Sample records for space administration support

  1. Space-based navigation for RLVs and ELVs

    DOT National Transportation Integrated Search

    2006-02-08

    The Aerospace Corporation was tasked by the Volpe National Transportation System Center to provide technical support to the Federal Aviation Administration, Office of the Associate Administrator for Commercial Space Transportation (FAA/AST), by perfo...

  2. 75 FR 63207 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... works with K-12 teachers to provide content and curricular support selected as the best from among the... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-123)] Notice of Information Collection AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection...

  3. Shifting Spaces and Emerging Voices: Participation, Support, and Conflict in One School Administrative Team

    ERIC Educational Resources Information Center

    Austin, Manila S.; Harkins, Debra A.

    2008-01-01

    Research Findings: Collaborative work and supportive relationships are highly valued by teachers and school administrators. Collaboration, however, necessitates constructive conflict resolution (P. M. Senge, 1990); yet conflict is often experienced as interpersonally threatening and undermining supportive working conditions. This contradiction is…

  4. 14 CFR 1261.107 - Evidence in support of claim.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Evidence in support of claim. 1261.107 Section 1261.107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PROCESSING OF... statement from the claimant's supervisor or other person or persons having personal knowledge of the facts...

  5. 14 CFR 1261.107 - Evidence in support of claim.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Evidence in support of claim. 1261.107 Section 1261.107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PROCESSING OF... statement from the claimant's supervisor or other person or persons having personal knowledge of the facts...

  6. KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  7. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  8. 14 CFR 198.17 - Ground support and other coverage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Ground support and other coverage. 198.17 Section 198.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) WAR RISK INSURANCE AVIATION INSURANCE § 198.17 Ground support and other coverage. An aircraft...

  9. 14 CFR 198.17 - Ground support and other coverage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ground support and other coverage. 198.17 Section 198.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) WAR RISK INSURANCE AVIATION INSURANCE § 198.17 Ground support and other coverage. An aircraft...

  10. 14 CFR 1230.123 - Early termination of research support: Evaluation of applications and proposals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Early termination of research support: Evaluation of applications and proposals. 1230.123 Section 1230.123 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PROTECTION OF HUMAN SUBJECTS § 1230.123 Early termination of research...

  11. 14 CFR 1230.123 - Early termination of research support: Evaluation of applications and proposals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Early termination of research support: Evaluation of applications and proposals. 1230.123 Section 1230.123 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PROTECTION OF HUMAN SUBJECTS § 1230.123 Early termination of research...

  12. 14 CFR 1214.701 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and support hardware/software carried into space to accomplish a scientific mission or discrete... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Definitions. 1214.701 Section 1214.701 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of the Space...

  13. 14 CFR 1214.701 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and support hardware/software carried into space to accomplish a scientific mission or discrete... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Definitions. 1214.701 Section 1214.701 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of the Space...

  14. Fiscal Year 2007 Budget Press Conference

    NASA Image and Video Library

    2006-02-06

    NASA Administrator Michael Griffin outlines the President's budget for fiscal year 2007 during a news conference, Monday, Feb. 6, 2006, at NASA Headquarters in Washington. Griffin was joined by the heads of NASA's four mission directorates to explain how the proposed $16.8 billion dollar budget supports the Vision for Space Exploration. Seated left to right: Scott Horowitz, NASA Associate Administrator for Exploration Systems, William Gerstenmaier, NASA Associate Administrator for Space Operations, Lisa Porter, NASA Associate Administrator for Aeronautics Research and Mary Cleave, NASA Associate Administrator for Science. Photo Credit: (NASA/Bill Ingalls)

  15. NASA Deputy Administrator Tours Sierra Nevada Space Systems

    NASA Image and Video Library

    2011-02-05

    NASA Deputy Administrator Lori Garver speaks at Sierra Nevada Space Systems, on Saturday, Feb. 5, 2011, in Louisville, Colo. Sierra Nevada's Dream Chaser spacecraft is under development with support from NASA's Commercial Crew Development Program to provide crew transportation to and from low Earth orbit. NASA is helping private companies develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  16. Meteorological Support Interface Control Working Group (MSICWG) Instrumentation, Data Format, and Networks Document

    NASA Technical Reports Server (NTRS)

    Brenton, James; Roberts, Barry C.

    2017-01-01

    The purpose of this document is to provide an overview of instrumentation discussed at the Meteorological Interface Control Working Group (MSICWG), a reference for data formats currently used by members of the group, a summary of proposed formats for future use by the group, an overview of the data networks of the group's members. This document will be updated as new systems are introduced, old systems are retired, and when the MSICWG community necessitates a change to the formats. The MSICWG consists of personnel from the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC), NASA Marshall Space Flight Center (MSFC), NASA Johnson Space Center (JSC), National Oceanic and Atmospheric Administration National Weather Service Spaceflight Meteorology Group (SMG), and the United States Air Force (USAF) 45th Space Wing and Weather Squadron. The purpose of the group is to coordinate the distribution of weather related data to support NASA space launch related activities.

  17. NASA Deputy Administrator Tours Sierra Nevada Space Systems

    NASA Image and Video Library

    2011-02-05

    Sierra Nevada Space Systems chairman Mark Sirangello talks to NASA Deputy Administrator Lori Garver, on Saturday, Feb. 5, 2011, in Louisville, Colo. Sierra Nevada's Dream Chaser spacecraft is under development with support from NASA's Commercial Crew Development Program to provide crew transportation to and from low Earth orbit. NASA is helping private companies develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  18. 14 CFR § 1214.701 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equipment, and support hardware/software carried into space to accomplish a scientific mission or discrete... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Definitions. § 1214.701 Section § 1214.701 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of...

  19. 14 CFR 1215.101 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Space Operations resources for support of a cooperative mission. [56 FR 28048, June 19, 1991] ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Scope. 1215.101 Section 1215.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM...

  20. 14 CFR 1215.101 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Space Operations resources for support of a cooperative mission. [56 FR 28048, June 19, 1991] ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Scope. 1215.101 Section 1215.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM...

  1. KENNEDY SPACE CENTER, FLA. - At a luncheon during Space Congress Week, Michael Kostelnik, NASA deputy associate administrator for the Space Shuttle and the International Space Station, speaks to luncheon attendees about the future challenges the Agency faces. Held April 29-May 2, 2003, in Cape Canaveral, Fla., the Space Congress is an international conference that gathers attendees from the scientific community, the space industry workforce, educators and local supporting industries. This year's event commemorated the 40th anniversary of the Kennedy Space Center and the Centennial of Flight. The theme for the Space Congress was "Linking the Past to the Future: A Celebration of Space."

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At a luncheon during Space Congress Week, Michael Kostelnik, NASA deputy associate administrator for the Space Shuttle and the International Space Station, speaks to luncheon attendees about the future challenges the Agency faces. Held April 29-May 2, 2003, in Cape Canaveral, Fla., the Space Congress is an international conference that gathers attendees from the scientific community, the space industry workforce, educators and local supporting industries. This year's event commemorated the 40th anniversary of the Kennedy Space Center and the Centennial of Flight. The theme for the Space Congress was "Linking the Past to the Future: A Celebration of Space."

  2. KSC-99pp1261

    NASA Image and Video Library

    1999-10-29

    The support building at the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center takes form. It will house related ground support equipment and administrative/technical support. The RLV complex includes a multi-purpose hangar that will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  3. NASA Acting Administrator Robert Lightfoot All Hands

    NASA Image and Video Library

    2017-08-15

    At NASA's Kennedy Space Center in Florida, agency Acting Administrator Robert Lightfoot and Deputy Associate Administrator Lesa Roe speak to employees during a town hall meeting in the conference room of Operations Support Building II. During the gathering, they updated progress on NASA programs.

  4. Practical Applications of Space Systems, Supporting Paper 6: Extractable Resources.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report summarizes the findings of one of fourteen panels that studied progress in space science applications and defined user needs potentially capable of being met by space-system applications. The study was requested by the National Aeronautics and Space Administration (NASA) and was conducted by the Space Applications Board. The panels…

  5. Practical Applications of Space Systems, Supporting Paper 3: Land Use Planning.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report summarizes the findings of one of fourteen panels that studied progress in space science applications and defined user needs potentially capable of being met by space-system applications. The study was requested by the National Aeronautics and Space Administration (NASA) and was conducted by the Space Applications Board. The panels…

  6. Practical Applications of Space Systems, Supporting Paper 7: Environmental Quality.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report summarizes the findings of one of fourteen panels that studied progress in space science applications and defined user needs potentially capable of being met by space-system applications. The study was requested by the National Aeronautics and Space Administration (NASA) and was conducted by the Space Applications Board. The panels…

  7. Practical Applications of Space Systems, Supporting Paper 2: Uses of Communications.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report summarizes the findings of one of fourteen panels that studied progress in space science applications and defined user needs potentially capable of being met by space-system applications. The study was requested by the National Aeronautics and Space Administration (NASA) and was conducted by the Space Applications Board. The panels…

  8. Practical Applications of Space Systems, Supporting Paper 14: Technology.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report summarizes the findings of one of fourteen panels that studied progress in space science applications and defined user needs potentially capable of being met by space-system applications. The study was requested by the National Aeronautics and Space Administration (NASA) and was conducted by the Space Applications Board. The panels…

  9. Practical Applications of Space Systems, Supporting Paper 1: Weather and Climate.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report summarizes the findings of one of fourteen panels that studied progress in space science applications and defined user needs potentially capable of being met by space-system applications. The study was requested by the National Aeronautics and Space Administration (NASA) and was conducted by the Space Applications Board. The panels…

  10. 48 CFR 1845.505-70 - Responsibilities of the property administrator.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... determines that all or a portion of a contractor's property management practices and processes do not afford... AERONAUTICS AND SPACE ADMINISTRATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Support Government Property... the Government's acceptance of risk. (d) The property administrator shall review records and the...

  11. 48 CFR 1845.505-70 - Responsibilities of the property administrator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... determines that all or a portion of a contractor's property management practices and processes do not afford... AERONAUTICS AND SPACE ADMINISTRATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Support Government Property... the Government's acceptance of risk. (d) The property administrator shall review records and the...

  12. 48 CFR 1845.505-70 - Responsibilities of the property administrator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... determines that all or a portion of a contractor's property management practices and processes do not afford... AERONAUTICS AND SPACE ADMINISTRATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Support Government Property... the Government's acceptance of risk. (d) The property administrator shall review records and the...

  13. Critical issues in NASA information systems

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The National Aeronautics and Space Administration has developed a globally-distributed complex of earth resources data bases since LANDSAT 1 was launched in 1972. NASA envisages considerable growth in the number, extent, and complexity of such data bases, due to the improvements expected in its remote sensing data rates, and the increasingly multidisciplinary nature of its scientific investigations. Work already has begun on information systems to support multidisciplinary research activities based on data acquired by the space station complex and other space-based and terrestrial sources. In response to a request from NASA's former Associate Administrator for Space Science and Applications, the National Research Council convened a committee in June 1985 to identify the critical issues involving information systems support to space science and applications. The committee has suggested that OSSA address four major information systems issues; centralization of management functions, interoperability of user involvement in the planning and implementation of its programs, and technology.

  14. 14 CFR 1230.123 - Early termination of research support: Evaluation of applications and proposals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Early termination of research support... AERONAUTICS AND SPACE ADMINISTRATION PROTECTION OF HUMAN SUBJECTS § 1230.123 Early termination of research... applicable program requirements, when the department or agency head finds an institution has materially...

  15. Sen. John C. Stennis celebrates a successful Space Shuttle Main Engine test

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Sen. John C. Stennis dances a jig on top of the Test Control Center at Stennis Space Center following the successful test of a Space Shuttle Main Engine in 1978. A staunch supporter of the National Aeronautics and Space Administration (NASA), the senior senator from DeKalb, Miss., supported the establishment of the space center in Hancock County and spoke personally with local residents who would relocate their homes to accommodate Mississippi's entry into the space age. Stennis Space Center was named for Sen. Stennis by Executive Order of President Ronald Reagan on May 20, 1988.

  16. NASA Acting Administrator Robert Lightfoot All Hands

    NASA Image and Video Library

    2017-08-15

    At NASA's Kennedy Space Center in Florida, agency Acting Administrator Robert Lightfoot speaks to employees during a town hall meeting in the conference room of Operations Support Building II. To the right is Deputy Associate Administrator Lesa Roe. During the gathering, they updated progress on NASA programs.

  17. Noise & scope study for launch vehicles : final report

    DOT National Transportation Integrated Search

    2009-03-01

    In support of the Federal Aviation Administration (FAA) Office of the Associate Administrator Commercial Space Transportation (AST), the John A. Volpe National Transportation Systems Center (Volpe Center) has retained the services of Harris Miller Mi...

  18. 14 CFR 91.1001 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... management services or program management services mean administrative and aviation support services... implementation of program safety guidelines; (ii) Employment, furnishing, or contracting of pilots and other... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC...

  19. Detroit deicing decision support tool : description, operation, and simulation results

    DOT National Transportation Integrated Search

    2006-01-01

    The John A. Volpe National Transportation Systems Center, sponsored by the National Aeronautics and Space Administration, : developed a deicing decision support tool, for Detroit Metropolitan Wayne County Airport (DTW).1 The deicing decision support ...

  20. Practical Applications of Space Systems, Supporting Paper 4: Agriculture, Forest, and Range.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report summarizes the findings of one of fourteen panels that studied the progress of space science applications and defined user needs potentially capable of being met by space-system applications. The study was requested by the National Aeronautics and Space Administration (NASA) and was conducted by the Space Applications Board. The panels…

  1. Practical Applications of Space Systems, Supporting Paper 13: Information Services and Information Processing.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report summarizes the findings of one of fourteen panels that studied progress in space science applications and defined user needs potentially capable of being met by space-system applications. The study was requested by the National Aeronautics and Space Administration (NASA) and was conducted by the Space Applications Board. The panels…

  2. Environmental Assessment for Routine Basewide Military-Sponsored Training Exercises, Edwards Air Force Base, California

    DTIC Science & Technology

    2007-02-01

    control AVAQMD Antelope Valley Air Quality Management District AQMD Air Quality Management Districts BACT Best Available Control Technology BLM Bureau...Aeronautics NAGPRA Native American Graves Protection and Repatriation Act NASA National Aeronautics and Space Administration NBCC nuclear, biological...support of the National Aeronautics and Space Administration ( NASA ) shuttle program is required to be maintained. This includes rescue, medical evaluation

  3. KSC-00pp0725

    NASA Image and Video Library

    2000-06-02

    This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA’s Space Shuttle Program and KSC

  4. KSC00pp0725

    NASA Image and Video Library

    2000-06-02

    This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA’s Space Shuttle Program and KSC

  5. Tropospheric Wind Monitoring During Day-of-Launch Operations for National Aeronautics and Space Administration's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center (NASA/MSFC) monitors the winds aloft at Kennedy Space Center (KSC) during the countdown for all Space Shuttle launches. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution Jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. Data generated by the systems are used to assess spatial and temporal wind variability during launch countdown to ensure wind change observed does not violate wind change criteria constraints.

  6. 14 CFR 420.3 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Applicability. 420.3 Section 420.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operating a site that only supports amateur rocket activities as defined in 14 CFR 1.1, does not need a...

  7. 14 CFR 420.3 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Applicability. 420.3 Section 420.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operating a site that only supports amateur rocket activities as defined in 14 CFR 1.1, does not need a...

  8. NASA Facts. An Educational Publication of the National Aeronautics and Space Administration: Space Shuttle

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The versatility of space shuttle, its heat shieldings, principal components, and facilities for various operations are described as well as the accomodations for the spacecrew and experiments. The capabilities of an improved space suit and a personal rescue enclosure containing life support and communication systems are highlighted. A typical mission is described.

  9. Education Payload Operation - Kit D

    NASA Technical Reports Server (NTRS)

    Keil, Matthew

    2009-01-01

    Education Payload Operation - Kit D (EPO-Kit D) includes education items that will be used to support the live International Space Station (ISS) education downlinks and Education Payload Operation (EPO) demonstrations onboard the ISS. The main objective of EPO-Kit D supports the National Aeronautics and Space Administration (NASA) goal of attracting students to study and seek careers in science, technology, engineering, and mathematics.

  10. KSC-99pp1263

    NASA Image and Video Library

    1999-10-29

    A steam roller packs down the ground next to construction of a support building, part of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes a multi-purpose hangar and the building to be used for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  11. KSC-99pp1265

    NASA Image and Video Library

    1999-10-29

    Construction workers are silhouetted against the sky as they work on the girders of a support building, part of the new $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The building is to be used for related ground support equipment and administrative/technical support. The RLV complex also includes a multi-purpose hangar. The complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The facility, jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC, will be operational in early 2000

  12. 14 CFR 1274.102 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL... commercial firms (particularly where costs are shared) is the profit potential from marketable products... relevant to NASA's mission) are ordinarily entered into with commercial firms to— (1) Support research and...

  13. 14 CFR 158.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Definitions. 158.3 Section 158.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS... airport to support aeronautical operations and related activities. Baggage tugs, belt loaders, cargo...

  14. 14 CFR 158.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Definitions. 158.3 Section 158.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS... airport to support aeronautical operations and related activities. Baggage tugs, belt loaders, cargo...

  15. CNES and NASA Agreements Signed

    NASA Image and Video Library

    2009-09-16

    French Space Agency President Yannick d’Escatha, left, and NASA Administrator Charles Bolden sign four agreements in support of U.S. and French space cooperation during a ceremony at NASA headquarters in Washington, Thursday, Sept. 17, 2009. Photo Credit: (NASA/Bill Ingalls)

  16. Bidirectional Reflectance Round-Robin in Support of the Earth Observing System Program

    NASA Technical Reports Server (NTRS)

    Early, E.; Barnes, P.; Johnson, B.; Butler, J.; Bruegge, C.; Biggar, S.; Spyak, P.; Pavlov, M.

    1999-01-01

    Laboratory measurements of the bidirectional reflectance distribution function (BRDRF) of diffuse reflectors are required to support calibration in the Earth Observing System (EOS) program of the National Aeronautics and Space Administration.

  17. Aerial photo shows RLV complex at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi- purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.

  18. KSC-99pp1257

    NASA Image and Video Library

    1999-10-29

    The first roof panels are placed on the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes the hangar and a building for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  19. KSC-99pp1259

    NASA Image and Video Library

    1999-10-29

    Work continues on construction of the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. In the background can be seen the new construction for the building that will house related ground support equipment and administrative/technical support. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  20. KSC-99pp1262

    NASA Image and Video Library

    1999-10-29

    Workers place the first roof panels on the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes the hangar and a building for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  1. Research and Advanced Development. Volume I - Supporting Research and Technology for the Office of Space Sciences and Applications, National Aeronautics and Space Administration Semiannual Review, 1 Jan. - 30 Jun. 1968.

    NASA Technical Reports Server (NTRS)

    1965-01-01

    This volume contains a review of all supporting research and technology in progress at the Jet Propulsion Laboratory during the period January 1 to June 30, 1965, under direction of the Office of Research and Advanced Development for the Office of Space Sciences and Applications. The work units are arranged in numerical sequence by NASA code in each subject section.

  2. 38 CFR 39.62 - Space criteria for support facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... assignment for the next 10 years. (a) Administrative building. The administrative building should be.../office/equipment/work area); (5) Family/conference room; (6) Military honors team; (7) Refreshment unit; (8) Housekeeping aide's closet; and (9) Restroom facilities. (b) Maintenance/service building. The...

  3. 38 CFR 39.62 - Space criteria for support facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 10 years. (a) Administrative building. The administrative building should be approximately 1,600 NSF.../work area); (5) Family/conference room; (6) Military honors team; (7) Refreshment unit; (8) Housekeeping aide's closet; and (9) Restroom facilities. (b) Maintenance/service building. The maintenance...

  4. Construction continues on RLV Support Complex at SLF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An aerial view reveals (foreground) the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. In the background is the Vehicle Assembly Building. The road at right is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  5. CNES and NASA Agreements Signed

    NASA Image and Video Library

    2009-09-16

    French Space Agency President Yannick d’Escatha, left, and NASA Administrator Charles Bolden shake hands after having signed four agreements in support of U.S. and French space cooperation during a ceremony at NASA headquarters in Washington, Thursday, Sept. 17, 2009. Photo Credit: (NASA/Bill Ingalls)

  6. NOAA Environmental Satellite Measurements of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.

    2015-12-01

    For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.

  7. President Signs NASA Transition Authorization Act on This Week @NASA – March 24, 2017

    NASA Image and Video Library

    2017-03-24

    On March 21, President Trump signed the National Aeronautics and Space Administration Transition Authorization Act of 2017. The bipartisan legislation reaffirms Congress’ commitment to the agency and directs it to pursue a balanced portfolio for space exploration and space science, including continued development of the Space Launch System, Orion, Commercial Crew Program; space and planetary science missions, such as the James Webb Space Telescope, Wide-Field Infrared Survey Telescope, and Europa mission; and ongoing operations of the International Space Station and Commercial Resupply Services Program. In a statement, acting NASA Administrator Robert Lightfoot, who attended the signing, along with two astronauts and members of Congress, thanked the president and Congress for supporting the agency and its mission. Also, Spacewalk Outside the Space Station, SpaceX’s Dragon Returns Safely to Earth, Jeff Williams Visits Washington Area, Advanced Woven Thermal Protection, and Lunar and Planetary Science Conference.

  8. Essential SpaceWire Hardware Capabilities for a Robust Network

    NASA Technical Reports Server (NTRS)

    Birmingham, Michael; Krimchansky, Alexander; Anderson, William; Lombardi, Matthew

    2016-01-01

    The Geostationary Operational Environmental Satellite R-Series Program (GOES-R) mission is a joint program between National Oceanic & Atmospheric Administration (NOAA) and National Aeronautics & Space Administration (NASA) Goddard Space Flight Center (GSFC). GOES-R project selected SpaceWire as the best solution to satisfy the desire for simple and flexible instrument to spacecraft command and telemetry communications. GOES-R development and integration is complete and the observatory is scheduled for launch October 2016. The spacecraft design was required to support redundant SpaceWire links for each instrument side, as well as to route the fewest number of connections through a Slip Ring Assembly necessary to support Solar pointing instruments. The final design utilized two different router designs. The SpaceWire standard alone does not ensure the most practical or reliable network. On GOES-R a few key hardware capabilities were identified that merit serious consideration for future designs. Primarily these capabilities address persistent port stalls and the prevention of receive buffer overflows. Workarounds were necessary to overcome shortcomings that could be avoided in future designs if they utilize the capabilities, discussed in this paper, above and beyond the requirements of the SpaceWire standard.

  9. Aerial photo shows RLV complex at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the foreground of this aerial photo is the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to its left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (center). At the upper left is the runway. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.

  10. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Exhaust system. 23.1123 Section 23.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... prevent failure due to expansion by operating temperatures. (b) Each exhaust system must be supported to...

  11. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Exhaust system. 23.1123 Section 23.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... prevent failure due to expansion by operating temperatures. (b) Each exhaust system must be supported to...

  12. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Exhaust system. 23.1123 Section 23.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... prevent failure due to expansion by operating temperatures. (b) Each exhaust system must be supported to...

  13. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Exhaust system. 23.1123 Section 23.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... prevent failure due to expansion by operating temperatures. (b) Each exhaust system must be supported to...

  14. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust system. 23.1123 Section 23.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... prevent failure due to expansion by operating temperatures. (b) Each exhaust system must be supported to...

  15. 38 CFR 39.21 - Space criteria for support facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... building. The administrative building should be approximately 1,600 NSF in total, providing space, as... room; (6) Military honors team; (7) Refreshment unit; (8) Housekeeping aide's closet; and (9) Restroom facilities. (b) Maintenance/service building. The maintenance/service building may be combined with the...

  16. 14 CFR 16.23 - Pleadings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pleadings. 16.23 Section 16.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES OF... section will not be allowed without showing good cause through a motion and supporting documents. (k...

  17. CNES and NASA Agreements Signed

    NASA Image and Video Library

    2009-09-16

    French Space Agency President Yannick d’Escatha, left, and NASA Administrator Charles Bolden joke with each other as they sign four agreements in support of U.S. and French space cooperation during a ceremony at NASA headquarters in Washington, Thursday, Sept. 17, 2009. Photo Credit: (NASA/Bill Ingalls)

  18. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 23.659 Section 23.659 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Surfaces § 23.659 Mass balance. The supporting structure and the attachment of concentrated mass balance...

  19. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 23.659 Section 23.659 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Surfaces § 23.659 Mass balance. The supporting structure and the attachment of concentrated mass balance...

  20. 14 CFR 23.1023 - Oil radiators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil radiators. 23.1023 Section 23.1023 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... radiators. Each oil radiator and its supporting structures must be able to withstand the vibration, inertia...

  1. KSC-03PD-3248

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  2. NASA Deputy Administrator Tours Sierra Nevada Space Systems' Dre

    NASA Image and Video Library

    2011-02-05

    NASA Deputy Administrator Lori Garver talks during a press conference with Sierra Nevada's Dream Chaser spacecraft in the background on Saturday, Feb. 5, 2011, at the University of Colorado at Boulder. Sierra Nevada's Dream Chaser spacecraft is under development with support from NASA's Commercial Crew Development Program to provide crew transportation to and from low Earth orbit. NASA is helping private companies develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  3. NASA Deputy Administrator Tours Sierra Nevada Space Systems' Dre

    NASA Image and Video Library

    2011-02-05

    Sierra Nevada's Dream Chaser spacecraft is seen as NASA Deputy Administrator Lori Garver talks during a press conference on Saturday, Feb. 5, 2011, at the University of Colorado at Boulder. Sierra Nevada's Dream Chaser spacecraft is under development with support from NASA's Commercial Crew Development Program to provide crew transportation to and from low Earth orbit. NASA is helping private companies develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  4. 14 CFR 17.33 - Adjudicative Process for contract disputes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... 17.33 Section 17.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... determined by the DRO or Special Master, and in advance of the decision of the case, the parties shall make... each issue together with citations to the administrative record or other supporting materials; (3...

  5. 14 CFR 17.33 - Adjudicative Process for contract disputes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... 17.33 Section 17.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... determined by the DRO or Special Master, and in advance of the decision of the case, the parties shall make... each issue together with citations to the administrative record or other supporting materials; (3...

  6. 14 CFR 17.33 - Adjudicative Process for contract disputes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... 17.33 Section 17.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... determined by the DRO or Special Master, and in advance of the decision of the case, the parties shall make... each issue together with citations to the administrative record or other supporting materials; (3...

  7. The Network Information Management System (NIMS) in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Wales, K. J.

    1983-01-01

    In an effort to better manage enormous amounts of administrative, engineering, and management data that is distributed worldwide, a study was conducted which identified the need for a network support system. The Network Information Management System (NIMS) will provide the Deep Space Network with the tools to provide an easily accessible source of valid information to support management activities and provide a more cost-effective method of acquiring, maintaining, and retrieval data.

  8. Electronic filters, signal conversion apparatus, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Morley, Jr., Robert E. (Inventor); Engebretson, A. Maynard (Inventor); Engel, George L. (Inventor); Sullivan, Thomas J. (Inventor)

    1992-01-01

    An electronic filter for filtering an electrical signal. Signal processing circuitry therein includes a logarithmic filter having a series of filter stages with inputs and outputs in cascade and respective circuits as GOVERNMENT SUPPORT This invention was made with U.S. Government support under Veterans Administration Contract VA KV 674P857 and National Aeronautics and Space Administration (NASA) Research Grant No. NAG10-0040. The U.S. Government has certain rights in this invention.

  9. Experiences in Interagency and International Interfaces for Mission Support

    NASA Technical Reports Server (NTRS)

    Dell, G. T.; Mitchell, W. J.; Thompson, T. W.; Cappellari, J. O., Jr.; Flores-Amaya, F.

    1996-01-01

    The Flight Dynamics Division (FDD) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GFSC) provides extensive support and products for Space Shuttle missions, expendable launch vehicle launches, and routine on-orbit operations for a variety of spacecraft. A major challenge in providing support for these missions is defining and generating the products required for mission support and developing the method by which these products are exchanged between supporting agencies. As interagency and international cooperation has increased in the space community, the FDD customer base has grown and with it the number and variety of external interfaces and product definitions. Currently, the FDD has working interfaces with the NASA Space and Ground Networks, the Johnson Space Center, the White Sands Complex, the Jet propulsion Laboratory (including the Deep Space Network), the United States Air Force, the Centre National d'Etudes Spatiales, the German Spaceflight Operations Center, the European Space Agency, and the National Space Development Agency of Japan. With the increasing spectrum of possible data product definitions and delivery methods, the FDD is using its extensive interagency experience to improve its support of established customers and to provide leadership in adapting/developing new interfaces. This paper describes the evolution of the interfaces between the FDD and its customers, discusses many of the joint activities ith these customers, and summarizes key lessons learned that can be applied to current and future support.

  10. KSC-03PD-3249

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  11. 14 CFR 1232.102 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... animal subjects held or used for research, testing, teaching, or other activities supported by the... Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training” on pp. 81-83 of the Guide... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CARE AND USE OF ANIMALS IN THE CONDUCT OF...

  12. 14 CFR 1232.102 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... animal subjects held or used for research, testing, teaching, or other activities supported by the... Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training” on pp. 81-83 of the Guide... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CARE AND USE OF ANIMALS IN THE CONDUCT OF...

  13. 14 CFR 1232.102 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... animal subjects held or used for research, testing, teaching, or other activities supported by the... Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training” on pp. 81-83 of the Guide... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CARE AND USE OF ANIMALS IN THE CONDUCT OF...

  14. 14 CFR 1232.102 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... animal subjects held or used for research, testing, teaching, or other activities supported by the... Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training” on pp. 81-83 of the Guide... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CARE AND USE OF ANIMALS IN THE CONDUCT OF...

  15. Energy: A Balancing Act. Investigating the Climate System. Problem-Based Classroom Modules

    ERIC Educational Resources Information Center

    Barron, Eric

    2003-01-01

    With support from NASA's (National Aeronautics and Space Administration) Goddard Space Flight Center, IGES (Institute for Global Environmental Strategies) has developed educational materials that incorporate information and data from the Tropical Rainfall Measuring Mission (TRMM), a joint satellite mission between the United States and Japan.…

  16. Investigating the Climate System: Precipitation "The Irrational Inquirer." Problem-Based Classroom Modules

    ERIC Educational Resources Information Center

    Cerullo, Mary

    2003-01-01

    With support from National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center, Institute for Global Environmental Strategies (IGES) has developed educational materials that incorporate information and data from the Tropical Rainfall Measuring Mission (TRMM), a joint satellite mission between the United States and Japan.…

  17. Investigating the Climate System: WEATHER. Global Awareness Tour. Problem-Based Classroom Modules

    ERIC Educational Resources Information Center

    Passow, Michael J.

    2003-01-01

    With support from National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center, Institute for Global Environmental Strategies (IGES) has developed educational materials that incorporate information and data from the Tropical Rainfall Measuring Mission (TRMM), a joint satellite mission between the United States and Japan.…

  18. Investigating the Climate System: WINDS. Winds at work. Problem-Based Classroom Modules

    ERIC Educational Resources Information Center

    Astwood, Phil

    2003-01-01

    With support from National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center, Institute for Global Environmental Strategies (IGES) has developed educational materials that incorporate information and data from the Tropical Rainfall Measuring Mission (TRMM), a joint satellite mission between the United States and Japan.…

  19. Dynamic Teachers Re-NEW with NASA.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2001-01-01

    Discusses the National Aeronautics and Space Administration's (NASA) Implementation Plan for Education which provides support to inservice teacher educators in the areas of technology and science. (ASK)

  20. Low Gravity Materials Science Research for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed. Additional information is included in the original extended abstract.

  1. KSC-99pp1209

    NASA Image and Video Library

    1999-10-14

    Construction continues on an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (upper right). Near the top of the photo is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  2. KSC-99PP-1212

    NASA Image and Video Library

    1999-10-14

    An aerial view reveals (foreground) the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. In the background is the Vehicle Assembly Building. The road at right is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  3. KSC-98dc1879

    NASA Image and Video Library

    1998-12-18

    An artist's rendering shows the $8-million Reusable Launch Vehicle (RLV) Support Complex planned for the Shuttle Landing Facility (SLF) at Kennedy Space Center. The ground breaking took place today. To be located at the tow-way adjacent to the SLF, the complex will include a multi-purpose RLV hangar and adjacent facilities for related ground support equipment and administrative/technical support. It will be available to accommodate the Space Shuttle, the X-34 RLV technology demonstrator, the L-1011 carrier aircraft for Pegasus and X-34, and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  4. KSC-99pp1210

    NASA Image and Video Library

    1999-10-14

    An aerial closeup view reveals the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and at left a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. Near the top of the photo can be seen the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  5. 3D Printing in Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Cooper, Kenneth C.; Edmunson, Jennifer E.; Dunn, Jason; Snyder, Michael

    2013-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA's Marshall Space Fligth Center (MSFC) and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station (ISS). The 3D Printing In Zero-G experiment ('3D Print') will be the frst machine to perform 3D printing in space.

  6. Considering Intermittent Dormancy in an Advanced Life Support Systems Architecture

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.; Perry, Jay L.

    2017-01-01

    Many advanced human space exploration missions being considered by the National Aeronautics and Space Administration (NASA) include concepts in which in-space systems cycle between inhabited and uninhabited states. Managing the life support system (LSS) may be particularly challenged during these periods of intermittent dormancy. A study to identify LSS management challenges and considerations relating to dormancy is described. The study seeks to define concepts suitable for addressing intermittent dormancy states and to evaluate whether the reference LSS architectures being considered by the Advanced Exploration Systems (AES) Life Support Systems Project (LSSP) are sufficient to support this operational state. The primary focus of the study is the mission concept considered to be the most challenging-a crewed Mars mission with an extensive surface stay. Results from this study are presented and discussed.

  7. Tropospheric Wind Monitoring During Day-of-Launch Operations for NASA's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center monitors the winds aloft above Kennedy Space Center (KSC) in support of the Space Shuttle Program day-of-launch operations. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. All independent sources are compared against each other for accuracy. To assess spatial and temporal wind variability during launch countdown each jimsphere profile is compared against a design wind database to ensure wind change does not violate wind change criteria.

  8. New Spaces for Learning: Designing College Facilities to Utilize Instructional Aids and Media. Revised.

    ERIC Educational Resources Information Center

    Hauf, Harold D.; And Others

    Colleges need appropriate large group instructional facilities for effective and efficient use of instructional aids and media. A well planned system of facilities must provide space for learning; production, origination, and support; storage and retrieval. Design begins with a building plan--a statement, made jointly by the administrator and…

  9. Clouds and the Earth's Radiant Energy System. Investigating the Climate System. Problem-Based Classroom Modules

    ERIC Educational Resources Information Center

    Smith, Sallie M.; Owens, Howard B.

    2003-01-01

    With support from National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center, Institute for Global Environmental Strategies (IGES) has developed educational materials that incorporate information and data from the Tropical Rainfall Measuring Mission (TRMM), a joint satellite mission between the United States and Japan.…

  10. Fostering Safe and Inclusive Spaces for LGBTQ Students: Phenomenographic Exploration of High School Administrators' Perceptions about GSAs

    ERIC Educational Resources Information Center

    Steck, Andy K.; Perry, David R.

    2016-01-01

    The U.S. secondary school environment often is hostile and exclusionary toward LGBTQ students. Queer theoretical perspectives have served as the conceptual foundation for a phenomenographic study exploring seven high school administrators' perceptions of their experiences with Gay-Straight Alliances. The study results support prior research that…

  11. Reentry Hazard Analysis Handbook

    DOT National Transportation Integrated Search

    2005-01-28

    The Aerospace Corporation was tasked by the Volpe National Transportation Systems Center provide technical support to the Federal Aviation Administration, Office of Commercial Space Transportation (FAA/AST), in developing acceptable methods of evalua...

  12. Space Shuttle Program

    NASA Image and Video Library

    2012-09-12

    Ronnie Rigney (r), chief of the Propulsion Test Office in the Project Directorate at Stennis Space Center, stands with agency colleagues to receive the prestigious American Institute of Aeronautics and Astronautics George M. Low Space Transportation Award on Sept. 12. Rigney accepted the award on behalf of the NASA and contractor team at Stennis for their support of the Space Shuttle Program that ended last summer. From 1975 to 2009, Stennis Space Center tested every main engine used to power 135 space shuttle missions. Stennis continued to provide flight support services through the end of the Space Shuttle Program in July 2011. The center also supported transition and retirement of shuttle hardware and assets through September 2012. The 2012 award was presented to the space shuttle team 'for excellence in the conception, development, test, operation and retirement of the world's first and only reusable space transportation system.' Joining Rigney for the award ceremony at the 2012 AIAA Conference in Pasadena, Calif., were: (l to r) Allison Zuniga, NASA Headquarters; Michael Griffin, former NASA administrator; Don Noah, Johnson Space Center in Houston; Steve Cash, Marshall Space Flight Center in Huntsville, Ala.; and Pete Nickolenko, Kennedy Space Center in Florida.

  13. Aerial views of construction on the RLV hangar at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Looking southwest, this view shows ongoing construction of a multi-purpose hangar, which is part of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. Edging the construction is Sharkey Road, which parallels the landing strip of the Shuttle Landing Facility nearby. The RLV complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  14. Deep Space Habitat ECLSS Design Concept

    NASA Technical Reports Server (NTRS)

    Curley, Su; Stambaugh, Imelda; Swickrath, Michael; Anderson, Molly S.; Rotter, Henry

    2012-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over because the mission definition has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  15. Deep Space Habitat ECLS Design Concept

    NASA Technical Reports Server (NTRS)

    Curley, Su; Stambaugh, Imelda; Swickrath, Mike; Anderson, Molly; Rotter, Hank

    2011-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over as the mission definition also has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  16. KSC-03pd1339

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - NASA Administrator Sean O'Keefe is interviewed by the media at the 40th Space Congress held April 28-May 1, 2003, in Cape Canaveral, Fla. On the left is Lisa Malone, associate director of External Relations and Business Development at KSC. The Space Congress is an international conference that gathers attendees from the scientific community, the space industry workforce, educators and local supporting industries. This year's event commemorated the 40th anniversary of the Kennedy Space Center and the Centennial of Flight. The theme for the Space Congress was "Linking the Past to the Future: A Celebration of Space."

  17. KSC-03pd1342

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - NASA Administrator Sean O'Keefe is interviewed by the media at the 40th Space Congress held April 28-May 1, 2003, in Cape Canaveral, Fla. On the left is Lisa Malone, associate director of External Relations and Business Development at KSC. The Space Congress is an international conference that gathers attendees from the scientific community, the space industry workforce, educators and local supporting industries. This year's event commemorated the 40th anniversary of the Kennedy Space Center and the Centennial of Flight. The theme for the Space Congress was "Linking the Past to the Future: A Celebration of Space."

  18. KSC-03pd1338

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - NASA Administrator Sean O'Keefe is interviewed by the media at the 40th Space Congress held April 28-May 1, 2003, in Cape Canaveral, Fla. On the left is Lisa Malone, associate director of External Relations and Business Development at KSC. The Space Congress is an international conference that gathers attendees from the scientific community, the space industry workforce, educators and local supporting industries. This year's event commemorated the 40th anniversary of the Kennedy Space Center and the Centennial of Flight. The theme for the Space Congress was "Linking the Past to the Future: A Celebration of Space."

  19. KSC-03pd1340

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - NASA Administrator Sean O'Keefe is interviewed by the media at the 40th Space Congress held April 28-May 1, 2003, in Cape Canaveral, Fla. On the left is Lisa Malone, associate director of External Relations and Business Development at KSC. The Space Congress is an international conference that gathers attendees from the scientific community, the space industry workforce, educators and local supporting industries. This year's event commemorated the 40th anniversary of the Kennedy Space Center and the Centennial of Flight. The theme for the Space Congress was "Linking the Past to the Future: A Celebration of Space."

  20. The astronaut of 1988. [training and selection

    NASA Technical Reports Server (NTRS)

    Slayton, D. K.

    1973-01-01

    Past space exploration history is reviewed for a projection of requirements in astronaut training and selection in 1988. The categories of talent required for those space missions are listed as test pilots and operational pilots for the test phase of programs; flight engineers and mechanics for Space Shuttle and Space Stations; medical doctors as experimentators and crew members; medical technicians and nurses for support medical service; veterinarians and veterinary technicians; physisits, chemists and geologists; and military men and administrators. Multinational crews and participation of both sexes are anticipated.

  1. Vice President Mike Pence Visits Kennedy Space Center

    NASA Image and Video Library

    2017-07-06

    Kennedy Space Center Bob Cabana, left, and NASA's Acting Administrator Robert Lightfoot, right present Vice President Mike Pence with a framed plaque. On the back of the plaque are patches from each of Cabana's four space shuttle mission, STS-88, STS-53, STS-65, STS-41, and an inscription thanking the Vice President for his support of NASA. During his visit to Kennedy, the Vice President spoke inside the iconic Vehicle Assembly Building, where he thanked employees for advancing American leadership in space.

  2. Study of solid rocket motor for space shuttle booster, Volume 3: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program planning acquisition functions for the development of the solid propellant rocket engine for the space shuttle booster is presented. The subjects discussed are: (1) program management, (2) contracts administration, (3) systems engineering, (4) configuration management, and (5) maintenance engineering. The plans for manufacturing, testing, and operations support are included.

  3. Operational Overview for UAS Integration in the NAS Project Flight Test Series 3

    NASA Technical Reports Server (NTRS)

    Valkov, Steffi B.; Sternberg, Daniel; Marston, Michael

    2018-01-01

    The National Aeronautics and Space Administration Unmanned Aircraft Systems Integration in the National Airspace System Project has conducted a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The 2015 Flight Test Series 3, supported two separate test configurations. The first configuration investigated the timing of Detect and Avoid alerting thresholds using a radar equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries.

  4. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs is seen during a dialogue with present NASA Administrator Charles Bolden on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. The dialogue was part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  5. Space Transportation Systems Technologies

    NASA Technical Reports Server (NTRS)

    Laue, Jay H.

    2001-01-01

    This document is the final report by the Science Applications International Corporation (SAIC) on contracted support provided to the National Aeronautics and Space Administration (NASA) under Contract NAS8-99060, 'Space Transportation Systems Technologies'. This contract, initiated by NASA's Marshall Space Flight Center (MSFC) on February 8, 1999, was focused on space systems technologies that directly support NASA's space flight goals. It was awarded as a Cost-Plus-Incentive-Fee (CPIF) contract to SAIC, following a competitive procurement via NASA Research Announcement, NRA 8-21. This NRA was specifically focused on tasks related to Reusable Launch Vehicles (RLVs). Through Task Area 3 (TA-3), "Other Related Technology" of this NRA contract, SAIC extensively supported the Space Transportation Directorate of MSFC in effectively directing, integrating, and setting its mission, operations, and safety priorities for future RLV-focused space flight. Following an initially contracted Base Year (February 8, 1999 through September 30, 1999), two option years were added to the contract. These were Option Year 1 (October 1, 1999 through September 30, 2000) and Option Year 2 (October 1, 2000 through September 30, 2001). This report overviews SAIC's accomplishments for the Base Year, Option Year 1, and Option Year 2, and summarizes the support provided by SAIC to the Space Transportation Directorate, NASA/MSFC.

  6. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs, left, and present NASA Administrator Charles Bolden conduct a dialogue on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. Bolden took over the post as NASA's 12th administrator in July 2009. The dialogue is part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  7. KSC-2012-4208

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral, Fla. -- NASA Administrator Charlie Bolden announces the newest partners of NASA's Commercial Crew Program CCP from Operations Support Building 2 OSB II at Kennedy Space Center in Florida. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett

  8. Wiring for aerospace applications

    NASA Astrophysics Data System (ADS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-07-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  9. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  10. Graphical User Interface Development and Design to Support Airport Runway Configuration Management

    NASA Technical Reports Server (NTRS)

    Jones, Debra G.; Lenox, Michelle; Onal, Emrah; Latorella, Kara A.; Lohr, Gary W.; Le Vie, Lisa

    2015-01-01

    The objective of this effort was to develop a graphical user interface (GUI) for the National Aeronautics and Space Administration's (NASA) System Oriented Runway Management (SORM) decision support tool to support runway management. This tool is expected to be used by traffic flow managers and supervisors in the Airport Traffic Control Tower (ATCT) and Terminal Radar Approach Control (TRACON) facilities.

  11. Assessment of Atmospheric Winds Aloft during NASA Space Shuttle Program Day-of-Launch Operations

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2005-01-01

    The Natural Environments Branch at the National Aeronautics and Space Administration s Marshall Space Flight Center monitors the winds aloft at Kennedy Space Center in support of the Space Shuttle Program day of launch operations. High resolution wind profiles are derived from radar tracked Jimsphere balloons, which are launched at predetermined times preceding the launch, for evaluation. The spatial (shear) and temporal (persistence) wind characteristics are assessed against a design wind database to ensure wind change does not violate wind change criteria. Evaluations of wind profies are reported to personnel at Johnson Space Center.

  12. A study of factors related to commercial space platform services

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1986-01-01

    In the past four years, the issue of the commercial development of space has come to the forefront of the U. S. national space policy. Though the Administration, Congress and NASA have all shown strong support for encouraging the private sector to become more actively involved in the commercial utilization of space, the question remains whether they must do more to foster the creation and development of a viable U. S. commercial space industry. Marketing aspects, insurance and risk loss, tax related factors, space transportation, termination liability, institutional barriers, and procurement laws and regulations are discussed.

  13. DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1989-01-01

    This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.

  14. Space radiation health program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.

  15. SPRITE: the Spitzer proposal review website

    NASA Astrophysics Data System (ADS)

    Crane, Megan K.; Storrie-Lombardi, Lisa J.; Silbermann, Nancy A.; Rebull, Luisa M.

    2008-07-01

    The Spitzer Science Center (SSC), located on the campus of the California Institute of Technology, supports the science operations of NASA's infrared Spitzer Space Telescope. The SSC issues an annual Call for Proposals inviting investigators worldwide to submit Spitzer Space Telescope proposals. The Spitzer Proposal Review Website (SPRITE) is a MySQL/PHP web database application designed to support the SSC proposal review process. Review panel members use the software to view, grade, and write comments about the proposals, and SSC support team members monitor the grading and ranking process and ultimately generate a ranked list of all the proposals. The software is also used to generate, edit, and email award letters to the proposers. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.

  16. A Potential NASA Research Reactor to Support NTR Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael; Gerrish, Harold; Hardin, Leroy

    2013-01-01

    In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.

  17. A Research Reactor Concept to Support NTP Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael J.; Blue, T. E.; Gerrish, Harold P.; Hardin, Leroy A.

    2014-01-01

    In support of efforts for research into the design and development of man rated Nuclear Thermal Propulsion (NTP), the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed NTP based research reactor (NTPRR). The proposed NTPRR would be licensed by NASA and operated jointly by NASA and university partners. The purpose of the NTPRR would be used to perform further research into the technologies and systems needed for a successful NTP project and promote nuclear training and education.

  18. KSC-04pd1139

    NASA Image and Video Library

    2004-05-13

    KENNEDY SPACE CENTER, FLA. -- Adm. Craig E. Steidle (center), NASA’s associate administrator, Office of Exploration Systems, tours the Orbiter Processing Facility on a visit to KSC. At right (hands up) is Conrad Nagel, chief of the Shuttle Project Office. They are standing under the orbiter Discovery. The Office of Exploration Systems was established to set priorities and direct the identification, development and validation of exploration systems and related technologies to support the future space vision for America. Steidle’s visit included a tour of KSC to review the facilities and capabilities to be used to support the vision.

  19. KSC-99pp1061

    NASA Image and Video Library

    1999-08-23

    A worker takes a measurement for construction of the Reusable Launch Vehicle (RLV) complex at KSC. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  20. KSC-99pp1063

    NASA Image and Video Library

    1999-08-23

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  1. KSC-99pp1062

    NASA Image and Video Library

    1999-08-23

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  2. KSC-99pp1060

    NASA Image and Video Library

    1999-08-23

    Construction is under way for the X-33/X-34 hangar complex near the Shuttle Landing Facility at KSC. The Reusable Launch Vehicle (RLV) complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  3. Transformational Spaceport and Range Concept of Operations: A Vision to Transform Ground and Launch Operations

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Transformational Concept of Operations (CONOPS) provides a long-term, sustainable vision for future U.S. space transportation infrastructure and operations. This vision presents an interagency concept, developed cooperatively by the Department of Defense (DoD), the Federal Aviation Administration (FAA), and the National Aeronautics and Space Administration (NASA) for the upgrade, integration, and improved operation of major infrastructure elements of the nation s space access systems. The interagency vision described in the Transformational CONOPS would transform today s space launch infrastructure into a shared system that supports worldwide operations for a variety of users. The system concept is sufficiently flexible and adaptable to support new types of missions for exploration, commercial enterprise, and national security, as well as to endure further into the future when space transportation technology may be sufficiently advanced to enable routine public space travel as part of the global transportation system. The vision for future space transportation operations is based on a system-of-systems architecture that integrates the major elements of the future space transportation system - transportation nodes (spaceports), flight vehicles and payloads, tracking and communications assets, and flight traffic coordination centers - into a transportation network that concurrently accommodates multiple types of mission operators, payloads, and vehicle fleets. This system concept also establishes a common framework for defining a detailed CONOPS for the major elements of the future space transportation system. The resulting set of four CONOPS (see Figure 1 below) describes the common vision for a shared future space transportation system (FSTS) infrastructure from a variety of perspectives.

  4. Life Support and Habitation Systems: Crew Support and Protection for Human Exploration Missions Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; McQuillan, Jeffrey

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has recently expanded its mission set for possible future human exploration missions. With multiple options there is interest in identifying technology needs across these missions to focus technology investments. In addition to the Moon and other destinations in cis-lunar space, other destinations including Near Earth Objects and Mars have been added for consideration. Recently, technology programs and projects have been re-organizing to better meet the Agency s strategic goals and address needs across these potential future missions. Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s Exploration Technology Development Program. The chief goal of LSHS is to develop and mature advanced technologies to sustain human life on missions beyond Low Earth Orbit (LEO) to increase reliability, reduce dependency on resupply and increase vehicle self-sufficiency. For long duration exploration missions, further closure of life support systems is of interest. Focus includes key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodations. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. The aim is to recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and meet exploration vehicle requirements. This paper provides a brief description of the LSHS Foundational Domain as defined for fiscal year 2011.

  5. KSC-2012-4204

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral, Fla. -- From left, Kennedy Space Center Director Robert Cabana, NASA Administrator Charlie Bolden and Commercial Crew Program CCP, Manager Ed Mango announce the newest partners of NASA's Commercial Crew Program from Operations Support Building 2 OSB II at Kennedy Space Center in Florida. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett

  6. KSC-2012-4207

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral, Fla. -- NASA Administrator Charlie Bolden announces the newest partners of NASA's Commercial Crew Program CCP from Operations Support Building 2 OSB II at Kennedy Space Center in Florida. At left, is Kennedy Space Center Director Robert Cabana, and at right, is Commercial Crew Program CCP Manager Ed Mango. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett

  7. KSC-2012-4209

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral, Fla. -- NASA Commercial Crew Program CCP Manager Ed Mango discusses the program's newest partnerships from the Operations Support Building 2 OSB II at Kennedy Space Center in Florida. From left, are Kennedy Space Center Director Robert Cabana and NASA Administrator Charlie Bolden. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett

  8. KSC-2012-4206

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral, Fla. -- NASA Administrator Charlie Bolden announces the newest partners of NASA's Commercial Crew Program CCP from Operations Support Building 2 OSB II at Kennedy Space Center in Florida. At left, is Kennedy Space Center Director Robert Cabana and at right, is Commercial Crew Program CCP Manager Ed Mango. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett

  9. Layered virus protection for the operations and administrative messaging system

    NASA Technical Reports Server (NTRS)

    Cortez, R. H.

    2002-01-01

    NASA's Deep Space Network (DSN) is critical in supporting the wide variety of operating and plannedunmanned flight projects. For day-to-day operations it relies on email communication between the three Deep Space Communication Complexes (Canberra, Goldstone, Madrid) and NASA's Jet Propulsion Laboratory. The Operations & Administrative Messaging system, based on the Microsoft Windows NTand Exchange platform, provides the infrastructure that is required for reliable, mission-critical messaging. The reliability of this system, however, is threatened by the proliferation of email viruses that continue to spread at alarming rates. A layered approach to email security has been implemented across the DSN to protect against this threat.

  10. Space Weather Forecasting and Supporting Research in the USA

    NASA Astrophysics Data System (ADS)

    Pevtsov, A. A.

    2017-12-01

    In the United State, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For civilian and commercial purposes, space weather forecast is done by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observational data for modeling come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in framework of individual research projects. The article provides a brief review of current state of space weather-related research and forecasting in the USA.

  11. Astronaut Hammond gets microgravity exercise on rowing machine

    NASA Image and Video Library

    1994-09-10

    STS064-09-026 (9-20 Sept. 1994) --- Astronaut L. Blaine Hammond, STS-64 pilot, gets microgravity exercise on the rowing machine. This area of the space shuttle Discovery's middeck was also used for the treadmill exercising device. Blaine and five other NASA astronauts spent almost 11 days in Earth orbit in support of the mission. Photo credit: NASA or National Aeronautics and Space Administration

  12. NASA Deputy Administrator Tours Sierra Nevada Space Systems' Dre

    NASA Image and Video Library

    2011-02-05

    Sierra Nevada Space Systems chairman Mark Sirangello talks during a press conference with Sierra Nevada's Dream Chaser spacecraft in the background on Saturday, Feb. 5, 2011, at the University of Colorado at Boulder. Sierra Nevada's Dream Chaser spacecraft is under development with support from NASA's Commercial Crew Development Program to provide crew transportation to and from low Earth orbit. NASA is helping private companies develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  13. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs smiles during a dialogue on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. The dialogue was part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  14. Production of synthetic winds for the Global Reference Atmosphere Model (GRAM)

    DOT National Transportation Integrated Search

    2010-12-15

    The Aerospace Corporation was tasked by the Volpe National Transportation systems Center to provide technical support to the Federal Aviation Administration, Office of Commercial Space Transportation (FAA/AST), in developing a method based on Princip...

  15. Triggered lightning risk assessment for reusable launch vehicles at four regional spaceports

    DOT National Transportation Integrated Search

    2010-04-30

    The Aerospace Corporation was tasked by the Volpe National Transportation Systems Center to provide technical support to the Federal Aviation Administration, Office of Commercial Space Transportation, in assessing the risks involved with triggered li...

  16. Reliability and Maintainability Model (RAM): User and Maintenance Manual. Part 2; Improved Supportability Analysis

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1996-01-01

    This report documents the procedures for utilizing and maintaining the Reliability & Maintainability Model (RAM) developed by the University of Dayton for the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). The purpose of the grant is to provide support to NASA in establishing operational and support parameters and costs of proposed space systems. As part of this research objective, the model described here was developed. This Manual updates and supersedes the 1995 RAM User and Maintenance Manual. Changes and enhancements from the 1995 version of the model are primarily a result of the addition of more recent aircraft and shuttle R&M data.

  17. KSC-2014-2102

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., announces that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Kennedy Space Center Director Bob Cabana listen. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  18. KSC-2012-4211

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral, Fla. -- NASA Kennedy Space Center Director Bob Cabana discusses the Commercial Crew Program's CCP newest partnerships from the center's Operations Support Building 2 OSB II. To his right, is NASA Administrator Charlie Bolden, and to his far right, is Commercial Crew Program Manager Ed Mango. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett

  19. The Russian-U.S. Experience with Development Joint Medical Support Procedures for Before and After Long-Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Morgun, V. V.; Voronin, L. I.; Kaspransky, R. R.; Pool, S. L.; Barratt, M. R.; Novinkov, O. L.

    1999-01-01

    As the Russian Space Agency (RSA) and the U.S. National Aviation and Space Administration (NASA) began in the mid 1990s to plan a preliminary cooperative flight program in anticipation of the International Space Station, programmatic and philosophical differences became apparent in the technical and medical approaches of the two agencies. This paper briefly describes some of these differences and the process by which the two sides resolved differences in their approaches to the medical selection and certification of Shuttle-Mir crew members. These negotiations formed the basis for developing policies on other aspects of the medical support function for international missions, including crew training, preflight and postflight data collection, and rehabilitation protocols. The experience gained through this cooperative effort has been invaluable for developing medical care capabilities for the International Space Station.

  20. Design for Reliability and Safety Approach for the New NASA Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Weldon, Danny M.

    2007-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program intended for sending crew and cargo to the international Space Station (ISS), to the moon, and beyond. This program is called Constellation. As part of the Constellation program, NASA is developing new launch vehicles aimed at significantly increase safety and reliability, reduce the cost of accessing space, and provide a growth path for manned space exploration. Achieving these goals requires a rigorous process that addresses reliability, safety, and cost upfront and throughout all the phases of the life cycle of the program. This paper discusses the "Design for Reliability and Safety" approach for the NASA new launch vehicles, the ARES I and ARES V. Specifically, the paper addresses the use of an integrated probabilistic functional analysis to support the design analysis cycle and a probabilistic risk assessment (PRA) to support the preliminary design and beyond.

  1. The astrophysics program at the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J.

    1990-01-01

    Three broad themes characterize the goals of the Astrophysics Division at NASA. These are obtaining an understanding of the origin and evolution of the universe, the fundamental laws of physics, and the birth and evolutionary cycle of galaxies, stars, planets and life. These goals are pursued through contemporaneous observations across the electromagnetic spectrum with high sensitivity and resolution. The strategy to accomplish these goals is fourfold: the establishment of long term space based observatories implemented through the Great Observatories program; attainment of crucial bridging and supporting measurements visa missions of intermediate and small scope conducted within the Explorer, Spacelab, and Space Station Attached Payload Programs; enhancement of scientific access to results of space based research activities through an integrated data system; and development and maintenance of the scientific/technical base for space astrophysics programs through the research and analysis and suborbital programs. The near term activities supporting the first two objectives are discussed.

  2. KSC-2014-2100

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center Launch Pad 39A, NASA Administrator Charlie Bolden announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  3. KSC-2014-2099

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center Launch Pad 39A, NASA Administrator Charlie Bolden announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  4. Development and Testing of Carbon-Carbon Nozzle Extensions for Upper Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Gradl, Paul R.; Greene, Sandra E.

    2017-01-01

    Carbon-carbon (C-C) composite nozzle extensions are of interest for use on a variety of launch vehicle upper stage engines and in-space propulsion systems. The C-C nozzle extension technology and test capabilities being developed are intended to support National Aeronautics and Space Administration (NASA) and Department of Defense (DOD) requirements, as well as those of the broader Commercial Space industry. For NASA, C-C nozzle extension technology development primarily supports the NASA Space Launch System (SLS) and NASA's Commercial Space partners. Marshall Space Flight Center (MSFC) efforts are aimed at both (a) further developing the technology and databases needed to enable the use of composite nozzle extensions on cryogenic upper stage engines, and (b) developing and demonstrating low-cost capabilities for testing and qualifying composite nozzle extensions. Recent, on-going, and potential future work supporting NASA, DOD, and Commercial Space needs will be discussed. Information to be presented will include (a) recent and on-going mechanical, thermal, and hot-fire testing, as well as (b) potential future efforts to further develop and qualify domestic C-C nozzle extension solutions for the various upper stage engines under development.

  5. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  6. Construction continues on the RLV complex at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  7. Construction continues on the RLV complex at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  8. KSC-04pd1142

    NASA Image and Video Library

    2004-05-13

    KENNEDY SPACE CENTER, FLA. -- Adm. Craig E. Steidle (center), NASA’s associate administrator, Office of Exploration Systems, tours the Orbiter Processing Facility on a visit to KSC. At left is Conrad Nagel, chief of the Shuttle Project Office. They are standing under the left wing and wheel well of the orbiter Discovery. The Office of Exploration Systems was established to set priorities and direct the identification, development and validation of exploration systems and related technologies to support the future space vision for America. Steidle’s visit included a tour of KSC to review the facilities and capabilities to be used to support the vision.

  9. KSC-04pd1140

    NASA Image and Video Library

    2004-05-13

    KENNEDY SPACE CENTER, FLA. -- Adm. Craig E. Steidle (center), NASA’s associate administrator, Office of Exploration Systems, listens to Conrad Nagel, chief of the Shuttle Project Office (right), during a tour of the Orbiter Processing Facility on a visit to KSC. They are standing under the orbiter Discovery. The Office of Exploration Systems was established to set priorities and direct the identification, development and validation of exploration systems and related technologies to support the future space vision for America. Steidle’s visit included a tour of KSC to review the facilities and capabilities to be used to support the vision.

  10. KSC-04pd1141

    NASA Image and Video Library

    2004-05-13

    KENNEDY SPACE CENTER, FLA. -- Adm. Craig E. Steidle (center), NASA’s associate administrator, Office of Exploration Systems, listens to Conrad Nagel, chief of the Shuttle Project Office (right), during a tour of the Orbiter Processing Facility on a visit to KSC. They are standing under the orbiter Discovery. The Office of Exploration Systems was established to set priorities and direct the identification, development and validation of exploration systems and related technologies to support the future space vision for America. Steidle’s visit included a tour of KSC to review the facilities and capabilities to be used to support the vision.

  11. Construction continues on the RLV complex at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Construction is under way for the X-33/X-34 hangar complex near the Shuttle Landing Facility at KSC. The Reusable Launch Vehicle (RLV) complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  12. KSC-99pp0837

    NASA Image and Video Library

    1999-07-16

    At a special presentation in the IMAX 2 Theater in the Kennedy Space Center Visitor Complex, the Hammer Award is presented to Kennedy Space Center and the 45th Space Wing. Present for the awards are (left to right) Commander of the Air Force Space Command General Richard B. Myers, Ed Gormel, Chris Fairey, NASA Administrator Daniel Goldin, and Director of the National Partnership for Reinventing Government, Morley Winograd, who presented the award. The Hammer Award is Vice President Al Gore's special recognition of teams of federal employees who have made significant contributions in support of the principles of the National Partnership for Reinventing Government. This Hammer Award acknowledges the accomplishments of a joint NASA and Air Force team that established the Joint Base Operations and Support Contract (J-BOSC) Source Evaluation Board (SEB). Gormel and Fairey are co-chairs of the SEB. The team developed and implemented the acquisition strategy for establishing a single set of base operations and support service requirements for KSC, Cape Canaveral Air Station and Patrick Air Force Base

  13. SMAP validation of soil moisture products

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. SMAP will also incorporate a rigorous calibration and validation program that will support algorithm refinement and provide users with information on the accuracy ...

  14. Design and maintainability considerations regarding the effects of suborbital flights on composite constructed vehicles

    DOT National Transportation Integrated Search

    2010-08-13

    The Aerospace Corporation was tasked by the Volpe National Transportation Systems Center to provide technical support to the Federal Aviation Administration, Office of Commercial Space Transportation (FAA/AST), in developing guidance for AST and indu...

  15. Capabilities and limitations of nondestructive evaluation methods for inspecting components beneath thermal protection systems

    DOT National Transportation Integrated Search

    2004-07-30

    The Aerospace Corporation was tasked by the Volpe National Transportation Systems Center to provide technical support to the Federal Aviation Administration, Office of Commercial Space Transportation (FAA/AST), to develop guidelines for inspecting co...

  16. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo (rear view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  17. Development of U.S.-Russian medical support procedures for long-duration spaceflight: the NASA-Mir experience.

    PubMed

    Morgun, V V; Voronin, L I; Kaspranskiy, R R; Pool, S L; Barratt, M R; Navinkov, A L

    2002-02-01

    As the Russian Space Agency and the U.S. National Aeronautics and Space Administration began in the mid-1990s to plan a preliminary cooperative flight program in anticipation of the International Space Station, programmatic and philosophical differences became apparent in the technical and medical approaches of the two agencies. This paper briefly describes some of these differences and the process by which the two sides resolved differences in their approaches to the medical selection and certification of NASA-Mir crewmembers. These negotiations formed the basis for developing policies on other aspects of the medical support function for international missions, including crew training, preflight and postflight data collection, and rehabilitation protocols. The experience gained through this cooperative effort has been invaluable for developing medical care capabilities for the International Space Station.

  18. Centennial Challenges

    NASA Image and Video Library

    2010-02-26

    NASA Administrator Charles Bolden, right, and Doug Comstock, left, stand with David Masten, of Masten Space Systems, during a ceremony for winners and participants of NASA’s 2009 Centennial Challenges, Friday, Feb. 26, 2010, at NASA Headquarters in Washington. The year-long competition addresses a range of technical challenges that support NASA's missions in aeronautics and space with a goal of encouraging novel solutions from non-traditional sources. Photo Credit: (NASA/Paul E. Alers)

  19. The past, present, and future of National Aeronautics and Space Administration spaceflight diet in support of microgravity rodent experiments.

    PubMed

    Sun, Gwo-Shing; Tou, Janet C; Yu, Diane; Girten, Beverly E; Cohen, Jacob

    2014-02-01

    Rodents have been the most frequently flown animal model used to study physiological responses to the space environment. In support of future of space exploration, the National Aeronautics and Space Administration (NASA) envisions an animal research program focused on rodents. Therefore, the development of a rodent diet that is suitable for the spaceflight environment including long duration spaceflight is a high priority. Recognizing the importance of nutrition in affecting spaceflight physiological responses and ensuring reliable biomedical and biological science return, NASA developed the nutrient-upgraded rodent food bar (NuRFB) as a standard diet for rodent spaceflight. Depending on future animal habitat hardware and planned spaceflight experiments, modification of the NuRFB or development of a new diet formulation may be needed, particularly for long term spaceflights. Research in this area consists primarily of internal technical reports that are not readily accessible. Therefore, the aims of this contribution are to provide a brief history of the development of rodent spaceflight diets, to review the present diet used in rodent spaceflight studies, and to discuss some of the challenges and potential solutions for diets to be used in future long-term rodent spaceflight studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Workshop on Mercury: Space Environment, Surface, and Interior

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Mercury: Space Environment, Surface, and Interior, October 4-5, 2001. The Scientific Organizing Committee consisted of Mark Robinson (Northwestern University), Marty Slade (Jet Propulsion Laboratory), Jim Slavin (NASA Goddard Space Flight Center), Sean Solomon (Carnegie Institution), Ann Sprague (University of Arizona), Paul Spudis (Lunar and Planetary Institute), G. Jeffrey Taylor (University of Hawai'i), Faith Vilas (NASA Johnson Space Center), Meenakshi Wadhwa (The Field Museum), and Thomas Watters (National Air and Space Museum). Logistics, administrative, and publications support were provided by the Publications and Program Services Departments of the Lunar and Planetary Institute.

  1. Fiscal Year 2007 Budget Press Conference

    NASA Image and Video Library

    2006-02-06

    NASA Associate Administrator for Aeronautics Research Lisa J. Porter answers reporters questions during the fiscal year 2007 news conference, Monday, Feb. 6, 2006, at NASA Headquarters in Washington. NASA Administrator Michael Griffin was joined by the heads of NASA's four mission directorates to explain how the proposed $16.8 billion dollar budget supports the Vision for Space Exploration. The budget represents a 3.2% increase above the fiscal year 2006 appropriated budget. Photo Credit: (NASA/Bill Ingalls)

  2. Fiscal Year 2007 Budget Press Conference

    NASA Image and Video Library

    2006-02-06

    NASA Administrator Michael Griffin, seated center, outlines the President's budget for fiscal year 2007 during a news conference, Monday, Feb. 6, 2006, at NASA Headquarters in Washington. The administrator was joined by the heads of NASA's four mission directorates to explain how the proposed $16.8 billion dollar budget supports the Vision for Space Exploration. The budget represents a 3.2% increase above the Fiscal Year 2006 appropriated budget. Photo Credit: (NASA/Bill Ingalls)

  3. Space shuttle/food system study. Volume 2, Appendix G: Ground support system analysis. Appendix H: Galley functional details analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The capabilities for preflight feeding of flight personnel and the supply and control of the space shuttle flight food system were investigated to determine ground support requirements; and the functional details of an onboard food system galley are shown in photographic mockups. The elements which were identified as necessary to the efficient accomplishment of ground support functions include the following: (1) administration; (2) dietetics; (3) analytical laboratories; (4) flight food warehouse; (5) stowage module assembly area; (6) launch site module storage area; (7) alert crew restaurant and disperse crew galleys; (8) ground food warehouse; (9) manufacturing facilities; (10) transport; and (11) computer support. Each element is discussed according to the design criteria of minimum cost, maximum flexibility, reliability, and efficiency consistent with space shuttle requirements. The galley mockup overview illustrates the initial operation configuration, food stowage locations, meal assembly and serving trays, meal preparation configuration, serving, trash management, and the logistics of handling and cleanup equipment.

  4. KSC-2014-2098

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, center director Bob Cabana announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Gwynne Shotwell, president and chief operating officer of SpaceX, look on. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  5. Naval Facilities Engineering Command Needs to Improve Controls Over Task Order Administration

    DTIC Science & Technology

    2015-07-02

    consolidated joint use Submarine Learning Center and Submarine Squadron Headquarters facility that: • includes training space for submarine crews, and...allows frequent and timely interaction between Headquarters personnel, Submarine Learning Center instructors, and waterfront operations personnel...Introduction DODIG-2015-141 │ 3 Project P-528 provides a Torpedo Exercise Support facility that: • supports submarine crew training and certification to

  6. ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER

    EPA Science Inventory

    This report summarizes work conducted at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) in Hampton, VA, under the U.S. Environmental Protection Agency’s (EPA) Waste Reduction Evaluations at Federal Sites (WREAFS) Program. Support for...

  7. 32 CFR 395.3 - Organization and management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) ORGANIZATIONAL CHARTERS DEFENSE LEGAL SERVICES AGENCY § 395.3 Organization and management. (a) The DLSA is... subordinate organizational elements as are established by the Director within resources assigned by the... Activities. (b) Budgeting, management of ceiling spaces, personnel services, and other administrative support...

  8. Overview of the National Aeronautics and Space Administration's Nondestructive Evaluation (NDE) Program

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2002-01-01

    NASA's Office of Safety and Mission Assurance sponsors an Agency-wide NDE Program that supports Aeronautics and Space Transportation Technology, Human Exploration and Development of Space, Earth Science, and Space Science Enterprises. For each of these Enterprises, safety is the number one priority. Development of the next generation aero-space launch and transportation vehicles, satellites, and deep space probes have highlighted the enabling role that NDE plays in these advanced technology systems. Specific areas of advanced component development, component integrity, and structural heath management are critically supported by NDE technologies. The simultaneous goals of assuring safety, maintaining overall operational efficiency, and developing and utilizing revolutionary technologies to expand human activity and space-based commerce in the frontiers of air and space places increasing demands on the Agencies NDE infrastructure and resources. In this presentation, an overview of NASA's NDE Program will be presented, that includes a background and status of current Enterprise NDE issues, and the NDE investment areas being developed to meet Enterprise safety and mission assurance needs through the year 2009 and beyond.

  9. Around Marshall

    NASA Image and Video Library

    2003-04-09

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  10. Report of the Committee on the Space Station of the National Research Council

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Space Station Program will be the most ambitious space project the nation has ever undertaken; will require tens of billions of dollars; and will entwine for many years the space program with those of international partners. It must have enduring stable support across administrations, and the support must be generous. The current Space Shuttle is barely adequate for the limited purpose of deploying the Space Station, and it is inadequate to meet broader national needs in space. The Committee recommends in the strongest terms that the Shuttle be upgraded with new improved solid rocket motors, that it be supplemented with expendable launch vehicles, and that a heavy lift launch vehicle be developed for use in the latter half of the 1990s. The Committee strongly recommends that NASA prepare a new Space Station Program cost estimate in conjunction with the Program Requirements Review scheduled for early next year by NASA. The exercise should address the full range of uncertainties in the current Program, some of which are discussed in the report.

  11. Space Technology for the New Century

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The National Aeronautics and Space Administration (NASA) is responsible for developing advanced space technologies that will lower the cost and improve the performance of existing space activities and enable new ones. Although NASA has recently proved adept at incorporating modern technologies into its spacecraft, the agency currently supports relatively little work in long-term space technology development. To enable ambitious future space activities and to achieve its long-term goals, NASA needs to engage in space research and technology development (R&T) in critical areas for the long term. NASA requested that the National Research Council (NRC) examine the nation's space technology needs in the post-2000 time frame and identify high-risk, high-payoff technology that could improve the capabilities and reduce the costs fo NASA, other government, and commercial space programs. The NRC was also asked to suggest how NASA can work more effectively with industry and universities to develop these technologies. To accomplish these ends, the Committee on Advanced Space Technology, under the auspices of the Aeronautics and Space Engineering Board, undertook a systematic process of information gathering and technology assessment. Six key technologies that the committee believes NASA should support are presented.

  12. NASA and ESA Collaboration on Hexavalent Chrome Free Coatings

    NASA Technical Reports Server (NTRS)

    Greene, Brian

    2017-01-01

    Presentation on the NASA and ESA Collaboration on Hexavalent Chrome Free Coatings project. Project is in response to a Memorandum of Understanding between NASA and ESA Concerning Cooperation in the Field of Space Transportation - signed September 11, 2009. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) have expressed mutual interest in pursuing cooperation in the areas of evaluating hexavalent chrome-free coatings, environmentally-preferable coatings for maintenance of launch facilities and ground support equipment, citric acid as an alternative to nitric acid for passivation of stainless steel alloys.

  13. Space Resources Utilization Roundtable

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This volume contains abstracts that have been accepted for presentation at the Space Resources Utilization Roundtable, October 27-29, 1999, in Golden, Colorado. The program committee consisted of M. B. Duke (Lunar and Planetary Institute), G. Baughman (Colorado School of Mines), D. Criswell (University of Houston), C. Graham (Canadian Mining Industry Research Organization), H. H. Schmitt (Apollo Astronaut), W. Sharp (Colorado School of Mines), L. Taylor (University of Tennessee), and a space manufacturing representative. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  14. KSC-98pc1776

    NASA Image and Video Library

    1998-12-03

    KENNEDY SPACE CENTER, FLA. -- Participants pose for a photo at the Space Station Processing Facility ceremony transferring the "Leonardo" Multipurpose Logistics Module (MPLM) from the Italian Space Agency, Agenzia Spaziale Italiana (ASI), to NASA. From left, they are astronaut Jim Voss, European Space Agency astronauts Umberto Guidoni of Italy and Christer Fuglesang of Sweden, NASA International Space Station Program Manager Randy Brinkley, NASA Administrator Daniel S. Goldin, ASI President Sergio De Julio and Stephen Francois, director, International Space Station Launch Site Support at KSC. The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000

  15. Ka-band (32 GHz) allocations for deep space

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1987-01-01

    At the 1979 World Administrative Conference, two new bands were allocated for deep space telecommunications: 31.8 to 32.3 GHz, space-to-Earth, and 34.2 to 34.7 GHz, Earth-to-space. These bands provide opportunity for further development of the Deep Space Network and its support of deep space research. The history of the process by which JPL/NASA developed the rationale, technical background, and statement of requirement for the bands are discussed. Based on this work, United States proposals to the conference included the bands, and subsequent U.S. and NASA participation in the conference led to successful allocations for deep space telecommunications in the 30 GHz region of the spectrum. A detailed description of the allocations is included.

  16. International Space Station Increment-6/8 Microgravity Environment Summary Report November 2002 to April 2004

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy

    2006-01-01

    This summary report presents the analysis results of some of the processed acceleration data measured aboard the International Space Station during the period of November 2002 to April 2004. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-6/8. However, not all of the activities during that period were analyzed in order to keep the size of the report manageable. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System to support microgravity science experiments that require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification as well as in support of the International Space Station support cadre. The International Space Station Increment-6/8 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1. The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2. The Space Acceleration Measurement System measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-6/8 from November 2002 to April 2004.

  17. National Aeronautics and Space Administration Biological and Physical Research Enterprise Strategy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As the 21st century begins, NASA's new Vision and Mission focuses the Agency's Enterprises toward exploration and discovery.The Biological and Physical Research Enterprise has a unique and enabling role in support of the Agency's Vision and Mission. Our strategic research seeks innovations and solutions to enable the extension of life into deep space safely and productively. Our fundamental research, as well as our research partnerships with industry and other agencies, allow new knowledge and tech- nologies to bring improvements to life on Earth. Our interdisciplinary research in the unique laboratory of microgravity addresses opportunities and challenges on our home planet as well as in space environments. The Enterprise maintains a key role in encouraging and engaging the next generation of explorers from primary school through the grad- uate level via our direct student participation in space research.The Biological and Physical Research Enterprise encompasses three themes. The biological sciences research theme investigates ways to support a safe human presence in space. This theme addresses the definition and control of physiological and psychological risks from the space environment, including radiation,reduced gravity, and isolation. The biological sciences research theme is also responsible for the develop- ment of human support systems technology as well as fundamental biological research spanning topics from genomics to ecologies. The physical sciences research theme supports research that takes advantage of the space environment to expand our understanding of the fundamental laws of nature. This theme also supports applied physical sciences research to improve safety and performance of humans in space. The research partnerships and flight support theme establishes policies and allocates space resources to encourage and develop entrepreneurial partners access to space research.Working together across research disciplines, the Biological and Physical Research Enterprise is performing vital research and technology development to extend the reach of human space flight.

  18. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel on the space shuttle program. Part 2: Summary of information developed in the panel's fact-finding activities

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical 'conscience' were of major priorities for the investigating teams.

  19. Tracking the Short Term Planning (STP) Development Process

    NASA Technical Reports Server (NTRS)

    Price, Melanie; Moore, Alexander

    2010-01-01

    Part of the National Aeronautics and Space Administration?s mission is to pioneer the future in space exploration, scientific discovery and aeronautics research is enhanced by discovering new scientific tools to improve life on earth. Sequentially, to successfully explore the unknown, there has to be a planning process that organizes certain events in the right priority. Therefore, the planning support team has to continually improve their processes so the ISS Mission Operations can operate smoothly and effectively. The planning support team consists of people in the Long Range Planning area that develop timelines that includes International Partner?s Preliminary STP inputs all the way through to publishing of the Final STP. Planning is a crucial part of the NASA community when it comes to planning the astronaut?s daily schedule in great detail. The STP Process is in need of improvement, because of the various tasks that are required to be broken down in order to get the overall objective of developing a Final STP done correctly. Then a new project came along in order to store various data in a more efficient database. "The SharePoint site is a Web site that provides a central storage and collaboration space for documents, information, and ideas."

  20. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Beri, A. C.; Doll, C. E.

    1990-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process is activated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  1. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Heuerman, K.; Beri, A.; Samii, M. V.; Doll, C. E.

    1989-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  2. MCC/shuttle test plan. Volume 1: Philosophy and guidelines

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Mission Control Center/Shuttle Test Plan is defined from development through operations to a level of detail which will support the National Aeronautics and Space Administration and contractor management in the following areas: test management, test tool development, and resource and schedule planning.

  3. Federal Funding and Planetary Astronomy, 1950-75: A Case Study.

    ERIC Educational Resources Information Center

    Tatarewicz, Joseph N.

    1986-01-01

    Discusses the role and resources of planetary astronomy in planetary exploration. Identifies the categories of support made available by the National Aeronautics and Space Administration and reviews the impacts of these findings on planetary researches. Analyzes the publishing habits of American astronomers. (ML)

  4. Integrating O/S models during conceptual design, part 2

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1994-01-01

    This report documents the procedures for utilizing and maintaining the Reliability & Maintainability Model (RAM) developed by the University of Dayton for the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) under NASA research grant NAG-1-1327. The purpose of the grant is to provide support to NASA in establishing operational and support parameters and costs of proposed space systems. As part of this research objective, the model described here was developed. Additional documentation concerning the development of this model may be found in Part 1 of this report. This is the 2nd part of a 3 part technical report.

  5. A Life-Cycle Cost Estimating Methodology for NASA-Developed Air Traffic Control Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Wang, Jianzhong Jay; Datta, Koushik; Landis, Michael R. (Technical Monitor)

    2002-01-01

    This paper describes the development of a life-cycle cost (LCC) estimating methodology for air traffic control Decision Support Tools (DSTs) under development by the National Aeronautics and Space Administration (NASA), using a combination of parametric, analogy, and expert opinion methods. There is no one standard methodology and technique that is used by NASA or by the Federal Aviation Administration (FAA) for LCC estimation of prospective Decision Support Tools. Some of the frequently used methodologies include bottom-up, analogy, top-down, parametric, expert judgement, and Parkinson's Law. The developed LCC estimating methodology can be visualized as a three-dimensional matrix where the three axes represent coverage, estimation, and timing. This paper focuses on the three characteristics of this methodology that correspond to the three axes.

  6. Temporal Investment Strategy to Enable JPL Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lincoln, William P.; Hua, Hook; Weisbin, Charles R.

    2006-01-01

    The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has the responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future JPL deep space missions are ready as needed; as such he is responsible for the development of a Strategic Plan. As part of the planning effort, he has supported the development of a structured approach to technology prioritization based upon the work of the START (Strategic Assessment of Risk and Technology) team. A major innovation reported here is the addition of a temporal model that supports scheduling of technology development as a function of time. The JPL Strategic Technology Plan divides the required capabilities into 13 strategic themes. The results reported here represent the analysis of an initial seven.

  7. KSC-2014-2104

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, from the left, NASA Administrator Charlie Bolden, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX and Kennedy Space Center Director Bob Cabana pose in from the of the historic launch complex after announcing that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  8. NASA and Russian Space Agency sign agreement for additional Space Shuttle/Mir missions

    PubMed

    Huff, W

    1994-01-01

    On December 16, 1993 NASA Administrator Daniel S. Goldin [correction of Golden] and the Russian Space Agency (RSA) director Yuri Koptev signed a protocol agreeing to up to 10 Shuttle flights to Mir with a total of 24 months time aboard Mir for U.S. astronants, a program of scientific and technological research, and the upgrade and extension of the Mir lifetime during the period 1995-1997. This is the first of a three-phase program in human spaceflight cooperation which may culminate in the construction of an international Space Station. This agreement starts joint development of spacecraft environmental control and life support systems and potential common space suit.

  9. The Center for Space Telemetering and Telecommunications Systems

    NASA Technical Reports Server (NTRS)

    Horan, S.; DeLeon, P.; Borah, D.; Lyman, R.

    2003-01-01

    This report comprises the final technical report for the research grant 'Center for Space Telemetering and Telecommunications Systems' sponsored by the National Aeronautics and Space Administration's Goddard Space Flight Center. The grant activities are broken down into the following technology areas: (1) Space Protocol Testing; (2) Autonomous Reconfiguration of Ground Station Receivers; (3) Satellite Cluster Communications; and (4) Bandwidth Efficient Modulation. The grant activity produced a number of technical reports and papers that were communicated to NASA as they were generated. This final report contains the final summary papers or final technical report conclusions for each of the project areas. Additionally, the grant supported students who made progress towards their degrees while working on the research.

  10. Qualification of Electrical Ground Support Equipment for New Space Programs

    NASA Technical Reports Server (NTRS)

    SotoToro, Felix A.; Vu, Bruce T.; Hamilton, Mark S.

    2011-01-01

    With the Space Shuttle program coming to an end, the National Aeronautics and Space Administration (NASA) is moving to a new space flight program that will allow expeditions beyond low earth orbit. The space vehicles required to comply with these missions will be carrying heavy payloads. This implies that the Earth departure stage capabilities must be of higher magnitudes, given the current propulsion technology. The engineering design of the new flight hardware comes with some structural, thermal, propulsion and other subsystems' challenges. Meanwhile, the necessary ground support equipment (GSE) used to test, validate, verify and process the flight hardware must withstand the new program specifications. This paper intends to provide the qualification considerations during implementation of new electrical GSE for space programs. A team of engineers was formed to embark on this task, and facilitate the logistics process and ensure that the electrical, mechanical and fluids subsystems conduct the proper level of testing. Ultimately, each subsystem must certify that each piece of ground support equipment used in the field is capable of withstanding the strenuous vibration, acoustics, environmental, thermal and Electromagnetic Interference (EMf) levels experienced during pre-launch, launch and post-launch activities. The benefits of capturing and sharing these findings will provide technical, cost savings and schedule impacts infon11ation to both the technical and management community. Keywords: Qualification; Testing; Ground Support Equipment; Electromagnetic Interference Testing; Vibration Testing; Acoustic Testing; Power Spectral Density.

  11. AJ26 engine test

    NASA Image and Video Library

    2011-02-07

    NASA Administrator Charles Bolden (l) and John C. Stennis Space Center Director Patrick Scheuermann watch the successful test of the first Aerojet AJ26 flight engine Feb. 7, 2011. The test was conducted on the E-1 Test Stand at Stennis. The engine now will be sent to Wallops Flight Facility in Virginia, where it will be used to power the first stage of Orbital Sciences Corporation's Taurus II space vehicle. The Feb. 7 test supports NASA's commitment to partner with companies to provide commercial cargo flights to the International Space Station. NASA has partnered with Orbital to carry out the first of eight cargo missions to the space station in early 2012.

  12. KSC-2010-5721

    NASA Image and Video Library

    2010-11-17

    CAPE CANAVERAL, Fla. -- Senior Vice President and Deputy General Manager of Orbital Sciences Corp. Frank Culbertson Jr. addresses attendees of the American Astronautical Society's 2010 National Conference held at the Radisson Resort at the Port in Cape Canaveral, Fla. as NASA Deputy Associate Administrator of Space Operations Mission Directorate Lynn Cline and Lockheed Martin Information Systems & Global Services Program Director, Therese Thrift look on. This year's conference was titled: International Space Station: The Next Decade - Utilization and Research. The conference was organized with the support of Kennedy and sponsored by The Boeing Company, Honeywell International Inc., Northrop Grumman Corp., Space Florida and the Universities Space Research Association (USRA). Photo credit: NASA/Jim Grossmann

  13. The Method of Multiple Spatial Planning Basic Map

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Fang, C.

    2018-04-01

    The "Provincial Space Plan Pilot Program" issued in December 2016 pointed out that the existing space management and control information management platforms of various departments were integrated, and a spatial planning information management platform was established to integrate basic data, target indicators, space coordinates, and technical specifications. The planning and preparation will provide supportive decision support, digital monitoring and evaluation of the implementation of the plan, implementation of various types of investment projects and space management and control departments involved in military construction projects in parallel to approve and approve, and improve the efficiency of administrative approval. The space planning system should be set up to delimit the control limits for the development of production, life and ecological space, and the control of use is implemented. On the one hand, it is necessary to clarify the functional orientation between various kinds of planning space. On the other hand, it is necessary to achieve "multi-compliance" of various space planning. Multiple spatial planning intergration need unified and standard basic map(geographic database and technical specificaton) to division of urban, agricultural, ecological three types of space and provide technical support for the refinement of the space control zoning for the relevant planning. The article analysis the main space datum, the land use classification standards, base map planning, planning basic platform main technical problems. Based on the geographic conditions, the results of the census preparation of spatial planning map, and Heilongjiang, Hainan many rules combined with a pilot application.

  14. Four Fabric Structures. A Report.

    ERIC Educational Resources Information Center

    Green, Peter

    Photographs and descriptions of four projects using fabric to enclose large spaces are published so that administrators and designers looking for ways to build recreational facilities can consider these innovative shelters. Three of the four examples in this publication are air-supported structures: University of Santa Clara, Charles Wright…

  15. Cost Analysis of Online Courses. AIR 2000 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Milam, John H., Jr.

    This paper presents a complex, hybrid, method of cost analysis of online courses, which incorporates data on expenditures; student/course enrollment; departmental consumption/contribution; space utilization/opportunity costs; direct non-personnel costs; computing support; faculty/staff workload; administrative overhead at the department, dean, and…

  16. CESDIS

    NASA Technical Reports Server (NTRS)

    1994-01-01

    CESDIS, the Center of Excellence in Space Data and Information Sciences was developed jointly by NASA, Universities Space Research Association (USRA), and the University of Maryland in 1988 to focus on the design of advanced computing techniques and data systems to support NASA Earth and space science research programs. CESDIS is operated by USRA under contract to NASA. The Director, Associate Director, Staff Scientists, and administrative staff are located on-site at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The primary CESDIS mission is to increase the connection between computer science and engineering research programs at colleges and universities and NASA groups working with computer applications in Earth and space science. The 1993-94 CESDIS year included a broad range of computer science research applied to NASA problems. This report provides an overview of these research projects and programs as well as a summary of the various other activities of CESDIS in support of NASA and the university research community, We have had an exciting and challenging year.

  17. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, an MSFC employee is inspecting one of many segments of the mirror assembly for flaws. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  18. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  19. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo (a side view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  20. Space Science

    NASA Image and Video Library

    2003-04-09

    The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, an MSFC employee is inspecting one of many segments of the mirror assembly for flaws. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  1. Space Science

    NASA Image and Video Library

    2003-04-09

    The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, one of many segments of the mirror assembly is being set up inside the 24-ft vacuum chamber where it will undergo x-ray calibration tests. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  2. Cryogenic Propulsion Stage (CPS) Configuration in Support of NASA's Multiple Design Reference Missions (DRMs)

    NASA Technical Reports Server (NTRS)

    Hanna, Stephen G.; Jones, David L.; Creech, Stephen D.; Lawrence, Thomas D.

    2012-01-01

    In support of the National Aeronautics and Space Administration's (NASA) Human Exploration and Operations Mission Directorate (HEOMD), the Space Launch System (SLS) is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's or-bit (BEO). The SLS Team is tasked with developing a system capable of safely and repeatedly lofting a new fleet of spaceflight vehicles beyond Earth orbit. The Cryogenic Propulsion Stage (CPS) is a key enabler for evolving the SLS capability for BEO missions. This paper reports on the methodology and initial recommendations relative to the CPS, giving a brief retrospective of early studies on this promising propulsion hardware. This paper provides an overview of the requirements development and CPS configuration in support of NASA's multiple Design Reference Missions (DRMs).

  3. KSC-2010-5720

    NASA Image and Video Library

    2010-11-17

    CAPE CANAVERAL, Fla. -- SpaceX Vice President of Mission Assurance and Astronaut Safety Ken Bowersox addresses attendees of the American Astronautical Society's 2010 National Conference held at the Radisson Resort at the Port in Cape Canaveral, Fla. Also on stage (left to right) are, NASA Deputy Associate Administrator of Space Operations Mission Directorate Lynn Cline; NASA Program Integration Manager at Johnson Space Center, Jeff Arend; Lockheed Martin Information Systems & Global Services Program Director Therese Thrift and NASA Commercial Resupply Program Deputy Manager at Johnson Space Center Ford Dillon. This year's conference was titled: International Space Station: The Next Decade - Utilization and Research. The conference was organized with the support of Kennedy and sponsored by The Boeing Company, Honeywell International Inc., Northrop Grumman Corp., Space Florida and the Universities Space Research Association (USRA). Photo credit: NASA/Jim Grossmann

  4. Indigenous Peoples Knowledge Community (IPKC): Self-Determination in Higher Education

    ERIC Educational Resources Information Center

    Waterman, Stephanie J.; Harrison, Irvin D.

    2017-01-01

    Special interest groups (SIGs) offer spaces for interests that may not be supported or adequately addressed by the larger organization. NASPA: Student Affairs Administrators in Higher Education (NASPA) calls its SIGs "knowledge communities." This article describes the ways the members of the Indigenous Peoples knowledge community (IPKC)…

  5. Redefining the High-Technology Classroom.

    ERIC Educational Resources Information Center

    Dickson, Gary W.; Segars, Albert

    1999-01-01

    Defines the physical and virtual space of high-tech classrooms in terms of one-to-many, many-to-one, one-to-one, and many-to-many communications modes. Urges an active approach to using information technology that includes administrative and technical support, rewards for innovation, training, security, and good design. (SK)

  6. Planning Guidelines for Primary Schools, Issue 1.

    ERIC Educational Resources Information Center

    Department of Education and Science, Tullamore (Ireland). Planning and Building Unit.

    This planning guide, reflecting recent changes in the educational system in Ireland, offers guidelines for designing primary schools that need to provide additional space for the growing range of teaching and support services. It addresses increased sizes of general purpose rooms, extra floor area provision for classroom storage, administration,…

  7. 75 FR 13312 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection... offerors to award Purchase Orders and to use bank cards for required goods and services in support of NASA..., Purchase Orders and the use of bank cards for purchases with an estimated valueless than $100,000. OMB...

  8. The Hammer Award is presented to KSC and 45th Space Wing.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At a special presentation in the IMAX 2 Theater in the Kennedy Space Center Visitor Complex, the Hammer Award is presented to Kennedy Space Center and the 45th Space Wing. Among the attendees in the audience are (center) Center Director Roy D. Bridges Jr., flanked by (at left) Commander of the 45th Space Wing Brig. Gen. F. Randall Starbuck and (at right) Commander of the Air Force Space Command General Richard B. Myers. Standing second from right is NASA Administrator Daniel S. Goldin. At the far right is Morley Winograd, director of the National Partnership for Reinventing Government, who presented the award. The Hammer Award is Vice President Al Gore's special recognition of teams of federal employees who have made significant contributions in support of the principles of the National Partnership for Reinventing Government. This Hammer Award acknowledges the accomplishments of a joint NASA and Air Force team that established the Joint Base Operations and Support Contract (J- BOSC) Source Evaluation Board (SEB). Ed Gormel and Chris Fairey, co-chairs of the SEB, accepted the awards for the SEB. The team developed and implemented the acquisition strategy for establishing a single set of base operations and support service requirements for KSC, Cape Canaveral Air Station and Patrick Air Force Base.

  9. Rocket exhaust effluent modeling for tropospheric air quality and environmental assessments

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Stewart, R. B.

    1977-01-01

    The various techniques for diffusion predictions to support air quality predictions and environmental assessments for aerospace applications are discussed in terms of limitations imposed by atmospheric data. This affords an introduction to the rationale behind the selection of the National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) Rocket Exhaust Effluent Diffusion (REED) program. The models utilized in the NASA/MSFC REED program are explained. This program is then evaluated in terms of some results from a joint MSFC/Langley Research Center/Kennedy Space Center Titan Exhaust Effluent Prediction and Monitoring Program.

  10. Architecting Communication Network of Networks for Space System of Systems

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hayden, Jeffrey L.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) are planning Space System of Systems (SoS) to address the new challenges of space exploration, defense, communications, navigation, Earth observation, and science. In addition, these complex systems must provide interoperability, enhanced reliability, common interfaces, dynamic operations, and autonomy in system management. Both NASA and the DoD have chosen to meet the new demands with high data rate communication systems and space Internet technologies that bring Internet Protocols (IP), routers, servers, software, and interfaces to space networks to enable as much autonomous operation of those networks as possible. These technologies reduce the cost of operations and, with higher bandwidths, support the expected voice, video, and data needed to coordinate activities at each stage of an exploration mission. In this paper, we discuss, in a generic fashion, how the architectural approaches and processes are being developed and used for defining a hypothetical communication and navigation networks infrastructure to support lunar exploration. Examples are given of the products generated by the architecture development process.

  11. Commerical Remote Sensing Data Contract

    USGS Publications Warehouse

    ,

    2005-01-01

    The U. S. Geological Survey's (USGS) Commercial Remote Sensing Data Contracts (CRSDCs) provide government agencies with access to a broad range of commercially available remotely sensed airborne and satellite data. These contracts were established to support The National Map partners, other Federal Civilian agency programs, and Department of Defense programs that require data for the United States and its territories. Experience shows that centralized procurement of remotely sensed data leads to considerable cost savings to the Federal government through volume discounts, reduction of redundant contract administrative costs, and avoidance of duplicate purchases. These contracts directly support the President's Commercial Remote Sensing Space Policy, signed in 2003, by providing a centralized mechanism for civil agencies to acquire commercial remote sensing products to support their mission needs in an efficient and coordinated way. CRSDC administration is provided by the USGS Mid-Continent Mapping Center in Rolla, Missouri.

  12. The ceremonial transfer of Leonardo, the first MPLM, from ASI to NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Participants pose for a photo at the Space Station Processing Facility ceremony transferring the 'Leonardo' Multipurpose Logistics Module (MPLM) from the Italian Space Agency, Agenzia Spaziale Italiana (ASI), to NASA. From left, they are astronaut Jim Voss, European Space Agency astronauts Umberto Guidoni of Italy and Christer Fuglesang of Sweden, NASA International Space Station Program Manager Randy Brinkley, NASA Administrator Daniel S. Goldin, ASI President Sergio De Julio and Stephen Francois, director, International Space Station Launch Site Support at KSC. The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000.

  13. NASA study grants

    NASA Astrophysics Data System (ADS)

    To expand human exploration of the Solar System, the Office of Exploration of the National Aeronautics and Space Administration has awarded 20 contracts for ideas, concepts, devices, systems, and trajectory, operation and implementation plans. Winning proposals came from five industry-related firms, two organizations in the space-support business, and thirteen universities; they were chosen from 115 entries.Geophysical studies to be supported include site characterization of the Oregon moonbase (Oregon L-5 Society, Inc., Oregon City), evolution of design alternatives for exploration of Mars by balloon (Titan Systems, Inc., San Diego, Calif.), design considerations of a lunar production plant (Boston University, Chestnut Hill, Mass.), planetary materials and resource utilization (Michigan Technological University, Houghton), Mars tethered sample return study (University of Colorado, Boulder), Teleprospector, a teleoperated robotic field geologist (University of New Mexico, Albuquerque), and the International Lunar Polar Orbiter (International Space University, Boston, Mass.).

  14. Microbial Monitoring of Crewed Habitats in Space—Current Status and Future Perspectives

    PubMed Central

    Yamaguchi, Nobuyasu; Roberts, Michael; Castro, Sarah; Oubre, Cherie; Makimura, Koichi; Leys, Natalie; Grohmann, Elisabeth; Sugita, Takashi; Ichijo, Tomoaki; Nasu, Masao

    2014-01-01

    Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed. PMID:25130885

  15. Optimization of System Maturity and Equivalent System Mass for Exploration Systems Development Planning

    NASA Technical Reports Server (NTRS)

    Magnaye, Romulo; Tan, Weiping; Ramirez-Marquez, Jose; Sauser, Bruce

    2010-01-01

    The Exploration Systems Mission Directorate of the National Aeronautics and Space Administration (NASA) is currently pursuing the development of the next generation of human spacecraft and exploration systems throughout the Constellation Program. This includes, among others, habitation technologies for supporting lunar and Mars exploration. The key to these systems is the Exploration Life Support (ELS) system that composes several technology development projects related to atmosphere revitalization, water recovery, waste management and habitation. The proper functioning of these technologies is meant to produce sufficient and balanced resources of water, air, and food to maintain a safe and comfortable environment for long-term human habitation and exploration of space.

  16. 77 FR 4370 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-006)] NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the Commercial Space...

  17. 77 FR 20852 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-027)] NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the Commercial Space...

  18. Administrative automation in a scientific environment

    NASA Technical Reports Server (NTRS)

    Jarrett, J. R.

    1984-01-01

    Although the scientific personnel at GSFC were advanced in the development and use of hardware and software for scientific applications, resistance to the use of automation or purchase of terminals, software and services, specifically for administrative functions was widespread. The approach used to address problems and constraints and plans for administrative automation within the Space and Earth Sciences Directorate are delineated. Accomplishments thus far include reduction of paperwork and manual efforts; improved communications through telemail and committees; additional support staff; increased awareness at all levels on ergonomic concerns and the need for training; better equipment; improved ADP skills through experience; management commitment; and an overall strategy for automating.

  19. NASA Deputy Administrator Tours Sierra Nevada Space Systems' Dre

    NASA Image and Video Library

    2011-02-05

    Director of Advanced Programs, Sierra Nevada Corporation, Jim Voss talks during a press conference with Sierra Nevada's Dream Chaser spacecraft in the background on Saturday, Feb. 5, 2011, at the University of Colorado at Boulder. Sierra Nevada's Dream Chaser spacecraft is under development with support from NASA's Commercial Crew Development Program to provide crew transportation to and from low Earth orbit. NASA is helping private companies develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  20. Report to the NASA Administrator by the Aerospace Safety Advisory Panel on the Space Shuttle Program. Part 1: Observations and Conclusions

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Each system was chosen on the basis of its importance with respect to crew safety and mission success. An overview of the systems management is presented. The space shuttle main engine, orbiter thermal protection system, avionics, external tanks and solid rocket boosters were examined. The ground test and ground support equipment programs were studied. Program management was found to have an adequate understanding of the significant ground and flight risks involved.

  1. Space Environments and Spacecraft Effects Concept: Transitioning Research to Operations and Applications

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Burns, H. D.; Clinton, R. G.; Schumacher, D.; Spann, J. F.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous organizations specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline organizations, a concept is presented focusing on the development of a space environment and spacecraft effects organization. This includes space climate, space weather, natural and induced space environments, and effects on spacecraft materials and systems. This space environment and spacecraft effects organization would be comprised of Technical Working Groups (TWG) focusing on, for example: a) Charged Particles (CP), b) Space Environmental Effects (SEE), and c) Interplanetary and Extraterrestrial Environments (IEE). These technical working groups will generate products and provide knowledge supporting four functional areas: design environments, environment effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather observations to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA and other federal agencies to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lesson learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and spacecraft effects organization are suitable for use in anomaly investigations. This paper will describe the organizational structure for this space environments and spacecraft effects organization, and outline the scope of conceptual TWG's and their relationship to the functional areas.

  2. Atmosphere Revitalization Technology Development for Crewed Space Exploration

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Carrasquillo, Robyn L.; Harris, Danny W.

    2006-01-01

    As space exploration objectives extend human presence beyond low Earth orbit, the solutions to technological challenges presented by supporting human life in the hostile space environment must build upon experience gained during past and present crewed space exploration programs. These programs and the cabin atmosphere revitalization process technologies and systems developed for them represent the National Aeronautics and Space Administration s (NASA) past and present operational knowledge base for maintaining a safe, comfortable environment for the crew. The contributions of these programs to the NASA s technological and operational working knowledge base as well as key strengths and weaknesses to be overcome are discussed. Areas for technological development to address challenges inherent with the Vision for Space Exploration (VSE) are presented and a plan for their development employing unit operations principles is summarized

  3. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-154)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA International Space...

  4. 78 FR 49296 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-091] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA International Space...

  5. 76 FR 40753 - NASA Advisory Council; Commercial Space; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-061)] NASA Advisory Council; Commercial Space; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announces a meeting of the Commercial Space Committee of the NASA...

  6. Exploration Architecture Options - ECLSS, EVA, TCS Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don; Lawrence, Carl

    2010-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), ExtraVehicular Activity (EVA) and Thermal Control System (TCS) Systems. The advantages and disadvantages of each architecture and options are presented.

  7. Exploration Architecture Options - ECLSS, TCS, EVA Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don

    2011-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. The Augustine Commission evaluated human space flight for the Obama administration then the Human Exploration Framework Teams (HEFT and HEFT2) evaluated potential exploration missions and the infrastructure and technology needs for those missions. Lunar architectures have been identified and addressed by the Lunar Surface Systems team to establish options for how to get to, and then inhabit and explore, the moon. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), Thermal Control (TCS), and Extravehicular Activity (EVA) Systems.

  8. Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

  9. Using Internet, Television and Radio to Promote Public Participation in Space Exploration

    NASA Astrophysics Data System (ADS)

    Clipper, Milton C., Jr.; MacLeish, Marlene Y.

    2008-06-01

    The theme of the 59th International Astronautical Congress, From Imagination to Reality, reflects a global sentiment that future space exploration will require a scientifically literate public that is informed about the benefits of space exploration for life on Earth and is motivated to influence decision makers who provide resources to support space exploration. This paper reports on a successful twelve-year private-public partnership among Public Broadcasting Atlanta, (PBA) Morehouse School of Medicine (MSM), the National Space Biomedical Research Institute (NSBRI) and the National Aeronautics and Space Administration (NASA). The partnership has produced television-radio documentaries, transmitted space science knowledge to classrooms, designed electronic citizen participation platforms, spun off new programs and maintained a space film archive. This model provides a framework for analyzing determinants of innovative public-private partnerships, mobilization of scarce resources, and space exploration knowledge management.

  10. SpaceX CRS-11 Launch Coverage

    NASA Image and Video Library

    2017-06-03

    NASA Television conducted a live broadcast from Kennedy Space Center as SpaceX’s CRS-11 launched atop a Falcon 9 rocket from Space Launch Complex 39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. SpaceX’s Dragon spacecraft will deliver almost 6,000 pounds of cargo to the orbiting laboratory as SpaceX’s eleventh commercial resupply services mission to the International Space Station. The crucial materials will directly support dozens of the more than 250 science and research investigations that will occur during Expeditions 52 and 53. Launch commentary conducted by: -Mike Curie, NASA Launch Commentator -Tori McLendon, NASA Communications Special guests included: -Derrick Matthews, NASA Communications -Kirk Shireman, ISS Program -Amanda Griffin, NASA Communications -Karen Ocorr, Co-investigator, Fruit Fly Lab-02 -Robert Lightfoot, NASA Acting Administrator -Jeremy Banik, Principal Investigator, ROSA -Hans Koenigsmann, Vice President of Flight Reliability, SpaceX

  11. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    NASA Technical Reports Server (NTRS)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  12. Current Activities and Capabilities of the Terrestrial Environment Group at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Batts, Wade

    1997-01-01

    The National Aeronautics and Space Administration (NASA) designated Marshall Space Flight Center (MSFC) the center of excellence for space transportation. The Aerospace Environments and Effects (AEE) team of the Electromagnetics and Aerospace Environments Branch (EL23) in the Systems Analysis and Integration Laboratory at MSFC, supports the center of excellence designation by providing near-Earth space, deep space, planetary, and terrestrial environments expertise to projects as required. The Terrestrial Environment (TE) group within the AEE team maintains an extensive TE data base. Statistics and models derived from this data are applied to the design and development of new aerospace vehicles, as well as performance enhancement of operational vehicles such as the Space Shuttle. The TE is defined as the Earth's atmospheric environment extending from the surface to orbital insertion altitudes (approximately 90 km).

  13. Future Aeronautical Communication Infrastructure Technology Investigation

    NASA Technical Reports Server (NTRS)

    Gilbert, Tricia; Jin, Jenny; Bergerm Jason; Henriksen, Steven

    2008-01-01

    This National Aeronautics and Space Administration (NASA) Contractor Report summarizes and documents the work performed to investigate technologies that could support long-term aeronautical mobile communications operating concepts for air traffic management (ATM) in the timeframe of 2020 and beyond, and includes the associated findings and recommendations made by ITT Corporation and NASA Glenn Research Center to the Federal Aviation Administration (FAA). The work was completed as the final phase of a multiyear NASA contract in support of the Future Communication Study (FCS), a cooperative research and development program of the United States FAA, NASA, and EUROCONTROL. This final report focuses on an assessment of final five candidate technologies, and also provides an overview of the entire technology assessment process, including final recommendations.

  14. Griffin Lifts Off at NASA With Calls for Speeding Shuttle Replacement, Reopening Hubble Decision

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Michael D. Griffin launched his tenure as NASA's 11th administrator on a fast track, using his "emergency" confiimation by the U.S. Senate to plug himself into space shuttle return-to-flight decision-making and urging faster development of the shuttle replacement. He also deftly sidestepped the treacherous issue of letting the aging Hubble Space Telescope die that was left behind by former Administrator Sean O'Keefe. Griffin told the Senate Commerce, Science and Transportation Committee that he would take another look at a shuttle mission to service the telescope, but not until the redesigned shuttle system makes a couple of test flights. Griffin made clear at his confirmation hearing Apr. 12 that he has long supported the ideas embodied in President Bush s push to move human exploration out of low Earth orbit, while finishing the International Space Station and retiring the space shuttle as soon as possible. And he showed right out of the blocks that his technical training and management background should serve him well in implementing Bush's directives.

  15. NASA's Strategic Plan for Education. A Strategy for Change: 1993-1998. First Edition.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The National Aeronautics and Space Administration's (NASA's) education vision is to promote excellence in America's education system through enhancing and expanding scientific and technological competence. In doing so, NASA strives to be recognized by the education community as the premier mission agency in support of the National Education Goals…

  16. Application of Avatars in Display Design to Support Spatial Awareness under Varying Workload Conditions

    DTIC Science & Technology

    2006-09-01

    36 5. NASA - TLX over Increased Workload ................................... 37 viii C...AERONAUTICS AND SPACE ADMINISTRATION – TASK LOAD INDEX ( NASA - TLX )................................................................ 89 APPENDIX H...environments are the NASA Task Load Index ( NASA - TLX ) and the Subjective Workload Assessment Techniques (SWAT) which have subscales assessing loads for time

  17. Directorate of Management - Special Staff - Joint Staff - Leadership - The

    Science.gov Websites

    Space Management, Publications Management, Administrative Services, Joint Staff Information Data Systems J-4 J-5 J-6 J-7 J-8 Personal Staff Inspector General Judge Advocate General Officer Management Public Affairs Executive Support Services Legislative Liaison Special Staff Directorate of Management

  18. 45 CFR 1357.32 - State fiscal requirements (title IV-B, subpart 2, family preservation and family support services).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... following: Procurement; payroll; personnel functions; management, maintenance and operation of space and... SERVICES THE ADMINISTRATION ON CHILDREN, YOUTH AND FAMILIES, FOSTER CARE MAINTENANCE PAYMENTS, ADOPTION... title IV-B may not be used for the purchase or construction of facilities. (f) Maintenance of effort...

  19. The Deep Impact Network Experiment Operations Center Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan (Cindy); Torgerson, J. Leigh; Schoolcraft, Joshua; Brenman, Yan

    2009-01-01

    The Interplanetary Overlay Network (ION) software at JPL is an implementation of Delay/Disruption Tolerant Networking (DTN) which has been proposed as an interplanetary protocol to support space communication. The JPL Deep Impact Network (DINET) is a technology development experiment intended to increase the technical readiness of the JPL implemented ION suite. The DINET Experiment Operations Center (EOC) developed by JPL's Protocol Technology Lab (PTL) was critical in accomplishing the experiment. EOC, containing all end nodes of simulated spaces and one administrative node, exercised publish and subscribe functions for payload data among all end nodes to verify the effectiveness of data exchange over ION protocol stacks. A Monitor and Control System was created and installed on the administrative node as a multi-tiered internet-based Web application to support the Deep Impact Network Experiment by allowing monitoring and analysis of the data delivery and statistics from ION. This Monitor and Control System includes the capability of receiving protocol status messages, classifying and storing status messages into a database from the ION simulation network, and providing web interfaces for viewing the live results in addition to interactive database queries.

  20. 76 FR 6827 - Public Availability of the National Aeronautic and Space Administration FY 2010 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautic and Space Administration FY 2010 Service Contract Inventory AGENCY: National Aeronautic and Space Administration. ACTION: Notice of public availability of FY 2010 Service Contract Inventories. [[Page 6828...

  1. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, one of many segments of the mirror assembly is being set up inside the 24-ft vacuum chamber where it will undergo x-ray calibration tests. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  2. Overview of NASA's space radiation research program.

    PubMed

    Schimmerling, Walter

    2003-06-01

    NASA is developing the knowledge required to accurately predict and to efficiently manage radiation risk in space. The strategy employed has three research components: (1) ground-based simulation of space radiation components to develop a science-based understanding of radiation risk; (2) space-based measurements of the radiation environment on planetary surfaces and interplanetary space, as well as use of space platforms to validate predictions; and, (3) implementation of countermeasures to mitigate risk. NASA intends to significantly expand its support of ground-based radiation research in line with completion of the Booster Applications Facility at Brookhaven National Laboratory, expected in summer of 2003. A joint research solicitation with the Department of Energy is under way and other interagency collaborations are being considered. In addition, a Space Radiation Initiative has been submitted by the Administration to Congress that would provide answers to most questions related to the International Space Station within the next 10 years.

  3. NIST activities in support of space-based radiometric remote sensing

    NASA Astrophysics Data System (ADS)

    Rice, Joseph P.; Johnson, B. Carol

    2001-06-01

    We provide an historical overview of NIST research and development in radiometry for space-based remote sensing. The applications in this field can be generally divided into two areas: environmental and defense. In the environmental remote sensing area, NIST has had programs with agencies such as the National Aeronautical and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to verify and improve traceability of the radiometric calibration of sensors that fly on board Earth-observing satellites. These produce data used in climate models and weather prediction. Over the years, the scope of activities has expanded from existing routine calibration services for artifacts such as lamps, diffusers, and filters, to development and off-site deployment of portable radiometers for radiance- and irradiance-scale intercomparisons. In the defense remote sensing area, NIST has had programs with agencies such as the Department of Defense (DOD) for support of calibration of small, low-level infrared sources in a low infrared background. These are used by the aerospace industry to simulate ballistic missiles in a cold space background. Activities have evolved from calibration of point-source cryogenic blackbodies at NIST to measurement of irradiance in off-site calibration chambers by a portable vacuum/cryogenic radiometer. Both areas of application required measurements on the cutting edge of what was technically feasible, thus compelling NIST to develop a state-of-the-art radiometric measurement infrastructure to meet the needs. This infrastructure has led to improved dissemination of the NIST spectroradiometric quantities.

  4. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-003)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  5. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-057] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  6. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-090] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  7. 75 FR 51852 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-090)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  8. 75 FR 51853 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-092)] NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council...

  9. 77 FR 7183 - Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract Inventory AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Public Availability of Analysis of the FY 2010 Service Contract Inventories and...

  10. 78 FR 13383 - Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract Inventory (SCI) AGENCY: Office of Procurement, National Aeronautics and Space Administration. ACTION: Notice of Public Availability of the FY 2012 Service Contract...

  11. Managing a Safe and Successful Multi-User Spaceport

    NASA Technical Reports Server (NTRS)

    Dacko, Taylor; Ketterer, Kirk; Meade, Phillip

    2016-01-01

    Encouraged by the creation of the Office of Commercial Space Transportation within the U.S. Federal Aviation Administration (FAA) in 1984 and the Commercial Space Act of 1998, the National Aeronautics and Space Administration (NASA) now relies on an extensive network of support from commercial companies and organizations. At NASA's Kennedy Space Center (KSC), this collaboration opens competitive opportunities for launch providers, including repurposing underutilized Shuttle Program resources, constructing new facilities, and utilizing center services and laboratories. The resulting multi-user spaceport fosters diverse activity, though it engenders risk from hazards associated with various spaceflight processing activities. The KSC Safety & Mission Assurance (S&MA) Directorate, in coordination with the center's Spaceport Integration and Center Planning & Development organizations, has developed a novel approach to protect NASA's workforce, critical assets, and the public from hazardous, space-related activity associated with KSC's multi-user spaceport. For NASA KSC S&MA, the transformation to a multi-user spaceport required implementing methods to foster safe and successful commercial activity while resolving challenges involving: Retirement of the Space Shuttle program; Co-location of multiple NASA programs; Relationships between the NASA programs; Complex relationships between NASA programs and commercial partner operations in exclusive-use facilities; Complex relationships between NASA programs and commercial partner operations in shared-use facilities. NASA KSC S&MA challenges were met with long-term planning and solutions involving cooperation with the Spaceport Integration and Services Directorate. This directorate is responsible for managing active commercial partnerships with customer advocacy and services management, providing a dedicated and consistent level of support to a wide array of commercial operations. This paper explores these solutions, their relevance to the current commercial space industry, and the challenges that continue to drive improvement with a focus on areas of safety management and risk assessment that have been crucial in KSC's evolution into a multi-user spaceport. These solutions may be useful to government entities and private companies looking to partner with the commercial space industry.

  12. New role for space station—Enhanced cooperation with Russia?

    NASA Astrophysics Data System (ADS)

    Leath, Audrey T.

    The Clinton administration's recent discussions with Russia on enhanced space cooperation and a possible joint space station prompted a two-part hearing by the House Science Subcommittee on Space, held on October 6 and 14. Subcommittee members, citing rumors and news stories about a joint station, questioned Presidential Science Advisor Jack Gibbons and NASA Administrator Daniel Goldin on the status of the proposed cooperation and heard from additional witnesses regarding the feasibility of and support for the concept.Gibbons reassured subcommittee members that no decision has yet been made on Russian cooperation, and that Congress would be consulted in the process. He explained that, after the Vancouver Summit, establishment of a Joint Commission headed by Vice President Gore and Russian Prime Minister Chernomyrdin provided an opportunity for enhanced cooperation in space, as well as in such other areas as energy, nuclear safety, the environment, business development, science and technology, and defense diversification. Gibbons testified that the study of a cooperative station program took place concurrently with NASA's work on defining the redesigned U.S. space station, now being referred to as “Alpha.” He affirmed that while Alpha's modular design made it adaptable to a joint effort, it could “be built independent of any Russian participation.”

  13. Foundations of Supply Chain Management for Space Application

    NASA Technical Reports Server (NTRS)

    Galluzzi, Michael; Zapata, Edgar; Steele, Martin; De Weck, Olivier

    2006-01-01

    Supply Chain Management (SCM) is a key piece of the framework for America's space technology investment as the National Aeronautics and Space Administration (NASA), the aerospace industry, and international partners embark on a bold new vision of human and robotic space exploration beyond Low-Earth-Orbit (LEO). This type of investment is driven by the Agency's need for cost efficient operational support associated with, processing and operating space vehicles and address many of the biggest operational challenge including extremely tight funding profiles, seamless program-to-program transition activities and the reduction of the time gap with human spaceflight capabilities in the post-Shuttle era. An investment of this magnitude is a multiyear task and must include new patterns of thought within the engineering community to respect the importance of SCM and the integration of the material and information flow. Experience within the Department of Defense and commercial sectors which has shown that support cost reductions and or avoidances of upwards to 35% over business as usual are achievable. It is SCM that will ultimately bring the solar system within the economic sphere of our society.

  14. Mars Express Interplanetary Navigation from Launch to Mars Orbit Insertion: The JPL Experience

    NASA Technical Reports Server (NTRS)

    Han, Dongsuk; Highsmith, Dolan; Jah, Moriba; Craig, Diane; Border, James; Kroger, Peter

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) played a significant role in supporting the safe arrival of the European Space Agency (ESA) Mars Express (MEX) orbiter to Mars on 25 December 2003. MEX mission is an international collaboration between member nations of the ESA and NASA, where NASA is supporting partner. JPL's involvement included providing commanding and tracking service with JPL's Deep Space Network (DSN), in addition to navigation assurance. The collaborative navigation effort between European Space Operations Centre (ESOC) and JPL is the first since ESA's last deep space mission, Giotto, and began many years before the MEX launch. This paper discusses the navigational experience during the cruise and final approach phase of the mission from JPL's perspective. Topics include technical challenges such as orbit determination using non-DSN tracking data and media calibrations, and modeling of spacecraft physical properties for accurate representation of non-gravitational dynamics. Also mentioned in this paper is preparation and usage of DSN Delta Differential Oneway Range ((Delta)DOR) measurements, a key element to the accuracy of the orbit determination.

  15. A Quantitative Reliability, Maintainability and Supportability Approach for NASA's Second Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Daniel, Charles; Kalia, Prince; Smith, Charles A. (Technical Monitor)

    2002-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a 10-year Second Generation Reusable Launch Vehicle (RLV) program to improve its space transportation capabilities for both cargo and crewed missions. The objectives of the program are to: significantly increase safety and reliability, reduce the cost of accessing low-earth orbit, attempt to leverage commercial launch capabilities, and provide a growth path for manned space exploration. The safety, reliability and life cycle cost of the next generation vehicles are major concerns, and NASA aims to achieve orders of magnitude improvement in these areas. To get these significant improvements, requires a rigorous process that addresses Reliability, Maintainability and Supportability (RMS) and safety through all the phases of the life cycle of the program. This paper discusses the RMS process being implemented for the Second Generation RLV program.

  16. KSC-99pp0838

    NASA Image and Video Library

    1999-07-16

    At a special presentation in the IMAX 2 Theater in the Kennedy Space Center Visitor Complex, the Hammer Award is presented to Kennedy Space Center and the 45th Space Wing. Among the attendees in the audience are (center) Center Director Roy D. Bridges Jr., flanked by (at left) Commander of the 45th Space Wing Brig. Gen. F. Randall Starbuck and (at right) Commander of the Air Force Space Command General Richard B. Myers. Standing second from right is NASA Administrator Daniel S. Goldin. At the far right is Morley Winograd, director of the National Partnership for Reinventing Government, who presented the award. The Hammer Award is Vice President Al Gore's special recognition of teams of federal employees who have made significant contributions in support of the principles of the National Partnership for Reinventing Government. This Hammer Award acknowledges the accomplishments of a joint NASA and Air Force team that established the Joint Base Operations and Support Contract (J-BOSC) Source Evaluation Board (SEB). Ed Gormel and Chris Fairey, co-chairs of the SEB, accepted the awards for the SEB. The team developed and implemented the acquisition strategy for establishing a single set of base operations and support service requirements for KSC, Cape Canaveral Air Station and Patrick Air Force Base

  17. 78 FR 38533 - Federal Acquisition Regulation; Federal Acquisition Circular 2005-68; Introduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... Administration National Aeronautics and Space Administration 48 CFR Chapter 1 Federal Acquisition Regulations... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 48 CFR Chapter 1 [Docket FAR 2013-0076, Sequence 4] Federal...), General Services Administration (GSA), and National Aeronautics and Space Administration (NASA). ACTION...

  18. 77 FR 73515 - Federal Acquisition Regulation; Federal Acquisition Circular 2005-63; Introduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... Administration National Aeronautics and Space Administration 48 CFR Chapter 1 Federal Acquisition Regulations... AND SPACE ADMINISTRATION 48 CFR Chapter 1 [Docket FAR 2012-0080, Sequence 6] Federal Acquisition... Services Administration (GSA), and National Aeronautics and Space Administration (NASA). ACTION: Summary...

  19. 14 CFR 1201.103 - Administration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Administration. 1201.103 Section 1201.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1201.103 Administration. (a) NASA is headed by an Administrator, who is appointed...

  20. 75 FR 19179 - Federal Acquisition Regulation; Federal Acquisition Circular 2005-41; Small Entity Compliance Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... DEPARTMENT OF DEFENSE GENERAL SERVICES ADMINISTRATION NATIONAL AERONAUTICS AND SPACE... Services Administration (GSA), and National Aeronautics and Space Administration (NASA). ACTION: Small... Defense, the Administrator of General Services and the Administrator of the National Aeronautics and Space...

  1. 14 CFR 1201.103 - Administration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Administration. 1201.103 Section 1201.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1201.103 Administration. (a) NASA is headed by an Administrator, who is appointed...

  2. 14 CFR 1201.103 - Administration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Administration. 1201.103 Section 1201.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1201.103 Administration. (a) NASA is headed by an Administrator, who is appointed...

  3. 14 CFR 1201.103 - Administration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Administration. 1201.103 Section 1201.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1201.103 Administration. (a) NASA is headed by an Administrator, who is appointed...

  4. Composting in advanced life support systems

    NASA Technical Reports Server (NTRS)

    Atkinson, C. F.; Sager, J. C.; Alazraki, M.; Loader, C.

    1998-01-01

    Space missions of extended duration are currently hampered by the prohibitive costs of external resupply. To reduce the need for resupply, the National Aeronautics and Space Administration (NASA) is currently testing methods to recycle solid wastes, water, and air. Composting can be an integral part of a biologically based waste treatment/recycling system. Results indicate that leachate from composted plant wastes is not inhibitory to seed germination and contains sufficient inorganic minerals to support plant growth. Other solid wastes, for example kitchen (food) wastes and human solid wastes, can be composted with inedible plant residues to safely reduce the volume of the wastes and levels of microorganisms potentially pathogenic to humans. Finished compost could serve as a medium for plant growth or mushroom production.

  5. Composting in advanced life support systems.

    PubMed

    Atkinson, C F; Sager, J C; Alazraki, M; Loader, C

    1998-01-01

    Space missions of extended duration are currently hampered by the prohibitive costs of external resupply. To reduce the need for resupply, the National Aeronautics and Space Administration (NASA) is currently testing methods to recycle solid wastes, water, and air. Composting can be an integral part of a biologically based waste treatment/recycling system. Results indicate that leachate from composted plant wastes is not inhibitory to seed germination and contains sufficient inorganic minerals to support plant growth. Other solid wastes, for example kitchen (food) wastes and human solid wastes, can be composted with inedible plant residues to safely reduce the volume of the wastes and levels of microorganisms potentially pathogenic to humans. Finished compost could serve as a medium for plant growth or mushroom production.

  6. 3 CFR - Designation of Officers of the National Aeronautics And Space Administration To Act as Administrator

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Designation of Officers of the National Aeronautics And Space Administration To Act as Administrator Presidential Documents Other Presidential Documents Memorandum of January 16, 2009 Designation of Officers of the National Aeronautics And Space Administration To Act as Administrator Memorandum for...

  7. Eliminating Space Debris: Applied Technology and Policy Prescriptions, Fall 2007 - Project 07-02

    DTIC Science & Technology

    2008-01-01

    plan to transfer ownership of the constellation, Iridium satellites were (presume that there was more than one) scheduled to be sent out of orbit to...told the research team that administrators are “not shy” about saying, “We have a problem with your debris plan .” Usually, the licensee will work... planned maneuvers • End-of-life (EOL) support. Includes re-entry support and planned de-orbit operations • Anomaly re configuration • Emergency ser

  8. Orbit determination software development for microprocessor based systems: Evaluation and recommendations

    NASA Technical Reports Server (NTRS)

    Shenitz, C. M.; Mcgarry, F. E.; Tasaki, K. K.

    1980-01-01

    A guide is presented for National Aeronautics and Space Administration management personnel who stand to benefit from the lessons learned in developing microprocessor-based flight dynamics software systems. The essential functional characteristics of microprocessors are presented. The relevant areas of system support software are examined, as are the distinguishing characteristics of flight dynamics software. Design examples are provided to illustrate the major points presented, and actual development experience obtained in this area is provided as evidence to support the conclusions reached.

  9. 14 CFR § 1201.103 - Administration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Administration. § 1201.103 Section § 1201.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1201.103 Administration. (a) NASA is headed by an Administrator, who is...

  10. Graduating to Postdoc: Information-Sharing in Support of Organizational Structures and Needs

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Lucas, Paul J.; Compton, Michael M.; Stewart, Helen J.; Baya, Vinod; DelAlto, Martha

    1999-01-01

    The deployment of information-sharing systems in large organizations can significantly impact existing policies and procedures with regard to authority and control over information. Unless information-sharing systems explicitly support organizational structures and needs, these systems will be rejected summarily. The Postdoc system is a deployed Web-based information-sharing system created specifically to address organizational needs. Postdoc contains various organizational support features including a shared, globally navigable document space, as well as specialized access control, distributed administration, and mailing list features built around the key notion of hierarchical group structures. We review successes and difficulties in supporting organizational needs with Postdoc

  11. Transition From NASA Space Communication Systems to Commerical Communication Products

    NASA Technical Reports Server (NTRS)

    Ghazvinian, Farzad; Lindsey, William C.

    1994-01-01

    Transitioning from twenty-five years of space communication system architecting, engineering and development to creating and marketing of commercial communication system hardware and software products is no simple task for small, high-tech system engineering companies whose major source of revenue has been the U.S. Government. Yet, many small businesses are faced with this onerous and perplexing task. The purpose of this talk/paper is to present one small business (LinCom) approach to taking advantage of the systems engineering expertise and knowledge captured in physical neural networks and simulation software by supporting numerous National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) projects, e.g., Space Shuttle, TDRSS, Space Station, DCSC, Milstar, etc. The innovative ingredients needed for a systems house to transition to a wireless communication system products house that supports personal communication services and networks (PCS and PCN) development in a global economy will be discussed. Efficient methods for using past government sponsored space system research and development to transition to VLSI communication chip set products will be presented along with notions of how synergy between government and industry can be maintained to benefit both parties.

  12. United States Nuclear Rocket Company (USNRC)

    NASA Technical Reports Server (NTRS)

    Hardin, L. A.

    2014-01-01

    Historically, the development of advanced space technology has been accomplished by the federal government providing funding to commercial companies through the standard contracting process. Although recently, commercial space ventures, such as Space X, have begun to develop enhanced commercial space launch capabilities, and many companies provide space related services - including satellite development and operations, advanced technology development still requires (and should require) participation by the federal agency assigned this role - the National Aeronautics and Space Administration (NASA). However, this standard funding model may not be the most efficient and stable means of developing the advanced technology systems. And while the federal government does not need to be involved in areas where private industry can reasonably operate, it should remain the leader in supporting the development of new and advanced space technologies to further increase our national capability. And as these technologies mature, then private industry can begin the commercialization process, freeing up resources and funds for NASA to develop the next generations of advanced space technology. In fact, simply examining the last decades of space technology development shows that there is room for improvement. Part of the problem is that there are realistically two space frontiers. There is the commercialization frontier (the realm of Space X and others) and the exploratory frontier (the realm of NASA.). Often technologies that can support the exploratory frontier can also immediately support the commercialization frontier. Yet, these technologies are still developed under the standard model of federal funding and contracting. Is that really the best way to proceed? In this paper, the argument is put forward that a new process is required, a new paradigm. A consortium of federal agencies as well as commercial companies is needed - in a collaborative rather than a contractual relationship.

  13. Delay/Disruption Tolerant Networking for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Schlesinger, Adam; Willman, Brett M.; Pitts, Lee; Davidson, Suzanne R.; Pohlchuck, William A.

    2017-01-01

    Disruption Tolerant Networking (DTN) is an emerging data networking technology designed to abstract the hardware communication layer from the spacecraft/payload computing resources. DTN is specifically designed to operate in environments where link delays and disruptions are common (e.g., space-based networks). The National Aeronautics and Space Administration (NASA) has demonstrated DTN on several missions, such as the Deep Impact Networking (DINET) experiment, the Earth Observing Mission 1 (EO-1) and the Lunar Laser Communication Demonstration (LLCD). To further the maturation of DTN, NASA is implementing DTN protocols on the International Space Station (ISS). This paper explains the architecture of the ISS DTN network, the operational support for the system, the results from integrated ground testing, and the future work for DTN expansion.

  14. Global partnerships: Expanding the frontiers of space exploration education

    NASA Astrophysics Data System (ADS)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed as a model for developing sustainable partnerships and indigenous programs that support Africa's steady emergence as a global space-faring force. The IAC will provide timely: 2011 South Africa will provide timely feedback to refine that report's strategies for space life sciences education and public engagement in Africa and around the globe.

  15. INSA Scientific Activities in the Space Astronomy Area

    NASA Astrophysics Data System (ADS)

    Pérez Martínez, Ricardo; Sánchez Portal, Miguel

    Support to astronomy operations is an important and long-lived activity within INSA. Probably the best known (and traditional) INSA activities are those related with real-time spacecraft operations: ground station maintenance and operation (ground station engineers and operators); spacecraft and payload real-time operation (spacecraft and instruments controllers); computing infrastructure maintenance (operators, analysts), and general site services. In this paper, we’ll show a different perspective, probably not so well-known, presenting some INSA recent activities at the European Space Astronomy Centre (ESAC) and NASA Madrid Deep Space Communication Complex (MDSCC) directly related to scientific operations. Basic lines of activity involved include: operations support for science operations; system and software support for real time systems; technical administration and IT support; R&D activities, radioastronomy (at MDSCC and ESAC), and scientific research projects. This paper is structured as follows: first, INSA activities in two ESA cornerstone astrophysics missions, XMM-Newton and Herschel, will be outlined. Then, our activities related to scientific infrastructure services, represented by the Virtual Observatory (VO) framework and the Science Archives development facilities, are briefly shown. Radio astronomy activities will be described afterwards, and, finally, a few research topics in which INSA scientists are involved will also be described.

  16. Development of an e-Learning Program for Extensive Reading

    ERIC Educational Resources Information Center

    Okazaki, Hironobu; Hashimoto, Shinichi; Fukuda, Eri; Nitta, Haruhiko; Kido, Kazuhiko

    2012-01-01

    As extensive reading becomes more commonplace in the EFL/ESL classroom, there is a rise in the number of instructors and administrators who are looking for cost-effective and space-saving methods to carry out extensive reading activities. Two extensive reading systems to respond to such concerns were developed with the support of a Grant-in-Aid…

  17. The National Aeronautics and Space Administration's Gilmore Load Cell Machine: Load Cell Calibrations to 2.22 x 10(exp 7) Newtons

    NASA Technical Reports Server (NTRS)

    Haynes, Michael W.

    2000-01-01

    Designed in 1964 and erected in 1966, the mission of the Gilmore Load Cell Machine was to provide highly accurate calibrations for large capacity load cells in support of NASA's Apollo Program. Still in use today, the Gilmore Machine is a national treasure with no equal.

  18. Services provided in support of the planetary quarantine requirements of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1972-01-01

    The evaluation is discussed of the terminal sterilization process for unmanned lander spacecraft. Results of biochemical test deviations encountered with the identification schemes are tabulated. Studies to examine the possibility of shifts in biochemical reaction patterns during storage and subculture of the environmental Bacillius isolates are also reported.

  19. Forests: the potential consequences of climate variability and change

    Treesearch

    USDA Forest Service

    2001-01-01

    This pamphlet reports the recent scientific assessment that analyzed how future climate variablity and change may affect forests in the United States. The assessment, sponsored by the USDA Forest Service, and supported, in part, by the U.S Department of Energy, and the National Atmospheric and Space Administration, describes the suite of potential impacts on forests....

  20. KSC-2013-3985

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission by, John Grunsfeld, the agency's associate administrator for the Science Mission Directorate. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  1. KSC-2013-3986

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission by, John Grunsfeld, the agency's associate administrator for the Science Mission Directorate. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  2. Spacelab 4: Primate experiment support hardware

    NASA Astrophysics Data System (ADS)

    Fusco, P. R.; Peyran, R. J.

    1984-05-01

    A squirrel monkey feeder and automatic urine collection system were designed to fly on the Spacelab 4 Shuttle Mission presently scheduled for January 1986. Prototypes of the feeder and urine collection systems were fabricated and extensively tested on squirrel monkeys at the National Aeronautics and Space Administration's (NASA) Ames Research Center (ARC). The feeder design minimizes impact on the monkey's limited space in the cage and features improved reliability and biocompatibility over previous systems. The urine collection system is the first flight qualified, automatic urine collection device for squirrel monkeys. Flight systems are currently being fabricated.

  3. Spacelab 4: Primate experiment support hardware

    NASA Technical Reports Server (NTRS)

    Fusco, P. R.; Peyran, R. J.

    1984-01-01

    A squirrel monkey feeder and automatic urine collection system were designed to fly on the Spacelab 4 Shuttle Mission presently scheduled for January 1986. Prototypes of the feeder and urine collection systems were fabricated and extensively tested on squirrel monkeys at the National Aeronautics and Space Administration's (NASA) Ames Research Center (ARC). The feeder design minimizes impact on the monkey's limited space in the cage and features improved reliability and biocompatibility over previous systems. The urine collection system is the first flight qualified, automatic urine collection device for squirrel monkeys. Flight systems are currently being fabricated.

  4. Design of a radiator shade for testing in a simulated lunar environment

    NASA Technical Reports Server (NTRS)

    Huff, Jaimi; Remington, Randy; Tang, Toan

    1992-01-01

    The National Aeronautics and Space Administration (NASA) and The Universities Space Research Association (USRA) have chosen the parabolic/catenary concept from their sponsored Fall 1991 lunar radiation shade project for further testing and development. NASA asked the design team to build a shading device and support structure for testing in a vacuum chamber. Besides the support structure for the catenary shading device, the design team was asked to develop a system for varying the shade shape so that the device can be tested at different focal lengths. The design team developed concept variants and combined the concept variants to form overall designs. Using a decision matrix, an overall design was selected by the team from several overall design alternatives. Concept variants were developed for three primary functions. The three functions were structural support, shape adjustments, and end shielding. The shade adjustment function was divided into two sub-functions, arc length adjustment, and width adjustment.

  5. The pilot climate data system

    NASA Technical Reports Server (NTRS)

    Reph, M. G.; Treinish, L. A.; Smith, P. H.

    1984-01-01

    The Pilot Climate Data System (PCDS) is an interactive scientific information management system for locating, obtaining, manipulating, and displaying climate-research data. The PCDS was developed to manage a large collection of data of interest to the National Aeronautics and Space Administration's (NASA) research community and currently provides such support for approximately twenty data sets. In order to provide the PCDS capabilities, NASA's Goddard Space Flight Center (NASA/GSFC) has integrated the capabilities of several general-purpose software packages with specialized software for reading and reformatting the supported data sets. These capabilities were integrated in a manner which allows the PCDS to be easily expanded, either to provide support for additional data sets or to provide additional functional capabilities. This also allows the PCDS to take advantage of new technology as it becomes available, since parts of the system can be replaced with more powerful components without significantly affecting the user interface.

  6. An Overview of the Space Environments and Spacecraft Effects Organization Concept

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; Garrett, Henry B.; Miller, Sharon K.; Peddie, Darilyn; Porter Ron; Spann, James F.; Xapsos, Michael A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope and purpose of the space environments and spacecraft effects organization and describe the TWG's and their relationship to the functional areas.

  7. Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented, which may be enabling to future space missions never before attempted like a crewed mission to Mars.

  8. 78 FR 61399 - Notice of Intent To Grant Exclusive Research License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-118] Notice of Intent To Grant Exclusive Research License AGENCY: National Aeronautics and Space Administration. ACTION: Notice of intent to grant... the Administrator of the National Aeronautics and Space Administration. The prospective exclusive...

  9. 14 CFR 1212.705 - Assistant Administrator for Procurement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Assistant Administrator for Procurement. 1212.705 Section 1212.705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.705 Assistant Administrator for...

  10. 14 CFR 1212.701 - Assistant Deputy Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Assistant Deputy Administrator. 1212.701 Section 1212.701 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.701 Assistant Deputy Administrator. The Assistant...

  11. 14 CFR 1212.705 - Assistant Administrator for Procurement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Assistant Administrator for Procurement. 1212.705 Section 1212.705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.705 Assistant Administrator for...

  12. 14 CFR 1212.701 - Assistant Deputy Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Assistant Deputy Administrator. 1212.701 Section 1212.701 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.701 Assistant Deputy Administrator. The Assistant...

  13. International Space Station Increment-2 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2002-01-01

    This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 300 Hz. This summary report presents analysis of some selected quasisteady and vibratory activities measured by these accelerometers during Increment-2 from May to August 20, 2001.

  14. International Space Station Increment-3 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos

    2002-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-3 from August to December, 2001.

  15. Administrative Coordination in Non-Profit Human Service Delivery Networks: The Role of Competition and Trust

    PubMed Central

    Bunger, Alicia C.

    2014-01-01

    Non-profit human service organizations operating within the same regional network are often faced with dual pressure to compete as well as coordinate administrative operations (by sharing funding, staff or space) to enhance efficiency. Emerging evidence has demonstrated that competing organizations coordinate, despite the risks. Trust, or perceived trustworthiness between two organizations may mitigate the negative influence of competition on coordination, however there have been few explicit tests of this hypothesis among non-profit organizations. Drawing on quantitative data collected from a network of 36 non-profit children’s behavioral health organizations, this paper empirically tests how competition and perceived trustworthiness interact to influence administrative coordination. Results support the hypothesis that trustworthiness moderates the influence of competition on administrative coordination. Findings suggest that as competing non-profit leaders build trust, the more their agencies coordinate their administrative functions. This study highlights the importance of leaders’ perceptions for organizational strategy. PMID:25349468

  16. 14 CFR 1251.108 - Administrative requirements for small recipients.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Administrative requirements for small recipients. 1251.108 Section 1251.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP General Provisions § 1251.108 Administrative requirements for small...

  17. 14 CFR 1251.108 - Administrative requirements for small recipients.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Administrative requirements for small recipients. 1251.108 Section 1251.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP General Provisions § 1251.108 Administrative requirements for small...

  18. 14 CFR 1251.108 - Administrative requirements for small recipients.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Administrative requirements for small recipients. 1251.108 Section 1251.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP General Provisions § 1251.108 Administrative requirements for small...

  19. 14 CFR 1251.108 - Administrative requirements for small recipients.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Administrative requirements for small recipients. 1251.108 Section 1251.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP General Provisions § 1251.108 Administrative requirements for small...

  20. 78 FR 61398 - Notice of Intent To Grant Exclusive Research License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-119] Notice of Intent To Grant Exclusive Research License AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Intent to Grant... America as represented by the Administrator of the National Aeronautics and Space Administration. The...

  1. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Technical Reports Server (NTRS)

    Purcell, Patrick; Chander, Gyanesh; Jain, Peyush

    2016-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation's economy and protection of lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems, on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  2. Medical policy development for human spaceflight at NASA: an evolution.

    PubMed

    Doarn, Charles R

    2011-11-01

    Codification of medical policy for the National Aeronautics and Space Administration (NASA) did not occur until 1977. Policy development was based on NASA's human spaceflight efforts from 1958, and the need to support the operational aspects of the upcoming Space Shuttle Program as well as other future activities. In 1958, the Space Task Group (STG), a part of the National Advisory Committee on Aeronautics (NACA), became the focal point for astronaut selection, medical support, and instrumentation development in support of Project Mercury. NACA transitioned into NASA in 1958. The STG moved to Houston, TX, in 1961 and became the Manned Spacecraft Center. During these early years, medical support for astronaut selection and healthcare was provided through arrangements with the U.S. military, specifically the United States Air Force, which had the largest group of subject matter experts in aerospace medicine. Through most of the 1960s, the military worked very closely with NASA in developing the foundations of bioastronautics and space medicine. This work was complemented by select individuals from outside the government. From 1958 to 1977, there was no standard approach to medical policy formulation within NASA. During this time, it was individualized and subjected to political pressures. This manuscript documents the evolution of medical policy in the NASA, and provides a historical account of the individuals, processes, and needs to develop policy.

  3. Space Environments and Spacecraft Effects Organization Concept

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope of the TWGs and their relationship to the functional areas, and discuss an organizational structure for this space environments and spacecraft effects organization.

  4. 14 CFR 1245.115 - Action by the Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Action by the Administrator. 1245.115 Section 1245.115 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS Patent Waiver Regulations § 1245.115 Action by the Administrator. (a) After...

  5. 14 CFR 1245.115 - Action by the Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Action by the Administrator. 1245.115 Section 1245.115 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS Patent Waiver Regulations § 1245.115 Action by the Administrator. (a) After...

  6. KSC-07pd3597

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- Bill Gerstenmaier, associate administrator for Space Operations, participates in a news briefing following the conclusion of a Mission Management Team, or MMT, meeting. The meeting followed the morning's launch scrub of the space shuttle Atlantis STS-122 mission caused by problems experienced with the external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  7. NASA's Commercial Space Centers: Bringing Together Government and Industry for "Out of this World" Benefits

    NASA Technical Reports Server (NTRS)

    Robinson, R. Keith; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is making significant effort to accommodate commercial research in the utilization plans of the International Space Station (ISS)[1]. NASA is providing 30% of the research accommodations in the ISS laboratory modules to support commercial endeavors. However, the availability of resources alone does not necessarily translate into significant private sector participation in NASA's ISS utilization plans. Due to the efforts of NASA's Commercial Space Centers (CSC's), NASA has developed a very robust plan for involving the private sector in ISS utilization activities. Obtaining participation from the private sector requires a demonstrated capability for obtaining commercially significant research results. Since 1985, NASA CSC's have conducted over 200 commercial research activities aboard parabolic aircraft, sounding rockets, the Space Shuttle, and the ISS. The success of these activities has developed substantial investment from private sector companies in commercial space research.

  8. The biomedical challenges of space flight

    NASA Technical Reports Server (NTRS)

    Williams, David R.

    2003-01-01

    Space medicine has evolved considerably through past U.S. missions. It has been proven that humans can live and work in space for long durations and that humans are integral to mission success. The space medicine program of the National Aeronautics and Space Administration (NASA) looks toward future long-duration missions. Its goal is to overcome the biomedical challenges associated with maintaining the safety, health, and optimum performance of astronauts and cosmonauts. This program investigates the health effects of adaptation to microgravity: the nature of their pathologies, the effects of microgravity on pathophysiology, and the alterations in pharmacodynamics and treatment. A critical capability in performing research is the monitoring of the health of all astronauts and of the spacecraft environment. These data support the evidence-based approach to space medicine, incorporating past studies of microgravity-related conditions and their terrestrial counterparts. This comprehensive approach will enable safe and effective exploration beyond low Earth orbit.

  9. Natural Atmospheric Environment Model Development for the National Aeronautics and Space Administration's Second Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank; Overbey, Glenn; Batts, Glen W.; Parker, Nelson (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) recently began development of a new reusable launch vehicle. The program office is located at Marshall Space Flight Center (MSFC) and is called the Second Generation Reusable Launch Vehicle (2GRLV). The purpose of the program is to improve upon the safety and reliability of the first generation reusable launch vehicle, the Space Shuttle. Specifically, the goals are to reduce the risk of crew loss to less than 1-in-10,000 missions and decreased costs by a factor of 10 to approximately $1,000 per pound of payload launched to low Earth orbit. The program is currently in the very early stages of development and many two-stage vehicle concepts will be evaluated. Risk reduction activities are also taking place. These activities include developing new technologies and advancing current technologies to be used by the vehicle. The Environments Group at MSFC is tasked by the 2GRLV Program to develop and maintain an extensive series of analytical tools and environmental databases which enable it to provide detailed atmospheric studies in support of structural, guidance, navigation and control, and operation of the 2GRLV.

  10. Zeoponic Plant Growth Substrate Development at the Johnson Space Center and Possible Use at a Martian Outpost

    NASA Technical Reports Server (NTRS)

    Gruener, John E.; Ming, Douglas W.

    2000-01-01

    The National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) is developing a substrate, termed zeoponics, that will slowly release all of the essential nutrients into solution for plant growth experiments in advanced life support system testbeds. This substrate is also potentially useful in the near future on the Space Shuttle and International Space Station and could eventually be used at an outpost on Mars. Chemical analyses of the Martian soil by the Viking and Mars Pathfinder missions have indicated that several of the elements required for plant growth are available in the soil. It may be possible to use the martian soil as the bulk substrate for growing food crops, while using smaller amounts of zeoponic substrate as an amendment to rectify any nutrient deficiencies.

  11. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  12. Leadership for long-duration space missions: A shift toward a collective approach

    NASA Astrophysics Data System (ADS)

    Mulhearn, Tyler; McIntosh, Tristan; Gibson, Carter; Mumford, Michael D.; Yammarino, Francis J.; Connelly, Shane; Day, Eric Anthony; Vessey, Brandon

    2016-12-01

    For many years, leadership operations within the National Aeronautics and Space Administration (NASA) have utilized a primarily hierarchical approach. In the present effort, we investigated the leadership needs and considerations given the increased interest in and potential for long-duration space exploration. Specifically, it is argued that a collective leadership approach in which leadership is shared and distributed based on expertise would be beneficial for these types of missions. Interviews were conducted with eleven subject matter experts with wide-ranging experience in NASA and its missions. A mixed-methods analytic approach applied to these interviews provided support for the viability of a collective leadership framework. Implications for NASA and other similar organizational contexts are discussed.

  13. Aquarius: An Instrument to Monitor Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S .E.; Colomb, R.; Yueh, S.; Pellerano, F.

    2007-01-01

    Aquarius is a combined passive/active L-band microwave instrument that is being developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, global water cycle, and climate. Aquarius is part of the Aquarius/SAC-D mission, which is a partnership between the U.S. (National Aeronautics and Space Administration) and Argentina (CONAE). The primary science objective of this mission is to monitor the seasonal and interannual variation of the large-scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.

  14. The elements of a commercial human spaceflight safety reporting system

    NASA Astrophysics Data System (ADS)

    Christensen, Ian

    2017-10-01

    In its report on the SpaceShipTwo accident the National Transportation Safety Board (NTSB) included in its recommendations that the Federal Aviation Administration (FAA) ;in collaboration with the commercial spaceflight industry, continue work to implement a database of lessons learned from commercial space mishap investigations and encourage commercial space industry members to voluntarily submit lessons learned.; In its official response to the NTSB the FAA supported this recommendation and indicated it has initiated an iterative process to put into place a framework for a cooperative safety data sharing process including the sharing of lessons learned, and trends analysis. Such a framework is an important element of an overall commercial human spaceflight safety system.

  15. 14 CFR § 1251.108 - Administrative requirements for small recipients.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Administrative requirements for small recipients. § 1251.108 Section § 1251.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP General Provisions § 1251.108 Administrative requirements...

  16. Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days).

    PubMed

    Moyer, Eric L; Dumars, Paula M; Sun, Gwo-Shing; Martin, Kara J; Heathcote, David G; Boyle, Richard D; Skidmore, Mike G

    2016-01-01

    The National Aeronautics and Space Administration Animal Enclosure Module (AEM) was developed as a self-contained rodent habitat for shuttle flight missions that provides inhabitants with living space, food, water, ventilation, and lighting, and this study reports whether, after minimal hardware modification, the AEM could support an extended term up to 35 days for Sprague-Dawley rats and C57BL/6 female mice for use on the International Space Station. Success was evaluated based on comparison of AEM housed animals to that of vivarium housed and to normal biological ranges through various measures of animal health and well-being, including animal health evaluations, animal growth and body masses, organ masses, rodent food bar consumption, water consumption, and analysis of blood contents. The results of this study confirmed that the AEMs could support 12 adult female C57BL/6 mice for up to 35 days with self-contained RFB and water, and the AEMs could also support 5 adult male Sprague-Dawley rats for 35 days with external replenishment of diet and water. This study has demonstrated the capability and flexibility of the AEM to operate for up to 35 days with minor hardware modification. Therefore, with modifications, it is possible to utilize this hardware on the International Space Station or other operational platforms to extend the space life science research use of mice and rats.

  17. Test Facilities Capability Handbook: Volume 1 - Stennis Space Center (SSC); Volume 2 - Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    Hensarling, Paula L.

    2007-01-01

    The John C. Stennis Space Center (SSC) is located in Southern Mississippi near the Mississippi-Louisiana state line. SSC is chartered as the National Aeronautics and Space Administration (NASA) Center of Excellence for large space transportation propulsion system testing. This charter has led to many unique test facilities, capabilities and advanced technologies provided through the supporting infrastructure. SSC has conducted projects in support of such diverse activities as liquid, and hybrid rocket testing and development; material development; non-intrusive plume diagnostics; plume tracking; commercial remote sensing; test technology and more. On May 30, 1996 NASA designated SSC the lead center for rocket propulsion testing, giving the center total responsibility for conducting and/or managing all NASA rocket engine testing. Test services are now available not only for NASA but also for the Department of Defense, other government agencies, academia, and industry. This handbook was developed to provide a summary of the capabilities that exist within SSC. It is intended as a primary resource document, which will provide the reader with the top-level capabilities and characteristics of the numerous test facilities, test support facilities, laboratories, and services. Due to the nature of continually evolving programs and test technologies, descriptions of the Center's current capabilities are provided. Periodic updates and revisions of this document will be made to maintain its completeness and accuracy.

  18. A Study of the λ10830 He I Line Among Red Giants in Messier 13

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.; Dupree, Andrea K.; Strader, Jay

    2014-10-01

    Not Available The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  19. The Hidden Lives of Galaxies: An Information & Activity Booklet, Grades 9-12, 2000-2001. Imagine the Universe! Probing the Structure & Evolution of the Cosmos.

    ERIC Educational Resources Information Center

    Lochner, James C.; Williamson, Lisa; Fitzhugh, Ethel

    This National Aeronautics and Space Administration (NASA) document presents activities on the properties of galaxies for additional curriculum support. The activities presented in this document include: (1) "How Big Is the Universe"; (2) "Identifying Galaxies"; (3) "Classifying Galaxies Using Hubble's Fork Diagram"; (4) "Identifying Unusual…

  20. Preliminary Results from NASA/GSFC Ka-Band High Rate Demonstration for Near-Earth Communications

    NASA Technical Reports Server (NTRS)

    Wong, Yen; Gioannini, Bryan; Bundick, Steven N.; Miller, David T.

    2004-01-01

    In early 2000, the National Aeronautics and Space Administration (NASA) commenced the Ka-Band Transition Project (KaTP) as another step towards satisfying wideband communication requirements of the space research and earth exploration-satellite services. The KaTP team upgraded the ground segment portion of NASA's Space Network (SN) in order to enable high data rate space science and earth science services communications. The SN ground segment is located at the White Sands Complex (WSC) in New Mexico. NASA conducted the SN ground segment upgrades in conjunction with space segment upgrades implemented via the Tracking and Data Relay Satellite (TDRS)-HIJ project. The three new geostationary data relay satellites developed under the TDRS-HIJ project support the use of the inter-satellite service (ISS) allocation in the 25.25-27.5 GHz band (the 26 GHz band) to receive high speed data from low earth-orbiting customer spacecraft. The TDRS H spacecraft (designated TDRS-8) is currently operational at a 171 degrees west longitude. TDRS I and J spacecraft on-orbit testing has been completed. These spacecraft support 650 MHz-wide Ka-band telemetry links that are referred to as return links. The 650 MHz-wide Ka-band telemetry links have the capability to support data rates up to at least 1.2 Gbps. Therefore, the TDRS-HIJ spacecraft will significantly enhance the existing data rate elements of the NASA Space Network that operate at S-band and Ku-band.

  1. Space Launch System Complex Decision-Making Process

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman,Stuart

    2012-01-01

    The Space Shuttle program has ended and elements of the Constellation Program have either been cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. From Fall 2010 until Spring 2011, an SLS decision-making framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper focuses on the various steps and methods of this process (rather than specific data) that allowed for competing concepts to be compared across a variety of launch vehicle metrics in support of the successful completion of the SLS Mission Concept Review (MCR) milestone.

  2. Advanced space design program to the Universities Space Research Association and the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1988-01-01

    The goal of the Fall 1987 class of EGM 4000 was the investigation of engineering aspects contributing to the development of NASA's Controlled Ecological Life Support System (CELSS). The areas investigated were the geometry of plant growth chambers, automated seeding of plants, remote sensing of plant health, and processing of grain into edible forms. The group investigating variable spacing of individual soybean plants designed growth trays consisting of three dimensional trapezoids arranged in a compact circular configuration. The automated seed manipulation and planting group investigated the electrical and mechanical properties of wheat seeds and developed three seeding concepts based upon these properties. The plant health and disease sensing group developed a list of reliable plant health indicators and investigated potential detection technologies.

  3. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    2004-04-15

    Twelve scientific specialists of the Peenemuende team at the front of Building 4488, Redstone Arsenal, Huntsville, Alabama. They led the Army's space efforts at ABMA before transfer of the team to National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC). (Left to right) Dr. Ernst Stuhlinger, Director, Research Projects Office; Dr. Helmut Hoelzer, Director, Computation Laboratory: Karl L. Heimburg, Director, Test Laboratory; Dr. Ernst Geissler, Director, Aeroballistics Laboratory; Erich W. Neubert, Director, Systems Analysis Reliability Laboratory; Dr. Walter Haeussermarn, Director, Guidance and Control Laboratory; Dr. Wernher von Braun, Director Development Operations Division; William A. Mrazek, Director, Structures and Mechanics Laboratory; Hans Hueter, Director, System Support Equipment Laboratory;Eberhard Rees, Deputy Director, Development Operations Division; Dr. Kurt Debus, Director Missile Firing Laboratory; Hans H. Maus, Director, Fabrication and Assembly Engineering Laboratory

  4. X-37 Space Vehicle: Starting a New Age in Space Control?

    NASA Astrophysics Data System (ADS)

    Jameson, Austin D.

    2001-04-01

    The U.S. can no longer rely on the "space as a sanctuary" policy, initiated by the Eisenhower Administration, to continue to exploit space for economic and military advantages. The X-37 space maneuvering vehicle demonstrator is an opportunity for the U.S. to begin to develop methods to more strategically defend and control the space environment. The X-37 is the first of NASA's x-vehicles intended to demonstrate leading edge technologies in orbit. This prototype space maneuvering vehicle co-sponsored by NASA, the Air Force and the Boeing Company is being designed to achieve the goals of reducing the cost to access space from 10,000 to 1000 per pound while improving reliability. The current project is funded to build an autonomous space maneuvering vehicle with on-orbit testing scheduled in 2002, The X-37 is an unmanned space plane that can carry a payload, and can conduct missions while orbiting, loitering, or rendezvousing with objects in space and then autonomously return to earth by landing on a conventional runway. If the Air Force develops the X-37 to its full potential the system could strategically support each of the Air Force's four space mission areas of force enhancement, space support, space control, and force application. Transition of the space maneuvering demonstrator into a space control platform will require a change in national policy. Capitalizing on the lessons from NASA's x-vehicles and partnering with the commercial sector can potentially save costs and shorten the development of a viable space platform that could be used for space control. Strategic development and funded evolution of the X-37 space vehicle is an immediate, tangible step the United States can take to actively pursue a more aggressive program to respond to threats in the space arena.

  5. International Space Station Aeromedical Support in Star City, Russia

    NASA Technical Reports Server (NTRS)

    Cole, Richard; Chamberlin, Blake; Dowell, Gene; Castleberry, Tarah; Savage, Scott

    2010-01-01

    The Space Medicine Division at Johnson Space Center works with the International Space Station s international partners (IP) to accomplish assigned health care tasks. Each IP may assign a flight surgeon to support their assigned crewmembers during all phases of training, in-flight operations, and postflight activities. Because of the extensive amount of astronaut training conducted in Star City; NASA, in collaboration with its IPs, has elected to keep a flight surgeon assigned to NASA s Star City office to provide support to the U.S., Canadian, Japanese, and European astronauts during hazardous training activities and provide support for any contingency landings of Soyuz spacecraft in Kazakhstan. The physician also provides support as necessary to the Mission Control Center in Moscow for non-Russian crew-related activities. In addition, the physician in Star City provides ambulatory medical care to the non-Russian-assigned personnel in Star City and visiting dependents. Additional work involves all medical supplies, administration, and inventory. The Star City physician assists in medical evacuation and/or in obtaining support from western clinics in Moscow when required care exceeds local resources. Overall, the Russians are responsible for operations and the medical care of the entire crew when training in Star City and during launch/landing operations. However, they allow international partner flight surgeons to care for their crewmembers as agreed to in the ISS Medical Operations Requirements Document. Medical support focuses on pressurized, monitored, and other hazardous training activities. One of the most important jobs is to act as a medical advocate for the astronauts and to reduce the threat that these hazardous activities pose. Although the Russians have a robust medical system, evacuation may be needed to facilitate ongoing medical care. There are several international medical evacuation companies that provide this care.

  6. KSC-2014-2182

    NASA Image and Video Library

    2014-04-18

    CAPE CANAVERAL, Fla. - Participating in a SpaceX-3 post-launch news conference in the NASA Press Site television auditorium at Kennedy Space Center in Florida are, from left, William Gersteinmeier, NASA associate administrator for Human Exploration and Operations, and Hans Koenigsmann, SpaceX vice president of Mission Assurance. SpaceX CEO and chief designer Elon Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett

  7. KSC-2014-2179

    NASA Image and Video Library

    2014-04-18

    CAPE CANAVERAL, Fla. - Participating in a SpaceX-3 post-launch news conference in the NASA Press Site television auditorium at Kennedy Space Center in Florida are, from left, Michael Curie, NASA Public Affairs, William Gersteinmeier, NASA associate administrator for Human Exploration and Operations, and Hans Koenigsmann, SpaceX vice president of Mission Assurance. SpaceX CEO and chief designer Elon Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett

  8. Risk Management for the International Space Station

    NASA Technical Reports Server (NTRS)

    Sebastian, J.; Brezovic, Philip

    2002-01-01

    The International Space Station (ISS) is an extremely complex system, both technically and programmatically. The Space Station must support a wide range of payloads and missions. It must be launched in numerous launch packages and be safely assembled and operated in the harsh environment of space. It is being designed and manufactured by many organizations, including the prime contractor, Boeing, the NASA institutions, and international partners and their contractors. Finally, the ISS has multiple customers, (e.g., the Administration, Congress, users, public, international partners, etc.) with contrasting needs and constraints. It is the ISS Risk Management Office strategy to proactively and systematically manages risks to help ensure ISS Program success. ISS program follows integrated risk management process (both quantitative and qualitative) and is integrated into ISS project management. The process and tools are simple and seamless and permeate to the lowest levels (at a level where effective management can be realized) and follows the continuous risk management methodology. The risk process assesses continually what could go wrong (risks), determine which risks need to be managed, implement strategies to deal with those risks, and measure effectiveness of the implemented strategies. The process integrates all facets of risk including cost, schedule and technical aspects. Support analysis risk tools like PRA are used to support programatic decisions and assist in analyzing risks.

  9. Space station environmental control and life support systems test bed program - an overview

    NASA Astrophysics Data System (ADS)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space Station ECLSS Test Bed Program. The Space Station ECLSS Test Bed Program, which is managed by the NASA, is designed to parallel and to provide continuing support to the Space Station Program. The prime objective of this multiphase test bed program is to provide viable, mature, and enhancing technical options in time for Space Station implementation. To accomplish this objective, NASA is actively continuing the development and testing of critical components and engineering preprototype subsystems for urine processing, washwater recovery, water quality monitoring, carbon dioxide removal and reduction, and oxygen generation. As part of the ECLSS Test Bed Program, these regenerative subsystems and critical components are tested in a development laboratory to characterize subsystem performance and to identify areas in which further technical development is required. Proven concepts are then selected for development into prototype subsystems in which flight issues such as packaging and maintenance are addressed. These subsystems then are to be assembled as an integrated system and installed in an integrated systems test bed facility for extensive unmanned and manned testing.

  10. 78 FR 1265 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-001] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel..., Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space Administration...

  11. 76 FR 62455 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-088)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel... Burch, Aerospace Safety Advisory Panel Administrative Officer, National Aeronautics and Space...

  12. 75 FR 75702 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [10-152] Notice of Information Collection AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection. SUMMARY: The National Aeronautics and Space Administration, as part of its continuing effort to reduce...

  13. KSC-00padig074

    NASA Image and Video Library

    2000-11-02

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants cut the lines to helium-filled balloons. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO

  14. KSC-00padig075

    NASA Image and Video Library

    2000-11-02

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO

  15. KSC00padig075

    NASA Image and Video Library

    2000-11-02

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO

  16. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants cut the lines to helium-filled balloons. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  17. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  18. 76 FR 36937 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-055)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  19. 77 FR 1955 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-001] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  20. 75 FR 61219 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-116)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel... Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space Administration...

  1. 78 FR 36793 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-068] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  2. 75 FR 36697 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-071)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  3. 77 FR 25502 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-030)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  4. 75 FR 65669 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-140)] Notice of Information Collection AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection. SUMMARY: The National Aeronautics and Space Administration, as part of its continuing effort to reduce...

  5. 75 FR 6407 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10- 020)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  6. 76 FR 23339 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-043)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting..., 2011. SUMMARY: The National Aeronautics and Space Administration published a document in the Federal...

  7. 76 FR 2923 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-004)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  8. 76 FR 55950 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Notice of Information Collection AGENCY: National Aeronautics and Space Administration (NASA). Notice: (11--078) ACTION: Notice of information collection. SUMMARY: The National Aeronautics and Space Administration, as part of its continuing effort to reduce...

  9. 78 FR 15976 - Aerospace Safety Advisory Panel; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-023] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel... Space Administration, Washington, DC 20546, (202) 358-1857. SUPPLEMENTARY INFORMATION: The Aerospace...

  10. 75 FR 19662 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-043)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  11. 75 FR 65670 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-137)] Notice of Information Collection AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection. SUMMARY: The National Aeronautics and Space Administration, as part of its continuing effort to reduce...

  12. 75 FR 59747 - NASA Advisory Council; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-113)] NASA Advisory Council; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance... Space Administration announces a meeting of the NASA Advisory Council. DATES: Wednesday, October 6, 2010...

  13. 75 FR 28071 - Notice of Information Collection; (10-052)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Notice of Information Collection; (10-052) AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection. SUMMARY: The National Aeronautics and Space Administration, as part of its continuing effort to reduce...

  14. 77 FR 39518 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-037] Notice of Information Collection AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection. SUMMARY: The National Aeronautics and Space Administration, as part of its continuing effort to reduce...

  15. 76 FR 79226 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-119)] Notice of Information Collection AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection. SUMMARY: The National Aeronautics and Space Administration, as part of its continuing effort to reduce...

  16. 75 FR 62433 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-122)] Notice of Information Collection AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection. SUMMARY: The National Aeronautics and Space Administration, as part of its continuing effort to reduce...

  17. 75 FR 61777 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-119)] Notice of Information Collection AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection. SUMMARY: The National Aeronautics and Space Administration, as part of its continuing effort to reduce...

  18. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  19. Lightfoot Visits Michoud on This Week @NASA – February 18, 2017

    NASA Image and Video Library

    2017-02-18

    NASA’s Acting Administrator Robert Lightfoot visited the agency’s Michoud Assembly Facility in New Orleans Feb. 13 to view damage from the Feb. 7 tornado strike, and to speak with employees about ongoing recovery efforts at the facility. The work at Michoud is critical to supporting the production, testing and final integration of the core stage of NASA’s Space Launch System deep space rocket, the largest rocket stage ever built. Also, Flight Control Technology Evaluated, Ochoa, Foale to be Inducted into Hall of Fame, NASA Employees Honored, and Exceptional Public Achievement Award!

  20. National Aeronautics and Space Administration Manned Spacecraft Center data base requirements study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study was conducted to evaluate the types of data that the Manned Spacecraft Center (MSC) should automate in order to make available essential management and technical information to support MSC's various functions and missions. In addition, the software and hardware capabilities to best handle the storage and retrieval of this data were analyzed. Based on the results of this study, recommendations are presented for a unified data base that provides a cost effective solution to MSC's data automation requirements. The recommendations are projected through a time frame that includes the earth orbit space station.

  1. Astronaut Susan Helms on aft flight deck with RMS controls

    NASA Image and Video Library

    1994-09-12

    STS064-05-028 (9-20 Sept. 1994) --- On the space shuttle Discovery's aft flight deck, astronaut Susan J. Helms handles controls for the Remote Manipulator System (RMS). The robot arm operated by Helms, who remained inside the cabin, was used to support several tasks performed by the crew during the almost 11-day mission. Those tasks included the release and retrieval of the free-flying Shuttle Pointed Autonomous Research Tool For Astronomy 201 (SPARTAN 201), a six-hour spacewalk and the Shuttle Plume Impingement Flight Experiment (SPIFEX). Photo credit: NASA or National Aeronautics and Space Administration

  2. The CELSS Antarctic Analog Project: an advanced life support testbed at the Amundsen-Scott South Pole Station, Antarctica.

    PubMed

    Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T

    1994-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.

  3. 78 FR 13905 - Government-Owned Inventions, Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-020] Government-Owned Inventions, Available for Licensing AGENCY: National Aeronautics and Space Administration. ACTION: Notice of... to the National Aeronautics and Space Administration, have been filed in the United States Patent and...

  4. 78 FR 57664 - Government-Owned Inventions, Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-107] Government-Owned Inventions, Available for Licensing AGENCY: National Aeronautics and Space Administration. ACTION: Notice of... to the National Aeronautics and Space Administration, have been filed in the United States Patent and...

  5. 75 FR 54656 - Government-Owned Inventions, Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-106)] Government-Owned Inventions, Available for Licensing AGENCY: National Aeronautics and Space Administration. ACTION: Notice of... to the National Aeronautics and Space Administration, have been filed in the United States Patent and...

  6. 77 FR 54935 - Government-Owned Inventions, Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-063)] Government-Owned Inventions, Available for Licensing AGENCY: National Aeronautics and Space Administration. ACTION: Notice of... to the National Aeronautics and Space Administration, have been filed in the United States Patent and...

  7. 75 FR 61778 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-118)] NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...

  8. 77 FR 61432 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-080] NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory...

  9. 76 FR 26316 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11- 044] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting... Aeronautics and Space Administration published a notice in the Federal Register of April 26, 2011, announcing...

  10. 78 FR 19743 - Government-Owned Inventions, Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-025] Government-Owned Inventions, Available for Licensing AGENCY: National Aeronautics and Space Administration. ACTION: Notice of... to the National Aeronautics and Space Administration, have been filed in the United States Patent and...

  11. 76 FR 21072 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-039)] NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance... Space Administration announces a meeting of the NASA Advisory Council. DATES: Thursday, May 5, 2011, 8 a...

  12. 78 FR 13905 - Government-Owned Inventions, Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-016] Government-Owned Inventions, Available for Licensing AGENCY: National Aeronautics and Space Administration. ACTION: Notice of... to the National Aeronautics and Space Administration, have been filed in the United States Patent and...

  13. 76 FR 63663 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Human Exploration... Exploration and Operations Mission Directorate, National Aeronautics and Space Administration Headquarters...

  14. 75 FR 4589 - NASA Advisory Council Exploration Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-012)] NASA Advisory Council Exploration... Aeronautics and Space Administration announces a meeting of the NASA Advisory Council Exploration Committee... Parham, Exploration Committee Administrative Officer, Mail Stop 7C27, National Aeronautics and Space...

  15. 78 FR 42524 - Leasing versus Renting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... DEPARTMENT OF DEFENSE GENERAL SERVICES ADMINISTRATION NATIONAL AERONAUTICS AND SPACE... Defense (DoD), General Services Administration (GSA), and National Aeronautics and Space Administration... your attached document. Fax: 202-501-4067. Mail: General Services Administration, Regulatory...

  16. Flight Dynamics Mission Support and Quality Assurance Process

    NASA Technical Reports Server (NTRS)

    Oh, InHwan

    1996-01-01

    This paper summarizes the method of the Computer Sciences Corporation Flight Dynamics Operation (FDO) quality assurance approach to support the National Aeronautics and Space Administration Goddard Space Flight Center Flight Dynamics Support Branch. Historically, a strong need has existed for developing systematic quality assurance using methods that account for the unique nature and environment of satellite Flight Dynamics mission support. Over the past few years FDO has developed and implemented proactive quality assurance processes applied to each of the six phases of the Flight Dynamics mission support life cycle: systems and operations concept, system requirements and specifications, software development support, operations planing and training, launch support, and on-orbit mission operations. Rather than performing quality assurance as a final step after work is completed, quality assurance has been built in as work progresses in the form of process assurance. Process assurance activities occur throughout the Flight Dynamics mission support life cycle. The FDO Product Assurance Office developed process checklists for prephase process reviews, mission team orientations, in-progress reviews, and end-of-phase audits. This paper will outline the evolving history of FDO quality assurance approaches, discuss the tailoring of Computer Science Corporations's process assurance cycle procedures, describe some of the quality assurance approaches that have been or are being developed, and present some of the successful results.

  17. Routine and Recurring Small Transient and New Test Missions Environmental Assessment

    DTIC Science & Technology

    2008-04-01

    AFB and National Aeronautics and Space Administration Dryden Flight Research Center ( NASA DFRC) remains constant. Some government personnel would be...hazardous materials, hazardous waste, and solid waste originating from AFFTC and NASA DFRC flight operation are managed, used, and disposed of within...the geographic boundaries of Edwards AFB. Edwards AFB, including NASA DFRC, uses a wide variety of hazardous materials in support of research

  18. 48 CFR 1852.227-85 - Invention reporting and rights-Foreign.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of... States of America as represented by the Administrator of the National Aeronautics and Space... and Space Administration only an irrevocable, nontransferable, nonexclusive, royalty-free license to...

  19. 48 CFR 1852.227-85 - Invention reporting and rights-Foreign.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of... States of America as represented by the Administrator of the National Aeronautics and Space... and Space Administration only an irrevocable, nontransferable, nonexclusive, royalty-free license to...

  20. 48 CFR 1852.227-85 - Invention reporting and rights-Foreign.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of... States of America as represented by the Administrator of the National Aeronautics and Space... and Space Administration only an irrevocable, nontransferable, nonexclusive, royalty-free license to...

  1. 48 CFR 1852.227-85 - Invention reporting and rights-Foreign.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of... States of America as represented by the Administrator of the National Aeronautics and Space... and Space Administration only an irrevocable, nontransferable, nonexclusive, royalty-free license to...

  2. 78 FR 42110 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-078)] NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Human...

  3. 75 FR 17438 - NASA Advisory Council; Education and Public Outreach Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-041)] NASA Advisory Council; Education and Public Outreach Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Education and Public...

  4. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  5. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  6. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  7. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  8. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  9. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  10. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  11. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  12. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  13. 75 FR 16197 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-036)] NASA Advisory Council; Space..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council Space Operations Committee. DATES: Tuesday, April 13, 2010, 3-5 p.m. CDT. ADDRESSES: NASA Johnson Space...

  14. M.Y.S.P.A.C.E. : Multinational Youth Studying Practical Applications of Climatic Events

    NASA Astrophysics Data System (ADS)

    Mckay, M.; Arvedson, J. P.; Arvedson, P.

    2014-12-01

    M.Y. S.P.A.C.E. (Multinational Youth Studying Practical Applications of Climatic Events) is an international collaboration of high school students engaged in self-selected research projects on the local impact of global environmental issues. Students work with their own, trained, Teacher Leaders at their school sites using both locally generated and satellite-based remote-sensing data with support from the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). Teams from each school meet at the annual Satellites & Education Conference to discover global trends in their collective data and present their findings. Students learn and practice techniques of scientific investigation; methods of data processing, analysis and interpretation; leadership; and effective communication. They work with NOAA and NASA scientists and engineers, experience university campus life, and can apply for special internships at selected university research centers such as the Center for Energy and Sustainability (CE&S), the Center for Spatial Analysis and Remote Sensing (CSARS), and graduate research opportunities in Geosciences and Environment. The M.Y. S.P.A.C.E. Program is an initiative of the Satellites & Education Conference, which is produced by the non-profit Satellite Educators Association. It is administered from the campus of California State University, Los Angeles. NOAA, NASA, and the NOAA-CREST West grant support the program. It is aligned with NOAA goals of building excitement about careers in science, math, engineering and technology.

  15. NASA Developmental Biology Workshop: A summary

    NASA Technical Reports Server (NTRS)

    Souza, K. A. (Editor); Halstead, T. W. (Editor)

    1985-01-01

    The Life Sciences Division of the National Aeronautics and Space Administration (NASA) as part of its continuing assessment of its research program, convened a workshop on Developmental Biology to determine whether there are important scientific studies in this area which warrant continued or expanded NASA support. The workshop consisted of six panels, each of which focused on a single major phylogenetic group. The objectives of each panel were to determine whether gravity plays a role in the ontogeny of their subject group, to determine whether the microgravity of spaceflight can be used to help understand fundamental problems in developmental biology, to develop the rationale and hypotheses for conducting NASA-relevant research in development biology both on the ground and in space, and to identify any unique equipment and facilities that would be required to support both ground-based and spaceflight experiments.

  16. Incorporating Data Link Features into a Multi-Function Display to Support Self-Separation and Spacing Tasks for General Aviation Pilots

    NASA Technical Reports Server (NTRS)

    Adams, Catherine A.; Murdoch, Jennifer L.; Consiglio, Maria C.; WIlliams, Daniel M.

    2005-01-01

    One objective of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated Airport Management Module (AMM) and separation responsibilities to general aviation (GA) pilots. Implementation of this concept required the development of a research Multi-Function Display (MFD) to support the interactive communications between pilots and the AMM. The interface also had to accommodate traffic awareness, self-separation, and spacing tasks through dynamic messaging and symbology for flight path conformance and conflict detection and alerting (CDA). The display served as the mechanism to support the examination of the viability of executing instrument operations designed for SATS designated airports. Results of simulation and flight experiments conducted at the National Aeronautics and Space Administration's (NASA) Langley Research Center indicate that the concept, as facilitated by the research MFD, did not increase pilots subjective workload levels or reduce their situation awareness (SA). Post-test usability assessments revealed that pilots preferred using the enhanced MFD to execute flight procedures, reporting improved SA over conventional instrument flight rules (IFR) procedures.

  17. 78 FR 61398 - Notice of Intent To Grant Exclusive License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-117] Notice of Intent To Grant Exclusive License AGENCY: National Aeronautics and Space Administration. ACTION: Notice of intent to grant exclusive... Aeronautics and Space Administration. The prospective exclusive license will comply with the terms and...

  18. 77 FR 66082 - NASA Advisory Council; Education and Public Outreach Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-089] NASA Advisory Council; Education and... amended, the National Aeronautics and Space Administration announces a meeting of the Education and Public... Education and Public Outreach Committee, National Aeronautics and Space Administration, Washington, DC 20546...

  19. 1100398

    NASA Image and Video Library

    2011-03-24

    CHARLES BOLDEN NASA ADMINISTRATOR TOURING AND SPEAKING AT THE US. SPACE AND ROCKET CENTER, HUNTSVILLE, ALABAMA. ACCOMPANYING ADMINISTRATOR BOLDEN ARE DR. DEBORAH BARNHART, CEO OF THE USSARC, ROBERT LIGHTFOOT, CENTER DIRECTOR OF MARSHALL SPACE FLIGHT CENTER AND RETIRED NASA ASTRONAUT ROBERT LEE “HOOT” GIBSON, ADMINISTRATOR BOLDEN’S FIRST SPACE FLIGHT COMMANDER.

  20. Development of Life Support System Technologies for Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  1. Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  2. Sleep in space as a new medical frontier: the challenge of preserving normal sleep in the abnormal environment of space missions.

    PubMed

    Pandi-Perumal, Seithikurippu R; Gonfalone, Alain A

    2016-01-01

    Space agencies such as the National Aeronautics and Space Administration of the United States, the Russian Federal Space Agency, the European Space Agency, the China National Space Administration, the Japan Aerospace Exploration Agency, and Indian Space Research Organization, although differing in their local political agendas, have a common interest in promoting all applied sciences that may facilitate man's adaptation to life beyond the earth. One of man's most important adaptations has been the evolutionary development of sleep cycles in response to the 24 hour rotation of the earth. Less well understood has been man's biological response to gravity. Before humans ventured into space, many questioned whether sleep was possible at all in microgravity environments. It is now known that, in fact, space travelers can sleep once they leave the pull of the earth's gravity, but that the sleep they do get is not completely refreshing and that the associated sleep disturbances can be elaborate and variable. According to astronauts' subjective reports, the duration of sleep is shorter than that on earth and there is an increased incidence of disturbed sleep. Objective sleep recordings carried out during various missions including the Skylab missions, space shuttle missions, and Mir missions all support the conclusion that, compared to sleep on earth, the duration in human sleep in space is shorter, averaging about six hours. In the new frontier of space exploration, one of the great practical problems to be solved relates to how man can preserve "normal" sleep in a very abnormal environment. The challenge of managing fatigue and sleep loss during space mission has critical importance for the mental efficiency and safety of the crew and ultimately for the success of the mission itself. Numerous "earthly" examples now show that crew fatigue on ships, trucks, and long-haul jetliners can lead to inadequate performance and sometimes fatal consequences, a reality which has caused many space agencies to take the issue of sleep seriously.

  3. Review of Alpha-Ketoglutaric Acid (AKGA) Hydrazine and Monomethylhydrazine (MMH) Neutralizing Compound

    NASA Technical Reports Server (NTRS)

    Dibbern, Andreas W.; Beeson, Harold D.; Greene, Benjamin; Giordano, Thomas J.

    2009-01-01

    The Johnson Space Center (JSC) White Sands Test Facility (WSTF) and NASA Engineering and Safety Center (NESC) were requested by NASA Associate Administrator for Space Operations to perform an evaluation of a proposed hydrazine/monomethylhydrazine (MMH) fuel treatment method using alpha-ketoglutaric acid (AKGA). This evaluation request was prompted by preliminary tests at the Kennedy Space Center (KSC), suggesting cost and operational benefits to NASA for the Space Shuttle Program (SSP) and other hardware decontamination and decommissioning, in addition to hydrazine and MMH waste treatment activities. This paper provides the team's position on the current KSC and New Mexico Highlands University (NMHU) efforts toward implementing the AKGA treatment technology with flight hardware, ground support equipment (GSE), hydrazine and MMH spills, and vapor control. This evaluation is current to the last data examined (approximately September 2008).

  4. Astronaut Carl Meade mans pilots station during trajectory control exercise

    NASA Image and Video Library

    1994-09-12

    STS064-22-024 (9-20 Sept. 1994) --- With a manual and lap top computer in front of him, astronaut Carl J. Meade, STS-64 mission specialist, supports operations with the Trajectory Control Sensor (TCS) aboard the Earth-orbiting space shuttle Discovery. For this exercise, Meade temporarily mans the pilot's station on the forward flight deck. The TCS is the work of a team of workers at NASA's Johnson Space Center. Data gathered during this flight was expected to prove valuable in designing and developing a sensor for use during the rendezvous and mating phases of orbiter missions to the space station. For this demonstration, the Shuttle Pointed Autonomous Research Tool for Astronomy 201 (SPARTAN 201) was used as the target vehicle during release and retrieval operations. Photo credit: NASA or National Aeronautics and Space Administration

  5. 78 FR 66964 - International Space Station Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-128)] International Space Station Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the charter of the International Space Station Advisory Committee...

  6. 78 FR 66964 - International Space Station National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-129)] International Space Station National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal of the charter of the International Space Station National...

  7. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-104)] International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space... International and Interagency Relations, (202) 358-0550, National Aeronautics and Space Administration...

  8. JACIE: A Model Partnership

    NASA Technical Reports Server (NTRS)

    Thome, Kurt; Goldberg, Mitch; Mita, Dath; Stensaas, Gregory L.

    2013-01-01

    The National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), the United States Department of Agriculture (USDA), and the United States Geological Survey (USGS), and their associates and partners, are directly responsible for establishing and leading a unique interagency team of scientists and engineers who work together to evaluate and enhance the quality remote sensing data for commercial and government use. This team is called "the Joint Agency Commercial Imagery Evaluation (JACIE) team". The team works together to define, prioritize, assign, and assess civil and commercial image quality and jointly sponsors an annual JACIE Civil Commercial Imagery Evaluation workshop with participation support from the remote sensing calibration and validation science community.

  9. Developing Nationally Competitive NASA Research Capability in West Virginia

    NASA Technical Reports Server (NTRS)

    Calzonetti, Frank J.

    1997-01-01

    In May, 1995 West Virginia EPSCOR was awarded $150,000 to support activities to develop research capabilities in West Virginia in support of the National Aeronautics and Space Administration (NASA). These funds were used to support three projects: 1) Information Processing and the Earth Observing System, directed by Dr. Stuart Tewksbury of West Virginia University; 2) Development of Optical Materials for Atmospheric Sensing Experiments, directed by Dr. Nancy Giles of West Virginia University; and 3) Development of Doppler Global Velocimeter (DGV) for Aeronautical and Combustion Studies, directed by Dr. John Kuhlman of West Virginia University. The funding provides the means to develop capability in each of these areas. This report summarizes the technical accomplishments in each project supported under this award.

  10. Telecommunications administration standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustwiller, K.D.

    1996-05-01

    The administration of telecommunications is critical to proper maintenance and operation. The intent is to be able to properly support telecommunications for the distribution of all information within a building/campus. This standard will provide a uniform administration scheme that is independent of applications, and will establish guidelines for owners, installers, designers and contractors. This standard will accommodate existing building wiring, new building wiring and outside plant wiring. Existing buildings may not readily adapt to all applications of this standard, but the requirement for telecommunications administration is applicable to all buildings. Administration of the telecommunications infrastructure includes documentation (labels, records, drawings,more » reports, and work orders) of cables, termination hardware, patching and cross-connect facilities, telecommunications rooms, and other telecommunications spaces (conduits, grounding, and cable pathways are documented by Facilities Engineering). The investment in properly documenting telecommunications is a worthwhile effort. It is necessary to adhere to these standards to ensure quality and efficiency for the operation and maintenance of the telecommunications infrastructure for Sandia National Laboratories.« less

  11. Research and Technology 2003

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The NASA Glenn Research Center at Lewis Field, in partnership with U.S. industries, universities, and other Government institutions, is responsible for developing critical technologies that address national priorities in aeropropulsion and space applications. Our work is focused on research for new aeropropulsion technologies, aerospace power, microgravity science (fluids and combustion), electric propulsion, and communications technologies for aeronautics, space, and aerospace applications. As NASA s premier center for aeropropulsion, aerospace power, and turbomachinery, our role is to conduct world-class research and to develop key technologies. We contribute to economic growth and national security through safe, superior, and environmentally compatible U.S. civil and military aircraft propulsion systems. Our Aerospace Power Program supports all NASA Enterprises and major programs, including the International Space Station, Advanced Space Transportation, and new initiatives in human and robotic exploration. Glenn Research Center leads NASA s research in the microgravity science disciplines of fluid physics, combustion science, and acceleration measurement. Almost every space shuttle science mission has had an experiment managed by NASA Glenn, and we have conducted a wide array of similar experiments on the International Space Station. The Glenn staff consists of over 3200 civil service employees and support service contractor personnel. Scientists and engineers comprise more than half of our workforce, with technical specialists, skilled workers, and an administrative staff supporting them. We aggressively strive for technical excellence through continuing education, increased diversity in our workforce, and continuous improvement in our management and business practices so that we can expand the boundaries of aeronautics, space, and aerospace technology. Glenn Research Center is a unique facility located in northeast Ohio. Situated on 350 acres of land adjacent to the Cleveland Hopkins International Airport, Glenn comprises more than 140 buildings, including 24 major facilities and over 500 specialized research and test facilities. Additional facilities are located at Plum Brook Station, which is about 50 miles west of Cleveland. Plum Brook Station has four large, major, world-class facilities for space research available for Government and industry programs. Knowledge is the end product of our activities. The R&T reports help make this knowledge fully available to potential users the aircraft engine industry, the space industry, the energy industry, the automotive industry, the aerospace industry, and others. It is organized so that a broad cross section of the community can readily use it. Each article begins with a short introductory paragraph that should prove valuable for the layperson. These articles summarize the progress made during the year in various technical areas and portray the technical and administrative support associated with Glenn s technology programs. We hope that this information is useful to all. If additional information is desired, readers are encouraged to contact the researchers identified at the end of each article and to visit Glenn on the World Wide Web at http://www.grc.nasa.gov.

  12. 76 FR 1195 - Privacy Act System of Records Notice (11-001)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... Aeronautics and Space Administration Washington, DC 20546-0001 Location 2 Ames Research Center, National Aeronautics and Space Administration, Moffett Field, CA 94035-1000 Location 3 Dryden Flight Research Center... Center, FL 32899-0001 Location 7 Langley Research Center, National Aeronautics and Space Administration...

  13. 14 CFR 1212.702 - Associate Administrator for Management Systems and Facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Associate Administrator for Management Systems and Facilities. 1212.702 Section 1212.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.702 Associate...

  14. 14 CFR 1212.702 - Associate Administrator for Management Systems and Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Associate Administrator for Management Systems and Facilities. 1212.702 Section 1212.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.702 Associate...

  15. A Technology Plan for Enabling Commercial Space Business

    NASA Technical Reports Server (NTRS)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems beginning at the turn of the century and continuing far into the future.

  16. Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days)

    PubMed Central

    Moyer, Eric L; Dumars, Paula M; Sun, Gwo-Shing; Martin, Kara J; Heathcote, David G; Boyle, Richard D; Skidmore, Mike G

    2016-01-01

    The National Aeronautics and Space Administration Animal Enclosure Module (AEM) was developed as a self-contained rodent habitat for shuttle flight missions that provides inhabitants with living space, food, water, ventilation, and lighting, and this study reports whether, after minimal hardware modification, the AEM could support an extended term up to 35 days for Sprague-Dawley rats and C57BL/6 female mice for use on the International Space Station. Success was evaluated based on comparison of AEM housed animals to that of vivarium housed and to normal biological ranges through various measures of animal health and well-being, including animal health evaluations, animal growth and body masses, organ masses, rodent food bar consumption, water consumption, and analysis of blood contents. The results of this study confirmed that the AEMs could support 12 adult female C57BL/6 mice for up to 35 days with self-contained RFB and water, and the AEMs could also support 5 adult male Sprague-Dawley rats for 35 days with external replenishment of diet and water. This study has demonstrated the capability and flexibility of the AEM to operate for up to 35 days with minor hardware modification. Therefore, with modifications, it is possible to utilize this hardware on the International Space Station or other operational platforms to extend the space life science research use of mice and rats. PMID:28725722

  17. Budgeting Academic Space

    ERIC Educational Resources Information Center

    Harris, Watson

    2011-01-01

    There are many articles about space management, including those that discuss space calculations, metrics, and categories. Fewer articles discuss the space budgeting processes used by administrators to allocate space. The author attempts to fill this void by discussing her administrative experiences with Middle Tennessee State University's (MTSU)…

  18. NPOESS Field Terminal Updates

    NASA Astrophysics Data System (ADS)

    Heckmann, G.; Route, G.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. The IDPS processes NPOESS satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to NOAA and DoD processing centers operated by the United States government. The IDPS will process EDRs beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system. IDPS also provides the software and requirements for the Field Terminal Segment (FTS). NPOESS provides support to deployed field terminals by providing mission data in the Low Rate and High Rate downlinks (LRD/HRD), mission support data needed to generate EDRs and decryption keys needed to decrypt mission data during Selective data Encryption (SDE). Mission support data consists of globally relevant data, geographically constrained data, and two line element sets. NPOESS provides these mission support data via the Internet accessible Mission Support Data Server and HRD/LRD downlinks. This presentation will illustrate and describe the NPOESS capabilities in support of Field Terminal users. This discussion will include the mission support data available to Field Terminal users, content of the direct broadcast HRD and LRD downlinks identifying differences between the direct broadcast downlinks including the variability of the LRD downlink and NPOESS management and distribution of decryption keys to approved field terminals using Public Key Infrastructure (PKI) AES standard with 256 bit encryption and elliptical curve cryptography.

  19. Economic Analysis on the Space Transportation Architecture Study (STAS) NASA Team

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) performed the Space Transportation Architecture Study (STAS) to provide information to support end-of-the-decade decisions on possible near-term US Government (USG) investments in space transportation. To gain a clearer understanding of the costs and benefits of the broadest range of possible space transportation options, six teams, five from aerospace industry companies and one internal to NASA, were tasked to answer three primary questions: a) If the Space Shuttle system should be replaced; b) If so, when the replacement should take place and how the transition should be implemented; and c) If not, what is the upgrade strategy to continue safe and affordable flight of the Space Shuttle beyond 2010. The overall goal of the Study was "to develop investment options to be considered by the Administration for the President's FY2001 budget to meet NASA's future human space flight requirements with significant reductions in costs." This emphasis on government investment, coupled with the participation by commercial f'trms, required an unprecedented level of economic analysis of costs and benefits from both industry and government viewpoints. This paper will discuss the economic and market models developed by the in-house NASA Team to analyze space transportation architectures, the results of those analyses, and how those results were reflected in the conclusions and recommendations of the STAS NASA Team. Copyright 1999 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United States under Title 17, U.$. Code. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.

  20. 75 FR 43565 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-084)] NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a two-part meeting of the Ad-Hoc Task...

  1. 75 FR 33838 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-065)] NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Ad-Hoc Task Force on...

  2. 75 FR 15742 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-035)] NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Ad-Hoc Task Force on...

  3. 75 FR 24781 - Task Force on Space Industry Workforce and Economic Development

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... of May 3, 2010 Task Force on Space Industry Workforce and Economic Development Memorandum for the... Administrator of the National Aeronautics and Space Administration[,] the Chair of the Council of Economic... Policy[, and] the Director of the National Economic Council My Administration is committed to...

  4. 75 FR 4875 - NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-014)] NASA Commercial Space Committee... and Space Administration announces a meeting of the Commercial Space Committee to the NASA Advisory Council. DATES: Tuesday, February 16, 2010, 10 a.m.-5 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E...

  5. 14 CFR 1204.1403 - Available airport facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Available airport facilities. 1204.1403 Section 1204.1403 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ADMINISTRATIVE... for improved braking under wet conditions. (2) Parking Areas and Hangar Space. No hangar space is...

  6. 76 FR 65540 - National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    .... James J. Miller, Human Exploration and Operations Mission Directorate, National Aeronautics and Space... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-099)] National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board; Meeting AGENCY: National Aeronautics and Space Administration...

  7. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research Into Operations for America's Space Program

    NASA Technical Reports Server (NTRS)

    Madura, John T.; Bauman, William H., III; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2011-01-01

    The Applied Meteorology Unit (AMU) provides technology development and transition services to improve operational weather support to America's space program . The AMU was founded in 1991 and operates under a triagency Memorandum of Understanding (MOU) between the National Aeronautics and Space Administration (NASA), the United States Air Force (USAF) and the National Weather Service (NWS) (Ernst and Merceret, 1995). It is colocated with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) and funded by the Space Shuttle Program . Its primary customers are the 45WS, the Spaceflight Meteorology Group (SMG) operated for NASA by the NWS at the Johnson Space Center (JSC) in Houston, TX, and the NWS forecast office in Melbourne, FL (MLB). The gap between research and operations is well known. All too frequently, the process of transitioning research to operations fails for various reasons. The mission of the AMU is in essence to bridge this gap for America's space program.

  8. 75 FR 60145 - PNT Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... J. Miller, Space Communications and Navigation Program, Space Operations Mission Directorate... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-114)] PNT Advisory Board; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY: In accordance with the...

  9. Space transportation forecast conference, February 10-11, 1998 : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1998-01-01

    The Federal Aviation Administration's Associate Administrator for Commercial Space Transportation (AST) convened the first national commercial space transportation forecast conference on February 10-11, 1998. For the theme, Commercial Space Transport...

  10. Bioastronautics: optimizing human performance through research and medical innovations

    NASA Technical Reports Server (NTRS)

    Williams, David R.

    2002-01-01

    A strategic use of resources is essential to achieving long-duration space travel and understanding the human physiological changes in space, including the roles of food and nutrition in space. To effectively address the challenges of space flight, the Bioastronautics Initiative, undertaken in 2001, expands extramural collaboration and leverages unique capabilities of the scientific community and the federal government, all the while applying this integrated knowledge to Earth-based problems. Integral to the National Aeronautics and Space Administration's missions in space is the reduction of risk of medical complications, particularly during missions of long duration. Cumulative medical experience and research provide the ability to develop evidence-based medicine for prevention, countermeasures, and treatment modalities for space flight. The early approach applied terrestrial clinical judgment to predict medical problems in space. Space medicine has evolved to an evidence-based approach with the use of biomedical data gathered and lessons learned from previous space flight missions to systematically aid in decision making. This approach led, for example, to the determination of preliminary nutritional requirements for space flight, and it aids in the development of nutrition itself as a countermeasure to support nutritional mitigation of adaptation to space.

  11. SCI 236 AGARDograph. Part Two; National Aeronautics and Space Administration Armstrong Flight Research Center Annex

    NASA Technical Reports Server (NTRS)

    Neal, Bradford A.; Stoliker, Patrick C.

    2018-01-01

    NASA AFRC is a United States government entity that conducts the integration and operation of new and unproven technologies into proven flight vehicles as well as the flight test of one-of-a-kind experimental aircraft. AFRC also maintains and operates several platform aircraft that allow the integration of a wide range of sensors to conduct airborne remote sensing, science observations and airborne infrared astronomy. To support these types of operations AFRC has the organization, facilities and tools to support the experimental flight test of unique vehicles and conduct airborne sensing/observing.

  12. Services provided in support of the planetary quarantine requirements of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1973-01-01

    The project to evaluate thermal sterilization for unmanned landers is reported. A temperature controlled oven with a nitrogen gas supply containing a known concentration of water is discussed. The studies show that bacillus lentus, bacillus brevis, bacillus coagulans, atypical bacillus spp., and actinomycete are isolated heat survivors. The thermal resistance is given for naturally occurring airborne bacterial spores collected on exposed teflon ribbons.

  13. Report of the Acquisition Advisory Panel to the Office of Federal Procurement Policy and the United States Congress (January 2007)

    DTIC Science & Technology

    2007-01-01

    Business Case to Support Executive Agent Redesignation . . . . . . . . . . . . 259 Appendix B: Agency Application for Franchise Fund Pilot Program...interagency vehicles through the Depart- ment of Treasury and Department of Interior Franchise funds and the National Aeronautics and Space Administration...reauthorization of GWACs and Franchise Funds to require greater emphasis on meeting specific agency needs and furthering the overall effectiveness of

  14. 14 CFR 1214.1707 - Media and public inquiries.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Media and public inquiries. 1214.1707 Section 1214.1707 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1707 Media and public inquiries. (a) The Associate Administrator for External...

  15. 14 CFR 1214.1707 - Media and public inquiries.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Media and public inquiries. 1214.1707 Section 1214.1707 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1707 Media and public inquiries. (a) The Associate Administrator for External...

  16. 14 CFR 1214.1707 - Media and public inquiries.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Media and public inquiries. 1214.1707 Section 1214.1707 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1707 Media and public inquiries. (a) The Associate Administrator for External...

  17. 14 CFR 1214.1707 - Media and public inquiries.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Media and public inquiries. 1214.1707 Section 1214.1707 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1707 Media and public inquiries. (a) The Associate Administrator for External...

  18. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA... be approved, as required, by JSC/ NASA management and the Associate Administrator for Space Flight...

  19. KSC-2014-2183

    NASA Image and Video Library

    2014-04-18

    CAPE CANAVERAL, Fla. - Media representatives participate in a post-launch news conference in the NASA Press Site news auditorium at Kennedy Space Center in Florida following the SpaceX-3 launch. On the dais are, from left, Michael Curie, NASA Public Affairs, William Gersteinmeier, NASA associate administrator for Human Exploration and Operations, and Hans Koenigsmann, SpaceX vice president of Mission Assurance. SpaceX CEO and chief designer Elon Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett

  20. System Administrator for LCS Development Sets

    NASA Technical Reports Server (NTRS)

    Garcia, Aaron

    2013-01-01

    The Spaceport Command and Control System Project is creating a Checkout and Control System that will eventually launch the next generation of vehicles from Kennedy Space Center. KSC has a large set of Development and Operational equipment already deployed in several facilities, including the Launch Control Center, which requires support. The position of System Administrator will complete tasks across multiple platforms (Linux/Windows), many of them virtual. The Hardware Branch of the Control and Data Systems Division at the Kennedy Space Center uses system administrators for a variety of tasks. The position of system administrator comes with many responsibilities which include maintaining computer systems, repair or set up hardware, install software, create backups and recover drive images are a sample of jobs which one must complete. Other duties may include working with clients in person or over the phone and resolving their computer system needs. Training is a major part of learning how an organization functions and operates. Taking that into consideration, NASA is no exception. Training on how to better protect the NASA computer infrastructure will be a topic to learn, followed by NASA work polices. Attending meetings and discussing progress will be expected. A system administrator will have an account with root access. Root access gives a user full access to a computer system and or network. System admins can remove critical system files and recover files using a tape backup. Problem solving will be an important skill to develop in order to complete the many tasks.

  1. 78 FR 72719 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-140)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council (NAC). DATES: Wednesday, December...., Local Time. ADDRESSES: NASA Kennedy Space Center, Headquarters Building, Room 2201, Kennedy Space Center...

  2. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 3: Programmatic options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Task 2 in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make design/programmatic decisions. This volume identifies the preferred options in the programmatic category and characterizes these options with respect to performance attributes, constraints, costs, and risks. The programmatic category includes methods used to administrate/manage the development, operation and maintenance of the SSDS. The specific areas discussed include standardization/commonality; systems management; and systems development, including hardware procurement, software development and system integration, test and verification.

  3. Software process improvement in the NASA software engineering laboratory

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon; Basili, Victor; Zelkowitz, Marvin

    1994-01-01

    The Software Engineering Laboratory (SEL) was established in 1976 for the purpose of studying and measuring software processes with the intent of identifying improvements that could be applied to the production of ground support software within the Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC). The SEL has three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation (CSC). The concept of process improvement within the SEL focuses on the continual understanding of both process and product as well as goal-driven experimentation and analysis of process change within a production environment.

  4. Space Science

    NASA Image and Video Library

    1992-08-13

    In the Payload Hazardous Servicing Facility, the integrated Mars Observer/Transfer Orbit Stage (TOS) payload is ready for encapsulation in the Titan III nose fairing. The TOS booster maiden flight was dedicated to Thomas O. Paine, a former NASA administrator who strongly supported interplanetary exploration and was an early backer of the TOS program. Launched September 25, 1992 from the Kennedy Space Flight Center aboard a Titan III rocket and the TOS, the Mars Observer spacecraft was to be the first U.S. spacecraft to study Mars since the Viking missions 18 years prior. Unfortunately, the Mars Observer spacecraft fell silent just 3 days prior to entering orbit around Mars.

  5. System Performance of an Integrated Airborne Spacing Algorithm with Ground Automation

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.

    2016-01-01

    The National Aeronautics and Space Administration's (NASA's) first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the Terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools to enable precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise spacing behind another aircraft. Recent simulations and IM algorithm development at NASA have focused on trajectory-based IM operations where aircraft equipped with IM avionics are expected to achieve a spacing goal, assigned by air traffic controllers, at the final approach fix. The recently published IM Minimum Operational Performance Standards describe five types of IM operations. This paper discusses the results and conclusions of a human-in-the-loop simulation that investigated three of those IM operations. The results presented in this paper focus on system performance and integration metrics. Overall, the IM operations conducted in this simulation integrated well with ground-based decisions support tools and certain types of IM operational were able to provide improved spacing precision at the final approach fix; however, some issues were identified that should be addressed prior to implementing IM procedures into real-world operations.

  6. 78 FR 65006 - National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-125] National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board; Meeting AGENCY: National Aeronautics and Space Administration..., Public Law 92-463, as amended, and the President's 2004 U.S. Space-Based Positioning, Navigation, and...

  7. NASA's commercial research plans and opportunities

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.

    1992-01-01

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  8. NASA's commercial research plans and opportunities

    NASA Astrophysics Data System (ADS)

    Arnold, Ray J.

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  9. 14 CFR 406.111 - Signing documents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Signing documents. 406.111 Section 406.111 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURE INVESTIGATIONS, ENFORCEMENT, AND ADMINISTRATIVE REVIEW Rules of Practice in FAA Space...

  10. 14 CFR 406.111 - Signing documents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Signing documents. 406.111 Section 406.111 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURE INVESTIGATIONS, ENFORCEMENT, AND ADMINISTRATIVE REVIEW Rules of Practice in FAA Space...

  11. Address by James C. Fletcher, Administrator National Aeronautics and Space Administration at the National Academy of Engineering, Washington, D.C., 10 November 1975

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Future plans and programs of the space agency are discussed. Topics discussed include solar energy, space stations, planetary exploration, interstellar exploration, the space shuttles, and satellites.

  12. NASA's Elementary and Secondary Education Program: Review and Critique

    NASA Technical Reports Server (NTRS)

    Quinn, Helen R. (Editor); Schweingruber, Heidi A. (Editor); Feder, Michael A. (Editor)

    2008-01-01

    The federal role in precollege science, technology, engineering, and mathematics (STEM) education is receiving increasing attention in light of the need to support public understanding of science and to develop a strong scientific and technical workforce in a competitive global economy. Federal science agencies, such as the National Aeronautics and Space Administration (NASA), are being looked to as a resource for enhancing precollege STEM education and bringing more young people to scientific and technical careers. For NASA and other federal science agencies, concerns about workforce and public understanding of science also have an immediate local dimension. The agency faces an aerospace workforce skewed toward those close to retirement and job recruitment competition for those with science and engineering degrees. In addition, public support for the agency s missions stems in part from public understanding of the importance of the agency s contributions in science, engineering, and space exploration.

  13. Integrating O/S models during conceptual design, part 1

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1994-01-01

    The University of Dayton is pleased to submit this report to the National Aeronautics and Space Administration (NASA), Langley Research Center, which integrates a set of models for determining operational capabilities and support requirements during the conceptual design of proposed space systems. This research provides for the integration of the reliability and maintainability (R&M) model, both new and existing simulation models, and existing operations and support (O&S) costing equations in arriving at a complete analysis methodology. Details concerning the R&M model and the O&S costing model may be found in previous reports accomplished under this grant (NASA Research Grant NAG1-1327). In the process of developing this comprehensive analysis approach, significant enhancements were made to the R&M model, updates to the O&S costing model were accomplished, and a new simulation model developed. This is the 1st part of a 3 part technical report.

  14. Techniques for on-orbit cryogenic servicing

    NASA Astrophysics Data System (ADS)

    DeLee, C. H.; Barfknecht, P.; Breon, S.; Boyle, R.; DiPirro, M.; Francis, J.; Huynh, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; Wegel, D.

    2014-11-01

    NASA (National Aeronautics and Space Administration) has a renewed interest in on-orbit cryogen storage and transfer to support its mission to explore near-earth objects such as asteroids and comets. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission (CPST-TDM), managed by the NASA Glenn Research Center (GRC) and scheduled for launch in 2018, will demonstrate numerous key technologies applicable to a cryopropellant fuel depot. As an adjunct to the CPST-TDM work, experiments at NASA Goddard Space Flight Center (GSFC) will support the development of techniques to manage and transfer cryogens on-orbit and expand these techniques as they may be applicable to servicing science missions using solid cryogens such as the Wide-field Infrared Survey Explorer (WISE). The results of several ground experiments are described, including autogenous pressurization used for transfer of liquid nitrogen and argon, characterization of the transfer and solidification of argon, and development of robotic tools for cryogen transfer.

  15. Project Centaur. [for earth dayside magnetic cleft investigation

    NASA Technical Reports Server (NTRS)

    Brence, W. A.; Hardin, J. W.; Crook, E. D.; Roberts, H.

    1982-01-01

    The National Aeronautics and Space Administration (NASA) and the Canada Centre for Space Science, National Research Council of Canada (NRCC), conducted a cooperative sounding rocket campaign in the Canadian Arctic during November/December 1981. The objective of the campaign was to investigate the earth's dayside magnetic cleft region. The project was named CENTAUR for Cleft Energetics Transport and Ultraviolet Radiation. Remote launch support facilities were established at Cape Parry, NWT, Canada (70 deg 10 min N latitude, 124 deg 40 min W longitude). The cleft region is accessible from this location when launched poleward during reasonably quiet magnetic activity. Five large sounding rockets were launched (3 NASA, 2 NRCC). About 30 scientific experiments were launched, and an extensive array of ground based experiments was established at Cape Parry and at Sachs Harbour, Banks Island, 130 miles poleward. This paper discusses the unique organization, planning, facilities, instrumentation, and operation required to support the campaign, and looks briefly at the results.

  16. Internet Technology on Spacecraft

    NASA Technical Reports Server (NTRS)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current approaches. The cost to implement is much less than current approaches due to the availability of highly reliable and standard Internet tools. Use of standard Internet applications onboard reduces the risk of obsolescence inherent in custom protocols due to extremely wide use across all domains. These basic building blocks provide the framework for building onboard software to support direct user communication with payloads including payload control. Other benefits are payload to payload communication from dissimilar spacecraft, constellations of spacecraft, and reconfigurability on orbit. This work is funded through contract with the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC).

  17. Simple, Robust Cryogenic Propellant Depot for Near Term Applications

    NASA Technical Reports Server (NTRS)

    McLean, Christopher; Pitchford, Brian; Mustafi, Shuvo; Wollen, Mark; Walls, Laurie; Schmidt, Jeff

    2011-01-01

    The ability to refuel cryogenic propulsion stages on-orbit provides an innovative paradigm shift for space transportation supporting National Aeronautics and Space Administration s (NASA) Exploration program as well as deep space robotic, national security and commercial missions. Refueling enables large beyond low Earth orbit (LEO) missions without requiring super heavy lift vehicles that must continuously grow to support increasing mission demands as America s exploration transitions from early Lagrange point missions to near Earth objects (NEO), the lunar surface and eventually Mars. Earth-to-orbit launch can be optimized to provide competitive, cost-effective solutions that allow sustained exploration. This paper describes an experimental platform developed to demonstrate the major technologies required for fuel depot technology. This test bed is capable of transferring residual liquid hydrogen (LH2) or liquid oxygen (LO2) from a Centaur upper stage, and storage in a secondary tank for up to one year on-orbit. A dedicated, flight heritage spacecraft bus is attached to an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring supporting experiments and data collection. This platform can be deployed as early as Q1 2013. The propellant depot design described in this paper can be deployed affordably this decade supporting missions to Earth-Moon Lagrange points and lunar fly by. The same depot concept can be scaled up to support more demanding missions and launch capabilities. The enabling depot design features, technologies and concept of operations are described.

  18. The Lunar Lander "HabiTank" Concept

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2007-01-01

    This paper will summarize the study that was conducted under the auspices of the National Aeronautics and Space Administration (NASA), lead by Johnson Space Center s Engineering Directorate in support of the Lunar Lander Preparatory Study (LLPS) as sponsored by the Constellation Program Office (CxPO), Advanced Projects Office (APO). The lunar lander conceptual design and analysis is intended to provide an understanding of requirements for human space exploration of the Moon using the Advanced Projects Office Pre-Lander Project Office selected "HabiTank" Lander concept. In addition, these analyses help identify system "drivers," or significant sources of cost, performance, risk, and schedule variation along with areas needing technology development. Recommendations, results, and conclusions in this paper do not reflect NASA policy or programmatic decisions. This paper is an executive summary of this study.

  19. Twelve Scientific Specialists of the Peenemuende Team

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Twelve scientific specialists of the Peenemuende team at the front of Building 4488, Redstone Arsenal, Huntsville, Alabama. They led the Army's space efforts at ABMA before transfer of the team to National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC). (Left to right) Dr. Ernst Stuhlinger, Director, Research Projects Office; Dr. Helmut Hoelzer, Director, Computation Laboratory: Karl L. Heimburg, Director, Test Laboratory; Dr. Ernst Geissler, Director, Aeroballistics Laboratory; Erich W. Neubert, Director, Systems Analysis Reliability Laboratory; Dr. Walter Haeussermarn, Director, Guidance and Control Laboratory; Dr. Wernher von Braun, Director Development Operations Division; William A. Mrazek, Director, Structures and Mechanics Laboratory; Hans Hueter, Director, System Support Equipment Laboratory;Eberhard Rees, Deputy Director, Development Operations Division; Dr. Kurt Debus, Director Missile Firing Laboratory; Hans H. Maus, Director, Fabrication and Assembly Engineering Laboratory

  20. KSC-2011-7250

    NASA Image and Video Library

    2011-09-02

    CAPE CANAVERAL, Fla. -- The NASA Legends and Trailblazers Panel address the audience attending the Tom Joyner Family Reunion. From left is the master of ceremonies, Lance Foster (standing) with panel members Robyn Gordon, director of Center Operations, Glenn Research Center; Lewis Braxton, deputy director, Ames Research Center; Woodrow Whitlow, associate administrator for Mission Support Directorates, NASA Headquarters; astronaut Leland Melvin, associate administrator for Education, NASA Headquarters; and astronaut Mike Foreman, Johnson Space Center. The event was held in the Exhibit Hall of the Gaylord Palms Resort and Convention Center in Kissimmee, Fla., and hosted by nationally syndicated radio personality Tom Joyner during the extended Labor Day weekend Sept. 1-4. Besides offering attendees the opportunity to visit tourist attractions in the Orlando area, the reunion gave NASA education specialists an avenue to tout the benefits of math and scientific learning, as well as the many educational opportunities offered by the space agency. For more information on NASA's education initiatives, visit http://www.nasa.gov/education. Photo credit: NASA/Frankie Martin

  1. KSC-2011-7249

    NASA Image and Video Library

    2011-09-02

    CAPE CANAVERAL, Fla. -- The NASA Legends and Trailblazers Panel take to the stage at the Tom Joyner Family Reunion. From left is the master of ceremonies, Lance Foster (standing) with panel members Robyn Gordon, director of Center Operations, Glenn Research Center; Lewis Braxton, deputy director, Ames Research Center; Woodrow Whitlow, associate administrator for Mission Support Directorates; astronaut Leland Melvin, associate administrator for Education; and astronaut Mike Foreman, Johnson Space Center. The event was held in the Exhibit Hall of the Gaylord Palms Resort and Convention Center in Kissimmee, Fla., and hosted by nationally syndicated radio personality Tom Joyner during the extended Labor Day weekend Sept. 1-4. Besides offering attendees the opportunity to visit tourist attractions in the Orlando area, the reunion gave NASA education specialists an avenue to tout the benefits of math and scientific learning, as well as the many educational opportunities offered by the space agency. For more information on NASA's education initiatives, visit http://www.nasa.gov/education. Photo credit: NASA/Frankie Martin

  2. KSC-2011-1156

    NASA Image and Video Library

    2011-01-20

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony for the space agency's most environmentally friendly facility, the Propellants North Administrative and Maintenance Facility in Kennedy's Launch Complex 39 area. From left, are Mike Benik, director of Kennedy's Center Operations; James Wright, deputy assistant administrator for the Office of Strategic Infrastructure at NASA Headquarters; Bob Cabana, Kennedy's center director; Ward Davis, president of HW Davis Construction Inc.; and Rick Ferreira, chief operating officer of Jones Edmunds and Associates Inc. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett

  3. Friction Stir Welding Development at National Aeronautics and Space Administration-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents an over-view of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including very thin and very thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  4. Overview of free-piston Stirling SP-100 activities at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1986-01-01

    An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) SP-100 free-piston Stirling engine activities is presented. These activities are being conducted in support of the Department of Defense (DOD), Department of Energy (DOE), and NASA. The space-power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE). Another facet of the SP-100 project covers the status of an endurance test. Dynamic balancing of the SPDE engine is discussed along with a summary covering the parametric results of a study showing the relationship between power-converter specific weight and efficiency both as a function of Stirling engine heater to cooler temperature ratio. Design parameters and conceptual design features are presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. And finally, a description of a hydrodynamic gas bearing concept is presented.

  5. A Historical Perspective on Dynamics Testing at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Kvaternik, Raymond G.

    2000-01-01

    The history of structural dynamics testing research over the past four decades at the Langley Research Center of the National Aeronautics and Space Administration is reviewed. Beginning in the early sixties, Langley investigated several scale model and full-scale spacecraft including the NIMBUS and various concepts for Apollo and Viking landers. Langley engineers pioneered the use of scaled models to study the dynamics of launch vehicles including Saturn I, Saturn V, and Titan III. In the seventies, work emphasized the Space Shuttle and advanced test and data analysis methods. In the eighties, the possibility of delivering large structures to orbit by the Space Shuttle shifted focus towards understanding the interaction of flexible space structures with attitude control systems. Although Langley has maintained a tradition of laboratory-based research, some flight experiments were supported. This review emphasizes work that, in some way, advanced the state of knowledge at the time.

  6. Arctic Observing Experiment (AOX) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigor, Ignatius; Johnson, Jim; Motz, Emily

    Our ability to understand and predict weather and climate requires an accurate observing network. One of the pillars of this network is the observation of the fundamental meteorological parameters: temperature, air pressure, and wind. We plan to assess our ability to measure these parameters for the polar regions during the Arctic Observing Experiment (AOX, Figure 1) to support the International Arctic Buoy Programme (IABP), Arctic Observing Network (AON), International Program for Antarctic Buoys (IPAB), and Southern Ocean Observing System (SOOS). Accurate temperature measurements are also necessary to validate and improve satellite measurements of surface temperature across the Arctic. Support formore » research associated with the campaign is provided by the National Science Foundation, and by other US agencies contributing to the US Interagency Arctic Buoy Program. In addition to the support provided by the U.S Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope of Alaska (NSA) site at Barrow and the National Science Foundation (NSF), the U.S. IABP is supported by the U.S. Coast Guard (USCG), the National Aeronautics and Space Administration (NASA), the National Ice Center (NIC), the National Oceanic and Atmospheric Administration (NOAA), and the Office of Naval Research (ONR).« less

  7. NASA's Space Launch System: Positioning Assets for Tele-Robotic Operations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.; Robinson, Kimberly F.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) is designing and developing America's most capable launch vehicle to support high-priority human and scientific exploration beyond Earth's orbit. The Space Launch System (SLS) will initially lift 70 metric tons (t) on its first flights, slated to begin in 2017, and will be evolved after 2021 to a full 130-t capability-larger than the Saturn V Moon rocket. This superior lift and associated volume capacity will support game-changing exploration in regions that were previously unattainable, being too costly and risky to reach. On the International Space Station, astronauts are training for long-duration missions to asteroids and cis-martian regions, but have not had transportation out of Earth's orbit - until now. Simultaneously, productive rovers are sending scientists - and space fans - unprecedented information about the composition and history of Mars, the planet thought to be most like Earth. This combination of experience and information is laying the foundation for future missions, such as those outlined in NASA's "Mars Next Decade" report, that will rely on te1e-robotic operations to take exploration to the next level. Within this paradigm, NASA's Space Launch System stands ready to manifest the unique payloads that will be required for mission success. Ultimately, the ability to position assets - ranging from orbiters, to landers, to communication satellites and surface systems - is a critical step in broadening the reach of technological innovation that will benefit all Earth's people as the Space Age unfolds. This briefing will provide an overview of how the Space Launch System will support delivery of elements for tele-robotic operations at destinations such as the Moon and Mars, which will synchronize the human-machine interface to deliver hybrid on-orbit capabilities. Ultimately, telerobotic operations will open entirely new vistas and the doors of discovery. NASA's Space Launch System will be a safe, affordable, and sustainable platform for these purposes and more.

  8. 77 FR 58607 - Office of Commercial Space Transportation Safety Approval Performance Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space...), FAA Office of Commercial Space Transportation (AST), 800 Independence Avenue SW., Room 331, Washington... September 17, 2012. George C. Nield, Associate Administrator for Commercial Space Transportation. [FR Doc...

  9. Advanced Life Support Research and Technology Development Metric: Fiscal Year 2003

    NASA Technical Reports Server (NTRS)

    Hanford, A. J.

    2004-01-01

    This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2003. As such, the values herein are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. The Metric is one of several measures employed by the National Aeronautics and Space Administration (NASA) to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). More specifically, the Metric is the ratio defined by the equivalent system mass (ESM) of a life support system for a specific mission using the ISS ECLSS technologies divided by the ESM for an equivalent life support system using the best ALS technologies. As defined, the Metric should increase in value as the ALS technologies become lighter, less power intensive, and require less volume. For Fiscal Year 2003, the Advanced Life Support Research and Technology Development Metric value is 1.47 for an Orbiting Research Facility and 1.36 for an Independent Exploration Mission.

  10. 77 FR 52696 - Federal Acquisition Regulation; Information Collection; Drug-Free Workplace (FAR 52.223-6)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... DEPARTMENT OF DEFENSE GENERAL SERVICES ADMINISTRATION NATIONAL AERONAUTICS AND SPACE... Services Administration (GSA), and National Aeronautics and Space Administration (NASA). ACTION: Notice of... Data [[Page 52697

  11. Memorandum of Agreement Among Department of Defense, Federal Aviation Administration and National Aeronautics and Space Administration on Federal Interaction With Launch Site Operators

    DOT National Transportation Integrated Search

    1997-01-01

    This Memorandum of Agreement (Agreement) explains the respective roles and : responsibilities of the Department of Defense, the Federal Aviation : Administration, and the National Aeronautics and Space Administration, : in their interactions with lau...

  12. Flight Test Overview for UAS Integration in the NAS Project

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Hayes, Peggy S.; Kim, Sam K.; Bridges, Wayne; Marston, Michael

    2016-01-01

    The National Aeronautics and Space Administration is conducting a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The most recent testing supported two separate test configurations. The first investigated the timing of Detect and Avoid (DAA) alerting thresholds using a radar-equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries. The second configuration included a surrogate unmanned vehicle (flown from a ground control station, with a safety pilot on board) flying a mission in a virtual air traffic control airspace sector using research pilot displays and DAA advisories to maintain separation from live and virtual aircraft. The test was conducted over a seven-week span in the summer of 2015. The data from over 100 encounter sorties will be used to inform the RTCA Phase 1 Detect and Avoid and Command and Control Minimum Operating Performance Standards (MOPS) intended to be completed by the summer of 2016. Follow-on flight-testing is planned for the spring of 2016 to capture remaining encounters and support validation of the MOPS.

  13. The Importance of Earth Observations and Data Collaboration within Environmental Intelligence Supporting Arctic Research

    NASA Technical Reports Server (NTRS)

    Casas, Joseph

    2017-01-01

    Within the IARPC Collaboration Team activities of 2016, Arctic in-situ and remote earth observations advanced topics such as :1) exploring the role for new and innovative autonomous observing technologies in the Arctic; 2) advancing catalytic national and international community based observing efforts in support of the National Strategy for the Arctic Region; and 3) enhancing the use of discovery tools for observing system collaboration such as the U.S. National Oceanic and Atmospheric Administration (NOAA) Arctic Environmental Response Management Application (ERMA) and the U.S. National Aeronautics and Space Administration (NASA) Arctic Collaborative Environment (ACE) project geo reference visualization decision support and exploitation internet based tools. Critical to the success of these earth observations for both in-situ and remote systems is the emerging of new and innovative data collection technologies and comprehensive modeling as well as enhanced communications and cyber infrastructure capabilities which effectively assimilate and dissemination many environmental intelligence products in a timely manner. The Arctic Collaborative Environment (ACE) project is well positioned to greatly enhance user capabilities for accessing, organizing, visualizing, sharing and producing collaborative knowledge for the Arctic.

  14. 14 CFR § 1214.1707 - Media and public inquiries.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Media and public inquiries. § 1214.1707 Section § 1214.1707 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1707 Media and public inquiries. (a) The Associate Administrator for...

  15. Implementing EVM Data Analysis Adding Value from a NASA Project Manager's Perspective

    NASA Technical Reports Server (NTRS)

    Counts, Stacy; Kerby, Jerald

    2006-01-01

    Data Analysis is one of the keys to an effective Earned Value Management (EVM) Process. Project Managers (PM) must continually evaluate data in assessing the health of their projects. Good analysis of data can assist PMs in making better decisions in managing projects. To better support our P Ms, National Aeronautics and Space Administration (NASA) - Marshall Space Flight Center (MSFC) recently renewed its emphasis on sound EVM data analysis practices and processes, During this presentation we will discuss the approach that MSFC followed in implementing better data analysis across its Center. We will address our approach to effectively equip and support our projects in applying a sound data analysis process. In addition, the PM for the Space Station Biological Research Project will share her experiences of how effective data analysis can benefit a PM in the decision making process. The PM will discuss how the emphasis on data analysis has helped create a solid method for assessing the project s performance. Using data analysis successfully can be an effective and efficient tool in today s environment with increasing workloads and downsizing workforces

  16. Reengineering the project design process

    NASA Astrophysics Data System (ADS)

    Kane Casani, E.; Metzger, Robert M.

    1995-01-01

    In response to the National Aeronautics and Space Administration's goal of working faster, better, and cheaper, the Jet Propulsion Laboratory (JPL) has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Development Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center (PDC) and the Flight System Testbed (FST). Reengineering at JPL implies a cultural change whereby the character of the Laboratory's design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and more accurate cost estimating. These improvements signal JPL's commitment to meeting the challenges of space exploration in the next century.

  17. NASA Deputy Administrator Tours Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Pictured from the left, in the Saturn I mockup, are: William Brooksbank, Marshall Space Flight Center (MSFC) Propulsion and Vehicle Engineering Laboratory; Dr. Thomas O. Paine, Deputy Administrator of the National Aeronautics and Space Administration (NASA); Dr. Wernher von Braun, MSFC director; Colonel Clare F. Farley, executive officer of the Office of the Administrator; and Charles J. Donlan, newly appointed deputy associate administrator for Manned Space Flight, technical. The party examined an ordinary man's shoe (held by Paine) outfitted for use in the Saturn I Workshop. The shoe had a unique fastener built into the sole to allow an astronaut to move about the workshop floor and to remain in one position if he desired. Dr. Paine and his party indulged in a two-day tour at the Marshall Space Flight Center getting acquainted with Marshall personnel and programs. It was Paine's first visit to the center since assuming the NASA post on February 1, 1968.

  18. CRYOTE (Cryogenic Orbital Testbed) Concept

    NASA Technical Reports Server (NTRS)

    Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie

    2009-01-01

    Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.

  19. 14 CFR 1203b.109 - Disclaimer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... otherwise lawful activities of security force personnel or the National Aeronautics and Space Administration. ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Disclaimer. 1203b.109 Section 1203b.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND...

  20. 14 CFR 1203b.109 - Disclaimer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... otherwise lawful activities of security force personnel or the National Aeronautics and Space Administration. ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Disclaimer. 1203b.109 Section 1203b.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND...

Top