop yields. The relatively low costs of the most commonly used insecticides in combination with increasing soybean market prices led growers and technical advisors to debate the adequacy of recommended economic thresholds (ETs). The adoption of ETs and pest sampling has diminished in Brazil, leading to excessive pesticide use on soybean. The reduced efficacy of natural biological control, faster pest resurgence, and environment contamination are among the side-effects of pesticide abuse. To address these problems and maximize agricultural production, pest control programs must be guided by a proper integrated pest management (IPM) approach, including the ET concept. Therefore, the most appropriate time to initiate insecticide spraying in soybean is indicated by the available ETs which are supported by experiments over the last 40 years in different edapho-climatic conditions and regions with distinct soybean cultivars. Published scientific data indicate that preventive insecticide use is an expensive and harmful use of chemicals that increases the negative impact of pesticides in agroecosystems. However, the established ETs are for a limited number of species (key pests), and they only address the use of chemicals. There is a lack of information regarding secondary pests and other control strategies in addition to insecticides. It is clear then that much progress is still needed to improve ETs for pest management decisions. Nevertheless, using the current ETs provides a basis for reducing the use of chemicals in agriculture without reducing yields and overall production, thereby improving sustainability.

  18. Somatic embryogenesis in cell cultures of Glycine species.

    PubMed

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  19. Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust.

    PubMed

    Ishiga, Yasuhiro; Uppalapati, Srinivasa Rao; Gill, Upinder S; Huhman, David; Tang, Yuhong; Mysore, Kirankumar S

    2015-08-12

    Asian soybean rust (ASR) caused by Phakopsora pachyrhizi is a devastating foliar disease affecting soybean production worldwide. Understanding nonhost resistance against ASR may provide an avenue to engineer soybean to confer durable resistance against ASR. We characterized a Medicago truncatula-ASR pathosystem to study molecular mechanisms of nonhost resistance. Although urediniospores formed appressoria and penetrated into epidermal cells of M. truncatula, P. pachyrhizi failed to sporulate. Transcriptomic analysis revealed the induction of phenylpropanoid, flavonoid and isoflavonoid metabolic pathway genes involved in the production of phytoalexin medicarpin in M. truncatula upon infection with P. pachyrhizi. Furthermore, genes involved in chlorophyll catabolism were induced during nonhost resistance. We further characterized one of the chlorophyll catabolism genes, Stay-green (SGR), and demonstrated that the M. truncatula sgr mutant and alfalfa SGR-RNAi lines showed hypersensitive-response-like enhanced cell death upon inoculation with P. pachyrhizi. Consistent with transcriptomic analysis, metabolomic analysis also revealed the accumulation of medicarpin and its intermediate metabolites. In vitro assay showed that medicarpin inhibited urediniospore germination and differentiation. In addition, several triterpenoid saponin glycosides accumulated in M. truncatula upon inoculation with P. pachyrhizi. In summary, using multi-omic approaches, we identified a correlation between phytoalexin production and M. truncatula defense responses against ASR.

  20. Carbon and nitrogen mineralization and persistence of organic residues under conservation and conventional tillage

    USDA-ARS?s Scientific Manuscript database

    A combination of high biomass cover crops with organic mulches may be an option for no-till vegetable production, but mineralization rates from these residues is lacking. The objective of this study was to assess nutrient release rates and persistence from mimosa, lespedeza, oat straw, and soybean r...

  1. Rotational Effects of Cuphea on Corn, Spring Wheat, and Soybean

    USDA-ARS?s Scientific Manuscript database

    Agricultural diversity is lacking in the northern Corn Belt. Adding crop diversity to rotations can give economic and environmental benefits. Cuphea (Cuphea viscosissima Jacq. x C. lanceolata W.T. Aiton; PSR23), which grows well in the northern Corn Belt, is a new oilseed crop and a source of medium...

  2. Specialty oilseed crops provide an attractive source of pollen for beneficial insects

    USDA-ARS?s Scientific Manuscript database

    The continuing pollinator crisis is due, in part, to the lack of year-round floral resources. In intensive farming regions, such as the Upper Midwest (UMW) of the USA, natural and pastoral vegetation largely has been replaced by annual crops such as corn, soybean, and wheat. Neither the energy (nect...

  3. Row width influences wheat yield, but has little effect on wheat quality

    USDA-ARS?s Scientific Manuscript database

    Growers are interested in wide-row wheat production due to reductions in equipment inventory (lack of grain drill) and to allow intercropping of soybean into wheat. A trial was established during the 2012-2013 and 2013-2014 growing seasons in Wayne County and Wood County, Ohio to evaluate the effec...

  4. Fine Mapping of Resistance Genes from Five Brown Stem Rot Resistance Sources in Soybean.

    PubMed

    Rincker, Keith; Hartman, Glen L; Diers, Brian W

    2016-03-01

    Brown stem rot (BSR) of soybean [ (L.) Merr.] caused by (Allington & Chamb.) T.C. Harr. & McNew can be controlled effectively with genetic host resistance. Three BSR resistance genes , , and , have been identified and mapped to a large region on chromosome 16. Marker-assisted selection (MAS) will be more efficient and gene cloning will be facilitated with a narrowed genomic interval containing an gene. The objective of this study was to fine map the positions of genes from five sources. Mapping populations were developed by crossing the resistant sources 'Bell', PI 84946-2, PI 437833, PI 437970, L84-5873, and PI 86150 with either the susceptible cultivar Colfax or Century 84. Plants identified as having a recombination event near genes were selected and individually harvested to create recombinant lines. Progeny from recombinant lines were tested in a root-dip assay and evaluated for foliar and stem BSR symptom development. Overall, 4878 plants were screened for recombination, and progeny from 52 recombinant plants were evaluated with simple-sequence repeat (SSR) genetic markers and assessed for symptom development. Brown stem rot resistance was mapped to intervals ranging from 0.34 to 0.04 Mb in the different sources. In all sources, resistance was fine mapped to intervals inclusive of BARCSOYSSR_16_1114 and BARCSOYSSR_16_1115, which provides further evidence that one locus provides BSR resistance in soybean. Copyright © 2016 Crop Science Society of America.

  5. CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds.

    PubMed

    Yan, Fan; Di, Shaokang; Takahashi, Ryoji

    2015-08-01

    The R gene of soybean, presumably encoding a MYB transcription factor, controls seed coat color. The gene consists of multiple alleles, R (black), r-m (black spots and (or) concentric streaks on brown seed), and r (brown seed). This study was conducted to determine the structure of the MYB transcription factor gene in a near-isogenic line (NIL) having r-m allele. PCR amplification of a fragment of the candidate gene Glyma.09G235100 generated a fragment of about 1 kb in the soybean cultivar Clark, whereas a fragment of about 14 kb in addition to fragments of 1 and 1.4 kb were produced in L72-2040, a Clark 63 NIL with the r-m allele. Clark 63 is a NIL of Clark with the rxp and Rps1 alleles. A DNA fragment of 13 060 bp was inserted in the intron of Glyma.09G235100 in L72-2040. The fragment had the CACTA motif at both ends, imperfect terminal inverted repeats (TIR), inverse repetition of short sequence motifs close to the 5' and 3' ends, and a duplication of three nucleotides at the site of integration, indicating that it belongs to a CACTA-superfamily transposable element. We designated the element as Tgm11. Overall nucleotide sequence, motifs of TIR, and subterminal repeats were similar to those of Tgm1 and Tgs1, suggesting that these elements comprise a family.

  6. Optimal control of soybean aphid in the presence of natural enemies and the implied value of their ecosystem services.

    PubMed

    Zhang, Wei; Swinton, Scott M

    2012-04-15

    By suppressing pest populations, natural enemies provide an important ecosystem service that maintains the stability of agricultural ecosystems systems and potentially mitigates producers' pest control costs. Integrating natural control services into decisions about pesticide-based control has the potential to significantly improve the economic efficiency of pesticide use, with socially desirable outcomes. Two gaps have hindered the incorporation of natural enemies into pest management decision rules: (1) insufficient knowledge of pest and predator population dynamics and (2) lack of a decision framework for the economic tradeoffs among pest control options. Using a new intra-seasonal, dynamic bioeconomic optimization model, this study assesses how predation by natural enemies contributes to profit-maximizing pest management strategies. The model is applied to the management of the invasive soybean aphid, the most significant serious insect threat to soybean production in North America. The resulting lower bound estimate of the value of natural pest control ecosystem services was estimated at $84 million for the states of Illinois, Indiana, Iowa, Michigan and Minnesota in 2005. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Mapping the low palmitate fap1 mutation and validation of its effects in soybean oil and agronomic traits in three soybean populations.

    PubMed

    Cardinal, Andrea J; Whetten, Rebecca; Wang, Sanbao; Auclair, Jérôme; Hyten, David; Cregan, Perry; Bachlava, Eleni; Gillman, Jason; Ramirez, Martha; Dewey, Ralph; Upchurch, Greg; Miranda, Lilian; Burton, Joseph W

    2014-01-01

    fap 1 mutation is caused by a G174A change in GmKASIIIA that disrupts a donor splice site recognition and creates a GATCTG motif that enhanced its expression. Soybean oil with reduced palmitic acid content is desirable to reduce the health risks associated with consumption of this fatty acid. The objectives of this study were: to identify the genomic location of the reduced palmitate fap1 mutation, determine its molecular basis, estimate the amount of phenotypic variation in fatty acid composition explained by this locus, determine if there are epistatic interactions between the fap1 and fap nc loci and, determine if the fap1 mutation has pleiotropic effects on seed yield, oil and protein content in three soybean populations. This study detected two major QTL for 16:0 content located in chromosome 5 (GmFATB1a, fap nc) and chromosome 9 near BARCSOYSSR_09_1707 that explained, with their interaction, 66-94 % of the variation in 16:0 content in the three populations. Sequencing results of a putative candidate gene, GmKASIIIA, revealed a single unique polymorphism in the germplasm line C1726, which was predicted to disrupt the donor splice site recognition between exon one and intron one and produce a truncated KASIIIA protein. This G to A change also created the GATCTG motif that enhanced gene expression of the mutated GmKASIIIA gene. Lines homozygous for the GmKASIIIA mutation (fap1) had a significant reduction in 16:0, 18:0, and oil content; and an increase in unsaturated fatty acids content. There were significant epistatic interactions between GmKASIIIA (fap1) and fap nc for 16:0 and oil contents, and seed yield in two populations. In conclusion, the fap1 phenotype is caused by a single unique SNP in the GmKASIIIA gene.

  8. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean.

    PubMed

    Wang, Xianzhi; Jiang, Guo-Liang; Green, Marci; Scott, Roy A; Song, Qijian; Hyten, David L; Cregan, Perry B

    2014-10-01

    Soybean seeds contain high levels of oil and protein, and are the important sources of vegetable oil and plant protein for human consumption and livestock feed. Increased seed yield, oil and protein contents are the main objectives of soybean breeding. The objectives of this study were to identify and validate quantitative trait loci (QTLs) associated with seed yield, oil and protein contents in two recombinant inbred line populations, and to evaluate the consistency of QTLs across different environments, studies and genetic backgrounds. Both the mapping population (SD02-4-59 × A02-381100) and validation population (SD02-911 × SD00-1501) were phenotyped for the three traits in multiple environments. Genetic analysis indicated that oil and protein contents showed high heritabilities while yield exhibited a lower heritability in both populations. Based on a linkage map constructed previously with the mapping population and using composite interval mapping and/or interval mapping analysis, 12 QTLs for seed yield, 16 QTLs for oil content and 11 QTLs for protein content were consistently detected in multiple environments and/or the average data over all environments. Of the QTLs detected in the mapping population, five QTLs for seed yield, eight QTLs for oil content and five QTLs for protein content were confirmed in the validation population by single marker analysis in at least one environment and the average data and by ANOVA over all environments. Eight of these validated QTLs were newly identified. Compared with the other studies, seven QTLs for seed yield, eight QTLs for oil content and nine QTLs for protein content further verified the previously reported QTLs. These QTLs will be useful for breeding higher yield and better quality cultivars, and help effectively and efficiently improve yield potential and nutritional quality in soybean.

  9. Evaluation of the performance of Hy-Line Brown laying hens fed soybean or soybean-free diets using cage or free-range rearing systems.

    PubMed

    Al-Ajeeli, M N; Leyva-Jimenez, H; Abdaljaleel, R A; Jameel, Y; Hashim, M M; Archer, G; Bailey, C A

    2018-03-01

    This study evaluated egg production and quality variables of caged and free-range Hy-Line Brown laying hens fed soybean meal (SBM) and soybean-meal-free (SBMF) diets. Hens were randomly assigned to the same 2 dietary treatments within 3 location blocks. SBM and SBMF diets with equivalent calculated nutrient content were prepared based on Hy-Line Brown rearing guidelines. The SBMF diets utilized cottonseed meal, corn distillers dried grains with solubles, corn gluten meal, and wheat middlings in place of dehulled soybean meal. The experiment was conducted between August 2015 and January of 2016 within the TAMU Poultry Research Center and data analyzed over 6 consecutive 28-day periods. Data were analyzed as a split-plot with rearing systems designated whole plots and diets designated as subplots. Hens reared in the free-range rearing system peaked a couple of wk later than those hens within the more conventional indoor caged system, and cumulative production data were considerably more variable for hens raised in the free-range environment. Cumulative egg production, feed per dozen eggs and feed conversion ratio (g feed/g egg) were 92 ± 1.23 and 86 ± 1.84%, 1.45 ± 0.02 and 1.89 ± 0.05 kg, and 2.14 ± 0.04 and 2.77 ± 0.08 (P < 0.05), respectively, for the caged vs. free-range rearing systems. Cumulative egg weight, feed per dozen eggs, and feed conversion ratio were 59.9 ± 0.59 and 56.5 ± 0.60 g, 1.57 ± 0.04 and 1.77 ± 0.05 kg, and 2.24 ± 0.06 and 2.67 ± 0.08 kg (P < 0.05) for SBM and SBMF diets, respectively. Diet did not affect cumulative egg production (P > 0.05). With respect to egg quality, there were no differences in cumulative albumen height, Haugh unit, or breaking strength, but there was a significant rearing system by diet interaction for shell thickness, with the free-range hens averaging 40.77 ± 0.19 and 39.86 ± 0.31 μm (P < 0.05), respectively, for the hens fed SBM vs. SBMF diets. In conclusion, the results suggested free-range production is more variable than traditional closed-house cage systems based on standard errors, and SBMF diets containing cottonseed meal can be used in both caged and free-range production systems without affecting egg production, although one might see lower egg weights.

  10. DNA recombination activity in soybean mitochondria.

    PubMed

    Manchekar, Medha; Scissum-Gunn, Karyn; Song, Daqing; Khazi, Fayaz; McLean, Stephanie L; Nielsen, Brent L

    2006-02-17

    Mitochondrial genomes in higher plants are much larger and more complex as compared to animal mitochondrial genomes. There is growing evidence that plant mitochondrial genomes exist predominantly as a collection of linear and highly branched DNA molecules and replicate by a recombination-dependent mechanism. However, biochemical evidence of mitochondrial DNA (mtDNA) recombination activity in plants has previously been lacking. We provide the first report of strand-invasion activity in plant mitochondria. Similar to bacterial RecA, this activity from soybean is dependent on the presence of ATP and Mg(2+). Western blot analysis using an antibody against the Arabidopsis mitochondrial RecA protein shows cross-reaction with a soybean protein of about 44 kDa, indicating conservation of this protein in at least these two plant species. mtDNA structure was analyzed by electron microscopy of total soybean mtDNA and molecules recovered after field-inversion gel electrophoresis (FIGE). While most molecules were found to be linear, some molecules contained highly branched DNA structures and a small but reproducible proportion consisted of circular molecules (many with tails) similar to recombination intermediates. The presence of recombination intermediates in plant mitochondria preparations is further supported by analysis of mtDNA molecules by 2-D agarose gel electrophoresis, which indicated the presence of complex recombination structures along with a considerable amount of single-stranded DNA. These data collectively provide convincing evidence for the occurrence of homologous DNA recombination in plant mitochondria.

  11. Molecular basis of a shattering resistance boosting global dissemination of soybean

    PubMed Central

    Funatsuki, Hideyuki; Suzuki, Masaya; Hirose, Aya; Inaba, Hiroki; Yamada, Tetsuya; Hajika, Makita; Komatsu, Kunihiko; Katayama, Takeshi; Sayama, Takashi; Ishimoto, Masao; Fujino, Kaien

    2014-01-01

    Pod dehiscence (shattering) is essential for the propagation of wild plant species bearing seeds in pods but is a major cause of yield loss in legume and crucifer crops. Although natural genetic variation in pod dehiscence has been, and will be, useful for plant breeding, little is known about the molecular genetic basis of shattering resistance in crops. Therefore, we performed map-based cloning to unveil a major quantitative trait locus (QTL) controlling pod dehiscence in soybean. Fine mapping and complementation testing revealed that the QTL encodes a dirigent-like protein, designated as Pdh1. The gene for the shattering-resistant genotype, pdh1, was defective, having a premature stop codon. The functional gene, Pdh1, was highly expressed in the lignin-rich inner sclerenchyma of pod walls, especially at the stage of initiation in lignin deposition. Comparisons of near-isogenic lines indicated that Pdh1 promotes pod dehiscence by increasing the torsion of dried pod walls, which serves as a driving force for pod dehiscence under low humidity. A survey of soybean germplasm revealed that pdh1 was frequently detected in landraces from semiarid regions and has been extensively used for breeding in North America, the world’s leading soybean producer. These findings point to a new mechanism for pod dehiscence involving the dirigent protein family and suggest that pdh1 has played a crucial role in the global expansion of soybean cultivation. Furthermore, the orthologs of pdh1, or genes with the same role, will possibly be useful for crop improvement. PMID:25468966

  12. Less waste corn, more land in soybeans, and the switch to genetically modified crops: Trends with important implications for wildlife management

    USGS Publications Warehouse

    Krapu, G.L.; Brandt, D.A.; Cox, R.R.

    2004-01-01

    American agriculture has provided abundant high-energy foods for migratory and resident wildlife populations since the onset of modern wildlife management. Responding to anecdotal evidence that corn residues are declining in cropland, we remeasured waste corn post-harvest in the Central Platte River Valley (CPRV) of Nebraska during 1997 and 1998 to compare with 1978. Post-harvest waste corn averaged 2.6% and 1.8% of yield in 1997 and 1998, respectively. After accounting for a 20% increase in yield, waste corn in 1997 and 1998 was reduced 24% and 47% from 1978. We also evaluated use of soybeans by spring-staging sandhill cranes (Crus canadensis) and waterfowl during spring 1998 and 1999. Despite being widely available in the CPRV, soybeans did not occur in esophageal contents of sandhill cranes (n=174), northern pintails (Anas acuta, n=139), greater white-fronted geese (Anser albifrons, n=198), or lesser snow geese (Chen caerulescens, n=208) collected with food in their esophagi. Lack of soybean consumption by cranes and waterfowl in Nebraska in early spring builds upon previously published findings, suggesting that soybeans are poorly suited for meeting nutrient needs of wildlife requiring a high-energy diet. Given evidence that high-energy food and numerous populations of seed-eating species found on farmland are declining, and the enormous potential risk to game and nongame wildlife populations if high-energy foods were to become scarce, a comprehensive research effort to study the problem appears warranted. Provisions under the Conservation Security subtitle of The Farm Security and Rural Investment Act of 2002 offer a potential mechanism to encourage producers to manage cropland in ways that would replace part of the high-energy foods that have been lost to increasing efficiency of production agriculture.

  13. Relationship Between Soil Type and N2O Reductase Genotype (nosZ) of Indigenous Soybean Bradyrhizobia: nosZ-minus Populations are Dominant in Andosols

    PubMed Central

    Shiina, Yoko; Itakura, Manabu; Choi, Hyunseok; Saeki, Yuichi; Hayatsu, Masahito; Minamisawa, Kiwamu

    2014-01-01

    Bradyrhizobium japonicum strains that have the nosZ gene, which encodes N2O reductase, are able to mitigate N2O emissions from soils (15). To examine the distribution of nosZ genotypes among Japanese indigenous soybean bradyrhizobia, we isolated bradyrhizobia from the root nodules of soybean plants inoculated with 32 different soils and analyzed their nosZ and nodC genotypes. The 1556 resultant isolates were classified into the nosZ+/nodC+ genotype (855 isolates) and nosZ−/nodC+ genotype (701 isolates). The 11 soil samples in which nosZ− isolates significantly dominated (P < 0.05; the χ2 test) were all Andosols (a volcanic ash soil prevalent in agricultural fields in Japan), whereas the 17 soil samples in which nosZ+ isolates significantly dominated were mainly alluvial soils (non-volcanic ash soils). This result was supported by a principal component analysis of environmental factors: the dominance of the nosZ− genotype was positively correlated with total N, total C, and the phosphate absorption coefficient in the soils, which are soil properties typical of Andosols. Internal transcribed spacer sequencing of representative isolates showed that the nosZ+ and nosZ− isolates of B. japonicum fell mainly into the USDA110 (BJ1) and USDA6 (BJ2) groups, respectively. These results demonstrated that the group lacking nosZ was dominant in Andosols, which can be a target soil type for an N2O mitigation strategy in soybean fields. We herein discussed how the nosZ genotypes of soybean bradyrhizobia depended on soil types in terms of N2O respiration selection and genomic determinants for soil adaptation. PMID:25476067

  14. Relationship between soil type and N₂O reductase genotype (nosZ) of indigenous soybean bradyrhizobia: nosZ-minus populations are dominant in Andosols.

    PubMed

    Shiina, Yoko; Itakura, Manabu; Choi, Hyunseok; Saeki, Yuichi; Hayatsu, Masahito; Minamisawa, Kiwamu

    2014-01-01

    Bradyrhizobium japonicum strains that have the nosZ gene, which encodes N2O reductase, are able to mitigate N2O emissions from soils (15). To examine the distribution of nosZ genotypes among Japanese indigenous soybean bradyrhizobia, we isolated bradyrhizobia from the root nodules of soybean plants inoculated with 32 different soils and analyzed their nosZ and nodC genotypes. The 1556 resultant isolates were classified into the nosZ+/nodC+ genotype (855 isolates) and nosZ-/nodC+ genotype (701 isolates). The 11 soil samples in which nosZ- isolates significantly dominated (P < 0.05; the χ(2) test) were all Andosols (a volcanic ash soil prevalent in agricultural fields in Japan), whereas the 17 soil samples in which nosZ+ isolates significantly dominated were mainly alluvial soils (non-volcanic ash soils). This result was supported by a principal component analysis of environmental factors: the dominance of the nosZ- genotype was positively correlated with total N, total C, and the phosphate absorption coefficient in the soils, which are soil properties typical of Andosols. Internal transcribed spacer sequencing of representative isolates showed that the nosZ+ and nosZ- isolates of B. japonicum fell mainly into the USDA110 (BJ1) and USDA6 (BJ2) groups, respectively. These results demonstrated that the group lacking nosZ was dominant in Andosols, which can be a target soil type for an N2O mitigation strategy in soybean fields. We herein discussed how the nosZ genotypes of soybean bradyrhizobia depended on soil types in terms of N2O respiration selection and genomic determinants for soil adaptation.

  15. Soybean Resistance to White Mold: Evaluation of Soybean Germplasm Under Different Conditions and Validation of QTL

    PubMed Central

    Kandel, Ramkrishna; Chen, Charles Y.; Grau, Craig R.; Dorrance, Ann E.; Liu, Jean Q.; Wang, Yang; Wang, Dechun

    2018-01-01

    Soybean (Glycine max L. Merr.) white mold (SWM), caused by Sclerotinia sclerotiorum (Lib) de Barry), is a devastating fungal disease in the Upper Midwest of the United States and southern Canada. Various methods exist to evaluate for SWM resistance and many quantitative trait loci (QTL) with minor effect governing SWM resistance have been identified in prior studies. This study aimed to predict field resistance to SWM using low-cost and efficient greenhouse inoculation methods and to confirm the QTL reported in previous studies. Three related but independent studies were conducted in the field, greenhouse, and laboratory to evaluate for SWM resistance. The first study evaluated 66 soybean plant introductions (PIs) with known field resistance to SWM using the greenhouse drop-mycelium inoculation method. These 66 PIs were significantly (P < 0.043) different for resistance to SWM. However, year was highly significant (P < 0.00001), while PI x year interaction was not significant (P < 0.623). The second study compared plant mortality (PM) of 35 soybean breeding lines or varieties in greenhouse inoculation methods with disease severity index (DSI) in field evaluations. Moderate correlation (r) between PM under drop-mycelium method and DSI in field trials (r = 0.65, p < 0.0001) was obtained. The PM under spray-mycelium was also correlated significantly with DSI from field trials (r = 0.51, p < 0.0018). Likewise, significant correlation (r = 0.62, p < 0.0001) was obtained between PM across greenhouse inoculation methods and DSI across field trials. These findings suggest that greenhouse inoculation methods could predict the field resistance to SWM. The third study attempted to validate 33 QTL reported in prior studies using seven populations that comprised a total of 392 F4 : 6 lines derived from crosses involving a partially resistant cultivar “Skylla,” five partially resistant PIs, and a known susceptible cultivar “E00290.” The estimates of broad-sense heritability (h2) ranged from 0.39 to 0.66 in the populations. Of the seven populations, four had h2 estimates that were significantly different from zero (p < 0.05). Single marker analysis across populations and inoculation methods identified 11 significant SSRs (p < 0.05) corresponding to 10 QTL identified by prior studies. Thus, these five new PIs could be used as new sources of resistant alleles to develop SWM resistant commercial cultivars. PMID:29731761

  16. Down-regulation of genes coding for core RNAi components and disease resistance proteins via corresponding microRNAs might be correlated with successful Soybean mosaic virus infection in soybean.

    PubMed

    Bao, Duran; Ganbaatar, Oyunchuluun; Cui, Xiuqi; Yu, Ruonan; Bao, Wenhua; Falk, Bryce W; Wuriyanghan, Hada

    2018-04-01

    Plants protect themselves from virus infections by several different defence mechanisms. RNA interference (RNAi) is one prominent antiviral mechanism, which requires the participation of AGO (Argonaute) and Dicer/DCL (Dicer-like) proteins. Effector-triggered immunity (ETI) is an antiviral mechanism mediated by resistance (R) genes, most of which encode nucleotide-binding site-leucine-rich repeat (NBS-LRR) family proteins. MicroRNAs (miRNAs) play important regulatory roles in plants, including the regulation of host defences. Soybean mosaic virus (SMV) is the most common virus in soybean and, in this work, we identified dozens of SMV-responsive miRNAs by microarray analysis in an SMV-susceptible soybean line. Amongst the up-regulated miRNAs, miR168a, miR403a, miR162b and miR1515a predictively regulate the expression of AGO1, AGO2, DCL1 and DCL2, respectively, and miR1507a, miR1507c and miR482a putatively regulate the expression of several NBS-LRR family disease resistance genes. The regulation of target gene expression by these seven miRNAs was validated by both transient expression assays and RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) experiments. Transcript levels for AGO1, DCL1, DCL2 and five NBS-LRR family genes were repressed at different time points after SMV infection, whereas the corresponding miRNA levels were up-regulated at these same time points. Furthermore, inhibition of miR1507a, miR1507c, miR482a, miR168a and miR1515a by short tandem target mimic (STTM) technology compromised SMV infection efficiency in soybean. Our results imply that SMV can counteract soybean defence responses by the down-regulation of several RNAi pathway genes and NBS-LRR family resistance genes via the induction of the accumulation of their corresponding miRNA levels. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  17. Assessment of DNA damage as a tool to measure UV-B tolerance in soybean lines differing in foliar flavonoid composition

    USDA-ARS?s Scientific Manuscript database

    Continued stratospheric ozone depletion and the resultant increase in ultraviolet-B radiation (UV-B) raises a concern for a potential decrease in crop yields and impacts on agricultural and natural ecosystems. Although the implementation of regulations that minimize inputs of chlorofluorocarbons in...

  18. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G

    2017-06-15

    This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg -1 and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Warm temperatures or drought during seed maturation increase free alpha-tocopherol in seeds of soybean (Glycine max [L.] Merr.).

    PubMed

    Britz, Steven J; Kremer, Diane F

    2002-10-09

    Soybean seeds are an important source of dietary tocopherols, but like seeds of other dicotyledonous plants, they contain relatively little alpha-tocopherol, the form with the greatest vitamin E activity. To evaluate potential effects of environmental stress during seed maturation on tocopherols, soybeans were raised in greenhouses at nominal average temperatures of 23 degrees C or 28 degrees C during seed fill, with or without simultaneous drought (soil moisture at 10-25% of capacity), during normal growing seasons in 1999 (cvs. Essex and Forrest) and 2000 (cvs. Essex, Forrest, and Williams). Total free (nonesterified) tocopherols increased slightly in response to drought in Essex and Forrest. All three lines responded to elevated temperature and, to a lesser extent, drought with large (2-3-fold) increases in alpha-tocopherol and corresponding decreases in delta-tocopherol and gamma-tocopherol. The results suggest that weather or climate can significantly affect seed tocopherols. It may be possible to breed for elevated alpha-tocopherols by selecting for altered plant response to temperature.

  20. Involvement of a lipoxygenase-like enzyme in abscisic Acid biosynthesis.

    PubMed

    Creelman, R A; Bell, E; Mullet, J E

    1992-07-01

    Several lines of evidence indicate that abscisic acid (ABA) is derived from 9'-cis-neoxanthin or 9'-cis-violaxanthin with xanthoxin as an intermediate. (18)O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11', 12') double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties.

  1. Genomic evaluation of oxalate-degrading transgenic soybean in response to Sclerotinia sclerotiorum infection.

    PubMed

    Calla, Bernarda; Blahut-Beatty, Laureen; Koziol, Lisa; Zhang, Yunfang; Neece, David J; Carbajulca, Doris; Garcia, Alexandre; Simmonds, Daina H; Clough, Steven J

    2014-08-01

    Oxalate oxidases (OxO) catalyse the degradation of oxalic acid (OA). Highly resistant transgenic soybean carrying an OxO gene and its susceptible parent soybean line, AC Colibri, were tested for genome-wide gene expression in response to the necrotrophic, OA-producing pathogen Sclerotinia sclerotiorum using soybean cDNA microarrays. The genes with changed expression at statistically significant levels (overall F-test P-value cut-off of 0.0001) were classified into functional categories and pathways, and were analysed to evaluate the differences in transcriptome profiles. Although many genes and pathways were found to be similarly activated or repressed in both genotypes after inoculation with S. sclerotiorum, the OxO genotype displayed a measurably faster induction of basal defence responses, as observed by the differential changes in defence-related and secondary metabolite genes compared with its susceptible parent AC Colibri. In addition, the experiment presented provides data on several other transcripts that support the hypothesis that S. sclerotiorum at least partially elicits the hypersensitive response, induces lignin synthesis (cinnamoyl CoA reductase) and elicits as yet unstudied signalling pathways (G-protein-coupled receptor and related). Of the nine genes showing the most extreme opposite directions of expression between genotypes, eight were related to photosynthesis and/or oxidation, highlighting the importance of redox in the control of this pathogen. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  2. Expression and immunogenicity of an Escherichia coli K99 fimbriae subunit antigen in soybean.

    PubMed

    Piller, Kenneth J; Clemente, Thomas E; Jun, Sang Mu; Petty, Cynthia C; Sato, Shirley; Pascual, David W; Bost, Kenneth L

    2005-09-01

    Enterotoxigenic Escherichia coli (ETEC) cause acute diarrhea in humans and farm animals, and can be fatal if the host is left untreated. As a potential alternative to traditional needle vaccination of cattle, we investigated the feasibility of expressing the major K99 fimbrial subunit, FanC, in soybean (Glycine max) for use as an edible subunit vaccine. As a first step in this developmental process, a synthetic version of fanC was optimized for expression in the cytosol and transferred to soybean via Agrobacterium-mediated transformation. Western analysis of T(0) events revealed the presence of a peptide with the expected mobility for FanC in transgenic protein extracts, and immunofluorescense confirmed localization to the cytosol. Two T(0) lines, which accumulated FanC to levels near 0.5% of total soluble protein, were chosen for further molecular characterization in the T(1) and T(2) generations. Mice immunized intraperitoneally with protein extract derived from transgenic leaves expressing synthetic FanC developed significant antibody titers against bacterially derived FanC and produced antigen-specific CD4(+) T lymphocytes, demonstrating the ability of transgenic FanC to function as an immunogen. These experiments are the first to demonstrate the expression and immunogenicity of a model subunit antigen in the soybean system, and mark the first steps toward the development of a K99 edible vaccine to protect against ETEC.

  3. Humidity assay for studying plant-pathogen interactions in miniature controlled discrete humidity environments with good throughput

    PubMed Central

    Jiang, Huawei; Sahu, Binod Bihari; Kambakam, Sekhar; Singh, Prashant; Wang, Xinran; Wang, Qiugu; Bhattacharyya, Madan K.; Dong, Liang

    2016-01-01

    This paper reports a highly economical and accessible approach to generate different discrete relative humidity conditions in spatially separated wells of a modified multi-well plate for humidity assay of plant-pathogen interactions with good throughput. We demonstrated that a discrete humidity gradient could be formed within a few minutes and maintained over a period of a few days inside the device. The device consisted of a freeway channel in the top layer, multiple compartmented wells in the bottom layer, a water source, and a drying agent source. The combinational effects of evaporation, diffusion, and convection were synergized to establish the stable discrete humidity gradient. The device was employed to study visible and molecular disease phenotypes of soybean in responses to infection by Phytophthora sojae, an oomycete pathogen, under a set of humidity conditions, with two near-isogenic soybean lines, Williams and Williams 82, that differ for a Phytophthora resistance gene (Rps1-k). Our result showed that at 63% relative humidity, the transcript level of the defense gene GmPR1 was at minimum in the susceptible soybean line Williams and at maximal level in the resistant line Williams 82 following P. sojae CC5C infection. In addition, we investigated the effects of environmental temperature, dimensional and geometrical parameters, and other configurational factors on the ability of the device to generate miniature humidity environments. This work represents an exploratory effort to economically and efficiently manipulate humidity environments in a space-limited device and shows a great potential to facilitate humidity assay of plant seed germination and development, pathogen growth, and plant-pathogen interactions. Since the proposed device can be easily made, modified, and operated, it is believed that this present humidity manipulation technology will benefit many laboratories in the area of seed science, plant pathology, and plant-microbe biology, where humidity is an important factor that influences plant disease infection, establishment, and development. PMID:27279932

  4. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water.

    PubMed

    Ma, Fengshan; Cholewa, Ewa; Mohamed, Tasneem; Peterson, Carol A; Gijzen, Mark

    2004-08-01

    Soybean (Glycine max) is among the many legumes that are well known for 'hardseededness'. This feature can be beneficial for long-term seed survival, but is undesirable for the food processing industry. There is substantial disagreement concerning the mechanisms and related structures that control the permeability properties of soybean seed coats. In this work, the structural component that controls water entry into the seed is identified. Six soybean cultivars were tested for their seed coat permeabilities to water. To identify the structural feature(s) that may contribute to the determination of these permeabilities, fluorescent tracer dyes, and light and electron microscopic techniques were used. The cultivar 'Tachanagaha' has the most permeable seed coat, 'OX 951' the least permeable seed coat, and the permeabilities of the rest ('Harovinton', 'Williams', 'Clark L 67-3469', and 'Harosoy 63') are intermediate. All seeds have surface deposits, depressions, a light line, and a cuticle about 0.2 microm thick overlaying the palisade layer. In permeable cultivars the cuticle tends to break, whereas in impermeable seeds of 'OX 951' it remains intact. In the case of permeable seed coats, the majority of the cracks are from 1 to 5 micro m wide and from 20 to 200 micro m long, and occur more frequently on the dorsal side than in other regions of the seed coat, a position that correlates with the site of initial water uptake. The cuticle of the palisade layer is the key factor that determines the permeability property of a soybean seed coat. The cuticle of a permeable seed coat is mechanically weak and develops small cracks through which water can pass. The cuticle of an impermeable seed coat is mechanically strong and does not crack under normal circumstances.

  5. A Single-Nucleotide Polymorphism in an Endo-1,4-β-Glucanase Gene Controls Seed Coat Permeability in Soybean

    PubMed Central

    Jang, Seong-Jin; Sato, Masako; Sato, Kei; Jitsuyama, Yutaka; Fujino, Kaien; Mori, Haruhide; Takahashi, Ryoji; Benitez, Eduardo R.; Liu, Baohui; Yamada, Tetsuya; Abe, Jun

    2015-01-01

    Physical dormancy, a structural feature of the seed coat known as hard seededness, is an important characteristic for adaptation of plants against unstable and unpredictable environments. To dissect the molecular basis of qHS1, a quantitative trait locus for hard seededness in soybean (Glycine max (L) Merr.), we developed a near-isogenic line (NIL) of a permeable (soft-seeded) cultivar, Tachinagaha, containing a hard-seed allele from wild soybean (G. soja) introduced by successive backcrossings. The hard-seed allele made the seed coat of Tachinagaha more rigid by increasing the amount of β-1,4-glucans in the outer layer of palisade cells of the seed coat on the dorsal side of seeds, known to be a point of entrance of water. Fine-mapping and subsequent expression and sequencing analyses revealed that qHS1 encodes an endo-1,4-β-glucanase. A single-nucleotide polymorphism (SNP) introduced an amino acid substitution in a substrate-binding cleft of the enzyme, possibly reducing or eliminating its affinity for substrates in permeable cultivars. Introduction of the genomic region of qHS1 from the impermeable (hard-seeded) NIL into the permeable cultivar Kariyutaka resulted in accumulation of β-1,4-glucan in the outer layer of palisade cells and production of hard seeds. The SNP allele found in the NIL was further associated with the occurrence of hard seeds in soybean cultivars of various origins. The findings of this and previous studies may indicate that qHS1 is involved in the accumulation of β-1,4-glucan derivatives such as xyloglucan and/or β-(1,3)(1,4)-glucan that reinforce the impermeability of seed coats in soybean. PMID:26039079

  6. Influence of crop type specification and spatial resolution on empirical modeling of field-scale Maize and Soybean carbon fluxes in the US Great Plains

    NASA Astrophysics Data System (ADS)

    McCombs, A. G.; Hiscox, A.; Wang, C.; Desai, A. R.

    2016-12-01

    A challenge in satellite land surface remote-sensing models of ecosystem carbon dynamics in agricultural systems is the lack of differentiation by crop type and management. This generalization can lead to large discrepancies between model predictions and eddy covariance flux tower observations of net ecosystem exchange of CO2 (NEE). Literature confirms that NEE varies remarkably among different crop types making the generalization of agriculture in remote sensing based models inaccurate. Here, we address this inaccuracy by identifying and mapping net ecosystem exchange (NEE) in agricultural fields by comparing bulk modeling and modeling by crop type, and using this information to develop empirical models for future use. We focus on mapping NEE in maize and soybean fields in the US Great Plains at higher spatial resolution using the fusion of MODIS and LandSAT surface reflectance. MODIS observed reflectance was downscaled using the ESTARFM downscaling methodology to match spatial scales to those found in LandSAT and that are more appropriate for carbon dynamics in agriculture fields. A multiple regression model was developed from surface reflectance of the downscaled MODIS and LandSAT remote sensing values calibrated against five FLUXNET/AMERIFLUX flux towers located on soybean and/or maize agricultural fields in the US Great Plains with multi-year NEE observations. Our new methodology improves upon bulk approximates to map and model carbon dynamics in maize and soybean fields, which have significantly different photosynthetic capacities.

  7. Dietary linseed oil supplemented with organic selenium improved the fatty acid nutritional profile, muscular selenium deposition, water retention, and tenderness of fresh pork.

    PubMed

    Jiang, Jiang; Tang, Xinyue; Xue, Yan; Lin, Gang; Xiong, Youling L

    2017-09-01

    Cross-bred pigs were fed a control diet (with 0.3ppm sodium selenite and 1.5% soybean oil) or organic selenium diets (0.3ppm Se-Yeast with 1.5% soybean or linseed oil) to investigate nutrient supplement effects on meat quality and oxidative stability. The organic selenium diets increased muscular selenium content up to 54%, and linseed oil increased n-3 fatty acids two-fold while lowering the n-6/n-3 fatty acid ratio from 13.9 to 5.9 over the selenite control diet (P<0.05). Organic selenium yeast treatments with linseed oil reduced pork drip loss by 58-74% when compared with diets with soybean oil. Lightness of fresh pork was slightly less for organic selenium groups than inorganic (P<0.05), but redness was mostly similar. Lipid oxidation (TBARS) and protein oxidation (sulfhydryl) during meat storage (4°C up to 6days) showed no appreciable difference (P>0.05) between diets, in agreement with the lack of notable difference in endogenous antioxidant enzyme activity between these meat groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Restoration potential of sedge meadows in hand-cultivated soybean fields in northeastern China

    USGS Publications Warehouse

    Wang, Guodong; Middleton, Beth; Jiang, Ming

    2013-01-01

    Sedge meadows can be difficult to restore from farmed fields if key structural dominants are missing from propagule banks. In hand-cultivated soybean fields in northeastern China, we asked if tussock-forming Carex and other wetland species were present as seed or asexual propagules. In the Sanjiang Plain, China, we compared the seed banks, vegetative propagules (below-ground) and standing vegetation of natural and restored sedge meadows, and hand-cultivated soybean fields in drained and flooded conditions. We found that important wetland species survived cultivation as seeds for some time (e.g. Calamogrostis angustifolia and Potamogeton crispus) and as field weeds (e.g. C. angustifolia and Phragmites australis). Key structural species were missing in these fields, for example, Carex meyeriana. We also observed that sedge meadows restored without planting or seeding lacked tussock-forming sedges. The structure of the seed bank was related to experimental water regime, and field environments of tussock height, thatch depth, and presence of burning as based on Nonmetric Multidimensional Scaling analysis. To re-establish the structure imposed by tussock sedges, specific technologies might be developed to encourage the development of tussocks in restored sedge meadows.

  9. Risk of limb birth defects and mother's home proximity to cornfields.

    PubMed

    Ochoa-Acuña, Hugo; Carbajo, Cristina

    2009-07-15

    Although previous studies have linked proximity to crops and birth defects, they lacked individual-level exposure data and none was based on using planted area instead of linear proximity to crops as the exposure metric. We studied birth defects in relation to the area of corn or soybeans within 500 m of the mother's residence. We selected all singleton births from rural areas conceived during the 2000-2004 spring-summer months (n=48,216). We determined whether the area with corn or soybeans around the home was associated with birth defects using multiple unconditional logistic regression. We found that limb birth defects (ICD-9-CM 754.5, 755) increased in relation to cornfields (Adjusted OR=1.22; 95 % CI=1.01, 1.47 per additional 10 ha planted with corn within 500 m). None of the birth defect types studied was associated with soybeans. In the Midwest, a significant and expanding proportion of the population is now living in close proximity to cornfields. Our results suggest that additional studies should be conducted to identify which factor(s) associated with cornfields are behind the observed increase in limb birth defects.

  10. Bradyrhizobium japonicum mutants with enhanced sensitivity to genistein resulting in altered nod gene regulation.

    PubMed

    Ip, H; D'Aoust, F; Begum, A A; Zhang, H; Smith, D L; Driscoll, B T; Charles, T C

    2001-12-01

    Bradyrhizobium japonicum mutants with altered nod gene induction characteristics were isolated by screening mutants for genistein-independent nod gene expression. Plasmid pZB32, carrying a nodY::lacZ transcriptional gene fusion, was introduced into B. japonicum cells that had been subjected to UV mutagenesis. Ten independent transformants producing a blue color on plates containing 5bromo-4chloro-3indolyl-beta-D-galactopyranoside but lacking genistein, indicative of constitutive expression of the nodY::lacZ reporter gene, were isolated. Beta-galactosidase activity assays revealed that while all of the 10 strains were sensitive to low concentrations of genistein, none exhibited truly constitutive nodY::lacZ expression in liquid culture. Soybean plants inoculated with three of the mutants were chlorotic and stunted, with shoot dry weights close to those of the uninoculated plants, indicating the absence of nitrogen fixation. Differences in the kinetics of nodY::lacZ expression and lipochitin oligosaccharide Nod signal production suggested that the strains carried different mutations. Some of these strains may be useful in mitigating the low root zone temperature-associated delay in soybean nodulation at the northern extent of soybean cultivation.

  11. Soluble leaf apoplastic constituents of O3-sensitive and tolerant soybeans and snap beans

    USDA-ARS?s Scientific Manuscript database

    Upon entry into leaves, ozone (O3) and reactive oxygen species (ROS) derived from O3 must pass through the leaf apoplast and cell wall before reacting with the plasma membrane to initiate plant responses. The leaf apoplast, therefore, represents a first line of defense in detoxifying ROS and prevent...

  12. Effect of feeding three lysine to energy diets on growth, body composition and age at puberty in replacement gilts

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the effect of diets differing in standard ileal digestible (SID) lysine on lysine intake, growth rate, body composition and age at puberty on maternal line gilts. Crossbred Large White×Landrace gilts (n =641) were fed corn-soybean diets differing in SID lysine concentration (%, ...

  13. Genetic linkage maps of white birches (Betula platyphylla Suk. and B. pendula Roth) based on RAPD and AFLP markers

    USDA-ARS?s Scientific Manuscript database

    Genetic linkage maps in plants are usually constructed using segregating populations obtained from crosses between two inbred lines such as rice, maize, or soybean. Such populations are generally not available for forest trees because of time constraints. But tree species have the property of outcro...

  14. Procedures and best management practices for genetically engineered traits in USDA/ARS germplasm and breeding lines

    USDA-ARS?s Scientific Manuscript database

    Two decades have passed since the commercialization in the U. S. of crops with genetically engineered (GE) traits. Today more than 80% of corn, soybean, canola, sugar beet and cotton acreage in the United States is planted to transgenic cultivars, but concerns exist regarding how best to manage the ...

  15. Impact of youth injuries on the uninsured farm family's economic viability.

    PubMed

    Zaloshnja, Eduard; Miller, Ted R

    2012-01-01

    The objective of this study is to estimate the impact of youth injuries on the uninsured farm family's economic viability. Using farm prototypes, we compared farm profits with costs of farm youth injuries. We built profit models for two types of farms, dairy and soybean farms. Then we estimated the cost impact of farm youth injuries of different levels of severity on a farm family with no health insurance. A severe child injury that requires at least 10 days of hospitalisation would cost almost equal to the operating profit of the average dairy farm with no health insurance and would turn the operating profit of the average soybean farm into a severe loss of $99,499. Prevention of child agricultural injuries would significantly improve the financial situation for farm families that lack health insurance.

  16. A New Race (X12) of Soybean Cyst Nematode in China.

    PubMed

    Lian, Yun; Guo, Jianqiu; Li, Haichao; Wu, Yongkang; Wei, He; Wang, Jinshe; Li, Jinying; Lu, Weiguo

    2017-09-01

    The soybean cyst nematode (SCN), Heterodera glycines , is a serious economic threat to soybean-producing regions worldwide. A new SCN population (called race X12) was detected in Shanxi province, China. Race X12 could reproduce on all the indicator lines of both race and Heterodera glycines (HG) type tests. The average number of females on Lee68 (susceptible control) was 171.40 with the lowest Female Index (FI) 61.31 on PI88788 and the highest FI 117.32 on Pickett in the race test. The average number of females on Lee68 was 323.17 with the lowest FI 44.18 on PI88788 and the highest FI 97.83 on PI548316 in the HG type test. ZDD2315 and ZDD24656 are elite resistant germplasms in China. ZDD2315 is highly resistant to race 4, the strongest infection race in the 16 races with FI 1.51 while being highly sensitive to race X12 with FI 64.32. ZDD24656, a variety derived from PI437654 and ZDD2315, is highly resistant to race 1 and race 2. ZDD24656 is highly sensitive to race X12 with FI 99.12. Morphological and molecular studies of J2 and cysts confirmed the population as the SCN H. glycines . This is a new SCN race with stronger virulence than that of race 4 and is a potential threat to soybean production in China.

  17. Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean

    PubMed Central

    Walter, Kay L; Strachan, Stephen D; Ferry, Nancy M; Albert, Henrik H; Castle, Linda A; Sebastian, Scott A

    2014-01-01

    BACKGROUND Sulfonylurea (SU) herbicides are effective because they inhibit acetolactate synthase (ALS), a key enzyme in branched-chain amino acid synthesis required for plant growth. A soybean line known as W4-4 was developed through rounds of seed mutagenesis and was demonstrated to have a high degree of ALS-based resistance to both post-emergence and pre-emergence applications of a variety of SU herbicides. This report describes the molecular and phenotypic characterization of the Als1 and Als2 mutations that confer herbicide resistance to SUs and other ALS inhibitors. RESULTS The mutations are shown to occur in two different ALS genes that reside on different chromosomes: Als1 (P178S) on chromosome 4 and Als2 (W560L) on chromosome 6 (P197S and W574L in Arabidopsis thaliana). CONCLUSION Although the Als1 and Als2 genes are unlinked, the combination of these two mutations is synergistic for improved tolerance of soybeans to ALS-inhibiting herbicides. © 2014 DuPont Pioneer. Pest Management Science published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24425499

  18. The QQS orphan gene of Arabidopsis modulates carbon and nitrogen allocation in soybean

    PubMed Central

    Li, Ling; Wurtele, Eve Syrkin

    2015-01-01

    The genome of each species contains as high as 8% of genes that are uniquely present in that species. Little is known about the functional significance of these so-called species specific or orphan genes. The Arabidopsis thaliana gene Qua-Quine Starch (QQS) is species specific. Here, we show that altering QQS expression in Arabidopsis affects carbon partitioning to both starch and protein. We hypothesized QQS may be conserved in a feature other than primary sequence, and as such could function to impact composition in another species. To test the potential of QQS in affecting composition in an ectopic species, we introduced QQS into soybean. Soybean T1 lines expressing QQS have up to 80% decreased leaf starch and up to 60% increased leaf protein; T4 generation seeds from field-grown plants contain up to 13% less oil, while protein is increased by up to 18%. These data broaden the concept of QQS as a modulator of carbon and nitrogen allocation, and demonstrate that this species-specific gene can affect the seed composition of an agronomic species thought to have diverged from Arabidopsis 100 million years ago. PMID:25146936

  19. Involvement of a Lipoxygenase-Like Enzyme in Abscisic Acid Biosynthesis 1

    PubMed Central

    Creelman, Robert A.; Bell, Erin; Mullet, John E.

    1992-01-01

    Several lines of evidence indicate that abscisic acid (ABA) is derived from 9′-cis-neoxanthin or 9′-cis-violaxanthin with xanthoxin as an intermediate. 18O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11′, 12′) double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties. PMID:16668998

  20. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals.

    PubMed

    Hong, Kee-Jong; Lee, Chan-Ho; Kim, Sung Woo

    2004-01-01

    This study evaluated the effect of fermentation on the nutritional quality of food-grade soybeans and feed-grade soybean meals. Soybeans and soybean meals were fermented by Aspergillus oryzae GB-107 in a bed-packed solid fermentor for 48 hours. After fermentation, their nutrient contents as well as trypsin inhibitor were measured and compared with those of raw soybeans and soybean meals. Proteins were extracted from fermented and non-fermented soybeans and soybean meals, and the peptide characteristics were evaluated after electrophoresis. Fermented soybeans and fermented soybean meals contained 10% more (P < .05) crude protein than raw soybeans and soybean meals. The essential amino acid profile was unchanged after fermentation. Fermentation eliminated (P < .05) most of the trypsin inhibitor from both soybeans and soybean meals. Fermentation increased the amount of small-size peptides (<20 kDa) (P < .05) compared with raw soybeans, while significantly decreasing large-size peptides (>60 kDa) (P < .05). Fermented soybean meal contained more (P < .01) small-size peptides (<20 kDa) than soybean meal. Fermented soybean meal did not contain large-size peptides (>60 kDa), whereas 22.1% of peptides in soybean meal were large-size (>60 kDa). Collectively, fermentation increased protein content, eliminated trypsin inhibitors, and reduced peptide size in soybeans and soybean meals. These effects of fermentation might make soy foods more useful in human diets as a functional food and benefit livestock as a novel feed ingredient.

  1. Population genomics of a symbiont in the early stages of a pest invasion.

    PubMed

    Brown, Amanda M V; Huynh, Lynn Y; Bolender, Caitlin M; Nelson, Kelly G; McCutcheon, John P

    2014-03-01

    Invasive species often depend on microbial symbionts, but few studies have examined the evolutionary dynamics of symbionts during the early stages of an invasion. The insect Megacopta cribraria and its bacterial nutritional symbiont Candidatus Ishikawaella capsulata invaded the southeastern US in 2009. While M. cribraria was initially discovered on wild kudzu plants, it was found as a pest on soybeans within 1 year of infestation. Because prior research suggests Ishikawaella confers the pest status--that is, the ability to thrive on soybeans--in some Megacopta species, we performed a genomic study on Ishikawaella from US. Megacopta cribraria populations to understand the role of the symbiont in driving host plant preferences. We included Ishikawaella samples collected in the first days of the invasion in 2009 and from 23 locations across the insect's 2011 US range. The 0.75 Mb symbiont genome revealed only 47 fixed differences from the pest-conferring Ishikawaella in Japan, with only one amino acid change in a nutrition-provisioning gene. This similarity, along with a lack of fixed substitutions in the US symbiont population, indicates that Ishikawella likely arrived in the US capable of being a soybean pest. Analyses of allele frequency changes between 2009 and 2011 uncover signatures of both positive and negative selection and suggest that symbionts on soybeans and kudzu experience differential selection for genes related to nutrient provisioning. Our data reveal the evolutionary trajectory of an important insect-bacteria symbiosis in the early stages of an invasion, highlighting the role microbial symbionts may play in the spread of invasive species. © 2013 John Wiley & Sons Ltd.

  2. Transcript Profile of the Response of Two Soybean Genotypes to Potassium Deficiency

    PubMed Central

    Hao, QingNan; Sha, AiHua; Shan, ZhiHui; Chen, LiMiao; Zhou, Rong; Zhi, HaiJian; Zhou, XinAn

    2012-01-01

    The macronutrient potassium (K) is essential to plant growth and development. Crop yield potential is often affected by lack of soluble K. The molecular regulation mechanism of physiological and biochemical responses to K starvation in soybean roots and shoots is not fully understood. In the present study, two soybean varieties were subjected to low-K stress conditions: a low-K-tolerant variety (You06-71) and a low-K-sensitive variety (HengChun04-11). Eight libraries were generated for analysis: 2 genotypes ×2 tissues (roots and shoots) ×2 time periods [short term (0.5 to 12 h) and long term (3 to 12 d)]. RNA derived from the roots and shoots of these two varieties across two periods (short term and long term) were sequenced and the transcriptomes were compared using high-throughput tag-sequencing. To this end, a large number of clean tags (tags used for analysis after removal of dirty tags) corresponding to distinct tags (all types of clean tags) were identified in eight libraries (L1, You06-71-root short term; L2, HengChun04-11-root short term; L3, You06-71-shoot short term; L4, HengChun04-11-shoot short term; L5, You06-71-root long term; L6, HengChun04-11-root long term; L7, You06-71-shoot long term; L8, HengChun04-11-shoot long term). All clean tags were mapped to the available soybean (Glycine max) transcript database (http://www.soybase.org). Many genes showed substantial differences in expression across the libraries. In total, 5,440 transcripts involved in 118 KEGG pathways were either up- or down-regulated. Fifteen genes were randomly selected and their expression levels were confirmed using quantitative RT-PCR. Our results provide preliminary information on the molecular mechanism of potassium absorption and transport under low-K stress conditions in different soybean tissues. PMID:22792192

  3. A Hemorrhagic Factor (Apicidin) Produced by Toxic Fusarium Isolates from Soybean Seeds

    PubMed Central

    Park, Jun-Suk; Lee, Kyung-Rim; Kim, Jin-Cheol; Lim, Sun-Hee; Seo, Jeong-Ah; Lee, Yin-Won

    1999-01-01

    Fifty-two isolates of Fusarium species were obtained from soybean seeds from various parts of Korea and identified as Fusarium oxysporum, F. moniliforme, F. semitectum, F. solani, F. graminearum, or F. lateritium. These isolates were grown on autoclaved wheat grains and examined for toxicity in a rat-feeding test. Nine cultures were toxic to rats. One of these, a culture of Fusarium sp. strain KCTC 16677, produced apicidin, an antiprotozoal agent that caused toxic effects in rats (including body weight loss; hemorrhage in the stomach, intestines, and bladder; and finally death) when rats were fed diets supplemented with 0.05 and 0.1% apicidin. The toxin was toxic to brine shrimp (the 50% lethal concentration was 40 μg/ml) and was weakly cytotoxic to human and mouse tumor cell lines. PMID:9872769

  4. Determination of the optimal level for combining area and yield estimates

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Hixson, M. M.; Jobusch, C. D.

    1981-01-01

    Several levels of obtaining both area and yield estimates of corn and soybeans in Iowa were considered: county, refined strata, refined/split strata, crop reporting district, and state. Using the CCEA model form and smoothed weather data, regression coefficients at each level were derived to compute yield and its variance. Variances were also computed with stratum level. The variance of the yield estimates was largest at the state and smallest at the county level for both crops. The refined strata had somewhat larger variances than those associated with the refined/split strata and CRD. For production estimates, the difference in standard deviations among levels was not large for corn, but for soybeans the standard deviation at the state level was more than 50% greater than for the other levels. The refined strata had the smallest standard deviations. The county level was not considered in evaluation of production estimates due to lack of county area variances.

  5. A 2014 nationwide survey of the distribution of Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYMMV) and Soybean yellow common mosaic virus (SYCMV) major viruses in South Korean soybean fields, and changes

    USDA-ARS?s Scientific Manuscript database

    In 2014 symptomatic soybean samples were collected throughout Korea, and were tested for the most important soybean viruses found in Korea, namely Soybean mosaic virus (SMV), Soybean yellow common mosaic virus (SYCMV), and Soybean yellow mottle mosaic virus (SYMMV). SYMMV was most commonly detected,...

  6. Enrichment of chromosome 17 specific molecular markers of Pima cotton substituted in Upland cotton lines

    USDA-ARS?s Scientific Manuscript database

    Cotton is the primary source of non-synthetic textile fiber, as well as an important source of food, feed, fuel and other products. In the USA cotton is a major crop in 13 states and grown in 17 states on about 5 million hectares, more than all crops except maize, wheat or soybean, with a return of...

  7. The use of LANDSAT digital data and computer-implemented techniques for an agricultural application

    NASA Technical Reports Server (NTRS)

    Joyce, A. T.; Griffin, R. H., II

    1978-01-01

    Agricultural applications procedures are described for use of LANDSAT digital data and other digitalized data (e.g., soils). The results of having followed these procedures are shown in production estimates for cotton and soybeans in Washington County, Mississippi. Examples of output products in both line printer and map formats are included, and a product adequacy assessment is made.

  8. Cracks in the Palisade Cuticle of Soybean Seed Coats Correlate with their Permeability to Water

    PubMed Central

    MA, FENGSHAN; CHOLEWA, EWA; MOHAMED, TASNEEM; PETERSON, CAROL A.; GIJZEN, MARK

    2004-01-01

    • Background and Aims Soybean (Glycine max) is among the many legumes that are well known for ‘hardseededness’. This feature can be beneficial for long-term seed survival, but is undesirable for the food processing industry. There is substantial disagreement concerning the mechanisms and related structures that control the permeability properties of soybean seed coats. In this work, the structural component that controls water entry into the seed is identified. • Methods Six soybean cultivars were tested for their seed coat permeabilities to water. To identify the structural feature(s) that may contribute to the determination of these permeabilities, fluorescent tracer dyes, and light and electron microscopic techniques were used. • Key Results The cultivar ‘Tachanagaha’ has the most permeable seed coat, ‘OX 951’ the least permeable seed coat, and the permeabilities of the rest (‘Harovinton’, ‘Williams’, ‘Clark L 67-3469’, and ‘Harosoy 63’) are intermediate. All seeds have surface deposits, depressions, a light line, and a cuticle about 0·2 µm thick overlaying the palisade layer. In permeable cultivars the cuticle tends to break, whereas in impermeable seeds of ‘OX 951’ it remains intact. In the case of permeable seed coats, the majority of the cracks are from 1 to 5 µm wide and from 20 to 200 µm long, and occur more frequently on the dorsal side than in other regions of the seed coat, a position that correlates with the site of initial water uptake. • Conclusions The cuticle of the palisade layer is the key factor that determines the permeability property of a soybean seed coat. The cuticle of a permeable seed coat is mechanically weak and develops small cracks through which water can pass. The cuticle of an impermeable seed coat is mechanically strong and does not crack under normal circumstances. PMID:15217785

  9. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis.

    PubMed

    Yasuda, Michiko; Miwa, Hiroki; Masuda, Sachiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Okazaki, Shin

    2016-08-01

    Symbiosis between legumes and rhizobia leads to the formation of N2-fixing root nodules. In soybean, several host genes, referred to as Rj genes, control nodulation. Soybean cultivars carrying the Rj4 gene restrict nodulation by specific rhizobia such as Bradyrhizobium elkanii We previously reported that the restriction of nodulation was caused by B. elkanii possessing a functional type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria. In the present study, we investigated the molecular basis for the T3SS-dependent nodulation restriction in Rj4 soybean. Inoculation tests revealed that soybean cultivar BARC-2 (Rj4/Rj4) restricted nodulation by B. elkanii USDA61, whereas its nearly isogenic line BARC-3 (rj4/rj4) formed nitrogen-fixing nodules with the same strain. Root-hair curling and infection threads were not observed in the roots of BARC-2 inoculated with USDA61, indicating that Rj4 blocked B. elkanii infection in the early stages. Accumulation of H2O2 and salicylic acid (SA) was observed in the roots of BARC-2 inoculated with USDA61. Transcriptome analyses revealed that inoculation of USDA61, but not its T3SS mutant in BARC-2, induced defense-related genes, including those coding for hypersensitive-induced responsive protein, which act in effector-triggered immunity (ETI) in Arabidopsis. These findings suggest that B. elkanii T3SS triggers the SA-mediated ETI-type response in Rj4 soybean, which consequently blocks symbiotic interactions. This study revealed a common molecular mechanism underlying both plant-pathogen and plant-symbiont interactions, and suggests that establishment of a root nodule symbiosis requires the evasion or suppression of plant immune responses triggered by rhizobial effectors. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Use of soybean meal and papain to partially replace animal protein for culturing three marine fish species: Fish growth and water quality.

    PubMed

    Mo, W Y; Lau, R S S; Kwok, A C K; Wong, M H

    2016-12-01

    The main aim of this study was to investigate the feasibility of using soybean meal added with papain to replace half of the fishmeal used in the moist pellets (49% fishmeal and 45% trash fish) developed by the Hong Kong Agriculture, Fisheries and Conservation Department (AFCD) for culturing marine fish. Gold-lined seabream (Rhabdosargus sarba), brown spotted grouper (Epinephelus bleekeri) and pompano (Trachinotus blochii) were farmed at one of the research stations (Kat-O) of AFCD, for a period of 340 days. Results indicated that diets containing papain resulted in better fish growth (reflected by relative weight gain and feed conversion ratio) than diets without papain. In general, wet weight gain of fish depends on the amount of papain added in diet rather than the diet composition. Soybean used in conjunction with papain also contributed to a more effective growth than fish fed with the moist pellets alone. A laboratory experiment (using tanks) was conducted to study the effects of the diets on concentrations of ammonia, nitrite and nitrate in the tank water. Results showed that concentrations of ammonia and nitrate were significantly lower (p < 0.05) when the fish were fed with papain-supplemented (with or without soybean meal) diets. It is envisaged that by using plant protein incorporated with enzymes could promote better growth of marine fish and lower the adverse impact of trash fish and fishmeal on water quality of the mariculture zones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 7 CFR 1220.127 - Soybean products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Soybean products. 1220.127 Section 1220.127... CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.127 Soybean products. The term soybean products means products produced in whole or in part from soybeans or soybean byproducts. ...

  12. Particle size of roasted soybeans and the effect on milk production of dairy cows.

    PubMed

    Dhiman, T R; Korevaar, A C; Satter, L D

    1997-08-01

    Fifteen cows were used in an experiment with a 5 x 5 replicated Latin square design to quantify the effect of particle size of roasted soybeans on milk production and fecal excretion of soybeans. The five experimental periods were each 2 wk long. Diets contained (percentage of dry matter) 33% alfalfa silage, 17% corn silage, 30.6% high moisture ear corn, 18% soybeans, and 1.4% mineral supplement. The five dietary treatments included raw whole soybeans or roasted soybeans in four particle sizes (whole and half, half and quarter, quarter and smaller, and coarsely ground). Mean particle sizes of the raw soybeans and of the roasted soybeans in whole and half sizes were > 4.75 mm. Mean particle sizes of the roasted soybeans in half and quarter, quarter and smaller, and coarsely ground roasted soybeans were 2.92, 2.01, and 1.59, respectively. During the normal handling of roasted soybeans, a large number of seeds was broken into halves in the treatment with whole and half sizes (36%, wt/wt basis). Production of 3.5% fat-corrected milk was 35.4, 37.7, 37.2, 35.1, and 35.4 kg/d for cows fed raw soybeans; roasted soybeans in whole and half, half and quarter, and quarter and smaller sizes; and ground roasted soybeans, respectively. Cows that were fed raw soybeans excreted the largest amount of visible soybean particles in feces, and cows that were fed ground roasted soybeans had the least amount of soybeans in the feces (61.3 vs. 10.6 g of soybeans/kg of fecal dry matter). Roasted soybeans in half and quarter sizes are optimal for milk production.

  13. Approaches for Increasing Soybean Use by Low-Income Brazilian Families.

    ERIC Educational Resources Information Center

    Wright, Maria da Gloria Miotto; And Others

    1982-01-01

    Describes an educational/distributional campaign to increase use of soybeans by low-income Brazilian families. Initially, no families surveyed used soybeans but, after participating in a program on nutrition and soybeans, and free distribution of soybeans for one month, soybean usage by participants increased even when free soybeans were replaced…

  14. Occurrance in Korea of three major soybean viruses, Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYCMV), and Soybean yellow common mosaic virus (SYCMV) revealed by a nationwide survey of soybean fields

    USDA-ARS?s Scientific Manuscript database

    Soybean yellow mottle mosaic virus (SYMMV) and soybean yellow common mosaic virus (SYCMV) were recently isolated in Korea, and it hasn’t been reported how these two viruses were dispersed in Korea. In 2012, we performed a nationwide survey of subsistence soybean farms in Korea. Leaves that appeared ...

  15. Spectral Detection of Soybean Aphid (Hemiptera: Aphididae) and Confounding Insecticide Effects in Soybean

    NASA Astrophysics Data System (ADS)

    Alves, Tavvs Micael

    Soybean aphid, Aphis glycines (Hemiptera: Aphididae) is the primary insect pest of soybean in the northcentral United States. Soybean aphid may cause stunted plants, leaf discoloration, plant death, and decrease soybean yield by 40%. Sampling plans have been developed for supporting soybean aphid management. However, growers' perception about time involved in direct insect counts has been contributing to a lower adoption of traditional pest scouting methods and may be associated with the use of prophylactic insecticide applications in soybean. Remote sensing of plant spectral (light-derived) responses to soybean aphid feeding is a promising alternative to estimate injury without direct insect counts and, thus, increase adoption and efficiency of scouting programs. This research explored the use of remote sensing of soybean reflectance for detection of soybean aphids and showed that foliar insecticides may have implications for subsequent use of soybean spectral reflectance for pest detection. (Abstract shortened by ProQuest.).

  16. Effect of feeding tamarind kernel powder extract residue on digestibility, nitrogen availability and ruminal fermentation in wethers.

    PubMed

    Wang, Lin; Nakanishi, Takashi; Sato, Yoshiaki; Oishi, Kazato; Hirooka, Hiroyuki; Takahashi, Kei; Kumagai, Hajime

    2017-03-01

    This study was to examine in vivo digestibility, nitrogen balance and ruminal fermentation of tamarind ( Tamarind indica ) kernel powder extract residue (TKPER) compared to soybean products and by-products in wethers. Four wethers with initial body weight (BW) of 51.6±5.5 kg were assigned in a 4×4 Latin square design to investigate nutritional characteristics of TKPER, dry heat soybean (SB), dry soybean curd residue (SBCR) and soybean meal (SBM) feeding with ryegrass straw (R) at a ratio of 1:1 at 2% of BW in dry matter (DM) on a daily basis. The digestibility of DM, crude protein, and ether extract (EE) of TKPER-R diet were 57.0%, 87.0%, and 86.0%, respectively. Higher non-fiber carbohydrates digestibility was observed in TKPER-R diet (83.2%) than in SB-R diet (73.9%, p<0.05). Wethers fed the TKPER-R diet had lower retention of nitrogen (N) and ruminal ammonia nitrogen (NH 3 -N) contents at 4 h after feeding than those fed the SBM-R diet (p<0.05), which had values similar to the SB-R or SBCR-R diet. The TKPER feeding had higher propionate (C3) and lower butyrate content, as well as lower acetate to propionate ratio (C2:C3) in rumen fluid than SBM feeding at 4 h after feeding (p<0.05). TKPER did not bring any side effect to the wethers although it was lack of fiber, and could be used as a high protein and energy ingredient in concentrate with appropriate roughage to meet the fiber requirement for ruminants.

  17. [Quality of commercial inoculants for soybean crop in Argentina: concentration of viable rhizobia and presence of contaminants].

    PubMed

    Benintende, S

    2010-01-01

    In view of the inoculant production technology available, quality control is a necessary tool to improve soybean inoculants commercialized in Argentina. In 1988, the Facultad de Ciencias Agropecuarias de la Universidad Nacional de Entre Ríos (Argentina) created a quality control service for soybean crop inoculants to offer to farmers. The aim of this study was to evaluate the quality of soybean crop inoculants for seven cropping seasons and to contrast these results with those from previous investigations conducted in our country. This work was developed using 128 inoculant samples from 30 different trade names. The analyzed variables were: inoculant label information, number of viable rhizobia and presence of contaminants. Twenty per cent of the labels showed defects that did not comply with the Argentine legislation. The detected problems in inoculant labels were related to lot numbers or the expiry date, which lacked, was easy to remove or not visible. Eighty seven per cent of the analyzed inoculants were formulated in liquid carriers. Seventy six per cent of the samples had a number of rhizobia above 10(8) CFU/g or ml, the minimum quantity required by the legislation. Thirty per cent of the analyzed inoculants had contaminants and their presence was related to low rhizobia counts, as shown in a correspondence analysis. The relationship between liquid inoculants and the absence of contaminants was expressed. It can be concluded from the comparison of results found in this investigation with those in previous works published on Argentinean inoculants, that inoculant quality has been improved, although the situation is far from ideal. Adequate manufacturing and commercialization controls are necessary to ensure product quality.

  18. Controlled environments alter nutrient content of soybeans

    NASA Astrophysics Data System (ADS)

    Jurgonski, L. J.; Smart, D. J.; Bugbee, B.; Nielsen, S. S.

    1997-01-01

    Information about compositional changes in plants grown in controlled environments is essential for developing a safe, nutritious diet for a Controlled Ecological Life-Support System (CELSS). Information now is available for some CELSS candidate crops, but detailed information has been lacking for soybeans. To determine the effect of environment on macronutrient and mineral composition of soybeans, plants were grown both in the field and in a controlled environment where the hydroponic nutrient solution, photosynthetic flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at seed maturity, separated into discrete parts, and oven dried prior to chemical analysis. Plant material was analyzed for proximate composition (moisture, protein, lipid, ash, and carbohydrate), total nitrogen (N), nonprotein N (NPN), nitrate, minerals, amino acid composition, and total dietary fiber. The effect of environment on composition varied by cultivar and plant part. Chamber-grown plants generally exhibited the following characteristics compared with field-grown plants: 1) increased total N and protein N for all plant parts, 2) increased nitrate in leaves and stems but not in seeds, 3) increased lipids in seeds, and 4) decreased Ca:P ratio for stems, pods, and leaves. These trends are consistent with data for other CELSS crops. Total N, protein N, and amino acid contents for 350 ppm CO_2 and 1000 ppm CO_2 were similar for seeds, but protein N and amino acid contents for leaves were higher at 350 ppm CO_2 than at 1000 ppm CO_2. Total dietary fiber content of soybean leaves was higher with 350 ppm CO_2 than with 1000 ppm CO_2. Such data will help in selecting of crop species, cultivars, and growing conditions to ensure safe, nutritious diets for CELSS.

  19. Characterization of Aspergillus sojae Isolated from Meju, Korean Traditional Fermented Soybean Brick.

    PubMed

    Kim, Kyung Min; Lim, Jaeho; Lee, Jae Jung; Hurh, Byung-Serk; Lee, Inhyung

    2017-02-28

    Initially, we screened 18 Aspergillus sojae -like strains from Aspergillus spp. isolated from meju (Korean traditional fermented soybean brick) according to their morphological characteristics. Because members of Aspergillus section Flavi are often incorrectly identified because of their phylogenetic similarity, we re-identified these strains at the morphological and molecular genetic levels. Fourteen strains were finally identified as A. sojae . The isolates produced protease and α-amylase with ranges of 2.66-10.64 and 21.53-106.73 unit/g-initial dry substrate (U/g-IDS), respectively, which were equivalent to those of the koji (starter mold) strains employed to produce Japanese soy sauce. Among the isolates and Japanese koji strains, strains SMF 127 and SMF 131 had the highest leucine aminopeptidase (LAP) activities at 6.00 and 6.06 U/g-IDS, respectively. LAP plays an important role in flavor development because of the production of low-molecular-weight peptides that affect the taste and decrease bitterness. SMF 127 and SMF 131 appeared to be non-aflatoxigenic because of a termination point mutation in aflR and the lack of the polyketide synthase gene found in other A. sojae strains. In addition, SMF 127 and SMF 131 were not cyclopiazonic acid (CPA) producers because of the deletion of maoA , dmaT , and pks/nrps , which are involved in CPA biosynthesis. Therefore, A. sojae strains such as SMF 127 and SMF 131, which have high protease and LAP activities and are free of safety issues, can be considered good starters for soybean fermentations, such as in the production of the Korean fermented soybean products meju, doenjang, and ganjang.

  20. Detection and validation of single feature polymorphisms in cowpea (Vigna unguiculata L. Walp) using a soybean genome array.

    PubMed

    Das, Sayan; Bhat, Prasanna R; Sudhakar, Chinta; Ehlers, Jeffrey D; Wanamaker, Steve; Roberts, Philip A; Cui, Xinping; Close, Timothy J

    2008-02-28

    Cowpea (Vigna unguiculata L. Walp) is an important food and fodder legume of the semiarid tropics and subtropics worldwide, especially in sub-Saharan Africa. High density genetic linkage maps are needed for marker assisted breeding but are not available for cowpea. A single feature polymorphism (SFP) is a microarray-based marker which can be used for high throughput genotyping and high density mapping. Here we report detection and validation of SFPs in cowpea using a readily available soybean (Glycine max) genome array. Robustified projection pursuit (RPP) was used for statistical analysis using RNA as a surrogate for DNA. Using a 15% outlying score cut-off, 1058 potential SFPs were enumerated between two parents of a recombinant inbred line (RIL) population segregating for several important traits including drought tolerance, Fusarium and brown blotch resistance, grain size and photoperiod sensitivity. Sequencing of 25 putative polymorphism-containing amplicons yielded a SFP probe set validation rate of 68%. We conclude that the Affymetrix soybean genome array is a satisfactory platform for identification of some 1000's of SFPs for cowpea. This study provides an example of extension of genomic resources from a well supported species to an orphan crop. Presumably, other legume systems are similarly tractable to SFP marker development using existing legume array resources.

  1. The Soybean GmNARK Affects ABA and Salt Responses in Transgenic Arabidopsis thaliana

    PubMed Central

    Cheng, Chunhong; Li, Changman; Wang, Diandong; Zhai, Lifeng; Cai, Zhaoming

    2018-01-01

    GmNARK (Glycine max nodule autoregulation receptor kinase) is the homolog of Arabidopsis thaliana CLAVATA1 (CLV1) and one of the most important regulators in the process of AON (Autoregulation of Nodulation), a process that restricts excessive nodule numbers in soybean. However, except for the function in AON, little is known about this gene. Here, we report that GmNARK plays important roles in process of plant response to abiotic stresses. Bioinformatic analysis and subcellular localization experiment results showed that GmNARK was a putative receptor like kinase and located at membrane. The promoter of GmNARK contains manifold cis regulatory elements that are responsive to hormone and stresses. Gene transcript expression pattern analysis in soybean revealed GmNARK was induced by ABA and NaCl treatment in both shoot and root. Overexpression of GmNARK in Arabidopsis resulted in higher sensitivity to ABA and salt treatment during seed germination and greening stages. We also checked the expression levels of some ABA response genes in the transgenic lines; the results showed that the transcript level of all the ABA response genes were much higher than that of wild type under ABA treatment. Our results revealed a novel role of GmNARK in response to abiotic stresses during plant growth and development. PMID:29720993

  2. 7 CFR 1220.313 - Qualified State Soybean Boards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Qualified State Soybean Boards. 1220.313 Section 1220... SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN... Soybean Boards. The following State soybean promotion organizations shall be Qualified State Soybean...

  3. Heating affects the content and distribution profile of isoflavones in steamed black soybeans and black soybean koji.

    PubMed

    Huang, Ru-Yue; Chou, Cheng-Chun

    2008-09-24

    Steamed black soybeans and black soybean koji, a potentially functional food additive, were subjected to heating at 40-100 degrees C for 30 min. It was found that steamed black soybeans and black soybean koji after heating at 80 degrees C or higher generally showed reduced contents of malonylglucoside, acetylglucoside, and aglycone isoflavone and an increased content of beta-glucoside. A lower reduction in malonylglucoside and acetylglucoside isoflavone but greater reduction in aglycone content was noted in steamed black soybeans compared to black soybean koji after a similar heat treatment. After 30 min of heating at 100 degrees C, steamed black soybean retained ca. 90.3 and 83.8%, respectively, of its original malonylglucoside and acetylglucoside isoflavone, compared to lower residuals of 80.9 and 78.8%, respectively, for black soybean koji. In contrast, the heated black soybeans showed an aglycone residual of 68.0%, which is less than the 80.0% noted with the heated black soybean koji.

  4. Hidden Nickel Deficiency? Nickel Fertilization via Soil Improves Nitrogen Metabolism and Grain Yield in Soybean Genotypes.

    PubMed

    Siqueira Freitas, Douglas; Wurr Rodak, Bruna; Rodrigues Dos Reis, André; de Barros Reis, Fabio; Soares de Carvalho, Teotonio; Schulze, Joachim; Carbone Carneiro, Marco A; Guimarães Guilherme, Luiz R

    2018-01-01

    Nickel (Ni)-a component of urease and hydrogenase-was the latest nutrient to be recognized as an essential element for plants. However, to date there are no records of Ni deficiency for annual species cultivated under field conditions, possibly because of the non-appearance of obvious and distinctive symptoms, i.e., a hidden (or latent) deficiency. Soybean, a crop cultivated on soils poor in extractable Ni, has a high dependence on biological nitrogen fixation (BNF), in which Ni plays a key role. Thus, we hypothesized that Ni fertilization in soybean genotypes results in a better nitrogen physiological function and in higher grain production due to the hidden deficiency of this micronutrient. To verify this hypothesis, two simultaneous experiments were carried out, under greenhouse and field conditions, with Ni supply of 0.0 or 0.5 mg of Ni kg -1 of soil. For this, we used 15 soybean genotypes and two soybean isogenic lines (urease positive, Eu3 ; urease activity-null, eu3-a , formerly eu3-e1 ). Plants were evaluated for yield, Ni and N concentration, photosynthesis, and N metabolism. Nickel fertilization resulted in greater grain yield in some genotypes, indicating the hidden deficiency of Ni in both conditions. Yield gains of up to 2.9 g per plant in greenhouse and up to 1,502 kg ha -1 in field conditions were associated with a promoted N metabolism, namely, leaf N concentration, ammonia, ureides, urea, and urease activity, which separated the genotypes into groups of Ni responsiveness. Nickel supply also positively affected photosynthesis in the genotypes, never causing detrimental effects, except for the eu3-a mutant, which due to the absence of ureolytic activity accumulated excess urea in leaves and had reduced yield. In summary, the effect of Ni on the plants was positive and the extent of this effect was controlled by genotype-environment interaction. The application of 0.5 mg kg -1 of Ni resulted in safe levels of this element in grains for human health consumption. Including Ni applications in fertilization programs may provide significant yield benefits in soybean production on low Ni soil. This might also be the case for other annual crops, especially legumes.

  5. Disruption of Rpp1-mediated soybean rust resistance by virus-induced gene silencing

    USDA-ARS?s Scientific Manuscript database

    Soybean rust is a fungus that causes disease on soybeans. The discovery of soybean genes and proteins that are important for disease resistance to soybean rust may help improve soybean cultivars through breeding or transgenic technology. Proteins previously discovered in the cell nucleus of soybea...

  6. Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects.

    PubMed

    Al Loman, Abdullah; Ju, Lu-Kwang

    2017-11-01

    Soybean is well known for its high-value oil and protein. Carbohydrate is, however, an underutilized major component, representing almost 26-30% (w/w) of the dried bean. The complex soybean carbohydrate is not easily hydrolyzable and can cause indigestibility when included in food and feed. Enzymes can be used to hydrolyze the carbohydrate for improving soybean processing and value of soybean products. Here the enzyme-based processing developed for the following purposes is reviewed: hydrolysis of different carbohydrate-rich by/products from soybean processing, improvement of soybean oil extraction, and increase of nutritional value of soybean-based food and animal feed. Once hydrolyzed into fermentable sugars, soybean carbohydrate can find more value-added applications and further improve the overall economics of soybean processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Improvement of Soybean Products Through the Response Mechanism Analysis Using Proteomic Technique.

    PubMed

    Wang, Xin; Komatsu, Setsuko

    Soybean is rich in protein/vegetable oil and contains several phytochemicals such as isoflavones and phenolic compounds. Because of the predominated nutritional values, soybean is considered as traditional health benefit food. Soybean is a widely cultivated crop; however, its growth and yield are markedly affected by adverse environmental conditions. Proteomic techniques make it feasible to map protein profiles both during soybean growth and under unfavorable conditions. The stress-responsive mechanisms during soybean growth have been uncovered with the help of proteomic studies. In this review, the history of soybean as food and the morphology/physiology of soybean are described. The utilization of proteomics during soybean germination and development is summarized. In addition, the stress-responsive mechanisms explored using proteomic techniques are reviewed in soybean. © 2017 Elsevier Inc. All rights reserved.

  8. Potential Overwintering Locations of Soybean Aphid (Hemiptera: Aphididae) Colonizing Soybean in Ohio and Wisconsin.

    PubMed

    Crossley, Michael S; Hogg, David B

    2015-04-01

    Soybean aphids, Aphis glycines Matsumura, depend on long-distance, wind-aided dispersal to complete their life cycle. Despite our general understanding of soybean aphid biology, little is explicitly known about dispersal of soybean aphids between winter and summer hosts in North America. This study compared genotypic diversity of soybean aphids sampled from several overwintering locations in the Midwest and soybean fields in Ohio and Wisconsin to test the hypothesis that these overwintering locations are sources of the soybean colonists. In addition, air parcel trajectory analyses were used to demonstrate the potential for long-distance dispersal events to occur to or from these overwintering locations. Results suggest that soybean aphids from overwintering locations along the Illinois-Iowa border and northern Indiana-Ohio are potential colonists of soybean in Ohio and Wisconsin, but that Ohio is also colonized by soybean aphids from other unknown overwintering locations. Soybean aphids in Ohio and Wisconsin exhibit a small degree of population structure that is not associated with the locations of soybean fields in which they occur, but that may be related to specific overwintering environments, multiple introductions to North America, or spatial variation in aphid phenology. There may be a limited range of suitable habitat for soybean aphid overwintering, in which case management of soybean aphids may be more effective at their overwintering sites. Further research efforts should focus on discovering more overwintering locations of soybean aphid in North America, and the relative impact of short- and long-distance dispersal events on soybean aphid population dynamics. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams

    PubMed Central

    Kovtun, Anna; Goeckelmann, Melanie J.; Niclas, Antje A.; Montufar, Edgar B.; Ginebra, Maria-Pau; Planell, Josep A.; Santin, Matteo; Ignatius, Anita

    2015-01-01

    Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20 weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects. PMID:25448348

  10. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams.

    PubMed

    Kovtun, Anna; Goeckelmann, Melanie J; Niclas, Antje A; Montufar, Edgar B; Ginebra, Maria-Pau; Planell, Josep A; Santin, Matteo; Ignatius, Anita

    2015-01-01

    Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  11. Elicited soybean (Glycine max) extract effect on improving levels of Ter-119+Cd59+ in a mouse model fed a high fat-fructose diet

    NASA Astrophysics Data System (ADS)

    Safitri, Yunita Diyah; Widyarti, Sri; Rifa'i, Muhaimin

    2017-05-01

    People who have unbalanced lifestyles and habits such as consuming high fat and sugar foods, as well as the lack of physical activity, have an increased risk of obesity and related metabolic diseases. The condition of obesity occurs due to an excess of nutrients which leads to low-grade inflammation. Inflammation induced by obesity causes unstable bone marrow homeostasis which is associated with proliferation and differentiation of Hematopoietic Stem Cells (HSCs). This study aimed to observe the erythroid progenitor (TER-119) and complement regulator (CD59) on bone marrow cells in mouse models fed a high fat-fructose diet (HFFD). This research was conducted by modeling obese mice using high fat and fructose food for 20 weeks, and then treating them with elicited soybean extract (ESE) for four weeks with several doses: low dose (78 mg/kgBB), moderate dose (104 mg/kgBB) and high dose (130 mg/kgBB). Cell TER119+CD59+ expression decreased in the HFFD group compared to the normal group. In the low, moderate and high dose group, TER119+CD59+ expression significantly increased compared to the HFFD group. These results demonstrate that soybean elicited extract can improve the hematopoietic system by increasing TER119+CD59+ expression in a high fat and fructose diet mouse model.

  12. [Rapid determination of the components in ternary blended edible oil using near infrared transmission spectroscopy].

    PubMed

    Liu, Fu-Li; Chen, Hua-Cai

    2009-08-01

    The FT-NIR transmission spectra of ternary blended edible oil samples were collected over 10 000-4 200 cm(-1). After being pretreated with different methods, the calibration models of quantitative analysis of soybean oil, peanut oil and corn oil contents in ternary blended edible oil were established using partial least square (PLS) regression. The accuracy and precision of the models for the predicted sample set were examined to make sure of the practicability of the models. After being pretreated with first derivative and multiplicative signal correction (FD+MSC), the optimal soybean oil NIR model was built over 5 450.1-4 597.7 cm(-1). The best prediction model for peanut oil was established between 7 521.3 and 6 098.1 cm(-1) after using first derivative with straight line subtraction (FD+SLS) preprocess method. The best pretreated method and the best spectrum range for corn oil content model were first derivative (FD) and 9 993.7-7 498.2 cm(-1), respectively. The best correlation coefficients (R2) of the three prediction models were 99.89%, 99.88% and 99.76%, respectively. The RMSEP of the soybean oil content model was 1.09%, while the peanut oil prediction model's RMSEP was 1.17%, and 1.48% for the corn oil prediction model. The values of the t-test were between 0.007 9 and 0.371 9, and all values of the relative standard deviation (RSD) were less than 1.50%. The results showed that NIR could be an ideal tool for fast determination of the soybean oil, peanut oil and corn oil contents in ternary blended edible oil.

  13. Identification of transcriptional regulatory nodes in soybean defense networks using transient co-transactivation assays

    PubMed Central

    Wang, Yongli; Wang, Hui; Ma, Yujie; Du, Haiping; Yang, Qing; Yu, Deyue

    2015-01-01

    Plant responses to major environmental stressors, such as insect feeding, not only occur via the functions of defense genes but also involve a series of regulatory factors. Our previous transcriptome studies proposed that, in addition to two defense-related genes, GmVSPβ and GmN:IFR, a high proportion of transcription factors (TFs) participate in the incompatible soybean-common cutworm interaction networks. However, the regulatory mechanisms and effects of these TFs on those induced defense-related genes remain unknown. In the present work, we isolated and identified 12 genes encoding MYB, WRKY, NAC, bZIP, and DREB TFs from a common cutworm-induced cDNA library of a resistant soybean line. Sequence analysis of the promoters of three co-expressed genes, including GmVSPα, GmVSPβ, and GmN:IFR, revealed the enrichment of various TF-binding sites for defense and stress responses. To further identify the regulatory nodes composed of these TFs and defense gene promoters, we performed extensive transient co-transactivation assays to directly test the transcriptional activity of the 12 TFs binding at different levels to the three co-expressed gene promoters. The results showed that all 12 TFs were able to transactivate the GmVSPβ and GmN:IFR promoters. GmbZIP110 and GmMYB75 functioned as distinct regulators of GmVSPα/β and GmN:IFR expression, respectively, while GmWRKY39 acted as a common central regulator of GmVSPα/β and GmN:IFR expression. These corresponding TFs play crucial roles in coordinated plant defense regulation, which provides valuable information for understanding the molecular mechanisms involved in insect-induced transcriptional regulation in soybean. More importantly, the identified TFs and suitable promoters can be used to engineer insect-resistant plants in molecular breeding studies. PMID:26579162

  14. Enhanced iron and zinc accumulation in genetically engineered pineapple plants using soybean ferritin gene.

    PubMed

    Mhatre, Minal; Srinivas, Lingam; Ganapathi, Thumballi R

    2011-12-01

    Pineapple (Ananas comosus L. Merr., cv. "Queen") leaf bases were transformed with Agrobacterium tumefaciens strain EHA 105 harboring the pSF and pEFESF plasmids with soybean ferritin cDNA. Four to eight percent of the co-cultivated leaf bases produced multiple shoots 6 weeks after transfer to Murashige and Skoog's medium supplemented with α-naphthalene acetic acid 1.8 mg/l, indole-3-butyric acid 2.0 mg/l, kinetin 2.0 mg/l, cefotaxime 400 mg/l, and kanamycin 50 mg/l. Putatively transformed shoots (1-2 cm) were selected and multiplied on medium of the same composition and elongated shoots (5 cm) were rooted on liquid rooting medium supplemented with cefotaxime 400 mg/l and kanamycin 100 mg/l. The rooted plants were analyzed through PCR, genomic Southern analysis, and reverse transcription PCR. The results clearly confirmed the integration and expression of soybean ferritin gene in the transformed plants. Atomic absorption spectroscopic analysis carried out with six independently transformed lines of pSF and pEFE-SF revealed a maximum of 5.03-fold increase in iron and 2.44-fold increase in zinc accumulation in the leaves of pSF-transformed plants. In pEFE-SF-transformed plants, a 3.65-fold increase in iron and 2.05-fold increase in zinc levels was observed. Few of the transgenic plants were hardened in the greenhouse and are being grown to maturity to determine the enhanced iron and zinc accumulation in the fruits. To the best of our knowledge this is the first report on the transformation of pineapple with soybean ferritin for enhanced accumulation of iron and zinc content in the transgenic plants.

  15. A high throughput soybean gene identification system developed using soybean yellow common mosaic virus (SYCMV)

    USDA-ARS?s Scientific Manuscript database

    Soybean yellow common mosaic virus (SYCMV) was recently reported from Korea, and a subsequent survey of soybean fields found that SYCMV, Soybean yellow mottle mosaic virus (SYMMV), and Soybean mosaic virus (SMV) infections were widespread. SYCMV has recently been developed into a Virus Inducing Gene...

  16. 7 CFR 1220.312 - Remittance of assessments and submission of reports to United Soybean Board or Qualified State...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to United Soybean Board or Qualified State Soybean Board. 1220.312 Section 1220.312 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND... of reports to United Soybean Board or Qualified State Soybean Board. (a) Each first purchaser and...

  17. 7 CFR 1220.312 - Remittance of assessments and submission of reports to United Soybean Board or Qualified State...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to United Soybean Board or Qualified State Soybean Board. 1220.312 Section 1220.312 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND... of reports to United Soybean Board or Qualified State Soybean Board. (a) Each first purchaser and...

  18. A Standard Greenhouse Method for Assessing Soybean Cyst Nematode Resistance in Soybean: SCE08 (Standardized Cyst Evaluation 2008)

    USDA-ARS?s Scientific Manuscript database

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is distributed throughout the soybean (Glycine max [L.] Merr.) production areas of the United States and Canada. SCN remains the most economically important pathogen of soybean in North America; the most recent estimate of soybean yield...

  19. The U.S. Soybean Industry. Agricultural Economic Report Number 588.

    ERIC Educational Resources Information Center

    Schaub, James; And Others

    This report describes the U.S. soybean industry from producers to consumers and provides a single source of economic and statistical information on soybeans. Highlights are as follows: U.S. soybean production has increased sevenfold since 1950, making soybeans the second highest valued crop after corn. Soybean production has risen in response to…

  20. Protein profile of mature soybean seeds and prepared soybean milk.

    PubMed

    Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Samperi, Roberto; Stampachiacchiere, Serena; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2014-10-08

    The soybean (Glycine max (L.) Merrill) is economically the most important bean in the world, providing a wide range of vegetable proteins. Soybean milk is a colloidal solution obtained as water extract from swelled and ground soybean seeds. Soybean proteins represent about 35-40% on a dry weight basis and they are receiving increasing attention with respect to their health effects. However, the soybean is a well-recognized allergenic food, and therefore, it is urgent to define its protein components responsible for the allergenicity in order to develop hypoallergenic soybean products for sensitive people. The main aim of this work was the characterization of seed and milk soybean proteome and their comparison in terms of protein content and specific proteins. Using a shotgun proteomics approach, 243 nonredundant proteins were identified in mature soybean seeds.

  1. Mycobiome of Cysts of the Soybean Cyst Nematode Under Long Term Crop Rotation.

    PubMed

    Hu, Weiming; Strom, Noah; Haarith, Deepak; Chen, Senyu; Bushley, Kathryn E

    2018-01-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Phylum Nematoda), is a major pathogen of soybean. It causes substantial yield losses worldwide and is difficult to control because the cyst protects the eggs which can remain viable for nearly a decade. Crop rotation with non-host crops and use of biocontrol organisms such as fungi and bacteria offer promising approaches, but remain hampered by lack of knowledge of the biology of nematode parasitic organisms. We used a high-throughput metabarcoding approach to characterize fungal communities associated with the SCN cyst, a microenvironment in soil that may harbor both nematode parasites and plant pathogens. SCN cysts were collected from a long-term crop rotation experiment in Southeastern Minnesota at three time points over two growing seasons to characterize diversity of fungi inhabiting cysts and to examine how crop rotation and seasonal variation affects fungal communities. A majority of fungi in cysts belonged to Ascomycota and Basidiomycota, but the presence of several early diverging fungal subphyla thought to be primarily plant and litter associated, including Mortierellomycotina and Glomeromycotina (e.g., arbuscular mycorrhizal fungi), suggests a possible role as nematode egg parasites. Species richness varied by both crop rotation and season and was higher in early years of crop rotation and in fall at the end of the growing season. Crop rotation and season also impacted fungal community composition and identified several classes of fungi, including Eurotiomycetes, Sordariomycetes, and Orbiliomycetes (e.g., nematode trapping fungi), with higher relative abundance in early soybean rotations. The relative abundance of several genera was correlated with increasing years of soybean. Fungal communities also varied by season and were most divergent at midseason. The percentage of OTUs assigned to Mortierellomycotina_cls_Incertae_sedis and Sordariomycetes increased at midseason, while Orbiliomycetes decreased at midseason, and Glomeromycetes increased in fall. Ecological guilds of fungi containing an animal-pathogen lifestyle, as well as potential egg-parasitic taxa previously isolated from parasitized SCN eggs, increased at midseason. The animal pathogen guilds included known (e.g., Pochonia chlamydosporia ) and new candidate biocontrol organisms. This research advances knowledge of the ecology of nematophagous fungi in agroecosystems and their use as biocontrol agents of the SCN.

  2. A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences

    PubMed Central

    Guo, Juan; Wang, Yunsheng; Song, Chi; Zhou, Jianfeng; Qiu, Lijuan; Huang, Hongwen; Wang, Ying

    2010-01-01

    Background and Aims It is essential to illuminate the evolutionary history of crop domestication in order to understand further the origin and development of modern cultivation and agronomy; however, despite being one of the most important crops, the domestication origin and bottleneck of soybean (Glycine max) are poorly understood. In the present study, microsatellites and nucleotide sequences were employed to elucidate the domestication genetics of soybean. Methods The genomes of 79 landrace soybeans (endemic cultivated soybeans) and 231 wild soybeans (G. soja) that represented the species-wide distribution of wild soybean in East Asia were scanned with 56 microsatellites to identify the genetic structure and domestication origin of soybean. To understand better the domestication bottleneck, four nucleotide sequences were selected to simulate the domestication bottleneck. Key Results Model-based analysis revealed that most of the landrace genotypes were assigned to the inferred wild soybean cluster of south China, South Korea and Japan. Phylogeny for wild and landrace soybeans showed that all landrace soybeans formed a single cluster supporting a monophyletic origin of all the cultivars. The populations of the nearest branches which were basal to the cultivar lineage were wild soybeans from south China. The coalescent simulation detected a bottleneck severity of K′ = 2 during soybean domestication, which could be explained by a foundation population of 6000 individuals if domestication duration lasted 3000 years. Conclusions As a result of integrating geographic distribution with microsatellite genotype assignment and phylogeny between landrace and wild soybeans, a single origin of soybean in south China is proposed. The coalescent simulation revealed a moderate genetic bottleneck with an effective wild soybean population used for domestication estimated to be ≈2 % of the total number of ancestral wild soybeans. Wild soybeans in Asia, especially in south China contain tremendous genetic resources for cultivar improvement. PMID:20566681

  3. A Review on Current Status and Future Prospects of Winged Bean (Psophocarpus tetragonolobus) in Tropical Agriculture.

    PubMed

    Lepcha, Patrush; Egan, Ashley N; Doyle, Jeff J; Sathyanarayana, N

    2017-09-01

    Winged bean, Psophocarpus tetragonolobus (L.) DC., is analogous to soybean in yield and nutritional quality, proving a valuable alternative to soybean in tropical regions of the world. The presence of anti-nutritional factors and high costs associated with indeterminate plant habit have been major concerns in this crop. But occurrence of good genetic variability in germplasm collections offers precious resources for winged bean breeding. However, lack of germplasm characterization is hindering such efforts. From a genomic standpoint, winged bean has been little studied despite rapid advancement in legume genomics in the last decade. Exploiting modern genomics/breeding approaches for genetic resource characterization and the breeding of early maturing, high yielding, determinate varieties which are disease resistant and free of anti-nutritional factors along with developing consumer friendly value-added products of local significance are great challenges and opportunities in the future that would boost cultivation of winged bean in the tropics. We review past efforts and future prospects towards winged bean improvement.

  4. Eastern Iowa, Northwestern Illinois

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This view of the Mississippi and Iowa River Valleys (41.5N, 90.5W) shows the rich agricultural region of the upper midwest. Most of the farms occupy one statute mile squares bounded by roads that coincide with the section lines used in the township and range system of surveying practiced in the U.S. central plains, the heart of the great corn belt. Other crops grown in the region include oats, soybeans, hay and alfalfa.

  5. Dissipation behavior and risk assessment of butralin in soybean and soil under field conditions.

    PubMed

    Li, Congdi; Liu, Rong; Li, Li; Li, Wei; He, Yujian; Yuan, Longfei

    2017-08-29

    Dissipation behavior, final residue, and risk assessment of butralin in soybean, green soybean, plant, and soil were investigated. Butralin residues were extracted with acetonitrile and then soybean samples were detected with gas chromatography-mass spectrometer (GC-MS) and soil samples were determined with GC with nitrogen phosphorous detector (GC-NPD). The limit of quantification (LOQ) of the method was 0.01 mg/kg for soybean, green soybean, plant, and soil. Average recoveries ranged from 90.4 ~ 98.2% for green soybean, 86.2 ~ 86.6% for soybean, 86.0 ~ 98.8% for plant, and 85.0 ~ 106.8% for soil. The relative standard deviations (RSDs) were 2.0 ~ 7.2% for green soybean, 2.0 ~ 3.0% for soybean, 3.1 ~ 8.1% for plant, and 1.8 ~ 6.6% for soil. Half-lives of butralin in soil samples varied in the range of 11-22 days. At harvest time, final residues of butralin in soybean and green soybean were lower than LOQ. Risk assessment demonstrated that, at recommended dosage and frequency, butralin would not induce significant harm on humans. The study could be used as a quantitative basis for application of butralin on soybean.

  6. Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing.

    PubMed

    McCann, Melinda C; Liu, Keshun; Trujillo, William A; Dobert, Raymond C

    2005-06-29

    Previous studies have shown that the composition of glyphosate-tolerant soybeans (GTS) and selected processed fractions was substantially equivalent to that of conventional soybeans over a wide range of analytes. This study was designed to determine if the composition of GTS remains substantially equivalent to conventional soybeans over the course of several years and when introduced into multiple genetic backgrounds. Soybean seed samples of both GTS and conventional varieties were harvested during 2000, 2001, and 2002 and analyzed for the levels of proximates, lectin, trypsin inhibitor, and isoflavones. The measured analytes are representative of the basic nutritional and biologically active components in soybeans. Results show a similar range of natural variability for the GTS soybeans as well as conventional soybeans. It was concluded that the composition of commercial GTS over the three years of breeding into multiple varieties remains equivalent to that of conventional soybeans.

  7. 7 CFR 1220.128 - Soybeans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Soybeans. 1220.128 Section 1220.128 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.128 Soybeans. The term...

  8. 7 CFR 1220.128 - Soybeans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Soybeans. 1220.128 Section 1220.128 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.128 Soybeans. The term...

  9. Soybean Genetics

    USDA-ARS?s Scientific Manuscript database

    Soybean genetics is a broad area encompassing all aspects, such as qualitative genetics, molecular genetics, etc. The objective of this book chapter was to include information that could be used for soybean improvement, and to summarize the current status of soybean genomics. Soybean germplasm is ...

  10. Geographic distribution of soybean aphid biotypes in USA and Canada during 2008 - 2010

    USDA-ARS?s Scientific Manuscript database

    The soybean aphid (Aphis glycines Matsumura) is a native pest of soybean in eastern Asia and was detected on soybeans in North America in 2000. In 2004, the soybean variety ‘“Dowling”’ was described to be resistant to soybean aphids with the Rag1 gene for resistance. In 2006, a virulent biotype of s...

  11. SOYBEAN.APHID.SD.2017

    USDA-ARS?s Scientific Manuscript database

    Infestations by soybean aphid (SA) can reduce soybean yield. Thus, SA-resistant soybean may be useful in reducing infestations and limiting yield loss. Expression of resistance was characterized among 746 soybean accessions in 56 growth chamber tests at the North Central Agricultural Research Labo...

  12. 7 CFR 1220.614 - Soybeans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Soybeans. 1220.614 Section 1220.614 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.614 Soybeans. Soybeans means all...

  13. 7 CFR 1220.614 - Soybeans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Soybeans. 1220.614 Section 1220.614 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.614 Soybeans. Soybeans means all...

  14. 7 CFR 1220.219 - Powers of the Committee.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Soybean Program Coordinating Committee § 1220.219... use of soybeans and soybean products as well as plans or projects for promotion, research, consumer...

  15. 7 CFR 1220.127 - Soybean products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Soybean products. 1220.127 Section 1220.127... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.127 Soybean products. The term...

  16. Nutritional requirements for soybean cyst nematode

    USDA-ARS?s Scientific Manuscript database

    Soybeans [Glycine max] are the second largest cash crop in US Agriculture, but the soybean yield is compromised by infections from Heterodera glycines, also known as Soybean Cyst Nematodes [SCN]. SCN are the most devastating pathogen or plant disease soybean producers confront. This obligate parasi...

  17. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    PubMed Central

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  18. Pathogenic Variation of Phakopsora pachyrhizi Infecting Soybean in Nigeria

    USDA-ARS?s Scientific Manuscript database

    Soybean rust is an important disease in Nigeria and many other soybean-producing countries world-wide. To determine the geographical distribution of soybean rust in Nigeria, soybean fields were surveyed in the Derived Savanna, Northern Guinea Savanna, and Southern Guinea Savanna agroecological zones...

  19. Host Adaptation of Soybean Dwarf Virus Following Serial Passages on Pea (Pisum sativum) and Soybean (Glycine max)

    PubMed Central

    Tian, Bin; Gildow, Frederick E.; Stone, Andrew L.; Sherman, Diana J.; Damsteegt, Vernon D.; Schneider, William L.

    2017-01-01

    Soybean Dwarf Virus (SbDV) is an important plant pathogen, causing economic losses in soybean. In North America, indigenous strains of SbDV mainly infect clover, with occasional outbreaks in soybean. To evaluate the risk of a US clover strain of SbDV adapting to other plant hosts, the clover isolate SbDV-MD6 was serially transmitted to pea and soybean by aphid vectors. Sequence analysis of SbDV-MD6 from pea and soybean passages identified 11 non-synonymous mutations in soybean, and six mutations in pea. Increasing virus titers with each sequential transmission indicated that SbDV-MD6 was able to adapt to the plant host. However, aphid transmission efficiency on soybean decreased until the virus was no longer transmissible. Our results clearly demonstrated that the clover strain of SbDV-MD6 is able to adapt to soybean crops. However, mutations that improve replication and/or movement may have trade-off effects resulting in decreased vector transmission. PMID:28635666

  20. Heat-treated hull flour does not affect iron bioavailability in rats.

    PubMed

    Martino, Hércia Stampini Duarte; Carvalho, Ariela Werneck de; Silva, Cassiano Oliveira da; Dantas, Maria Inês de Souza; Natal, Dorina Isabel Gomes; Ribeiro, Sônia Machado Rocha; Costa, Neuza Maria Brunoro

    2011-06-01

    In this study the chemical composition and iron bioavailability of hull and hull-less soybean flour from the new cultivar UFVTN 105AP was evaluated. The hemoglobin depletion-repletion method was used in Wistar rats. Soybean hull flour presented 37% more total dietary fiber and higher content of iron than hull-less soybean flour. The phytate:iron molar ratio, however, was 2-fold lower in the soybean hull flour in compared to the hull-less soybean flour. Animals fed soybean hull flour presented hemoglobin gains similar to those of the control diet group (p > 0.05). The Relative Biological Values of hull and hull-less soybean flour were 68.5% and 67.1%, respectively, compared to the control group. Heat-treated soybean hull flour (150 degrees C/30 minutes) showed high content of iron and low phytate, which favors the iron bioavailability. Thus, the soybean hull flour is a better source of dietary fiber and iron than hull-less soybean flour at comparable bioavailabilities.

  1. The causes of genetic male sterility in 3 soybaen lines.

    PubMed

    Rubaihayo, P R; Gumisiriza, G

    1978-11-01

    The cause of male sterility in 3 soybean lines, TGM 103-1, N-69-2774 and TGM 242-4 was studied. In TGM 103-1, which was both male and female sterile, two different abnormalities were associated with sterility. Precocious movement of a few chromosomes at the metaphase I stage resulted into the production of non-functional pollen while cells which underwent apparent normal meiotic division had disintergration of the tapetal cell wall immediately after the free microspore stage leading to the starvation and subsequent death of the developing microspores. In lines N-69-2774 and TGM 242-4, both of which were partially sterile, male sterility resulted from a failure of cytokinesis after the telophase II stage. Meiosis proceeded normally but the 4 microspores after telophase II failed to separate into pollen grains and degenerated thereafter.

  2. Developing processing techniques for Skylab data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Malila, W. A.; Morgenstern, J. P.

    1975-01-01

    The author has identified the following significant results. The effects of misregistration and the scan-line-straightening algorithm on multispectral data were found to be: (1) there is greatly increased misregistration in scan-line-straightening data over conic data; (2) scanner caused misregistration between any pairs of channels may not be corrected for in scan-line-straightened data; and (3) this data will have few pure field center pixels than will conic data. A program SIMSIG was developed implementing the signature simulation model. Data processing stages of the experiment were carried out, and an analysis was made of the effects of spatial misregistration on field center classification accuracy. Fifteen signatures originally used for classifying the data were analyzed, showing the following breakdown: corn (4 signatures), trees (2), brush (1), grasses, weeds, etc. (5), bare soil (1), soybeans (1), and alfalfa (1).

  3. Trichoderma harzianum containing 1-aminocyclopropane-1-carboxylate deaminase and chitinase improved growth and diminished adverse effect caused by Fusarium oxysporum in soybean.

    PubMed

    Zhang, Fuli; Chen, Can; Zhang, Fan; Gao, Lidong; Liu, Jidong; Chen, Long; Fan, Xiaoning; Liu, Chang; Zhang, Ke; He, Yuting; Chen, Chen; Ji, Xiue

    2017-03-01

    An isolate, named Trichoderma harzianum T-soybean, showed growth-promoting for soybean seedlings and induced resistance to Fusarium oxysporum under greenhouse. Compared to control soybean seedlings, fresh weight, dry weight, lateral root number, chlorophyll content, root activity and soluble protein of plants pretreated with T-soybean increased, but initial pod height reduced. Furthermore, we found that T-soybean inhibited the growth of F. oxysporum by parasitic function. In addition, plate test results showed that culture filtrates of T-soybean also inhibited significantly F. oxysporum growth. Meanwhile, T-soybean treatment obviously reduced disease severity and induced quickly the H 2 O 2 and O 2 - burst as well as pathogenesis related protein gene (PR3) expression after F. oxysporum inoculation, and subsequently diminished the cell damage in soybean caused by the pathogen challenge. Reactive oxygen species (ROS) scavenging enzymes activity analysis showed that the activities of peroxidase (POD), polyphenol oxidase (PPO) and superoxide dismutase (SOD) increased significantly in T-soybean pretreated plants. These results suggested that T-soybean treatment induced resistance in soybean seedlings to F. oxysporum by companying the production of ROS and the increasing of ROS scavenging enzymes activity as well as PR3 expression. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows.

    PubMed

    Amanlou, H; Maheri-Sis, N; Bassiri, S; Mirza-Aghazadeh, A; Salamatdust, R; Moosavi, A; Karimi, V

    2012-01-01

    Thirty multiparous Holstein cows (29.8 ± 4.01days in milk; 671.6 ± 31.47 kg of body weight) were used in a completely randomized design to compare nutritional value of four fat sources including tallow, raw soybeans, extruded soybeans and roasted soybeans for 8 weeks. Experimental diets were a control containing 27.4 % alfalfa silage, 22.5% corn silage, and 50.1% concentrate, and four diets with either tallow, raw soybean, extruded soybean, or roasted soybean added to provide 1.93% supplemental fat. Dry matter and NEL intakes were similar among treatments, while cows fed fat diets had significantly (P<0.05) high NEL intakes when compared to control with no fat. Supplemental fat, whether tallow or full fat soybeans increased milk production (1.89-2.45 kg/d; P<0.01) and FCM production (1.05-2.79; P<0.01). Milk fat yield and percentage of cows fed fat-supplemented diets were significantly (P<0.01 and P<0.05 respectively) higher than control. Between fat-supplemented diets, roasted soybean caused highest milk fat yield and extruded soybean caused lowest milk fat yield. There was no significant effect of supplemental fat on the milk protein and lactose content and yield. Feed efficiency of fat-supplemented diets was significantly (P<0.01) higher than control. Body weight, body weight change and BCS (body condition score) of cows, as well as energy balance and energy efficiency were similar between treatments. In conclusion, while there was no significant effect of fat sources on production response of cows, fat originating from heat-treated soybean help to minimize imported RUP (rumen undegradable protein) sources level as fish meal in comparison with tallow and raw soybean oil. In the Current study, there was no statistical significance among nutritional values of oil from extruded soybeans and roasted soybeans.

  5. Effects of Soybean Seed Size on Weed Competition

    USDA-ARS?s Scientific Manuscript database

    Organic soybean producers must rely on various, nonherbicidal tactics for weed management. Increased soybean seed size may be one method to increase the competitiveness of the soybean canopy. Soybean varieties Hutcheson, NC-Roy, and NC-Raleigh were separated into four or five seed size classes. Seed...

  6. Stability of soybean aphid resistance in soybean across different temperatures

    USDA-ARS?s Scientific Manuscript database

    The soybean aphid, Aphis glycines Matsumura, is the most important insect pest posing a threat to soybean, Glycine max (L.) Merr., grain production in the United States. Soybean cultivars with resistance are currently being deployed to aid in management of the pest. Temperature has been reported to ...

  7. The Utilization of Soybean Wild Relatives: How Can It Be Effective?

    USDA-ARS?s Scientific Manuscript database

    Wild soybean (G. soja Sieb. & Zucc.) is the progenitor of soybean and is native to China, Taiwan, Japan, eastern Russia and the Korean peninsula. Research has repeatedly demonstrated that wild soybean is more genetically diverse than the cultivated soybean. There are 26 perennial Glycine species tha...

  8. Soybean Aphid Population Dynamics, Soybean Yield Loss and Development of Stage-Specific Economic Injury Levels

    USDA-ARS?s Scientific Manuscript database

    Stage-specific economic injury levels form the basis of an integrated pest management approach for soybean aphid (Aphis glycines Matsumura) population management in soybeans (Glycine max L.). Experimental objectives were to develop a procedure for calculating economic injury levels of the soybean a...

  9. A survey of the use of soy in processed Turkish meat products and detection of genetic modification.

    PubMed

    Ulca, Pelin; Balta, Handan; Senyuva, Hamide Z

    2014-01-01

    To screen for possible illegal use of soybeans in meat products, the performance characteristics of a commercial polymer chain reaction (PCR) kit for detection of soybean DNA in raw and cooked meat products were established. Minced chicken and beef products containing soybean at levels from 0.1% to 10.0% were analysed by real-time PCR to amplify the soybean lectin gene. The PCR method could reliably detect the addition of soybean at a level of 0.1%. A survey of 38 Turkish processed meat products found only six samples to be negative for the presence of soybean. In 32 (84%) positive samples, 13 (34%) contained levels of soy above 0.1%. Of soybean positive samples, further DNA analysis was conducted by real-time PCR to detect whether genetically modified (GM) soybean had been used. Of 32 meat samples containing soybean, two samples were positive for GM modification.

  10. Population Structure and Domestication Revealed by High-Depth Resequencing of Korean Cultivated and Wild Soybean Genomes†

    PubMed Central

    Chung, Won-Hyong; Jeong, Namhee; Kim, Jiwoong; Lee, Woo Kyu; Lee, Yun-Gyeong; Lee, Sang-Heon; Yoon, Woongchang; Kim, Jin-Hyun; Choi, Ik-Young; Choi, Hong-Kyu; Moon, Jung-Kyung; Kim, Namshin; Jeong, Soon-Chun

    2014-01-01

    Despite the importance of soybean as a major crop, genome-wide variation and evolution of cultivated soybeans are largely unknown. Here, we catalogued genome variation in an annual soybean population by high-depth resequencing of 10 cultivated and 6 wild accessions and obtained 3.87 million high-quality single-nucleotide polymorphisms (SNPs) after excluding the sites with missing data in any accession. Nuclear genome phylogeny supported a single origin for the cultivated soybeans. We identified 10-fold longer linkage disequilibrium (LD) in the wild soybean relative to wild maize and rice. Despite the small population size, the long LD and large SNP data allowed us to identify 206 candidate domestication regions with significantly lower diversity in the cultivated, but not in the wild, soybeans. Some of the genes in these candidate regions were associated with soybean homologues of canonical domestication genes. However, several examples, which are likely specific to soybean or eudicot crop plants, were also observed. Consequently, the variation data identified in this study should be valuable for breeding and for identifying agronomically important genes in soybeans. However, the long LD of wild soybeans may hinder pinpointing causal gene(s) in the candidate regions. PMID:24271940

  11. Soybean extracts facilitate bacterial agglutination and prevent biofilm formation on orthodontic wire.

    PubMed

    Lee, Heon-Jin; Kwon, Tae-Yub; Kim, Kyo-Han; Hong, Su-Hyung

    2014-01-01

    Soybean is an essential food ingredient that contains a class of organic compounds known as isoflavones. It is also well known that several plant agglutinins interfere with bacterial adherence to smooth surfaces. However, little is known about the effects of soybean extracts or genistein (a purified isoflavone from soybean) on bacterial biofilm formation. We evaluated the effects of soybean (Glycine max) extracts, including fermented soybean and genistein, on streptococcal agglutination and attachment onto stainless steel orthodontic wire. After cultivating streptococci in biofilm medium containing soybean extracts and orthodontic wire, the viable bacteria attached to the wire were counted. Phase-contrast microscopy and scanning electron microscopy (SEM) analyses were conducted to evaluate bacterial agglutination and attachment. Our study showed that soybean extracts induce agglutination between streptococci, which results in bacterial precipitation. Conversely, viable bacterial counting and SEM image analysis of Streptococcus mutans attached to the orthodontic wire show that bacterial attachment decreases significantly when soybean extracts were added. However, there was no significant change in pre-attached S. mutans biofilm in response to soybean. A possible explanation for these results is that increased agglutination of planktonic streptococci by soybean extracts results in inhibition of bacterial attachment onto the orthodontic wire.

  12. Characterization of Natural and Simulated Herbivory on Wild Soybean (Glycine soja Seib. et Zucc.) for Use in Ecological Risk Assessment of Insect Protected Soybean

    PubMed Central

    Goto, Hidetoshi; Shimada, Hiroshi; Horak, Michael J.; Ahmad, Aqeel; Baltazar, Baltazar M.; Perez, Tim; McPherson, Marc A.; Stojšin, Duška; Shimono, Ayako; Ohsawa, Ryo

    2016-01-01

    Insect-protected soybean (Glycine max (L.) Merr.) was developed to protect against foliage feeding by certain Lepidopteran insects. The assessment of potential consequences of transgene introgression from soybean to wild soybean (Glycine soja Seib. et Zucc.) is required as one aspect of the environmental risk assessment (ERA) in Japan. A potential hazard of insect-protected soybean may be hypothesized as transfer of a trait by gene flow to wild soybean and subsequent reduction in foliage feeding by Lepidopteran insects that result in increased weediness of wild soybean in Japan. To assess this potential hazard two studies were conducted. A three-year survey of wild soybean populations in Japan was conducted to establish basic information on foliage damage caused by different herbivores. When assessed across all populations and years within each prefecture, the total foliage from different herbivores was ≤ 30%, with the lowest levels of defoliation (< 2%) caused by Lepidopteran insects. A separate experiment using five levels of simulated defoliation (0%, 10%, 25%, 50% and 100%) was conducted to assess the impact on pod and seed production and time to maturity of wild soybean. The results indicated that there was no decrease in wild soybean plants pod or seed number or time to maturity at defoliation rates up to 50%. The results from these experiments indicate that wild soybean is not limited by lepidopteran feeding and has an ability to compensate for defoliation levels observed in nature. Therefore, the potential hazard to wild soybean from the importation of insect-protected soybean for food and feed into Japan is negligible. PMID:26963815

  13. Accessions of perennial Glycine species with resistance to multiple types of soybean cyst nematode (Heterodera glycines)

    USDA-ARS?s Scientific Manuscript database

    Soybean cyst nematode (SCN; Heterodera glycines; HG) is a widely occurring and damaging pathogen of soybean that limits soybean production. Soybean resistance to SCN is somewhat limited, but may be more common in perennial Glycine species. The objective of this study was to evaluate perennial Glycin...

  14. Identification of a new soybean Kunitz trypsin inhibitor mutation and its effect on Bowman-Birk protease inhibitor content in soybean seed

    USDA-ARS?s Scientific Manuscript database

    Soybean seeds possess anti-nutritional compounds which inactivate digestive proteases, principally corresponding to two families: Kunitz Trypsin Inhibitors (KTi) and Bowman-Birk Inhibitors (BBI). High levels of raw soybeans/soybean meal in feed mixtures can cause poor weight gain and pancreatic abno...

  15. Soybean aphids making their summer appearance early

    USDA-ARS?s Scientific Manuscript database

    Two small, soft-bodied insects have begun showing up in South Dakota soybean. One is the soybean aphid, and the other is a mealybug. Soybean aphids are yellow to yellow/green and are usually found feeding on the underside of leaves. Incidence of soybean aphid has been a bit higher than typical fo...

  16. 76 FR 28675 - Spirotetramat; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ...; vegetables, legume, group 06 (except soybean) at 4 ppm; plum, prune, dried at 4.5 ppm; vegetables, foliage of legume, except soybean, subgroup 07A at 5 ppm; cotton, gin byproducts at 7 ppm; soybean at 4 ppm; soybean..., 264-1050, 264-1051, 264-1065), on cotton; soybeans; vegetable, legume, crop group 6; acerola; atemoya...

  17. 7 CFR 810.1601 - Definition of soybeans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Definition of soybeans. 810.1601 Section 810.1601... GRAIN United States Standards for Soybeans Terms Defined § 810.1601 Definition of soybeans. Grain that consists of 50 percent or more of whole or broken soybeans (Glycine max (L.) Merr.) that will not pass...

  18. Identification and molecular mapping of two soybean aphid resistance genes in soybean PI 587732

    USDA-ARS?s Scientific Manuscript database

    Soybean [Glycine max (L.) Merr.] continues to be plagued by the soybean aphid (Aphis glycines Matsumura: SA) in North America. New soybean resistance sources are needed to combat the four identified SA biotypes. The objectives of this study were to determine the inheritance of SA resistance in PI 58...

  19. Evaluation of disease and pest damage on soybean cultivars released from 1923 through 2008 under field conditions in Central Illinois

    USDA-ARS?s Scientific Manuscript database

    Diseases and pests of soybean often reduce soybean yields. Targeted breeding that incorporates known genes for resistance and non-targeted breeding that eliminates susceptible plants in breeding populations reduces the impact of soybean pathogens and pests. Maturity group III soybean cultivars relea...

  20. Development and phenotypic screening of an ethyl methane sulfonate mutant population in soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean is an important oil-producing crop in the Fabaceae family and is utilized in various industries. With increasing demands for soybean oil and other soybean products, its production must be increased. Genetic improvement of the crop is important to meet the increasing demands for soybean. A ne...

  1. Discovery of a seventh Rpp soybean rust resistance locus in soybean accession PI 605823

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by the obligate biotrophic fungal pathogen Phakopsora pachyrhizi Syd. & Syd, is a disease threat to soybean production in regions of the world with mild winters. Host plant resistance to P. pachyrhizi conditioned by Rpp genes has been found in numerous soybean accessions, and at...

  2. Characterization and genetics of multiple soybean aphid biotype resistance in five soybean plant introductions

    USDA-ARS?s Scientific Manuscript database

    Soybean aphid (Aphis glycines Matsumura) is the most important soybean [Glycine max (L.) Merr.] insect pest in the USA. The objectives of this study were to characterize the resistance expressed in the five plant introductions (PIs) to four soybean aphid biotypes, determine the mode of resistance in...

  3. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    USDA-ARS?s Scientific Manuscript database

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  4. Transgenic soybeans and soybean protein analysis: an overview.

    PubMed

    Natarajan, Savithiry; Luthria, Devanand; Bae, Hanhong; Lakshman, Dilip; Mitra, Amitava

    2013-12-04

    To meet the increasing global demand for soybeans for food and feed consumption, new high-yield varieties with improved quality traits are needed. To ensure the safety of the crop, it is important to determine the variation in seed proteins along with unintended changes that may occur in the crop as a result various stress stimuli, breeding, and genetic modification. Understanding the variation of seed proteins in the wild and cultivated soybean cultivars is useful for determining unintended protein expression in new varieties of soybeans. Proteomic technology is useful to analyze protein variation due to various stimuli. This short review discusses transgenic soybeans, different soybean proteins, and the approaches used for protein analysis. The characterization of soybean protein will be useful for researchers, nutrition professionals, and regulatory agencies dealing with soy-derived food products.

  5. Comparative Feeding and Development of Pseudoplusia includens (Lepidoptera Noctuidae) on Kudzu and Soybean Foliage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidd, K.A.; Orr, D.B.

    2000-04-10

    Kudzu is a close relative of soybean and is a widely distributed exotic weed in the southern U.S. The biology of the soybean looper was studied to better understand the foraging behavior of this species on kudzu. Insects feeding on kudzu had higher mortality, longer development and lower pupal weights than those fed on soybean. Foliage consumption did not differ between treatments and nutritional quality between soybean and kudzu did not differ. In an oviposition test, females readily used kudzu if it was the only species available, but when soybean was provided more eggs were deposited on soybean.

  6. The binding protein BiP attenuates stress-induced cell death in soybean via modulation of the N-rich protein-mediated signaling pathway.

    PubMed

    Reis, Pedro A A; Rosado, Gustavo L; Silva, Lucas A C; Oliveira, Luciana C; Oliveira, Lucas B; Costa, Maximiller D L; Alvim, Fátima C; Fontes, Elizabeth P B

    2011-12-01

    The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response.

  7. The Binding Protein BiP Attenuates Stress-Induced Cell Death in Soybean via Modulation of the N-Rich Protein-Mediated Signaling Pathway1[C][W][OA

    PubMed Central

    Reis, Pedro A.A.; Rosado, Gustavo L.; Silva, Lucas A.C.; Oliveira, Luciana C.; Oliveira, Lucas B.; Costa, Maximiller D.L.; Alvim, Fátima C.; Fontes, Elizabeth P.B.

    2011-01-01

    The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response. PMID:22007022

  8. The Study for Shortening the Process Time at Soy Food Production by using the Pulsed Electric Field

    NASA Astrophysics Data System (ADS)

    Saito, Tsukasa; Jinushi, Makoto; Minamitani, Yasushi

    We investigated method to osmose water and seasoner to dried soybeans fast by pulsed electric field, in order to make soybeans a processed food fast. By applying the pulsed electric field to the dried soybeans in water, osmosis time of water to the soybean became approximately half. Then the emission of the discharge was observed on dried soybean. The color of coffee permeated more into the soybean treated than no-treated by the pulsed electric field.

  9. Characterization of Insect Resistance Loci in the USDA Soybean Germplasm Collection Using Genome-Wide Association Studies

    PubMed Central

    Chang, Hao-Xun; Hartman, Glen L.

    2017-01-01

    Management of insects that cause economic damage to yields of soybean mainly rely on insecticide applications. Sources of resistance in soybean plant introductions (PIs) to different insect pests have been reported, and some of these sources, like for the soybean aphid (SBA), have been used to develop resistant soybean cultivars. With the availability of SoySNP50K and the statistical power of genome-wide association studies, we integrated phenotypic data for beet armyworm, Mexican bean beetle (MBB), potato leafhopper (PLH), SBA, soybean looper (SBL), velvetbean caterpillar (VBC), and chewing damage caused by unspecified insects for a comprehensive understanding of insect resistance in the United States Department of Agriculture Soybean Germplasm Collection. We identified significant single nucleotide (SNP) polymorphic markers for MBB, PLH, SBL, and VBC, and we highlighted several leucine-rich repeat-containing genes and myeloblastosis transcription factors within the high linkage disequilibrium region surrounding significant SNP markers. Specifically for soybean resistance to PLH, we found the PLH locus is close but distinct to a locus for soybean pubescence density on chromosome 12. The results provide genetic support that pubescence density may not directly link to PLH resistance. This study offers a novel insight of soybean resistance to four insect pests and reviews resistance mapping studies for major soybean insects. PMID:28555141

  10. The integral and extrinsic bioactive proteins in the aqueous extracted soybean oil bodies.

    PubMed

    Zhao, Luping; Chen, Yeming; Cao, Yanyun; Kong, Xiangzhen; Hua, Yufei

    2013-10-09

    Soybean oil bodies (OBs), naturally pre-emulsified soybean oil, have been examined by many researchers owing to their great potential utilizations in food, cosmetics, pharmaceutical, and other applications requiring stable oil-in-water emulsions. This study was the first time to confirm that lectin, Gly m Bd 28K (Bd 28K, one soybean allergenic protein), Kunitz trypsin inhibitor (KTI), and Bowman-Birk inhibitor (BBI) were not contained in the extracted soybean OBs even by neutral pH aqueous extraction. It was clarified that the well-known Gly m Bd 30K (Bd 30K), another soybean allergenic protein, was strongly bound to soybean OBs through a disulfide bond with 24 kDa oleosin. One steroleosin isoform (41 kDa) and two caleosin isoforms (27 kDa, 29 kDa), the integral bioactive proteins, were confirmed for the first time in soybean OBs, and a considerable amount of calcium, necessary for the biological activities of caleosin, was strongly bound to OBs. Unexpectedly, it was found that 24 kDa and 18 kDa oleosins could be hydrolyzed by an unknown soybean endoprotease in the extracted soybean OBs, which might give some hints for improving the enzyme-assisted aqueous extraction processing of soybean free oil.

  11. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular markers associated with oil-related QTL in this study, which also have positive effects on other important traits such as seed yield and protein concentration, could be used in the soybean marker breeding programs aimed at developing either higher seed yield and oil concentration or higher seed protein and oil concentration per hectare. Alternatively, selecting complementary parents with greater breeding values due to positive epistatic interactions could lead to the development of higher oil soybean cultivars.

  12. Differential reactions of soybean isolines with combinations of aphid resistance genes Rag1, Rag2, and Rag3 to four soybean aphid biotypes

    USDA-ARS?s Scientific Manuscript database

    With the discovery of the soybean aphid (Aphis glycines Matsumura) as a devastating insect pest of soybean (Glycine max (L.) Merr.) in the United States, host resistance was recognized as an important management option. However, the identification of soybean aphid isolates exhibiting strong virulenc...

  13. From climate change to molecular response: redox proteomics of ozone-induced responses in soybean

    USDA-ARS?s Scientific Manuscript database

    Ozone (O3) causes significant agricultural losses with soybean being highly sensitive to this oxidant. Here we assess the effect of elevated seasonal O3 exposure on the total and redox proteomes of soybean. To understand the molecular responses to O3 exposure, soybean grown at the Soybean Free Air C...

  14. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  15. Assessment of common soybean-infecting viruses in Ohio, USA, through multisite sampling and high-throughput sequencing

    USDA-ARS?s Scientific Manuscript database

    To assess the scope of virus disease problems of soybean in Ohio, USA, a survey was conducted during 2011 and 2012 soybean growing seasons. A total of 259 samples were collected from 80 soybean fields distributed in 42 Ohio counties, accounting for more than 90% of major soybean-growing counties in ...

  16. 77 FR 40529 - Soybean Promotion and Research: Amend the Order To Adjust Representation on the United Soybean Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... research designed to strengthen the soybean industry's position in the marketplace, and to maintain and... Service 7 CFR Part 1220 [Doc. No. AMS-LS-12-0022] Soybean Promotion and Research: Amend the Order To... in 2009. As required by the Soybean Promotion, Research, and Consumer Information Act (Act...

  17. The Current Status of the Soybean-Soybean Mosaic Virus (SMV) Pathosystem

    PubMed Central

    Liu, Jian-Zhong; Fang, Yuan; Pang, Hongxi

    2016-01-01

    Soybean mosaic virus (SMV) is one of the most devastating pathogens that cost huge economic losses in soybean production worldwide. Due to the duplicated genome, clustered and highly homologous nature of R genes, as well as recalcitrant to transformation, soybean disease resistance studies is largely lagging compared with other diploid crops. In this review, we focus on the major advances that have been made in identifying both the virulence/avirulence factors of SMV and mapping of SMV resistant genes in soybean. In addition, we review the progress in dissecting the SMV resistant signaling pathways in soybean, with a special focus on the studies using virus-induced gene silencing. The soybean genome has been fully sequenced, and the increasingly saturated SNP markers have been identified. With these resources available together with the newly developed genome editing tools, and more efficient soybean transformation system, cloning SMV resistant genes, and ultimately generating cultivars with a broader spectrum resistance to SMV are becoming more realistic than ever. PMID:27965641

  18. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    PubMed

    Higo, Masao; Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans ( Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha -1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover cropping systems. Additionally, AMF diversity in roots can potentially contribute to soybean P nutrition even in the P-fertilized cover crop rotational system. Therefore, further investigation into the interaction of AMF diversity, P-application and cover cropping is required for the development of more effective P management practices on soybean growth performance.

  19. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    PubMed Central

    Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Background Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans (Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. Methods In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha−1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. Results The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Discussion Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover cropping systems. Additionally, AMF diversity in roots can potentially contribute to soybean P nutrition even in the P-fertilized cover crop rotational system. Therefore, further investigation into the interaction of AMF diversity, P-application and cover cropping is required for the development of more effective P management practices on soybean growth performance. PMID:29682413

  20. Sensitivity of Phakopsora pachyrhizi (soybean rust) isolates to fungicides and the reduction of fungal sporulation based on fungicide and timing of application

    USDA-ARS?s Scientific Manuscript database

    Soybean rust is a damaging foliar fungal disease of soybean in many soybean-growing areas throughout the world. Strategies to manage soybean rust include the use of foliar fungicides. Fungicides types, the rate of product application, and the number and timing of applications are critical components...

  1. Soybean aphid feeding on resistant soybean leads to induction of xenobiotic stress response and suppression of salivary effector genes

    USDA-ARS?s Scientific Manuscript database

    The soybean aphid, Aphis glycines, poses serious challenges to soybean production in Asia, where it is native, and North-America, where it is invasive. To date, 6 major soybean genes for host plant resistance (HPR) to A. glycines have been identified, including Rag1, which is available in commercial...

  2. Evaluation of soybean germplasm conserved in NIAS genebank and development of mini core collections

    PubMed Central

    Kaga, Akito; Shimizu, Takehiko; Watanabe, Satoshi; Tsubokura, Yasutaka; Katayose, Yuichi; Harada, Kyuya; Vaughan, Duncan A.; Tomooka, Norihiko

    2012-01-01

    Genetic variation and population structure among 1603 soybean accessions, consisted of 832 Japanese landraces, 109 old and 57 recent Japanese varieties, 341 landrace from 16 Asian countries and 264 wild soybean accessions, were characterized using 191 SNP markers. Although gene diversity of Japanese soybean germplasm was slight lower than that of exotic soybean germplasm, population differentiation and clustering analyses indicated clear genetic differentiation among Japanese cultivated soybeans, exotic cultivated soybeans and wild soybeans. Nine hundred ninety eight Japanese accessions were separated to a certain extent into groups corresponding to their agro-morphologic characteristics such as photosensitivity and seed characteristics rather than their geographical origin. Based on the assessment of the SNP markers and several agro-morphologic traits, accessions that retain gene diversity of the whole collection were selected to develop several soybean sets of different sizes using an heuristic approach; a minimum of 12 accessions can represent the observed gene diversity; a mini-core collection of 96 accession can represent a major proportion of both geographic origin and agro-morphologic trait variation. These selected sets of germplasm will provide an effective platform for enhancing soybean diversity studies and assist in finding novel traits for crop improvement. PMID:23136496

  3. Effect of γ irradiation on the fatty acid composition of soybean and soybean oil.

    PubMed

    Minami, Ikuko; Nakamura, Yoshimasa; Todoriki, Setsuko; Murata, Yoshiyuki

    2012-01-01

    Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.

  4. Selection of Soybean Pods by the Stink Bugs, Nezara viridula and Piezodorus guildinii

    PubMed Central

    Molina, Gonzalo A. R.; Trumper, Eduardo V.

    2012-01-01

    Different biological parameters of the stink bugs, Nezara viridula L. and Piezodorus guildinii Westwood (Hemiptera: Pentatomidae), are affected by the developmental stage of the soybean (Glycine max Merrill) pods they feed on. These effects of the soybean on the stink bugs could represent a selection pressure leading to the ability of these species to discriminate the phenological stage of soybean pods, and, therefore, to exhibit feeding preferences. We designed three studies: (1) Distant detection of soybean pods through an olfactometer; (2) Free choice tests to evaluate preferences for soybean pods of different developmental stages; (3) No choice tests to study effects of soybean pod development on feeding time and number of probes. Stink bugs showed no differential response to olfactometer arms with or without soybean pods, suggesting an inability to detect soybean volatiles. Free choice tests showed no species effects on pods selection, but significant differences among fifth instar nymphs, adult male, and adult females. Fifth instar nymphs fed more frequently on soybean pods of advanced development stages compared to female adults, despite previous evidence showing poor development of stink bugs fed pods of the same stage. No choice tests showed significant effects of stink bug species, stink bug stage and sex, and soybean pod phenology. N. viridula expressed shorter feeding times and higher numbers of probes than P. guildinii. The highest numbers of probes of both species were observed when they were fed soybean pods in early phenological stages. When placed in direct contact with food, fifth instar nymphs prefered to feed on more developed pods, despite these pods being suboptimal food items. These results suggest that for the ecological time framework of soybean-stink bugs coexistence, around thirty-five years in Argentina, the selection pressure was not enough for stink bugs to evolve food preferences that match their performance on soybean pods of different development stages. PMID:23437991

  5. The dynamic simulation model of soybean in Central Java to support food self sufficiency: A supply chain perspective

    NASA Astrophysics Data System (ADS)

    Oktyajati, Nancy; Hisjam, Muh.; Sutopo, Wahyudi

    2018-02-01

    Consider food become one of the basic human needs in order to survive so food sufficiency become very important. Food sufficiency of soybean commodity in Central Java still depends on imported soybean. Insufficiency of soybean because of there is much gap between local soybean productions and its demand. In the year 2016 the shortage of supply soybean commodity as much 68.79%. Soybean is an important and strategic commodity after rice and corn. The increasing consumption of soybean is related to increasing population, increasing incomes, changing of healthy life style. The aims of this study are to determine the soybean dynamic model based on supply chain perspective, define the proper price of local soybean to trigger increasing of local production, and to define the alternative solution to support food self sufficiency. This study will capture the real condition into dynamics model, then simulate a series of scenario into a computer program to obtain the best results. This study will be conducted the following first scenario with government intervention policy and second without government intervention policy. The best solution of the alternative can be used as government consideration for governmental policy. The results of the propose scenarios showed that self sufficiency on soybean can be achieved after the next 20 years by increasing planting area 4% and land productivity 1% per year.

  6. The inhibitory effect of black soybean on hepatic cholesterol accumulation in high cholesterol and high fat diet-induced non-alcoholic fatty liver disease.

    PubMed

    Jung, Ji-Hye; Kim, Hyun-Sook

    2013-10-01

    Non-alcoholic fatty liver disease (NAFLD) is defined as excess of fat in the liver. We investigated the effects of black soybean on the cholesterol metabolism and insulin resistance of mice fed high cholesterol/fat diets. Mice were randomly allocated into four groups that were fed different diets: the normal cholesterol/fat diet; high cholesterol/fat diets (HCD); and HCD with 1%, and 4% black soybean powder (1B-HCD, and 4B-HCD). Liver total cholesterol and triglyceride concentrations were significantly lower in the black soybean-supplemented groups than that in the HCD group. PCR revealed significantly lower hepatic SREBP2 and HMG-CoA reductase mRNA levels of black soybean-supplemented mice. Real-time PCR revealed significantly higher hepatic ABCA1 mRNA level of black soybean-supplemented mice, which may increase cholesterol efflux. Liver bile acids concentration was significantly high in the 4B-HCD group. Black soybean stimulated secretion of adiponectin, activation of pAMPK, and eliminated free fatty acids in the liver. Black soybean supplementation decreased MDA and nitrate level. The activities of SOD, catalase, and GPx were restored by black soybean supplementation. Our data strongly indicate that black soybean influences the balance between oxidative and antioxidative stress. We suggest that black soybean improves cholesterol metabolism, insulin resistance, and alleviates oxidative damage in NAFLD. Published by Elsevier Ltd.

  7. 7 CFR 1220.313 - Qualified State Soybean Boards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., and Marketing Board (18) New Jersey Soybean Board (19) North Carolina Soybean Producers Association....313 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN...

  8. 7 CFR 1220.241 - Reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Reports, Books, and Records § 1220.241 Reports. Each producer marketing processed soybeans or soybean products of that producer's own production and...

  9. 7 CFR 1220.213 - Establishment and membership.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Soybean Program... of the Secretary, a Soybean Program Coordinating Committee to assist in the administration of this...

  10. Effects of storage and processing on residue levels of chlorpyrifos in soybeans.

    PubMed

    Zhao, Liuwei; Ge, Jing; Liu, Fengmao; Jiang, Naiwen

    2014-05-01

    The residue levels of chlorpyrifos in soybeans during storage and processing were investigated. Soybeans were treated with chlorpyrifos aqueous solution and placed in a sealed plastic container. The residue of chlorpyrifos was determined in soybeans at six time points within 0 and 112days during storage and oil processing of the soybeans was conducted. The analysis of the residues of chlorpyrifos was carried out by gas chromatography-mass spectrometry (GC-MS). Results show that the dissipation of chlorpyrifos in soybeans is about 62% during the storage period. Moreover, the carryover of the residues from soybeans into oil is found to be related to the processing methods. Processing factor, which is defined as the ratio of chlorpyrifos residue concentration in oil sample to that in the soybean samples, was 11 and 0.25 after cold and hot pressing, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Comparison of broiler performance when fed diets containing event DP-3O5423-1, nontransgenic near-isoline control, or commercial reference soybean meal, hulls, and oil.

    PubMed

    McNaughton, J; Roberts, M; Smith, B; Rice, D; Hinds, M; Sanders, C; Layton, R; Lamb, I; Delaney, B

    2008-12-01

    DP-3Ø5423-1 (305423) is a genetically modified soybean that was produced by biolistic insertion of the gm-fad2-1 gene fragment and gm-hra genes into the germline of soybean seeds. Expression of gm-fad2-1 results in greater concentrations of oleic acid (18:1) by suppressing expression of the endogenous FAD2-1 gene, which encodes an n-6 fatty acid desaturase enzyme that catalyzes desaturation of 18:1 to linoleic acid (18:2). The GM-HRA protein expressed by the gm-hra gene is a modified version of the soybean acetolactate synthase enzyme that is used as a selectable marker during transformation. A 42-d feeding trial was conducted with broiler chickens to compare the nutritional performance of 305423 soybeans with nontransgenic soybeans. Diets were prepared using processed fractions (meal, hulls, and oil) from 305423 soybean plants. For comparison, additional diets were produced with soybean fractions obtained from a nontransgenic near-isoline (control) and nontransgenic commercial Pioneer brand varieties (93B86, 93B15, and 93M40). Diets were fed to Ross x Cobb broilers (n = 120/group, 50% male and 50% female) in 3 phases. Starter, grower, and finisher diets contained 26.5, 23, and 21.5% soybean meal, respectively. Soybean hulls and oil were added at 1.0 and 0.5%, respectively, across all diets in each phase. No statistically significant differences were observed in growth performance (BW, mortality, feed efficiency), organ yield (liver and kidney), or carcass yield (breast, thigh, leg, wing, and abdominal fat) variables between broilers consuming diets prepared with isolated fractions from 305423 or near-isoline control soybean. Additionally, all performance and carcass variables from control and 305423 soybean treatment groups fell within tolerance intervals constructed for each response variable using data from broilers fed diets prepared with reference soybean fractions. Based on the results from this study, it was concluded that 305423 soybeans were nutritionally equivalent to non-transgenic control soybeans with a comparable genetic background.

  12. Structural basis of the lack of endo-glucanase inhibitory activity of Lupinus albus γ-conglutin.

    PubMed

    Scarafoni, Alessio; Consonni, Alessandro; Pessina, Stefano; Balzaretti, Silvia; Capraro, Jessica; Galanti, Elisabetta; Duranti, Marcello

    2016-02-01

    Lupin γ-conglutin and soybean BG7S are two legume seed proteins strongly similar to plant endo-β-glucanases inhibitors acting against fungal GH11 and GH12 glycoside hydrolase. However these proteins lack inhibitory activity. Here we describe the conversion of lupin γ-conglutin to an active inhibitor of endo-β-glucanases belonging to GH11 family. A set of γ-conglutin mutants was designed and expressed in Pichia pastoris, along with the wild-type protein. Unexpectedly, this latter was able to inhibit a GH11 enzyme, but not GH12, whereas the mutants were able to modulate the inhibition capacity. In lupin, γ-conglutin is naturally cleaved in two subunits, whereas in P. pastoris it is not. The lack of proteolytic cleavage is one of the reasons at the basis of the inhibitory activity of recombinant γ-conglutin. The results provide new insights about structural features at the basis of the lack of inhibitory activity of wild-type γ-conglutin and its legume homologues. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Mycobiome of Cysts of the Soybean Cyst Nematode Under Long Term Crop Rotation

    PubMed Central

    Hu, Weiming; Strom, Noah; Haarith, Deepak; Chen, Senyu; Bushley, Kathryn E.

    2018-01-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Phylum Nematoda), is a major pathogen of soybean. It causes substantial yield losses worldwide and is difficult to control because the cyst protects the eggs which can remain viable for nearly a decade. Crop rotation with non-host crops and use of biocontrol organisms such as fungi and bacteria offer promising approaches, but remain hampered by lack of knowledge of the biology of nematode parasitic organisms. We used a high-throughput metabarcoding approach to characterize fungal communities associated with the SCN cyst, a microenvironment in soil that may harbor both nematode parasites and plant pathogens. SCN cysts were collected from a long-term crop rotation experiment in Southeastern Minnesota at three time points over two growing seasons to characterize diversity of fungi inhabiting cysts and to examine how crop rotation and seasonal variation affects fungal communities. A majority of fungi in cysts belonged to Ascomycota and Basidiomycota, but the presence of several early diverging fungal subphyla thought to be primarily plant and litter associated, including Mortierellomycotina and Glomeromycotina (e.g., arbuscular mycorrhizal fungi), suggests a possible role as nematode egg parasites. Species richness varied by both crop rotation and season and was higher in early years of crop rotation and in fall at the end of the growing season. Crop rotation and season also impacted fungal community composition and identified several classes of fungi, including Eurotiomycetes, Sordariomycetes, and Orbiliomycetes (e.g., nematode trapping fungi), with higher relative abundance in early soybean rotations. The relative abundance of several genera was correlated with increasing years of soybean. Fungal communities also varied by season and were most divergent at midseason. The percentage of OTUs assigned to Mortierellomycotina_cls_Incertae_sedis and Sordariomycetes increased at midseason, while Orbiliomycetes decreased at midseason, and Glomeromycetes increased in fall. Ecological guilds of fungi containing an animal-pathogen lifestyle, as well as potential egg-parasitic taxa previously isolated from parasitized SCN eggs, increased at midseason. The animal pathogen guilds included known (e.g., Pochonia chlamydosporia) and new candidate biocontrol organisms. This research advances knowledge of the ecology of nematophagous fungi in agroecosystems and their use as biocontrol agents of the SCN. PMID:29615984

  14. Potassium Starvation Limits Soybean Growth More than the Photosynthetic Processes across CO2 Levels

    PubMed Central

    Singh, Shardendu K.; Reddy, Vangimalla R.

    2017-01-01

    Elevated carbon dioxide (eCO2) often enhances plant photosynthesis, growth, and productivity. However, under nutrient-limited conditions the beneficial effects of high CO2 are often diminished. To evaluate the combined effects of potassium (K) deficiency and eCO2 on soybean photosynthesis, growth, biomass partitioning, and yields, plants were grown under controlled environment conditions with an adequate (control, 5.0 mM) and two deficient (0.50 and 0.02 mM) levels of K under ambient CO2 (aCO2; 400 μmol mol−1) and eCO2 (800 μmol mol−1). Results showed that K deficiency limited soybean growth traits more than photosynthetic processes. An ~54% reduction in leaf K concentration under 0.5 mM K vs. the control caused about 45% less leaf area, biomass, and yield without decreasing photosynthetic rate (Pnet). In fact, the steady photochemical quenching, efficiency, and quantum yield of photosystem II, chlorophyll concentration (TChl), and stomatal conductance under 0.5 mM K supported the stable Pnet. Biomass decline was primarily attributed to the reduced plant size and leaf area, and decreased pod numbers and seed yield in K-deficient plants. Under severe K deficiency (0.02 mM K), photosynthetic processes declined concomitantly with growth and productivity. Increased specific leaf weight, biomass partitioning to the leaves, decreased photochemical quenching and TChl, and smaller plant size to reduce the nutrient demands appeared to be the means by which plants adjusted to the severe K starvation. Increased K utilization efficiency indicated the ability of K-deficient plants to better utilize the tissue-available K for biomass accumulation, except under severe K starvation. The enhancement of soybean growth by eCO2 was dependent on the levels of K, leading to a K × CO2 interaction for traits such as leaf area, biomass, and yield. A lack of eCO2-mediated growth and photosynthesis stimulation under severe K deficiency underscored the importance of optimum K fertilization for maximum crop productivity under eCO2. Thus, eCO2 compensated, at least partially, for the reduced soybean growth and seed yield under 0.5 mM K supply, but severe K deficiency completely suppressed the eCO2-enhanced seed yield. PMID:28642785

  15. Proteomic Analysis of the Relationship between Metabolism and Nonhost Resistance in Soybean Exposed to Bipolaris maydis.

    PubMed

    Dong, Yumei; Su, Yuan; Yu, Ping; Yang, Min; Zhu, Shusheng; Mei, Xinyue; He, Xiahong; Pan, Manhua; Zhu, Youyong; Li, Chengyun

    2015-01-01

    Nonhost resistance (NHR) pertains to the most common form of plant resistance against pathogenic microorganisms of other species. Bipolaris maydis is a non-adapted pathogen affecting soybeans, particularly of maize/soybean intercropping systems. However, no experimental evidence has described the immune response of soybeans against B. maydis. To elucidate the molecular mechanism underlying NHR in soybeans, proteomics analysis based on two-dimensional polyacrylamide gel electrophoresis (2-DE) was performed to identify proteins involved in the soybean response to B. maydis. The spread of B. maydis spores across soybean leaves induced NHR throughout the plant, which mobilized almost all organelles and various metabolic processes in response to B. maydis. Some enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), mitochondrial processing peptidase (MPP), oxygen evolving enhancer (OEE), and nucleoside diphosphate kinase (NDKs), were found to be related to NHR in soybeans. These enzymes have been identified in previous studies, and STRING analysis showed that most of the protein functions related to major metabolic processes were induced as a response to B. maydis, which suggested an array of complex interactions between soybeans and B. maydis. These findings suggest a systematic NHR against non-adapted pathogens in soybeans. This response was characterized by an overlap between metabolic processes and response to stimulus. Several metabolic processes provide the soybean with innate immunity to the non-adapted pathogen, B. maydis. This research investigation on NHR in soybeans may foster a better understanding of plant innate immunity, as well as the interactions between plant and non-adapted pathogens in intercropping systems.

  16. Proteomic Analysis of the Relationship between Metabolism and Nonhost Resistance in Soybean Exposed to Bipolaris maydis

    PubMed Central

    Dong, Yumei; Su, Yuan; Yu, Ping; Yang, Min; Zhu, Shusheng; Mei, Xinyue; He, Xiahong; Pan, Manhua; Zhu, Youyong; Li, Chengyun

    2015-01-01

    Nonhost resistance (NHR) pertains to the most common form of plant resistance against pathogenic microorganisms of other species. Bipolaris maydis is a non-adapted pathogen affecting soybeans, particularly of maize/soybean intercropping systems. However, no experimental evidence has described the immune response of soybeans against B. maydis. To elucidate the molecular mechanism underlying NHR in soybeans, proteomics analysis based on two-dimensional polyacrylamide gel electrophoresis (2-DE) was performed to identify proteins involved in the soybean response to B. maydis. The spread of B. maydis spores across soybean leaves induced NHR throughout the plant, which mobilized almost all organelles and various metabolic processes in response to B. maydis. Some enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), mitochondrial processing peptidase (MPP), oxygen evolving enhancer (OEE), and nucleoside diphosphate kinase (NDKs), were found to be related to NHR in soybeans. These enzymes have been identified in previous studies, and STRING analysis showed that most of the protein functions related to major metabolic processes were induced as a response to B. maydis, which suggested an array of complex interactions between soybeans and B. maydis. These findings suggest a systematic NHR against non-adapted pathogens in soybeans. This response was characterized by an overlap between metabolic processes and response to stimulus. Several metabolic processes provide the soybean with innate immunity to the non-adapted pathogen, B. maydis. This research investigation on NHR in soybeans may foster a better understanding of plant innate immunity, as well as the interactions between plant and non-adapted pathogens in intercropping systems. PMID:26513657

  17. Potential for the use of germinated wheat and soybeans to enhance human nutrition.

    PubMed

    Finney, P L

    1978-01-01

    Wheat and soybeans are the major agricultural exports of the United States. The U.S. sells more of each crop than any other nation. Soybeans are the main staple in China, but the U.S. sells more soybeans than China grows. For hundreds of millions of other people, wheat is the main staple. And yet, most Americans eat whole grains of neither wheat nor soybeans. In the United States, many nutrients of wheat and soybeans are lost in processing or are fed to animals. A highly significant share of the wheat nutrients are lost from the main foodstream when the germ and bran (with aleurone) portions are separated. Whole soybeans are carefully processed for food by only a handful of Americans.

  18. The strategy of sustainable soybean development to increase soybean needs in North Sumatera

    NASA Astrophysics Data System (ADS)

    Handayani, L.; Rauf, A.; Rahmawaty; Supriana, T.

    2018-02-01

    The objective of the research was to analyze both internal and external factors influencing the strategy of sustainable soybean development to increase soybean needs in North Sumatera. SWOT analysis was used as the method of the research through identifying internal factors in the development of sustainable soybean the strategy to increase soybean production in research area is aggressive strategy or strategy of SO (Strengths - Oppurtunities) that is using force to exploit existing opportunity with activities as follows: (1). Use certified seeds in accordance with government regulations and policies. (2). Utilizing the level of soil fertility and cropping patterns to be able to meet the demand for soybeans. (3). Utilizing human resources by becoming a member of farmer groups.

  19. 7 CFR 1220.105 - Consumer information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.105 Consumer information. The... evaluations and decisions regarding the purchase, preparation, and use of soybeans or soybean products. ...

  20. 7 CFR 1220.121 - Promotion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.121 Promotion. The term..., to enhance the image or desirability of soybeans or soybean products in domestic and foreign markets...

  1. 7 CFR 1220.212 - Duties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order United Soybean Board § 1220.212 Duties. The Board... industry information designed to strengthen the soybean industry's position in the marketplace and to...

  2. 7 CFR 1220.212 - Duties.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order United Soybean Board § 1220.212 Duties. The Board... industry information designed to strengthen the soybean industry's position in the marketplace and to...

  3. Conventional (MG-BR46 Conquista) and transgenic (BRS Valiosa RR) soybeans have no mutagenic effects and may protect against induced-DNA damage in vivo.

    PubMed

    Venâncio, Vinicius P; Silva, João Paulo L; Almeida, Alaor A; Brigagão, Maísa R P L; Azevedo, Luciana

    2012-01-01

    In the present study, we evaluated the pesticide and metal concentrations as well as the antimutagenic and mutagenic properties of commercial soybeans (Glycine max). Male Swiss mice were fed diets containing 1%, 10%, or 20% (w/w) transgenic soybeans (BRS Valiosa RR) or parental isogenic conventional soybeans (MG-BR46 Conquista). Cyclophosphamide (50 mg kg⁻¹ b.w.) was added in a single dose 24 h before euthanasia as an induction agent. There was no difference in the composition (ash, total fat, protein, moisture, and carbohydrates) of the diets containing the same soybean concentration. The results show that the commercially available Brazilian soybeans tested are free of organochlorine, organophosphate, and carbamate pesticides and contain acceptable heavy metal concentrations. Both cyclophosphamide and soybean treatments were not sufficient to cause detectable oxidative damage on liver by the levels of malondialdehyde and protein carbonyl. The transgenic soybeans are also nonmutagenic and have protective effects against DNA damage similar to those of conventional soybeans but to a lesser percentage (64%-101% for conventional and 23%-33% for transgenic diets).

  4. Sensory evaluation and consumer acceptance of naturally and lactic acid bacteria-fermented pastes of soybeans and soybean–maize blends

    PubMed Central

    Ng'ong'ola-Manani, Tinna A; Mwangwela, Agnes M; Schüller, Reidar B; Østlie, Hilde M; Wicklund, Trude

    2014-01-01

    Fermented pastes of soybeans and soybean–maize blends were evaluated to determine sensory properties driving consumer liking. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and lactic acid bacteria fermented (LFP). Lactic acid bacteria fermentation was achieved through backslopping using a fermented cereal gruel, thobwa. Ten trained panelists evaluated intensities of 34 descriptors, of which 27 were significantly different (P < 0.05). The LFP were strong in brown color, sourness, umami, roasted soybean-and maize-associated aromas, and sogginess while NFP had high intensities of yellow color, pH, raw soybean, and rancid odors, fried egg, and fermented aromas and softness. Although there was consumer (n = 150) heterogeneity in preference, external preference mapping showed that most consumers preferred NFP. Drivers of liking of NFP samples were softness, pH, fermented aroma, sweetness, fried egg aroma, fried egg-like appearance, raw soybean, and rancid odors. Optimization of the desirable properties of the pastes would increase utilization and acceptance of fermented soybeans. PMID:24804070

  5. The critical period of weed control in soybean (Glycine max (L.) Merr.) in north of Iran conditions.

    PubMed

    Keramati, Sara; Pirdashti, Hemmatollah; Esmaili, Mohammad Ali; Abbasian, Arastoo; Habibi, Marjaneh

    2008-02-01

    A field study was conducted in 2006 at Sari Agricultural and Natural Resources University, in order to determine the best time for weed control in soybean promising line, 033. Experiment was arranged in randomized complete block design with 4 replications and two series of treatments. In the first series, weeds were kept in place until crop reached V2 (second trifoliolate), V4 (fourth trifoliolate), V6 (sixth trifoliolate), R1 (beginning bloom, first flower), R3 (beginning pod), R5 (beginning seed) and were then removed and the crop kept weed-free for the rest of the season. In the second series, crops were kept weed-free until the above growth stages after which weeds were allowed to grow in the plots for the rest of the season. Whole season weedy and weed-free plots were included in the experiment for yield comparison. The results showed that among studied traits, grain yield, pod numbers per plant and weed biomass were affected significantly by control and interference treatments. The highest number of pods per plant was obtained from plots which kept weed-free for whole season control. Results showed that weed control should be carried out between V2 (26 day after planting) to R1 (63 day after planting) stages of soybean to provide maximum grain yield. Thus, it is possible to optimize the timing of weed control, which can serve to reduce the costs and side effects of intensive chemical weed control.

  6. Mapping of the genomic regions controlling seed storability in soybean (Glycine max L.).

    PubMed

    Dargahi, Hamidreza; Tanya, Patcharin; Srinives, Peerasak

    2014-08-01

    Seed storability is especially important in the tropics due to high temperature and relative humidity of storage environment that cause rapid deterioration of seeds in storage. The objective of this study was to use SSR markers to identify genomic regions associated with quantitative trait loci (QTLs) controlling seed storability based on relative germination rate in the F2:3 population derived from a cross between vegetable soybean line (MJ0004-6) with poor longevity and landrace cultivar from Myanmar (R18500) with good longevity. The F2:4 seeds harvested in 2011 and 2012 were used to investigate seed storability. The F2 population was genotyped with 148 markers and the genetic map consisted of 128 SSR loci which converged into 38 linkage groups covering 1664.3 cM of soybean genome. Single marker analysis revealed that 13 markers from six linkage groups (C1, D2, E, F, J and L) were associated with seed storability. Composite interval mapping identified a total of three QTLs on linkage groups C1, F and L with phenotypic variance explained ranging from 8.79 to 13.43%. The R18500 alleles increased seed storability at all of the detected QTLs. No common QTLs were found for storability of seeds harvested in 2011 and 2012. This study agreed with previous reports in other crops that genotype by environment interaction plays an important role in expression of seed storability.

  7. Quantitative detection method for Roundup Ready soybean in food using duplex real-time PCR MGB chemistry.

    PubMed

    Samson, Maria Cristina; Gullì, Mariolina; Marmiroli, Nelson

    2010-07-01

    Methodologies that enable the detection of genetically modified organisms (GMOs) (authorized and non-authorized) in food and feed strongly influence the potential for adequate updating and implementation of legislation together with labeling requirements. Quantitative polymerase chain reaction (qPCR) systems were designed to boost the sensitivity and specificity on the identification of GMOs in highly degraded DNA samples; however, such testing will become economically difficult to cope with due to increasing numbers of approved genetically modified (GM) lines. Multiplexing approaches are therefore in development to provide cost-efficient solution. Construct-specific primers and probe were developed for quantitative analysis of Roundup Ready soybean (RRS) event glyphosate-tolerant soybean (GTS) 40-3-2. The lectin gene (Le1) was used as a reference gene, and its specificity was verified. RRS- and Le1-specific quantitative real-time PCR (qRTPCR) were optimized in a duplex platform that has been validated with respect to limit of detection (LOD) and limit of quantification (LOQ), as well as accuracy. The analysis of model processed food samples showed that the degradation of DNA has no adverse or little effects on the performance of quantification assay. In this study, a duplex qRTPCR using TaqMan minor groove binder-non-fluorescent quencher (MGB-NFQ) chemistry was developed for specific detection and quantification of RRS event GTS 40-3-2 that can be used for practical monitoring in processed food products.

  8. 7 CFR 1220.209 - Procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order United Soybean Board § 1220.209 Procedure. (a) At... on annual average soybean production of the three previous years. If a unit is represented by more...

  9. 7 CFR 1220.203 - Nominations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order United Soybean Board § 1220.203 Nominations. All... specified in paragraphs (a), (b), and (c) of this section from Qualified State Soybean Boards or for initial...

  10. 7 CFR 1220.209 - Procedure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order United Soybean Board § 1220.209 Procedure. (a) At... on annual average soybean production of the three previous years. If a unit is represented by more...

  11. 7 CFR 1220.205 - Nominee's agreement to serve.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order United Soybean Board...) Agree to disclose any relationship with any soybean promotion entity or with any organization that has...

  12. Artificial Selection for Determinate Growth Habit in Soybean

    USDA-ARS?s Scientific Manuscript database

    Determinacy is an agronomically important trait associated with the domestication in soybean (Glycine max). Most soybean cultivars are classifiable into indeterminate and determinate growth habit, while Glycine soja, the wild progenitor of soybean, is indeterminate. Indeterminate (Dt1) and determina...

  13. Soybean-Enriched Snacks Based on African Rice

    PubMed Central

    Marengo, Mauro; Akoto, Hannah F.; Zanoletti, Miriam; Carpen, Aristodemo; Buratti, Simona; Benedetti, Simona; Barbiroli, Alberto; Johnson, Paa-Nii T.; Sakyi-Dawson, Esther O.; Saalia, Firibu K.; Bonomi, Francesco; Pagani, Maria Ambrogina; Manful, John; Iametti, Stefania

    2016-01-01

    Snacks were produced by extruding blends of partially-defatted soybean flour with flours from milled or parboiled African-grown rice. The interplay between composition and processing in producing snacks with a satisfactory sensory profile was addressed by e-sensing, and by molecular and rheological approaches. Soybean proteins play a main role in defining the properties of the protein network in the products. At the same content in soybean flour, use of parboiled rice flour increases the snack’s hardness. Electronic nose and electronic tongue discriminated samples containing a higher amount of soybean flour from those with a lower soybean flour content. PMID:28231133

  14. Soybean-Enriched Snacks Based on African Rice.

    PubMed

    Marengo, Mauro; Akoto, Hannah F; Zanoletti, Miriam; Carpen, Aristodemo; Buratti, Simona; Benedetti, Simona; Barbiroli, Alberto; Johnson, Paa-Nii T; Sakyi-Dawson, Esther O; Saalia, Firibu K; Bonomi, Francesco; Pagani, Maria Ambrogina; Manful, John; Iametti, Stefania

    2016-05-20

    Snacks were produced by extruding blends of partially-defatted soybean flour with flours from milled or parboiled African-grown rice. The interplay between composition and processing in producing snacks with a satisfactory sensory profile was addressed by e-sensing, and by molecular and rheological approaches. Soybean proteins play a main role in defining the properties of the protein network in the products. At the same content in soybean flour, use of parboiled rice flour increases the snack's hardness. Electronic nose and electronic tongue discriminated samples containing a higher amount of soybean flour from those with a lower soybean flour content.

  15. Changes in the contents and profiles of selected phenolics, soyasapogenols, tocopherols, and amino acids during soybean-rice mixture cooking: Electric rice cooker vs electric pressure rice cooker.

    PubMed

    Kim, Seung-Hyun; Yu, Bo-Ra; Chung, Ill-Min

    2015-06-01

    This study investigated the changes in the contents and profiles of 35 phenolics (including 12 isoflavones), four tocopherols, two soyasapogenols and 20 amino acids when soybean and rice were cooked together (soybean-rice mixture) using either an electric rice cooker (ERC) or an electric pressure rice cooker (EPRC). The contents of the 35 selected phenolics in soybean decreased by 12% and 8% upon cooking by ERC and EPRC, respectively, and their profiles were different from that prior to cooking (P<0.05). Total tocopherol content of soybeans decreased by 7% after cooking in an ERC, but increased by 3% in soybeans cooked by EPRC. Total soyasapogenol content in soybeans cooked by ERC and EPRC decreased by 15% and 6%, respectively. Lastly, the total amino acid content of soybeans increased by 41% and 10% after cooking by ERC and EPRC, respectively. This study extends our knowledge about the effects of heat and pressure on the contents and profiles of bioactive compounds during soybean-rice mixture cooking. These results may be useful for improving the quality of bioactive compounds in soybean and rice depending on cooking conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Identification and Molecular Analysis of Four New Alleles at the W1 Locus Associated with Flower Color in Soybean

    PubMed Central

    Sundaramoorthy, Jagadeesh; Park, Gyu Tae; Chang, Jeong Ho; Lee, Jeong-Dong; Kim, Jeong Hoe; Seo, Hak Soo; Chung, Gyuhwa; Song, Jong Tae

    2016-01-01

    In soybean, flavonoid 3′5′-hydroxylase (F3′5′H) and dihydroflavonol-4-reductase (DFR) play a crucial role in the production of anthocyanin pigments. Loss-of-function of the W1 locus, which encodes the former, or W3 and W4, which encode the latter, always produces white flowers. In this study, we searched for new genetic components responsible for the production of white flowers in soybean and isolated four white-flowered mutant lines, i.e., two Glycine soja accessions (CW12700 and CW13381) and two EMS-induced mutants of Glycine max (PE1837 and PE636). F3′5′H expression in CW12700, PE1837, and PE636 was normal, whereas that in CW13381 was aberrant and missing the third exon. Sequence analysis of F3′5′H of CW13381 revealed the presence of an indel (~90-bp AT-repeat) in the second intron. In addition, the F3′5′H of CW12700, PE1837, and PE636 harbored unique single-nucleotide substitutions. The single nucleotide polymorphisms resulted in substitutions of amino acid residues located in or near the SRS4 domain of F3′5′H, which is essential for substrate recognition. 3D structure modeling of F3′5′H indicated that the substitutions could interfere with an interaction between the substrate and heme group and compromise the conformation of the active site of F3′5′H. Recombination analysis revealed a tight correlation between all of the mutant alleles at the W1 locus and white flower color. On the basis of the characterization of the new mutant alleles, we discussed the biological implications of F3′5′H and DFR in the determination of flower colors in soybean. PMID:27442124

  17. Web camera as low cost multispectral sensor for quantification of chlorophyll in soybean leaves

    NASA Astrophysics Data System (ADS)

    Adhiwibawa, Marcelinus A.; Setiawan, Yonathan E.; Prilianti, Kestrilia R.; Brotosudarmo, Tatas H. P.

    2015-01-01

    Soybeans is one of main crops in Indonesia but the demand for soybeans is not followed by an increase in soybeans national production. One of the production limitation factor is the availability of lush cultivation area for soybeans plantation. Indonesian farners are usually grow soybeans in marginal cultivation area that requires soybeans varieties which tolerant with environmental stress such as drought, nutrition limitation, pest, disease and many others. Chlorophyll content in leaf is one of plant health indicator that can be used to determine environmental stress tolerant soybean varieties. However, there are difficulties in soybeans breeding research due to the manual acquisition of data that are time consume and labour extensive. In this paper authors proposed automatic system of soybeans leaves area and chlorophyll quantification based on low cost multispectral sensor using web camera as an indicator of soybean plant tollerance to environmental stress particularlly drought stress. The system acquires the image of the plant that is placed in the acquisition box from the top of the plant. The image is segmented using NDVI (Normalized Difference Vegetation Index) from image and quantified to yield an average value of NDVI and leaf area. The proposed system showed that acquired NDVI value has a strong relationship with SPAD value with r-square value 0.70, while the leaf area prediction has error of 18.41%. Thus the automation system can quantify plant data with good result.

  18. Autoregulation of Nodulation Interferes with Impacts of Nitrogen Fertilization Levels on the Leaf-Associated Bacterial Community in Soybeans ▿ †

    PubMed Central

    Ikeda, Seishi; Anda, Mizue; Inaba, Shoko; Eda, Shima; Sato, Shusei; Sasaki, Kazuhiro; Tabata, Satoshi; Mitsui, Hisayuki; Sato, Tadashi; Shinano, Takuro; Minamisawa, Kiwamu

    2011-01-01

    The diversities leaf-associated bacteria on nonnodulated (Nod−), wild-type nodulated (Nod+), and hypernodulated (Nod++) soybeans were evaluated by clone library analyses of the 16S rRNA gene. To analyze the impact of nitrogen fertilization on the bacterial leaf community, soybeans were treated with standard nitrogen (SN) (15 kg N ha−1) or heavy nitrogen (HN) (615 kg N ha−1) fertilization. Under SN fertilization, the relative abundance of Alphaproteobacteria was significantly higher in Nod− and Nod++ soybeans (82% to 96%) than in Nod+ soybeans (54%). The community structure of leaf-associated bacteria in Nod+ soybeans was almost unaffected by the levels of nitrogen fertilization. However, differences were visible in Nod− and Nod++ soybeans. HN fertilization drastically decreased the relative abundance of Alphaproteobacteria in Nod− and Nod++ soybeans (46% to 76%) and, conversely, increased those of Gammaproteobacteria and Firmicutes in these mutant soybeans. In the Alphaproteobacteria, cluster analyses identified two operational taxonomic units (OTUs) (Aurantimonas sp. and Methylobacterium sp.) that were especially sensitive to nodulation phenotypes under SN fertilization and to nitrogen fertilization levels. Arbuscular mycorrhizal infection was not observed on the root tissues examined, presumably due to the rotation of paddy and upland fields. These results suggest that a subpopulation of leaf-associated bacteria in wild-type Nod+ soybeans is controlled in similar ways through the systemic regulation of autoregulation of nodulation, which interferes with the impacts of N levels on the bacterial community of soybean leaves. PMID:21239540

  19. Inhibition of DNA polymerase λ and associated inflammatory activities of extracts from steamed germinated soybeans.

    PubMed

    Mizushina, Yoshiyuki; Kuriyama, Isoko; Yoshida, Hiromi

    2014-04-01

    During the screening of selective DNA polymerase (pol) inhibitors from more than 50 plant food materials, we found that the extract from steamed germinated soybeans (Glycine max L.) inhibited human pol λ activity. Among the three processed soybean samples tested (boiled soybeans, steamed soybeans, and steamed germinated soybeans), both the hot water extract and organic solvent extract from the steamed germinated soybeans had the strongest pol λ inhibition. We previously isolated two glucosyl compounds, a cerebroside (glucosyl ceramide, AS-1-4, compound ) and a steroidal glycoside (eleutheroside A, compound ), from dried soybean, and these compounds were prevalent in the extracts of the steamed germinated soybeans as pol inhibitors. The hot water and organic solvent extracts of the steamed germinated soybeans and compounds and selectively inhibited the activity of eukaryotic pol λ in vitro but did not influence the activities of other eukaryotic pols, including those from the A-family (pol γ), B-family (pols α, δ, and ε), and Y-family (pols η, ι, and κ), and also showed no effect on the activity of pol β, which is of the same family (X) as pol λ. The tendency for in vitro pol λ inhibition by these extracts and compounds showed a positive correlation with the in vivo suppression of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation in mouse ear. These results suggest that steamed germinated soybeans, especially the glucosyl compound components, may be useful for their anti-inflammatory properties.

  20. 7 CFR 1220.122 - Qualified State Soybean Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Qualified State Soybean Board. 1220.122 Section 1220... SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.122...

  1. 7 CFR 1220.110 - First purchaser.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.110 First purchaser. The term... otherwise acquiring from a producer soybeans produced by such producer; or (b) In any case in which soybeans...

  2. 7 CFR 1220.228 - Qualified State Soybean Boards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Qualified State Soybean Boards. 1220.228 Section 1220... SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Expenses and Assessments...

  3. 7 CFR 1220.310 - Assessments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND... market price per bushel assessment on soybeans marketed shall be paid by the producer of the soybeans in... the soybeans marketed, each such producer is obligated to pay that portion of the assessments which is...

  4. 7 CFR 1220.110 - First purchaser.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.110 First purchaser. The term... otherwise acquiring from a producer soybeans produced by such producer; or (b) In any case in which soybeans...

  5. 7 CFR 1220.228 - Qualified State Soybean Boards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Qualified State Soybean Boards. 1220.228 Section 1220... SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Expenses and Assessments...

  6. 7 CFR 1220.220 - Duties of the Committee.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Soybean Program Coordinating Committee § 1220.220... strengthen the soybean industry's position in the marketplace and to maintain and expand domestic and foreign...

  7. 7 CFR 1220.122 - Qualified State Soybean Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Qualified State Soybean Board. 1220.122 Section 1220... SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.122...

  8. 7 CFR 1220.310 - Assessments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND... market price per bushel assessment on soybeans marketed shall be paid by the producer of the soybeans in... the soybeans marketed, each such producer is obligated to pay that portion of the assessments which is...

  9. Heterodera glycines Population Development on Soybean Treated with Glyphosate

    USDA-ARS?s Scientific Manuscript database

    Soybean cyst nematode (Heterodera glycines) is a major yield limiting pest in all major soybean producing countries. In the last decade genetically modified soybean tolerant to glyphosate has become widely planted and postemergence application of glyphosate has increased exponentially. Genetically m...

  10. Environmental stability of carbohydrate profiles in different soybean genotypes

    USDA-ARS?s Scientific Manuscript database

    Soybean is an important annual crop. The raffinose family of oligosaccharides (RFO) raffinose and stachyose are anti-nutritional carbohydrates present in soybean seeds. Consumption of soybean seed products with low RFO reduced flatulence in humans and increased metabolizable energy efficiency in chi...

  11. Analysis of gene expression profiles for cell wall modifying proteins and ACC synthases in soybean cyst nematode colonized roots, adventitious rooting hypocotyls, root tips, flooded roots, and IBA and ACC treatment roots

    USDA-ARS?s Scientific Manuscript database

    We hypothesized that soybean cyst nematode (SCN) co-opts a part or all of one or more innate developmental process in soybean to establish its feeding structure, syncytium, in soybean roots. The syncytium in soybean roots is formed in a predominantly lateral direction within the vascular bundle by ...

  12. Digestibility and metabolizable energy of raw soybeans manufactured with different processing treatments and fed to adult dogs and puppies.

    PubMed

    Félix, A P; Zanatta, C P; Brito, C B M; Sá Fortes, C M L; Oliveira, S G; Maiorka, A

    2013-06-01

    The objective of this study was to evaluate the apparent total tract digestibility (ATTD), ME, and fecal characteristics of adult dogs and puppies fed raw soybeans (RSB) and their by-products. Six treatments were evaluated: 1 reference diet (REF), based on a maize-poultry by-product meal, and 5 extruded diets containing 70% of the ingredients of the REF diet and 30% of a soybean processed product [defatted soybean meal (DSM), micronized soybeans (MSB), soybean meal (SBM), RSB, or toasted soybeans (TSB)]. Six adult dogs (5.8 yr old) and 6 puppies (5.1 mo old) were used in a study with a double Latin square design (6 × 6). Urease was reduced in all diets after extrusion, but trypsin inhibitor was reduced only in the diets containing SBM, DSM, and RSB. The ATTD of CP in DSM, SBM, MSB, TSB, and RSB were 85.1%, 85.2%, 88.4%, 84.7%, and 78.9%, respectively, for adult dogs. Soybean meal and DSM had the lowest ATTD of acid-hydrolyzed fat (AHF; 84.3% for both ingredients in adult dogs). The ATTD of DM and AHF in DSM and AHF in all soybean products were greater in puppies than adult dogs (P < 0.05). The ME content was greatest in MSB (21.39 MJ/kg) and least in DSM (15.23 MJ/kg). The feces of dogs fed soybean products were softer and had a lower pH (average of 5.91 vs. 6.05 for adult dogs fed soybean products and REF diets, respectively) and ammonia content (average of 3.82 vs. 4.32 g/kg for adult dogs fed soybean products and REF diets, respectively), except those fed RSB, which had similar fecal pH and ammonia values, compared with those fed the REF diet. Soybean products are good protein sources for both adult and growing dogs, provided they are heat treated before diet extrusion.

  13. 7 CFR 1220.314 - Document evidencing payment of assessments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Rules and Regulations Assessments § 1220.314... assessment to a Qualified State Soybean Board or the United Soybean Board is required to give to the producer... producer. (6) Date. (7) State in which soybeans were grown. (b) [Reserved] ...

  14. 7 CFR 1220.211 - Powers of the Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order United Soybean Board § 1220.211 Powers of the... Soybean Boards to implement plans or projects; (i) To recommend to the Secretary amendments to this...

  15. 7 CFR 1220.314 - Document evidencing payment of assessments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Rules and Regulations Assessments § 1220.314... assessment to a Qualified State Soybean Board or the United Soybean Board is required to give to the producer... producer. (6) Date. (7) State in which soybeans were grown. (b) [Reserved] ...

  16. Resistance to Phomopsis Seed Decay in soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean is caused primarily by the fungal pathogen, Phomopsis longicolla T.W. Hobbs along with other Phomopsis and Diaporthe spp. This disease causes poor seed quality and suppresses yield in most soybean-growing countries. Infected soybean seeds can be symptomless, but...

  17. Vegetable soybean tolerance to pyroxasulfone

    USDA-ARS?s Scientific Manuscript database

    If registered for use on vegetable soybean, pyroxasulfone would fill an important gap in weed management systems in the crop. In order to determine the potential crop injury risk of pyroxasulfone on vegetable soybean, the objective of this work was to quantify vegetable soybean tolerance to pyroxasu...

  18. Utilizing soybean milk to culture soybean pathogens

    USDA-ARS?s Scientific Manuscript database

    Liquid and semi-solid culture media are used to maintain and proliferate bacteria, fungi, and Oomycetes for research in microbiology and plant pathology. In this study, a comparison was made between soybean milk medium, also referred to as soymilk, and media traditionally used for culturing soybean ...

  19. Improved Soybean Oil for Biodiesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom Clemente; Jon Van Gerpen

    2007-11-30

    The goal of this program was to generate information on the utility of soybean germplasm that produces oil, high in oleic acid and low in saturated fatty acids, for its use as a biodiesel. Moreover, data was ascertained on the quality of the derived soybean meal (protein component), and the agronomic performance of this novel soybean germplasm. Gathering data on these later two areas is critical, with respect to the first, soybean meal (protein) component is a major driver for commodity soybean, which is utilized as feed supplements in cattle, swine, poultry and more recently aquaculture production. Hence, it ismore » imperative that the resultant modulation in the fatty acid profile of the oil does not compromise the quality of the derived meal, for if it does, the net value of the novel soybean will be drastically reduced. Similarly, if the improved oil trait negative impacts the agronomics (i.e. yield) of the soybean, this in turn will reduce the value of the trait. Over the course of this program oil was extruded from approximately 350 bushels of soybean designated 335-13, which produces oil high in oleic acid (>85%) and low in saturated fatty acid (<6%). As predicted improvement in cold flow parameters were observed as compared to standard commodity soybean oil. Moreover, engine tests revealed that biodiesel derived from this novel oil mitigated NOx emissions. Seed quality of this soybean was not compromised with respect to total oil and protein, nor was the amino acid profile of the derived meal as compared to the respective control soybean cultivar with a conventional fatty acid profile. Importantly, the high oleic acid/low saturated fatty acids oil trait was not impacted by environment and yield was not compromised. Improving the genetic potential of soybean by exploiting the tools of biotechnology to improve upon the lipid quality of the seed for use in industrial applications such as biodiesel will aid in expanding the market for the crop. This in turn, may lead to job creation in rural areas of the country and help stimulate the agricultural economy. Moreover, production of soybean with enhanced oil quality for biodiesel may increase the attractiveness of this renewable, environmentally friendly fuel.« less

  20. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology

    PubMed Central

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-01-01

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress. PMID:29271905

  1. Distribution of radioactive cesium ((134)Cs Plus(137)Cs) in a contaminated Japanese soybean cultivar during the preparation of tofu, natto, and nimame (Boiled Soybean).

    PubMed

    Hachinohe, Mayumi; Kimura, Keitarou; Kubo, Yuji; Tanji, Katsuo; Hamamatsu, Shioka; Hagiwara, Shoji; Nei, Daisuke; Kameya, Hiromi; Nakagawa, Rikio; Matsukura, Ushio; Todoriki, Setsuko; Kawamoto, Shinichi

    2013-06-01

    We investigated the fate of radioactive cesium ((134)Cs plus (137)Cs) during the production of tofu, natto, and nimame (boiled soybean) from a contaminated Japanese soybean cultivar harvested in FY2011. Tofu, natto, and nimame were made from soybean grains containing radioactive cesium (240 to 340 Bq/kg [dry weight]), and the radioactive cesium in the processed soybean foods and in by-product fractions such as okara, broth, and waste water was measured with a germanium semiconductor detector. The processing factor is the ratio of radioactive cesium concentration of a product before and after processing. For tofu, natto, nimame, and for the by-product okara, processing factors were 0.12, 0.40, 0.20, and 0.18, respectively; this suggested that these three soybean foods and okara, used mainly as an animal feed, can be considered safe for human and animal consumption according to the standard limit for radioactive cesium of soybean grains. Furthermore, the ratio of radioactive cesium concentrations in the cotyledon, hypocotyl, and seed coat portions of the soybean grain was found to be approximately 1:1:0.4.

  2. Comparative study of quality characteristics of Korean soy sauce made with soybeans germinated under dark and light conditions.

    PubMed

    Choi, Ung-Kyu; Jeong, Yeon-Shin; Kwon, O-Jun; Park, Jong-Dae; Kim, Young-Chan

    2011-01-01

    This study was conducted to evaluate the effects of germinating soybeans under dark and light conditions on the quality characteristics of Korean soy sauce made with germinated soybeans. The germination rate of soybeans germinated under dark conditions (GSD) was higher than that of soybeans germinated under light conditions (GSL), whereas the lengths of sprouts and relative weights of GSL did not differ from those of GSD. The L, a, b, and ΔT values of GSL were significantly lower than GSD. The color of GSD remained yellow, while GSL changed to a green color due to photosynthesis by chlorophyll. The total amino acid contents in soy sauce fermented with soybeans germinated under dark conditions (SSGD) and soy sauce fermented with soybeans germinated under light conditions (SSGL) were lower than in soy sauce fermented with non-germinated soybeans (SNGS). The levels of isoflavone content in SSGD and SSGL were significantly increased compared to the SNGS. In conclusion, the germination of soybeans under dark and light conditions is not only an increasing organoleptic preference, but also has implications for the health benefits of Korean soy sauce.

  3. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    PubMed

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  4. Comparative Study of Quality Characteristics of Korean Soy Sauce Made with Soybeans Germinated Under Dark and Light Conditions

    PubMed Central

    Choi, Ung-Kyu; Jeong, Yeon-Shin; Kwon, O-Jun; Park, Jong-Dae; Kim, Young-Chan

    2011-01-01

    This study was conducted to evaluate the effects of germinating soybeans under dark and light conditions on the quality characteristics of Korean soy sauce made with germinated soybeans. The germination rate of soybeans germinated under dark conditions (GSD) was higher than that of soybeans germinated under light conditions (GSL), whereas the lengths of sprouts and relative weights of GSL did not differ from those of GSD. The L, a, b, and ΔT values of GSL were significantly lower than GSD. The color of GSD remained yellow, while GSL changed to a green color due to photosynthesis by chlorophyll. The total amino acid contents in soy sauce fermented with soybeans germinated under dark conditions (SSGD) and soy sauce fermented with soybeans germinated under light conditions (SSGL) were lower than in soy sauce fermented with non-germinated soybeans (SNGS). The levels of isoflavone content in SSGD and SSGL were significantly increased compared to the SNGS. In conclusion, the germination of soybeans under dark and light conditions is not only an increasing organoleptic preference, but also has implications for the health benefits of Korean soy sauce. PMID:22174653

  5. Evaluating soybean cultivars for resistance to Phomopsis seed decay in Mississippi

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean reduces seed quality, germination and seedling vigor. PSD has been problematic in most soybean production areas including Mississippi (MS). Planting resistant cultivars is one of the most effective means to control PSD. However, very few soybean cultivars resis...

  6. Genomic Studies in Soybean: Toward Understanding Seed Oil and Protein Production

    USDA-ARS?s Scientific Manuscript database

    The molecular mechanisms that influence soybean seed composition are not well understood. Insight into the genetic controls involved in these traits is important for future soybean improvement. In this study, we identified candidate genes at the major soybean protein quantitative trait locus at Link...

  7. Soybean Breeding in the US

    USDA-ARS?s Scientific Manuscript database

    Soybean provides approximately 71% of the world’s protein meal and about 29% of the world’s vegetable oil. The U.S., Brazil, and Argentina supply approximately 80% of the world’s soybean production, accounting for approximately 88% of world soybean exports. In the U.S., approximately 30 million me...

  8. Pathogenic variation of Phakopsora pachyrhizi infecting soybean in Nigeria

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by Phakopsora pachyrhizi, is a major disease in many soybean-producing areas in Nigeria. To determine the virulence and the genetic structure of Nigerian field populations of the soybean rust pathogen, a total of 116 purified isolates established from infected leaves randomly co...

  9. Interaction of Heterodera glycines and Glomus mosseae on Soybean.

    PubMed

    Todd, T C; Winkler, H E; Wilson, G W

    2001-12-01

    The effects of the arbuscular mycorrhizal (AM) fungus Glomus mosseae on Heterodera glycines-soybean interactions were investigated in greenhouse experiments. Mycorrhizal and nonmycorrhizal soybean cultivars that were either resistant or susceptible to H. glycines were exposed to initial nematode population densities (Pi) of 0, 100, 1,000, or 10,000 eggs and infective juveniles. Soybean growth, nematode reproduction, and AM fungal colonization were determined after 35 (experiment I) and 83 (experiment II) days. Soybean shoot and root weights were reduced an average 29% across H. glycines Pi but were 36% greater overall in the presence of G. mosseae. Analyses of variance indicated that root colonization and stimulation of soybean growth by G. mosseae were inhibited at high H. glycines Pi, while the combined effects of the nematode and fungus on soybean growth were best described as additive in linear regression models. No evidence for increased nematode tolerance of mycorrhizal soybean plants was observed. Nematode population densities and reproduction were lower on a nematode-resistant soybean cultivar than on a susceptible cultivar, but reproduction was comparable on mycorrhizal and nonmycorrhizal plants. Root colonization by G. mosseae was reduced at high nematode Pi. The results suggest that nematode antagonism to the mycorrhizal symbiosis is a more likely consequence of interactions between H. glycines and AM fungi on soybean than is nematode suppression by the fungus.

  10. Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull.

    PubMed

    Zhang, Jianguo; Hu, Bo

    2012-02-01

    Soybean hull, generated from soybean processing, is a lignocellulosic material with limited industrial applications and little market value. This research is exploring a new application of soybean hull to be converted to fungal lipids for biodiesel production through solid-state fermentation. Mortierella isabellina was selected as the oil producer because of its high lipid content at low C/N ratio. Several cultivation factors were investigated, including moisture content, inoculums size, fungal spore age, and nutrient supplements, in an attempt to enhance the lipid production of the solid-state fermentation process. The results showed that lipid production with the increase of the moisture content and the spore age, while decreased as the size of inoculums increased. Nutrients addition (KH₂PO₄ 1.2 mg and MgSO₄ 0.6 mg/g soybean hull) improved the lipid production. The total final lipid reached 47.9 mg lipid from 1 g soybean hull after the conversion, 3.3-fold higher than initial lipid reserve in the soybean hull. The fatty acid profile analysis indicated that fatty acid content consisted of 30.0% of total lipid, and 80.4% of total fatty acid was C16 and C18. Therefore, lipid production from soybean hull is a possible option to enable soybean hull as a new resource for biodiesel production and to enhance the overall oil production from soybeans.

  11. Recent climate variability and its impacts on soybean yields in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ferreira, Danielle Barros; Rao, V. Brahmananda

    2011-08-01

    Recent climate variability in rainfall, temperatures (maximum and minimum), and the diurnal temperature range is studied with emphasis on its influence over soybean yields in southern Brazil, during 1969 to 2002. The results showed that the soybean ( Glycine max L. Merril) yields are more affected by changes in temperature during summer, while changes in rainfall are more important during the beginning of plantation and at its peak of development. Furthermore, soybean yields in Paraná are more sensitive to rainfall variations, while soybean yields in the Rio Grande do Sul are more sensitive to variations in temperature. Effects of interannual climatic variability on soybean yields are evaluated through three agro-meteorological models: additive Stewart, multiplicative Rao, and multiplicative Jensen. The Jensen model is able to reproduce the interannual behavior of soybean yield reasonably well.

  12. Molecular cloning and characterization of a new basic peroxidase cDNA from soybean hypocotyls infected with Phytophthora sojae f.sp. glycines.

    PubMed

    Yi, S Y; Hwang, B K

    1998-10-31

    Differential display techniques were used to isolate cDNA clones corresponding to genes which were expressed in soybean hypocotyls by Phytophthora sojae f.sp. glycines infection. With a partial cDNA clone C20CI4 from the differential display PCR as a probe, a new basic peroxidase cDNA clone, designated GMIPER1, was isolated from a cDNA library of soybean hypocotyls infected with P. sojae f.sp. glycines. Sequence analysis revealed that the peroxidase clone encodes a mature protein of 35,813 Da with a putative signal peptide of 27 amino acids in its N-terminus. The amino acid sequence of the soybean peroxidase GMIPER1 is between 54-75% identical to other plant peroxidases including a soybean seed coat peroxidase. Southern blot analysis indicated that multiple copies of sequences related to GMIPER1 exist in the soybean genome. The mRNAs corresponding to the GMIPER1 cDNA accumulated predominantly in the soybean hypocotyls infected with the incompatible race of P. sojae f.sp. glycines, but were expressed at low levels in the compatible interaction. Soybean GMIPER1 mRNAs were not expressed in hypocotyls, leaves, stems, and roots of soybean seedlings. However, treatments with ethephon, salicylic acid or methyl jasmonate induced the accumulation of the GMIPER1 mRNAs in the different organs of soybean. These results suggest that the GMIPER1 gene encoding a putative pathogen-induced peroxidase may play an important role in induced resistance of soybean to P. sojae f.sp. glycines and in response to various external stresses.

  13. Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada.

    PubMed

    Peng, Xiaobang; Thevathasan, Naresh V; Gordon, Andrew M; Mohammed, Idris; Gao, Pengxiang

    2015-01-01

    In order to study the effect of light competition and microclimatic modifications on the net assimilation (NA), growth and yield of soybean (Glycine max L.) as an understory crop, three 26-year-old soybean-tree (Acer saccharinum Marsh., Populus deltoides X nigra, Juglans nigra L.) intercropping systems were examined. Tree competition reduced photosynthetically active radiation (PAR) incident on soybeans and reduced net assimilation, growth and yield of soybean. Soil moisture of 20 cm depth close (< 3 m) to the tree rows was also reduced. Correlation analysis showed that NA and soil water content were highly correlated with growth and yield of soybean. When compared with the monoculture soybean system, the relative humidity (RH) of the poplar-soybean, silver maple-soybean, and black walnut-soybean intercropped systems was increased by 7.1%, 8.0% and 5.9%, soil water content was reduced by 37.8%, 26.3% and 30.9%, ambient temperature was reduced by 1.3°C, 1.4°C and 1.0°C, PAR was reduced by 53.6%, 57.9% and 39.9%, and air CO2 concentration was reduced by 3.7μmol·mol(-1), 4.2μmol·mol(-1) and 2.8μmol·mol(-1), respectively. Compared to the monoculture, the average NA of soybean in poplar, maple and walnut treatments was also reduced by 53.1%, 67.5% and 46.5%, respectively. Multivariate stepwise regression analysis showed that PAR, ambient temperature and CO2 concentration were the dominant factors influencing net photosynthetic rate.

  14. Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada

    PubMed Central

    Peng, Xiaobang; Thevathasan, Naresh V.; Gordon, Andrew M.; Mohammed, Idris; Gao, Pengxiang

    2015-01-01

    In order to study the effect of light competition and microclimatic modifications on the net assimilation (NA), growth and yield of soybean (Glycine max L.) as an understory crop, three 26-year-old soybean-tree (Acer saccharinum Marsh., Populus deltoides X nigra, Juglans nigra L.) intercropping systems were examined. Tree competition reduced photosynthetically active radiation (PAR) incident on soybeans and reduced net assimilation, growth and yield of soybean. Soil moisture of 20 cm depth close (< 3 m) to the tree rows was also reduced. Correlation analysis showed that NA and soil water content were highly correlated with growth and yield of soybean. When compared with the monoculture soybean system, the relative humidity (RH) of the poplar-soybean, silver maple-soybean, and black walnut-soybean intercropped systems was increased by 7.1%, 8.0% and 5.9%, soil water content was reduced by 37.8%, 26.3% and 30.9%, ambient temperature was reduced by 1.3°C, 1.4°C and 1.0°C, PAR was reduced by 53.6%, 57.9% and 39.9%, and air CO2 concentration was reduced by 3.7μmol·mol-1, 4.2μmol·mol-1 and 2.8μmol·mol-1, respectively. Compared to the monoculture, the average NA of soybean in poplar, maple and walnut treatments was also reduced by 53.1%, 67.5% and 46.5%, respectively. Multivariate stepwise regression analysis showed that PAR, ambient temperature and CO2 concentration were the dominant factors influencing net photosynthetic rate. PMID:26053375

  15. Host plant resistance to megacopta cribraria (Hemiptera: Plataspidae) in diverse soybean germplasm maturity groups V through VIII

    USDA-ARS?s Scientific Manuscript database

    Initially discovered in Georgia in 2009, the exotic invasive plataspid, Megacopta cribraria Fabricius has become a serious pest of soybean. Managing M. cribraria in soybean typically involves the application of broad-spectrum insecticides. Soybean host plant resistance is an attractive alternative...

  16. Root transformation of Glycine max with responsive promoters to nematode infection

    USDA-ARS?s Scientific Manuscript database

    The soybean cyst nematode (SCN; Heterodera glycines), an obligate parasite of plants, is the most damaging pathogen of soybean, causing $469 to $818 million in soybean yield losses annually in the United States. However, there are no soybean cultivars available that are resistant to all SCN populati...

  17. Mapping soybean aphid resistance genes in PI 567598B

    USDA-ARS?s Scientific Manuscript database

    The soybean aphid (Aphis glycines Matsumura) has been a major pest of soybean [Glycine max (L.) Merr.] in North America since it was first discovered in 2000. Plant introduction PI 567598B possesses strong antibiosis resistance to soybean aphids. Our previous study revealed that the aphid resistan...

  18. 78 FR 32246 - Pesticide Products; Registration Applications for New Active Ingredients

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ..., crop subgroup 5A; leafy Brassica, greens, crop sub-group 5B; turnip, greens; edible-podded legume..., except soybean, crop subgroups 6C; foliage of legume vegetables, including soybeans, crop group 7, forage green vines; foliage of legume vegetables, including soybean, crop group 7, hay; soybean, seed; fruiting...

  19. Bean Pod Mottle Virus Spread in Insect Feeding Resistant Soybeans

    USDA-ARS?s Scientific Manuscript database

    Bean pod mottle virus (BPMV) reduces yield and seed quality in soybeans. No qualitative resistance to this virus has been found in soybean, although some tolerance is known. To test the hypothesis that virus incidence and movement would be reduced in soybeans with resistance to feeding by the viru...

  20. Pathogenicity and genetic diversity of Fusarium oxysporum causing soybean root rot in northeast China

    USDA-ARS?s Scientific Manuscript database

    Soybean is an important edible legume cultivated around the world. However, soybean production is seriously impacted by the widespread occurrence of root rot disease. In this study, genetic diversity and pathogenicity of Fusarium oxysporum associated with root rot of soybean in Heilongjiang province...

  1. Assessment of the effects of Hirsutella minnesotensis on Soybean Cyst Nematode and growth of soybean

    USDA-ARS?s Scientific Manuscript database

    Hirsutella minnesotensis is a fungal endoparasite of nematodes juvenile and parasitizes soybean cyst nematodes (SCN) with high frequency. In this study, the effects of two H. minnesotensis isolates on population and distribution of SCN and growth of soybean were evaluated. Experiments were conducted...

  2. An update of research on Phomopsis Seed Decay in soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is one of the most important soybean diseases that causes poor seed quality and further poor germination/vigor in most soybean production areas, especially in southern states. Very few soybean cultivars currently available for planting have resistance to PSD. To identify n...

  3. Metabolic profiles of soybean roots during early stages of Fusarium tucumaniae infection

    USDA-ARS?s Scientific Manuscript database

    Soybean germplasm exhibits various levels of resistance to Fusarium tucumaniae, the main causal agent of sudden death syndrome (SDS) of soybean in Argentina. In this study, two soybean genotypes, one susceptible (NA 4613) and one partially resistant (DM 4670) to SDS infection, were inoculated with F...

  4. Preceding crop affects soybean aphid abundance and predator-prey dynamics in soybean

    USDA-ARS?s Scientific Manuscript database

    Crop rotations alter the soil environment and physiology of the subsequent crop in ways that may affect herbivore abundance. Soybean aphids are a consistent pest of soybean throughout North America, but little work has focused on how preceding crops may affect aphid populations. In a replicated expe...

  5. First report of Phakopsora pachyrhizi on soybean causing rust in Tanzania

    USDA-ARS?s Scientific Manuscript database

    Phakopsora pachyrhizi Syd. was reported on legume hosts other than soybean in Tanzania as early as 1979. Soybean rust (SBR), caused by P. pachyrhizi, was first reported on soybean in Africa in Uganda in 1996, and its introduction into Africa was proposed to occur through urediniospores blowing from ...

  6. Colletotrichum incanum sp. nov., a curved-conidial species causing soybean anthracnose in USA

    USDA-ARS?s Scientific Manuscript database

    Soybean anthracnose is caused by a number of species of Colletotrichum that as a group represent an important disease that results in significant economic losses. In the present study, Colletotrichum species were isolated from soybean petioles and stems with anthracnose symptoms from soybean fields ...

  7. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Soybean oil, epoxidized, reaction... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN P-09...

  8. Genome-wide association mapping of flowering time and maturity dates in early mature soybean germplasm

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max L. Merr.) is a photoperiod-sensitive and short-day major crop grown worldwide. Days to flowering (DTF) and maturity (DTM) are two traits affecting soybean adaptability and yield. Some genes conditioning soybean flowering and maturity have been recently characterized. However, ...

  9. Role of Soybean mosaic virus-encoded proteins in seed and aphid transmission in soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean, Glycine max. The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing chimeric recombinants between SMV 413 (efficien...

  10. Dynamics of soybean rust epidemics in sequential plantings of soybean cultivars in Nigeria

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by the fungus Phakopsora pachyrhizi, is an important foliar disease of soybean. The disease intensity is dependent on environmental factors, although the precise conditions of most of these factors is not known. To help understand what environmental factors favor disease develop...

  11. Efficacy of a soy moisturizer in photoaging: a double-blind, vehicle-controlled, 12-week study.

    PubMed

    Wallo, Warren; Nebus, Judith; Leyden, James J

    2007-09-01

    Serine protease inhibitors (soybean trypsin inhibitor [STI] and Bowman-Birk protease inhibitor [BBI]) found in soybeans have been shown to inhibit melanosome phagocytosis by keratinocytes via protease-activated receptor 2 (PAR-2). Pre-clinical studies have confirmed the skin lightening potential of these molecules. In this study, we investigated the efficacy of a novel soy moisturizer containing nondenaturated STI and BBI for the improvement of skin tone, pigmentation, and other photoaging attributes. Sixty-five women, with moderate facial photodamage, were enrolled in the 12-week, parallel, vehicle-controlled study. Efficacy was monitored through clinical observation, self-assessment, colorimetric evaluations, and digital photography. The results showed that the novel soy moisturizer was significantly more efficacious than the vehicle in improving mottled pigmentation, blotchiness, dullness, fine lines, overall texture, overall skin tone, and overall appearance. Differences were significant from week 2 to week 12 for all above parameters (except dullness which started at week 4). In this study, we found that a moisturizer containing stabilized soy extracts is safe and effective, and can be used to ameliorate overall skin tone and texture attributes of photoaging.

  12. Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from 16S rDNA sequence analysis.

    PubMed

    Atibalentja, N; Noel, G R; Domier, L L

    2000-03-01

    A 1341 bp sequence of the 16S rDNA of an undescribed species of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, was determined and then compared with a homologous sequence of Pasteuria ramosa, a parasite of cladoceran water fleas of the family Daphnidae. The two Pasteuria sequences, which diverged from each other by a dissimilarity index of 7%, also were compared with the 16S rDNA sequences of 30 other bacterial species to determine the phylogenetic position of the genus Pasteuria among the Gram-positive eubacteria. Phylogenetic analyses using maximum-likelihood, maximum-parsimony and neighbour-joining methods showed that the Heterodera glycines-infecting Pasteuria and its sister species, P. ramosa, form a distinct line of descent within the Alicyclobacillus group of the Bacillaceae. These results are consistent with the view that the genus Pasteuria is a deeply rooted member of the Clostridium-Bacillus-Streptococcus branch of the Gram-positive eubacteria, neither related to the actinomycetes nor closely related to true endospore-forming bacteria.

  13. Recent Achievement in Gene Cloning and Functional Genomics in Soybean

    PubMed Central

    Zhai, Hong; Lü, Shixiang; Wu, Hongyan; Zhang, Yupeng

    2013-01-01

    Soybean is a model plant for photoperiodism as well as for symbiotic nitrogen fixation. However, a rather low efficiency in soybean transformation hampers functional analysis of genes isolated from soybean. In comparison, rapid development and progress in flowering time and photoperiodic response have been achieved in Arabidopsis and rice. As the soybean genomic information has been released since 2008, gene cloning and functional genomic studies have been revived as indicated by successfully characterizing genes involved in maturity and nematode resistance. Here, we review some major achievements in the cloning of some important genes and some specific features at genetic or genomic levels revealed by the analysis of functional genomics of soybean. PMID:24311973

  14. Comparison of different strategies for soybean antioxidant extraction.

    PubMed

    Chung, Hyun; Ji, Xiangming; Canning, Corene; Sun, Shi; Zhou, Kequan

    2010-04-14

    Three extraction strategies including Soxhlet extraction, conventional solid-liquid extraction, and ultrasonic-assisted extraction (UAE) were compared for their efficiency to extract phenolic antioxidants from Virginia-grown soybean seeds. Five extraction solvents were evaluated in UAE and the conventional extraction. The soybean extracts were compared for their total phenolic contents (TPC), oxygen radical absorbance capacity (ORAC), and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(*)) scavenging activities. The results showed that UAE improved the extraction of soybean phenolic compounds by >54% compared to the conventional and Soxhlet extractions. Among the tested solvents, 50% acetone was the most efficient for extracting soybean phenolic compounds. There was no significant correlation between the TPC and antioxidant activities of the soybean extracts. The extracts prepared by 70% ethanol had the highest ORAC values. Overall, UAE with 50% acetone or 70% ethanol is recommended for extracting soybean antioxidants on the basis of the TPC and ORAC results.

  15. Degradation and removal of soybean allergen in Japanese soy sauce.

    PubMed

    Magishi, Norihiro; Yuikawa, Naoya; Kobayashi, Makio; Taniuchi, Shoichiro

    2017-08-01

    Soy sauce is a traditional fermented seasoning of Japan and is available throughout the world. The two main raw ingredients of soy sauce are soybean and wheat, both of which are established food allergens. The present study examined the degradation and removal of soybean allergens in soy sauce by immunoblotting with anti‑soybean protein antibody from rabbit and sera from two children with soybean allergy. It was demonstrated that soybean allergens were gradually degraded during the fermentation process, but were not completely degraded in raw soy sauce. During the processes of heat‑treatment and filtration, the soluble soybean allergens in raw soy sauce were denatured to insoluble allergens by heat‑treatment and subsequently completely removed from soy sauce by filtration. Therefore, to reduce the allergenicity of soy sauce, heat‑treatment and filtration are very important processes in addition to the enzymatic degradation during the fermentation of soy sauce.

  16. Effect of aluminum stress in early-stage growth of soybean

    NASA Astrophysics Data System (ADS)

    Sagala, D.; Suzanna, E.; Prihanani; Ghulamahdi, M.; Lubis, I.; Trikoesoemaningtyas

    2018-04-01

    The sensitivity of soybean to aluminum stress is well known. One of the abiotic stresses in tidal swamps is the aluminum toxicity. Therefore, it is necessary to find the appropriate management and cropping pattern to obtain a high yield of soybean in the tidal land. We supposed that it would be related to the development stage of soybean. This study was aimed to find the most sensitive of soybean vegetative growth stage to aluminum. Three cultivars of soybean (tanggamus, Karasumame, and M652) and four aluminum treatments (control, 10 days after planting/DAP, 20 DAP, 30 DAP) were arranged in a completely randomized design with three replications. Measurements have been made on root length, root/shoot ratio, biomass dry weight, leaves Aluminum content, leaves the area, and sensitivity index. Overall, observation results indicate that the earlier soybean experience aluminum stress, the more its vegetative growth is disturbed.

  17. Development of rigorous fatty acid near-infrared spectroscopy quantitation methods in support of soybean oil improvement

    USDA-ARS?s Scientific Manuscript database

    The seed of soybean (Glycine max L. Merr) is a valuable source of high quality edible oil and protein. Despite dramatic breeding gains over the past 80 years, soybean seed oil continues to be oxidatively unstable. Until recently, the majority of soybean oil underwent partial chemical hydrogenation. ...

  18. Molecular mapping and genomics of soybean seed protein: A review and perspective for the future

    USDA-ARS?s Scientific Manuscript database

    Meal protein derived from soybean [Glycine max (L) Merr.] seed is the primary source of protein in poultry and livestock feed. Protein is a key factor that determines the nutritional and economical value of soybean. Genetic improvement of soybean seed protein content is highly desirable, and major q...

  19. Characterization of insect resistance loci in the USDA soybean germplasm collection using genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    Management of insects that cause economic damage to yields of soybean mainly rely on insecticide application. Sources of resistance in soybean plant introduction (PIs) to different insect pests have been reported, and some of these resistance sources, like for the soybean aphid (SBA) have been used ...

  20. 40 CFR 180.368 - Metolachlor; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Soybean, hay 8.0 Soybean, seed 0.20 Tomato 0.10 Vegetable, foliage of legume, subgroup 7A, except soybean 15.0 Vegetable, legume, group 6 0.30 (2) Tolerances are established for residues of S-metolachlor... Turnip, greens 1.8 Vegetable, foliage of legume, except soybean, subgroup 7A 15.0 Vegetable, fruiting...

Top