Technology for subsystems of space-based plant growth facilities
NASA Technical Reports Server (NTRS)
Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Corey, R. B.
1990-01-01
Technologies for different subsystems of space-based plant growth facilities are being developed at the Wisconsin Center for Space Automation and Robotics, a NASA Center for the Commercial Development of Space. The technologies include concepts for water and nutrient delivery, for nutrient composition control, and for irradiation. Effort is being concentrated on these subsystems because available technologies cannot be effectively utilized for space applications.
NASA Technical Reports Server (NTRS)
Ewell, Robert N.
1994-01-01
The U.S. Space Foundation displayed its prototype Space Technology Hall of Fame exhibit design at the Technology 2003 conference in Anaheim, CA, December 7-9, 1993. In order to sample public opinion on space technology in general and the exhibit in particular, a computer-based survey was set up as a part of the display. The data collected was analyzed.
Adaption of space station technology for lunar operations
NASA Technical Reports Server (NTRS)
Garvey, J. M.
1992-01-01
Space Station Freedom technology will have the potential for numerous applications in an early lunar base program. The benefits of utilizing station technology in such a fashion include reduced development and facility costs for lunar base systems, shorter schedules, and verification of such technology through space station experience. This paper presents an assessment of opportunities for using station technology in a lunar base program, particularly in the lander/ascent vehicles and surface modules.
Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Turner, James
1999-01-01
NASA's Office of Aero-Space Technology (OAST) has established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies Under the "Access to Space" pillar. The Core Technologies Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. One of the main activities over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the decision to determine the path this country will take for Space Shuttle and RLV. This year, additional technology efforts in the reusable technologies will be awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion.
The 1980 Large space systems technology. Volume 2: Base technology
NASA Technical Reports Server (NTRS)
Kopriver, F., III (Compiler)
1981-01-01
Technology pertinent to large antenna systems, technology related to large space platform systems, and base technology applicable to both antenna and platform systems are discussed. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. A total systems approach including controls, platforms, and antennas is presented as a cohesive, programmatic plan for large space systems.
NASA space station automation: AI-based technology review. Executive summary
NASA Technical Reports Server (NTRS)
Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Goldberg, J.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.
1985-01-01
Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics.
NASA space station automation: AI-based technology review
NASA Technical Reports Server (NTRS)
Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.
1985-01-01
Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.
Two Micron Laser Technology Advancements at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Singh, Upendra N.
2010-01-01
An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.
NASA Technical Reports Server (NTRS)
Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.
1991-01-01
In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.
Space technology research plans
NASA Technical Reports Server (NTRS)
Hook, W. Ray
1992-01-01
Development of new technologies is the primary purpose of the Office of Aeronautics and Space Technology (OAST). OAST's mission includes the following two goals: (1) to conduct research to provide fundamental understanding, develop advanced technology and promote technology transfer to assure U.S. preeminence in aeronautics and to enhance and/or enable future civil space missions: and (2) to provide unique facilities and technical expertise to support national aerospace needs. OAST includes both NASA Headquarters operations as well as programmatic and institutional management of the Ames Research Center, the Langley Research Center and the Lewis Research Center. In addition. a considerable portion of OAST's Space R&T Program is conducted through the flight and science program field centers of NASA. Within OAST, the Space Technology Directorate is responsible for the planning and implementation of the NASA Space Research and Technology Program. The Space Technology Directorate's mission is 'to assure that OAST shall provide technology for future civil space missions and provide a base of research and technology capabilities to serve all national space goals.' Accomplishing this mission entails the following objectives: y Identify, develop, validate and transfer technology to: (1) increase mission safety and reliability; (2) reduce flight program development and operations costs; (3) enhance mission performance; and (4) enable new missions. Provide the capability to: (1) advance technology in critical disciplines; and (2) respond to unanticipated mission needs. In-space experiments are an integral part of OAST's program and provides for experimental studies, development and support for in-space flight research and validation of advanced space technologies. Conducting technology experiments in space is a valuable and cost effective way to introduce advanced technologies into flight programs. These flight experiments support both the R&T base and the focussed programs within OAST.
NASA Technical Reports Server (NTRS)
2012-01-01
Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.
NASA Technical Reports Server (NTRS)
Tamir, David
1992-01-01
As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights.
Enabling technologies for transition to utilization of space-based resources and operations
NASA Technical Reports Server (NTRS)
Sadin, S. R.; Litty, J. D.
1985-01-01
This article explores a potential scenario for the further development of space infrastructure resources and operations management. It is a scenario that transitions from the current ground-based system to an architecture that is predominantly space-based by exploiting key mission systems in an operational support role. If this view is accurate, an examination of the range of potential infrastructure elements and how they might interact in a maximally productive space-based operations complex is needed, innovative technologies beyond the current Shuttle and Space Station legacy need to be identified, and research programs pursued. Development of technologies within the areas of telerobotics, machine autonomy, human autonomy, in-space manufacturing and construction, propulsion and energy is discussed.
Space and nuclear research and technology
NASA Technical Reports Server (NTRS)
1975-01-01
A fact sheet is presented on the space and nuclear research and technology program consisting of a research and technology base, system studies, system technology programs, entry systems technology, and experimental programs.
A Technology Plan for Enabling Commercial Space Business
NASA Technical Reports Server (NTRS)
Lyles, Garry M.
1997-01-01
The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems beginning at the turn of the century and continuing far into the future.
Technology readiness levels for the new millennium program
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Minning, C. P.; Stocky, J. F.
2003-01-01
NASA's New Millennium Program (NMP) seeks to advance space exploration by providing an in-space validating mechanism to verify the maturity of promising advanced technologies that cannot be adequately validated with Earth-based testing alone. In meeting this objective, NMP uses NASA Technology Readiness Levels (TRL) as key indicators of technology advancement and assesses development progress against this generalized metric. By providing an opportunity for in-space validation, NMP can mature a suitable advanced technology from TRL 4 (component and/or breadboard validation in laboratory environment) to a TRL 7 (system prototype demonstrated in an Earth-based space environment). Spaceflight technology comprises a myriad of categories, types, and functions, and as each individual technology emerges, a consistent interpretation of its specific state of technological advancement relative to other technologies is problematic.
Atmosphere Revitalization Technology Development for Crewed Space Exploration
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Carrasquillo, Robyn L.; Harris, Danny W.
2006-01-01
As space exploration objectives extend human presence beyond low Earth orbit, the solutions to technological challenges presented by supporting human life in the hostile space environment must build upon experience gained during past and present crewed space exploration programs. These programs and the cabin atmosphere revitalization process technologies and systems developed for them represent the National Aeronautics and Space Administration s (NASA) past and present operational knowledge base for maintaining a safe, comfortable environment for the crew. The contributions of these programs to the NASA s technological and operational working knowledge base as well as key strengths and weaknesses to be overcome are discussed. Areas for technological development to address challenges inherent with the Vision for Space Exploration (VSE) are presented and a plan for their development employing unit operations principles is summarized
Connecting the Force from Space: The IRIS Joint Capability Technology Demonstration
2010-01-01
the Joint in Joint Capability Technology Demonstration, we have two sponsors, both U.S. Strategic Command and the Defense Information Systems...Capability Technology Demonstration will provide an excellent source of data on space-based Internet Protocol net- working. Operational... Internet Routing in Space Joint Capability Technology Demonstration Operational Manager, Space and Missile Defense Battle Lab, Colorado Springs
Progress in space power technology
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Randolph, L. P.; Hudson, W. R.
1980-01-01
The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.
Space station needs, attributes, and architectural options: Technology development
NASA Technical Reports Server (NTRS)
Robert, A. C.
1983-01-01
The technology development of the space station is examined as it relates to space station growth and equipment requirements for future missions. Future mission topics are refined and used to establish a systems data base. Technology for human factors engineering, space maintenance, satellite design, and laser communications and tracking is discussed.
NASA Technical Reports Server (NTRS)
Weber, Gary A.
1991-01-01
The Space Transfer Vehicle (STV) program provides both an opportunity and a requirement to increase our upper stage capabilities with the development and applications of new technologies. Issues such as man rating, space basing, reusability, and long lunar surface storage times drive the need for new technology developments and applications. In addition, satisfaction of mission requirements such as lunar cargo delivery capability and lunar landing either require new technology development or can be achieved in a more cost-effective manner with judicious applications of advanced technology. During the STV study, advanced technology development requirements and plans have been addressed by the Technology/Advanced Development Working Group composed of NASA and contractor representatives. This report discusses the results to date of this working group. The first section gives an overview of the technologies that have potential or required applications for the STV and identifies those technologies baselined for the STV. Figures are provided that list the technology categories and show the priority placed on those technology categories for either the space-based or ground-based options. The second section covers the plans and schedules for incorporating the technologies into the STV program.
14 CFR 1216.305 - Criteria for actions requiring environmental assessments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... spacecraft development and flight projects in space and terrestrial applications. (3) Specific experimental projects in aeronautics and space technology and energy technology applications. (4) Development and... technology applications (e.g., Research and Technology Base, Systems Technology Programs) other than...
The NASA technology push towards future space mission systems
NASA Technical Reports Server (NTRS)
Sadin, Stanley R.; Povinelli, Frederick P.; Rosen, Robert
1988-01-01
As a result of the new Space Policy, the NASA technology program has been called upon to a provide a solid base of national capabilities and talent to serve NASA's civil space program, commercial, and other space sector interests. This paper describes the new technology program structure and its characteristics, traces its origin and evolution, and projects the likely near- and far-term strategic steps. It addresses the alternative 'push-pull' approaches to technology development, the readiness levels to which the technology needs to be developed for effective technology transfer, and the focused technology programs currently being implemented to satisfy the needs of future space systems.
Miniaturization of components and systems for space using MEMS-technology
NASA Astrophysics Data System (ADS)
Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin
2007-06-01
Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty of this micropropulsion system is that all critical components such as thrust chamber/nozzle assembly including internal heaters, valves and filters are manufactured using MEMS technology. Moreover, miniaturized pressure sensors, relying on MEMS technology, is also part of the system as a self-standing component. The flight opportunity on PRISMA represents one of the few and thus important opportunities to demonstrate MEMS technology in space. The present paper aims at describing this development effort and highlights the benefits of miniaturized components and systems for space using MEMS technology.
NASA Technical Reports Server (NTRS)
Bennett, Gary L.
1991-01-01
The NASA Office of Aeronautics and Space Technology (OAST) space power program was established to provide the technology base to meet power system requirements for future space missions, including the Space Station, earth orbiting spacecraft, lunar and planetary bases, and solar system exploration. The program spans photovoltaic energy conversion, chemical energy conversion, thermal energy conversion, power management, thermal management, and focused initiatives on high-capacity power, surface power, and space nuclear power. The OAST space power program covers a broad range of important technologies that will enable or enhance future U.S. space missions. The program is well under way and is providing the kind of experimental and analytical information needed for spacecraft designers to make intelligent decisions about future power system options.
Adaption of Space Station technology for lunar operations
NASA Technical Reports Server (NTRS)
Garvey, J. M.
1988-01-01
The possible use of Space Station technology in a lunar base program is discussed, focusing on the lunar lander/ascent vehicles and surface modules. The application of the Space Station data management system, software, and communications, tracking, guidance, navigation, control, and power technologies is examined. The benefits of utilizing this technology for lunar operations are considered.
Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J. (Compiler)
2014-01-01
The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.
Innovative Airbreathing Propulsion Concepts for High-speed Applications
NASA Technical Reports Server (NTRS)
Whitlow, Woodrow, Jr.
2002-01-01
The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base Research and Technology Program mature, they are incorporated into ASTP. One example of this is rocket-based combined cycle systems that are being considered as part of ASTP. The NASA Ultra Efficient Engine Technology (UEET) Program has the goal of developing propulsion system component technology that is relevant to a wide range of vehicle missions. In addition to subsonic and supersonic speed regimes, it includes the hypersonic speed regime. More specifically, component technologies for turbine-based combined cycle engines are being developed as part of UEET.
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1994-01-01
NASA has many high-technology programs plannned for the future, such as the space station, Mission to Planet Earth (a series of Earth-observing satellites), space telescopes, and planetary orbiters. These missions will involve advanced mechanical moving components, space mechanisms that will need wear protection and lubrication. The tribology practices used in space today are primarily based on a technology that is more than 20 years old. The question is the following: Is this technology base good enough to meet the needs of these future long-duration NASA missions? This paper examines NASA's future space missions, how mechanisms are currently lubricated, some of the mechanism and tribology challenges that may be encountered in future missions, and some potential solutions to these future challenges.
Power systems for production, construction, life support and operations in space
NASA Technical Reports Server (NTRS)
Sovie, Ronald J.
1988-01-01
As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed.
Power systems for production, construction, life support, and operations in space
NASA Technical Reports Server (NTRS)
Sovie, Ronald J.
1988-01-01
As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed.
NASA Astrophysics Data System (ADS)
Various papers on photovoltaics are presented. The general topics considered include: amorphous materials and cells; amorphous silicon-based solar cells and modules; amorphous silicon-based materials and processes; amorphous materials characterization; amorphous silicon; high-efficiency single crystal solar cells; multijunction and heterojunction cells; high-efficiency III-V cells; modeling and characterization of high-efficiency cells; LIPS flight experience; space mission requirements and technology; advanced space solar cell technology; space environmental effects and modeling; space solar cell and array technology; terrestrial systems and array technology; terrestrial utility and stand-alone applications and testing; terrestrial concentrator and storage technology; terrestrial stand-alone systems applications; terrestrial systems test and evaluation; terrestrial flatplate and concentrator technology; use of polycrystalline materials; polycrystalline II-VI compound solar cells; analysis of and fabrication procedures for compound solar cells.
NASA Technical Reports Server (NTRS)
1988-01-01
The Cryogenic Fluid Management Technology Workshop was held April 28 to 30, 1987, at the NASA Lewis Research Center in Cleveland, Ohio. The major objective of the workshop was to identify future NASA needs for technology concerning the management of subcritical cryogenic fluids in the low-gravity space environment. In addition, workshop participants were asked to identify those technologies which will require in-space experimentation and thus are candidates for inclusion in the flight experiment being defined at Lewis. The principal application for advanced fluid management technology is the Space-Based Orbit Transfer Vehicle (SBOTV) and its servicing facility, the On-Orbit Cryogenic Fuel Depot (OOCFD). Other potential applications include the replenishment of cryogenic coolants (with the exception of superfluid helium), reactants, and propellants on board a variety of spacecraft including the space station and space-based weapon systems. The last day was devoted to a roundtable discussion of cryogenic fluid management technology requirements by 30 representatives from NASA, industry, and academia. This volume contains a transcript of the discussion of the eight major technology categories.
ERIC Educational Resources Information Center
Laine, Teemu H.; Nygren, Eeva
2016-01-01
Technology integration is the process of overcoming different barriers that hinder efficient utilisation of learning technologies. The authors divide technology integration into two components based on technology's role in the integration process. In active integration, the technology integrates learning resources into a learning space, making it…
NASA Astrophysics Data System (ADS)
Cook, Stephen; Hueter, Uwe
2003-08-01
NASA's Integrated Space Transportation Plan (ISTP) calls for investments in Space Shuttle safety upgrades, second generation Reusable Launch Vehicle (RLV) advanced development and third generation RLV and in-space research and technology. NASA's third generation launch systems are to be fully reusable and operation by 2025. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current systems. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.
User needs as a basis for advanced technology. [U.S. civil space program
NASA Technical Reports Server (NTRS)
Mankins, John C.; Reck, Gregory M.
1992-01-01
The NASA Integrated Technology Plan (ITP) is described with treatment given to the identification of U.S. technology needs, space research and technology programs, and some ITP implementations. The ITP is based on the development and transfer of technologies relevant to the space program that also have significant implications for general technological research. Among the areas of technological research identified are: astrophysics, earth sciences, microgravity, and space physics. The Office of Space Science and Applications prioritizes the technology needs in three classes; the highest priority is given to submm and microwave technologies for earth sciences and astrophysics study. Other government and commercial needs are outlined that include cryogenic technologies, low-cost engines, advanced data/signal processing, and low-cost ELVs. It is demonstrated that by identifying and addressing these areas of user technology needs NASA's research and technology program can enhance U.S. trade and industrial competitiveness.
NASA Technical Reports Server (NTRS)
Prevot, Thomas
2012-01-01
This paper describes the underlying principles and algorithms for computing the primary controller managed spacing (CMS) tools developed at NASA for precisely spacing aircraft along efficient descent paths. The trajectory-based CMS tools include slot markers, delay indications and speed advisories. These tools are one of three core NASA technologies integrated in NASAs ATM technology demonstration-1 (ATD-1) that will operationally demonstrate the feasibility of fuel-efficient, high throughput arrival operations using Automatic Dependent Surveillance Broadcast (ADS-B) and ground-based and airborne NASA technologies for precision scheduling and spacing.
Precision Laser Development for Interferometric Space Missions NGO, SGO, and GRACE Follow-On
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2011-01-01
Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, including the gravitational-wave missions NGO/SGO (formerly LISA) and the climate monitoring mission GRACE Follow-On, by fully utilizing the matured wave-guided optics technologies. In space, where simpler and more reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Nonplanar Ring Oscillator) and bulk-crystal amplifier.
Ultralightweight optics for space applications
NASA Astrophysics Data System (ADS)
Mayo, James W.; DeHainaut, Linda L.; Bell, Kevin D.; Smith, Winfred S.; Killpatrick, Don H.; Dyer, Richard W.
2000-07-01
Lightweight, deployable space optics has been identified as a key technology for future cost-effective, space-based systems. The United States Department of Defense has partnered with the National Aeronautical Space Administration to implement a space mirror technology development activity known as the Advanced Mirror System Demonstrator (AMSD). The AMSD objectives are to advance technology in the production of low-mass primary mirror systems, reduce mirror system cost and shorten mirror- manufacturing time. The AMSD program will offer substantial weight, cost and production rate improvements over Hubble Space Telescope mirror technology. A brief history of optical component development and a review of optical component state-of-the-art technology will be given, and the AMSD program will be reviewed.
Space weather effects on ground based technology
NASA Astrophysics Data System (ADS)
Clark, T.
Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).
Cost benefit analysis of space communications technology: Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Holland, L. D.; Sassone, P. G.; Gallagher, J. J.; Robinette, S. L.; Vogler, F. H.; Zimmer, R. P.
1976-01-01
The questions of (1) whether or not NASA should support the further development of space communications technology, and, if so, (2) which technology's support should be given the highest priority are addressed. Insofar as the issues deal principally with resource allocation, an economics perspective is adopted. The resultant cost benefit methodology utilizes the net present value concept in three distinct analysis stages to evaluate and rank those technologies which pass a qualification test based upon probable (private sector) market failure. User-preference and technology state-of-the-art surveys were conducted (in 1975) to form a data base for the technology evaluation. The program encompassed near-future technologies in space communications earth stations and satellites, including the noncommunication subsystems of the satellite (station keeping, electrical power system, etc.). Results of the research program include confirmation of the applicability of the methodology as well as a list of space communications technologies ranked according to the estimated net present value of their support (development) by NASA.
Research progress of free space coherent optical communication
NASA Astrophysics Data System (ADS)
Tan, Zhenkun; Ke, Xizheng
2018-02-01
This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.
The Space Station as a Construction Base for Large Space Structures
NASA Technical Reports Server (NTRS)
Gates, R. M.
1985-01-01
The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.
Companies hone in on radar-docking technology
NASA Astrophysics Data System (ADS)
Howell, Elizabeth
2009-11-01
As NASA prepares to retire the Space Shuttle next year, two private space firms have tested docking technology that could be used on the next generation of US spacecraft. In September, Canadian firm Neptec tested a new radar system on the Space Shuttle Discovery that allows spacecraft to dock more easily. Meanwhile, Space Exploration Technologies (SpaceX) based in California has revealed that it tested out a new proximity sensor, dubbed "Dragoneye", on an earlier shuttle mission in July.
Information sciences and human factors overview
NASA Technical Reports Server (NTRS)
Holcomb, Lee B.
1988-01-01
An overview of program objectives of the Information Sciences and Human Factors Division of NASA's Office of Aeronautics and Space Technology is given in viewgraph form. Information is given on the organizational structure, goals, the research and technology base, telerobotics, systems autonomy in space operations, space sensors, humans in space, space communications, space data systems, transportation vehicle guidance and control, spacecraft control, and major program directions in space.
Advanced Water Recovery Technologies for Long Duration Space Exploration Missions
NASA Technical Reports Server (NTRS)
Liu, Scan X.
2005-01-01
Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.
Strategic Technologies for Deep Space Transport
NASA Technical Reports Server (NTRS)
Litchford, Ronald J.
2016-01-01
Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.
NASA Technical Reports Server (NTRS)
Hall, J. B., Jr.; Pickett, S. J.; Sage, K. H.
1984-01-01
A computer program for assessing manned space station environmental control and life support systems technology is described. The methodology, mission model parameters, evaluation criteria, and data base for 17 candidate technologies for providing metabolic oxygen and water to the crew are discussed. Examples are presented which demonstrate the capability of the program to evaluate candidate technology options for evolving space station requirements.
Commercial involvement in the development of space-based plant growing technology
NASA Astrophysics Data System (ADS)
Bula, R. J.; Tibbitts, T. W.; Morrow, R. C.; Dinauer, W. R.
1992-07-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
Commercial involvement in the development of space-based plant growing technology.
Bula, R J; Tibbitts, T W; Morrow, R C; Dinauer, W R
1992-01-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
Using space for technology development - Planning for the Space Station era
NASA Technical Reports Server (NTRS)
Ambrus, Judith H.; Couch, Lana M.; Rosen, Robert R.; Gartrell, Charles F.
1989-01-01
Experience with the Shuttle and free-flying satellites as technology test-beds has shown the feasibility and desirability of using space assets as a facility for technology development. Thus, by the time the Space Station era will have arrived, the technologist will be ready for an accessible engineering facility in space. As the 21st century is approached, it is expected that virtually every flight to the Space Station Freedom will be required to carry one or more research, technology, and engineering experiments. The experiments planned will utilize both the pressurized volume, and the external payload attachment facilities. A unique, but extremely important, class of experiments will use the Space Station itself as an experimental vehicle. Based upon recent examination of possible Space Station Freedom assembly sequences, technology payloads may well utilize 20-30 percent of available resources.
NASA Technical Reports Server (NTRS)
Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.
1995-01-01
Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.
An Early Prediction of Sunspot Cycle 25
NASA Astrophysics Data System (ADS)
Nandy, D.; Bhowmik, P.
2017-12-01
The Sun's magnetic activity governs our space environment, creates space weather and impacts our technologies and climate. With increasing reliance on space- and ground-based technologies that are subject to space weather, the need to be able to forecast the future activity of the Sun has assumed increasing importance. However, such long-range, decadal-scale space weather prediction has remained a great challenge as evident in the diverging forecasts for solar cycle 24. Based on recently acquired understanding of the physics of solar cycle predictability, we have devised a scheme to extend the forecasting window of solar cycles. Utilizing this we present an early forecast for sunspot cycle 25 which would be of use for space mission planning, satellite life-time estimates, and assessment of the long-term impacts of space weather on technological assets and planetary atmospheres.
Precision Laser Development for Gravitational Wave Space Mission
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2011-01-01
Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, such as the gravitational-wave mission LISA, and GRACE follow-on, by fully utilizing the mature wave-guided optics technologies. In space, where a simple and reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Non-planar Ring Oscillator) and bulk-crystal amplifier, which are widely used for sensitive laser applications on the ground.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
Lubrication of space systems: Challenges and potential solutions
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1992-01-01
Future space missions will all require advanced mechanical moving components which will require wear protection and lubrication. The tribology practices used today are primarily based upon a technology base that is more than 20 years old. This paper will discuss NASA's future space missions and some of the mechanism tribology challenges that will be encountered. Potential solutions to these challenges using coatings technology will be assessed.
Advances in Robotic Servicing Technology Development
NASA Technical Reports Server (NTRS)
Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin
2015-01-01
NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and near Earth asteroid boulder retrieval; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.
Advances in Robotic Servicing Technology Development
NASA Technical Reports Server (NTRS)
Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin
2015-01-01
NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.
Second Beamed Space-Power Workshop
NASA Technical Reports Server (NTRS)
Deyoung, Russell J. (Editor)
1989-01-01
Potential missions for microwave and laser power beaming in space are discussed. Power beaming options, millimeter wave technology, laser technology, lunar bases, spacecraft propulsion, and near-Earth applications are covered.
NASA Technical Reports Server (NTRS)
1979-01-01
Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations.
Space technology, sustainable development and community applications: Internet as a facilitator
NASA Astrophysics Data System (ADS)
Peter, Nicolas; Afrin, Nadia; Goh, Gérardine; Chester, Ed
2006-07-01
Among other approaches, space technologies are currently being deployed for disaster management, environmental monitoring, urban planning, health applications, communications, etc. Although space-based applications have tremendous potential for socioeconomic development, they are primarily technology driven and the requirements from the end-users (i.e. the development community) are rarely taken into consideration during the initial development stages. This communication gap between the "space" and "development" communities can be bridged with the help of the web-based knowledge sharing portal focused on space applications for development. This online community uses the development gateway foundation's sophisticated content management system. It is modeled after the development gateway's knowledge sharing portals ( http://topics.developmentgateway.org) and draws from their expertise in knowledge management, partnership building and marketing. These types of portal are known to facilitate broad-based partnerships across sectors, regions and the various stakeholders but also to facilitate North-South and South-South cooperation. This paper describes the initiative "Space for Development" ( http://topics.developmentgateway.org/space) started in 2004 which aims to demonstrate how such a web-based portal can be structured to facilitate knowledge sharing in order to bridge the gap between the "space" and "development" communities in an innovative and global manner.
NASA's Advanced Space Transportation Hypersonic Program
NASA Technical Reports Server (NTRS)
Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)
2002-01-01
NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.
Green Propulsion Auxiliary Power Unit Demonstration at MSFC
NASA Technical Reports Server (NTRS)
Robinson, Joel W.; Beckel, Steve
2014-01-01
In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01) for Launch Propulsion Systems is one of fourteen TA's that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within TA-01 was the need for a green propulsion auxiliary power unit (APU) for hydraulic power by 2015. Engineers led by the author at the Marshall Space Flight Center (MSFC) have been evaluating green propellant alternatives and have begun the development of an APU testbed to demonstrate the feasibility of use. NASA has residual APU assets remaining from the retired Space Shuttle Program. Likewise, the F-16 Falcon fighter jet also uses an Emergency Power Unit (EPU) that has similar characteristics to the NASA hardware. Both EPU's and APU components have been acquired for testing at MSFC. In concert with this effort, ATK has been developing green propellant technology based on the Swedish Space Corp ECAPS LMP-103S propellant. Propellant blending and test facilities have been established at ATK's Elkton MD facility with the intent to provide suitable propellant blends for application to green APU systems as well as thrusters. This paper will summarize the status of the testing efforts with ATK for use of the green propellant LMP-103S based on ammonium dinitramide and use of the Air Force Research Laboratory (AFRL) propellant AF-M315E based on hydroxyl ammonium nitrate with these test assets.
Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.
2005-01-01
Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars.
Research and technology, fiscal year 1982
NASA Technical Reports Server (NTRS)
1982-01-01
Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.
Economic effects and spin-offs in a small space economy: the case of Canada.
Amesse, Fernand; Cohendet, Patrick; Poirier, Alain; Chouinard, Jean-Marc
2002-12-01
Canada, through a well-focused space program (telecommunications, earth observation, robotics), has succeeded in developing a space industry largely based on SMEs. The result has been significant economic benefits and technological spin-offs. In this article, the results of two programs, the ESA (European Space Agency) and the STEAR (Strategic Technologies in Automation and Robotics), are compared. The ESA program has generated significant indirect effects and spin-offs for Canadian exports. ESA's reputation and network have enabled SMEs to increase export sales of both space products and other commercial products derived from space technologies. The STEAR program has been highly successful in promoting a new generation of SMEs for space robotics, encouraging both spin-in and spin-offs of technologies. The analysis highlights the complementarity of mission- and diffusion-oriented programs in the technology transfer process.
An ESA roadmap for geobiology in space exploration
NASA Astrophysics Data System (ADS)
Cousins, Claire R.; Cockell, Charles S.
2016-01-01
Geobiology, and in particular mineral-microbe interactions, has a significant role to play in current and future space exploration. This includes the search for biosignatures in extraterrestrial environments, and the human exploration of space. Microorganisms can be exploited to advance such exploration, such as through biomining, maintenance of life-support systems, and testing of life-detection instrumentation. In view of these potential applications, a European Space Agency (ESA) Topical Team "Geobiology in Space Exploration" was developed to explore these applications, and identify research avenues to be investigated to support this endeavour. Through community workshops, a roadmap was produced, with which to define future research directions via a set of 15 recommendations spanning three key areas: Science, Technology, and Community. These roadmap recommendations identify the need for research into: (1) new terrestrial space-analogue environments; (2) community level microbial-mineral interactions; (3) response of biofilms to the space environment; (4) enzymatic and biochemical mineral interaction; (5) technical refinement of instrumentation for space-based microbiology experiments, including precursor flight tests; (6) integration of existing ground-based planetary simulation facilities; (7) integration of fieldsite biogeography with laboratory- and field-based research; (8) modification of existing planetary instruments for new geobiological investigations; (9) development of in situ sample preparation techniques; (10) miniaturisation of existing analytical methods, such as DNA sequencing technology; (11) new sensor technology to analyse chemical interaction in small volume samples; (12) development of reusable Lunar and Near Earth Object experimental platforms; (13) utility of Earth-based research to enable the realistic pursuit of extraterrestrial biosignatures; (14) terrestrial benefits and technological spin-off from existing and future space-based geobiology investigations; and (15) new communication avenues between space agencies and terrestrial research organisations to enable this impact to be developed.
Space power technology into the 21st century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1984-01-01
This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.
Space power technology into the 21st Century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1983-01-01
The space power systems of the early 21st century are discussed. The capabilities which are anticipated to evolve from today's state of the art and the technology development programs presently in place or planned for the remainder of the century are emphasized. The power system technologies considered include: solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include: nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state of the art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned Earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and Earth to space and space to space transportation systems. The various space power/energy system technologies which are anticipated to be operational by the early 21st century are matched to these missions.
NASA/ESTO investments in remote sensing technologies (Conference Presentation)
NASA Astrophysics Data System (ADS)
Babu, Sachidananda R.
2017-02-01
For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.
ESTO Investments in Innovative Sensor Technologies for Remote Sensing
NASA Technical Reports Server (NTRS)
Babu, Sachidananda R.
2017-01-01
For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.
A critical review of the state of foreign space technology
NASA Technical Reports Server (NTRS)
Grey, J.; Gerard, M.
1978-01-01
A conference was held to exchange technical information in the area of space technology. Soviet system capability and technology both in Intersputnik and in the domestic Ekran system was discussed in detail. The thermonic power conversion system used in the Soviet Topaz nuclear power reactor was described in detail. Other areas of examination included: (1) Bioastronautics; (2) Space based industry; (3) Propulsion; (4) Astrodynamics; (5) Contact with extraterrestrial intelligence; and (6) Space rescue and safety.
Green Mono Propulsion Activities at MSFC
NASA Technical Reports Server (NTRS)
Robinson, Joel W.
2014-01-01
In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01) for Launch Propulsion Systems and TA-02 In-Space Propulsion are two of the fourteen TAs that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within these documents are future needs of green propellant use. Green ionic liquid monopropellants and propulsion systems are beginning to be demonstrated in space flight environments. Starting in 2010 with the flight of Prisma, a 1-N thruster system began on-orbit demonstrations operating on ammonium dinitramide based propellant. The NASA Green Propellant Infusion Mission (GPIM) plans to demonstrate both 1-N, and 22-N hydroxyl ammonium nitrate (HAN)-based thrusters in a 2015 flight demonstration. In addition, engineers at MSFC have been evaluating green propellant alternatives for both thrusters and auxiliary power units (APUs). This paper summarizes the status of these development/demonstration activities and investigates the potential for evolution of green propellants from small spacecraft and satellites to larger spacecraft systems, human exploration, and launch system auxiliary propulsion applications.
Green Mono Propulsion Activities at MSFC
NASA Technical Reports Server (NTRS)
Robinson, Joel W.
2014-01-01
In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01) for Launch Propulsion Systems and TA-02 In-Space Propulsion are two of the fourteen TA's that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within these documents are future needs of green propellant use. Green ionic liquid monopropellants and propulsion systems are beginning to be demonstrated in space flight environments. Starting in 2010 with the flight of PRISMA, a one Newton thruster system began on-orbit demonstrations operating on ammonium dinitramide based propellant. The NASA Green Propellant Infusion Mission (GPIM) plans to demonstrate both 1 N, and 22 N hydroxyl ammonium nitrate based thrusters in a 2015 flight demonstration. In addition, engineers at MSFC have been evaluating green propellant alternatives for both thrusters and auxiliary power units. This paper summarizes the status of these development/demonstration activities and investigates the potential for evolution of green propellants from small spacecraft and satellites to larger spacecraft systems, human exploration, and launch system auxiliary propulsion applications.
NASA Astrophysics Data System (ADS)
Singh, Balbir
This paper is an effort to study and analyze several constraints and issues of space technology and education that organizations other than governmental organizations face in awareness program. In recent years, advancements in technologies have made it possible for Volunteer and Technical Communities, non-government organizations, private agencies and academic research institutions to provide increasing support to space education management and emphasis on response efforts. Important cornerstones of this effort and support are the possibility to access and take advantage of satellite imagery as well as the use of other space-based technologies such as telecommunications satellites and global navigation satellite systems included in main curriculum plus the implementation of programs for use of high class sophisticated technologies used by industries to the students and researchers of non-space faring nations. The authors recognize the importance of such new methodologies for education and public Awareness. This paper demonstrates many hurdles universities and scientific institutions face including lack of access in terms of financial and technical resources for better support. A new model for coordinated private sector partnership in response to space sciences and education has been discussed. In depth analysis and techniques need to connect these pioneering communities with the space industry as well as the space governmental agencies, with special emphasis on financial constraints. The paper mandates its role to promote the use of space-based information; its established networks bringing together national institutions responsible for these space based activities, as well as other end users, and space solution experts; and its technical foundation, particularly in the area of information technologies. To help building a tighter cooperation and further understanding among all these communities, paper delivers an intensive report and solutions for future coordination and ease
Perspectives on energy storage wheels for space station application
NASA Technical Reports Server (NTRS)
Oglevie, R. E.
1984-01-01
Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems' considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.
NASA's Chemical Transfer Propulsion Program for Pathfinder
NASA Technical Reports Server (NTRS)
Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.
1989-01-01
Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.
2016-07-22
Launch Services (ILS) of a Proton M launch vehicle and one provided by Space Exploration Technologies ( SpaceX ) of a Falcon 9 launch vehicle — and...U.S. based providers are United Launch Alliance (ULA), Space Exploration Technologies Corporation ( SpaceX ), and Orbital ATK. Countries we reviewed
Autonomous power management and distribution
NASA Technical Reports Server (NTRS)
Dolce, Jim; Kish, Jim
1990-01-01
The goal of the Autonomous Power System program is to develop and apply intelligent problem solving and control to the Space Station Freedom's electric power testbed being developed at NASA's Lewis Research Center. Objectives are to establish artificial intelligence technology paths, craft knowledge-based tools and products for power systems, and integrate knowledge-based and conventional controllers. This program represents a joint effort between the Space Station and Office of Aeronautics and Space Technology to develop and demonstrate space electric power automation technology capable of: (1) detection and classification of system operating status, (2) diagnosis of failure causes, and (3) cooperative problem solving for power scheduling and failure recovery. Program details, status, and plans will be presented.
Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes
NASA Technical Reports Server (NTRS)
Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.
2015-01-01
NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.
SDR/STRS Flight Experiment and the Role of SDR-Based Communication and Navigation Systems
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2008-01-01
This presentation describes an open architecture SDR (software defined radio) infrastructure, suitable for space-based radios and operations, entitled Space Telecommunications Radio System (STRS). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, minimizing the impact of parts obsolescence, improved interoperability, and software re-use. To advance the SDR architecture technology and demonstrate its applicability in space, NASA is developing a space experiment of multiple SDRs each with various waveforms to communicate with NASA s TDRSS satellite and ground networks, and the GPS constellation. An experiments program will investigate S-band and Ka-band communications, navigation, and networking technologies and operations.
Technology Thresholds for Microgravity: Status and Prospects
NASA Technical Reports Server (NTRS)
Noever, D. A.
1996-01-01
The technological and economic thresholds for microgravity space research are estimated in materials science and biotechnology. In the 1990s, the improvement of materials processing has been identified as a national scientific priority, particularly for stimulating entrepreneurship. The substantial US investment at stake in these critical technologies includes six broad categories: aerospace, transportation, health care, information, energy, and the environment. Microgravity space research addresses key technologies in each area. The viability of selected space-related industries is critically evaluated and a market share philosophy is developed, namely that incremental improvements in a large markets efficiency is a tangible reward from space-based research.
Overview of MEMS/NEMS technology development for space applications at NASA/JPL
NASA Astrophysics Data System (ADS)
George, Thomas
2003-04-01
This paper highlights the current technology development activities of the MEMS Technology Group at JPL. A diverse range of MEMS/NEMS technologies are under development, that are primarily applicable to NASA"s needs in the area of robotic planetary exploration. MEMS/NEMS technologies have obvious advantages for space applications, since they offer the promise of highly capable devices with ultra low mass, size and power consumption. However, the key challenge appears to be in finding efficient means to transition these technologies into "customer" applications. A brief description of this problem is presented along with the Group"s innovative approach to rapidly advance the maturity of technologies via insertion into space missions. Also described are some of the major capabilities of the MEMS Technology Group. A few important examples from among the broad classes of technologies being developed are discussed, these include the "Spider Web Bolometer", High-Performance Miniature Gyroscopes, an Electron Luminescence X-ray Spectrometer, a MEMS-based "Knudsen" Thermal Transpiration pump, MEMS Inchworm Actuators, and Nanowire-based Biological/Chemical Sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehorn, Will
The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan
Whitehorn, Will
2017-12-15
The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan
Computer-assisted engineering data base
NASA Technical Reports Server (NTRS)
Dube, R. P.; Johnson, H. R.
1983-01-01
General capabilities of data base management technology are described. Information requirements posed by the space station life cycle are discussed, and it is asserted that data base management technology supporting engineering/manufacturing in a heterogeneous hardware/data base management system environment should be applied to meeting these requirements. Today's commercial systems do not satisfy all of these requirements. The features of an R&D data base management system being developed to investigate data base management in the engineering/manufacturing environment are discussed. Features of this system represent only a partial solution to space station requirements. Areas where this system should be extended to meet full space station information management requirements are discussed.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1991-01-01
This quarterly reports on space communications, radio navigation, radio science, and ground based radio and radar astronomy in connection with the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and in operations. Also included is standards activity at JPL for space data and information systems and DSN work. Specific areas of research are: Tracking and ground based navigation; Spacecraft and ground communications; Station control and system technology; DSN Systems Implementation; and DSN Operations.
Status of NASA's Stirling Space Power Converter Program
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; Winter, Jerry M.
1991-01-01
An overview is presented of the NASA-Lewis Free-Piston Stirling Space Power Convertor Technology Program. The goal is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. Stirling experience in space and progress toward 1050 and 1300 K Stirling Space Power Converters is discussed. Fabrication is nearly completed for the 1050 K Component Test Power Converters (CTPC); results of motoring tests of cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. An update is provided of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space.
Improved maintainability of space-based reusable rocket engines
NASA Technical Reports Server (NTRS)
Barkhoudarian, S.; Szemenyei, B.; Nelson, R. S.; Pauckert, R.; Harmon, T.
1988-01-01
Advanced, noninferential, noncontacting, in situ measurement technologies, combined with automated testing and expert systems, can provide continuous, automated health monitoring of critical space-based rocket engine components, requiring minimal disassembly and no manual data analysis, thus enhancing their maintainability. This paper concentrates on recent progress of noncontacting combustion chamber wall thickness condition-monitoring technologies.
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 10: Basic research panel
NASA Technical Reports Server (NTRS)
1975-01-01
Possible research experiments using the space transportation system are identified based on user requirements. Opportunity driven research areas include quantum electronics, cryogenics system technology, superconducting devices and detectors, and photo-induced reactions. Mission driven research requirements were examined and ranked based on inputs from the user group.
Overview study of Space Power Technologies for the advanced energetics program. [spacecraft
NASA Technical Reports Server (NTRS)
Taussig, R.; Gross, S.; Millner, A.; Neugebauer, M.; Phillips, W.; Powell, J.; Schmidt, E.; Wolf, M.; Woodcock, G.
1981-01-01
Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space.
NASA Technical Reports Server (NTRS)
Pouch, John
2004-01-01
A goal of the NASA Space Communications Project is to enable broad coverage for high-data-rate delivery to the users by means of ground, air, and space-based assets. The NASA Enterprise need will be reviewed. A number of optical space communications technologies being developed by NASA will be described, and the prospective applications will be discussed.
NASA Astrophysics Data System (ADS)
Hapgood, Mike
2017-01-01
Space weather-changes in the Earth's environment that can often be traced to physical processes in the Sun-can have a profound impact on critical Earth-based infrastructures such as power grids and civil aviation. Violent eruptions on the solar surface can eject huge clouds of magnetized plasma and particle radiation, which then propagate across interplanetary space and envelop the Earth. These space weather events can drive major changes in a variety of terrestrial environments, which can disrupt, or even damage, many of the technological systems that underpin modern societies. The aim of this book is to offer an insight into our current scientific understanding of space weather, and how we can use that knowledge to mitigate the risks it poses for Earth-based technologies. It also identifies some key challenges for future space-weather research, and considers how emerging technological developments may introduce new risks that will drive continuing investigation.
The Benefits of Virtual Presence in Space (VPS) to Deep Space Missions
NASA Technical Reports Server (NTRS)
De Jong, Eric M.; McGuffie, Barbara A; Levoe, Steven R.; Suzuki, Shigeru; Gorjian, Zareh; Leung, Chris; Cordell, Christopher; Loaiza, Frank; Baldwin, Robert; Craig, Jason;
2006-01-01
Understanding our place in the Universe is one of mankind's greatest scientific and technological challenges and achievements. The invention of the telescope, the Copernican Revolution, the development of Newtonian mechanics, and the Space Age exploration of our solar system; provided us with a deeper understanding of our place in the Universe; based on better observations and models. As we approach the end of the first decade of the new millennium, the same quest, to understand our place in the Universe, remains a great challenge. New technologies will enable us to construct and interact with a "Virtual Universe" based on remote and in situ observations of other worlds. As we continue the exploration that began in the last century, we will experience a "Virtual Presence in Space (VPS)" in this century. This paper describes VPS technology, the mechanisms for VPS product distribution and display, the benefits of this technology, and future plans. Deep space mission stereo observations and frames from stereo High Definition Television (HDTV) mission animations are used to illustrate the effectiveness of VPS technology.
Concept of adaptability in space modules.
Cooper, M
1990-10-01
The space program is aiming towards the permanent use of space; to build and establish an orbital space station, a Moon base and depart to Mars and beyond. We must look after the total independency from the Earth's natural resources and work in the design of a modular space base in which each module is capable of duplicating one natural process, and that all these modules in combination take us to conceive a space base capable of sustaining life. Every area of human knowledge must be involved. This modular concept will let us see other space goals as extensions of the primary project. The basic technology has to be defined, then relatively minor adjustments will let us reach new objectives such as a first approach for a lunar base and for a Mars manned mission. This concept aims towards an open technology in which standards and recommendations will be created to assemble huge space bases and spaceships from specific modules that perform certain functions, that in combination will let us reach the status of permanent use and exploration of space.
Turnaround operations analysis for OTV. Volume 2: Detailed technical report
NASA Technical Reports Server (NTRS)
1988-01-01
The objectives and accomplishments were to adapt and apply the newly created database of Shuttle/Centaur ground operations. Previously defined turnaround operations analyses were to be updated for ground-based OTVs (GBOTVs) and space-based OTVs (SBOTVs), design requirements identified for both OTV and Space Station accommodations hardware, turnaround operations costs estimated, and a technology development plan generated to develop the required capabilities. Technical and programmatic data were provided for NASA pertinent to OTV round and space operations requirements, turnaround operations, task descriptions, timelines and manpower requirements, OTV modular design and booster and Space Station interface requirements. SBOTV accommodations development schedule, cost and turnaround operations requirements, and a technology development plan for ground and space operations and space-based accommodations facilities and support equipment. Significant conclusion are discussed.
Space Station technology testbed: 2010 deep space transport
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1993-01-01
A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and telepresence/kinetic processes), (3) subsystem tests of advanced nuclear power, nuclear propulsion and communication systems (using boom extensions, remote station-keeping platforms and mobile EVA crew and robots), and (4) logistics support (crew and equipment) and command and control of deep space transport assembly, maintenance, and refueling (using a station-keeping platform).
Modeling and Analysis of Space Based Transceivers
NASA Technical Reports Server (NTRS)
Moore, Michael S.; Price, Jeremy C.; Reinhart, Richard; Liebetreu, John; Kacpura, Tom J.
2005-01-01
This paper presents the tool chain, methodology, and results of an on-going study being performed jointly by Space Communication Experts at NASA Glenn Research Center (GRC), General Dynamics C4 Systems (GD), and Southwest Research Institute (SwRI). The team is evaluating the applicability and tradeoffs concerning the use of Software Defined Radio (SDR) technologies for Space missions. The Space Telecommunications Radio Systems (STRS) project is developing an approach toward building SDR-based transceivers for space communications applications based on an accompanying software architecture that can be used to implement transceivers for NASA space missions. The study is assessing the overall cost and benefit of employing SDR technologies in general, and of developing a software architecture standard for its space SDR transceivers. The study is considering the cost and benefit of existing architectures, such as the Joint Tactical Radio Systems (JTRS) Software Communications Architecture (SCA), as well as potential new space-specific architectures.
NASA Technical Reports Server (NTRS)
1983-01-01
Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.
NASA Technical Reports Server (NTRS)
Vonderesch, A. H.
1972-01-01
The baseline SRM design for the space shuttle employs proven technology based on actual motor firings. Supporting research and technology are therefore required only to address system technology that is specific to the shuttle requirements, and that is needed for optimization of design features. Eight programs are recommended to meet these requirements.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.
1999-01-01
The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.
NASA Technical Reports Server (NTRS)
Wolfe, M. G.
1978-01-01
The objectives of this study were to: (1) develop projections of the NASA, DoD, and civil space power requirements for the 1980-1995 time period; (2) identify specific areas of application and space power subsystem type needs for each prospective user; (3) document the supporting and historical base, including relevant cost related measures of performance; and (4) quantify the benefits of specific technology projection advancements. The initial scope of the study included: (1) construction of likely models for NASA, DoD, and civil space systems; (2) generation of a number of future scenarios; (3) extraction of time phased technology requirements based on the scenarios; and (4) cost/benefit analyses of some of the technologies identified.
Space industrialization - Education. [via communication satellites
NASA Technical Reports Server (NTRS)
Joels, K. M.
1978-01-01
The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.
An assessment of waste processing/resource recovery technologies for lunar/Mars life applications
NASA Technical Reports Server (NTRS)
Verostko, Charles E.; Packham, Nigel J. C.; Henninger, Donald H.
1992-01-01
NASA's future manned missions to explore the solar system are by nature of long duration, mandating extensive regeneration of life support consumables from wastes generated in space-based habitats. Long-duration exploration missions would otherwise be prohibitive due to the number and frequency of energy-intensive resupply missions from Earth. Resource recovery is therefore a critical component of the controlled ecological life support system (CELSS). In order to assess resource recovery technologies for CELSS applications, the Crew and Thermal Systems Division at NASA-Johnson Space Center convened a three-day workshop to assess potential resource recovery technologies for application in a space-based CELSS. This paper describes the methodology of assessing and ranking of these technologies. Recommendations and issues are identified. Evaluations focused on the processes for handling and treatment of inedible plant biomass, human waste, and human generated trash. Technologies were assessed on the basis of safety, reliability, technology readiness, and performance characteristics.
Methodolgy For Evaluation Of Technology Impacts In Space Electric Power Systems
NASA Technical Reports Server (NTRS)
Holda, Julie
2004-01-01
The Analysis and Management branch of the Power and Propulsion Office at NASA Glenn Research Center is responsible for performing complex analyses of the space power and In-Space propulsion products developed by GRC. This work quantifies the benefits of the advanced technologies to support on-going advocacy efforts. The Power and Propulsion Office is committed to understanding how the advancement in space technologies could benefit future NASA missions. They support many diverse projects and missions throughout NASA as well as industry and academia. The area of work that we are concentrating on is space technology investment strategies. Our goal is to develop a Monte-Carlo based tool to investigate technology impacts in space electric power systems. The framework is being developed at this stage, which will be used to set up a computer simulation of a space electric power system (EPS). The outcome is expected to be a probabilistic assessment of critical technologies and potential development issues. We are developing methods for integrating existing spreadsheet-based tools into the simulation tool. Also, work is being done on defining interface protocols to enable rapid integration of future tools. Monte Carlo-based simulation programs for statistical modeling of the EPS Model. I decided to learn and evaluate Palisade's @Risk and Risk Optimizer software, and utilize it's capabilities for the Electric Power System (EPS) model. I also looked at similar software packages (JMP, SPSS, Crystal Ball, VenSim, Analytica) available from other suppliers and evaluated them. The second task was to develop the framework for the tool, in which we had to define technology characteristics using weighing factors and probability distributions. Also we had to define the simulation space and add hard and soft constraints to the model. The third task is to incorporate (preliminary) cost factors into the model. A final task is developing a cross-platform solution of this framework.
Space information technologies: future agenda
NASA Astrophysics Data System (ADS)
Flournoy, Don M.
2005-11-01
Satellites will operate more like wide area broadband computer networks in the 21st Century. Space-based information and communication technologies will therefore be a lot more accessible and functional for the individual user. These developments are the result of earth-based telecommunication and computing innovations being extended to space. The author predicts that the broadband Internet will eventually be available on demand to users of terrestrial networks wherever they are. Earth and space communication assets will be managed as a single network. Space networks will assure that online access is ubiquitous. No matter whether users are located in cities or in remote locations, they will always be within reach of a node on the Internet. Even today, scalable bandwidth can be delivered to active users when moving around in vehicles on the ground, or aboard ships at sea or in the air. Discussion of the innovative technologies produced by NASA's Advanced Communications Technology Satellite (1993-2004) demonstrates future capabilities of satellites that make them uniquely suited to serve as nodes on the broadband Internet.
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.
1984-01-01
The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.
NASA Technical Reports Server (NTRS)
1985-01-01
Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Turner, James
1998-01-01
NASA's Office Of Aeronautics and Space Transportation Technology (OASTT) has establish three major coals. "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville,Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Advanced Reusable Technologies (ART) Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. The main activity over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the year 2000 decision to determine the path this country will take for Space Shuttle and RLV. In February of this year, additional technology efforts in the reusable technologies were awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet, Boeing-Rocketdyne and Pratt & Whitney were selected for a two-year period to design, build and ground test their RBCC engine concepts. In addition, ASTROX, Pennsylvania State University (PSU) and University of Alabama in Huntsville also conducted supporting activities. The activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. An area that has caused a large amount of difficulty in the testing efforts is the means of initiating the rocket combustion process. All three of the prime contractors above were using silane (SiH4) for ignition of the thrusters. This follows from the successful use of silane in the NASP program for scramjet ignition. However, difficulties were immediately encountered when silane (an 80/20 mixture of hydrogen/silane) was used for rocket ignition.
NASA Astrophysics Data System (ADS)
Wright, M. W.; Wilkerson, M. W.; Tang, R. R.
2017-11-01
Qualification testing of fiber based laser transmitters is required for NASA's Deep Space Optical Communications program to mature the technology for space applications. In the absence of fully space qualified systems, commercial systems have been investigated in order to demonstrate the robustness of the technology. To this end, a 2.5 W fiber based laser source was developed as the transmitter for an optical communications experiment flown aboard the ISS as a part of a technology demonstration mission. The low cost system leveraged Mil Standard design principles and Telcordia certified components to the extent possible and was operated in a pressure vessel with active cooling. The laser was capable of high rate modulation but was limited by the mission requirements to 50 Mbps for downlinking stored video from the OPALS payload, externally mounted on the ISS. Environmental testing and space qualification of this unit will be discussed along with plans for a fully space qualified laser transmitter.
Space Transportation Systems Technologies
NASA Technical Reports Server (NTRS)
Laue, Jay H.
2001-01-01
This document is the final report by the Science Applications International Corporation (SAIC) on contracted support provided to the National Aeronautics and Space Administration (NASA) under Contract NAS8-99060, 'Space Transportation Systems Technologies'. This contract, initiated by NASA's Marshall Space Flight Center (MSFC) on February 8, 1999, was focused on space systems technologies that directly support NASA's space flight goals. It was awarded as a Cost-Plus-Incentive-Fee (CPIF) contract to SAIC, following a competitive procurement via NASA Research Announcement, NRA 8-21. This NRA was specifically focused on tasks related to Reusable Launch Vehicles (RLVs). Through Task Area 3 (TA-3), "Other Related Technology" of this NRA contract, SAIC extensively supported the Space Transportation Directorate of MSFC in effectively directing, integrating, and setting its mission, operations, and safety priorities for future RLV-focused space flight. Following an initially contracted Base Year (February 8, 1999 through September 30, 1999), two option years were added to the contract. These were Option Year 1 (October 1, 1999 through September 30, 2000) and Option Year 2 (October 1, 2000 through September 30, 2001). This report overviews SAIC's accomplishments for the Base Year, Option Year 1, and Option Year 2, and summarizes the support provided by SAIC to the Space Transportation Directorate, NASA/MSFC.
NASA'S information technology activities for the 90's
NASA Technical Reports Server (NTRS)
Holcomb, Lee; Erickson, Dan
1991-01-01
The Office of Aeronautics, Exploration and Technology (OAET) is completing an extensive assessment of its nearly five hundred million dollars of proposed space technology development work. The budget is divided into four segments which are as follows: (1) the base research and technology program; (2) the Civil Space Technology Initiative (CSTI); (3) the Exploration Technology Program (ETP); and (4) the High Performance Computing Initiative (HPCI). The programs are briefly discussed in the context of Astrotech 21.
NASA Technical Reports Server (NTRS)
1985-01-01
An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.
Integrated photonics for fiber optic based temperature sensing
NASA Astrophysics Data System (ADS)
Evenblij, R. S.; van Leest, T.; Haverdings, M. B.
2017-09-01
One of the promising space applications areas for fibre sensing is high reliable thermal mapping of metrology structures for effects as thermal deformation, focal plane distortion, etc. Subsequently, multi-point temperature sensing capability for payload panels and instrumentation instead of, or in addition to conventional thermo-couple technology will drastically reduce electrical wiring and sensor materials to minimize weight and costs. Current fiber sensing technologies based on solid state ASPIC (Application Specific Photonic Integrated Circuits) technology, allow significant miniaturization of instrumentation and improved reliability. These imperative aspects make the technology candidate for applications in harsh environments such as space. One of the major aspects in order to mature ASPIC technology for space is assessment on radiation hardness. This paper describes the results of radiation hardness experiments on ASPIC including typical multipoint temperature sensing and thermal mapping capabilities.
Technology assessment of advanced automation for space missions
NASA Technical Reports Server (NTRS)
1982-01-01
Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.
1976-01-01
A variety of economic and programmatic issues are discussed concerning the development and deployment of a fleet of space-based solar power satellites (SSPS). The costs, uncertainties and risks associated with the current photovoltaic SSPS configuration, and with issues affecting the development of an economically viable SSPS development program are analyzed. The desirability of a low earth orbit (LEO) demonstration satellite and a geosynchronous (GEO) pilot satellite is examined and critical technology areas are identified. In addition, a preliminary examination of utility interface issues is reported. The main focus of the effort reported is the development of SSPS unit production, and operation and maintenance cost models suitable for incorporation into a risk assessment (Monte Carlo) model (RAM). It is shown that the key technology area deals with the productivity of man in space, not, as might be expected, with some hardware component technology.
Optical satellite communications in Europe
NASA Astrophysics Data System (ADS)
Sodnik, Zoran; Lutz, Hanspeter; Furch, Bernhard; Meyer, Rolf
2010-02-01
This paper describes optical satellite communication activities based on technology developments, which started in Europe more than 30 years ago and led in 2001 to the world-first optical inter-satellite communication link experiment (SILEX). SILEX proved that optical communication technologies can be reliably mastered in space and in 2006 the Japanese Space Agency (JAXA) joined the optical inter-satellite experiment from their own satellite. Since 2008 the German Space Agency (DLR) is operating an inter-satellite link between the NFIRE and TerraSAR-X satellites based on a second generation of laser communication technology, which will be used for the new European Data Relay Satellite (EDRS) system to be deployed in 2013.
The NASA/MSFC Coherent Lidar Technology Advisory Team
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.
1999-01-01
The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing.
NASA Technical Reports Server (NTRS)
Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)
2002-01-01
Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.
Fission Technology for Exploring and Utilizing the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,
NASA Astrophysics Data System (ADS)
Brunner, Sebastian; Zajac, Kai; Nadler, Michael; Seifart, Klaus; Kaufmann, Christian A.; Caballero, Raquel; Schock, Hans-Werner; Hartmann, Lars; Otte, Karten; Rahm, Andreas; Scheit, Christian; Zachmann, Hendrick; Kessler, Friedrich; Wurz, Roland; Schulke, Peter
2011-10-01
A group of partners from an academic and industrial background are developing a flexible Cu(In,Ga)Se2 (CIGSe) thin film solar cell technology on a polyimide substrate that aims to be a future alternative to current rigid solar cell technologies for space applications. In particular on missions with high radiation volumes, the superior tolerance of chalcopyrite based thin film solar cell (TFSC) technologies with respect to electron and proton radiation, when compared to the established Si- or III-V based technologies, can be advantageous. Of all thin film technologies, those based on CIGSe have the highest potential to reach attractive photovoltaic conversion efficiencies and combine these with low weight in order to realize high power densities on solar cell and generator level. The use of a flexible substrate ensures a high packing density. A working demonstrator is scheduled for flight this year.
Space Station Needs, Attributes and Architectural Options. Contractor orientation briefings
NASA Technical Reports Server (NTRS)
1983-01-01
Requirements are considered for user missions involving life sciences; astrophysics, environmental observation; Earth and planetary exploration; materials processing; Spacelab payloads; technology development; and communications are analyzed. Plans to exchange data with potential cooperating nations and ESA are reviewed. The capability of the space shuttle to support space station activities are discussed. The status of the OAST space station technology study, conceptual architectures for a space station, elements of the space-based infrastructure, and the use of the shuttle external tank are also considered.
Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies
Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette
2014-01-01
We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects. PMID:24851858
Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.
Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette
2014-05-22
We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.
Operational efficiency subpanel advanced mission control
NASA Technical Reports Server (NTRS)
Friedland, Peter
1990-01-01
Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.
Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.
2017-01-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
2006-01-18
VANDENBERG AIR FORCE BASE, Calif. — Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, the wrapped Space Technology 5 (ST5) spacecraft is ready for mating to the Pegasus XL launch vehicle. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-18
VANDENBERG AIR FORCE BASE, Calif. — Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, the wrapped Space Technology 5 (ST5) spacecraft is being prepared for mating to the Pegasus XL launch vehicle. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
NASA Technical Reports Server (NTRS)
Loomis, Audrey; Kellner, Albrecht
1988-01-01
The Columbus Project is the European Space Agency's contribution to the International Space Station program. Columbus is planned to consist of three elements (a laboratory module attached to the Space Station base, a man-tended freeflyer orbiting with the Space Station base, and a platform in polar orbit). System definition and requirements analysis for Columbus are underway, scheduled for completion in mid-1990. An overview of the Columbus mission planning environment and operations concept as currently defined is given, and some of the challenges presented to software maintainers and ground segment personnel during mission operators are identified. The use of advanced technologies in system implementation is being explored. Both advantages of such solutions and potential problems they present are discussed, and the next steps to be taken by Columbus before targeting any functions for advanced technology implementation are summarized. Several functions in the mission planning process were identified as candidates for advanced technology implementation. These range from expert interaction with Columbus' data bases through activity scheduling and near-real-time response to departures from the planned timeline. Each function is described, and its potential for advanced technology implementation briefly assessed.
Solid-State, High Energy 2-Micron Laser Development for Space-Based Remote Sensing
NASA Technical Reports Server (NTRS)
Singh, Upendra N.
2010-01-01
Lidar (light detection and ranging) remote sensing enjoys the advantages of excellent vertical and horizontal resolution; pointing capability; a signal source independent from natural light; and control and knowledge of transmitted wavelength, pulse shape, and polarization and received polarization. Lidar in space is an emerging technology now being developing to fit applications where passive sensors cannot meet current measurement requirements. Technical requirements for space lidar are more demanding than for ground-based or airborne systems. Perhaps the most distinguishing characteristics of space lidars are the environmental requirements. Space lidar systems must be specially designed to survive the mechanical vibration loads of launch and operate in the vacuum of space where exposure to ionizing radiation limits the electronic components available. Finally, space lidars must be designed to be highly reliable because they must operate without the need for repair or adjustment. Lifetime requirements tend to be important drivers of the overall system design. The maturity of the required technologies is a key to the development of any space lidar system. NASA entered a new era in the 1990 s with the approval of several space-based remote sensing missions employing laser radar (lidar) techniques. Following the steps of passive remote sensing and then active radar remote sensing, lidar sensors were a logical next step, providing independence from natural light sources, and better spatial resolution and smaller sensor size than radar sensors. The shorter electromagnetic wavelengths of laser light also allowed signal reflectance from air molecules and aerosol particles. The smaller receiver apertures allowed the concept of scanning the sensor field of view. However, technical problems with several space-based lidar missions during that decade led to concern at NASA about the risk of lidar missions. An external panel was convened to make recommendations to NASA. Their report in 2000 strongly advocated that NASA maintain in-house laser and lidar capability, and that NASA should work to lower the technology risk for all future lidar missions. A multi-Center NASA team formulated an integrated NASA strategy to provide the technology and maturity of systems necessary to make Lidar/Laser systems viable for space-based study and monitoring of the Earth's atmosphere. In 2002 the NASA Earth Science Enterprise (ESE) and Office of Aerospace Technology (OAT) created the Laser Risk Reduction Program (LRRP) and directed NASA Langley Research Center (LaRC) and Goddard Space Flight Center to carry out synergistic and complementary research towards solid-state lasers/lidars developments for space-based remote sensing applications.
Future superconductivity applications in space - A review
NASA Astrophysics Data System (ADS)
Krishen, Kumar; Ignatiev, Alex
High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.
NASA In-Space Propulsion Technology Program: Overview and Update
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.
NASA's In-Space Propulsion Technology Program: Overview and Status
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.
NASA's In-Space Propulsion Technology Program: Overview and Update
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.
Evaluation of Flight Deck-Based Interval Management Crew Procedure Feasibility
NASA Technical Reports Server (NTRS)
Wilson, Sara R.; Murdoch, Jennifer L.; Hubbs, Clay E.; Swieringa, Kurt A.
2013-01-01
Air traffic demand is predicted to increase over the next 20 years, creating a need for new technologies and procedures to support this growth in a safe and efficient manner. The National Aeronautics and Space Administration's (NASA) Air Traffic Management Technology Demonstration - 1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The integration of these technologies will increase throughput, reduce delay, conserve fuel, and minimize environmental impacts. The ground-based tools include Traffic Management Advisor with Terminal Metering for precise time-based scheduling and Controller Managed Spacing decision support tools for better managing aircraft delay with speed control. The core airborne technology in ATD-1 is Flight deck-based Interval Management (FIM). FIM tools provide pilots with speed commands calculated using information from Automatic Dependent Surveillance - Broadcast. The precise merging and spacing enabled by FIM avionics and flight crew procedures will reduce excess spacing buffers and result in higher terminal throughput. This paper describes a human-in-the-loop experiment designed to assess the acceptability and feasibility of the ATD-1 procedures used in a voice communications environment. This experiment utilized the ATD-1 integrated system of ground-based and airborne technologies. Pilot participants flew a high-fidelity fixed base simulator equipped with an airborne spacing algorithm and a FIM crew interface. Experiment scenarios involved multiple air traffic flows into the Dallas-Fort Worth Terminal Radar Control airspace. Results indicate that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/- five seconds and the delivery precision was less than five seconds. Furthermore, FIM speed commands occurred at a rate of less than one per minute, and pilots found the frequency of the speed commands to be acceptable at all times throughout the experiment scenarios.
Space Weather Needs of an Evolving Customer Base (Invited)
NASA Astrophysics Data System (ADS)
Rutledge, B.; Viereck, R. A.; Onsager, T. G.
2013-12-01
Great progress has been made in raising the global awareness of space weather and the associated impacts on Earth and our technological systems. However, significant gaps still exist in providing comprehensive and easily understood space weather information, products, and services to the diverse and growing customer base. As technologies, such as Global Navigation Satellite Systems (GNSS), have become more ingrained in applications and fields of work that previously did not rely on systems sensitive to space weather, the customer base has grown substantially. Furthermore, the causes and effects of space weather can be difficult to interpret without a detailed understanding of the scientific underpinnings. In response to this change, space weather service providers must address this evolution by both improving services and by representing space weather information and impacts in ways that are meaningful to each facet of this diverse customer base. The NOAA Space Weather Prediction Center (SWPC) must work with users, spanning precision agriculture, emergency management, power grid operators and beyond, to both identify unmet space weather service requirements and to ensure information and decision support services are provided in meaningful and more easily understood forms.
NASA Astrophysics Data System (ADS)
Popov, Alexandre; Fink, Wolfgang; Hess, Andrew
2016-05-01
Long-duration missions bring numerous risks that must be understood and mitigated in order to keep astronauts healthy, rather than treat a diagnosed health disorder. Having a limited medical support from mission control center on space exploration missions, crew members need a personal health-tracking tool to predict and assess his/her health risks if no preventive measures are taken. This paper refines a concept employing technologies from Prognostics and Health Management (PHM) for systems, namely real-time health monitoring and condition-based health maintenance with predictive diagnostics capabilities. Mapping particular PHM-based solutions to some Human Health and Performance (HH&P) technology candidates, namely by NASA designation, the Autonomous Medical Decision technology and the Integrated Biomedical Informatics technology, this conceptual paper emphasize key points that make the concept different from that of both current conventional medicine and telemedicine including space medicine. The primary benefit of the technologies development for the HH&P domain is the ability to successfully achieve affordable human space missions to Low Earth Orbit (LEO) and beyond. Space missions on the International Space Station (ISS) program directly contribute to the knowledge base and advancements in the HH&P domain, thanks to continued operations on the ISS, a unique human-tended test platform and the only test bed within the space environment. The concept is to be validated on the ISS, the only "test bed" on which to prepare for future manned exploration missions. The paper authors believe that early self-diagnostic coupled with autonomous identification of proper preventive responses on negative trends are critical in order to keep astronauts healthy.
Programmatic status of NASA's CSTI high capacity power Stirling space power converter program
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.
1990-01-01
An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.
NASA Technical Reports Server (NTRS)
Lin, Richard Y.; Mann, Kenneth E.; Laskin, Robert A.; Sirlin, Samuel W.
1987-01-01
Technology assessment is performed for pointing systems that accommodate payloads of large mass and large dimensions. Related technology areas are also examined. These related areas include active thermal lines or power cables across gimbals, new materials for increased passive damping, tethered pointing, and inertially reacting pointing systems. Conclusions, issues and concerns, and recommendations regarding the status and development of large pointing systems for space applications are made based on the performed assessments.
Technology developments integrating a space network communications testbed
NASA Technical Reports Server (NTRS)
Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee
2006-01-01
As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.
NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les; James, Bonnie; Baggett, Randy; Montgomery, Sandy
2005-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.
Space-based societal applications—Relevance in developing countries
NASA Astrophysics Data System (ADS)
Bhaskaranarayana, A.; Varadarajan, C.; Hegde, V. S.
2009-11-01
Space technology has the vast potential for addressing a variety of societal problems of the developing countries, particularly in the areas of communication, education and health sectors, land and water resources management, disaster management and weather forecasting. Both remote sensing and communication technologies can be used to achieve this goal. With its primary emphasis on application of space technology, on an end-to-end basis, towards national development, the Indian Space Programme has distinguished itself as one of the most cost-effective and development-oriented space programmes in the world. Developing nations are faced with the enormous task of carrying development-oriented education to the masses at the lower strata of their societies. One important feature of these populations is their large number and the spread over vast and remote areas of these nations, making the reaching out to them a difficult task. Satellite communication (Satcom) technology offers the unique capability of simultaneously reaching out to very large numbers, spread over vast areas, including the remote corners of the country. It is a strong tool to support development education. India has been amongst the first few nations to explore and put to use the Satcom technology for education and development-oriented services to the rural masses. Most of the developing countries have inadequate infrastructure to provide proper medical care to the rural population. Availability of specialist doctors in rural areas is a major bottleneck. Use of Satcom and information technology to connect rural clinics to urban hospitals through telemedicine systems is one of the solutions; and India has embarked upon an effective satellite-based telemedicine programme. Space technology is also useful in disaster warning and management related applications. Use of satellite systems and beacons for locating the distressed units on land, sea or air is well known to us. Indian Space Research Organisation (ISRO) is already a part of the International initiative called Satellite Aided Search and Rescue System. The programme to set up satellite-based Village Resource Centres (VRCs) across India, for providing a variety of services relevant to the rural communities, is also a unique societal application of space technology. The VRCs are envisaged as single window delivery mechanism for a variety of space-based products and services, such as tele-education; telemedicine; information on natural resources for planning and development at local level; interactive advisories on agriculture, fisheries, land and water resources management, livestock management, etc.; interactive vocational training towards alternative livelihood; e-governance; weather information; etc. This paper describes the various possibilities and potentials of Satcom and Remote Sensing technologies for societal applications. The initiatives taken by Indian Space Research Organisation in this direction are highlighted.
Space-based Science Operations Grid Prototype
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Welch, Clara L.; Redman, Sandra
2004-01-01
Grid technology is the up and coming technology that is enabling widely disparate services to be offered to users that is very economical, easy to use and not available on a wide basis. Under the Grid concept disparate organizations generally defined as "virtual organizations" can share services i.e. sharing discipline specific computer applications, required to accomplish the specific scientific and engineering organizational goals and objectives. Grids are emerging as the new technology of the future. Grid technology has been enabled by the evolution of increasingly high speed networking. Without the evolution of high speed networking Grid technology would not have emerged. NASA/Marshall Space Flight Center's (MSFC) Flight Projects Directorate, Ground Systems Department is developing a Space-based Science Operations Grid prototype to provide to scientists and engineers the tools necessary to operate space-based science payloads/experiments and for scientists to conduct public and educational outreach. In addition Grid technology can provide new services not currently available to users. These services include mission voice and video, application sharing, telemetry management and display, payload and experiment commanding, data mining, high order data processing, discipline specific application sharing and data storage, all from a single grid portal. The Prototype will provide most of these services in a first step demonstration of integrated Grid and space-based science operations technologies. It will initially be based on the International Space Station science operational services located at the Payload Operations Integration Center at MSFC, but can be applied to many NASA projects including free flying satellites and future projects. The Prototype will use the Internet2 Abilene Research and Education Network that is currently a 10 Gb backbone network to reach the University of Alabama at Huntsville and several other, as yet unidentified, Space Station based science experimenters. There is an international aspect to the Grid involving the America's Pathway (AMPath) network, the Chilean REUNA Research and Education Network and the University of Chile in Santiago that will further demonstrate how extensive these services can be used. From the user's perspective, the Prototype will provide a single interface and logon to these varied services without the complexity of knowing the where's and how's of each service. There is a separate and deliberate emphasis on security. Security will be addressed by specifically outlining the different approaches and tools used. Grid technology, unlike the Internet, is being designed with security in mind. In addition we will show the locations, configurations and network paths associated with each service and virtual organization. We will discuss the separate virtual organizations that we define for the varied user communities. These will include certain, as yet undetermined, space-based science functions and/or processes and will include specific virtual organizations required for public and educational outreach and science and engineering collaboration. We will also discuss the Grid Prototype performance and the potential for further Grid applications both space-based and ground based projects and processes. In this paper and presentation we will detail each service and how they are integrated using Grid
Lunar base mission technology issues and orbital demonstration requirements on space station
NASA Technical Reports Server (NTRS)
Llewellyn, Charles P.; Weidman, Deene J.
1992-01-01
The International Space Station has been the object of considerable design, redesign, and alteration since it was originally proposed in early 1984. In the intervening years the station has slowly evolved to a specific design that was thoroughly reviewed by a large agency-wide Critical Evaluation Task Force (CETF). As space station designs continue to evolve, studies must be conducted to determine the suitability of the current design for some of the primary purposes for which the station will be used. This paper concentrates on the technology requirements and issues, the on-orbit demonstration and verification program, and the space station focused support required prior to the establishment of a permanently manned lunar base as identified in the National Commission on Space report. Technology issues associated with the on-orbit assembly and processing of the lunar vehicle flight elements are also discussed.
OAST Space Theme Workshop 1976
NASA Technical Reports Server (NTRS)
Sadin, S. R.
1977-01-01
Papers that provide a technical foundation including research and technology base candidates for each of six space themes - space power, space industrialization, search for extraterrestrial intelligence, exploration of the solar system, global service, and advanced transportation systems - are presented. The material is mainly intended for further use by workshop participants and NASA elements concerned with space research and technology. While the data presented do not represent official plans or positions, they are part of the process of evolving such plans and positions. The information contained reflects the efforts of workshop participants and should be an aid in the successful implementation and execution of the Agency's near- and far-term advanced technology program.
NASA Astrophysics Data System (ADS)
Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.
1989-04-01
A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.
1989-01-01
A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.
Progress update of NASA's free-piston Stirling space power converter technology project
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald
1992-01-01
A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.
Biological Life Support Technologies: Commercial Opportunities
NASA Technical Reports Server (NTRS)
Nelson, Mark (Editor); Soffen, Gerald (Editor)
1990-01-01
The papers from the workshop on Biological Life Support Technologies: Commercial Opportunities are presented. The meeting attracted researchers in environmental and bioregenerative systems. The role of biological support technologies was evaluated in the context of the global environmental challenge on Earth and the space exploration initiative, with its goal of a permanent space station, lunar base, and Mars exploration.
Space station high gain antenna concept definition and technology development
NASA Technical Reports Server (NTRS)
Wade, W. D.
1972-01-01
The layout of a technology base is reported from which a mechanically gimballed, directional antenna can be developed to support a manned space station proposed for the late 1970's. The effort includes the concept definition for the antenna assembly, an evaluation of available technology, the design of critical subassemblies and the design of critical subassembly tests.
Predicting ionospheric scintillation: Recent advancements and future challenges
NASA Astrophysics Data System (ADS)
Carter, B. A.; Currie, J. L.; Terkildsen, M.; Bouya, Z.; Parkinson, M. L.
2017-12-01
Society greatly benefits from space-based infrastructure and technology. For example, signals from Global Navigation Satellite Systems (GNSS) are used across a wide range of industrial sectors; including aviation, mining, agriculture and finance. Current trends indicate that the use of these space-based technologies is likely to increase over the coming decades as the global economy becomes more technology-dependent. Space weather represents a key vulnerability to space-based technology, both in terms of the space environment effects on satellite infrastructure and the influence of the ionosphere on the radio signals used for satellite communications. In recent decades, the impact of the ionosphere on GNSS signals has re-ignited research interest into the equatorial ionosphere, particularly towards understanding Equatorial Plasma Bubbles (EPBs). EPBs are a dominant source of nighttime plasma irregularities in the low-latitude ionosphere, which can cause severe scintillation on GNSS signals and subsequent degradation on GNSS product quality. Currently, ionospheric scintillation event forecasts are not being routinely released by any space weather prediction agency around the world, but this is likely to change in the near future. In this contribution, an overview of recent efforts to develop a global ionospheric scintillation prediction capability within Australia will be given. The challenges in understanding user requirements for ionospheric scintillation predictions will be discussed. Next, the use of ground- and space-based datasets for the purpose of near-real time ionospheric scintillation monitoring will be explored. Finally, some modeling that has shown significant promise in transitioning towards an operational ionospheric scintillation forecasting system will be discussed.
Configurable technology development for reusable control and monitor ground systems
NASA Technical Reports Server (NTRS)
Uhrlaub, David R.
1994-01-01
The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.
Space technology developments in Malaysia:
NASA Astrophysics Data System (ADS)
Sabirin, A.
The venture of space is, by nature, a costly one. However, exploring space is not just an activity reserved for international superpowers. Smaller and emerging space nations, some with burgeoning space programs of their own, can play a role in space technology development and interplanetary exploration, sometimes simply by just being there. Over the past four decades, the range of services delivered by space technologies in Malaysia has grown enormously. For many business and public services, space based technologies have become the primary means of delivery of such services. Space technology development in Malaysia started with Malaysia's first microsatellite, TiungSAT-1. TiungSAT-1 has been successfully launched from the Baikonur Cosmodrome, Kazakhstan on the 26th of September 2000 on a Russian-Ukrainian Dnepr rocket. There have been wide imaging applications and information extraction using data from TiungSAT-1. Various techniques have been applied to the data for different applications in environmental assessment and monitoring as well as resource management. As a step forward, Malaysia has also initiated another space technology programme, RAZAKSAT. RAZAKSAT is a 180kg class satellite designed to provide 2.5meter ground sampling distance resolution imagery on a near equatorial orbit. Its mission objective is to demonstrate the capability of a medium high resolution remote sensing camera using a cost effective small satellite platform and a multi-channel linear push-broom electro-optical instrument. Realizing the immense benefits of space technology and its significant role in promoting sustainable development, Malaysia is committed to the continuous development and advancement of space technology within the scope of peaceful use of outer space and boosting its national economic growth through space related activities.
Rebuilding the space technology base
NASA Technical Reports Server (NTRS)
Povinelli, Frederick P.; Stephenson, Frank W.; Sokoloski, Martin M.; Montemerlo, Melvin D.; Venneri, Samuel L.; Mulville, Daniel R.; Hirschbein, Murray S.; Smith, Paul H.; Schnyer, A. Dan; Lum, Henry
1989-01-01
NASA's Civil Space Technology Initiative (CSTI) will not only develop novel technologies for space exploration and exploitation, but also take mature technologies into their demonstration phase in earth orbit. In the course of five years, CSTI will pay off in ground- and space-tested hardware, software, processes, methods for low-orbit transport and operation, and fundamental scientific research on the orbital environment. Attention is given to LOX/hydrogen and LOX/hydrocarbon reusable engines, liquid/solid fuel hybrid boosters, and aeroassist flight experiments for the validation of aerobraking with atmospheric friction. Also discussed are advanced scientific sensors, systems autonomy and telerobotics, control of flexible structures, precise segmented reflectors, high-rate high-capacity data handling, and advanced nuclear power systems.
Why CATTS Needs SPACE! Standards-Based Technology Curricula for Standards-Based Technology Programs
ERIC Educational Resources Information Center
Burke, Barry N.
2005-01-01
A recent discussion on ITEA's (International Technology Education Association's) IdeaGarden centered on the need for a "national curriculum." The idea of a national curriculum is one of great debate. Advancing Excellence in Technological Literacy (AETL) identifies criteria for student assessment, professional development, and programs that…
The economic viability of pursuing a space power system concept
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.
1977-01-01
The development of a space power system requires no fundamental technological breakthroughs. There are, however, uncertainties regarding the degree to which necessary developments can be achieved or exceeded. An analysis is conducted concerning the implementation of a 5000 MW space-based solar power system based on photovoltaic conversion of solar energy to electrical energy. The solar array is about 13 km long and 5 km wide. Placed in geosynchronous orbit, it provides power to the earth for 30 years. Attention is given to the economic feasibility of a space power system, a risk analysis for space power systems, and the use of the presented methodology for comparing alternative technology development programs.
Proposal for a United Nations Basic Space Technology Initiative
NASA Astrophysics Data System (ADS)
Balogh, Werner
Putting space technology and its applications to work for sustainable economic and social development is the primary objective of the United Nations Programme on Space Applications, launched in 1971. A specific goal for achieving this objective is to establish a sustainable national space capacity. The traditional line of thinking has supported a logical progression from building capacity in basic space science, to using space applications and finally - possibly - to establishing indigenous space technology capabilities. The experience in some countries suggests that such a strict line of progression does not necessarily hold true and that priority given to the establishment of early indigenous space technology capabilities may contribute to promoting the operational use of space applications in support of sustainable economic and social development. Based on these findings and on the experiences with the United Nations Basic Space Science Initiative (UNBSSI) as well as on a series of United Nations/International Academy of Astronautics Workshops on Small Satellites in the Service of Developing Countries, the United Nations Office for Outer Space Affairs (UNOOSA) is considering the launch of a dedicated United Nations Basic Space Technology Initiative (UNBSTI). The initiative would aim to contribute to capacity building in basic space technology and could include, among other relevant fields, activities related to the space and ground segments of small satellites and their applications. It would also provide an international framework for enhancing cooperation between all interested actors, facilitate the exchange of information on best practices, and contribute to standardization efforts. It is expected that these activities would advance the operational use of space technology and its applications in an increasing number of space-using countries and emerging space nations. The paper reports on these initial considerations and on the potential value-adding role the United Nations could play with such an initiative.
Space Weather: Historical and Contemporary Perspectives
NASA Astrophysics Data System (ADS)
Lanzerotti, Louis J.
2017-11-01
A somewhat personalized overview is presented of the effects of solar-terrestrial processes on electrical technologies, beginning with the electrical telegraphs in the mid-eighteenth century to the current era of extensive ground- and space-based commercial and governmental technical systems (including national security) upon which modern society depends. As human technologies increased in diversity over the last century and a half, space weather effects have continued to be of significant importance in the successful design and operations of many of these technologies.
Space station experiment definition: Long-term cryogenic fluid storage
NASA Technical Reports Server (NTRS)
Jetley, R. L.; Scarlotti, R. D.
1987-01-01
The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.
Patent databases and analytical tools for space technology commercialization (Part 2)
NASA Astrophysics Data System (ADS)
Hulsey, William N., III
2002-07-01
A shift in the space industry has occurred that requires technology developers to understand the basics of the intellectual property laws; Global harmonization facilitates this understanding; internet-based tools enable knowledge of these rights and the facts affecting them.
NASA Technical Reports Server (NTRS)
2000-01-01
This report highlights the challenging work accomplished during fiscal year 1999 by Ames research scientists, engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on NASA's four Strategic Enterprises: Aero-Space Technology, Space, Human Exploration and Development of Space, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customers, and partners, and the people of the United States about the scope and diversity of Ames' mission, the nature of Ames' research and technology activities, and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is making to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.
NASA Technical Reports Server (NTRS)
1999-01-01
This report highlights the challenging work accomplished during fiscal year 1998 by Ames research scientists, engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on NASA's four Strategic Enterprises: Aero-Space Technology, Space Science, Human Exploration and Development of Space, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customers, and partners, and the people of the United States about the scope and diversity of Ames mission, the nature of Ames research and technology activities, and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is making to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.
Space station automation study-satellite servicing, volume 2
NASA Technical Reports Server (NTRS)
Meissinger, H. F.
1984-01-01
Technology requirements for automated satellite servicing operations aboard the NASA space station were studied. The three major tasks addressed: (1) servicing requirements (satellite and space station elements) and the role of automation; (2) assessment of automation technology; and (3) conceptual design of servicing facilities on the space station. It is found that many servicing functions cloud benefit from automation support; and the certain research and development activities on automation technologies for servicing should start as soon as possible. Also, some advanced automation developments for orbital servicing could be effectively applied to U.S. industrial ground based operations.
Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott;
2010-01-01
This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.
The Role of Robots and Automation in Space
NASA Technical Reports Server (NTRS)
Heer, E.
1978-01-01
Advanced space transportation systems based on the shuttle and interim upper stage will open the way to the use of large-scale industrial and commercial systems in space. The role of robot and automation technology in the cost-effective implementation and operation of such systems in the next two decades is discussed. Planning studies initiated by NASA are described as applied to space exploration, global services, and space industrialization, and a forecast of potential missions in each category is presented. The appendix lists highlights of space robot technology from 1967 to the present.
Regional convergence platforms in Europe—Innovation for space through technology partnerships
NASA Astrophysics Data System (ADS)
Bütfering, Peter
2010-05-01
Upcoming European and national space exploration programs and projects require new capabilities and scientific-technological solutions, and therefore external contributions to innovation. On the other hand European core (industrial) regions are searching of partners for innovation to strengthen their regional economy. In this context the German-based company European Space Innovation AG (former Adam Alva Neil)—highly experienced in the area of convergence activities between space and other sectors—has developed the model of regional convergence platforms (named 'SpaceInnovation'). These platforms are designed to foster technology partnerships between regional companies and institutes from 'non-space' and the space sector (agencies/industry). The article reflects this regional approach and shows examples in three different directions: SpaceInnovation Saar, an benchmark convergence platform initiated by the Saarland region. SpaceInnovation Europe, an European regions network approach. European SpaceInnovation Agent, an interface approach for systematic and sustainable convergence activities.
Advanced Energy Conversion Technologies and Architectures for Earth and Beyond
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.
2006-01-01
Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars. Strategies for developing energy infrastructures in space which utilize this technology are presented. This dual use system produces electrical energy efficiently from either coherent light, such as from a highly coherent laser, or from conventional solar illumination. This allows, for example, supplementing solar energy with energy provided by highly coherent laser illumination during periods of low solar illumination or no illumination. This reduces the need for batteries and alternate sources of power. The capability of using laser illumination in a lowest order Gaussian laser mode provides means for transmitting power optically with maximum efficiency and precision over the long distances characteristic of space. A preliminary receiving system similar to that described here, has been produced and tested under solar and laser illumination. A summary of results is given.
Free-piston Stirling technology for space power
NASA Technical Reports Server (NTRS)
Slaby, Jack G.
1989-01-01
An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.
Technology, Data Bases and System Analysis for Space-to-Ground Optical Communications
NASA Technical Reports Server (NTRS)
Lesh, James
1995-01-01
Optical communications is becoming an ever-increasingly important option for designers of space-to- ground communications links, whether it be for government or commercial applications. In this paper the technology being developed by NASA for use in space-to-ground optical communications is presented. Next, a program which is collecting a long term data base of atmospheric visibility statistics for optical propagation through the atmosphere will be described. Finally, a methodology for utilizing the statistics of the atmospheric data base in the analysis of space-to-ground links will be presented. This methodology takes into account the effects of station availability, is useful when comparing optical communications with microwave systems, and provides a rationale establishing the recommended link margin.
Development of a Deterministic Ethernet Building blocks for Space Applications
NASA Astrophysics Data System (ADS)
Fidi, C.; Jakovljevic, Mirko
2015-09-01
The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The deterministic Ethernet technology TTEthernet [1] diploid on the NASA Orion spacecraft has demonstrated the use of the TTEthernet technology for a safety critical human space flight application during the Exploration Flight Test 1 (EFT-1). The TTEthernet technology used within the NASA Orion program has been matured for the use within this mission but did not lead to a broader use in space applications or an international space standard. Therefore TTTech has developed a new version which allows to scale the technology for different applications not only the high end missions allowing to decrease the size of the building blocks leading to a reduction of size weight and power enabling the use in smaller applications. TTTech is currently developing a full space products offering for its TTEthernet technology to allow the use in different space applications not restricted to launchers and human spaceflight. A broad space market assessment and the current ESA TRP7594 lead to the development of a space grade TTEthernet controller ASIC based on the ESA qualified Atmel AT1C8RHA95 process [2]. In this paper we will describe our current TTEthernet controller development towards a space qualified network component allowing future spacecrafts to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer.
Midcourse Space Experiment Data Certification and Technology Transfer. Supplement 1
NASA Technical Reports Server (NTRS)
Pollock, David B.
1998-01-01
The University of Alabama in Huntsville contributes to the Technical Management of the Midcourse Space Experiment Program, to the Certification of the Level 2 data produced by the Midcourse Space Experiment's suite of in-orbit imaging radiometers, imaging spectro-radiometers and an interferometer and to the Transfer of the Midcourse Space Experiment Technology to other Government Programs. The Technical Management of the Midcourse Space Experiment Program is expected to continue through out the spacecraft's useful life time. The Transfer of Midcourse Space Experiment Technology to other government elements is expected to be on a demand basis by the United States Government and other organizations. The University, of Alabama Huntsville' contribution specifically supports the Principal Investigator's Executive Committee, the Deputy Principal Investigator for Data Certification and Technology Transfer team, the nine Ultraviolet Visible Imagers and Spectrographic Imagers (UVISI) and the Pointing and Alignment of all eleven of the science instruments. The science instruments effectively cover the 0.1 to 28 micron spectral region. The Midcourse Space Experiment spacecraft, launched April 24, 1996, is expected to have a 5 year useful lifetime. The cryogenically cooled IR sensor, SPIRIT III, performed through February, 1997 when its cryogen expired. A pre-launch, ground based calibration of the instruments provided a basis for the pre-launch certification of the Level 2 data base these instruments produce. With the spacecraft in-orbit the certification of the instrument's Level 2 data base was extended to the in-orbit environment.
VARiD: a variation detection framework for color-space and letter-space platforms.
Dalca, Adrian V; Rumble, Stephen M; Levy, Samuel; Brudno, Michael
2010-06-15
High-throughput sequencing (HTS) technologies are transforming the study of genomic variation. The various HTS technologies have different sequencing biases and error rates, and while most HTS technologies sequence the residues of the genome directly, generating base calls for each position, the Applied Biosystem's SOLiD platform generates dibase-coded (color space) sequences. While combining data from the various platforms should increase the accuracy of variation detection, to date there are only a few tools that can identify variants from color space data, and none that can analyze color space and regular (letter space) data together. We present VARiD--a probabilistic method for variation detection from both letter- and color-space reads simultaneously. VARiD is based on a hidden Markov model and uses the forward-backward algorithm to accurately identify heterozygous, homozygous and tri-allelic SNPs, as well as micro-indels. Our analysis shows that VARiD performs better than the AB SOLiD toolset at detecting variants from color-space data alone, and improves the calls dramatically when letter- and color-space reads are combined. The toolset is freely available at http://compbio.cs.utoronto.ca/varid.
Innovative quantum technologies for microgravity fundamental physics and biological research
NASA Technical Reports Server (NTRS)
Kierk, I. K.
2002-01-01
This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.
NASA Technical Reports Server (NTRS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
2006-02-03
KENNEDY SPACE CENTER, FLA. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers begin the mating process of the Space Technology 5 (ST5), at right, with the Pegasus XL launch vehicle, at left. The ST5 contains three microsatellites, with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled no earlier than March 6 from Vandenberg Air Force Base.
2006-02-03
KENNEDY SPACE CENTER, FLA. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, the Space Technology 5 (ST5) spacecraft is ready for mating to the Pegasus XL launch vehicle. Seen in the photo are the three satellites that make up the ST5, containing miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled no earlier than March 6 from Vandenberg Air Force Base.
Spacewire Routers Implemented with FPGA Technology
NASA Astrophysics Data System (ADS)
Habinc, Sandi; Isomaki, Marko
2011-08-01
Routers are an integral part of SpaceWire networks. Aeroflex Gaisler has developed a highly configurable SpaceWire router VHDL IP core to meet the needs for technology independent router designs. The main design goals have been configurability, technology independence, support of the standard and expandability. The IP core being technologically independent allows it to be used in both ASIC and FPGA technology. The latter is now being used to produce versatile standard products that can reach the market faster than for example an ASIC based product.
Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers
NASA Technical Reports Server (NTRS)
Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry
2006-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based on human input or integrated health state-derived conditions. Shifting from Systems to Mission Management functions, we discuss the role of automated planning applications (tactical planning) on-board, which receive data from the other cockpit automation systems and evaluate the mission plan against the dynamic systems and mission states and events, to provide the crew with capabilities that enable them to understand, change, and manage the timeline of their mission. Lastly, we discuss the role of advanced human interface technologies that organize and provide the system md mission information to the crew in ways that maximize their situational awareness and ability to provide oversight and control of aLl the automated data and functions.
Unified Communications for Space Inventory Management
NASA Technical Reports Server (NTRS)
Gifford, Kevin K.; Fink, Patrick W.; Barton, Richard; Ngo, Phong H.
2009-01-01
To help assure mission success for long-duration exploration activities, NASA is actively pursuing wireless technologies that promote situational awareness and autonomy. Wireless technologies are typically extensible, offer freedom from wire tethers, readily support redundancy, offer potential for decreased wire weight, and can represent dissimilar implementation for increased reliability. In addition, wireless technologies can enable additional situational awareness that otherwise would be infeasible. For example, addition of wired sensors, the need for which might not have been apparent at the outset of a program, night be extremely costly due in part to the necessary routing of cables through the vehicle. RFID, or radio frequency identification, is a wireless technology with the potential for significant savings and increased reliability and safety in space operations. Perhaps the most obvious savings relate to the application of inventory management. A fully automated inventory management system is highly desirable for long-term sustaining operations in space environments. This assertion is evidenced by inventory activities on the International Space Station, which represents the most extensive inventory tracking experience base in the history of space operations. In the short tern, handheld RFID readers offer substantial savings owing to reduced crew time for inventory audits. Over the long term, a combination of improved RFID technology and operational concepts modified to fully utilize the technology should result in space based inventory management that is highly reliable and requires very little crew time. In addition to inventory management, RFID is likely to find space applications in real-time location and tracking systems. These could vary from coarse-resolution RFID portals to the high resolution afforded by ultra-wideband (UWB) RFID. Longer range RFID technologies that leverage passive surface acoustic wave (SAW) devices are being investigated to track assets on a lunar or planetary surface.
NASA Technical Reports Server (NTRS)
Adair, Jerry R.
1994-01-01
This paper is a consolidated report on ten major planning and scheduling systems that have been developed by the National Aeronautics and Space Administration (NASA). A description of each system, its components, and how it could be potentially used in private industry is provided in this paper. The planning and scheduling technology represented by the systems ranges from activity based scheduling employing artificial intelligence (AI) techniques to constraint based, iterative repair scheduling. The space related application domains in which the systems have been deployed vary from Space Shuttle monitoring during launch countdown to long term Hubble Space Telescope (HST) scheduling. This paper also describes any correlation that may exist between the work done on different planning and scheduling systems. Finally, this paper documents the lessons learned from the work and research performed in planning and scheduling technology and describes the areas where future work will be conducted.
Protocol Architecture Model Report
NASA Technical Reports Server (NTRS)
Dhas, Chris
2000-01-01
NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASA's four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. This report applies the methodology to three space Internet-based communications scenarios for future missions. CNS has conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. The scenarios are: Scenario 1: Unicast communications between a Low-Earth-Orbit (LEO) spacecraft inspace Internet node and a ground terminal Internet node via a Tracking and Data Rela Satellite (TDRS) transfer; Scenario 2: Unicast communications between a Low-Earth-Orbit (LEO) International Space Station and a ground terminal Internet node via a TDRS transfer; Scenario 3: Multicast Communications (or "Multicasting"), 1 Spacecraft to N Ground Receivers, N Ground Transmitters to 1 Ground Receiver via a Spacecraft.
NASA Technical Reports Server (NTRS)
Dhas, Chris
2000-01-01
NASAs Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASAs four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. CNS previously developed a report which applied the methodology, to three space Internet-based communications scenarios for future missions. CNS conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. GRC selected for further analysis the scenario that involved unicast communications between a Low-Earth-Orbit (LEO) International Space Station (ISS) and a ground terminal Internet node via a Tracking and Data Relay Satellite (TDRS) transfer. This report contains a tradeoff analysis on the selected scenario. The analysis examines the performance characteristics of the various protocols and architectures. The tradeoff analysis incorporates the results of a CNS developed analytical model that examined performance parameters.
Spaceflight Operations Services Grid (SOSG) Project
NASA Technical Reports Server (NTRS)
Bradford, Robert; Lisotta, Anthony
2004-01-01
The motivation, goals, and objectives of the Space Operations Services Grid Project (SOSG) are covered in this viewgraph presentation. The goals and objectives of SOSG include: 1) Developing a grid-enabled prototype providing Space-based ground operations end user services through a collaborative effort between NASA, academia, and industry to assess the technical and cost feasibility of implementation of Grid technologies in the Space Operations arena; 2) Provide to space operations organizations and processes, through a single secure portal(s), access to all the information technology (Grid and Web based) services necessary for program/project development, operations and the ultimate creation of new processes, information and knowledge.
The telecommunications and data acquisition report
NASA Technical Reports Server (NTRS)
Renzetti, N. A. (Editor)
1981-01-01
Developments in Earth-based ratio technology as applied to the Deep Space Network are reported. Topics include ratio astronomy and spacecraft tracking networks. Telemetric methods and instrumentation are described. Station control and system technology for space communication is discussed. Special emphasis is placed on network data processing.
Horizon Mission Methodology - A tool for the study of technology innovation and new paradigms
NASA Technical Reports Server (NTRS)
Anderson, John L.
1993-01-01
The Horizon Mission (HM) methodology was developed to provide a means of identifying and evaluating highly innovative, breakthrough technology concepts (BTCs) and for assessing their potential impact on advanced space missions. The methodology is based on identifying new capabilities needed by hypothetical 'horizon' space missions having performance requirements that cannot be met even by extrapolating known space technologies. Normal human evaluation of new ideas such as BTCs appears to be governed (and limited) by 'inner models of reality' defined as paradigms. Thus, new ideas are evaluated by old models. This paper describes the use of the HM Methodology to define possible future paradigms that would provide alternatives to evaluation by current paradigms. The approach is to represent a future paradigm by a set of new BTC-based capabilities - called a paradigm abstract. The paper describes methods of constructing and using the abstracts for evaluating BTCs for space applications and for exploring the concept of paradigms and paradigm shifts as a representation of technology innovation.
Mercury Ion Clock for a NASA Technology Demonstration Mission.
Tjoelker, Robert L; Prestage, John D; Burt, Eric A; Chen, Pin; Chong, Yong J; Chung, Sang K; Diener, William; Ely, Todd; Enzer, Daphna G; Mojaradi, Hadi; Okino, Clay; Pauken, Mike; Robison, David; Swenson, Bradford L; Tucker, Blake; Wang, Rabi
2016-07-01
There are many different atomic frequency standard technologies but only few meet the demanding performance, reliability, size, mass, and power constraints required for space operation. The Jet Propulsion Laboratory is developing a linear ion-trap-based mercury ion clock, referred to as DSAC (Deep-Space Atomic Clock) under NASA's Technology Demonstration Mission program. This clock is expected to provide a new capability with broad application to space-based navigation and science. A one-year flight demonstration is planned as a hosted payload following an early 2017 launch. This first-generation mercury ion clock for space demonstration has a volume, mass, and power of 17 L, 16 kg, and 47 W, respectively, with further reductions planned for follow-on applications. Clock performance with a signal-to-noise ratio (SNR)*Q limited stability of 1.5E-13/τ(1/2) has been observed and a fractional frequency stability of 2E-15 at one day measured (no drift removed). Such a space-based stability enables autonomous timekeeping of with a technology capable of even higher stability, if desired. To date, the demonstration clock has been successfully subjected to mechanical vibration testing at the 14 grms level, thermal-vacuum operation over a range of 42(°)C, and electromagnetic susceptibility tests.
Vision 21: The NASA strategic plan
NASA Technical Reports Server (NTRS)
1992-01-01
The NASA Strategic Plan, Vision 21, is a living roadmap to the future to guide the men and women of the NASA team as they ensure U.S. leadership in space exploration and aeronautics research. This multiyear plan consists of a set of programs and activities that will retain our leadership in space science and the exploration of the solar system; help rebuild our nation's technology base and strengthen our leadership in aviation and other key industries; encourage commercial applications of space technology; use the unique perspective of space to better understand our home planet; provide the U.S. and its partners with a permanent space based research facility; expand on the legacy of Apollo and initiate precursor activities to establish a lunar base; and allow us a journey into tomorrow, journey to another planet (Mars), and beyond.
Secure Autonomous Automated Scheduling (SAAS). Rev. 1.1
NASA Technical Reports Server (NTRS)
Walke, Jon G.; Dikeman, Larry; Sage, Stephen P.; Miller, Eric M.
2010-01-01
This report describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the UK-DMC, is used as the space-based sensor. The UK-DMC's availability is determined via machine-to-machine communications using SSTL's mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL's and Universal Space Network's (USN) ground assets. The availability and scheduling of USN's assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards
Proceedings of the Third Infrared Detector Technology Workshop
NASA Technical Reports Server (NTRS)
Mccreight, Craig R. (Compiler)
1989-01-01
This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.
Conceptual design of a lunar base thermal control system
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Debarro, Marc J.; Farmer, Jeffery T.
1992-01-01
Space station and alternate thermal control technologies were evaluated for lunar base applications. The space station technologies consisted of single-phase, pumped water loops for sensible and latent heat removal from the cabin internal environment and two-phase ammonia loops for the transportation and rejection of these heat loads to the external environment. Alternate technologies were identified for those areas where space station technologies proved to be incompatible with the lunar environment. Areas were also identified where lunar resources could enhance the thermal control system. The internal acquisition subsystem essentially remained the same, while modifications were needed for the transport and rejection subsystems because of the extreme temperature variations on the lunar surface. The alternate technologies examined to accommodate the high daytime temperatures incorporated lunar surface insulating blankets, heat pump system, shading, and lunar soil. Other heat management techniques, such as louvers, were examined to prevent the radiators from freezing. The impact of the geographic location of the lunar base and the orientation of the radiators was also examined. A baseline design was generated that included weight, power, and volume estimates.
Kondyurin, A; Lauke, B; Kondyurina, I; Orba, E
2004-01-01
The large-size frame of space ship and space station can be created with the use of the technology of the polymerization of fiber-filled composites and a liquid reactionable matrix applied in free space or on the other space body when the space ship or space station will be used during a long period of time. For the polymerization of the station frame the fabric impregnated with a long-life polymer matrix (prepreg) is prepared in terrestrial conditions and, after folding, can be shipped in a compact container to orbit and kept folded on board the station. In due time the prepreg is carried out into free space and unfolded. Then a reaction of matrix polymerization starts. After reaction of polymerization the durable frame is ready for exploitation. After that, the frame can be filled out with air, the apparatus and life support systems. The technology can be used for creation of biological frame as element of self regulating ecological system, and for creation of technological frame which can be used for a production of new materials on Earth orbit in microgravity conditions and on other space bodies (Mars, Moon, asteroids) for unique high price mineral extraction. Based on such technology a future space base on Earth orbit with volume of 10(6) m3 and a crew of 100 astronauts is considered. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ignatiev, A.
2000-01-01
Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based Economy in CisLunar Space. Our Lunar Destiny: Creating a Lunar Economy. Cost-Effective Approaches to Lunar Passenger Transportation. Lunar Mineral Resources: Extraction and Application. Space Resources Development - The Link Between Human Exploration and the Long-term Commercialization of Space. Toward a More Comprehensive Evaluation of Space Information. Development of Metal Casting Molds by Sol-Gel Technology Using Planetary Resources. A New Concept in Planetary Exploration: ISRU with Power Bursts. Bold Space Ventures Require Fervent Public Support. Hot-pressed Iron from Lunar Soil. The Lunar Dust Problem: A Possible Remedy. Considerations on Use of Lunar Regolith in Lunar Constructions. Experimental Study on Water Production by Hydrogen Reduction of Lunar Soil Simulant in a Fixed Bed Reactor.
NASA Astrophysics Data System (ADS)
Kuldeep, Kuldeep; Banu, Vijaya
2016-07-01
The introduction of the novel technology mostly leads to a number of advantages to the society. The space technology has shown such benefits in many fields including the areas of health and education, communication sectors, land and water resources management, weather forecasting and disaster management. It has vast potential for addressing a variety of societal problems of the developing countries especially in India in a effective manner. Large population which is spread over vast and remote areas of the nation, reaching out to them is a difficult task. This manuscript aims to explain the benefits originated from the application of space technology. The satellite imagery and its derived products can better be utilized for local level planning and sustainable development of a region. A case-study using Bhuvan Panchayat Portal developed by National Remote Sensing Centre, ISRO under the project "Space Based Information Support for De-Centralised Planning" towards Digital Empowerment of Society for Panchayat level Planning and Governance has been carried out, which list out the benefits that have accrued from the use of space technology for planning and development at grass root level in India. It covers, in particular, the benefits expected to be derived from the Indian Remote Sensing Satellite (IRS) Images and derived products. Certain conclusions about the benefits from space based inputs have been drawn that may be generally applicable to all developing countries. This paper also investigates the various possibilities and potentials of Remote Sensing technologies for societal applications.
Temporal Investment Strategy to Enable JPL Future Space Missions
NASA Technical Reports Server (NTRS)
Lincoln, William P.; Hua, Hook; Weisbin, Charles R.
2006-01-01
The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has the responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future JPL deep space missions are ready as needed; as such he is responsible for the development of a Strategic Plan. As part of the planning effort, he has supported the development of a structured approach to technology prioritization based upon the work of the START (Strategic Assessment of Risk and Technology) team. A major innovation reported here is the addition of a temporal model that supports scheduling of technology development as a function of time. The JPL Strategic Technology Plan divides the required capabilities into 13 strategic themes. The results reported here represent the analysis of an initial seven.
Vibration isolation technology: An executive summary of systems development and demonstration
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Logsdon, Kirk A.; Lubomski, Joseph F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Vibration isolation technology - An executive summary of systems development and demonstration
NASA Astrophysics Data System (ADS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Space station commonality analysis
NASA Technical Reports Server (NTRS)
1988-01-01
This study was conducted on the basis of a modification to Contract NAS8-36413, Space Station Commonality Analysis, which was initiated in December, 1987 and completed in July, 1988. The objective was to investigate the commonality aspects of subsystems and mission support hardware while technology experiments are accommodated on board the Space Station in the mid-to-late 1990s. Two types of mission are considered: (1) Advanced solar arrays and their storage; and (2) Satellite servicing. The point of departure for definition of the technology development missions was a set of missions described in the Space Station Mission Requirements Data Base. (MRDB): TDMX 2151 Solar Array/Energy Storage Technology; TDMX 2561 Satellite Servicing and Refurbishment; TDMX 2562 Satellite Maintenance and Repair; TDMX 2563 Materials Resupply (to a free-flyer materials processing platform); TDMX 2564 Coatings Maintenance Technology; and TDMX 2565 Thermal Interface Technology. Issues to be addressed according to the Statement of Work included modularity of programs, data base analysis interactions, user interfaces, and commonality. The study was to consider State-of-the-art advances through the 1990s and to select an appropriate scale for the technology experiments, considering hardware commonality, user interfaces, and mission support requirements. The study was to develop evolutionary plans for the technology advancement missions.
Laser-powered MHD generators for space application
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1986-01-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
Analysis of space shuttle main engine data using Beacon-based exception analysis for multi-missions
NASA Technical Reports Server (NTRS)
Park, H.; Mackey, R.; James, M.; Zak, M.; Kynard, M.; Sebghati, J.; Greene, W.
2002-01-01
This paper describes analysis of the Space Shuttle Main Engine (SSME) sensor data using Beacon-based exception analysis for multimissions (BEAM), a new technology developed for sensor analysis and diagnostics in autonomous space systems by the Jet Propulsion Laboratory (JPL).
Innovative quantum technologies for microgravity fundamental physics and biological research
NASA Technical Reports Server (NTRS)
Kierk, I.; Israelsson, U.; Lee, M.
2001-01-01
This paper presents a new technology program, within the fundamental physics research program, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum fluid based sensor and modeling technology.
Capability Investment Strategy to Enable JPL Future Space Missions
NASA Technical Reports Server (NTRS)
Lincoln, William; Merida, Sofia; Adumitroaie, Virgil; Weisbin, Charles R.
2006-01-01
The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future missions are ready as needed. The responsibilities include development of a Strategic Plan (Antonsson, E., 2005). As part of the planning effort, a structured approach to technology prioritization, based upon the work of the START (Strategic Assessment of Risk and Technology) (Weisbin, C.R., 2004) team, was developed. The purpose of this paper is to describe this approach and present its current status relative to the JPL technology investment.
2006-01-17
VANDENBERG AIR FORCE BASE, Calif. — At Vandenberg Air Force Base in California, workers are moving the Space Technology 5 (ST5) spacecraft into Orbital Sciences’ Building 1555. There it will be mated with the Pegasus XL launch vehicle. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-02-14
VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers clean and prepare the fairing to be installed around the Space Technology 5 (ST5) spacecraft. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.
2006-02-14
VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers check the Orbital Sciences' Pegasus XL launch vehicle before encapsulation of the Space Technology 5 (ST5) spacecraft. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.
2006-01-18
VANDENBERG AIR FORCE BASE, Calif. — Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, the wrapped Space Technology 5 (ST5) spacecraft is revealed after removal of the shipping container. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-02-14
VANDENBERG AIR FORCE BASE, CALIF. -Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, a worker checks connections on the Space Technology 5 (ST5) spacecraft before encapsulation with the fairing. The ST5, mated to Orbital Sciences' Pegasus XL launch vehicle, contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.
2006-01-13
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, the three micro-satellites comprising the Space Technology 5 spacecraft are mated and ready for weighing. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-02-14
VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, this closeup shows the Space Technology 5 (ST5) spacecraft's microsatellites mounted on the payload structure. The spacecraft will be enclosed for launch. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.
2006-01-13
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, technicians complete mating of the three micro-satellites on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-17
VANDENBERG AIR FORCE BASE, Calif. — At Vandenberg Air Force Base in California, workers are moving the Space Technology 5 (ST5) spacecraft out of the truck into Orbital Sciences’ Building 1555. There it will be mated with the Pegasus XL launch vehicle. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-17
VANDENBERG AIR FORCE BASE, Calif. — At Vandenberg Air Force Base in California, workers are moving the Space Technology 5 (ST5) spacecraft out of the Orbital Sciences Building 836 onto a truck for transfer to Building 1555. There it will be mated with the Pegasus XL launch vehicle. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-16
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, a scale attached to a crane is ready to lift the payload support structure with the three micro-satellites comprising the Space Technology 5 (ST5) spacecraft. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers move lift one of three micro-satellites to prepare it for mating to the payload support structure. The three satellites that make up the Space Technology 5 spacecraft, called ST5, will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-16
VANDENBERG AIR FORCE BASE, Calif. — In In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, the payload support structure with the three micro-satellites comprising the Space Technology 5 (ST5) spacecraft has been raised to vertical to be weighed. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-02-14
VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers prepare the fairing to be installed around the Space Technology 5 (ST5) spacecraft. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.
2006-01-13
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, technicians complete mating of the three micro-satellites on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-16
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers prepare the scale that will be used to weigh the three micro-satellites comprising the Space Technology 5 (ST5) spacecraft. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers guide one of three micro-satellites onto a payload support structure. The three satellites that make up the Space Technology 5 spacecraft, called ST5, will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-17
VANDENBERG AIR FORCE BASE, Calif. — At Vandenberg Air Force Base in California, workers are moving the Space Technology 5 (ST5) spacecraft into Orbital Sciences’ Building 1555. There it will be mated with the Pegasus XL launch vehicle. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers are mating a third satellite onto the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-18
VANDENBERG AIR FORCE BASE, Calif. — Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, the wrapped Space Technology 5 (ST5) spacecraft is revealed after removal of the shipping container. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-16
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, a scale is attached to a crane that lifts the payload support structure with the three micro-satellites comprising the Space Technology 5 (ST5) spacecraft. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, three micro-satellites are mounted on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers secure one of three micro-satellites onto a payload support structure. The three satellites that make up the Space Technology 5 spacecraft, called ST5, will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-18
VANDENBERG AIR FORCE BASE, Calif. — Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers attach the wires to lift the shipping container surrounding the Space Technology 5 (ST5) spacecraft. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-02-14
VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers clean and prepare the fairing to be installed around the Space Technology 5 (ST5) spacecraft. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.
2006-01-16
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers prepare the scale that will be used to weigh the three micro-satellites comprising the Space Technology 5 (ST5) spacecraft. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-02-14
VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, one half of the fairing is being installed around the Space Technology 5 (ST5) spacecraft. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.
2006-01-13
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, technicians complete mating of the three micro-satellites on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-02-14
VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, the Space Technology 5 (ST5) spacecraft waits for encapsulation after mating with the Orbital Sciences' Pegasus XL launch vehicle. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.
2006-01-18
VANDENBERG AIR FORCE BASE, Calif. — Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers assure the shipping container surrounding the Space Technology 5 (ST5) spacecraft is lifted safely. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-02-14
VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers adjust the first half of the fairing being installed around the Space Technology 5 (ST5) spacecraft. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.
2006-01-16
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers keep close watch as the payload support structure with the three micro-satellites comprising the Space Technology 5 (ST5) spacecraft is lifted and weighed. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
Materials processing in space: Future technology trends
NASA Technical Reports Server (NTRS)
Barter, N. J.
1980-01-01
NASA's materials processing in space- (MPS) program involves both ground and space-based research and looks to frequent and cost effective access to the space environment for necessary progress. The first generation payloads for research are under active design and development. They will be hosted by the Space Shuttle/Spacelab on Earth orbital flights in the early 1980's. hese missions will focus on the acquisition of materials behavior research data, the potential enhancement of Earth based technology, and the implementation of space based processing for specialized, high value materials. Some materials to be studied in these payloads may provide future breakthroughs for stronger alloys, ultrapure glasses, superior electronic components, and new or better chemicals. An operational 25 kW power system is expected to be operational to support sustained, systematic space processing activity beyond shuttle capability for second generation payload systems for SPACELAB and free flyer missions to study solidification and crystal growth and to process metal/alloys, glasses/ceramics, and chemicals and biologicals.
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.
2005-01-01
Addressable Reconfigurable Technology (ART) based structures: Mission Concepts based on Addressable Reconfigurable Technology (ART), originally studied for future ANTS (Autonomous Nanotechnology Swarm) Space Architectures, are now being developed as rovers for nearer term use in lunar and planetary surface exploration. The architecture is based on the reconfigurable tetrahedron as a building block. Tetrahedra are combined to form space-filling networks, shaped for the required function. Basic structural components are highly modular, addressable arrays of robust nodes (tetrahedral apices) from which highly reconfigurable struts (tetrahedral edges), acting as supports or tethers, are efficiently reversibly deployed/stowed, transforming and reshaping the structures as required.
Making Conferences Human Places of Learning
ERIC Educational Resources Information Center
Kenny, Michael
2014-01-01
Open Space Technology is a cumbersome name for a participative conference model that enables dynamic inclusive engagement and challenges traditional, highly structured hierarchical conference formats. Based on self-organising systems, (Wenger, 1998) Open Space Technology conferences have an open process, start with no agenda and empower the most…
Medical technology advances from space research
NASA Technical Reports Server (NTRS)
Pool, S. L.
1972-01-01
Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.
Critical soft landing technology issues for future US space missions
NASA Technical Reports Server (NTRS)
Macha, J. M.; Johnson, D. W.; Mcbride, D. D.
1992-01-01
A programmatic need for research and development to support parachute-based landing systems has not existed since the end of the Apollo missions in the mid-1970s. Now, a number of planned space programs require advanced landing capabilities for which the experience and technology base does not currently exist. New requirements for landing on land with controllable, gliding decelerators and for more effective impact attenuation devices justify a renewal of the landing technology development effort that existed during the Mercury, Gemini, and Apollo programs. A study was performed to evaluate the current and projected national capability in landing systems and to identify critical deficiencies in the technology base required to support the Assured Crew Return Vehicle and the Two-Way Manned Transportation System. A technology development program covering eight landing system performance issues is recommended.
THz semiconductor-based front-end receiver technology for space applications
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Siegel, Peter
2004-01-01
Advances in the design and fabrication of very low capacitance planar Schottky diodes and millimeter-wave power amplifiers, more accurate device and circuit models for commercial 3-D electromagnetic simulators, and the availability of both MEMS and high precision metal machining, have enabled RF engineers to extend traditional waveguide-based sensor and source technologies well into the TI-Iz frequency regime. This short paper will highlight recent progress in realizing THz space-qualified receiver front-ends based on room temperature semiconductor devices.
NASA Technical Reports Server (NTRS)
Khan, Ahmed
2010-01-01
The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX
Space Power for Communication Satellites Beyond 1995
NASA Technical Reports Server (NTRS)
Pierce, P. R.
1984-01-01
The space power trends for communication satellites beginning in the mid-70's are reviewed. Predictions of technology advancements and requirements were compared with actual growth patterns. The conclusions derived suggest that the spacecraft power system technology base and present rate of advancement will not be able to meet the power demands of the early to mid-90's. It is recommended that an emphasis on accelerating the technology development be made to minimize the technology gap.
Systems autonomy technology: Executive summary and program plan
NASA Technical Reports Server (NTRS)
Bull, John S (Editor)
1987-01-01
The National Space Strategy approved by the President and Congress in 1984 sets for NASA a major goal of conducting effective and productive space applications and technology programs which contribute materially toward United States leadership and security. To contribute to this goal, OAST supports the Nation's civil and defense space programs and overall economic growth. OAST objectives are to ensure timely provision of new concepts and advanced technologies, to support both the development of NASA missions in space and the space activities of industry and other organizations, to utilize the strengths of universities in conducting the NASA space research and technology program, and to maintain the NASA centers in positions of strength in critical space technology areas. In line with these objectives, NASA has established a new program in space automation and robotics that will result in the development and transfer and automation technology to increase the capabilities, productivity, and safety of NASA space programs including the Space Station, automated space platforms, lunar bases, Mars missions, and other deep space ventures. The NASA/OAST Automation and Robotics program is divided into two parts. Ames Research Center has the lead role in developing and demonstrating System Autonomy capabilities for space systems that need to make their own decisions and do their own planning. The Jet Propulsion Laboratory has the lead role for Telerobotics (that portion of the program that has a strong human operator component in the control loop and some remote handling requirement in space). This program is intended to be a working document for NASA Headquarters, Program Offices, and implementing Project Management.
NASA Astrophysics Data System (ADS)
Qi, Bin; Guo, Linli; Zhang, Zhixian
2016-07-01
Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.
Development of a verification program for deployable truss advanced technology
NASA Technical Reports Server (NTRS)
Dyer, Jack E.
1988-01-01
Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.
NASA Technical Reports Server (NTRS)
1979-01-01
Needs and requirements for a free flying space science and applications platform to host groupings of compatible, extended mission experiments in earth orbit are discussed. A payload model which serves to define a typical set of mission requirements in the form of a descriptive data base is presented along with experiment leval and group level data summarizations and flight schedules. The payload descriptions are grouped by technology into the following categories: communications, materials (long term effect upon), materials technology development, power, sensors, and thermal control.
NASA Technical Reports Server (NTRS)
1996-01-01
Under contract to Johnson Space Center, the University of Minnesota developed the concept of impedance cardiography as an alternative to thermodilution to access astronaut heart function in flight. NASA then contracted Space Labs, Inc. to construct miniature space units based on this technology. Several companies then launched their own impedance cardiography, including Renaissance Technologies, which manufactures the IQ System. The IQ System is 5 to 17 times cheaper than thermodilution, and features the signal processing technology called TFD (Time Frequency Distribution). TFD provides three- dimensional distribution of the blood circulation force signals, allowing visualization of changes in power, frequency and time.
Possible LISA Technology Applications for Other Missions
NASA Technical Reports Server (NTRS)
Livas, Jeffrey
2018-01-01
The Laser Interferometer Space Antenna (LISA) has been selected as the third large class mission launch opportunity of the Cosmic Visions Program by the European Space Agency (ESA). LISA science will explore a rich spectrum of astrophysical gravitational-wave sources expected at frequencies between 0.0001 and 0.1 Hz and complement the work of other observatories and missions, both space and ground-based, electromagnetic and non-electromagnetic. Similarly, LISA technology may find applications for other missions. This paper will describe the capabilities of some of the key technologies and discuss possible contributions to other missions.
Design and operations technologies - Integrating the pieces. [for future space systems design
NASA Technical Reports Server (NTRS)
Eldred, C. H.
1979-01-01
As major elements of life-cycle costs (LCC) having critical impacts on the initiation and utilization of future space programs, the areas of vehicle design and operations are reviewed in order to identify technology requirements. Common to both areas is the requirement for efficient integration of broad, complex systems. Operations technologies focus on the extension of space-based capabilities and cost reduction through the combination of innovative design, low-maintenance hardware, and increased manpower productivity. Design technologies focus on computer-aided techniques which increase productivity while maintaining a high degree of flexibility which enhances creativity and permits graceful design changes.
NASA Technical Reports Server (NTRS)
Ponchak, Denise S.; Zuzek, John E.
1991-01-01
On the 20th anniversary of the Apollo 11 lunar landing, President Bush set forth ambitious goals for expanding human presence in the solar system. The Space Exploration Initiative (SEI) addresses these goals beginning with Space Station Freedom, followed by a permanent return to the Moon, and a manned mission to Mars. A well designed, adaptive Telecommunications, Navigation, and Information Management (TNIM) infrastructure is vital to the success of these missions. Utilizing initial projections of user requirements, a team under the direction of NASA's Office of Space Operations developed overall architectures and point designs to implement the TNIM functions for the Lunar and Mars mission scenarios. Based on these designs, an assessment of technology alternatives for the telecommunications and information management functions was performed. This technology assessment identifies technology developments necessary to meet the telecommunications and information management system requirements for SEI. Technology requirements, technology needs and alternatives, the present level of technology readiness in each area, and a schedule for development are presented.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.
2004-01-01
The NASA Glenn Research Center is investigating the development and suitability of a software-based open-architecture for space-based reconfigurable transceivers (RTs) and software-defined radios (SDRs). The main objectives of this project are to enable advanced operations and reduce mission costs. SDRs are becoming more common because of the capabilities of reconfigurable digital signal processing technologies such as field programmable gate arrays and digital signal processors, which place radio functions in firmware and software that were traditionally performed with analog hardware components. Features of interest of this communications architecture include nonproprietary open standards and application programming interfaces to enable software reuse and portability, independent hardware and software development, and hardware and software functional separation. The goals for RT and SDR technologies for NASA space missions include prelaunch and on-orbit frequency and waveform reconfigurability and programmability, high data rate capability, and overall communications and processing flexibility. These operational advances over current state-of-art transceivers will be provided to reduce the power, mass, and cost of RTs and SDRs for space communications. The open architecture for NASA communications will support existing (legacy) communications needs and capabilities while providing a path to more capable, advanced waveform development and mission concepts (e.g., ad hoc constellations with self-healing networks and high-rate science data return). A study was completed to assess the state of the art in RT architectures, implementations, and technologies. In-house researchers conducted literature searches and analysis, interviewed Government and industry contacts, and solicited information and white papers from industry on space-qualifiable RTs and SDRs and their associated technologies for space-based NASA applications. The white papers were evaluated, compiled, and used to assess RT and SDR system architectures and core technology elements to determine an appropriate investment strategy to advance these technologies to meet future mission needs. The use of these radios in the space environment represents a challenge because of the space radiation suitability of the components, which drastically reduces the processing capability. The radios available for space are considered to be RTs (as opposed to SDRs), which are digitally programmable radios with selectable changes from an architecture combining analog and digital components. The limited flexibility of this design contrasts against the desire to have a power-efficient solution and open architecture.
New technology innovations with potential for space applications
NASA Astrophysics Data System (ADS)
Krishen, Kumar
2008-07-01
Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.
Beamed energy for space craft propulsion - Conceptual status and development potential
NASA Technical Reports Server (NTRS)
Sercel, Joel C.; Frisbee, Robert H.
1987-01-01
This paper outlines the results of a brief study that sought to identify and characterize beamed energy spacecraft propulsion concepts that may have positive impact on the economics of space industrialization. It is argued that the technology of beamed energy propulsion systems may significantly improve the prospects for near-term colonization of outer space. It is tentatively concluded that, for space industrialization purposes, the most attractive near-term beamed energy propulsion systems are based on microwave technology. This conclusion is reached based on consideration of the common features that exist between beamed microwave propulsion and the Solar Power Satellite (SPS) concept. Laser power beaming also continues to be an attractive option for spacecraft propulsion due to the reduced diffraction-induced beam spread afforded by laser radiation wavelengths. The conceptual status and development potential of a variety of beamed energy propulsion concepts are presented. Several alternative space transportation system concepts based on beamed energy propulsion are described.
Space Biotechnology and Commercial Applications University of Florida
NASA Technical Reports Server (NTRS)
Phillips, Winfred; Evanich, Peggy L.
2004-01-01
The Space Biotechnology and Commercial Applications grant was funded by NASA's Kennedy Space Center in FY 2002 to provide dedicated biotechnology and agricultural research focused on the regeneration of space flight environments with direct parallels in Earth-based applications for solving problems in the environment, advances in agricultural science, and other human support issues amenable to targeted biotechnology solutions. This grant had three project areas, each with multiple tasks. They are: 1) Space Agriculture and Biotechnology Research and Education, 2) Integrated Smart Nanosensors for Space Biotechnology Applications, and 3) Commercial Applications. The Space Agriculture and Biotechnology Research and Education (SABRE) Center emphasized the fundamental biology of organisms involved in space flight applications, including those involved in advanced life support environments because of their critical role in the long-term exploration of space. The SABRE Center supports research at the University of Florida and at the Space Life Sciences Laboratory (SLSL) at the Kennedy Space Center. The Integrated Smart Nanosensors for Space Biotechnology Applications component focused on developing and applying sensor technologies to space environments and agricultural systems. The research activities in nanosensors were coordinated with the SABRE portions of this grant and with the research sponsored by the NASA Environmental Systems Commercial Space Technology Center located in the Department of Environmental Engineering Sciences. Initial sensor efforts have focused on air and water quality monitoring essential to humans for living and working permanently in space, an important goal identified in NASA's strategic plan. The closed environment of a spacecraft or planetary base accentuates cause and effect relationships and environmental impacts. The limited available air and water resources emphasize the need for reuse, recycling, and system monitoring. It is essential to collect real-time information from these systems to ensure crew safety. This new class of nanosensors will be critical to monitoring the space flight environment in future NASA space systems. The Commercial Applications component of this program pursued industry partnerships to develop products for terrestrial use of NASA sponsored technologies, and in turn to stimulate growth in the biotechnology industry. For technologies demonstrating near term commercial potential, the objective is to include industry partners on or about the time of proof of concept that will not only co-invest in the technology but also take the resultant technology to the commercial market.
2003-06-01
NASA’s Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.
Replicated x-ray optics for space applications
NASA Astrophysics Data System (ADS)
Hudec, René; Pína, Ladislav; Inneman, Adolf
2017-11-01
We report on the program of design and development of X-ray optics for space applications in the Czech Republic. Having more than 30 years background in X-ray optics development for space applications (for use in astronomical X-ray telescopes onboard spacecrafts, before 1989 mostly for Soviet and East European INTERKOSMOS program), we focus nowadays on novel technologies and approaches, thin shell replicated mirrors, as well as studies of light-weight mirrors based on innovative materials such as ceramics. The collaboration includes teams from the Academy of Sciences, Universities, and industry. We will describe and discuss both the history of the development of Xray optics in the Czech Republic and the developed technologies and approaches (with focus on replication technology) as well as recent activities and developments including our participation on the ESA XEUS mirror technology development based on the Agreement between ESA and Czech Government.
Large-aperture space optical system testing based on the scanning Hartmann.
Wei, Haisong; Yan, Feng; Chen, Xindong; Zhang, Hao; Cheng, Qiang; Xue, Donglin; Zeng, Xuefeng; Zhang, Xuejun
2017-03-10
Based on the Hartmann testing principle, this paper proposes a novel image quality testing technology which applies to a large-aperture space optical system. Compared with the traditional testing method through a large-aperture collimator, the scanning Hartmann testing technology has great advantages due to its simple structure, low cost, and ability to perform wavefront measurement of an optical system. The basic testing principle of the scanning Hartmann testing technology, data processing method, and simulation process are presented in this paper. Certain simulation results are also given to verify the feasibility of this technology. Furthermore, a measuring system is developed to conduct a wavefront measurement experiment for a 200 mm aperture optical system. The small deviation (6.3%) of root mean square (RMS) between experimental results and interferometric results indicates that the testing system can measure low-order aberration correctly, which means that the scanning Hartmann testing technology has the ability to test the imaging quality of a large-aperture space optical system.
NASA Astrophysics Data System (ADS)
Koepf, Gerhard A.; Begley, David L.
1988-01-01
The present conference discusses topics in free-space laser communications, laser link characteristics, satellite laser communication systems, optoelectronic components for laser communications, and space laser subsystem technologies. Attention is given to Space Station-based deep-space communication experiments, the application of intersatellite links to operational satellite systems, high-power 0.87 micron channel substrate planar lasers for spaceborne communications, a ground experiment using a CO2 laser transceiver for free-space communications, studies of laser ranging to the TOPEX satellite, diffraction-limited tracking for space communications, and the compact implementation of a real-time, acoustooptic SAR processor.
Operation of commercially-based microcomputer technology in a space radiation environment
NASA Astrophysics Data System (ADS)
Yelverton, J. N.
This paper focuses on detection and recovery techniques that should enable the reliable operation of commercially-based microprocessor technology in the harsh radiation environment of space and at high altitudes. This approach is especially significant in light of the current shift in emphasis (due to cost) from space hardened Class-S parts qualification to a more direct use of commercial parts. The method should offset some of the concern that the newer high density state-of-the-art RISC and CISC microprocessors can be used in future space applications. Also, commercial aviation, should benefit, since radiation induced transients are a new issue arising from the increased quantities of microcomputers used in aircraft avionics.
NASA Technical Reports Server (NTRS)
1985-01-01
Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. A narrative summary of the cost estimates and work breakdown structure/dictionary for both study phases is presented. Costs were estimated using the Grumman Space Programs Algorithm for Cost Estimating (SPACE) computer program and results are given for four AOTV configurations. The work breakdown structure follows the standard of the joint government/industry Space Systems Cost Analysis Group (SSCAG). A table is provided which shows cost estimates for each work breakdown structure element.
The United Nations programme on space applications: priority thematic areas
NASA Astrophysics Data System (ADS)
Haubold, H.
The Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) was held in 1999 with efforts to identify world wide benefits of developing space science and technology, particularly in the developing nations. One of the main vehicles to implement recommendations of UNISPACE III is the United Nations Programme on Space Applications of the Office for Outer Space Affairs at UN Headquarters in Vienna. Following a process of prioritization by Member States, the Programme focus its activities on (i) knowledge-based themes as space law and basic space science, (ii) application-based themes as disaster management, natural resources management, environmental monitoring, tele-health, and (iii) enabling technologies such as remote sensing satellites, communications satellites, global navigation satellite systems, and small satellites. Current activities of the Programme will be reviewed. Further information available at http://www.oosa.unvienna.org/sapidx.html
Cargo launch vehicles to low earth orbit
NASA Technical Reports Server (NTRS)
Austin, Robert E.
1990-01-01
There are two primary space transportation capabilities required to support both base programs and expanded mission requirements: earth-to-orbit (ETO) transportation systems and space transfer vehicle systems. Existing and new ETO vehicles required to support mission requirements, and planned robotic missions, along with currently planned ETO vehicles are provided. Lunar outposts, Mars' outposts, base and expanded model, ETO vehicles, advanced avionics technologies, expert systems, network architecture and operations systems, and technology transfer are discussed.
Key technology issues for space robotic systems
NASA Technical Reports Server (NTRS)
Schappell, Roger T.
1987-01-01
Robotics has become a key technology consideration for the Space Station project to enable enhanced crew productivity and to maximize safety. There are many robotic functions currently being studied, including Space Station assembly, repair, and maintenance as well as satellite refurbishment, repair, and retrieval. Another area of concern is that of providing ground based experimenters with a natural interface that they might directly interact with their hardware onboard the Space Station or ancillary spacecraft. The state of the technology is such that the above functions are feasible; however, considerable development work is required for operation in this gravity-free vacuum environment. Furthermore, a program plan is evolving within NASA that will capitalize on recent government, university, and industrial robotics research and development (R and D) accomplishments. A brief summary is presented of the primary technology issues and physical examples are provided of the state of the technology for the initial operational capability (IOC) system as well as for the eventual final operational capability (FOC) Space Station.
ERIC Educational Resources Information Center
Williamson, Ben; Pykett, Jessica; Nemorin, Selena
2018-01-01
Recently, technologies based on neuroscientific insights into brain function and structure have been promoted for application in education. The novel practices and environments produced by these technologies require new forms of "biosocial" analysis to unpack their implications for education, learning and governance. This article…
CICT Computing, Information, and Communications Technology Program
NASA Technical Reports Server (NTRS)
Laufenberg, Lawrence; Tu, Eugene (Technical Monitor)
2002-01-01
The CICT Program is part of the NASA Aerospace Technology Enterprise's fundamental technology thrust to develop tools. processes, and technologies that enable new aerospace system capabilities and missions. The CICT Program's four key objectives are: Provide seamless access to NASA resources- including ground-, air-, and space-based distributed information technology resources-so that NASA scientists and engineers can more easily control missions, make new scientific discoveries, and design the next-generation space vehicles, provide high-data delivery from these assets directly to users for missions, develop goal-oriented human-centered systems, and research, develop and evaluate revolutionary technology.
In-Space Manufacturing: Pioneering a Sustainable Path to Mars
NASA Technical Reports Server (NTRS)
Werkheiser, Niki
2015-01-01
In order to provide meaningful impacts to exploration technology needs, the In-Space Manufacturing (ISM) Initiative must influence exploration systems design now. In-space manufacturing offers: dramatic paradigm shift in the development and creation of space architectures; efficiency gain and risk reduction for low Earth orbit and deep space exploration; and "pioneering" approach to maintenance, repair, and logistics leading to sustainable, affordable supply chain model. In order to develop application-based capabilities in time to support NASA budget and schedule, ISM must be able to leverage the significant commercial developments, which requires innovative, agile collaborative mechanisms (contracts, challenges, SBIR's, etc.); and NASA-unique investments to focus primarily on adapting the technologies and processes to the microgravity environment. We must do the foundational work - it is the critical path for taking these technologies from lab curiosities to institutionalized capabilities: characterize, certify, institutionalize, design for Additive Manufacturing (AM). Ideally, International Space Station (ISS) U.S. lab rack or partial rack space should be identified for in-space manufacturing utilization in order to continue technology development of a suite of capabilities required for exploration missions, as well as commercialization on ISS.
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
2002-01-01
NASA's Office of Safety and Mission Assurance sponsors an Agency-wide NDE Program that supports Aeronautics and Space Transportation Technology, Human Exploration and Development of Space, Earth Science, and Space Science Enterprises. For each of these Enterprises, safety is the number one priority. Development of the next generation aero-space launch and transportation vehicles, satellites, and deep space probes have highlighted the enabling role that NDE plays in these advanced technology systems. Specific areas of advanced component development, component integrity, and structural heath management are critically supported by NDE technologies. The simultaneous goals of assuring safety, maintaining overall operational efficiency, and developing and utilizing revolutionary technologies to expand human activity and space-based commerce in the frontiers of air and space places increasing demands on the Agencies NDE infrastructure and resources. In this presentation, an overview of NASA's NDE Program will be presented, that includes a background and status of current Enterprise NDE issues, and the NDE investment areas being developed to meet Enterprise safety and mission assurance needs through the year 2009 and beyond.
Technology Development Risk Assessment for Space Transportation Systems
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Godsell, Aga M.; Go, Susie
2006-01-01
A new approach for assessing development risk associated with technology development projects is presented. The method represents technology evolution in terms of sector-specific discrete development stages. A Monte Carlo simulation is used to generate development probability distributions based on statistical models of the discrete transitions. Development risk is derived from the resulting probability distributions and specific program requirements. Two sample cases are discussed to illustrate the approach, a single rocket engine development and a three-technology space transportation portfolio.
Space Transportation Avionics Technology Symposium. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1990-01-01
The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes, identified during the symposium, are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.
Space Transportation Avionics Technology Symposium. Volume 2: Conference Proceedings
NASA Technical Reports Server (NTRS)
1990-01-01
The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.
Pen-based computers: Computers without keys
NASA Technical Reports Server (NTRS)
Conklin, Cheryl L.
1994-01-01
The National Space Transportation System (NSTS) is comprised of many diverse and highly complex systems incorporating the latest technologies. Data collection associated with ground processing of the various Space Shuttle system elements is extremely challenging due to the many separate processing locations where data is generated. This presents a significant problem when the timely collection, transfer, collation, and storage of data is required. This paper describes how new technology, referred to as Pen-Based computers, is being used to transform the data collection process at Kennedy Space Center (KSC). Pen-Based computers have streamlined procedures, increased data accuracy, and now provide more complete information than previous methods. The end results is the elimination of Shuttle processing delays associated with data deficiencies.
Advancing automation and robotics technology for the space station and for the US economy
NASA Technical Reports Server (NTRS)
Nunamaker, Robert
1988-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memo 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixth in a series of progress updates and covers the period between October 1, 1987 and March 1, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.
Advancing automation and robotics technology for the space station and for the US economy
NASA Technical Reports Server (NTRS)
1986-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the second in a series of progress updates and covers the period between October 4, 1985, and March 31, l986. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Program and serve as a highly visible stimulator effecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.
Space station thermal control surfaces. Volume 1: Interim report
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.
1978-01-01
The U.S. space program goals for long-duration manned missions place particular demands on thermal-control systems. The objective of this program is to develop plans which are based on the present thermal-control technology, and which will keep pace with the other space program elements. The program tasks are as follows: (1) requirements analysis, with the objectives to define the thermal-control-surface requirements for both space station and 25 kW power module, to analyze the missions, and to determine the thermal-control-surface technology needed to satisfy both sets of requirements; (2) technology assessment, with the objectives to perform a literature/industry survey on thermal-control surfaces, to compare current technology with the requirements developed in the first task, and to determine what technology advancements are required for both the space station and the 25 kW power module; and (3) program planning that defines new initiative and/or program augmentation for development and testing areas required to provide the proper environment control for the space station and the 25 kW power module.
Space-based solar power conversion and delivery systems study. Volume 5: Economic analysis
NASA Technical Reports Server (NTRS)
1977-01-01
Space-based solar power conversion and delivery systems are studied along with a variety of economic and programmatic issues relevant to their development and deployment. The costs, uncertainties and risks associated with the current photovoltaic Satellite Solar Power System (SSPS) configuration, and issues affecting the development of an economically viable SSPS development program are addressed. In particular, the desirability of low earth orbit (LEO) and geosynchronous (GEO) test satellites is examined and critical technology areas are identified. The development of SSPS unit production (nth item), and operation and maintenance cost models suitable for incorporation into a risk assessment (Monte Carlo) model (RAM) are reported. The RAM was then used to evaluate the current SSPS configuration expected costs and cost-risk associated with this configuration. By examining differential costs and cost-risk as a function of postulated technology developments, the critical technologies, that is, those which drive costs and/or cost-risk, are identified. It is shown that the key technology area deals with productivity in space, that is, the ability to fabricate and assemble large structures in space, not, as might be expected, with some hardware component technology.
Exploration Space Suit Architecture and Destination Environmental-Based Technology Development
NASA Technical Reports Server (NTRS)
Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam
2013-01-01
This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.
Exploration Space Suit Architecture and Destination Environmental-Based Technology Development
NASA Technical Reports Server (NTRS)
Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam
2013-01-01
This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars1 left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper addresses the space suit system architecture and technologies required based on human exploration (EVA) destinations, and describes how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important as humans venture farther from Earth. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.
Large space-based systems for dealing with global environment change
NASA Technical Reports Server (NTRS)
Jenkins, Lyle M.
1992-01-01
Increased concern over the effects of global climate change and depletion of the ozone layer has resulted in support for the Global Change Research Program and the Mission to Planet Earth. Research to understand Earth system processes is critical, but it falls short of providing ways of mitigating the effects of change. Geoengineering options and alternatives to interactively manage change need to be developed. Space-based concepts for dealing with changes to the environment should be considered in addition to Earth-based actions. 'Mission for Planet Earth' describes those space-based geoengineering solutions that may combine with an international global change program to stabilize the Global environment. Large space systems that may be needed for this response challenge guidance and control engineering and technology. Definition, analysis, demonstration, and preparation of geoengineering technology will provide a basis for policy response if global change consequences are severe.
Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael
2012-01-01
The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided. PMID:23201999
Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael
2012-10-01
The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided.
Critical Technologies for the Development of Future Space Elevator Systems
NASA Technical Reports Server (NTRS)
Smitherman, David V., Jr.
2005-01-01
A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.
Xiao, Fengjun; Li, Chengzhi; Sun, Jiangman; Zhang, Lianjie
2017-01-01
To study the rapid growth of research on organic photovoltaic (OPV) technology, development trends in the relevant research are analyzed based on CiteSpace software of text mining and visualization in scientific literature. By this analytical method, the outputs and cooperation of authors, the hot research topics, the vital references and the development trend of OPV are identified and visualized. Different from the traditional review articles by the experts on OPV, this work provides a new method of visualizing information about the development of the OPV technology research over the past decade quantitatively.
NASA Astrophysics Data System (ADS)
Xiao, Fengjun; Li, Chengzhi; Sun, Jiangman; Zhang, Lianjie
2017-09-01
To study the rapid growth of research on organic photovoltaic (OPV) technology, development trends in the relevant research are analyzed based on CiteSpace software of text mining and visualization in scientific literature. By this analytical method, the outputs and cooperation of authors, the hot research topics, the vital references and the development trend of OPV are identified and visualized. Different from the traditional review articles by the experts on OPV, this work provides a new method of visualizing information about the development of the OPV technology research over the past decade quantitatively.
Hybrid Life Support System Technology Demonstrations
NASA Astrophysics Data System (ADS)
Morrow, R. C.; Wetzel, J. P.; Richter, R. C.
2018-02-01
Demonstration of plant-based hybrid life support technologies in deep space will validate the function of these technologies for long duration missions, such as Mars transit, while providing dietary variety to improve habitability.
The Revolution in Earth and Space Science Education.
ERIC Educational Resources Information Center
Barstow, Daniel; Geary, Ed; Yazijian, Harvey
2002-01-01
Explains the changing nature of earth and space science education such as using inquiry-based teaching, how technology allows students to use satellite images in inquiry-based investigations, the consideration of earth and space as a whole system rather than a sequence of topics, and increased student participation in learning opportunities. (YDS)
CSTI Earth-to-orbit propulsion research and technology program overview
NASA Technical Reports Server (NTRS)
Gentz, Steven J.
1993-01-01
NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification.
Internet Technologies for Space-based Communications: State of the Art and Challenges
NASA Technical Reports Server (NTRS)
Bhasin, K.; DePaula, R.; Edwards, C.
2000-01-01
The Internet is rapidly changing the ways we communicate information around the globe today. The desire to provide Internet-based services to anyone, anywhere, anytime has brought satellite communications to the forefront to become an integral part of the Internet. In spite of the distances involved, satellite links are proving to be capable of providing Internet services based on Internet protocol (TCP/IP) stack. This development has led to the question particularly at NASA; can satellites and other space platforms become an Internet-node in space? This will allow the direct transfer of information directly from space to the users on Earth and even be able to control the spacecraft and its instruments. NASA even wants to extend the near earth space Internet to deep space applications where scientists and the public here on Earth may view space exploration in real time via the Internet. NASA's future solar system exploration will involve intensive in situ investigations of planets, moons, asteroids, and comets. While past missions typically involved a single fly-by or orbiting science spacecraft, future missions will begin to use fleets of small, highly intelligent robotic vehicles to carry out collaborative investigations. The resulting multi-spacecraft topologies will effectively create a wide area network spanning the solar system. However, this will require significant development in Internet technologies for space use. This paper provides the status'of the Internet for near earth applications and the potential extension of the Internet for use in deep space planetary exploration. The paper will discuss the overall challenges of implementing the space Internet and how the space Internet will integrate into the complex terrestrial systems those forms the Internet of today in a hybrid set of networks. Internet. We envision extending to the deep space environment such Internet concepts as a well-designed layered architecture. This effort will require an ability to develop and infuse new physical layer technology to increase network bandwidth at very low-bit error rates. In addition, we identify network technologies such as routers and switches needed to maintain standard application layer interfaces, while providing low-cost, efficient, modular networking solutions. We will describe the overall architectural approach to extending the concept of the Internet to space and highlight the important technological challenges and initiatives that will make it a reality.
Midcourse Space Experiment Data Certification and Technology Transfer
NASA Technical Reports Server (NTRS)
Pollock, David B.
1997-01-01
The University of Alabama in Huntsville contributes to the Technical Management of the Midcourse Space Experiment Program, to the Certification of the Level 2 data produced by the Midcourse Space Experiment's suite of in-orbit imaging radiometers, imaging spectra-radiometers and an interferometer and to the Transfer of the Midcourse Space Experiment Technology to other Government Programs. The Technical Management of the Midcourse Space Experiment Program is expected to continue through out the spacecraft's useful life time, 5 years after its 1996 launch. The Transfer of Midcourse Space Experiment Technology to other government elements is expected to be on a demand basis by the United States Government and other organizations. The University of Alabama Huntsville' contribution specifically supports the nine Ultraviolet Visible Imagers and Spectrographic Imagers (UVISI) and the Pointing and Alignment of all eleven of the science instruments. The science instruments effectively cover the 0.1 to 28 micron spectral region. The Midcourse Space Experiment spacecraft, launched April 24, 1996, is expected to have a 5 year useful lifetime with a 12 month lifetime for the cryogenically cooled IR sensor. A pre-launch, ground based calibration of the instruments provided a basis for the pre-launch certification of the Level 2 data base these instruments produce. With the spacecraft in-orbit the certification of the instruments' Level 2 data base is being extended to the in-orbit environment.
BioServe space technologies: A NASA Center for the Commercial Development of Space
NASA Technical Reports Server (NTRS)
1992-01-01
BioServe Space Technologies, a NASA Center for the Commercial Development of Space (CCDS), was established in 1987. As is characteristic of each CCDS designated by NASA, the goals of this commercial center are aimed at stimulating high technology research that takes advantage of the space environment and at leading in the development of new products and services which have commercial potential or that contribute to possible new commercial ventures. BioServe's efforts in these areas focus upon space life science studies and the development of enabling devices that will facilitate ground-based experiments as well as the conversion of such to the microgravity environment. A direct result of BioServe's hardware development and life sciences studies is the training of the next generation of bioengineers who will be knowledgeable and comfortable working with the challenges of the space frontier.
Astronautics in past and future
NASA Technical Reports Server (NTRS)
Stuhlinger, E.
1974-01-01
The contributions of Oberth in the development of rocket technology as a basis for the conduction of manned and unmanned space flights are considered, giving attention also to other rocket pioneers, including Ziolkowski, Ganswindt, von Hoefft, and Goddard. Early stages in rocket development in Germany, Russia, and the U.S. are examined. The launching of Sputnik I in October 1957 was the beginning of a new era in the history of mankind. The start of this new era of space exploration and space utilization comes at a time when the limited resources of the earth begin to impose severe restrictions upon the continuing growth of human technology and civilization. It is predicted that the new space technology will provide the means for overcoming these restrictions. Future space programs, which are partly based on the development of the space shuttle, are discussed, taking into account the international aspects of the new plans for the utilization and the study of space.
USSR Space Life Sciences Digest, volume 2, no.1
NASA Technical Reports Server (NTRS)
Paulson, L. D.
1981-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.
USSR Space Life Sciences Digest, volume 1, no. 3
NASA Technical Reports Server (NTRS)
Wallace, P. M.
1980-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.
2016-01-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
NASA Astrophysics Data System (ADS)
Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.
2016-09-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
Stellar Interferometer Technology Experiment (SITE)
NASA Technical Reports Server (NTRS)
Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael
1995-01-01
The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.
Green Propulsion Auxiliary Power Unit Demonstration at MSFC
NASA Technical Reports Server (NTRS)
Robinson, Joel W.
2014-01-01
In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01)1 for Launch Propulsion Systems is one of fourteen TAs that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within TA-01 was the need for a green propulsion auxiliary power unit (APU) for hydraulic power by 2015. Engineers led by the author at the Marshall Space Flight Center (MSFC) have been evaluating green propellant alternatives and have begun the development of an APU test bed to demonstrate the feasibility of use. NASA has residual APU assets remaining from the retired Space Shuttle Program. Likewise, the F-16 Falcon fighter jet also uses an Emergency Power Unit (EPU) that has similar characteristics to the NASA hardware. Both EPU and APU components have been acquired for testing at MSFC. This paper will summarize the status of the testing efforts of green propellant from the Air Force Research Laboratory (AFRL) propellant AFM315E based on hydroxyl ammonium nitrate (HAN) with these test assets.
NASA Technical Reports Server (NTRS)
1993-01-01
Based on Johnson Space Flight Center's development of a rotating bioreactor cell culture apparatus for Space Shuttle medical research, Johnson Space Flight Center engineers who worked on the original project formed a company called Synthecon, with the intention of commercializing the bioreactor technology. Synthecon grows three dimensional tissues in the bioreactor. These are superior to previous two-dimensional tissue samples in the study of human cell growth. A refined version of the Johnson Space Center technology, Synthecon's Rotary Cell Culture System includes a cell culture chamber that rotates around a horizontal axis. The cells establish an orbit that approximates free fall through the liquid medium in the chamber. The technology has significant applications for cancer research and treatment as well as AIDS research.
Architectural Options for a Future Deep Space Optical Communications Network
NASA Technical Reports Server (NTRS)
Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.
2004-01-01
This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.
Machine intelligence and robotics: Report of the NASA study group. Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
A brief overview of applications of machine intelligence and robotics in the space program is given. These space exploration robots, global service robots to collect data for public service use on soil conditions, sea states, global crop conditions, weather, geology, disasters, etc., from Earth orbit, space industrialization and processing technologies, and construction of large structures in space. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are discussed. A vigorous and long-range program to incorporate and keep pace with state of the art developments in computer technology, both in spaceborne and ground-based computer systems is recommended.
Deep Space Wide Area Search Strategies
NASA Astrophysics Data System (ADS)
Capps, M.; McCafferty, J.
There is an urgent need to expand the space situational awareness (SSA) mission beyond catalog maintenance to providing near real-time indications and warnings of emerging events. While building and maintaining a catalog of space objects is essential to SSA, this does not address the threat of uncatalogued and uncorrelated deep space objects. The Air Force therefore has an interest in transformative technologies to scan the geostationary (GEO) belt for uncorrelated space objects. Traditional ground based electro-optical sensors are challenged in simultaneously detecting dim objects while covering large areas of the sky using current CCD technology. Time delayed integration (TDI) scanning has the potential to enable significantly larger coverage rates while maintaining sensitivity for detecting near-GEO objects. This paper investigates strategies of employing TDI sensing technology from a ground based electro-optical telescope, toward providing tactical indications and warnings of deep space threats. We present results of a notional wide area search TDI sensor that scans the GEO belt from three locations: Maui, New Mexico, and Diego Garcia. Deep space objects in the NASA 2030 debris catalog are propagated over multiple nights as an indicative data set to emulate notional uncatalogued near-GEO orbits which may be encountered by the TDI sensor. Multiple scan patterns are designed and simulated, to compare and contrast performance based on 1) efficiency in coverage, 2) number of objects detected, and 3) rate at which detections occur, to enable follow-up observations by other space surveillance network (SSN) sensors. A step-stare approach is also modeled using a dedicated, co-located sensor notionally similar to the Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) tower. Equivalent sensitivities are assumed. This analysis quantifies the relative benefit of TDI scanning for the wide area search mission.
Transportation technology program: Strategic plan
NASA Astrophysics Data System (ADS)
1991-09-01
The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.
Transportation technology program: Strategic plan
NASA Technical Reports Server (NTRS)
1991-01-01
The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.
Overview of NASA's Space Solar Power Technology Advanced Research and Development Program
NASA Technical Reports Server (NTRS)
Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)
2001-01-01
Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).
NASA Technical Reports Server (NTRS)
1975-01-01
A midterm progress report was presented on the study of commonality of space vehicle applications to future national needs. Two of the four objectives in the entire study were discussed. The first one involved deriving functional requirements for space systems based on future needs and environments for the military and civilian communities. Possible space initiatives based on extrapolations of technology were compiled without regard as to need but only with respect to feasibility, given the advanced state of technology which could exist through the year 2,000. The second one involved matching the initiatives against the requirements, developing a methodology to match and select the initiatives with each of the separate plans based on the future environments, and deriving common features of the military and civilian support requirements for these programs.
FARMS: The Flexible Agricultural Robotics Manipulator
NASA Technical Reports Server (NTRS)
Gill, Paul S.
1991-01-01
A technology utilization project was established with the Marshall Space Flight Center and the University of Georgia to develop an Earth-based, robotic end effector to process live plant (geranium) material which will improve productivity and efficiency in agricultural systems such as commercial nurseries and greenhouse systems. The aim is to apply this technology to NASA's presence in space, including permanently manned space stations and manned planetary communities requiring large scale food production needs.
Introduction to Space Resource Mining
NASA Technical Reports Server (NTRS)
Mueller, Robert P.
2013-01-01
There are vast amounts of resources in the solar system that will be useful to humans in space and possibly on Earth. None of these resources can be exploited without the first necessary step of extra-terrestrial mining. The necessary technologies for tele-robotic and autonomous mining have not matured sufficiently yet. The current state of technology was assessed for terrestrial and extraterrestrial mining and a taxonomy of robotic space mining mechanisms was presented which was based on current existing prototypes. Terrestrial and extra-terrestrial mining methods and technologies are on the cusp of massive changes towards automation and autonomy for economic and safety reasons. It is highly likely that these industries will benefit from mutual cooperation and technology transfer.
ERIC Educational Resources Information Center
Caron, Daniel W.; Fuller, Jeremy; Watson, Janice; St. Hilaire, Katherine
2007-01-01
In May 2005, the International Technology Education Association (ITEA) was funded by the National Aeronautics and Space Administration (NASA) to develop curricular units for Grades K-12 on Space Exploration. The units focus on aspects of the themes that NASA Engineers and Scientists--as well as future generations of explorers--must consider, such…
Evolving technologies for Space Station Freedom computer-based workstations
NASA Technical Reports Server (NTRS)
Jensen, Dean G.; Rudisill, Marianne
1990-01-01
Viewgraphs on evolving technologies for Space Station Freedom computer-based workstations are presented. The human-computer computer software environment modules are described. The following topics are addressed: command and control workstation concept; cupola workstation concept; Japanese experiment module RMS workstation concept; remote devices controlled from workstations; orbital maneuvering vehicle free flyer; remote manipulator system; Japanese experiment module exposed facility; Japanese experiment module small fine arm; flight telerobotic servicer; human-computer interaction; and workstation/robotics related activities.
Corredor, Iván; Bernardos, Ana M; Iglesias, Josué; Casar, José R
2012-01-01
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — n the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, a third satellite is transported across the floor. It will be mounted with the other satellites on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers lower the second satellite onto the payload support structure. Three micro-satellites are being mounted on a payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-02-14
VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, this photo shows two of the Space Technology 5 (ST5) spacecraft's microsatellites mounted on the payload structure that is mated to the Orbital Sciences' Pegasus XL launch vehicle. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.
2006-02-14
VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, this closeup shows two of the Space Technology 5 (ST5) spacecraft's microsatellites mounted on the payload structure that is mated to the Orbital Sciences' Pegasus XL launch vehicle. In the background is the fairing that will enclose the ST5 for launch. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.
2006-02-14
VANDENBERG AIR FORCE BASE, CALIF. -Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California is the Pegasus XL launch vehicle and the Space Technology 5 (ST5) spacecraft being prepared for encapsulation before launch. The ST5, mated to Orbital Sciences' Pegasus XL launch vehicle, contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers are maneuvering a second satellite suspended by an overhead crane. Three micro-satellites are being mounted on a payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2009-09-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2010-11-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.;
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.
Space Tracking and Surveillance System (STSS) Cryogenic Technology Efforts and Needs
NASA Astrophysics Data System (ADS)
Kolb, I. L.; Curran, D. G. T.; Lee, C. S.
2004-06-01
The Missile Defense Agency's (MDA) STSS program, the former Space Based Infrared Systems (SBIRS) Low, has been actively supporting and working to advance space-borne cryocooler technology through efforts with the Air Force Research Lab (AFRL) and Small Business Innovation Research (SBIR) program. The envisioned infrared satellite system requires high efficiency, low power, and low weight cooling in a range of temperature and cooling loads below 120K for reliable 10-year operation to meet mission needs. This paper describes cryocooler efforts previously and currently supported by STSS and the possible future cryogenic requirements for later technology insertion.
Advanced Refrigerator/Freezer Technology Development. Technology Assessment
NASA Technical Reports Server (NTRS)
Gaseor, Thomas; Hunter, Rick; Hamill, Doris
1996-01-01
The NASA Lewis Research Center, through contract with Oceaneering Space Systems, is engaged in a project to develop advanced refrigerator/freezer (R/F) technologies for future Life and Biomedical Sciences space flight missions. The first phase of this project, a technology assessment, has been completed to identify the advanced R/F technologies needed and best suited to meet the requirements for the five R/F classifications specified by Life and Biomedical Science researchers. Additional objectives of the technology assessment were to rank those technologies based on benefit and risk, and to recommend technology development activities that can be accomplished within this project. This report presents the basis, the methodology, and results of the R/F technology assessment, along with technology development recommendations.
Propellantless Propulsion Technologies for In-Space Transportation
NASA Technical Reports Server (NTRS)
Johnson, Les; Cook, Stephen (Technical Monitor)
2001-01-01
In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 or 3 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will be described. Results of recent earth-based technology demonstrations and space tests will also be discussed.
A revolution in Distributed Virtual Globes creation with e-CORCE space program
NASA Astrophysics Data System (ADS)
Antikidis, Jean-Pierre
2010-05-01
Space applications are to-day participating to our everyday life on a continuous fashion and most of the time in an invisible way. Meteorology, telecom and more recently GPS driven applications are these days fully participating to our modern and comfortable way of life. Therefore a new revolution is underway by which Space Remote Sensing technology will bring the full of the Earth available in a digital form. Present requirements for digital Earth creation at high resolution requirement are pushing space technology to a new technological frontier that could be called the: 1 day to one week, 1 meter, 1 Earth, challenge.The e-CORCE vision (e-Constellation d'Observation Recurrente Cellulaire) relies on a complete new avenue to create a full virtual earth with the help of small satellite constellation and make them operated as sensors connected to a powerful internet based ground network. To handle this incredibly high quantity of information (10 000 Billions metric pixel ), maximum use of psycho-visual compression associated to over-simplified platforms considered as space IP nodes and a massive World-wide Grid-based system composed of more than 40 receiving and processing nodes is contemplated. The presentation will introduce the technological hurdles and the way modern upcoming cyber-infrastructure technologies called WAG (Wide Area Grid) may open a practical and economically sound solution to this never attempted challenge.
NASA's Space Environments and Effects Program: Technology for the New Millennium
NASA Technical Reports Server (NTRS)
Hardage, Donna M.; Pearson, Steven D.
2000-01-01
Current trends in spacecraft development include the use of advanced technologies while maintaining the "faster, better, cheaper" philosophy. Spacecraft designers are continually designing with smaller and faster electronics as well as lighter and thinner materials providing better performance, lower weight, and ultimately lower costs. Given this technology trend, spacecraft will become increasingly susceptible to the harsh space environments, causing damaging or even disabling effects on space systems. NASA's Space Environments and Effects (SEE) Program defines the space environments and provides advanced technology development to support the design, development, and operation of spacecraft systems that will accommodate or mitigate effects due to the harsh space environments. This Program provides a comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this multitudinous information is properly maintained and inserted into spacecraft design programs. A description of the SEE Program, its accomplishments, and future activities is provided.
Commercial Research and Development: Power to Explore, Opportunities from Discovery
NASA Technical Reports Server (NTRS)
Casas, Joseph C.; Nall, Mark; Powers, C. Blake; Henderson, Robin N. (Technical Monitor)
2002-01-01
The technical and economic goals of commercial use of space are laudable, and are addressed as a high priority by almost every national space program and most major aerospace companies the world over. Yet, the focus of most organizational agendas and discussions tends to focus on one or two very narrow enabling aspects of this potentially large technological and economic opportunity. While government sponsored commercial launch activities and private space platforms are an integral part of efforts to leverage the commercial use of space, these activities are possibly one of the smallest parts of creating, a viable and sustainable market for the commercial use of space. Most of the current programs usually do not appropriately address some of the critical issues of the current, already interested, potential space user communities. Current programs place the focus of the majority of the user requirements on the vehicle payload weight and mass performance considerations as the primary payload economical factor in providing a commercial market with a stimulating price for gaining access to the space environment. The larger user challenges of transformation from Earth-based research and development approaches to space environment approaches are not addressed early enough in programs to impact the new business considerations of potential users. Currently, space-based research and development user activities require a large user investment in time, in development of new areas of support expertise, in development of new systems, in risk of schedule to completion, and in long term capital positioning. The larger opportunities for stimulating a strong market driven interest in commercial use of space that could result from the development of vehicle payload "leap ahead technologies" for users are being missed, and there is a real risk of limiting the potentially broader market base to support a more technologically advanced and economically lucrative outcome. A major driving force for strengthening the commercial space activities is not only the technological advances in launch vehicle, or newer satellites, but the myriad of enabling payloads technologies that could, as a goal, result in an almost transparent facilitation to regular CD a, -n access to space and microgravity environments by the future users from the existing Earth-based research and development organizations market segments. Rather than focusing only on developing high lift performance launch vehicles and then developing payloads to fit them, the real focus from a business model perspective should to be on the customer payloads requirements, and on designing launch vehicles and platforms systems for a space transportation and facility infrastructure to support all aspects of the business model for the user market. To harness the full potential of space commercialization, new efforts need to be made to comprehensively examine all the critical business model areas for commercial research, development, and manufacturing in space so as to identify specific products and efforts; to determine how such operations must be both similar to and different from current Earth-based activities; to evaluate the enabling technological devices, processes and efforts so that like efforts can be addressed in a synergistic fashion for maximum user cost effectiveness; to delineate the services that are both needed and can be provided by such activities; and to use this information to drive design and development of space commercialization efforts and policy.
Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Hoberecht, M. A.; Le, M.
1986-01-01
The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.
System study of the utilization of space for carbon dioxide research
NASA Technical Reports Server (NTRS)
Glaser, P. E.; Vranka, R.
1985-01-01
The objectives included: compiling and selecting the Scientific Data Requirements (SDRs) pertinent to the CO2 Research Program that have the potential to be more successfully achieved by utilizing space-based sensor systems; assessment of potential space technology in monitoring those parameters which may be important first indicators of climate change due to increasing atmospheric CO2, including the behavior of the West Antarctic ice sheet; and determine the potential of space technology for monitoring those parameters to improve understanding of the coupling between CO2 and cloud cover.
Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.
2001-01-01
The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.
Chemical Gas Sensors for Aeronautic and Space Applications 2
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Chen, Liong-Yu; Neudeck, Phil G.; Knight, Dale; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, Darby; Liu, M.; Rauch, W. A.
1998-01-01
Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.
Chemical Gas Sensors for Aeronautics and Space Applications III
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.;
1999-01-01
Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.
Chemical Gas Sensors for Aeronautic and Space Applications 2
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.
1998-01-01
Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.
Pointing and control system enabling technology for future automated space missions
NASA Technical Reports Server (NTRS)
Dahlgren, J. B.
1978-01-01
Future automated space missions present challenging opportunities in the pointing-and-control technology disciplines. The enabling pointing-and-control system technologies for missions from 1985 to the year 2000 were identified and assessed. A generic mission set including Earth orbiter, planetary, and other missions which predominantly drive the pointing-and-control requirements was selected for detailed evaluation. Technology candidates identified were prioritized as planning options for future NASA-OAST advanced development programs. The primary technology thrusts in each candidate program were cited, and advanced development programs in pointing-and-control were recommended for the FY 80 to FY 87 period, based on these technology thrusts.
On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg
2007-01-01
Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).
NASA Astrophysics Data System (ADS)
Pakhanov, N. A.; Andreev, V. M.; Shvarts, M. Z.; Pchelyakov, O. P.
2018-03-01
Multi-junction solar cells based on III-V compounds are the most efficient converters of solar energy to electricity and are widely used in space solar arrays and terrestrial photovoltaic modules with sunlight concentrators. All modern high-efficiency III-V solar cells are based on the long-developed triple-junction III-V GaInP/GaInAs/Ge heterostructure and have an almost limiting efficiency for a given architecture — 30 and 41.6% for space and terrestrial concentrated radiations, respectively. Currently, an increase in efficiency is achieved by converting from the 3-junction to the more efficient 4-, 5-, and even 6-junction III-V architectures: growth technologies and methods of post-growth treatment of structures have been developed, new materials with optimal bandgaps have been designed, and crystallographic parameters have been improved. In this review, we consider recent achievements and prospects for the main directions of research and improvement of architectures, technologies, and materials used in laboratories to develop solar cells with the best conversion efficiency: 35.8% for space, 38.8% for terrestrial, and 46.1% for concentrated sunlight. It is supposed that by 2020, the efficiency will approach 40% for direct space radiation and 50% for concentrated terrestrial solar radiation. This review considers the architecture and technologies of solar cells with record-breaking efficiency for terrestrial and space applications. It should be noted that in terrestrial power plants, the use of III-V SCs is economically advantageous in systems with sunlight concentrators.
The Path to Far-IR Interferometry in Space: Recent Developments, Plans, and Prospects
NASA Technical Reports Server (NTRS)
Leisawitz, David T.; Rinehart, Stephen A.
2012-01-01
The far-IR astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, highresolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of waterbearing planets. The community is united in its support for a space-based interferometry mission. Through concerted efforts worldwide, the key enabling technologies are maturing. Two balloon-borne far-IR interferometers are presently under development. This paper reviews recent technological and programmatic developments, summarizes plans, and offers a vision for space-based far-IR interferometry involving international collaboration.
NASA Technical Reports Server (NTRS)
Hueter, Uwe
2000-01-01
NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.
Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking
NASA Astrophysics Data System (ADS)
Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan
2016-06-01
SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability
USSR Space Life Sciences Digest, volume 1, no. 4
NASA Technical Reports Server (NTRS)
Paulson, L. D.
1980-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology, and life sciences and technology.
USSR Space Life Sciences Digest, volume 2, no. 2
NASA Technical Reports Server (NTRS)
Paulson, L. D.
1981-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences and technology.
NASA Technical Reports Server (NTRS)
Sauerwein, Timothy A.; Gostomski, Thomas
2007-01-01
This brief presentation describes the mechanical and electrical integration activities and environmental testing challenges of the Space Technology 5 (ST5) Project. Lessons learned during this process are highlighted, including performing mechanical activities serially to gain efficiency through repetition and performing electrical activities based on the level of subsystem expertise available.
The Telecommunications and Data Acquisition Report. [Deep Space Network
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.
Balloon-borne air traffic management (ATM) as a precursor to space-based ATM
NASA Astrophysics Data System (ADS)
Brodsky, Yuval; Rieber, Richard; Nordheim, Tom
2012-01-01
The International Space University—Balloon Air traffic control Technology Experiment (I-BATE ) has flown on board two stratospheric balloons and has tracked nearby aircraft by receiving their Automatic Dependent Surveillance-Broadcast (ADS-B) transmissions. Air traffic worldwide is facing increasing congestion. It is predicted that daily European flight volumes will more than double by 2030 compared to 2009 volumes. ADS-B is an air traffic management system being used to mitigate air traffic congestion. Each aircraft is equipped with both a GPS receiver and an ADS-B transponder. The transponder transmits an equipped aircraft's unique identifier, position, heading, and velocity once per second. The ADS-B transmissions can then be received by ground stations for use in traditional air traffic management. Airspace not monitored by these ground stations or other traditional means remains uncontrolled and poorly monitored. A constellation of space-based ADS-B receivers could close these gaps and provide global air traffic monitoring. By flying an ADS-B receiver on a stratospheric balloon, I-BATE has served as a precursor to a constellation of ADS-B-equipped Earth-orbiting satellites. From the ˜30 km balloon altitude, I-BATE tracked aircraft ranging up to 850 km. The experiment has served as a proof of concept for space-based air traffic management and supports a technology readiness level 6 of space-based ADS-B reception. I-BATE: International Space University—Balloon Air traffic control Technology Experiment.
Technology Assessment of Laser-Assisted Materials Processing in Space
NASA Technical Reports Server (NTRS)
Nagarathnam, Karthik; Taminger, Karen M. B.
2001-01-01
Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.
2002-08-01
A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.
NASA Technical Reports Server (NTRS)
Pearson, Steven D.; Clifton, K. Stuart
1999-01-01
ABSTRACT The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.
NASA Astrophysics Data System (ADS)
Pearson, Steven D.; Clifton, K. Stuart
1999-10-01
The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.
Orbital storage and supply of subcritical liquid nitrogen
NASA Technical Reports Server (NTRS)
Aydelott, John C.
1990-01-01
Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.
Mobile Router Technology Development
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.; Shell, Dan; Leung, Kent
2002-01-01
Cisco Systems and NASA have been performing joint research on mobile routing technology under a NASA Space Act Agreement. Cisco developed mobile router technology and provided that technology to NASA for applications to aeronautic and space-based missions. NASA has performed stringent performance testing of the mobile router, including the interaction of routing and transport-level protocols. This paper describes mobile routing, the mobile router, and some key configuration parameters. In addition, the paper describes the mobile routing test network and test results documenting the performance of transport protocols in dynamic routing environments.
Acoustic Shaping: Enabling Technology for a Space-Based Economy
NASA Astrophysics Data System (ADS)
Komerath, N. M.; Matos, C. A.; Coker, A.; Wanis, S.; Hausaman, J.; Ames, R. G.; Tan, X. Y.
1999-01-01
This abstract presents three points for discussion: (1) Key to the development of civilization in space, is a space-based marketplace, where the need to compete in earth-based markets is removed, along with the constraint of launch costs from Earth. (2) A body of technical results, obtained by the authors' team, indicates promise for non-contact manufacturing in space, of low-cost items required for human presence in space. This is presented along with various other techniques which hold promise. (3) The economics of starting a space-based production company are heavily dependent on the presence of a rudimentary infrastructure. A national-level investment in space-based infrastructure, would be an essential catalyst for the development of a space-based economy. Some suggestions for the beginnings of this infrastructure are repeated from the literature.
Pre-Launch End-to-End Testing Plans for the SPAce Readiness Coherent Lidar Experiment (SPARCLE)
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.
1999-01-01
The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing. attitude information from lidar and non-lidar sensors, and pointing knowledge algorithms will meet this second requirement. The topic of this paper is the pre-launch demonstration of the first requirement, adequate sensitivity of the SPARCLE lidar.
Advanced interdisciplinary technologies
NASA Technical Reports Server (NTRS)
Anderson, John L.
1990-01-01
The following topics are presented in view graph form: (1) breakthrough trust (space research and technology assessment); (2) bionics (technology derivatives from biological systems); (3) biodynamics (modeling of human biomechanical performance based on anatomical data); and (4) tethered atmospheric research probes.
Automated technologies needed to prevent radioactive materials from reentering the atmosphere
NASA Astrophysics Data System (ADS)
Buden, David; Angelo, Joseph A., Jr.
Project SIREN (Search, Intercept, Retrieve, Expulsion Nuclear) has been created to identify and evaluate the technologies and operational strategies needed to rendezvous with and capture aerospace radioactive materials (e.g., a distressed or spent space reactor core) before such materials can reenter the terrestrial atmosphere and then to safely move these captured materials to an acceptable space destination for proper disposal. A major component of the current Project SIREN effort is the development of an interactive technology model (including a computerized data base) that explores in building block fashion the interaction of the technologies and procedures needed to successfully accomplish a SIREN mission. This SIREN model will include appropriate national and international technology elements-both contemporary and projected into the next century. To permit maximum flexibility and use, the SIREN technology data base is being programmed for use on 386-class PC's.
Theory and experiments in model-based space system anomaly management
NASA Astrophysics Data System (ADS)
Kitts, Christopher Adam
This research program consists of an experimental study of model-based reasoning methods for detecting, diagnosing and resolving anomalies that occur when operating a comprehensive space system. Using a first principles approach, several extensions were made to the existing field of model-based fault detection and diagnosis in order to develop a general theory of model-based anomaly management. Based on this theory, a suite of algorithms were developed and computationally implemented in order to detect, diagnose and identify resolutions for anomalous conditions occurring within an engineering system. The theory and software suite were experimentally verified and validated in the context of a simple but comprehensive, student-developed, end-to-end space system, which was developed specifically to support such demonstrations. This space system consisted of the Sapphire microsatellite which was launched in 2001, several geographically distributed and Internet-enabled communication ground stations, and a centralized mission control complex located in the Space Technology Center in the NASA Ames Research Park. Results of both ground-based and on-board experiments demonstrate the speed, accuracy, and value of the algorithms compared to human operators, and they highlight future improvements required to mature this technology.
Physical sciences research plans for the International Space Station.
Trinh, E H
2003-01-01
The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
Physical sciences research plans for the International Space Station
NASA Technical Reports Server (NTRS)
Trinh, E. H.
2003-01-01
The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
Teaching Heliophysics Science to Undergraduates in an Engineering Context
NASA Astrophysics Data System (ADS)
Baker, J. B.; Sweeney, D. G.; Ruohoniemi, J.
2013-12-01
In recent years, space research at Virginia Tech has experienced rapid growth since the initiation of the Center for Space Science and Engineering Research (Space@VT) during the summer of 2007. The Space@VT center resides in the College of Engineering and currently comprises approximately 30-40 faculty and students. Space@VT research encompasses a wide spectrum of science and engineering activities including: magnetosphere-ionosphere data analysis; ground- and space-based instrument development; spacecraft design and environmental interactions; and numerical space plasma simulations. In this presentation, we describe how Space@VT research is being integrated into the Virginia Tech undergraduate engineering curriculum via classroom instruction and hands-on group project work. In particular, we describe our experiences teaching a new sophomore course titled 'Exploration of the Space Environment' which covers a broad range of scientific, engineering, and societal aspects associated with the exploration and technological exploitation of space. Topics covered include: science of the space environment; space weather hazards and societal impacts; elementary orbital mechanics and rocket propulsion; spacecraft engineering subsystems; and applications of space-based technologies. We also describe a high-altitude weather balloon project which has been offered as a 'hands-on' option for fulfilling the course project requirements of the course.
Next Generation Life Support Project Status
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond
2012-01-01
Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.
NASA Technical Reports Server (NTRS)
1987-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fourth in a series of progress updates and covers the period October 1, 1986 to May 15, 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.
NASA Technical Reports Server (NTRS)
1986-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committer (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the third in a series of progress updates and covers the period between April 1, 1986 and September 30, 1986. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulater affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.
The FoReVer Methodology: A MBSE Framework for Formal Verification
NASA Astrophysics Data System (ADS)
Baracchi, Laura; Mazzini, Silvia; Cimatti, Alessandro; Tonetta, Stefano; Garcia, Gerald
2013-08-01
The need for high level of confidence and operational integrity in critical space (software) systems is well recognized in the Space industry and has been addressed so far through rigorous System and Software Development Processes and stringent Verification and Validation regimes. The Model Based Space System Engineering process (MBSSE) derived in the System and Software Functional Requirement Techniques study (SSFRT) focused on the application of model based engineering technologies to support the space system and software development processes, from mission level requirements to software implementation through model refinements and translations. In this paper we report on our work in the ESA-funded FoReVer project where we aim at developing methodological, theoretical and technological support for a systematic approach to the space avionics system development, in phases 0/A/B/C. FoReVer enriches the MBSSE process with contract-based formal verification of properties, at different stages from system to software, through a step-wise refinement approach, with the support for a Software Reference Architecture.
Cloudy with a Chance of Solar Flares: The Sun as a Natural Hazard
NASA Technical Reports Server (NTRS)
Pellish, Jonathan
2017-01-01
Space weather is a naturally occurring phenomenon that represents a quantifiable risk to space- and ground-based infrastructure as well as society at large. Space weather hazards include permanent and correctable faults in computer systems, Global Positioning System (GPS) and high-frequency communication disturbances, increased airline passenger and astronaut radiation exposure, and electric grid disruption. From the National Space Weather Strategy, published by the Office of Science and Technology Policy in October 2015, space weather refers to the dynamic conditions of the space environment that arise from emissions from the Sun, which include solar flares, solar energetic particles, and coronal mass ejections. These emissions can interact with Earth and its surrounding space, including the Earth's magnetic field, potentially disrupting technologies and infrastructures. Space weather is measured using a range of space- and ground-based platforms that directly monitor the Sun, the Earth's magnetic field, the conditions in interplanetary space and impacts at Earth's surface, like neutron ground-level enhancement. The NASA Goddard Space Flight Center's Space Weather Research Center and their international collaborators in government, industry, and academia are working towards improved techniques for predicting space weather as part of the strategy and action plan to better quantify and mitigate space weather hazards. In addition to accurately measuring and predicting space weather, we also need to continue developing more advanced techniques for evaluating space weather impacts on space- and ground-based infrastructure. Within the Earth's atmosphere, elevated neutron flux driven by atmosphere-particle interactions from space weather is a primary risk source. Ground-based neutron sources form an essential foundation for quantifying space weather impacts in a variety of systems.
NASA Technical Reports Server (NTRS)
Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.
2015-01-01
Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.
Technology Development for High Efficiency Optical Communications
NASA Technical Reports Server (NTRS)
Farr, William H.
2012-01-01
Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.
Space Manufacturing: The Next Great Challenge
NASA Technical Reports Server (NTRS)
Whitaker, Ann F.; Curreri, Peter; Sharpe, Jonathan B.; Colberg, Wendell R.; Vickers, John H.
1998-01-01
Space manufacturing encompasses the research, development and manufacture necessary for the production of any product to be used in near zero gravity, and the production of spacecraft required for transporting research or production devices to space. Manufacturing for space, and manufacturing in space will require significant breakthroughs in materials and manufacturing technology, as well as in equipment designs. This report reviews some of the current initiatives in achieving space manufacturing. The first initiative deals with materials processing in space, e.g., processing non-terrestrial and terrestrial materials, especially metals. Some of the ramifications of the United States Microgravity Payloads fourth (USMP-4) mission are discussed. Some problems in non-terrestrial materials processing are mentioned. The second initiative is structures processing in space. In order to accomplish this, the International Space Welding Experiment was designed to demonstrate welding technology in near-zero gravity. The third initiative is advancements in earth-based manufacturing technologies necessary to achieve low cost access to space. The advancements discussed include development of lightweight material having high specific strength, and automated fabrication and manufacturing methods for these materials.
System Performance of an Integrated Airborne Spacing Algorithm with Ground Automation
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.
2016-01-01
The National Aeronautics and Space Administration's (NASA's) first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the Terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools to enable precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise spacing behind another aircraft. Recent simulations and IM algorithm development at NASA have focused on trajectory-based IM operations where aircraft equipped with IM avionics are expected to achieve a spacing goal, assigned by air traffic controllers, at the final approach fix. The recently published IM Minimum Operational Performance Standards describe five types of IM operations. This paper discusses the results and conclusions of a human-in-the-loop simulation that investigated three of those IM operations. The results presented in this paper focus on system performance and integration metrics. Overall, the IM operations conducted in this simulation integrated well with ground-based decisions support tools and certain types of IM operational were able to provide improved spacing precision at the final approach fix; however, some issues were identified that should be addressed prior to implementing IM procedures into real-world operations.
Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology
NASA Technical Reports Server (NTRS)
Walsworth, Ronald L.
2004-01-01
We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.
Maritime Activities: Requirements for Improving Space Based Solutions
NASA Astrophysics Data System (ADS)
Cragnolini, A.; Miguel-Lago, M.
2005-03-01
Maritime initiatives cannot be pursued only within their own perimeter. Sector endeavours and the policies which rule over them have wide range implications and several links with other sectors of activity. A well- balanced relationship of sea exploitation, maritime transportation, environmental protection and security ruled by national or international laws, will be a main issue for the future of all kind of maritime activities. Scientific research and technology development, along with enlightened and appropriate institutional regulations are relevant to ensure maritime sustainability.The use of satellite technology for monitoring international agreements should have a close co- ordination and be based on institutional consensus. Frequently, rules and new regulations set by policy makers are not demanding enough due to lack of knowledge about the possibilities offered by available technologies.Law enforcement actions could bring space technology new opportunities to offer solutions for monitoring and verification. Operators should aim at offering space data in a more operational and user-friendly way, providing them with useful and timely information.This paper will analyse the contribution of satellite technology to deal with the specificity of maritime sector, stressing the conditions for both an adequate technology improvement and an effective policy implementation.After analysing the links between maritime activities, space technologies and the institutional environment, the paper identifies some boundary conditions of the future developments. Conclusions are basically a check list for improving the present situation, while a road map is suggested as a matter of a way to proceed.
Wireless Communications in Space
NASA Technical Reports Server (NTRS)
2004-01-01
In 1992, NASA and the U.S. Department of Defense jointly commissioned the research and development of a technology solution to address the challenges and requirements of communicating with their spacecraft. The project yielded an international consortium composed of representatives from the space science community, industry, and academia. This group of experts developed a broad suite of protocols specifically designed for space-based communications, known today as Space Communications Protocol Standards (SCPS). Having been internationally standardized by the Consultative Committee on Space Data Systems and the International Standards Organization, SCPS is distributed as open source technology by NASA s Jet Propulsion Laboratory (JPL). The protocols are used for every national space mission that takes place today.
NASA Technical Reports Server (NTRS)
Gietl, Eric B.; Gholdston, Edward W.; Manners, Bruce A.; Delventhal, Rex A.
2000-01-01
The electrical power system developed for the International Space Station represents the largest space-based power system ever designed and, consequently, has driven some key technology aspects and operational challenges. The full U.S.-built system consists of a 160-Volt dc primary network, and a more tightly regulated 120-Volt dc secondary network. Additionally, the U.S. system interfaces with the 28-Volt system in the Russian segment. The international nature of the Station has resulted in modular converters, switchgear, outlet panels, and other components being built by different countries, with the associated interface challenges. This paper provides details of the architecture and unique hardware developed for the Space Station, and examines the opportunities it provides for further long-term space power technology development, such as concentrating solar arrays and flywheel energy storage systems.
Progress toward ultra-stable lasers for use in space
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.; Sandford, S. P.; Amundsen, R. M.
1992-01-01
This is a summary of a research project that has come to be known as SUNLITE, initially standing for Stanford University - NASA laser in space technology experiment. It involves scientists from the NASA Langley Research Center (LaRC), Stanford University, the National Institute of Standards and Technology (NIST), and the Joint Institute for Laboratory Astrophysics (JILA), and a growing number of other institutions. The long range objective of the SUNLITE effort is to examine the fundamental linewidth and frequency stability limits of an actively stabilized laser oscillator in the microgravity and vibration-free environment of space. The ground-based SUNLITE activities supporting that objective will develop a space-qualified, self-contained and completely automated terahertz oscillator stabilized to a linewidth of less than 3 Hz, along with a measurement system capable of determining laser linewidth to one part in 10(exp 16). The purpose of this paper is to discuss the critical technologies needed to place stabilized lasers in space and to describe the progress made by the SUNLITE project to develop these technologies.
Bridging the Gap: Use of Spaceflight Technologies for Earth-Based Problems
NASA Technical Reports Server (NTRS)
Brinley, Alaina; Vidlak, Carissa; Davis, Jeffrey R.
2012-01-01
Spaceflight is colloquially deemed, the final frontier, or the last area which humans have not yet explored in great depth. While this is true, there are still many regions on Earth that remain isolated from the urban, socially and electronically connected world. Because travelling to space requires a great deal of foresight, engineers are required to think creatively in order to invent technologies that are durable enough to withstand the rigors of the unique and often treacherous environment of outer space. The innovations that are a result of spaceflight designs can often be applied to life on Earth, particularly in the rural, isolated communities found throughout the world. The NASA Human Health and Performance Center (NHHPC) is a collaborative, virtual forum that connects businesses, non-profit organizations, academia, and government agencies to allow for better distribution of ideas and technology between these entities (http://www.nasa.gov/offices/NHHPC). There are many technologies that have been developed for spaceflight that can be readily applied to rural communities on Earth. For example, water filtration systems designed for spaceflight must be robust and easily repaired; therefore, a system with these qualifications may be used in rural areas on Earth. This particular initiative seeks to connect established, non-profit organizations working in isolated communities throughout the world with NASA technologies devised for spaceflight. These technologies could include water purification systems, solar power generators, or telemedicine techniques. Applying innovative, spaceflight technologies to isolated communities on Earth provides greater benefits from the same research dollars, thus fulfilling the Space Life Science motto at Johnson Space Center: Exploring Space and Enhancing Life. This paper will discuss this NHHPC global outreach initiative and give examples based on the recent work of the organization.
Foresight Model of Turkey's Defense Industries' Space Studies until 2040
NASA Astrophysics Data System (ADS)
Yuksel, Nurdan; Cifci, Hasan; Cakir, Serhat
2016-07-01
Being advanced in science and technology is inevitable reality in order to be able to have a voice in the globalized world. Therefore, for the countries, making policies in consistent with their societies' intellectual, economic and political infrastructure and attributing them to the vision having been embraced by all parties of the society is quite crucial for the success. The generated policies are supposed to ensure the usage of countries' resources in the most effective and fastest way, determine the priorities and needs of society and set their goals and related roadmaps. In this sense, technology foresight studies based on justified forecasting in science and technology have critical roles in the process of developing policies. In this article, Foresight Model of Turkey's Defense Industries' Space Studies, which is turned out to be the important part of community life and fundamental background of most technologies, up to 2040 is presented. Turkey got late in space technology studies. Hence, for being fast and efficient to use its national resources in a cost effective way and within national and international collaboration, it should be directed to its pre-set goals. By taking all these factors into consideration, the technology foresight model of Turkey's Defense Industry's Space Studies was presented in the study. In the model, the present condition of space studies in the World and Turkey was analyzed; literature survey and PEST analysis were made. PEST analysis will be the inputs of SWOT analysis and Delphi questionnaire will be used in the study. A two-round Delphi survey will be applied to the participants from universities, public and private organizations operating in space studies at Defense Industry. Critical space technologies will be distinguished according to critical technology measures determined by expert survey; space technology fields and goals will be established according to their importance and feasibility indexes. Finally, for the decision makers, opportunist and possible prospective exploratory scenarios will be set forth according to determined vision. Keywords Turkey's Defense Industries, Space Studies, Foresight, PEST, SWOT, Delphi
Laser Development for Gravitational-Wave Interferometry in Space
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2012-01-01
We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.
Spacecraft environmental interactions: A joint Air Force and NASA research and technology program
NASA Technical Reports Server (NTRS)
Pike, C. P.; Purvis, C. K.; Hudson, W. R.
1985-01-01
A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.
Workshop Proceedings: Sensor Systems for Space Astrophysics in the 21st Century, Volume 2
NASA Technical Reports Server (NTRS)
Wilson, Barbara A. (Editor)
1991-01-01
In 1989, the Astrophysics Division of the Office of Space Science and Applications initiated the planning of a technology development program, Astrotech 21, to develop the technological base for the Astrophysics missions developed in the period 1995 to 2015. The Sensor Systems for Space Astrophysics in the 21st Century Workshop was one of three Integrated Technology Planning workshops. Its objectives were to develop an understanding of the future comprehensive development program to achieve the required capabilities. Program plans and recommendations were prepared in four areas: x ray and gamma ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.
Terrestrial photovoltaic collector technology trends
NASA Technical Reports Server (NTRS)
Shimada, K.; Costogue, E.
1984-01-01
Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe2 and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.
A digital beamforming processor for the joint DoD/NASA space based radar mission
NASA Technical Reports Server (NTRS)
Fischman, Mark A.; Le, Charles; Rosen, Paul A.
2004-01-01
The Space Based Radar (SBR) program includes a joint technology demonstration between NASA and the Air Force to design a low-earth orbiting, 2x50 m L-band radar system for both Earth science and intelligence related observations.
JSC flight experiment recommendation in support of Space Station robotic operations
NASA Astrophysics Data System (ADS)
Berka, Reginald B.
1993-02-01
The man-tended configuration (MTC) of Space Station Freedom (SSF) provides a unique opportunity to move robotic systems from the laboratory into the mainstream space program. Restricted crew access due to the Shuttle's flight rate, as well as constrained on-orbit stay time, reduces the productivity of a facility dependent on astronauts to perform useful work. A natural tendency toward robotics to perform maintenance and routine tasks will be seen in efforts to increase SSF usefulness. This tendency will provide the foothold for deploying space robots. This paper outlines a flight experiment that will capitalize on the investment in robotic technology made by NASA over the past ten years. The flight experiment described herein provides the technology demonstration necessary for taking advantage of the expected opportunity at MTC. As a context to this flight experiment, a broader view of the strategy developed at the JSC is required. The JSC is building toward MTC by developing a ground-based SSF emulation funded jointly by internal funds, NASA/Code R, and NASA/Code M. The purpose of this ground-based Station is to provide a platform whereby technology originally developed at JPL, LaRC, and GSFC can be integrated into a near flight-like condition. For instance, the Automated Robotic Maintenance of Space Station (ARMSS) project integrates flat targets, surface inspection, and other JPL technologies into a Station analogy for evaluation. Also, ARMSS provides the experimental platform for the Capaciflector from GSPC to be evaluated for its usefulness in performing ORU change out or other tasks where proximity detection is required. The use and enhancement of these ground-based SSF models are planned for use through FY-93. The experimental data gathered from tests in these facilities will provide the basis for the technology content of the proposed flight experiment.
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2012-01-01
Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.
Cold atom quantum sensors for space
NASA Astrophysics Data System (ADS)
Singh, Yeshpal
2016-07-01
Quantum sensors based on cold atoms offer the opportunity to perform highly accurate measurements of physical phenomena related to time, gravity and rotation. The deployment of such technologies in the microgravity environment of space may enable further enhancement of their performance, whilst permitting the detection of these physical phenomena over much larger scales than is possible with a ground-based instrument. In this talk, I will present an overview of the activities of the UK National Quantum Hub in Sensors and Metrology in developing cold atoms technology for space. Our activities are focused in two main areas: optical clocks and atom interferometers. I will also discuss our contributions to recent initiatives including STE-QUEST and AI-GOAT, the ESA/NASA initiative aiming at an atom interferometer gravitational wave detector in space.
NASA Astrophysics Data System (ADS)
Yang, F.; Dong, Z. H.; Ye, X.
2018-05-01
Currently, space robots have been become a very important means of space on-orbit maintenance and support. Many countries are taking deep research and experiment on this. Because space operation attitude is very complicated, it is difficult to model them in research lab. This paper builds up a complete equivalent experiment framework according to the requirement of proposed space soft-contact technology. Also, this paper carries out flexible multi-body dynamics parameters verification for on-orbit soft-contact mechanism, which combines on-orbit experiment data, the built soft-contact mechanism equivalent model and flexible multi-body dynamics equivalent model that is based on KANE equation. The experiment results approve the correctness of the built on-orbit soft-contact flexible multi-body dynamics.
NASA Technical Reports Server (NTRS)
Mendell, W. W.
1991-01-01
President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient and efficient systems for applications on Earth.
Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training
NASA Technical Reports Server (NTRS)
2003-01-01
NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.
Arms control and The President's Strategic Defense Initiative
NASA Astrophysics Data System (ADS)
Bon, J. J.
1985-04-01
The President's Strategic Defense Initiative (SDI) provides the hope for eliminating the threat from ballistic missiles. This study evaluates the impact of SDI on existing and future arms control agreements. Because new or modified space-related treaties are a probable result of the SDI, this study concludes that the best single strategy for arms control negotiations is to preserve overall US interests and maintain open technological options vice severely limiting any space technology that might some day become part of a space-based defensive system.
Space Telecommunications Radio Architecture (STRS)
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Space Telecommunications Radio Architecture (STRS): Technical Overview
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
NASA's SDR Standard: Space Telecommunications Radio System
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Johnson, Sandra K.
2007-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit
2018-01-01
This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…
Shuttle Engine Designs Revolutionize Solar Power
NASA Technical Reports Server (NTRS)
2014-01-01
The Space Shuttle Main Engine was built under contract to Marshall Space Flight Center by Rocketdyne, now part of Pratt & Whitney Rocketdyne (PWR). PWR applied its NASA experience to solar power technology and licensed the technology to Santa Monica, California-based SolarReserve. The company now develops concentrating solar power projects, including a plant in Nevada that has created 4,300 jobs during construction.
Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space
NASA Technical Reports Server (NTRS)
Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler;
2015-01-01
NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.
Fiber-based, trace-gas, laser transmitter technology development for space
NASA Astrophysics Data System (ADS)
Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzales, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James
2015-09-01
NASA's Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter. In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.
NASA Technical Reports Server (NTRS)
1985-01-01
Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio (L/D) aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. The methodology employed to generate technology payoffs, the major payoffs identified, the urgency of the technology effort required, and the technology plans suggested are summarized for both study phases. Technology issues concerning aerodynamics, aerothermodynamics, thermal protection, propulsion, and guidance, navigation and control are addressed.
IPv6 and IPsec Tests of a Space-Based Asset, the Cisco Router in Low Earth Orbit (CLEO)
NASA Technical Reports Server (NTRS)
Ivancic, William; Stewart, David; Wood, Lloyd; Jackson, Chris; Northam, James; Wilhelm, James
2008-01-01
This report documents the design of network infrastructure to support testing and demonstrating network-centric operations and command and control of space-based assets, using IPv6 and IPsec. These tests were performed using the Cisco router in Low Earth Orbit (CLEO), an experimental payload onboard the United Kingdom--Disaster Monitoring Constellation (UK-DMC) satellite built and operated by Surrey Satellite Technology Ltd (SSTL). On Thursday, 29 March 2007, NASA Glenn Research Center, Cisco Systems and SSTL performed the first configuration and demonstration of IPsec and IPv6 onboard a satellite in low Earth orbit. IPv6 is the next generation of the Internet Protocol (IP), designed to improve on the popular IPv4 that built the Internet, while IPsec is the protocol used to secure communication across IP networks. This demonstration was made possible in part by NASA s Earth Science Technology Office (ESTO) and shows that new commercial technologies such as mobile networking, IPv6 and IPsec can be used for commercial, military and government space applications. This has direct application to NASA s Vision for Space Exploration. The success of CLEO has paved the way for new spacebased Internet technologies, such as the planned Internet Routing In Space (IRIS) payload at geostationary orbit, which will be a U.S. Department of Defense Joint Capability Technology Demonstration. This is a sanitized report for public distribution. All real addressing has been changed to psueco addressing.
High temperature superconducting magnetic energy storage for future NASA missions
NASA Technical Reports Server (NTRS)
Faymon, Karl A.; Rudnick, Stanley J.
1988-01-01
Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.
Application of methane fermentation technology into organic wastes in closed agricultural system
NASA Astrophysics Data System (ADS)
Endo, Ryosuke; Kitaya, Yoshiaki
Sustainable and recycling-based systems are required in space agriculture which takes place in an enclosed environment. Methane fermentation is one of the most major biomass conversion technologies, because (1) it provides a renewable energy source as biogas including methane, suitable for energy production, (2) the nutrient-rich solids left after digestion can be used as compost for agriculture. In this study, the effect of the application of methane fermentation technology into space agriculture on the material and energy cycle was investigated.
A technology assessment of alternative communications systems for the space exploration initiative
NASA Technical Reports Server (NTRS)
Ponchak, Denise S.; Zuzek, John E.; Whyte, Wayne A., Jr.; Spence, Rodney L.; Sohn, Philip Y.
1990-01-01
Telecommunications, Navigation, and Information Management (TNIM) services are vital to accomplish the ambitious goals of the Space Exploration Initiative (SEI). A technology assessment is provided for four alternative lunar and Mars operational TNIM systems based on detailed communications link analyses. The four alternative systems range from a minimum to a fully enhanced capability and use frequencies from S-band, through Ka-band, and up to optical wavelengths. Included are technology development schedules as they relate to present SEI mission architecture time frames.
Shuttle interaction study extension
NASA Technical Reports Server (NTRS)
1982-01-01
The following areas of Space Shuttle technology were discussed: variable altitude strategy, spacecraft servicing, propellant storage, orbiter plume impingement, space based design, mating (docking and berthing), shuttle fleet utilization, and mission/traffic model.
Advanced Platform Systems Technology study. Volume 2: Trade study and technology selection
NASA Technical Reports Server (NTRS)
1983-01-01
Three primary tasks were identified which include task 1-trade studies, task 2-trade study comparison and technology selection, and task 3-technology definition. Task 1 general objectives were to identify candidate technology trade areas, determine which areas have the highest potential payoff, define specific trades within the high payoff areas, and perform the trade studies. In order to satisfy these objectives, a structured, organized approach was employed. Candidate technology areas and specific trades were screened using consistent selection criteria and considering possible interrelationships. A data base comprising both manned and unmanned space platform documentation was used as a source of system and subsystem requirements. When requirements were not stated in the data base documentation, assumptions were made and recorded where necessary to characterize a particular spacecraft system. The requirements and assumptions were used together with the selection criteria to establish technology advancement goals and select trade studies. While both manned and unmanned platform data were used, the study was focused on the concept of an early manned space station.
Cameras Reveal Elements in the Short Wave Infrared
NASA Technical Reports Server (NTRS)
2010-01-01
Goodrich ISR Systems Inc. (formerly Sensors Unlimited Inc.), based out of Princeton, New Jersey, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory, Marshall Space Flight Center, Kennedy Space Center, Goddard Space Flight Center, Ames Research Center, Stennis Space Center, and Langley Research Center to assist in advancing and refining indium gallium arsenide imaging technology. Used on the Lunar Crater Observation and Sensing Satellite (LCROSS) mission in 2009 for imaging the short wave infrared wavelengths, the technology has dozens of applications in military, security and surveillance, machine vision, medical, spectroscopy, semiconductor inspection, instrumentation, thermography, and telecommunications.
Enhanced Communication Network Solution for Positive Train Control Implementation
NASA Technical Reports Server (NTRS)
Fatehi, M. T.; Simon, J.; Chang, W.; Chow, E. T.; Burleigh, S. C.
2011-01-01
The commuter and freight railroad industry is required to implement Positive Train Control (PTC) by 2015 (2012 for Metrolink), a challenging network communications problem. This paper will discuss present technologies developed by the National Aeronautics and Space Administration (NASA) to overcome comparable communication challenges encountered in deep space mission operations. PTC will be based on a new cellular wireless packet Internet Protocol (IP) network. However, ensuring reliability in such a network is difficult due to the "dead zones" and transient disruptions we commonly experience when we lose calls in commercial cellular networks. These disruptions make it difficult to meet PTC s stringent reliability (99.999%) and safety requirements, deployment deadlines, and budget. This paper proposes innovative solutions based on space-proven technologies that would help meet these challenges: (1) Delay Tolerant Networking (DTN) technology, designed for use in resource-constrained, embedded systems and currently in use on the International Space Station, enables reliable communication over networks in which timely data acknowledgments might not be possible due to transient link outages. (2) Policy-Based Management (PBM) provides dynamic management capabilities, allowing vital data to be exchanged selectively (with priority) by utilizing alternative communication resources. The resulting network may help railroads implement PTC faster, cheaper, and more reliably.
Corredor, Iván; Bernardos, Ana M.; Iglesias, Josué; Casar, José R.
2012-01-01
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym. PMID:23012544
Wireless Power Transmission Options for Space Solar Power
NASA Technical Reports Server (NTRS)
Henley, M. W.; Potter, Seth D.; Howell, J.; Mankins, J. C.; Fikes, John C. (Technical Monitor)
2002-01-01
Space Solar Power (SSP). combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In this paper WPT options using radio waves and light waves are considered for both long-term and near-term SSP applications. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even from the moon. Accordingly, radio- and light- wave WPT options are compared through a wide range of criteria, each showing certain strengths. In the near-term. we plan to beam power over more moderate distances, but still stretch the limits of today's technology. For the near-term, a 100 kWe-class 'Power Plug' Satellite and a 10 kWe-class Lunar Polar Solar Power outpost are considered as the first steps in using these WPT options for SSP. By using SSP and WPT technology in near-term space science and exploration missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from Space to Earth. Power Relay Satellites are also considered as a potential near- to mid-term means to transmit power from Earth to Space and back to distant receiving sites on Earth. This paper briefly considers microwave and laser beaming for an initial Power Relay Satellite system, and concludes that anticipated advancements in laser technology make laser-based concepts more attractive than microwave-based concepts. Social and economic considerations are briefly discussed, and a conceptual description for a laser-based system is offered for illustrative purposes. Continuing technological advances are needed if laser-based systems are to become practical and efficient or near- and far-term applications.
Preliminary Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd
2009-01-01
Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.
NASA Technical Reports Server (NTRS)
1988-01-01
This report presents the on-going research activities at the NASA Marshall Space Flight Center for the year 1988. The subjects presented are space transportation systems, shuttle cargo vehicle, materials processing in space, environmental data base management, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, aeronomy, atomic physics, rocket propulsion, materials and processes, telerobotics, and space systems.
New Propulsion Technologies For Exploration of the Solar System and Beyond
NASA Technical Reports Server (NTRS)
Johnson, Les; Cook, Stephen (Technical Monitor)
2001-01-01
In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. The ASTP technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to fission-powered multi-kilowatt systems, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will also be described. Results of recent earth-based technology demonstrations and space tests for many of these new propulsion technologies will be discussed.
NASA Technical Reports Server (NTRS)
Horn, Thomas J.
2006-01-01
This viewgraph presentation reviews the NASA programs in support of Aeronautical and Space research. This research involves imagining the future of air travel. There are three major Aeronautics technology programs: (1) Fundamental Aeronautics, (2) Aviation Safety and (3) Airspace Systems. The aim of exploring the depths of the universe through earth based and space based assets. Other Space programs include the plans for exploration of the moon and Mars.
NASA Technical Reports Server (NTRS)
1979-01-01
Construction of large systems in space is a technology requiring the development of construction methods to deploy, assemble, and fabricate the elements comprising such systems. A construction method is comprised of all essential functions and operations and related support equipment necessary to accomplish a specific construction task in a particular way. The data base objective is to provide to the designers of large space systems a compendium of the various space construction methods which could have application to their projects.
What's the Cube Quest Challenge?
NASA Technical Reports Server (NTRS)
Cockrell, Jim
2016-01-01
Cube Quest Challenge, sponsored by Space Technology Mission Directorates Centennial Challenges program, is NASAs first in-space prize competition. Cube Quest is open to any U.S.-based, non-government CubeSat developer. Entrants will compete for one of three available 6U CubeSat dispenser slots on the EM-1 mission the first un-crewed lunar flyby of the Orion spacecraft launched by the Space Launch System in early 2018. The Cube Quest Challenge will award up to $5M in prizes. The advanced CubeSat technologies demonstrated by Cube Quest winners will enable NASA, universities, and industry to more quickly and affordably accomplish science and exploration objectives. This paper describes the teams, their novel CubeSat designs, and the emerging technologies for CubeSat operations in deep space environment.
Towards testing quantum physics in deep space
NASA Astrophysics Data System (ADS)
Kaltenbaek, Rainer
2016-07-01
MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.
NASA Astrophysics Data System (ADS)
Jazebizadeh, Hooman; Tabeshian, Maryam; Taheran Vernoosfaderani, Mahsa
2010-11-01
Although more than half a century is passed since space technology was first developed, developing countries are just beginning to enter the arena, focusing mainly on educating professionals. Space technology by itself is an interdisciplinary science, is costly, and developing at a fast pace. Moreover, a fruitful education system needs to remain dynamic if the quality of education is the main concern, making it a complicated system. This paper makes use of the System Engineering Approach and the experiences of developed countries in this area while incorporating the needs of the developing countries to devise a comprehensive program in space engineering at the Master's level. The needs of the developing countries as regards space technology education may broadly be put into two categories: to raise their knowledge of space technology which requires hard work and teamwork skills, and to transfer and domesticate space technology while minimizing the costs and maximizing its effectiveness. The requirements of such space education system, which include research facilities, courses, and student projects are then defined using a model drawn from the space education systems in universities in North America and Europe that has been modified to include the above-mentioned needs. Three design concepts have been considered and synthesized through functional analysis. The first one is Modular and Detail Study which helps students specialize in a particular area in space technology. Second is referred to as Integrated and Interdisciplinary Study which focuses on understanding and development of space systems. Finally, the third concept which has been chosen for the purpose of this study, is a combination of the other two, categorizing the required curriculum into seven modules, setting aside space applications. This helps students to not only specialize in one of these modules but also to get hands-on experience in a real space project through participation in summer group projects and also working in space systems laboratories or choose and write a thesis based on experiences gained through an internship program.
The Challenge of Space Infrastructure Construction
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Colombano, Silvano P.
2010-01-01
This paper reviews the range of technologies that will contribute to the construction of space infrastructure that will both enable and, in some cases, provide the motivation for space exploration. Five parts are addressed: Managing complexity, robotics based construction, materials acquisition, manufacturing, and self-sustaining systems.
Space Station power system autonomy demonstration
NASA Technical Reports Server (NTRS)
Kish, James A.; Dolce, James L.; Weeks, David J.
1988-01-01
The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.
NASA Technical Reports Server (NTRS)
2000-01-01
Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.
NASA Technical Reports Server (NTRS)
1990-01-01
This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems. This publication consists of two volumes. Volume 1 contains the results of the advanced system studies with the emphasis on reference evolution configurations, system design requirements and accommodations, and long-range technology projections. Volume 2 reports on advanced development tasks within the Transition Definition Program. Products of these tasks include: engineering fidelity demonstrations and evaluations on Station development testbeds and Shuttle-based flight experiments; detailed requirements and performance specifications which address advanced technology implementation issues; and mature applications and the tools required for the development, implementation, and support of advanced technology within the Space Station Freedom Program.
NASA Technical Reports Server (NTRS)
Kloesel, Kurt J.; Ratnayake, Nalin A.; Clark, Casie M.
2011-01-01
Access to space is in the early stages of commercialization. Private enterprises, mainly under direct or indirect subsidy by the government, have been making headway into the LEO launch systems infrastructure, of small-weight-class payloads of approximately 1000 lbs. These moderate gains have emboldened the launch industry and they are poised to move into the middle-weight class (roughly 5000 lbs). These commercially successful systems are based on relatively straightforward LOX-RP, two-stage, bi-propellant rocket technology developed by the government 40 years ago, accompanied by many technology improvements. In this paper we examine a known generic LOX-RP system with the focus on the booster stage (1st stage). The booster stage is then compared to modeled Rocket-Based and Turbine-Based Combined Cycle booster stages. The air-breathing propulsion stages are based on/or extrapolated from known performance parameters of ground tested RBCC (the Marquardt Ejector Ramjet) and TBCC (the SR-71/J-58 engine) data. Validated engine models using GECAT and SCCREAM are coupled with trajectory optimization and analysis in POST-II to explore viable launch scenarios using hypothetical aerospaceplane platform obeying the aerodynamic model of the SR-71. Finally, and assessment is made of the requisite research technology advances necessary for successful commercial and government adoption of combined-cycle engine systems for space access.
Space Communication and Navigation Testbed Communications Technology for Exploration
NASA Technical Reports Server (NTRS)
Reinhart, Richard
2013-01-01
NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.
Space Internet-Embedded Web Technologies Demonstration
NASA Technical Reports Server (NTRS)
Foltz, David A.
2001-01-01
The NASA Glenn Research Center recently demonstrated the ability to securely command and control space-based assets by using the Internet and standard Internet Protocols (IP). This is a significant accomplishment because future NASA missions will benefit by using Internet standards-based protocols. The benefits include reduced mission costs and increased mission efficiency. The Internet-Based Space Command and Control System Architecture demonstrated at the NASA Inspection 2000 event proved that this communications architecture is viable for future NASA missions.
System and technology considerations for space-based air traffic surveillance
NASA Technical Reports Server (NTRS)
Vaisnys, A.
1986-01-01
This paper describes the system trade-offs examined in a recent study of space-based air traffic surveillance. Three system options, each satisfying a set of different constraints, were considered. The main difference in the technology needed to implement the three systems was determined to be the size of the spacecraft antenna aperture. It was found that essentially equivalent position location accuracy could be achieved with apertures from 50 meters down to less than a meter in diameter, depending on the choice of signal structure and on the desired user update rate.
Advanced Technologies and Satellite Services for Enhancing Space Surveillance
NASA Astrophysics Data System (ADS)
Griethe, Wolfgang; Rieger, Philipp; Suess, Helmut; Neff, Thomas; Duerr, Wolfgang
2010-08-01
Space-based systems are becoming part of our infrastructure and our dependency on space-based services has grown. Therefore, the assured availability and operational readiness of space-based services is essential, undoubtedly. However, satellites are subject to a variety of damaging effects and potential threats. These are mostly caused by an increasingly crowded region of outer space, by space weather including solar events and, unfortunately, even attacks on space systems which are no longer sience fiction as impressively demonstrated in 2007 with the Chinese anti-satellite test and the intercept of USA-193 in 2008. Today, German armed forces use several space services primarily for reconnaissance, communications and navigation. As a matter of fact, Germany`s sovereignty and national security depend on the availability of multiple space services. This led the Federal Ministry of Defence to set up a dedicated military Space Situational Awareness Centre at Kalkar/Uedem, Germany, as a significant contribution to a national preventive security. This paper provides information on a range of technical issues related to space assets that are important for anyone involved in the debate over space security and gives a brief survey of the German SSA program. The paper deals with a subset of feasible man-made threats and its fatal effects on space assets. Furthermore, the preliminary conceptual design of an onboard sensor suitable for the instant detection of the previously described types of threats is presented. Finally, advanced technologies for the near real-time transfer of data are highlighted.
Information Systems for NASA's Aeronautics and Space Enterprises
NASA Technical Reports Server (NTRS)
Kutler, Paul
1998-01-01
The aerospace industry is being challenged to reduce costs and development time as well as utilize new technologies to improve product performance. Information technology (IT) is the key to providing revolutionary solutions to the challenges posed by the increasing complexity of NASA's aeronautics and space missions and the sophisticated nature of the systems that enable them. The NASA Ames vision is to develop technologies enabling the information age, expanding the frontiers of knowledge for aeronautics and space, improving America's competitive position, and inspiring future generations. Ames' missions to accomplish that vision include: 1) performing research to support the American aviation community through the unique integration of computation, experimentation, simulation and flight testing, 2) studying the health of our planet, understanding living systems in space and the origins of the universe, developing technologies for space flight, and 3) to research, develop and deliver information technologies and applications. Information technology may be defined as the use of advance computing systems to generate data, analyze data, transform data into knowledge and to use as an aid in the decision-making process. The knowledge from transformed data can be displayed in visual, virtual and multimedia environments. The decision-making process can be fully autonomous or aided by a cognitive processes, i.e., computational aids designed to leverage human capacities. IT Systems can learn as they go, developing the capability to make decisions or aid the decision making process on the basis of experiences gained using limited data inputs. In the future, information systems will be used to aid space mission synthesis, virtual aerospace system design, aid damaged aircraft during landing, perform robotic surgery, and monitor the health and status of spacecraft and planetary probes. NASA Ames through the Center of Excellence for Information Technology Office is leading the effort in pursuit of revolutionary, IT-based approaches to satisfying NASA's aeronautics and space requirements. The objective of the effort is to incorporate information technologies within each of the Agency's four Enterprises, i.e., Aeronautics and Space Transportation Technology, Earth, Science, Human Exploration and Development of Space and Space Sciences. The end results of these efforts for Enterprise programs and projects should be reduced cost, enhanced mission capability and expedited mission completion.
Current Space Projects of the Bolivarian Republic of Venezuela
NASA Astrophysics Data System (ADS)
Hernández, R.; Acevedo R.; Varela, F.; Otero, S.
2014-06-01
Since 2008, with the successful launch of the first Venezuelan telecommunication satellite VENESAT-1, the Bolivarian Republic of Venezuela became an active player in the international space sector aimed at using space science and technology as a powerful tool to promote the national development. Based on that, through the Bolivarian Agency for Space Activities (ABAE), Venezuela has been implemented several space projects such as the manufacturing and launch of the first Venezuelan remote sensing satellite, the construction of a design center for small satellite technologies, as well as research and development activities related with the estimation of the physical properties of the Earth. This paper presents a brief description of the current space projects that are being developed by Venezuela.
In-step inflatable antenna experiment
NASA Astrophysics Data System (ADS)
Freeland, R. E.; Bilyeu, G.
Large deployable space antennas are needed to accommodate a number of applications that include mobile communications, earth observation radiometry, active microwave sensing, space-orbiting very long baseline interferometry, and Department of Defense (DoD) space-based radar. The criteria for evaluating candidate structural concepts for essentially all the applications is the same; high deployment reliability, low cost, low weight, low launch volume, and high aperture precision. A new class of space structures, called inflatable deployable structures, have tremendous potential for completely satisfying the first four criteria and good potential for accommodating the longer wavelength applications. An inflatable deployable antenna under development by L'Garde Inc. of Tustin, California, represents such a concept. Its level of technology is mature enough to support a meaningful orbital technology experiment. The NASA Office of Aeronautics and Space Technology initiated the In-Space Technology Experiments Program (IN-STEP) specifically to sponsor the verification and/or validation of unique and innovative space technologies in the space environment. The potential of the L'Garde concept has been recognized and resulted in its selection for an IN-STEP experiment. The objective of the experiment is to (a) validate the deployment of a 14-meter, inflatable parabolic reflector structure, (b) measure the reflector surface accuracy, and (c) investigate structural damping characteristics under operational conditions. The experiment approach will be to use the NASA Spartan Spacecraft to carry the experiment on orbit. Reflector deployment will be monitored by two high-resolution video cameras. Reflector surface quality will be measured with a digital imaging radiometer. Structural damping will be based on measuring the decay of reflector structure amplitude. The experiment is being managed by the Jet Propulsion Laboratory. The experiment definition phase (Phase B) will be completed by the end of fiscal year (FY) 1992; hardware development (Phase C/D) is expected to start by early FY 1993; and launch is scheduled for 1995. The paper describes the accomplishments to date and the approach for the remainder of the experiment.
Evolution of telemedicine in the space program and earth applications.
Nicogossian, A E; Pober, D F; Roy, S A
2001-01-01
Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.
Evolution of telemedicine in the space program and earth applications
NASA Technical Reports Server (NTRS)
Nicogossian, A. E.; Pober, D. F.; Roy, S. A.
2001-01-01
Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.
Space applications for high temperature superconductivity - Brief review
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1990-01-01
An overview is presented of materials and devices based on high-temperature superconductivity (HTS) that could have useful space-oriented applications. Of specific interest are applications of HTS technologies to mm and microwave systems, spaceborne and planet-surface sensors, and to magnetic subsystems for robotic, rescue, and docking maneuvers. HTS technologies can be used in optoelectronics, magnetic-field detectors, antennae, transmission/delay lines, and launch/payload coils.
Space Based Gravitational Wave Observatories (SGOs)
NASA Technical Reports Server (NTRS)
Livas, Jeff
2014-01-01
Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected The Gravitational Universe as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.
Maturing Technologies for Stirling Space Power Generation
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James
2016-01-01
Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.
Dual Space Technology Transfer
NASA Astrophysics Data System (ADS)
Kowbel, W.; Loutfy, R.
2009-03-01
Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.
Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST.
Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing
2017-08-23
High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented.
Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST
Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing
2017-01-01
High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented. PMID:28832538
NASA Astrophysics Data System (ADS)
Staguhn, Johannes G.
2018-05-01
Spectroscopic, cold, space-based mid-to-far-infrared (FIR) missions, such as the Origins Space Telescope, will require large (tens of kilopixels), ultra-sensitive FIR detector arrays with sufficient dynamic range and high-density multiplexing schemes for the readout, in order to optimize the scientific return while staying within a realistic cost range. Issues like power consumption of multiplexers and their readout are significantly more important for space missions than they are for ground-based or suborbital applications. In terms of the detectors and their configuration into large arrays, significant development efforts are needed even for both of the most mature candidate superconducting detector technologies, namely transition edge sensors and (microwave) kinetic inductance detectors. Here we explore both practical and fundamental limits for those technologies in order to lay out a realistic path forward for both technologies. We conclude that beyond the need to enhance the detector sensitivities and pixel numbers by about an order of magnitude over currently existing devices, improved concepts for larger dynamic range and multiplexing density will be needed in order to optimize the scientific return of future cold FIR space missions. Background-limited, very high spectral resolution instruments will require photon-counting detectors.
Sodium-sulfur battery flight experiment definition study
NASA Technical Reports Server (NTRS)
Chang, Rebecca; Minck, Robert
1989-01-01
NaS batteries have been identified as the most likely successor to space Ni-H2 or Ni-Cd batteries, primarily due to a mass reduction by a factor 2 to 3 over Ni-H2 and by a factor of 4 over Ni-Cd. This yields major launch cost reductions or payload mass improvements. NaS batteries support NASA OAST's proposed Civil Space Technology Initiative goal of a factor of two improvement in spacecraft 2000 initiative. Since Ni-H2 and Ni-Cd batteries have been space flight proven, it is essential to have the flight experiment to establish a national space technology base to demonstrate the operation of the NaS battery for space applications.
Ames Research Center Research and Technology 2000
NASA Technical Reports Server (NTRS)
2002-01-01
This report highlights the challenging work accomplished during fiscal year 2000 by Ames research scientists,engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on four of NASA's Strategic Enterprises: Aerospace Technology, Space Science, Biological and Physical Research, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customer, and partners, and the people of the United States about the scope and diversity of Ames' mission,the nature of Ames' research and technolog) activities,and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is willing to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.
The NASA CSTI high capacity power project
NASA Technical Reports Server (NTRS)
Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.
1992-01-01
The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.
The NASA CSTI high capacity power project
NASA Astrophysics Data System (ADS)
Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.
1992-08-01
The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.
NASA Technical Reports Server (NTRS)
Capps, Richard W. (Editor)
1996-01-01
The Office of Space Science (OSS) has initiated mission concept studies and associated technology roadmapping activities for future large space optical systems. The scientific motivation for these systems is the study of the origins of galaxies, stars, planetary systems and, ultimately, life. Collectively, these studies are part of the 'Astronomical Search for Origins and Planetary Systems Program' or 'Origins Program'. A series of at least three science missions and associated technology validation flights is currently envisioned in the time frame between the year 1999 and approximately 2020. These would be the Space Interferometry Mission (SIM), a 10-meter baseline Michelson stellar interferometer; the Next Generation Space Telescope (NGST), a space-based infrared optimized telescope with aperture diameter larger than four meters; and the Terrestrial Planet Finder (TPF), an 80-meter baseline-nulling Michelson interferometer described in the Exploration of Neighboring Planetary Systems (ExNPS) Study. While all of these missions include significant technological challenges, preliminary studies indicate that the technological requirements are achievable. However, immediate and aggressive technology development is needed. The Office of Space Access and Technology (OSAT) is the primary sponsor of NASA-unique technology for missions such as the Origins series. For some time, the OSAT Space Technology Program has been developing technologies for large space optical systems, including both interferometers and large-aperture telescopes. In addition, technology investments have been made by other NASA programs, including OSS; other government agencies, particularly the Department of Defense; and by the aerospace industrial community. This basis of prior technology investment provides much of the rationale for confidence in the feasibility of the advanced Origins missions. In response to the enhanced interest of both the user community and senior NASA management in large space optics, OSAT is moving to improve the focus of its sensor, spacecraft, and interferometer/telescope technology programs on the specific additional needs of the OSS Origins Program. To better define Origins mission technology and facilitate its development, OSAT and OSS called for a series of workshops with broad participation from industry, academia and the national laboratory community to address these issues. Responsibility for workshop implementation was assigned jointly to the two NASA field centers with primary Origins mission responsibility, the Goddard Space Flight Center and the Jet Propulsion Laboratory. The Origins Technology Workshop, held at Dana Point, California between June 4 and 6, 1996 was the first in the series of comprehensive workshops aimed at addressing the broad technological needs of the Origins Program. It was attended by 64 individuals selected to provide technical expertise relevant to the technology challenges of the Origins missions. This report summarizes the results of that meeting. A higher level executive summary was considered inappropriate because of the potential loss of important context for the recommendations. Subsequent to the Origins Technology Workshop and prior to publication of this report, NASA Headquarters reorganized the activities of the Of fice of Space Access and Technology. It appears likely that responsibility for the technology programs recommended in this document will move to the Office of Space Science.
NASA Technical Reports Server (NTRS)
1990-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the ninth in a series of progress updates and covers the period between February 24, 1989, and July 12, 1989. NASA has accepted the basic recommendation of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The work of NASA and the Freedom contractors, e.g., Work Packages, as well as the Flight Telerobotic Servicer is identified. Research in progress is also described and assessments of the advancement of automation and robotics technology on the Space Station Freedom are given.
Advancing automation and robotics technology for the space station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
Creedon, Jeremiah F.
1989-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the eighth in a series of progress updates and covers the period between October 1, 1988, and March 31, 1989. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.
Advancing automation and robotics technology for the Space Station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
1988-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the seventh in a series of progress updates and covers the period between April 1, 1988 and September 30, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.
Space Station Workstation Technology Workshop Report
NASA Technical Reports Server (NTRS)
Moe, K. L.; Emerson, C. M.; Eike, D. R.; Malone, T. B.
1985-01-01
This report describes the results of a workshop conducted at Goddard Space Flight Center (GSFC) to identify current and anticipated trends in human-computer interface technology that may influence the design or operation of a space station workstation. The workshop was attended by approximately 40 persons from government and academia who were selected for their expertise in some aspect of human-machine interaction research. The focus of the workshop was a 1 1/2 brainstorming/forecasting session in which the attendees were assigned to interdisciplinary working groups and instructed to develop predictions for each of the following technology areas: (1) user interface, (2) resource management, (3) control language, (4) data base systems, (5) automatic software development, (6) communications, (7) training, and (8) simulation. This report is significant in that it provides a unique perspective on workstation design for the space station. This perspective, which is characterized by a major emphasis on user requirements, should be most valuable to Phase B contractors involved in design development of the space station workstation. One of the more compelling results of the workshop is the recognition that no major technological breakthroughs are required to implement the current workstation concept. What is required is the creative application of existing knowledge and technology.
Plant growth chamber based on space proven controlled environment technology
NASA Astrophysics Data System (ADS)
Ignatius, Ronald W.; Ignatius, Matt H.; Imberti, Henry J.
1997-01-01
Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE™ flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber.
A Strategic Roadmap to Centauri
NASA Technical Reports Server (NTRS)
Johnson, Les; Harris, David; Trausch, Ann; Matloff, Gregory L.; Taylor, Travis; Cutting, Kathleen
2005-01-01
This paper discusses the connectivity between in-space propulsion and in-space fabrication/repair and is based upon a workshop presentation by Les Johnson, manager of the In-Space Propulsion (ISP) Technology Project at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala.. Technologies under study by ISP include aerocapture, advanced solar-electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers and solar-photon sails. These propulsion systems are all approaching technology readiness levels (TRLs) at which they can be considered for application in space-science and exploration missions. Historically, human frontiers have expanded as people have learned to live off the land in new environments and to exploit local resorces. With this expansion, frontier settlements have required development of transportation improvements to carry tools and manufactured products to and from the frontier. It is demonstrated how ISP technologies will assist in the development of the solar-system frontier. In-space fabrication and repair will both require and assist the development of ISP propulsion systems, whether humans choose to settle planetary surfaces or to exploit resources of small Solar System bodies. As was true for successful terrestrial pioneers, in-space settlement and exploitation will require sophisticated surveys of inner and outer Solar System objects. ISP technologies will contribute to the success of these surveys, as well as to the efforts to retrieve Solar System resources. In a similar fashion, the utility of ISP products will be greatly enhanced by the technologies of in-space repair and fabrication. As in-space propulsion, fabrication and repair develop, human civilization may expand well beyond the Earth. In the future, small human communities (preceded by robotic explorers) may utilize these techniques to set sail f or the nearest stars.
A Strategic Roadmap to Centauri
NASA Astrophysics Data System (ADS)
Johnson, L.; Harris, D.; Trausch, A.; Matloff, G. L.; Taylor, T.; Cutting, K.
This paper discusses the connectivity between in-space propulsion and in-space fabrication/repair and is based upon a workshop presentation by Les Johnson, manager of the In-Space Propulsion (ISP) Technology Project at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Technologies under study by ISP include aerocapture, advanced solar- electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers and solar-photon sails. These propulsion systems are all approaching technology readiness levels (TRLs) at which they can be considered for application in space- science and exploration missions. Historically, human frontiers have expanded as people have learned to “live-off-the-land” in new environments and to exploit local resources. With this expansion, frontier settlements have required development of transportation improvements to carry tools and manufactured products to and from the frontier. It is demonstrated how ISP technologies will assist in the development of the solar-system frontier. In-space fabrication and repair will both require and assist the development of ISP propulsion systems, whether humans choose to settle planetary surfaces or to exploit resources of small Solar System bodies. As was true for successful terrestrial pioneers, in-space settlement and exploitation will require sophisticated surveys of inner and outer Solar System objects. ISP technologies will contribute to the success of these surveys, as well as to the efforts to retrieve Solar System resources. In a similar fashion, the utility of ISP products will be greatly enhanced by the technologies of in-space repair and fabrication. As in-space propulsion, fabrication and repair develop, human civilization may expand well beyond the Earth. In the future, small human communities (preceded by robotic explorers) may utilize these techniques to set sail for the nearest stars.
NASA Technical Reports Server (NTRS)
Hodgson, Edward; Papale, William; Nalette, Timothy; Graf, John; Sweterlitsch, Jeffery; Hayley, Elizabeth; Williams, Antony; Button, Amy
2011-01-01
The completion of International Space Station Assembly and transition to a full six person crew has created the opportunity to create and implement flight experiments that will drive down the ultimate risks and cost for human space exploration by maturing exploration technologies in realistic space environments that are impossible or incredibly costly to duplicate in terrestrial laboratories. An early opportunity for such a technology maturation experiment was recognized in the amine swingbed technology baselined for carbon dioxide and humidity control on the Orion spacecraft and Constellation Spacesuit System. An experiment concept using an existing high fidelity laboratory swing bed prototype has been evaluated in a feasibility and concept definition study leading to the conclusion that the envisioned flight experiment can be both feasible and of significant value for NASA s space exploration technology development efforts. Based on the results of that study NASA has proceeded with detailed design and implementation for the flight experiment. The study effort included the evaluation of technology risks, the extent to which ISS provided unique opportunities to understand them, and the implications of the resulting targeted risks for the experiment design and operational parameters. Based on those objectives and characteristics, ISS safety and integration requirements were examined, experiment concepts developed to address them and their feasibility assessed. This paper will describe the analysis effort and conclusions and present the resulting flight experiment concept. The flight experiment, implemented by NASA and launched in two packages in January and August 2011, integrates the swing bed with supporting elements including electrical power and controls, sensors, cooling, heating, fans, air- and water-conserving functionality, and mechanical packaging structure. It is now on board the ISS awaiting installation and activation.
Quantum Gravity Gradiometer Development for Space
NASA Technical Reports Server (NTRS)
Kohel, James M.; Yu, Nan; Kellogg, James R.; Thompson, Robert J.; Aveline, David C.; Maleki, Lute
2006-01-01
Funded by the Advanced Technology Component Program, we have completed the development of a laboratory-based quantum gravity gradiometer based on atom interferometer technology. This is our first step towards a new spaceborne gradiometer instrument, which can significantly contribute to global gravity mapping and monitoring important in the understanding of the solid earth, ice and oceans, and dynamic processes. In this paper, we will briefly review the principles and technical benefits of atom-wave interferometer-based inertial sensors in space. We will then describe the technical implementation of the laboratory setup and report its status. We will also discuss our implementation plan for the next generation instrument.
Experimentation for the Maturation of Deep Space Cryogenic Refueling Technologies
NASA Technical Reports Server (NTRS)
Chato, David J.
2008-01-01
This report describes the results of the "Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology" study. This study identifies cryogenic fluid management technologies that require low-gravity flight experiments bring technology readiness levels to 5 to 6; examines many possible flight experiment options; and develops near-term low-cost flight experiment concepts to mature the core technologies. A total of 25 white papers were prepared by members of the project team in the course of this study. The full text of each white paper is included and 89 relevant references are cited. The team reviewed the white papers that provided information on new or active concepts of experiments to pursue and assessed them on the basis of technical need, cost, return on investment, and flight platform. Based on on this assessment the "Centaur Test Bed for Cryogenic Fluid Management" was rated the highest. "Computational Opportunities for Cryogenics for Cryogenic and Low-g Fluid Systems" was ranked second, based on its high scores in state of the art and return on investment, even though scores in cost and time were second to last. "Flight Development Test Objective Approach for In-space Propulsion Elements" was ranked third.
Exploration Space Suit Architecture and Destination Environmental-Based Technology Development
NASA Technical Reports Server (NTRS)
Hill, Terry R.; Korona, F. Adam; McFarland, Shane
2012-01-01
This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with minimal redesign effort such that the modular architecture can be quickly and efficiently honed into a specific mission point solution if required. Additionally, the modular system will allow for specific technology incorporation and upgrade as required with minimal redesign of the system.
Technology-Based Inquiry for Middle School
ERIC Educational Resources Information Center
Christmann, Edwin
2006-01-01
Activities featured in this new compendium--a collection of 26 articles published in Science Scope, NSTA's member journal for middle school teachers--will show how. Technology-Based Inquiry offers fresh approaches that teachers and students can use to explore physical science, Earth and space science, life science, and more. It covers the…
Robotics technology discipline
NASA Technical Reports Server (NTRS)
Montemerlo, Melvin D.
1990-01-01
Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.
Technologies for space station autonomy
NASA Technical Reports Server (NTRS)
Staehle, R. L.
1984-01-01
This report presents an informal survey of experts in the field of spacecraft automation, with recommendations for which technologies should be given the greatest development attention for implementation on the initial 1990's NASA Space Station. The recommendations implemented an autonomy philosophy that was developed by the Concept Development Group's Autonomy Working Group during 1983. They were based on assessments of the technologies' likely maturity by 1987, and of their impact on recurring costs, non-recurring costs, and productivity. The three technology areas recommended for programmatic emphasis were: (1) artificial intelligence expert (knowledge based) systems and processors; (2) fault tolerant computing; and (3) high order (procedure oriented) computer languages. This report also describes other elements required for Station autonomy, including technologies for later implementation, system evolvability, and management attitudes and goals. The cost impact of various technologies is treated qualitatively, and some cases in which both the recurring and nonrecurring costs might be reduced while the crew productivity is increased, are also considered. Strong programmatic emphasis on life cycle cost and productivity is recommended.
Prevention of Spacecraft Anomalies: The Role of Space Climate and Space Weather Models
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
Space-based systems are developing into critical infrastructure to support the quality of life on Earth. Mission requirements along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. This chapter describes approaches to accommodate space climate and space weather impacts on systems and notes areas where gaps in model development limit our ability to prevent spacecraft anomalies.
NASA Technical Reports Server (NTRS)
Beckley, L. E.
1977-01-01
Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.
Overview of diffraction gratings technologies for spaceflight satellites and ground-based telescopes
NASA Astrophysics Data System (ADS)
Cotel, A.; Liard, A.; Desserouer, F.; Pichon, P.
2017-11-01
The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, high-groove density holographic toroidal and spherical grating, and finally transmission Fused Silica Etched (FSE) grism-assembled grating. We will not present the Volume Phase Holographic (VPHG) grating type which is used in Astronomy.
Reinventing the Solar Power Satellite
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2002-01-01
Economy of scale is inherent in the microwave power transmission aperture/spot-size trade-off, resulting in a requirement for large space systems in the existing design concepts. Unfortunately, this large size means that the initial investment required before the first return, and the price of amortization of this initial investment, is a daunting (and perhaps insurmountable) barrier to economic viability. As the growth of ground-based solar power applications will fund the development of the PV technology required for space solar power and will also create the demand for space solar power by manufacturing a ready-made market, space power systems must be designed with an understanding that ground-based solar technologies will be implemented as a precursor to space-based solar. for low initial cost, (3) operation in synergy with ground solar systems, and (4) power production profile tailored to peak rates. A key to simplicity of design is to maximize the integration of the system components. Microwave, millimeter-wave, and laser systems are analyzed. A new solar power satellite design concept with no sun-tracking and no moving parts is proposed to reduce the required cost to initial operational capability.
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
NASA Technical Reports Server (NTRS)
Jones, Tevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is "SCAN Testbed," and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
NASA Technical Reports Server (NTRS)
Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
Software Defined Radio Standard Architecture and its Application to NASA Space Missions
NASA Technical Reports Server (NTRS)
Andro, Monty; Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Space Grant Research Launches Rehabilitation Chair
NASA Technical Reports Server (NTRS)
2015-01-01
Working with funding from the National Space Grant College and Fellowship Program-which was implemented by NASA Headquarters to fund research, education, and public service projects-a biomedical engineering student created a vibration-based system that could combat bone loss from prolonged trips to space. A rehabilitation chair incorporating the technology is now sold by Sheboygan, Wisconsin-based VibeTech Inc. and is helping people recover more quickly from injuries and surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
2015-12-01
Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.
NASA Technical Reports Server (NTRS)
Schnyer, A. D.; Sholtis, J. A., Jr.; Wahlquist, E. J.; Verga, R. L.; Wiley, R. L.
1985-01-01
An update is provided on the status of the Sp-100 Space Reactor Power Program. The historical background that led to the program is reviewed and the overall program objectives and development approach are discussed. The results of the mission studies identify applications for which space nuclear power is desirable and even essential. Results of a series of technology feasibility experiments are expected to significantly improve the earlier technology data base for engineering development. The conclusion is reached that a nuclear reactor space power system can be developed by the early 1990s to meet emerging mission performance requirements.
The future of management: The NASA paradigm
NASA Technical Reports Server (NTRS)
Harris, Philip R.
1992-01-01
Prototypes of 21st century management, especially for large scale enterprises, may well be found within the aerospace industry. The space era inaugurated a number of projects of such scope and magnitude that another type of management had to be created to ensure successful achievement. The challenges will be not just in terms of technology and its management, but also human and cultural in dimension. Futurists, students of management, and those concerned with technological administration would do well to review the literature of emerging space management for its wider implications. NASA offers a paradigm, or demonstrated model, of future trends in the field of management at large. More research is needed on issues of leadership for Earth based project in space and space based programs with managers there. It is needed to realize that large scale technical enterprises, such as are undertaken in space, require a new form of management. NASA and other responsible agencies are urged to study excellence in space macromanagement, including the necessary multidisciplinary skills. Two recommended targets are the application of general living systems theory and macromanagement concepts for space stations in the 1990s.
OTV propulsion tecnology programmatic overview
NASA Astrophysics Data System (ADS)
Cooper, L. P.
1984-04-01
An advanced orbit transfer vehicles (OTV) which will be an integral part of the national space transportation system to carry men and cargo between low Earth orbit and geosynchronous orbit will perform planetary transfers and deliver large acceleration limited space structures to high Earth orbits is reviewed. The establishment of an advanced propulsion technology base for an OTV for the mid 1990's is outlined. The program supports technology for three unique engine concepts. Work is conducted to generic technologies which benefit all three concepts and specific technology which benefits only one of the concepts. Concept and technology definitions to identify propulsion innovations, and subcomponent research to explore and validate their potential benefits are included.
OTV propulsion tecnology programmatic overview
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1984-01-01
An advanced orbit transfer vehicles (OTV) which will be an integral part of the national space transportation system to carry men and cargo between low Earth orbit and geosynchronous orbit will perform planetary transfers and deliver large acceleration limited space structures to high Earth orbits is reviewed. The establishment of an advanced propulsion technology base for an OTV for the mid 1990's is outlined. The program supports technology for three unique engine concepts. Work is conducted to generic technologies which benefit all three concepts and specific technology which benefits only one of the concepts. Concept and technology definitions to identify propulsion innovations, and subcomponent research to explore and validate their potential benefits are included.
1983-08-01
Missile (SLBM) Defense Scenario ............................................ B-1 C Space-Based Anti-Ballistic Missile ( ABM ) Defense Scenario...Ballistic Missile (SLBM) Defense Scenario, and at Strategic Space-Based Anti-Ballistic Missile ( ABM ) Defense Scenario. These case studies are provided...of flight. 3.5.3 Spaced-Based ABM Defense Scenario In this scenario, an orbiting battle station is operating as an element of GBMD System, and it is
Emerging, Photonic Based Technologies for NASA Space Communications Applications
NASA Technical Reports Server (NTRS)
Pouch, John; Nguyen, Hung; Lee, Richard; Levi, Anthony; Bos, Philip; Titus, Charles; Lavrentovich, Oleg
2002-01-01
An objective of NASA's Computing, Information, and Communications Technology program is to support the development of technologies that could potentially lower the cost of the Earth science and space exploration missions, and result in greater scientific returns. NASA-supported photonic activities which will impact space communications will be described. The objective of the RF microphotonic research is to develop a Ka-band receiver that will enable the microwaves detected by an antenna to modulate a 1.55- micron optical carrier. A key element is the high-Q, microphotonic modulator that employs a lithium niobate microdisk. The technical approach could lead to new receivers that utilize ultra-fast, photonic signal processing techniques, and are low cost, compact, low weight and power efficient. The progress in the liquid crystal (LC) beam steering research will also be reported. The predicted benefits of an LC-based device on board a spacecraft include non-mechanical, submicroradian laser-beam pointing, milliradian scanning ranges, and wave-front correction. The potential applications of these emerging technologies to the various NASA missions will be presented.
The scientific data acquisition system of the GAMMA-400 space project
NASA Astrophysics Data System (ADS)
Bobkov, S. G.; Serdin, O. V.; Gorbunov, M. S.; Arkhangelskiy, A. I.; Topchiev, N. P.
2016-02-01
The description of scientific data acquisition system (SDAS) designed by SRISA for the GAMMA-400 space project is presented. We consider the problem of different level electronics unification: the set of reliable fault-tolerant integrated circuits fabricated on Silicon-on-Insulator 0.25 mkm CMOS technology and the high-speed interfaces and reliable modules used in the space instruments. The characteristics of reliable fault-tolerant very large scale integration (VLSI) technology designed by SRISA for the developing of computation systems for space applications are considered. The scalable net structure of SDAS based on Serial RapidIO interface including real-time operating system BAGET is described too.
Grumman and SDI-related technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, B.
1985-01-01
The application of Grumman Corporation's aerospace and nuclear fusion technology to the Strategic Defense Initiative (SDI) program has taken place in at least five major areas. These include infrared boost surveillance and tracking to detect intercontinental ballistic missiles just after launch, space-based radar, neutral particle beam platforms, nuclear electric power and propulsion units in space, and battle management systems. The author summarizes developments in each of these areas to illustrate how Grumman has responded to the request that the scientific and industrial communities pursue innovative, high-risk concepts involving materials, structures, space power, space physics, and kinetic energy weapon concepts. 3more » figures.« less
Continuing Development for Free-Piston Stirling Space Power Systems
NASA Astrophysics Data System (ADS)
Peterson, Allen A.; Qiu, Songgang; Redinger, Darin L.; Augenblick, John E.; Petersen, Stephen L.
2004-02-01
Long-life radioisotope power generators based on free-piston Stirling engines are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been developing free-piston Stirling machines for over 30 years, and its family of Stirling generators is ideally suited for reliable, maintenance-free operation. This paper describes recent progress and status of the STC RemoteGen™ 55 W-class Stirling generator (RG-55), presents an overview of recent testing, and discusses how the technology demonstration design has evolved toward space-qualified hardware.
ERIC Educational Resources Information Center
Pabst, Johanna K.
2014-01-01
The purpose of this study is to investigate the new media ecologies of urban, low-income youth and youth of color, and how they develop literacies and competencies around technology in the particular spaces of Community Technology Centers (CTCs), while placing them within their broader technological experiences and raced, classed, and gendered…
Mesh Networking in the Tactical Environment Using White Space Technolog
2015-12-01
Connect network with multi- ple clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 4.5 Results of White Space simulation...functionality to devices seeking to allocate unutilized spectrum space . The devices are able to poll the database, via a connection to a web based...and 28 schools, all of whom were provided Internet connectivity by Adaptrum white space devices [16]. The use of white space devices made this
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1992-01-01
Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. Topics covered include tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for new projects; network upgrade and sustaining; network operations and operations support; and TDA program management and analysis.
Large scale cryogenic fluid systems testing
NASA Technical Reports Server (NTRS)
1992-01-01
NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.
NASA Astrophysics Data System (ADS)
Kobayashi, Daisuke; Hirose, Kazuyuki; Saito, Hirobumi
2013-05-01
Development of semiconductor devices not only for harsh radiation environments such as space but also for ground-based applications now faces a major hurdle of radiation problems. Necessary is protecting chips from malfunctions due to sub-nanosecond transient noises induced by radiation. As a protection technique using the silicon-on-insulator structure is often suggested, but the use in fact requires devices and circuits carefully optimized for maximizing its benefits. Mainly describing theoretical and experimental characterization of the transient effects, this paper presents a comprehensive study on radiation responses of commercial silicon-on- insulator technologies, which study results in a space-use low-power system-on-chip with a 100-MIPS RISC-based core.
Space Power Management and Distribution Status and Trends
NASA Technical Reports Server (NTRS)
Reppucci, G. M.; Biess, J. J.; Inouye, L.
1984-01-01
An overview of space power management and distribution (PMAD) is provided which encompasses historical and current technology trends. The PMAD components discussed include power source control, energy storage control, and load power processing electronic equipment. The status of distribution equipment comprised of rotary joints and power switchgear is evaluated based on power level trends in the public, military, and commercial sectors. Component level technology thrusts, as driven by perceived system level trends, are compared to technology status of piece-parts such as power semiconductors, capacitors, and magnetics to determine critical barriers.
NASA Technical Reports Server (NTRS)
Hanaway, John F.; Moorehead, Robert W.
1989-01-01
The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included.
Towards telecommunication payloads with photonic technologies
NASA Astrophysics Data System (ADS)
Vono, S.; Di Paolo, G.; Piccinni, M.; Pisano, A.; Sotom, M.; Aveline, M.; Ginestet, P.
2017-11-01
In the last decade, Thales Alenia Space has put a lot of its research effort on Photonic Technologies for Space Application with the aim to offer the market satellite telecommunication systems better performance and lower costs. This research effort has been concentrated on several activities, some of them sponsored by ESA. Most promising applications refer to Payload Systems. In particular, photonic payload applications have been investigated through the following two ESA studies: Artes-1 "Next Generation Telecommunication Payloads based on Photonic Technologies" and Artes-5 "OWR - Optical Wideband Receiver" activities.
Legal and Regulatroy Obstacles to Nuclear Fission Technology in Space
NASA Astrophysics Data System (ADS)
Force, Melissa K.
2013-09-01
In forecasting the prospective use of small nuclear reactors for spacecraft and space-based power stations, the U.S. Air Force describes space as "the ultimate high ground," providing access to every part of the globe. But is it? A report titled "Energy Horizons: United States Air Force Energy Science &Technology Vision 2011-2026," focuses on core Air Force missions in space energy generation, operations and propulsion and recognizes that investments into small modular nuclear fission reactors can be leveraged for space-based systems. However, the report mentions, as an aside, that "potential catastrophic outcomes" are an element to be weighed and provides no insight into the monumental political and legal will required to overcome the mere stigma of nuclear energy, even when referring only to the most benign nuclear power generation systems - RTGs. On the heels of that report, a joint Department of Energy and NASA team published positive results from the demonstration of a uranium- powered fission reactor. The experiment was perhaps most notable for exemplifying just how effective the powerful anti-nuclear lobby has been in the United States: It was the first such demonstration of its kind in nearly fifty years. Space visionaries must anticipate a difficult war, consisting of multiple battles that must be waged in order to obtain a license to fly any but the feeblest of nuclear power sources in space. This paper aims to guide the reader through the obstacles to be overcome before nuclear fission technology can be put to use in space.
Structural technology challenges for evolutionary growth of Space Station Freedom
NASA Technical Reports Server (NTRS)
Doiron, Harold H.
1990-01-01
A proposed evolutionary growth scenario for Space Station Freedom was defined recently by a NASA task force created to study requirements for a Human Exploration Initiative. The study was an initial response to President Bush's July 20, 1989 proposal to begin a long range program of human exploration of space including a permanently manned lunar base and a manned mission to Mars. This growth scenario evolves Freedom into a critical transportation node to support lunar and Mars missions. The growth scenario begins with the Assembly Complete configuration and adds structure, power, and facilities to support a Lunar Transfer Vehicle (LTV) verification flight. Evolutionary growth continues to support expendable, then reusable LTV operations, and finally, LTV and Mars Transfer Vehicle (MTV) operations. The significant structural growth and additional operations creating new loading conditions will present new technological and structural design challenges in addition to the considerable technology requirements of the baseline Space Station Freedom program. Several structural design and technology issues of the baseline program are reviewed and related technology development required by the growth scenario is identified.
Innovative Software Tools Measure Behavioral Alertness
NASA Technical Reports Server (NTRS)
2014-01-01
To monitor astronaut behavioral alertness in space, Johnson Space Center awarded Philadelphia-based Pulsar Informatics Inc. SBIR funding to develop software to be used onboard the International Space Station. Now used by the government and private companies, the technology has increased revenues for the firm by an average of 75 percent every year.
NASA Technical Reports Server (NTRS)
Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.
1992-01-01
The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.
Space 2100: A Shared Visioning Exercise for the Future Space Economy
NASA Astrophysics Data System (ADS)
Ferguson, C. K.; Nall, M. E.; Scott, D. W.; Tinker, M. L.; Oneil, D.; Sivak, A. D.; Wright, G. M.; Eberly, E. A.; Ramdall, C.
In 2013, NASA's Marshall Space Flight Center chartered a diverse team for a six-week "sprint" to envision how Earth, space, and public/private entities might be operating in the year 2100. This sprint intended to inspire innovation, creativity and improved teamwork between all levels of employees, in addition to pulling diverse ideas about exploration from organizations that are not traditionally included in technology development at NASA. The team was named Space 2100. In 2014, the team ran a sprint based on the previous outcomes to a) develop detailed estimates of operations and challenges of space activities in the vicinity of the Earth and Moon in the year 2050, b) identify evolutionary steps to make this vision a reality, and c) recommend actions to enable those steps. In 2015, the team continued building on previous years by identifying technologies and approaches to reduce and ultimately eliminate the need for resupply from Earth, enabling self-sufficient exploration throughout the solar system. This exercise identified 30 technologies as potential critical paths to Earth independency. Space 2100's conclusions and recommendations are not part of NASA's strategic planning or policy. This paper explores the three Space 2100 sprints and their implications for the future of space exploration.
Space Science for the 21st Century: The Space Science Enterprise Strategic Plan
NASA Technical Reports Server (NTRS)
1995-01-01
Throughout its history, the U.S. Space Science technologies program has been enormously productive. Its accomplishments have rewritten the textbooks. But now, the economic environment has changed dramatically. The Nation's scientific and technological goals are being reexamined and redefined.And the social contract between the scientific community and the Federal Government is being rewritten. There is an expectation that the American public should receive more direct benefits from its investment in science and technology. This Strategic Plan reflects this new paradigm. It presents a carefully selected set of new scientific initiatives that build on past accomplishments to continue NASA's excellence in Space Science. At the same time, it responds to fiscal constraints by defining a new approach to planning, developing, and operating Space Science missions. In particular, investments in new technologies will permit major scientific advances to be made with smaller, more focused, and less costly missions. With the introduction of advanced technologies, smaller does not have to mean less capable. The focus on new technologies also provides and opportunity for the Space Science program to enhance its direct contribution to the country's economic base. At the same time, the program can build on public interest to strengthen its contributions to education and scientific literacy. With this plan we are taking the first steps toward shaping the Space Science program of the 21st century. In doing so, we face major challenges. It will be a very different program than might have been envisioned even a few years ago. But it will be a program that remains at the forefront of science, technology, and education. We intend to continue rewriting the textbooks.
CRYOTE (Cryogenic Orbital Testbed) Concept
NASA Technical Reports Server (NTRS)
Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie
2009-01-01
Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.
The role of small satellites in the development of the South African space programme
NASA Astrophysics Data System (ADS)
Martinez, Peter
In the 1990s a team of scientists and engineers at Stellenbosch University built the first South African satellite to fly in space, the 64-kg Sunsat. This university-based satellite programme took advantage of the skills and facilities developed in the previous South African space programme of the 1980s and early 1990s, which had developed a much larger satellite (Greensat), but was cancelled in the mid-1990s prior to launch. Sunsat incorporated a number of novel capabilities for a microsatellite platform, and interest was shown in these technologies by other groups developing similar satellites. As the University was not the ideal environment to develop the commercial potential of these microsatellite technologies, a company called Sunspace was later established, thus creating industrial capacity in South Africa in a niche area of space technology. This new industrial capability, together with the infrastructure from the previous space programme, have created a foundation upon which to build the new South African space programme. This paper discusses the historical, current and possible future roles of small satellites in the development of the South African space programme.
The Evolvable Advanced Multi-Mission Operations System (AMMOS): Making Systems Interoperable
NASA Technical Reports Server (NTRS)
Ko, Adans Y.; Maldague, Pierre F.; Bui, Tung; Lam, Doris T.; McKinney, John C.
2010-01-01
The Advanced Multi-Mission Operations System (AMMOS) provides a common Mission Operation System (MOS) infrastructure to NASA deep space missions. The evolution of AMMOS has been driven by two factors: increasingly challenging requirements from space missions, and the emergence of new IT technology. The work described in this paper focuses on three key tasks related to IT technology requirements: first, to eliminate duplicate functionality; second, to promote the use of loosely coupled application programming interfaces, text based file interfaces, web-based frameworks and integrated Graphical User Interfaces (GUI) to connect users, data, and core functionality; and third, to build, develop, and deploy AMMOS services that are reusable, agile, adaptive to project MOS configurations, and responsive to industrially endorsed information technology standards.
A plan for time-phased incorporation of automation and robotics on the US space station
NASA Technical Reports Server (NTRS)
Purves, R. B.; Lin, P. S.; Fisher, E. M., Jr.
1988-01-01
A plan for the incorporation of Automation and Robotics technology on the Space Station is presented. The time phased introduction of twenty two selected candidates is set forth in accordance with a technology development forecast. Twenty candidates were chosed primarily for their potential to relieve the crew of mundane or dangerous operations and maintenance burdens, thus freeing crew time for mission duties and enhancing safety. Two candidates were chosen based on a potential for increasing the productivity of laboratory experiments and thus directly enhancing the scientific value of the Space Station. A technology assessment for each candidate investigates present state of the art, development timelines including space qualification considerations, and potential for technology transfer to earth applications. Each candidate is evaluated using a crew workload model driven by crew size, number of pressurized U.S. modules and external payloads, which makes it possible to assess the impact of automation during a growth scenario. Costs for each increment of implementation are estimated and accumulated.
An Overview of Communications Technology and Development Efforts for 2015 SBIR Phase I
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
This report highlights innovative SBIR 2015 Phase I projects specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are fifteen technologies featured with emphasis on a wide spectrum of applications such as novel solid state lasers for space-based water vapor dial; wide temperature, high voltage and energy density capacitors for aerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser for methane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites; a SIC-based microcontroller for high-temperature in-situ instruments and systems; improved yield, performance and reliability of high-actuator-count deformable mirrors; embedded multifunctional optical sensor system; switching electronics for space-based telescopes with advanced AO systems; integrated miniature DBR laser module for Lidar instruments; and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. space-based water vapor dial; wide temperature, high voltage and energy density capacitors foraerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser formethane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites.
NASA Technical Reports Server (NTRS)
Russell, Richard A.; Waiss, Richard D.
1988-01-01
A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.
Development of an Ultraflex-Based Thin Film Solar Array for Space Applications
NASA Technical Reports Server (NTRS)
White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.
2003-01-01
As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.
NASA Astrophysics Data System (ADS)
Wu, Zhibo; Zhang, Haifeng; Zhang, Zhongping; Deng, Huarong; Li, Pu; Meng, Wendong; Cheng, Zhien; Shen, Lurun; Tang, Zhenhong
2014-11-01
Laser ranging technology can directly measure the distance between space targets and ground stations with the highest measurement precision and will play an irreplaceable role in orbit check and calibrating microwave measurement system. The precise orbit determination and accurate catalogue of space targets can also be realized by laser ranging with multi-stations. Among space targets, most of ones are inactive targets and space debris, which should be paid the great attentions for the safety of active spacecrafts. Because of laser diffuse reflection from the surface of targets, laser ranging to space debris has the characteristics of wide coverage and weak strength of laser echoes, even though the powerful laser system is applied. In order to increase the receiving ability of laser echoes, the large aperture telescope should be adopted. As well known, some disadvantages for one set of large aperture telescope, technical development difficulty and system running and maintenance complexity, will limit its flexible applications. The multi-receiving telescopes technology in laser ranging to space targets is put forward to realize the equivalent receiving ability produced by one larger aperture telescope by way of using multi-receiving telescopes, with the advantages of flexibility and maintenance. The theoretical analysis of the feasibility and key technologies of multi-receiving telescopes technology in laser ranging to space targets are presented in this paper. The experimental measurement system based on the 60cm SLR system and 1.56m astronomical telescopes with a distance of about 50m is established to provide the platform for researching on the multi-receiving telescopes technology. The laser ranging experiments to satellites equipped with retro-reflectors are successfully performed by using the above experimental system and verify the technical feasibility to increase the ability of echo detection. And the multi-receiving telescopes technology will become a novel effective way to improve the detection ability of laser ranging to space debris.
NASA physics and chemistry experiments in-space program
NASA Technical Reports Server (NTRS)
Gabris, E. A.
1981-01-01
The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.
NASA Technical Reports Server (NTRS)
Caluori, V. A.
1980-01-01
Technologies either critical to performance of offering cost advantages compared to the investment required to bring them to usable confidence levels are identified. A total transportation system is used as an evaluation yardstick. Vehicles included in the system are a single stage to orbit launch vehicle used in a priority cargo role, a matching orbit transfer vehicle, a heavy lift launch vehicle with a low Earth orbit delivery capability of 226, 575 kg, and a matching solar electric cargo orbit transfer vehicle. The system and its reference technology level are consistent with an initial operational capability in 1990. The 15 year mission scenario is based on early space industrialization leading to the deployment of large systems such as power satellites. Life cycle cost benefits in discounted and undiscounted dollars for each vehicle, technology advancement, and the integrated transportation system are calculated. A preliminary functional analysis was made of the operational support requirements for ground based and space based chemical propulsion orbit transfer vehicles.
ERIC Educational Resources Information Center
Johnston, Keith; Conneely, Claire; Murchan, Damian; Tangney, Brendan
2015-01-01
Bridge21 is an innovative approach to learning for secondary education that was originally conceptualised as part of a social outreach intervention in the authors' third-level institution whereby participants attended workshops at a dedicated learning space on campus focusing on a particular model of technology-mediated group-based learning. This…
Space Weather Effects on Spacecraft Systems
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
Space-based systems are developing into critical infrastructure required to support the quality of life on Earth. Hence, spacecraft reliability is a serious issue that is complicated by exposure to the space environment. Complex mission designs along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. Hazardous space environments, the effects on systems, and the accommodation of the effects are described with a focus on the need to predict space environments.
Why advanced computing? The key to space-based operations
NASA Astrophysics Data System (ADS)
Phister, Paul W., Jr.; Plonisch, Igor; Mineo, Jack
2000-11-01
The 'what is the requirement?' aspect of advanced computing and how it relates to and supports Air Force space-based operations is a key issue. In support of the Air Force Space Command's five major mission areas (space control, force enhancement, force applications, space support and mission support), two-fifths of the requirements have associated stringent computing/size implications. The Air Force Research Laboratory's 'migration to space' concept will eventually shift Science and Technology (S&T) dollars from predominantly airborne systems to airborne-and-space related S&T areas. One challenging 'space' area is in the development of sophisticated on-board computing processes for the next generation smaller, cheaper satellite systems. These new space systems (called microsats or nanosats) could be as small as a softball, yet perform functions that are currently being done by large, vulnerable ground-based assets. The Joint Battlespace Infosphere (JBI) concept will be used to manage the overall process of space applications coupled with advancements in computing. The JBI can be defined as a globally interoperable information 'space' which aggregates, integrates, fuses, and intelligently disseminates all relevant battlespace knowledge to support effective decision-making at all echelons of a Joint Task Force (JTF). This paper explores a single theme -- on-board processing is the best avenue to take advantage of advancements in high-performance computing, high-density memories, communications, and re-programmable architecture technologies. The goal is to break away from 'no changes after launch' design to a more flexible design environment that can take advantage of changing space requirements and needs while the space vehicle is 'on orbit.'
NASA Technical Reports Server (NTRS)
Lee, L. F.; Cooper, L. P.
1993-01-01
This article describes the approach, results, and lessons learned from an applied research project demonstrating how artificial intelligence (AI) technology can be used to improve Deep Space Network operations. Configuring antenna and associated equipment necessary to support a communications link is a time-consuming process. The time spent configuring the equipment is essentially overhead and results in reduced time for actual mission support operations. The NASA Office of Space Communications (Code O) and the NASA Office of Advanced Concepts and Technology (Code C) jointly funded an applied research project to investigate technologies which can be used to reduce configuration time. This resulted in the development and application of AI-based automated operations technology in a prototype system, the Link Monitor and Control Operator Assistant (LMC OA). The LMC OA was tested over the course of three months in a parallel experimental mode on very long baseline interferometry (VLBI) operations at the Goldstone Deep Space Communications Center. The tests demonstrated a 44 percent reduction in pre-calibration time for a VLBI pass on the 70-m antenna. Currently, this technology is being developed further under Research and Technology Operating Plan (RTOP)-72 to demonstrate the applicability of the technology to operations in the entire Deep Space Network.
Alternative strategies for space station financing
NASA Technical Reports Server (NTRS)
Walklet, D. C.; Heenan, A. T.
1983-01-01
The attributes of the proposed space station program are oriented toward research activities and technologies which generate long term benefits for mankind. Unless such technologies are deemed of national interest and thus are government funded, they must stand on their own in the market place. Therefore, the objectives of a United States space station should be based on commercial criteria; otherwise, such a project attracts no long term funding. There is encouraging evidence that some potential space station activities should generate revenues from shuttle related projects within the decade. Materials processing concepts as well as remote sensing indicate substantial potential. Futhermore, the economics and thus the commercial feasibility of such projects will be improved by the operating efficiencies available with an ongoing space station program.
Analysis of technical spin-off effects of space-related R&D by means of patent indicators
NASA Astrophysics Data System (ADS)
Schmoch, U.; Kirsch, N.; Ley, W.; Plescher, E.; Jung, K. O.
In view of increasing European activity in the field of manned space travel, intense discussion has arisen on the significance of associated spin-off effects. Alongside this predominantly political debate, however, there is also a purely pragmatic interest in transferring wherever possible the successful results from space research to other branches of industry, in order to achieve optimum exploitation of all the resources available. Until now, spin-offs from space technology have been analyzed by means of interviews conducted in the firms involved, a process harbouring a whole series of uncertainty factors. Potential spin-off fields are frequently ignored, and alleged transfers from space research often in reality stem from other sources. This survey develops an objective method of describing technology transfer based on patent indicators. The first step was to establish on line a total of some 3000 space patents filed since 1975 with destination to the European and American markets. This record is sufficient to permit an analysis of the R&D activities undertaken by the leading industrial nations in the space sector. With further assistance provided by the method of analyzing patent citations, however, it is then possible to discover spin-off effects in areas outside space technology, which are nevertheless closely related in technical terms to the basic space patents with which they are associated. In this way, it is possible to define areas which are particularly suited to adopt space technologies in earthbound applications. This method of analyzing citations, which in principle is familiar for describing technology transfer within any one technical field, has thus been successfully employed for the first time for analyzing spin-offs.
The United Nations Human Space Technology Initiative
NASA Astrophysics Data System (ADS)
Balogh, Werner; Miyoshi, Takanori
2016-07-01
The United Nations Office for Outer Space Affairs (OOSA) launched the Human Space Technology Initiative (HSTI) in 2010 within the United Nations Programme on Space Applications, based on relevant recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III). The activities of HSTI are characterized by the following "Three Pillars": International Cooperation, Outreach, and Capacity-building. For International Cooperation, OOSA and the Japan Aerospace Exploration Agency (JAXA) jointly launched a new programme entitled "KiboCUBE". KiboCUBE aims to provide educational or research institutions located in developing countries with opportunities to deploy cube satellites of their own design and manufacture from Japanese Experiment Module "Kibo" on-board the International Space Station (ISS). The Announcement of Opportunity was released on 8 September 2015 and the selected institution is to be announced by 1 August 2016. OOSA is also collaborating with WHO and with the COPUOS Expert Group on Space and Global Health to promote space technologies and ground- and space-based research activities that can contribute to improving global health. For Outreach, OOSA and the government of Costa Rica are jointly organising the United Nations/Costa Rica Workshop on Human Space Technology from 7 to 11 March 2016. Participants will exchange information on achievements in human space programmes and discuss how to promote international cooperation by further facilitating the participation of developing countries in human space exploration-related activities. Also, it will address the role of space industries in human space exploration and its related activities, considering that they have become significant stakeholders in this field. For Capacity-building, OOSA has been carrying out two activities: the Zero-Gravity Instrument Project (ZGIP) and the Drop Tower Experiment Series (DropTES). In ZGIP, OOSA has annually distributed clinostats (microgravity simulation instruments) worldwide. ZGIP has been providing students and teachers with the opportunity to study gravitational effects on samples such as plant seeds in a simulated microgravity condition. Currently, second and third cycles are on-going. DropTES is a fellowship programme, in which OOSA and the Centre of Applied Space Technology and Microgravity (ZARM) jointly provide one student team annually with the opportunity to conduct their own microgravity experiment at the Bremen Drop Tower, Germany. In 2015, in the DropTES second cycle, Universidad Católica Boliviana "San Pablo" was given the fellowship. DropTES has been extended to the third cycle for 2016.
Lithium-Ion Batteries Based on Commercial Cells: Past, Present and Future
NASA Astrophysics Data System (ADS)
Spurrett, R.; Simmons, N.; Pearson, C.; Dudley, G.
2008-09-01
This paper describes the very early development and applications of Lithium-ion battery technology to space missions. This development was performed by ABSL (then AEA Technology) in collaboration with the European Space Agency (ESA) and the British National Space Centre (BNSC).A key factor in the establishment of lithium-ion as the Space battery chemistry of choice was the availability of high-quality commercial off-the-shelf (COTS) cells that enabled short experimental missions to be flown with confidence. Over time it was realized that the application of COTS cells was wider than originally thought, as the cycle life and uniformity of one particular commercial cell enabled larger batteries and longer mission to be addressed.This paper documents the historical development of this ground-breaking European innovation and a vision of the role of the COTS based batteries in future missions.
Solar Concentrator Advanced Development Program, Task 1
NASA Technical Reports Server (NTRS)
1986-01-01
Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.