The Space Shuttle Program and Its Support for Space Bioresearch
ERIC Educational Resources Information Center
Mason, J. A.; Heberlig, J. C.
1973-01-01
The Space Shuttle Program is aimed at not only providing low cost transportation to and from near earth orbit, but also to conduct important biological research. Fields of research identified include gravitational biology, biological rhythms, and radiation biology. (PS)
NASA Space Biology Research Associate Program for the 21st Century
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
2000-01-01
The Space Biology Research Associate Program for the 21st Century provided a unique opportunity to train individuals to conduct biological research in hypo- and hyper-gravity, and to conduct ground-based research. This grant was developed to maximize the potential for Space Biology as an emerging discipline and to train a cadre of space biologists. The field of gravitational and space biology is rapidly growing at the future of the field is reflected in the quality and education of its personnel. Our chief objective was to train and develop these scientists rapidly and in a cost effective model.
The NASA Space Biology Program
NASA Technical Reports Server (NTRS)
Halstead, T. W.
1982-01-01
A discussion is presented of the research conducted under the auspices of the NASA Space Biology Program. The objectives of this Program include the determination of how gravity affects and how it has shaped life on earth, the use of gravity as a tool to investigate relevant biological questions, and obtaining an understanding of how near-weightlessness affects both plants and animals in order to enhance the capability to use and explore space. Several areas of current developmental research are discussed and the future focus of the Program is considered.
NASA Space Biology Research Associate Program for the 21st Century
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1999-01-01
The Space Biology Research Associate Program for the 21st Century provided a unique opportunity to train individuals to conduct biological research in hypo- and hyper-gravity, and to conduct ground-based research. This grant was developed to maximize the potential for Space Biology as an emerging discipline and to train a cadre of space biologists. The field of gravitational and space biology is rapidly growing at the future of the field is reflected in the quality and education of its personnel. Our chief objective was to train and develop these scientists rapidly and in a cost effective manner. The program began on June 1, 1980 with funding to support several Research Associates each year. 113 awards, plus 1 from an independently supported minority component were made for the Research Associates program. The program was changed from a one year award with a possibility for renewal to a two year award. In 1999, the decision was made by NASA to discontinue the program due to development of new priorities for funding. This grant was discontinued because of the move of the Program Director to a new institution; a new grant was provided to that new institution to allow completion of the training of the remaining 2 research associates in 1999. After 1999, the program will be discontinued.
NASA Human Research Program Space Radiation Program Element
NASA Technical Reports Server (NTRS)
Chappell, Lori; Huff, Janice; Patel, Janapriya; Wang, Minli; Hu, Shaowwen; Kidane, Yared; Myung-Hee, Kim; Li, Yongfeng; Nounu, Hatem; Plante, Ianik;
2013-01-01
The goal of the NASA Human Research Program's Space Radiation Program Element is to ensure that crews can safely live and work in the space radiation environment. Current work is focused on developing the knowledge base and tools required for accurate assessment of health risks resulting from space radiation exposure including cancer and circulatory and central nervous system diseases, as well as acute risks from solar particle events. Division of Space Life Sciences (DSLS) Space Radiation Team scientists work at multiple levels to advance this goal, with major projects in biological risk research; epidemiology; and physical, biophysical, and biological modeling.
NASA Technical Reports Server (NTRS)
Morrison, D. R. (Compiler)
1977-01-01
Proceedings are presented of the 1976 NASA Colloquium on bioprocessing in space. The program included general sessions and formal presentations on the following topics: NASA's Space Shuttle, Spacelab, and space-processing programs; the known unusual behavior of materials in space; space-processing experiment results; cell biology, gravity sensors in cells, space electrophoresis of living cells, new approaches to biosynthesis of biologicals from cell culture in space, and zero-g fermentation concepts; and upcoming flight opportunities and industrial application planning studies already underway.
Gravitational Biology Facility on Space Station: Meeting the needs of space biology
NASA Technical Reports Server (NTRS)
Allen, Katherine; Wade, Charles
1992-01-01
The Gravitational Biology Facility (GBF) is a set of generic laboratory equipment needed to conduct research on Space Station Freedom (SSF), focusing on Space Biology Program science (Cell and Developmental Biology and Plant Biology). The GBF will be functional from the earliest utilization flights through the permanent manned phase. Gravitational biology research will also make use of other Life Sciences equipment on the space station as well as existing equipment developed for the space shuttle. The facility equipment will be developed based on requirements derived from experiments proposed by the scientific community to address critical questions in the Space Biology Program. This requires that the facility have the ability to house a wide variety of species, various methods of observation, and numerous methods of sample collection, preservation, and storage. The selection of the equipment will be done by the members of a scientific working group (5 members representing cell biology, 6 developmental biology, and 6 plant biology) who also provide requirements to design engineers to ensure that the equipment will meet scientific needs. All equipment will undergo extensive ground based experimental validation studies by various investigators addressing a variety of experimental questions. Equipment will be designed to be adaptable to other space platforms. The theme of the Gravitational Biology Facility effort is to provide optimal and reliable equipment to answer the critical questions in Space Biology as to the effects of gravity on living systems.
The 1985-86 NASA space/gravitational biology accomplishments
NASA Technical Reports Server (NTRS)
1987-01-01
Individual Technical summaries of research projects of NASA's Space/Gravitational Biology Program are presented. This Program is concerned with using the unique characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on Earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a listing of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.
Publications of the space biology program for 1975-1977: A special bibliography
NASA Technical Reports Server (NTRS)
Felt, J. C. (Compiler); Halstead, T. W. (Compiler)
1978-01-01
Documents cited represent research encompassing several disciplines of space biology: botany and plant pathology, physiology and biophysics, agricultural and environmental sciences, anatomy and embryology, cellular and comparative biology, horticulture and aerospace biology.
GeneLab for High Schools: Data Mining for the Next Generation
NASA Technical Reports Server (NTRS)
Blaber, Elizabeth A.; Ly, Diana; Sato, Kevin Y.; Taylor, Elizabeth
2016-01-01
Modern biological sciences have become increasingly based on molecular biology and high-throughput molecular techniques, such as genomics, transcriptomics, and proteomics. NASA Scientists and the NASA Space Biology Program have aimed to examine the fundamental building blocks of life (RNA, DNA and protein) in order to understand the response of living organisms to space and aid in fundamental research discoveries on Earth. In an effort to enable NASA funded science to be available to everyone, NASA has collected the data from omics studies and curated them in a data system called GeneLab. Whilst most college-level interns, academics and other scientists have had some interaction with omics data sets and analysis tools, high school students often have not. Therefore, the Space Biology Program is implementing a new Summer Program for high-school students that aims to inspire the next generation of scientists to learn about and get involved in space research using GeneLabs Data System. The program consists of three main components core learning modules, focused on developing students knowledge on the Space Biology Program and Space Biology research, Genelab and the data system, and previous research conducted on model organisms in space; networking and team work, enabling students to interact with guest lecturers from local universities and their fellow peers, and also enabling them to visit local universities and genomics centers around the Bay area; and finally an independent learning project, whereby students will be required to form small groups, analyze a dataset on the Genelab platform, generate a hypothesis and develop a research plan to test their hypothesis. This program will not only help inspire high-school students to become involved in space-based research but will also help them develop key critical thinking and bioinformatics skills required for most college degrees and furthermore, will enable them to establish networks with their peers and connections with university Professors that may help them achieve their educational goals.
The 1990-1991 NASA space biology accomplishments
NASA Technical Reports Server (NTRS)
Halstead, Thora W. (Editor)
1993-01-01
This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the period May 1990 through May 1991. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and other environmental factors on biological systems and to using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.
Future prospects for space life sciences from a NASA perspective
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.
The 1988-1989 NASA Space/Gravitational Biology Accomplishments
NASA Technical Reports Server (NTRS)
Halstead, Thora W. (Editor)
1990-01-01
This report consists of individual technical summaries of research projects of NASA's space/gravitational biology program, for research conducted during the period May 1988 to April 1989. This program is concerned with using the unique characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on Earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.
The 1986-87 NASA space/gravitational biology accomplishments
NASA Technical Reports Server (NTRS)
Halstead, Thora W. (Editor)
1987-01-01
This report consists of individual technical summaries of research projects of NASA's Space/Gravitational Biology program, for research conducted during the period January 1986 to April 1987. This program utilizes the unique characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on Earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a list of accomplishments, an explanation of the significance of the accomplishments, and a list of publications.
The 1987-1988 NASA space/gravitational biology accomplishments
NASA Technical Reports Server (NTRS)
Halstead, Thora W. (Editor)
1988-01-01
Individual technical summaries of research projects of the NASA Space/Gravitational Biology Program, for research conducted during the period January 1987 to April 1988 are presented. This Program is concerned with using the characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.
The 1992-1993 NASA Space Biology Accomplishments
NASA Technical Reports Server (NTRS)
Halstead, Thora W. (Editor)
1994-01-01
This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the calendar years of 1992 and 1993. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and the effects of microgravity on biological processes; determining the effects of the interaction of gravity and other environmental factors on biological systems; and using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.
Publications of the NASA space biology program for 1980 - 1984. [bibliographies
NASA Technical Reports Server (NTRS)
Pleasant, L. G. (Compiler); Solberg, J. L. (Compiler)
1984-01-01
A listing of 562 publications supported by the NASA Space Biology Program for the years 1980 to 1984 is presented. References are arranged under the headings which are plant gravitational research, animal gravitational research, and general. Keyword title indexes and a principal investigator listing are also included.
NASA space biology accomplishments, 1982
NASA Technical Reports Server (NTRS)
Halstead, T. W.; Pleasant, L. G.
1983-01-01
Summaries of NASA's Space Biology Program projects are provided. The goals, objectives, accomplishments, and future plans of each project are described in this publication as individual technical summaries.
NASA Space Biology Program. Eighth annual symposium's program and abstracts
NASA Technical Reports Server (NTRS)
Halstead, T. W. (Editor)
1984-01-01
The activities included five half days of presentations by space biology principal investigators, an evening of poster session presentations by research associates, and an afternoon session devoted to the Flight Experiments Program. Areas of discussion included the following: gravity receptor mechanisms; physiological effects of gravity, structural mass; fluid dynamics and metabolism; mechanisms of plant response; and the role of gravity in development.
The 1989-1990 NASA space biology accomplishments
NASA Technical Reports Server (NTRS)
Halstead, Thora W. (Editor)
1991-01-01
Individual technical summaries of research projects on NASA's Space Biology Program for research conducted during the period May 1989 to April 1990 are presented. This program is concerned with using the unique characteristics of the space environment, particularly microgravity, as a tool to advance the following: (1) knowledge in the biological sciences; (2) understanding of how gravity has shaped and affected life on the Earth; and (3) understanding of how the space environment affects both plants and animals. The summaries for each project include a description of the research, a list of accomplishments, an explanation of the significance of the accomplishments, and a list of publications.
Research opportunities in human behavior and performances
NASA Technical Reports Server (NTRS)
Christensen, J. M.; Talbot, J. M.
1985-01-01
The NASA research program in the biological and medical aspects of space flight includes investigations of human behavior and performance. The research focuses on psychological and psychophysiological responses to operational and environmental stresses and demands of spaceflight, and encompasses problems in perception, cognition, motivation, psychological stability, small group dynamics, and performance. The primary objective is to acquire the knowledge and methodology to aid in achieving high productivity and essential psychological support of space and ground crews in the Space Shuttle and space station programs. The Life Sciences Research Office (LSRO) of the Federation of American Societies for Experimental Biology reviewed its program in psychology and identified its research for future program planning to be in line with NASA's goals.
NASA Technical Reports Server (NTRS)
1976-01-01
Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.
Use of shuttle for life sciences
NASA Technical Reports Server (NTRS)
Mcgaughy, R. E.
1972-01-01
The use of the space shuttle in carrying out biological and medical research programs, with emphasis on the sortie module, is examined. Detailed descriptions are given of the goals of space life science disciplines, how the sortie can meet these goals, and what shuttle design features are necessary for a viable biological and medical experiment program. Conclusions show that the space shuttle sortie module is capable of accommodating all biological experiments contemplated at this time except for those involving large specimens or large populations of small animals; however, these experiments can be done with a specially designed module. It was also found that at least two weeks is required to do a meaningful survey of biological effects.
LifeSat - A satellite for space biological research
NASA Technical Reports Server (NTRS)
Halstead, Thora W.; Morey-Holton, Emily R.
1990-01-01
The LifeSat Program addresses the need for continuing access by biological scientists to space experimentation by accommodating a wide range of experiments involving animals and plants for durations up to 60 days in an unmanned satellite. The program will encourage interdisciplinary and international cooperation at both the agency and scientist levels, and will provide a recoverable, reusable facility for low-cost missions addressing key scientific issues that can only be answered by space experimentation. It will provide opportunities for research in gravitational biology and on the effects of cosmic radiation on life systems. The scientific aspects of LifeSat are addressed here.
USSR Space Life Sciences Digest, volume 2, no.1
NASA Technical Reports Server (NTRS)
Paulson, L. D.
1981-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.
USSR Space Life Sciences Digest, volume 1, no. 3
NASA Technical Reports Server (NTRS)
Wallace, P. M.
1980-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.
USSR Space Life Sciences Digest, volume 2, no. 3
NASA Technical Reports Server (NTRS)
Lewis, C. S.
1981-01-01
Soviet scientists are making significant contributions to the field of space medicine and biology through their active manned space program, frequent biosatellites, and extensive ground-based research. An overview of the developments and direction of the USSR Space Life Sciences Program is provided.
USSR Space Life Sciences Digest, volume 2, no. 4
NASA Technical Reports Server (NTRS)
Lewis, C. S.; Donnelly, K.
1981-01-01
Soviet scientists are making significant contributions to the field of space medicine and biology through their active manned space program, frequent biosatellites, and extensive ground-based research. An overview of the developments and direction of the USSR Space Life Sciences Program is provided.
Current status and future direction of NASA's Space Life Sciences Program
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.
Space biology class as part of science education programs for high schools in Japan.
Kamada, Motoshi; Takaoki, Muneo
2004-11-01
Declining incentives and scholastic abilities in science class has been concerned in Japan. The Ministry of Education, Culture, Sports, Science and Technology encourages schools to cooperate with research institutions to raise student's interest in natural sciences. The Science Partnership Program (SPP) and the Super Science High-School (SSH) are among such efforts. Our short SPP course consists of an introductory lecture on space biology in general and a brief laboratory practice on plant gravitropism. Space biology class is popular to students, despite of the absence of flight experiments. We suppose that students are delighted when they find that their own knowledge is not a mere theory, but has very practical applications. Space biology is suitable in science class, since it synthesizes mathematics, physics, chemistry and many other subjects that students might think uninteresting.
USSR Space Life Sciences Digest, volume 1, no. 4
NASA Technical Reports Server (NTRS)
Paulson, L. D.
1980-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology, and life sciences and technology.
USSR Space Life Sciences Digest, volume 2, no. 2
NASA Technical Reports Server (NTRS)
Paulson, L. D.
1981-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences and technology.
Space Biology in the 21st century
NASA Technical Reports Server (NTRS)
Halstead, Thora W.; Krauss, Robert W.
1990-01-01
Space Biology is poised to make significant contributions to science in the next century. A carefully crafted, but largely ground-based, program in the United States has evolved major questions that require answers through experiments in space. Science, scientists, and the new long-term spacecrafts designed by NASA will be available for the first time to mount a serious Space Biology effort. The scientific challenge is of such importance that success will provide countless benefits to biologically dependent areas such as medicine, food, and commerce in the decades ahead. The international community is rapidly expanding its role in this field. The United States should generate the resources that will allow progress in Space Biology to match the recognized progress made in aeronautics and the other space sciences.
NASA Technical Reports Server (NTRS)
1984-01-01
The perceptions of U.S. biotechnology and pharmaceutical companies concerning the potential use of the space environment for the processing of biological substances was examined. Physical phenomena that may be important in space-base processing of biological materials are identified and discussed in the context of past and current experiment programs. The capabilities of NASA to support future research and development, and to engage in cooperative risk sharing programs with industry are discussed. Meetings were held with several biotechnology and pharmaceutical companies to provide data for an analysis of the attitudes and perceptions of these industries toward the use of the space environment. Recommendations are made for actions that might be taken by NASA to facilitate the marketing of the use of the space environment, and in particular the Space Shuttle, to the biotechnology and pharmaceutical industries.
Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
Johnson, A. Steve; Badhwar, Gautam D.; Golightly, Michael J.; Hardy, Alva C.; Konradi, Andrei; Yang, Tracy Chui-Hsu
1993-01-01
The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.
Biological Effects of Space Radiation and Development of Effective Countermeasures
Kennedy, Ann R.
2014-01-01
As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation. PMID:25258703
Biological effects of space radiation and development of effective countermeasures
NASA Astrophysics Data System (ADS)
Kennedy, Ann R.
2014-04-01
As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.
French space program: report to Cospar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-01-01
Programs and results obtained are reviewed for all French laboratories working in areas of research related to space. Main topics include lunar specimen studies; spectroscopic planetology; space radiation; ionospheric and magnetospherics; aeronomy; meteorology, comprising the Meteosat program and the Eole experiment and earth resources investigations; geodesy; and geodynamics-research covering space biology and exobiology is also discussed. French satellites and sounding rockets are listed, as well as French experiments onboard foreign spacecraft. (GRA)
Multidisciplinary Russian biomedical research in space
NASA Astrophysics Data System (ADS)
Orlov, O. I.; Sychev, V. N.; Samarin, G. I.; Ilyin, E. A.; Belakovskiy, M. S.; Kussmaul, A. R.
2014-08-01
Research activities on a comprehensive multidisciplinary program are vital for enhancement of the system of crew's medical care, environmental health and hygiene in space missions. The primary goal of the program must be identification of patterns, intensity and dynamics of structural and functional shifts in organism induced by an aggregate of spaceflight factors including microgravity, isolation, artificial environment, space radiation, etc. Also, the program must pursue differential assessment of emerging deviations from the standpoint of adequacy to the spaceflight conditions and prospects of returning to Earth and guide the development of principles, methods and techniques necessary to maintain health and working capacity of humans during short- and long-duration missions and on return to Earth. Over 50 years, since 1963, the IBMP researchers apply systemic and innovational approaches to fundamental and exploratory studies in the fields of medical sciences, radiation biology, engineering science, biotechnology, etc. with participation of various biological specimens and human volunteers. Investigations aboard manned spacecrafts and biological satellites as well as in ground-based laboratories further enhancement of the medical care system for crews on orbital and remote space missions; they give insight into the fundamental problems of gravitational physiology and biology, psychophysiology, radiation biology, and contribute thereby to the development of knowledge, methods and technologies, as well as medical and scientific equipment.
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry
1989-01-01
The optimum hardware miniaturization level with the lowest cost impact for space biology hardware was determined. Space biology hardware and/or components/subassemblies/assemblies which are the most likely candidates for application of miniaturization are to be defined and relative cost impacts of such miniaturization are to be analyzed. A mathematical or statistical analysis method with the capability to support development of parametric cost analysis impacts for levels of production design miniaturization are provided.
The NASA Space Life Sciences Training Program: Accomplishments Since 2013
NASA Technical Reports Server (NTRS)
Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth
2017-01-01
The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.
The role of depressed metabolism in space biology: An overview
NASA Technical Reports Server (NTRS)
Saunders, J.
1973-01-01
Organization and research activities of the entire NASA Space Biology Program are outlined. Various technical approaches are reported to study depressed metabolism particularly in the situation of 100% oxygen and reduced ambient pressures. These include hibernation and hypothermia, thermal regulation, and diluent gases.
Space plant biology research in Lithuania.
Ričkienė, Aurika
2012-09-01
In 1957, the Soviet Union launched the first artificial Earth satellite, initiating its space exploration programs. Throughout the rest of the twentieth century, the development of these space programs received special attention from Soviet Union authorities. Scientists from the former Soviet Republics, including Lithuania, participated in these programs. From 1971 to 1990, Lithuanians designed more than 20 experiments on higher plant species during space flight. Some of these experiments had never before been attempted and, therefore, made scientific history. However, the formation and development of space plant biology research in Lithuania or its origins, context of formation, and placement in a worldwide context have not been explored from a historical standpoint. By investigating these topics, this paper seeks to construct an image of the development of a very specific field of science in a small former Soviet republic. Copyright © 2012 Elsevier Ltd. All rights reserved.
Space life sciences: Programs and projects
NASA Technical Reports Server (NTRS)
1989-01-01
NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.
Exploring the living universe: A strategy for space life sciences
NASA Technical Reports Server (NTRS)
1988-01-01
The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.
The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments
NASA Technical Reports Server (NTRS)
Torrez, Jonathan
2009-01-01
The goal of this project was to assist in the creation of the appendix for the book being written about the Space Shuttle that is titled The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments. The specific responsibility of the intern was the creation of the human health and performance (life sciences) and space biology sections of the appendix. This included examining and finalizing the list of flights with life sciences and space biology experiments flown aboard them, researching the experiments performed, synopsizing each experiment into two sentences, and placing the synopses into an appendix template. Overall, approximately 70 flights had their experiments synopsized and a good method for researching and construction of the template was established this summer.
Summaries of 1984-85 NASA space-gravitational biology accomplishments
NASA Technical Reports Server (NTRS)
Halstead, T. W. (Compiler); Dutcher, F. R. (Compiler); Pleasant, L. G. (Compiler)
1985-01-01
Individual technical summaries of research projects of NASA's Space/Gravitational Biology Program are presented. The summaries for each project include a description of the research, a listing of the accomplishments, and an explanation of the significance of the accomplishments. Bibliographies for each project are also included.
NASA Space Biology Plant Research for 2010-2020
NASA Technical Reports Server (NTRS)
Levine, H. G.; Tomko, D. L.; Porterfield, D. M.
2012-01-01
The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA's Space Biology research will optimize ISS research utilization, develop and demonstrate technology and hardware that will enable new science, and contribute to the base of fundamental knowledge that will facilitate development of new tools for human space exploration and Earth applications. By taking these steps, NASA will energize the Space Biology user community and advance our knowledge of the effect of the space flight environment on living systems.
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
2013-01-01
NASA currently has a program called the Space Synthetic Biology Project. Synthetic Biology or SynBio is the design and construction of new biological functions and systems not found in nature. Four NASA field centers, along with experts from industry and academia, have been partnering on the Space Synthetic Biology Project and are working on new breakthroughs in this increasingly useful pursuit, which is part a science discipline and part engineering. Led by researchers at NASA s Ames Research Center, the team is studying how this powerful new tool can help NASA now and in the future. The project was created to harness biology in reliable, robust, engineered systems to support the agency s exploration and science missions, to improve life on Earth and to help shape NASA's future. The program also is intended to contribute foundational tools to the synthetic biology research community.
NASA Astrophysics Data System (ADS)
Losik, L.
A predictive medicine program allows disease and illness including mental illness to be predicted using tools created to identify the presence of accelerated aging (a.k.a. disease) in electrical and mechanical equipment. When illness and disease can be predicted, actions can be taken so that the illness and disease can be prevented and eliminated. A predictive medicine program uses the same tools and practices from a prognostic and health management program to process biological and engineering diagnostic data provided in analog telemetry during prelaunch readiness and space exploration missions. The biological and engineering diagnostic data necessary to predict illness and disease is collected from the pre-launch spaceflight readiness activities and during space flight for the ground crew to perform a prognostic analysis on the results from a diagnostic analysis. The diagnostic, biological data provided in telemetry is converted to prognostic (predictive) data using the predictive algorithms. Predictive algorithms demodulate telemetry behavior. They illustrate the presence of accelerated aging/disease in normal appearing systems that function normally. Mental illness can predicted using biological diagnostic measurements provided in CCSDS telemetry from a spacecraft such as the ISS or from a manned spacecraft in deep space. The measurements used to predict mental illness include biological and engineering data from an astronaut's circadian and ultranian rhythms. This data originates deep in the brain that is also damaged from the long-term exposure to cortisol and adrenaline anytime the body's fight or flight response is activated. This paper defines the brain's FOFR; the diagnostic, biological and engineering measurements needed to predict mental illness, identifies the predictive algorithms necessary to process the behavior in CCSDS analog telemetry to predict and thus prevent mental illness from occurring on human spaceflight missions.
Behavioral biology of mammalian reproduction and development for a space station
NASA Technical Reports Server (NTRS)
Alberts, J. R.
1983-01-01
Space Station research includes two kinds of adaption to space: somatic (the adjustments made by an organism, within its lifetime, in response to local conditions), and transgenerational adaption (continuous exposure across sequential life cycles of genetic descendents). Transgenerational effects are akin to evolutionary process. Areas of a life Sciences Program in a space station address the questions of the behavioral biology of mammalian reproduction and development, using the Norway rat as the focus of experimentation.
NASA space biology accomplishments, 1983-84
NASA Technical Reports Server (NTRS)
Halstead, T. W.; Dutcher, F. R.; Pleasant, L. G.
1984-01-01
Approximately 42 project summaries from NASA's Space Biology Program are presented. Emphasis is placed on gravitational effects on plant and animal life. The identification of gravity perception; the effects of weightlessness on genetic integrity, cellular differentiation, reproduction, development, growth, maturation, and senescence; and how gravity affects and controls physiology, morphology, and behavior of organisms are studied.
NASA Technical Reports Server (NTRS)
Stutte, Gary W.
2015-01-01
NASA has long recognized the importance of biological life-support systems to remove carbon dioxide, generate oxygen, purify water, and produce food for long-duration space missions. Experiments to understand the effects of the space environment on plant development have been performed since early days of the space program. In the late 1970s, NASA sponsored a series of workshops to identify issues associated with developing a sustainable, biological life-support system for long-duration space missions. Based on findings from these workshops, NASA's Controlled Ecological Life Support Systems (CELSS) program began funding research at university and field centers to systematically conduct the research identified in those workshops. Key issues were the necessity to reduce mass, power/energy requirements, and volume of all components.
2002-04-29
KENNEDY SPACE CENTER, FLA. -- At the opening ceremony for the new program known as SABRE, Space Agricultural Biotechnology Research and Education, William Knott speaks to attendees. Knott is senior scientist in the NASA biological sciences office. SABRE is a joint effort of the University of Florida and NASA and will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville. Robert Ferl, professor in the horticultural sciences department and assistant director of the University of Florida Biotechnology Program, will direct and be responsible for coordinating the research and education.
NASA Technical Reports Server (NTRS)
1987-01-01
Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.
Deep Space Gateway Science Opportunities
NASA Technical Reports Server (NTRS)
Quincy, C. D.; Charles, J. B.; Hamill, Doris; Sidney, S. C.
2018-01-01
The NASA Life Sciences Research Capabilities Team (LSRCT) has been discussing deep space research needs for the last two years. NASA's programs conducting life sciences studies - the Human Research Program, Space Biology, Astrobiology, and Planetary Protection - see the Deep Space Gateway (DSG) as affording enormous opportunities to investigate biological organisms in a unique environment that cannot be replicated in Earth-based laboratories or on Low Earth Orbit science platforms. These investigations may provide in many cases the definitive answers to risks associated with exploration and living outside Earth's protective magnetic field. Unlike Low Earth Orbit or terrestrial locations, the Gateway location will be subjected to the true deep space spectrum and influence of both galactic cosmic and solar particle radiation and thus presents an opportunity to investigate their long-term exposure effects. The question of how a community of biological organisms change over time within the harsh environment of space flight outside of the magnetic field protection can be investigated. The biological response to the absence of Earth's geomagnetic field can be studied for the first time. Will organisms change in new and unique ways under these new conditions? This may be specifically true on investigations of microbial communities. The Gateway provides a platform for microbiology experiments both inside, to improve understanding of interactions between microbes and human habitats, and outside, to improve understanding of microbe-hardware interactions exposed to the space environment.
NASA Technical Reports Server (NTRS)
Cogoli, A. (Editor); Cogoli-Greuter, M. (Editor); Gruener, R. (Editor); Sievers, A. (Editor); Ubbels, G. A. (Editor); Halstead, T. W. (Editor); Ross, M. D. (Editor); Roux, S. J. (Editor); Oser, H. (Editor); Lujan, B. F. (Editor)
1994-01-01
The conference includes papers describing theories and models of cell biology in microgravity and weightlessness; experimental research on cellular responses to altered gravity in plants and animals, natural and simulated; graviresponses in plants; gravitational effects in developmental biology; mechanisms of gravisensing; effects on animals and humans; and educational programs in Space Life Sciences.
NASA Workshop on Biological Adaptation
NASA Technical Reports Server (NTRS)
Morey-Holton, Emily (Editor); Tischler, Marc (Editor)
1988-01-01
A workshop was convened to review the current program in Space Biology Biological Adaptation Research and its objectives and to identify future research directions. Two research areas emerged from these deliberations: gravitational effects on structures and biomineralization and gravity affected regulatory mechanisms. The participants also recommended that research concentrate on rapidly growing animals, since gravity effects may be more pronounced during growth and development. Both research areas were defined and future research directions were identified. The recommendations of the workshop will assist the Life Sciences Division of NASA in it assessment and long-range planning of these areas of space biology. Equally important, the workshop was intended to stimulate thought and research among those attending so that they would, in turn, interest, excite, and involve other members of the academic community in research efforts relevant to these programs.
Higashibata, Akira; Higashitani, Atsushi; Adachi, Ryota; Kagawa, Hiroaki; Honda, Shuji; Honda, Yoko; Higashitani, Nahoko; Sasagawa, Yohei; Miyazawa, Yutaka; Szewczyk, Nathaniel J.; Conley, Catharine A.; Fujimoto, Nobuyoshi; Fukui, Keiji; Shimazu, Toru; Kuriyama, Kana; Ishioka, Noriaki
2008-01-01
The first International Caenorhabditis elegans Experiment (ICE-First) was carried out using a Russian Soyuz spacecraft from April 19-30, 2004. This experiment was a part of the program of the DELTA (Dutch Expedition for Life science Technology and Atmospheric research) mission, and the space agencies that participate in the International Space Station (ISS) program formed international research teams. A Japanese research team that conducted by Japan aerospace Exploration Agency (JAXA) investigated the following aspects of the organism: (1) whether meiotic chromosomal dynamics and apoptosis in the germ cells were normal under microgravity conditions, (2) the effect of the space flight on muscle cell development, and (3) the effect of the space flight on protein aggregation. In this article, we summarize the results of these biochemical and molecular biological analyses. PMID:19513185
Wallops and its role in depressed metabolism
NASA Technical Reports Server (NTRS)
Holton, E. M.
1973-01-01
Facilities and organization at the Wallops station are reviewed and some current research work is described that pertains to noise abatement studies as well as some testing phases on V/STOL aircraft. Radiation biology results of various space flights are reviewed and some efforts for the Regulatory Biology Program, involving depressed metabolism aspects of space travel are detailed.
NASA Technical Reports Server (NTRS)
1989-01-01
The Life Science Division of the NASA Office of Space Science and Applications (OSSA) describes its plans for assuring the health, safety, and productivity of astronauts in space, and its plans for acquiring further fundamental scientific knowledge concerning space life sciences. This strategic implementation plan details OSSA's goals, objectives, and planned initiatives. The following areas of interest are identified: operational medicine; biomedical research; space biology; exobiology; biospheric research; controlled ecological life support; flight programs and advance technology development; the life sciences educational program; and earth benefits from space life sciences.
2000-04-20
Cindy Barnes of University Space Research Association (USRA) at NASA's Marshall Space Flight Center pipettes a protein solution in preparation to grow crystals as part of NASA's structural biology program. Research on Earth helps scientists define conditions and specimens they will use in space experiments.
2002-04-29
KENNEDY SPACE CENTER, FLA. -- At the opening ceremony for the new program known as SABRE, Space Agricultural Biotechnology Research and Education, key participants gather around the SABRE poster. From left are Robert Ferl, professor in the horticultural sciences department and assistant director of the University of Florida Biotechnology Program, who will direct and be responsible for coordinating the research and education; William Knott, senior scientist in the NASA biological sciences office; U.S. Representative Dave Weldon; Center Director Roy D. Bridges Jr.; and Florida Representative Bob Allen. Involving UF and NASA, SABRE will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville
Life Sciences Accomplishments 1994
NASA Technical Reports Server (NTRS)
Burnell, Mary Lou (Editor)
1993-01-01
The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting proposals for ground-based and flight research for all programs. Areas of particular interest to NASA were defined Proposals due April 29, 1994, will be peer reviewed - externally for scientific merit. This annual NRA process is now the mechanism for recruiting both extramural and intramural investigations. As an overview of LBSAD activities in 1993, this accomplishments document covers each of the major organizational components of the Division and the accomplishments of each. The second section is a review of the Space Life Sciences Research programs Space Biology, Space Physiology and Countermeasures, Radiation Health, Environmental Health, Space Human Factors, Advanced Life Support, and Global Monitoring and Disease Prediction, The third section, Research in Space Flight, describes the substantial contributions of the Spacelab Life Sciences 2 (SLS-2) mission to life sciences research and the significant contributions of the other missions flown in 1993, along with plans for future missions. The Division has greatly expanded and given high priority to its Education and Outreach Programs, which are presented in the fourth section. The fifth and final section, Partners for Space, shows the Divisions Cooperative efforts with other national and international agencies to achieve common goals, along with the accomplishments of joint research and analysis programs.
Space Biology Initiative. Trade Studies, volume 2
NASA Technical Reports Server (NTRS)
1989-01-01
The six studies which are the subjects of this report are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves as a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.
Space Biology Initiative. Trade Studies, volume 1
NASA Technical Reports Server (NTRS)
1989-01-01
The six studies which are addressed are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves has a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.
Space biology initiative program definition review. Trade study 4: Design modularity and commonality
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry
1989-01-01
The relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality is studied. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, the relative cost impacts of implementing commonality of hardware for all Space Biology hardware are defined. Cost analysis and supporting recommendations for levels of modularity and commonality are presented. A mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis is provided.
The NASA Space Radiation Research Program
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2006-01-01
We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.
NASA Astrophysics Data System (ADS)
Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.
2016-01-01
Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is documented. The applicants' statistics revealed that personal contacts and the DLR website were most important the recruitment of doctoral candidates. The evaluation of the application and selection procedure revealed that prediction of thesis success based on master thesis mark or evaluation by the selection committee is difficult. SpaceLife Doctoral Students greatly contributed to the scientific output in terms of peer-reviewed publications of the Institute of Aerospace Medicine with a peak in the fourth year after start of the thesis and they continuously received awards for their scientific work.
The joint US-USSR biological satellite program
NASA Technical Reports Server (NTRS)
Souza, K. A.
1979-01-01
The joint US-USSR biological satellite missions carried out in 1975 and 1977 using Cosmos 782 and Cosmos 936 spacecraft, respectively, is reviewed. The experimental equipment and the biological specimens aboard the aircraft are considered, and it is noted that Cosmos 782, unlike Cosmos 936, carried no centrifuges for rats, although it did contain a centrifuge where a variety of biological specimens, including carrot tissue and fruit flies, were subjected to artificial gravity during space flight. The ground control groups, designed for biological experiments under simulated space-conditions, are taken into account. The U.S. experiments aboard the aircraft are described, with attention given to the experiments with rats, fish embryos, plants, and insects. Results of the experiments are noted, including the finding that space flight factors, especially weightlessness, have a measurable effect on the erythropoietic and musculoskeletal systems of rats
Biological challenges of true space settlement
NASA Astrophysics Data System (ADS)
Mankins, John C.; Mankins, Willa M.; Walter, Helen
2018-05-01
"Space Settlements" - i.e., permanent human communities beyond Earth's biosphere - have been discussed within the space advocacy community since the 1970s. Now, with the end of the International Space Station (ISS) program fast approaching (planned for 2024-2025) and the advent of low cost Earth-to-orbit (ETO) transportation in the near future, the concept is coming once more into mainstream. Considerable attention has been focused on various issues associated with the engineering and human health considerations of space settlement such as artificial gravity and radiation shielding. However, relatively little attention has been given to the biological implications of a self-sufficient space settlement. Three fundamental questions are explored in this paper: (1) what are the biological "foundations" of truly self-sufficient space settlements in the foreseeable future, (2) what is the minimum scale for such self-sustaining human settlements, and (3) what are the integrated biologically-driven system requirements for such settlements? The paper examines briefly the implications of the answers to these questions in relevant potential settings (including free space, the Moon and Mars). Finally, this paper suggests relevant directions for future research and development in order for such space settlements to become viable in the future.
Space life sciences strategic plan, 1991
NASA Technical Reports Server (NTRS)
1992-01-01
Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.
NASA Technical Reports Server (NTRS)
Swenberg, Charles E. (Editor); Horneck, Gerda (Editor); Stassinopoulos, E. G. (Editor)
1993-01-01
Since there is an increasing interest in establishing lunar bases and exploring Mars by manned missions, it is important to develop appropriate risk estimates and radiation protection guidelines. The biological effects and physics of solar and galactic cosmic radiation are examined with respect to the following: the radiation environment of interplanetary space, the biological responses to radiation in space, and the risk estimates for deep space missions. There is a need for a long-term program where ground-based studies can be augmented by flight experiments and an international standardization with respect to data collection, protocol comparison, and formulation of guidelines for future missions.
National Aeronautics and Space Administration Biological Specimen Repository
NASA Technical Reports Server (NTRS)
McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne
2008-01-01
The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.
NASA Technical Reports Server (NTRS)
Guikema, James A.; Spooner, Brian S.
1994-01-01
The NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology was established at Kansas State University, supported through NASA's Life Science Division, Office of Space Science and Applications. Educational opportunities, associated with each of the research projects which form the nucleus of the Center, are complemented by program enrichments such as scholar exchanges and linkages to other NASA and commercial programs. The focus of this training program, and a preliminary assessment of its successes, are described.
Semi-Autonomous Rodent Habitat for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Alwood, J. S.; Shirazi-Fard, Y.; Pletcher, D.; Globus, R.
2018-01-01
NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups of mice exposed to simulated Galactic Cosmic Radiation (at the NASA Space Radiation Lab). Results can then be compared to identical experiments conducted on the ISS. Together results from Gateway, ground-based, and ISS rodent experiments will provide novel insight into the effects of space radiation.
The 1984 NASA/ASEE summer faculty fellowship program
NASA Technical Reports Server (NTRS)
Mcinnis, B. C.; Duke, M. B.; Crow, B.
1984-01-01
An overview is given of the program management and activities. Participants and research advisors are listed. Abstracts give describe and present results of research assignments performed by 31 fellows either at the Johnson Space Center, at the White Sands test Facility, or at the California Space Institute in La Jolla. Disciplines studied include engineering; biology/life sciences; Earth sciences; chemistry; mathematics/statistics/computer sciences; and physics/astronomy.
Humans in Space: Summarizing the Medico-Biological Results of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Risin, Diana; Stepaniak, P. C.; Grounds, D. J.
2011-01-01
As we celebrate the 50th anniversary of Gagarin's flight that opened the era of Humans in Space we also commemorate the 30th anniversary of the Space Shuttle Program (SSP) which was triumphantly completed by the flight of STS-135 on July 21, 2011. These were great milestones in the history of Human Space Exploration. Many important questions regarding the ability of humans to adapt and function in space were answered for the past 50 years and many lessons have been learned. Significant contribution to answering these questions was made by the SSP. To ensure the availability of the Shuttle Program experiences to the international space community NASA has made a decision to summarize the medico-biological results of the SSP in a fundamental edition that is scheduled to be completed by the end of 2011 beginning 2012. The goal of this edition is to define the normal responses of the major physiological systems to short-duration space flights and provide a comprehensive source of information for planning, ensuring successful operational activities and for management of potential medical problems that might arise during future long-term space missions. The book includes the following sections: 1. History of Shuttle Biomedical Research and Operations; 2. Medical Operations Overview Systems, Monitoring, and Care; 3. Biomedical Research Overview; 4. System-specific Adaptations/Responses, Issues, and Countermeasures; 5. Multisystem Issues and Countermeasures. In addition, selected operational documents will be presented in the appendices. The chapters are written by well-recognized experts in appropriate fields, peer reviewed, and edited by physicians and scientists with extensive expertise in space medical operations and space-related biomedical research. As Space Exploration continues the major question whether humans are capable of adapting to long term presence and adequate functioning in space habitats remains to be answered We expect that the comprehensive review of the medico-biological results of the SSP along with the data collected during the missions on the space stations (Mir and ISS) provides a good starting point in seeking the answer to this question.
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Plante, I.; George, Kerry; Cornforth, M. N.; Loucas, B. D.; Wu, Honglu
2014-01-01
This presentation summarizes several years of research done by the co-authors developing the NASARTI (NASA Radiation Track Image) program and supporting it with scientific data. The goal of the program is to support NASA mission to achieve a safe space travel for humans despite the perils of space radiation. The program focuses on selected topics in radiation biology that were deemed important throughout this period of time, both for the NASA human space flight program and to academic radiation research. Besides scientific support to develop strategies protecting humans against an exposure to deep space radiation during space missions, and understanding health effects from space radiation on astronauts, other important ramifications of the ionizing radiation were studied with the applicability to greater human needs: understanding the origins of cancer, the impact on human genome, and the application of computer technology to biological research addressing the health of general population. The models under NASARTI project include: the general properties of ionizing radiation, such as particular track structure, the effects of radiation on human DNA, visualization and the statistical properties of DSBs (DNA double-strand breaks), DNA damage and repair pathways models and cell phenotypes, chromosomal aberrations, microscopy data analysis and the application to human tissue damage and cancer models. The development of the GUI and the interactive website, as deliverables to NASA operations teams and tools for a broader research community, is discussed. Most recent findings in the area of chromosomal aberrations and the application of the stochastic track structure are also presented.
The French balloon and sounding rocket space program
NASA Astrophysics Data System (ADS)
Coutin/Faye, S.; Sadourny, I.
1987-08-01
Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.
NASA Technical Reports Server (NTRS)
Souza, K. A. (Compiler); Young, R. S. (Compiler)
1976-01-01
The Planetary Biology Program of the National Aeronautics and Space Administration is the first and only integrated program to methodically investigate the planetary events which may have been responsible for, or related to, the origin, evolution, and distribution of life in the universe. Research supported by this program is divided into the seven areas listed below: (1) chemical evolution, (2) organic geochemistry, (3) life detection, (4) biological adaptation, (5) bioinstrumentation, (6) planetary environments, and (7) origin of life. The arrangement of references in this bibliography follows the division of research described above. Articles are listed alphabetically by author under the research area with which they are most closely related. Only those publications which resulted from research supported by the Planetary Biology Program and which bear a 1975 publication date have been included. Abstracts and theses are not included because of the preliminary and abbreviated nature of the former and the frequent difficulty of obtaining the latter.
NASA Space Biology Program: 9th Annual Symposium
NASA Technical Reports Server (NTRS)
Halstead, T. W.
1985-01-01
Topics covered include plant and animal gravity receptors and transduction; the role of gravity in growth and development of plants and animals; biological support structures and the role of calcium; mechanisms and responses of gravity sensitive systems; and mechanisms of plant responses to gravity.
Innovative quantum technologies for microgravity fundamental physics and biological research
NASA Technical Reports Server (NTRS)
Kierk, I.; Israelsson, U.; Lee, M.
2001-01-01
This paper presents a new technology program, within the fundamental physics research program, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum fluid based sensor and modeling technology.
Experiment module concepts study. Volume 2: Experiments and mission operations
NASA Technical Reports Server (NTRS)
Macdonald, J. M.
1970-01-01
The baseline experiment program is concerned with future space experiments and cover the scientific disciplines of astronomy, space physics, space biology, biomedicine and biotechnology, earth applications, materials science, and advanced technology. The experiments within each discipline are grouped into functional program elements according to experiments that support a particular area of research or investigation and experiments that impose similar or related demand on space station support systems. The experiment requirements on module subsystems, experiment operating modes and time profiles, and the role of the astronaut are discussed. Launch and rendezvous with the space station, disposal, and on-orbit operations are delineated. The operational interfaces between module and other system elements are presented and include space station and logistic system interfaces. Preliminary launch and on-orbit environmental criteria and requirements are discussed, and experiment equipment weights by functional program elements are tabulated.
Space life sciences pilot user development program for the midwest region
NASA Technical Reports Server (NTRS)
1978-01-01
The use of space for research by the life science community was promoted through a series of informal one-day seminars with personal follow-up as circumstances dictated. The programs were planned to: (1) describe the space shuttle vehicle and some of its intended uses; (2) discuss problems of manned space flight; (3) stimulate ideas for biological research in space; (4) discuss costs and potential for industrial and; government sponsorship; and (5) show the researcher or corporate planner how to become an active participant in life sciences research in space. An outline of seminar topics is included along with a description of the seminar organization and lists of participants and materials used.
NASA Technical Reports Server (NTRS)
Crouch, Roger
2004-01-01
Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.
The impact of the new biology on radiation risks in space
NASA Technical Reports Server (NTRS)
Dicello, John F.
2003-01-01
Radiation is considered to be one of three or four major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions, both orbital and interplanetary. Space habitats are stressful and dangerous environments. Health and medical consequences arising from microgravity, stress, and trauma include weakened immune systems, increased viral activity, and loss of bone mass. The greatest risks from radiation are generally assumed to be cancers and possibly damage to the central nervous system. Synergistic effects arising from the other environmental hazards along with abscopal and exogenic factors are likely. Space programs represent an exceptional opportunity for examining the biological consequences of low-dose exposures of humans to radiation at every level of progression. Although astronauts are a relatively small population, they are healthy, physically active volunteers who undergo extensive testing and medical examinations before, during, and after protracted exposures with periodic follow-up examinations. The radiation environments along with other hazards are likewise monitored and documented. Extensive international research programs are in progress. Seven years ago the U.S. National Aeronautics and Space Administration established the National Space Biomedical Research Institute through a cooperative agreement with a consortium of research and academic institutions in order to address radiation issues through a concerted, programmatic effort. Advanced technologies are rapidly being incorporated into these programs to determine the significance of new biological data and to evaluate the interplay among the different medical hazards. Programmatic in vivo and in vitro studies of the processes leading to carcinogenesis are in progress. Drugs and dietary supplements are being examined at the cellular and in vivo levels to assess their potential as dose-modifying agents. The infrastructure of this new approach, recent results, and research in progress are reviewed and discussed.
NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1990-01-01
The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis.
A review of recent activities in the NASA CELSS program
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Tremor, J.; Smernoff, D. T.; Knott, W.; Prince, R. P.
1987-01-01
A CELSS (Controlled Ecological Life Support System) is a device that utilizes photosynthetic organisms and light energy to regenerate waste materials into oxygen and food for a crew in space. The results of theoretical and practical studies conducted by investigators within the CELSS program suggest that a bioregenerative life support system can be a useful and effective method of regenerating consumable materials for crew sustenance. Experimental data suggests that the operation of a CELSS in space will be practical if plants can be made to behave predictably in the space environment. Much of the work currently conducted within the CELSS program centers on the biological components of the CELSS system. The work is particularly directed at ways of achieving high efficiency and long term stability of all components of the system. Included are explorations of the conversion of nonedible cellulose to edible materials, nitrogen fixation by biological and chemical methods, and methods of waste processing. It is the intent of the presentation to provide a description of the extent to which a bioregenerative life support system can meet the constraints of the space environment, and to assess the degree to which system efficiency and stability can be increased during the next decade.
Assessment of programs in space biology and medicine
NASA Technical Reports Server (NTRS)
1991-01-01
Over the past 30 or more years, the National Research Council Space Studies Board and its various committees have published hundreds of recommendations concerning life sciences research. Several particularly noteworthy themes appear consistently: (1) Balance - the need for a well-balanced research program in terms of ground versus flight, basic versus clinical, and internal versus extramural; (2) Excellence - because of the extremely limited number of flight opportunities (as well as their associated relative costs), the need for absolute excellence in the research that is conducted, in terms of topic, protocol, and investigator, and (3) Facilities - the single most important facility for life sciences research in space, an on-board, variable force centrifuge. In this first assessment report, the Committee on Space Biology and Medicine emphasizes that these long-standing themes remain as essential today as when first articulated. On the brink of the twenty-first century, the nation is contemplating the goal of human space exploration; consequently, the themes bear repeating. Each is a critical component of what will be necessary to successfully achieve such a goal.
NASA Astrophysics Data System (ADS)
Harvey, B.
1993-10-01
The Soviet Union used animals in the exploration of space from 1949 onwards. Russia has continued the use of animals in the exploration of space with the launch on 30 December 1992 of Bion-10 (Cosmos 2229). Animals in the space program is an important theme in the Soviet exploration of space. The use of animals in the exploration of space has four main phases: (1) Suborbital missions 1949-1959; (2) Preparation for man's first flight into space 1960-1; (3) Preparation for man's flight to the Moon 1968-1970; (4) The international biomedical program 1962- . Each is dealt with in turn. The use of animals or biological specimens on board manned orbital space stations is not discussed.
The NASA Materials Science Research Program - It's New Strategic Goals and Plans
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.
2003-01-01
In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.
Space radiation health research, 1991-1992
NASA Technical Reports Server (NTRS)
Jablin, M. H. (Compiler); Brooks, C. (Compiler); Ferraro, G. (Compiler); Dickson, K. J. (Compiler); Powers, J. V. (Compiler); Wallace-Robinson, J. (Compiler); Zafren, B. (Compiler)
1993-01-01
The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided. A collection of abstracts spanning the period 1986-1990 was previously issued as NASA Technical Memorandum 4270.
Space shuttle and life sciences
NASA Technical Reports Server (NTRS)
Mason, J. A.
1977-01-01
During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.
NASA--has its biological groundwork for a trip to Mars improved?
Haddy, Francis J
2007-03-01
In a 1991 editorial in The FASEB Journal, Robert W. Krauss commented on a recent report of the Presidential Advisory Committee on the Future of the U.S. Space Program (Augustine report). He concluded that, although a manned mission to Mars with life sciences as the priority was endorsed by the Committee, it failed to deal realistically with one huge gap; biological sciences have never been given high priority. According to Krauss, this left a void that will cripple, perhaps fatally, any early effort to ensure long-term survival on any mission of extended duration. The gap included insufficient flight time for fundamental biological space research and insufficient funds. Krauss expressed his opinions 15 years ago. Have we better knowledge of space biology now? This question becomes more acute now that President George W. Bush recently proposed a manned return to the moon by 2015 or 2020, with the moon to become our staging post for manned missions to Mars. Will we be ready so soon? A review of the progress in the last 15 years suggests that we will not. Because of the Columbia disaster, flight opportunities for biological sciences in shuttle spacelabs and in Space Station laboratories compete with time for engineering problems and construction. Thus, research on gravity, radiation, and isolation loses out to problems deemed to be of higher priority. Radiation in deep space and graded gravity in space with on board centrifuges are areas that must be studied before we undertake prolonged space voyages. Very recent budgetary changes within National Aeronautics and Space Administration threaten to greatly reduce the fundamental space biology funds. Are we ready for a trip to Mars? Like Krauss 15 years ago, I think not for some time.
Ideal Biological Characteristics for Long-Duration Manned Space Travel
NASA Astrophysics Data System (ADS)
Cardion, A. L.
As we consider the technical challenges we will overcome to launch our first interstellar mission, it is natural that we envision our own view from the deck of that starship. However, the cold reality of the vast distances of interstellar space, in keeping with the history of space flight, clearly indicates that our first forays into such missions will likely be unmanned probes. Indeed, it is the limitations of our own biology and psychology, primarily in their fragility and brevity, that anchor us to the terrestrial environment upon which we depend. But by considering the diversity of biological adaptation documented on Earth, in combination with the promise of an advanced bioengineering program, we can begin to imagine how evolution or design could adapt the intrepid travellers to long-duration stresses inherent to interstellar flight.
Biological and Medical Experiments on the Space Shuttle, 1981 - 1985
NASA Technical Reports Server (NTRS)
Halstead, Thora W. (Editor); Dufour, Patricia A. (Editor)
1986-01-01
This volume is the first in a planned series of reports intended to provide a comprehensive record of all the biological and medical experiments and samples flown on the Space Shuttle. Experiments described have been conducted over a five-year period, beginning with the first plant studies conducted on STS-2 in November 1981, and extending through STS 61-C, the last mission to fly before the tragic Challenger accident of January 1986. Experiments were sponsored within NASA not only by the Life Sciences Division of the Office of Space Science and Applications, but also by the Shuttle Student Involvement Program (SSIP) and the Get Away Special (GAS) Program. Independent medical studies were conducted as well on the Shuttle crew under the auspices of the Space Biomedical Research Institute at Johnson Space Center. In addition, cooperative agreements between NASA and foreign government agencies led to a number of independent experiments and also paved the way for the joint US/ESA Spacelab 1 mission and the German (DFVLR) Spacelab D-1. Experiments included: (1) medically oriented studies of the crew aimed at identifying, preventing, or treating health problems due to space travel; (2) projects to study morphological, physiological, or behavioral effects of microgravity on animals and plants; (3) studies of the effects of microgravity on cells and tissues; and (4) radiation experiments monitoring the spacecraft environment with chemical or biological dosimeters or testing radiation effects on simple organisms and seeds.
Space Radiation and Risks to Human Health
NASA Technical Reports Server (NTRS)
Huff, Janice L.
2014-01-01
The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.
NASA Astrophysics Data System (ADS)
Hellweg, C. E.; Gerzer, R.; Reitz, G.
2011-05-01
In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn critical reading of scientific literature, first steps in peer review, scientific writing during preparation of their own publication, and writing of the thesis. The training of soft skills is offered as block course in cooperation with other Helmholtz Research Schools. The whole program encompasses 303 h and is organized in semester terms. The first doctoral candidates started the program in spring 2009.
Mission Preparation Program for Exobiological Experiments in Earth Orbit
NASA Astrophysics Data System (ADS)
Panitz, Corinna; Reitz, Guenther; Horneck, Gerda; Rabbow, Elke; Rettberg, Petra
The ESA facilities EXPOSE-R and EXPOSE-E on board of the the International Space Station ISS provide the technology for exposing chemical and biological samples in a controlled manner to outer space parameters, such as high vacuum, intense radiation of galactic and solar origin and microgravity. EXPOSE-E has been attached to the outer balcony of the European Columbus module of the ISS in Febraury 2008 and will stay for about 1 year in space, EXPOSE-R will be attached to the Russian Svezda module of the ISS in fall 2008. The EXPOSE facilities are a further step in the study of the Responses of Organisms to Space Environment (ROSE concortium). The results from the EXPOSE missions will give new insights into the survivability of terrestrial organisms in space and will contribute to the understanding of the organic chemistry processes in space, the biological adaptation strategies to extreme conditions, e.g. on early Earth and Mars, and the distribution of life beyond its planet of origin.To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed. It resulted in several experiment verification tests EVTs and an experiment sequence test EST that were conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allow the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. The procedure and results of these EVT tests and EST will be presented. These results are an essential prerequisite for the success of the EXPOSE missions and have been done in parallel with the development and construction of the final hardware design of the facility. The results gained during the simulation experiments demonstrated mission preparation as a basic requirement for successful and significant results of every space flight experiment. Hence, the Mission preparation program that was performed in the context of the space missions EXPOSE-E and EXPOSE-R proofed the outstanding importance and accentuated need for ground based experiments.
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Blacknall, Carolyn; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry
1989-01-01
The differences in rack requirements for Spacelab, the Shuttle Orbiter, and the United States (U.S.) laboratory module, European Space Agency (ESA) Columbus module, and the Japanese Experiment Module (JEM) of Space Station Freedom are identified. The feasibility of designing standardized mechanical, structural, electrical, data, video, thermal, and fluid interfaces to allow space flight hardware designed for use in the U.S. laboratory module to be used in other locations is assessed.
2002-04-29
KENNEDY SPACE CENTER, FLA. -- Robert Ferl, professor in the horticultural sciences department and assistant director of the University of Florida Biotechnology Program, speaks during the opening ceremony to launch a new program called SABRE, Space Agricultural Biotechnology Research and Education, that involves UF and NASA. SABRE will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville. Ferl will direct and be responsible for coordinating the research and education efforts of UF and NASA.
Evaluating the feasibility of biological waste processing for long term space missions.
Garland, J L; Alazraki, M P; Atkinson, C F; Finger, B W
1998-01-01
Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.
Evaluating the feasibility of biological waste processing for long term space missions
NASA Technical Reports Server (NTRS)
Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)
1998-01-01
Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.
Electrophoretic separator for purifying biologicals, part 1
NASA Technical Reports Server (NTRS)
Mccreight, L. R.
1978-01-01
A program to develop an engineering model of an electrophoretic separator for purifying biologicals is summarized. An extensive mathematical modeling study and numerous ground based tests were included. Focus was placed on developing an actual electrophoretic separator of the continuous flow type, configured and suitable for flight testing as a space processing applications rocket payload.
2002-04-29
KENNEDY SPACE CENTER, FLA. -- Florida Representative Bob Allen speaks to attendees at the opening ceremony kicking off a new program known as SABRE, Space Agricultural Biotechnology Research and Education. The program is a combined effort of the University of Florida and NASA. SABRE will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville. SABRE will be directed by Robert Ferl, professor in the horticultural sciences department and assistant director of UF's Biotechnology Program. He will be responsible for coordinating the research and education efforts of UF and NASA
Space medicine research publications: 1984-1986
NASA Technical Reports Server (NTRS)
Wallace, Janice S.
1988-01-01
A list is given of the publications of investigators supported by the Biomedical Research and Clinical Medicine Programs of the Space Medicine and Biology Branch, Life Sciences Division, Office of Space Science and Applications. It includes publications entered into the Life Sciences Bibliographic Database by the George Washington University as of December 31, 1986. Publications are organized into the following subject areas: Clinical Medicine, Space Human Factors, Musculoskeletal, Radiation and Environmental Health, Regulatory Physiology, Neuroscience, and Cardiopulmonary.
A summary of porous tube plant nutrient delivery system investigations from 1985 to 1991
NASA Technical Reports Server (NTRS)
Dreschel, T. W.; Brown, C. S.; Piastuch, W. C.; Hinkle, C. R.; Sager, J. C.; Wheeler, R. M.; Knott, W. M.
1992-01-01
The Controlled Ecological Life Support System (CELSS) Program is a research effort to evaluate biological processes at a one person scale to provide air, water, and food for humans in closed environments for space habitation. This program focuses currently on the use of conventional crop plants and the use of hydroponic systems to grow them. Because conventional hydroponic systems are dependent on gravity to conduct solution flow, they cannot be used in the microgravity of space. Thus, there is a need for a system that will deliver water and nutrients to plant roots under microgravity conditions. The Plant Space Biology Program is interested in investigating the effect that the space environment has on the growth and development of plants. Thus, there is also a need to have a standard nutrient delivery method for growing plants in space for research into plant responses to microgravity. The Porous Tube Plant Nutrient Delivery System (PTPNDS) utilizes a hydrophilic, microporous material to control water and nutrient delivery to plant roots. It has been designed and analyzed to support plant growth independent of gravity and plans are progressing to test it in microgravity. It has been used successfully to grow food crops to maturity in an earth-bound laboratory. This document includes a bibliography and summary reports from the growth trials performed utilizing the PTPNDS.
Accommodating life sciences on the Space Station
NASA Technical Reports Server (NTRS)
Arno, Roger D.
1987-01-01
The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.
A summary of the OV1-19 satellite dose, depth dose, and linear energy transfer spectral measurements
NASA Technical Reports Server (NTRS)
Cervini, J. T.
1972-01-01
Measurements of the biophysical and physical parameters in the near earth space environment, specifically, the Inner Van Allen Belt are discussed. This region of space is of great interest to planners of the Skylab and the Space Station programs because of the high energy proton environment, especially during periods of increased solar activity. Many physical measurements of charged particle flux, spectra, and pitch angle distribution have been conducted and are programmed in the space radiation environment. Such predictions are not sufficient to accurately predict the effects of space radiations on critical biological and electronic systems operating in these environments. Some of the difficulties encountered in transferring from physical data to a prediction of the effects of space radiation on operational systems are discussed.
The Biotechnology Facility for International Space Station.
Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy
2004-03-01
The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.
The Biotechnology Facility for International Space Station
NASA Technical Reports Server (NTRS)
Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy
2004-01-01
The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Schulze, Arthur E.; Wood, H. J., Jr.
1989-01-01
The objective was to define the factors which space flight hardware developers and planners should consider when determining: (1) the number of hardware units required to support program; (2) design level of the units; and (3) most efficient means of utilization of the units. The analysis considered technology risk, maintainability, reliability, and safety design requirements for achieving the delivery of highest quality flight hardware. Relative cost impacts of the utilization of prototyping were identified. The development of Space Biology Initiative research hardware will involve intertwined hardware/software activities. Experience has shown that software development can be an expensive portion of a system design program. While software prototyping could imply the development of a significantly different end item, an operational system prototype must be considered to be a combination of software and hardware. Hundreds of factors were identified that could be considered in determining the quantity and types of prototypes that should be constructed. In developing the decision models, these factors were combined and reduced by approximately ten-to-one in order to develop a manageable structure based on the major determining factors. The Baseline SBI hardware list of Appendix D was examined and reviewed in detail; however, from the facts available it was impossible to identify the exact types and quantities of prototypes required for each of these items. Although the factors that must be considered could be enumerated for each of these pieces of equipment, the exact status and state of development of the equipment is variable and uncertain at this time.
A review of recent activities in the NASA CELSS program
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Tremor, J.; Smernoff, D. T.; Knott, W.; Prince, R. P.
1987-01-01
A CELSS (Controlled Ecological Life Support System) is a device that utilizes photosynthetic organisms and light energy to regenerate waste materials into oxygen and food for a crew in space. The results of studies with the CELSS program suggest that a bioregenerative life support system is a useful and effective method of regenerating consumable materials for crew sustenance. The data suggests that the operation of a CELSS in space is practical if plants can be made to behave predictably in the space environment. Much of the work centers on the biological components of the CELSS system. Ways of achieving high efficiency and long term stability of all components of the system are examined. Included are explorations of the conversion of nonedible cellulose to edible materials, nitrogen fixation by biological and chemical methods, and methods of waste processing. A description is provided of the extent to which a bioregenerative life support system can meet the constraints of the space environment, and the degree is assessed to which system efficiency and stability can be increased during the next decade.
USSR Space Life Sciences Digest, issue 7
NASA Technical Reports Server (NTRS)
Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)
1986-01-01
This is the seventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 29 papers recently published in Russian language periodicals and bound collections and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include two interviews with the Soviet Union's cosmonaut physicians and others knowledgable of the Soviet space program. The topics discussed at a Soviet conference on problems in space psychology are summarized. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 29 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space medicine.
Survey of the US materials processing and manufacturing in space program
NASA Technical Reports Server (NTRS)
Mckannan, E. C.
1981-01-01
To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.
2002-04-29
KENNEDY SPACE CENTER, FLA. -- U.S. Representative Dave Weldon addresses a large group attending the opening of a new program known as SABRE, Space Agricultural Biotechnology Research and Education, that involves the University of Florida and NASA. SABRE will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville. SABRE will be directed by Robert Ferl, professor in the horticultural sciences department and assistant director of UF's Biotechnology Program. He will be responsible for coordinating the research and education efforts of UF and NASA
2002-04-29
KENNEDY SPACE CENTER, FLA. -- Center Director Roy D. Bridges Jr. speaks to a large group attending the opening of a new program known as SABRE, Space Agricultural Biotechnology Research and Education, that involves the University of Florida and NASA. SABRE will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville. SABRE will be directed by Robert Ferl, professor in the horticultural sciences department and assistant director of UF's Biotechnology Program. He will be responsible for coordinating the research and education efforts of UF and NASA
NASA Astrophysics Data System (ADS)
Pesquies, P. C.; Milhaud, C.; Nogues, C.; Klein, M.; Cailler, B.; Bost, R.
The need to acquire a better knowledge of the main biological problems induced by microgravity implies—in addition to human experimentation—the use of animal models, and primates seem to be particularly well adapted to this type of research. The major areas of investigation to be considered are the phospho-calcium metabolism and the metabolism of supporting tissues, the hydroelectrolytic metabolism, the cardiovascular function, awakeness, sleep-awakeness cycles, the physiology of equilibrium and the pathophysiology of space sickness. Considering this program, the Centre d'Etudes et de Recherches de Medecine Aerospatiale, under the sponsorship of the Centre National d'Etudes Spatiales, developed both a program of research on restrained primates for the French-U.S. space cooperation (Spacelab program) and for the French-Soviet space cooperation (Bio-cosmos program), and simulation of the effects of microgravity by head-down bedrest. Its major characteristics are discussed in the study.
NASA Technical Reports Server (NTRS)
Saunders, R. J. F.
1972-01-01
The biologic effects of greatly reduced gravity resulting from space flight are examined. Aspects of U.S. space biology during the period from 1960 to 1972 are discussed, giving attention to the Discoverer satellites, the Gemini series, the OV1-4 satellite, the biosatellite project, the orbiting frog otolith experiment, and the Apollo program. Other studies considered are related to the effects of galactic particles on nonproliferating cells, a recoverable tissue culture experiment, cell cycle maintenance in human lung cells, and effects of space flight on circadian rhythms. Viking will land on the planet Mars in 1975 in search for life forms.
Biomedical application in space, pilot program in the southern California region
NASA Technical Reports Server (NTRS)
Kelton, A. A.
1979-01-01
A pilot program is presented which was to promote utilization of the Shuttle/Spacelab for medical and biological research applied to terrestrial needs. The program was limited to the Southern California region and consisted of the following five tasks: (1) preparation of educational materials; (2) identification of principal investigators; (3) initial contact and visit; (4)development of promising applications; and (5) evaluation of regional program methodology.
Advanced Technologies for Space Life Science Payloads on the International Space Station
NASA Technical Reports Server (NTRS)
Hines, John W.; Connolly, John P. (Technical Monitor)
1997-01-01
SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.
A strategy for space biology and medical science for the 1980s and 1990s
NASA Technical Reports Server (NTRS)
1987-01-01
A guideline is provided for developing NASA's long-term mission plans and a rational, coherent research program. Ten topical areas for research are addressed: developmental biology, gravitropism in plants, sensorimotor integration, bone and mineral metabolism, cardiovascular/pulmonary function, muscle remodeling, nutrition, human reproduction, space anemia, and human behavior. Scientific goals, objectives, and required measurements and facilities for each of the major areas of space biology and medicine are identified and described along with primary goals and objectives for each of these disciplines. Proposals are made concerning the use of scientific panels to oversee the implementation of the strategy, life sciences' need for continuous access to spaceflight opportunities, the advantages of a focused mission strategy, certain design features that will enhance spaceflight experimentation, and general facilities. Other topics that are considered include mission planning, crew selection and training, and interagency and international cooperation.
Beal, Jacob; Viroli, Mirko
2015-07-28
Computation increasingly takes place not on an individual device, but distributed throughout a material or environment, whether it be a silicon surface, a network of wireless devices, a collection of biological cells or a programmable material. Emerging programming models embrace this reality and provide abstractions inspired by physics, such as computational fields, that allow such systems to be programmed holistically, rather than in terms of individual devices. This paper aims to provide a unified approach for the investigation and engineering of computations programmed with the aid of space-time abstractions, by bringing together a number of recent results, as well as to identify critical open problems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
The Forgetful Professor and the Space Biology Adventure
NASA Technical Reports Server (NTRS)
Massa, Gioia D.; Jones, Wanda; Munoz, Angela; Santora, Joshua
2014-01-01
This video was created as one of the products of the 2013 ISS Faculty Fellows Summer Program. Our High School science teacher faculty fellows developed this video as an elementary/middle school education component. The video shows a forgetful professor who is trying to remember something, and along the journey she learns more about the space station, space station related plant science, and the Kennedy Space Center. She learns about the Veggie hardware, LED lighting for plant growth, the rotating garden concept, and generally about space exploration and the space station. Lastly she learns about the space shuttle Atlantis.
The NASA light-emitting diode medical program-progress in space flight and terrestrial applications
NASA Astrophysics Data System (ADS)
Whelan, Harry T.; Houle, John M.; Whelan, Noel T.; Donohoe, Deborah L.; Cwiklinski, Joan; Schmidt, Meic H.; Gould, Lisa; Larson, David L.; Meyer, Glenn A.; Cevenini, Vita; Stinson, Helen
2000-01-01
This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate cell growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long termspace flight. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. This LED-technology is also biologically optimal for photodynamic therapy of cancer. .
CELSS research and development program
NASA Technical Reports Server (NTRS)
Bubenheim, David
1990-01-01
Research in Controlled Ecological Life Support Systems (CELSS) conducted by NASA indicate that plant based systems are feasible candidates for human support in space. Ames has responsibility for research and development, systems integration and control, and space flight experiment portions of the CELSS program. Important areas for development of new methods and technologies are biomass production, waste processing, water purification, air revitalization, and food processing. For the plant system, the approach was to identify the flexibility and response time for the food, water, and oxygen production, and carbon dioxide consumption processes. Tremendous increases in productivity, compared with terrestrial agriculture, were realized. Waste processing research emphasizes recycle (transformation) of human wastes, trash, and inedible biomass to forms usable as inputs to the plant production system. Efforts to improve efficiency of the plant system, select new CELSS crops for a balanced diet, and initiate closed system research with the Crop Growth Research Chambers continue. The System Control and Integration program goal is to insure orchestrated system operation of the biological, physical, and chemical operation of the biological, physical, and chemical component processors of the CELSS. Space flight studies are planned to verify adequate operation of the system in reduced gravity or microgravity environments.
NASA Technical Reports Server (NTRS)
Staten, B.; Moyer, E.; Vizir, V.; Gompf, H.; Hoban-Higgins, T.; Lewis, L.; Ronca, A.; Fuller, C. A.
2016-01-01
Biospecimen Sharing Programs (BSPs) have been organized by NASA Ames Research Center since the 1960s with the goal of maximizing utilization and scientific return from rare, complex and costly spaceflight experiments. BSPs involve acquiring otherwise unused biological specimens from primary space research experiments for distribution to secondary experiments. Here we describe a collaboration leveraging Ames expertise in biospecimen sharing to magnify the scientific impact of research informing astronaut health funded by the NASA Human Research Program (HRP) Human Health Countermeasures (HHC) Element. The concept expands biospecimen sharing to one-off ground-based studies utilizing analogue space platforms (e.g., Hindlimb Unloading (HLU), Artificial Gravity) for rodent experiments, thereby significantly broadening the range of research opportunities with translational relevance for protecting human health in space and on Earth.
2014-01-24
2013 was a big year for Ames Research Center's space exploration programs, including several new launches, and continuing a long history of cutting-edge innovations. Projects listed include: LADEE, IRIS, Kepler, PhoneSat, TechEdSat, NLAS, K10 Rover, Seedling Growth-1, Cell Biology Tech Demonstration, ADEPT, Spaceloft 7 and 8, CheMin, MSL, MRO, Bion-M1, Pioneer 11.
The University of Alabama's Integrated Science Program.
ERIC Educational Resources Information Center
Rainey, Larry; Mitrook, Kim
This program, supported by the Center for Communication and Educational Technology at the University of Alabama, incorporates the perspectives of biology, earth/space science, chemistry, and physics into an innovative science curriculum for the middle grades. Students are engaged for 20 minutes 3 times a week by an on-air instructor who is doing…
NASA Developmental Biology Workshop: A summary
NASA Technical Reports Server (NTRS)
Souza, K. A. (Editor); Halstead, T. W. (Editor)
1985-01-01
The Life Sciences Division of the National Aeronautics and Space Administration (NASA) as part of its continuing assessment of its research program, convened a workshop on Developmental Biology to determine whether there are important scientific studies in this area which warrant continued or expanded NASA support. The workshop consisted of six panels, each of which focused on a single major phylogenetic group. The objectives of each panel were to determine whether gravity plays a role in the ontogeny of their subject group, to determine whether the microgravity of spaceflight can be used to help understand fundamental problems in developmental biology, to develop the rationale and hypotheses for conducting NASA-relevant research in development biology both on the ground and in space, and to identify any unique equipment and facilities that would be required to support both ground-based and spaceflight experiments.
Space Product Development (SPD)
2003-01-12
Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Student Marnix Aklian and ITA's Mark Bem prepare biological samples for flight as part of ITA's hands-on student outreach program on STS-95. Similar activities are a part of the CIBX-2 payload. The experiments are sponsored by NASA's Space Product Development Program (SPD).
2002-04-29
KENNEDY SPACE CENTER, FLA. -- Center Director Roy D. Bridges Jr. speaks at the opening ceremony to launch a new program called SABRE, Space Agricultural Biotechnology Research and Education, involving the University of Florida and NASA. Officials from UF and NASA attended the event. SABRE will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville. SABRE will be directed by Robert Ferl, professor in the horticultural sciences department and assistant director of UF's Biotechnology Program. He will be responsible for coordinating the research and education efforts of UF and NASA
2002-04-29
KENNEDY SPACE CENTER, FLA. -- Mike Martin, University of Florida vice president for agriculture and natural resources, speaks during the opening ceremony to launch a new program called SABRE, Space Agricultural Biotechnology Research and Education, that involves UF and NASA. Officials from UF and NASA attended the event. SABRE will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville. SABRE will be directed by Robert Ferl, professor in the horticultural sciences department and assistant director of UF's Biotechnology Program. He will be responsible for coordinating the research and education efforts of UF and NASA
2002-04-29
KENNEDY SPACE CENTER, FLA. -- The Honorable Diana Morgan speaks to attendees at the opening ceremony kicking off a new program known as SABRE, Space Agricultural Biotechnology Research and Education. In the foreground are Center Director Roy D. Bridges Jr. (left) and U.S. Representative Dave Weldon (right). The SABRE program is a combined effort of the University of Florida and NASA. Morgan is vice chair on the UF Board of Trustees. SABRE will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville. SABRE will be directed by Robert Ferl, professor in the horticultural sciences department and assistant director of UF's Biotechnology Program. He will be responsible for coordinating the research and education efforts of UF and NASA
Space and radiation protection: scientific requirements for space research
NASA Technical Reports Server (NTRS)
Schimmerling, W.
1995-01-01
Ionizing radiation poses a significant risk to humans living and working in space. The major sources of radiation are solar disturbances and galactic cosmic rays. The components of this radiation are energetic charged particles, protons, as well as fully ionized nuclei of all elements. The biological effects of these particles cannot be extrapolated in a straightforward manner from available data on x-rays and gamma-rays. A radiation protection program that meets the needs of spacefaring nations must have a solid scientific basis, capable not only of predicting biological effects, but also of making reliable estimates of the uncertainty in these predictions. A strategy leading to such predictions is proposed, and scientific requirements arising from this strategy are discussed.
Space life sciences strategic plan
NASA Astrophysics Data System (ADS)
Nicogossian, Arnauld E.
1992-05-01
Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.
Space life sciences strategic plan
NASA Technical Reports Server (NTRS)
Nicogossian, Arnauld E.
1992-01-01
Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Mains, Richard; Alwood, J. S.; French, A. J.; Smith, J. D.; Miller, Virginia; Tash, Joseph; Jenkins, Marjorie
2015-01-01
Five decades ago, NASA Ames Research Center (ARC) began a vigorous program of space biology research utilizing animal cells, tissues and whole organisms. Since its inception, this program has yielded exciting new insights into how spaceflight influences fundamental processes of living systems. These are findings with important translational implications for human health in space and on Earth. The TCAR Report is a compilation of 394 flight experiments conducted across the period spanning 1965 - 2011 with individual chapters devoted to: (1) Bone Physiology, (2) Cardiovascular/Cardiopulmonary Physiology, (3) Developmental Biology, (4) Immunology, (5) Microbial Growth and Virulence, (6) Muscle Physiology, (7) Neurophysiology and (8) Regulatory Physiology. Specialists in those disciplines reviewed the research and each prepared an overview including the translational relevance of the findings for human health in space and on Earth. The Report will be made available in early 2015 through standard NASA publication resources and on the NASA Life Sciences Data Archive (http://lsda.jsc.nasa.gov/lsda_home1.aspx). The LSDA can be mined for detailed information, including Experiment, Mission, Available Biospecimens, Document, Hardware, Dataset, Personnel, and includes a searchable Photo Gallery. Space biology translational topic highlights include: Inflight centrifugation protection of bone strength losses; Assessment of evidence related to visual impairment in astronauts; Mammalian development including vestibular system plasticity and vestibular-visual integration; Verification of limb unloading ground-based studies as a model for spaceflight unloading; Immune system impairment and increased microbiological virulence aligned with immune dysfunction; and Rapid bone and muscle tissue and functional losses associated with unloading. In addition to astronauts, these results may help humans on Earth, by providing insight into the definition of fundamental mechanisms and potential treatments for debilitating changes that result from human aging and disease. The TCAR effort has resulted in significant new insights. Modern tools now widely available for "Omics" research with model organisms and humans provide new opportunities for translational research. Omics research at various levels is greatly complemented by studies at the tissue and organismal levels. Key discoveries can occur at either the basic research or the health surveillance level such as vision problems observed in astronauts stimulating studies of eye tissues in rodents that identified relevant changes. The Ames Biospecimen Sharing Program (BSP), serving the NASA Space Biology and HRP programs, was created to maximize utilization and scientific return from unique animal specimens derived from rare, complex and costly NASA spaceflight and ground-based analog experiments. The BSP is a valuable tool for advancing translational science at NASA. Dynamic methods for tracking translational linkages across NASA space life sciences and medicine are strongly encouraged for translational science.
Toward synthesizing executable models in biology.
Fisher, Jasmin; Piterman, Nir; Bodik, Rastislav
2014-01-01
Over the last decade, executable models of biological behaviors have repeatedly provided new scientific discoveries, uncovered novel insights, and directed new experimental avenues. These models are computer programs whose execution mechanistically simulates aspects of the cell's behaviors. If the observed behavior of the program agrees with the observed biological behavior, then the program explains the phenomena. This approach has proven beneficial for gaining new biological insights and directing new experimental avenues. One advantage of this approach is that techniques for analysis of computer programs can be applied to the analysis of executable models. For example, one can confirm that a model agrees with experiments for all possible executions of the model (corresponding to all environmental conditions), even if there are a huge number of executions. Various formal methods have been adapted for this context, for example, model checking or symbolic analysis of state spaces. To avoid manual construction of executable models, one can apply synthesis, a method to produce programs automatically from high-level specifications. In the context of biological modeling, synthesis would correspond to extracting executable models from experimental data. We survey recent results about the usage of the techniques underlying synthesis of computer programs for the inference of biological models from experimental data. We describe synthesis of biological models from curated mutation experiment data, inferring network connectivity models from phosphoproteomic data, and synthesis of Boolean networks from gene expression data. While much work has been done on automated analysis of similar datasets using machine learning and artificial intelligence, using synthesis techniques provides new opportunities such as efficient computation of disambiguating experiments, as well as the ability to produce different kinds of models automatically from biological data.
Biological Research in Canisters (BRIC) - Light Emitting Diode (LED)
NASA Technical Reports Server (NTRS)
Levine, Howard G.; Caron, Allison
2016-01-01
The Biological Research in Canisters - LED (BRIC-LED) is a biological research system that is being designed to complement the capabilities of the existing BRIC-Petri Dish Fixation Unit (PDFU) for the Space Life and Physical Sciences (SLPS) Program. A diverse range of organisms can be supported, including plant seedlings, callus cultures, Caenorhabditis elegans, microbes, and others. In the event of a launch scrub, the entire assembly can be replaced with an identical back-up unit containing freshly loaded specimens.
1998-01-01
Biotechnology Refrigerator (BTR) holds fixed tissue culture bags at 4 degrees C to preserve them for return to Earth and postflight analysis. The cultures are used in research with the NASA Bioreactor cell science program. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).
NASA Technical Reports Server (NTRS)
Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.
1999-01-01
Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological systems (e.g. astronauts and greenhouses) in space. The payload was flown in a 2.5 cubic foot Get Away Special (GAS) container through NASA's GAS program. It was subjected to the environment of the space shuttle cargo bay for the duration of the STS-91 mission (9 days). Results of the genotoxicology and radiation dosimetry experiment (GRaDEx-1) as well as the design of an improved follow on payload are presented.
NASA Technical Reports Server (NTRS)
Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.;
1999-01-01
Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects, etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in-vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose-response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological systems (e.g. astronauts and greenhouses) in space. The payload was flown in a 2.5 cubic foot Get Away Special (GAS) container through NASA's GAS program. It was subjected to the environment of the space shuttle cargo bay for the duration of the STS-91 mission (9 days). Results of the genotoxicology and radiation dosimetry experiment (GRaDEx-I) as well as the design of an improved follow on payload are presented.
NASA Technical Reports Server (NTRS)
Morey-Holton, Emily R.
1996-01-01
Gravity has been the most constant environmental factor throughout the evolution of biological species on Earth. Organisms are rarely exposed to other gravity levels, either increased or decreased, for prolonged periods. Thus, evolution in a constant 1G field has historically prevented us from appreciating the potential biological consequences of a multi-G universe. To answer the question 'Can terrestrial life be sustained and thrive beyond our planet?' we need to understand the importance of gravity on living systems, and we need to develop a multi-G, rather than a 1G, mentality. The science of gravitational biology took a giant step with the advent of the space program, which provided the first opportunity to examine living organisms in gravity environments lower than could be sustained on Earth. Previously, virtually nothing was known about the effects of extremely low gravity on living organisms, and most of the initial expectations were proven wrong. All species that have flown in space survive in microgravity, although no higher organism has ever completed a life cycle in space. It has been found, however, that many systems change, transiently or permanently, as a result of prolonged exposure to microgravity.
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Hambright, R. N.; Nedungadi, A.; Mcfayden, G. M.; Tsuchida, M. S.
1989-01-01
A significant emphasis upon automation within the Space Biology Initiative hardware appears justified in order to conserve crew labor and crew training effort. Two generic forms of automation were identified: automation of data and information handling and decision making, and the automation of material handling, transfer, and processing. The use of automatic data acquisition, expert systems, robots, and machine vision will increase the volume of experiments and quality of results. The automation described may also influence efforts to miniaturize and modularize the large array of SBI hardware identified to date. The cost and benefit model developed appears to be a useful guideline for SBI equipment specifiers and designers. Additional refinements would enhance the validity of the model. Two NASA automation pilot programs, 'The Principal Investigator in a Box' and 'Rack Mounted Robots' were investigated and found to be quite appropriate for adaptation to the SBI program. There are other in-house NASA efforts that provide technology that may be appropriate for the SBI program. Important data is believed to exist in advanced medical labs throughout the U.S., Japan, and Europe. The information and data processing in medical analysis equipment is highly automated and future trends reveal continued progress in this area. However, automation of material handling and processing has progressed in a limited manner because the medical labs are not affected by the power and space constraints that Space Station medical equipment is faced with. Therefore, NASA's major emphasis in automation will require a lead effort in the automation of material handling to achieve optimal crew utilization.
Innovative quantum technologies for microgravity fundamental physics and biological research
NASA Technical Reports Server (NTRS)
Kierk, I. K.
2002-01-01
This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.
NASA Technical Reports Server (NTRS)
Olson, R. L.; Gustan, E. A.; Vinopal, T. J.
1985-01-01
Regenerative life support systems based on the use of biological material was considered for inclusion in manned spacecraft. Biological life support systems are developed in the controlled ecological life support system (CELSS) program. Because of the progress achieved in the CELSS program, it is determined which space missions may profit from use of the developing technology. Potential transportation cost savings by using CELSS technology for selected future manned space missions was evaluated. Six representative missions were selected which ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The analytical study approach and the missions and systems considered, together with the benefits derived from CELSS when applicable are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CH2M Hill; R.W. Beck and Associates.
1990-03-01
This chapter describes the biological and physical fish culture requirements of the hatchery system from which the concepts for the design are formulated. It includes a discussion of the program goals for fish production in the Yakima Basin followed by a brief summary of selected sites. The biological criteria are presented for the water system, adult holding, incubation, rearing, and finally transportation and release. The biological criteria address the water and space requirements, the number and type of vessels, and the related support requirements. To be assured that the components of the system meet all program demands, each life phasemore » from adult capture to the juvenile or smolt transfer into the acclimation sites is analyzed.« less
NASA' s life sciences and space radiation biology.
Rambaut, P; Nicogossian, A
1984-01-01
Plans for the various missions in which men and women are expected to participate during the next 10 years are outlined. Such missions include flights of up to three months duration in low earth orbit as well as possible short excursions to geosynchronous orbit. Research activities are described which cover the full spectrum of physiological and psychological responses to space flight. These activities are shown to contribute to the ongoing Shuttle program and the future Space Station. The paper includes a summary of the major technical thrusts needed to support extended habitation in space.
Biotechnology opportunities on Space Station
NASA Technical Reports Server (NTRS)
Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis
1987-01-01
Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.
Biological and Physical Space Research Laboratory 2002 Science Review
NASA Technical Reports Server (NTRS)
Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)
2003-01-01
With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.
NASA Technical Reports Server (NTRS)
1984-01-01
Among the topics discussed are NASA's land remote sensing plans for the 1980s, the evolution of Landsat 4 and the performance of its sensors, the Landsat 4 thematic mapper image processing system radiometric and geometric characteristics, data quality, image data radiometric analysis and spectral/stratigraphic analysis, and thematic mapper agricultural, forest resource and geological applications. Also covered are geologic applications of side-looking airborne radar, digital image processing, the large format camera, the RADARSAT program, the SPOT 1 system's program status, distribution plans, and simulation program, Space Shuttle multispectral linear array studies of the optical and biological properties of terrestrial land cover, orbital surveys of solar-stimulated luminescence, the Space Shuttle imaging radar research facility, and Space Shuttle-based polar ice sounding altimetry.
NASA Astrophysics Data System (ADS)
Grigoriev, Anatoly; Sychev, Vladimir; Ilyin, Eugene
At present space biology research in Russia is making significant progress in several areas of high priority. Gravitational biology. In April-May 2013, a successful 30-day flight of the biological satellite (biosatellite) Bion-M1 was conducted, which carried rodents (mice and gerbils), geckos, fish, mollusks, crustaceans, microorganisms, insects, lower and higher plants, seeds, etc. The investigations were performed by Russian scientists as well as by researchers from NASA, CNES, DLR and South Korea. Foton-M4 carrying various biological specimens is scheduled to launch in 2014. Work has begun to develop science research programs to be implemented onboard Bion-M2 and Bion-M3 as well as on high apogee recoverable spacecraft. Study of the effects of microgravity on the growth and development of higher plants cultivated over several generations on the International Space Station (ISS) has been recently completed. Space radiobiology. Regular experiments aimed at investigating the effects of high-energy galactic cosmic rays on the animal central nervous system and behavior are being carried out using the Particle Accelerator in the town of Dubna. Biological (environmental) life support systems. In recent years, experiments have been performed on the ISS to upgrade technologies of plant cultivation in microgravity. Advanced greenhouse mockups have been built and are currentlyundergoing bioengineering tests. Technologies of waste utilization in space are being developed. Astrobiology experiments in orbital missions. In 2010, the Biorisk experiment on bacterial and fungal spores, seeds and dormant forms of organisms was completed. The payload containing the specimens was installed on the exterior wall of the ISS and was exposed to outer space for 31 months. In addition, Bion-M1 also carried seeds, bacterial spores and microbes that were exposed to outer space effects. The survival rate of bacterial spores incorporated into man-made meteorites, that were attached to the biosatellite outer wall, was examined to determine the effect of high temperatures produced by aerodynamic heating during reentry.
Evaluation of Automated Yeast Identification System
NASA Technical Reports Server (NTRS)
McGinnis, M. R.
1996-01-01
One hundred and nine teleomorphic and anamorphic yeast isolates representing approximately 30 taxa were used to evaluate the accuracy of the Biolog yeast identification system. Isolates derived from nomenclatural types, environmental, and clinica isolates of known identity were tested in the Biolog system. Of the isolates tested, 81 were in the Biolog database. The system correctly identified 40, incorrectly identified 29, and was unable to identify 12. Of the 28 isolates not in the database, 18 were given names, whereas 10 were not. The Biolog yeast identification system is inadequate for the identification of yeasts originating from the environment during space program activities.
NASA Technical Reports Server (NTRS)
West, John B.
1992-01-01
The scope of space life sciences and current research on the physiology of man in space are reviewed by examining Spacelab SLS-1. Milestones of space life sciences are discussed, with emphasis on the Skylab facility, the Space Shuttle program, and the Soviet Mir space station. Attention is given to the topic of the origins of life as it relates to space life sciences. The discovery of amino acids in meteorites and the question of whether the earth was seeded with life from space are discussed. A brief overview of efforts in the search for extraterrestrial intelligence is presented. Consideration is also given to the effects of gravity on cells, the effects of radiation, plant biology, CELSS, and the effects of gravity on humans.
2007-02-01
control AVAQMD Antelope Valley Air Quality Management District AQMD Air Quality Management Districts BACT Best Available Control Technology BLM Bureau...Aeronautics NAGPRA Native American Graves Protection and Repatriation Act NASA National Aeronautics and Space Administration NBCC nuclear, biological...support of the National Aeronautics and Space Administration ( NASA ) shuttle program is required to be maintained. This includes rescue, medical evaluation
Publications of the biospheric research program: 1981-1987
NASA Technical Reports Server (NTRS)
Wallace, Janice S. (Editor)
1988-01-01
Presented is a list of publications of investigators supported by the Biospheric Research Program of the Biological Systems Research Branch, Life Sciences Division, and the Office of Space Science and Applications. It includes publications dated as of December 31, 1987 and entered into the Life Sciences Bibliographic Database at the George Washington University. Publications are organized by the year published.
Fundamental Biological Research on the International Space Station
NASA Technical Reports Server (NTRS)
Souza, K. A.; Yost, Bruce; Fletcher, L.; Dalton, Bonnie P. (Technical Monitor)
2000-01-01
The fundamental Biology Program of NASA's Life Sciences Division is chartered with enabling and sponsoring research on the International Space Station (ISS) in order to understand the effects of the space flight environment, particularly microgravity, on living systems. To accomplish this goal, NASA Ames Research Center (ARC) has been tasked with managing the development of a number of biological habitats, along with their support systems infrastructure. This integrated suite of habitats and support systems is being designed to support research requirements identified by the scientific community. As such, it will support investigations using cells and tissues, avian eggs, insects, plants, aquatic organisms and rodents. Studies following organisms through complete life cycles and over multiple generations will eventually be possible. As an adjunct to the development of these basic habitats, specific analytical and monitoring technologies are being targeted for maturation to complete the research cycle by transferring existing or emerging analytical techniques, sensors, and processes from the laboratory bench to the ISS research platform.
Performance study of galactic cosmic ray shield materials
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.; Thibeault, Sheila A.; Nealy, John E.; Badavi, Francis F.; Kiefer, Richard L.
1994-01-01
The space program is faced with two difficult radiation protection issues for future long-term operations. First, retrofit of shield material or conservatism in shield design is prohibitively expensive and often impossible. Second, shielding from the cosmic heavy ions is faced with limited knowledge on the physical properties and biological responses of these radiations. The current status of space shielding technology and its impact on radiation health is discussed herein in terms of conventional protection practice and a test biological response model. The impact of biological response on the selection of optimum materials for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although the systematics of nuclear cross sections are able to demonstrate the relation of exposure risk to shield-material composition, the current uncertainty in-nuclear cross sections will not allow an accurate evaluation of risk reduction. This paper presents a theoretical study of risk-related factors and a pilot experiment to study the effectiveness of choice of shield materials to reduce the risk in space operations.
NASA Johnson Space Center Usability Testing and Analysis Facility (UTAF) Overview
NASA Technical Reports Server (NTRS)
Whitmore, M.
2004-01-01
The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.
NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview
NASA Technical Reports Server (NTRS)
Whitmore, M.
2004-01-01
The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.
The Role of Synthetic Biology in NASA's Missions
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.
2016-01-01
The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement.
NASA Technical Reports Server (NTRS)
Berry, C. A.
1973-01-01
The Russian and American space programs have consisted of several thousands of hours of exposure of man to the space environment. In spite of numerous biological phenomena of adaptation observed, the space travellers have displayed, after their return, no enduring pathological effect. Although the usable data remain too limited to reflect fully the effects of space flight, it is possible to sketch the biological responses in the absence of gravity and to define the work bases for the future. Beyond its basic physiological effects, weightlessness has operational consequences in the daily life of the astronauts. These consequences will be still more evident during missions of long duration. The conclusions drawn in flight as well as on the ground are reviewed, and future requirements concerning prolonged flights are outlined. The gaps in actual knowledge are discussed and solutions are suggested. The problems of habitability are considered, particularly those which remain at present without satisfactory solutions: psychological responses to a confined life, cleaning, hygiene, and used material.
Opportunities for research on Space Station Freedom
NASA Technical Reports Server (NTRS)
Phillips, Robert W.
1992-01-01
NASA has allocated research accommodations on Freedom (equipment, utilities, etc.) to the program offices that sponsor space-based research and development as follows: Space Science and Applications (OSSA)--52 percent, Commercial Programs (OCP)--28 percent, Aeronautics and Space Technology (OAST)--12 percent, and Space Flight (OSF)--8 percent. Most of OSSA's allocation will be used for microgravity and life science experiments; although OSSA's space physics, astrophysics, earth science and applications, and solar system exploration divisions also will use some of this allocation. Other Federal agencies have expressed an interest in using Space Station Freedom. They include the National Institutes of Health (NIH), U.S. Geological Survey, National Science Foundation, National Oceanic and Atmospheric Administration, and U.S. Departments of Agriculture and Energy. Payload interfaces with space station lab support equipment must be simple, and experiment packages must be highly contained. Freedom's research facilities will feature International Standard Payload Racks (ISPR's), experiment racks that are about twice the size of a Spacelab rack. ESA's Columbus lab will feature 20 racks, the U.S. lab will have 12 racks, and the Japanese lab will have 10. Thus, Freedom will have a total of 42 racks versus 8 for Space lab. NASA is considering outfitting some rack space to accommodate small, self-contained payloads similar to the Get-Away-Special canisters and middeck-locker experiment packages flown on Space Shuttle missions. Crew time allotted to experiments on Freedom at permanently occupied capability will average 25 minutes per rack per day, compared to six hours per rack per day on Spacelab missions. Hence, telescience--the remote operation of space-based experiments by researchers on the ground--will play a very important role in space station research. Plans for supporting life sciences research on Freedom focus on the two basic goals of NASA 's space life sciences program: to ensure the health, safety, and productivity of humans in space and to acquire fundamental knowledge of biological processes. Space-based research has already shown that people and plants respond the same way to the microgravity environment: they lose structure. However, the mechanisms by which they respond are different, and researchers do not yet know much about these mechanisms. Life science research accommodations on Freedom will include facilities for experiments designed to address this and other questions, in fields such as gravitational biology, space physiology, and biomedical monitoring and countermeasures research.
The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stagg, Elizabeth
2004-01-01
In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.
The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions
NASA Technical Reports Server (NTRS)
Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.
2002-01-01
Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.
2004-06-30
KENNEDY SPACE CENTER, FLA. - Kimberly Beck is a Controlled Biological Systems trainee in the Spaceflight and Life Sciences Training Program. She is helping with growth studies supporting the WONDER (Water Offset Nutrient Delivery Experiment) flight payload, which is investigating hydroponic plant crop production in microgravity.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Kimberly Beck is a Controlled Biological Systems trainee in the Spaceflight and Life Sciences Training Program. She is helping with growth studies supporting the WONDER (Water Offset Nutrient Delivery Experiment) flight payload, which is investigating hydroponic plant crop production in microgravity.
ERIC Educational Resources Information Center
Eggebrecht, John
1996-01-01
During the past three years, staff at the Illinois Mathematics and Science Academy have developed a partial reconstruction of Whitehead's "one subject matter," a course reconnecting biology, chemistry, earth and space sciences, and physics into an integrated science program. Staff successfully overcame dilemmas regarding thematic…
Rule-based programming paradigm: a formal basis for biological, chemical and physical computation.
Krishnamurthy, V; Krishnamurthy, E V
1999-03-01
A rule-based programming paradigm is described as a formal basis for biological, chemical and physical computations. In this paradigm, the computations are interpreted as the outcome arising out of interaction of elements in an object space. The interactions can create new elements (or same elements with modified attributes) or annihilate old elements according to specific rules. Since the interaction rules are inherently parallel, any number of actions can be performed cooperatively or competitively among the subsets of elements, so that the elements evolve toward an equilibrium or unstable or chaotic state. Such an evolution may retain certain invariant properties of the attributes of the elements. The object space resembles Gibbsian ensemble that corresponds to a distribution of points in the space of positions and momenta (called phase space). It permits the introduction of probabilities in rule applications. As each element of the ensemble changes over time, its phase point is carried into a new phase point. The evolution of this probability cloud in phase space corresponds to a distributed probabilistic computation. Thus, this paradigm can handle tor deterministic exact computation when the initial conditions are exactly specified and the trajectory of evolution is deterministic. Also, it can handle probabilistic mode of computation if we want to derive macroscopic or bulk properties of matter. We also explain how to support this rule-based paradigm using relational-database like query processing and transactions.
Review of the results from the International C. elegans first experiment (ICE-FIRST)
Adenle, A.A.; Johnsen, B.; Szewczyk, N.J.
2009-01-01
In an effort to speed the rate of discovery in space biology and medicine NASA introduced the now defunct model specimen program. Four nations applied this approach with C. elegans in the ICE-FIRST experiment. Here we review the standardized culturing as well as the investigation of muscle adaptation, space biology radiation, and gene expression in response to spaceflight. Muscle studies demonstrated that decreased expression of myogenic transcription factors underlie the decreased expression of myosin seen in flight, a response that would appear to be evolutionarily conserved. Radiation studies demonstrated that radiation damaged cells should be able to be removed via apoptosis in flight, and that C. elegans can be employed as a biological accumulating dosimeter. Lastly, ICE-FIRST gave us our first glimpse at the genomic response to spaceflight, suggesting that altered Insulin and/or TGF-beta signaling in-flight may underlie many of the biological changes seen in response to spaceflight. The fact that the results obtained with C. elegans appear to have strong similarities in human beings suggests that not only will C. elegans prove an invaluable model for understanding the fundamental biological changes seen during spaceflight but that it may also be invaluable for understanding those changes associated with human health concerns in space. PMID:20161164
The Controlled Ecological Life Support Systems (CELSS) research program
NASA Technical Reports Server (NTRS)
Macelroy, Robert D.
1990-01-01
The goal of the Controlled Ecological Life Support Systems (CELSS) program is to develop systems composed of biological, chemical and physical components for purposes of human life support in space. The research activities supported by the program are diverse, but are focused on the growth of higher plants, food and waste processing, and systems control. Current concepts associated with the development and operation of a bioregenerative life support system will be discussed in this paper.
2002-04-29
KENNEDY SPACE CENTER, FLA. -- Mike Martin, University of Florida vice president for agriculture and natural resources, speaks during the opening ceremony to launch a new program called SABRE, Space Agricultural Biotechnology Research and Education, that involves UF and NASA. Officials from UF and NASA attended the event. In the foreground are Center Director Roy D. Bridges Jr. (left) and U.S. Rep. Dave Weldon (right). SABRE will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville. SABRE will be directed by Robert Ferl, professor in the horticultural sciences department and assistant director of UF's Biotechnology Program. He will be responsible for coordinating the research and education efforts of UF and NASA
The space program's impact on society
NASA Astrophysics Data System (ADS)
Toffler, Alvin
In terms of human evolution, when viewed from 500 or 1000 years from now, today's primitive, still faltering steps beyond the Earth will be recognized as the most important human project of our era, matched only by what is going on in computers and biology. In this paper the social effects of space activity are addressed at three different levels: key social institutions, key social groups, and key social processes.
Microgravity: A New Tool for Basic and Applied Research in Space
NASA Technical Reports Server (NTRS)
1985-01-01
This brochure highlights selected aspects of the NASA Microgravity Science and Applications program. So that we can expand our understanding and control of physical processes, this program supports basic and applied research in electronic materials, metals, glasses and ceramics, biological materials, combustion and fluids and chemicals. NASA facilities that provide weightless environments on the ground, in the air, and in space are available to U.S. and foreign investigators representing the academic and industrial communities. After a brief history of microgravity research, the text explains the advantages and methods of performing microgravity research. Illustrations follow of equipment used and experiments preformed aboard the Shuttle and of prospects for future research. The brochure concludes be describing the program goals and the opportunities for participation.
Advanced physical-chemical life support systems research
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.
1988-01-01
A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.
NASA Technical Reports Server (NTRS)
Friedman, R.
1972-01-01
The recommendations of the Joint Working Group on Space Biology and Medicine are reported. The exchange of information for the U.S. included the pre- and postflight medical requirements and flight crew health stabilization program for Apollo 16. The U.S.S.R. presentations detailed the medical findings of the Soyuz/Salyut mission, including the postflight autopsy results. The causes of death of the cosmonauts were the occurrence of hypoxia and gaseous embolism. A significant development resulting from the meeting was the agreement that the Joint Working Group strive toward the development of common pre- and postflight medical examination procedures for flight crews for direct comparison of U.S. and U.S.S.R. data.
Screens as light biological variable in microgravitational space environment.
NASA Astrophysics Data System (ADS)
Schlacht, S.; Masali, M.
Foreword The ability of the biological organisms to orient themselves and to synchronize on the variations of the solar rhythms is a fundamental aspect in the planning of the human habitat above all when habitat is confined in the Space the planetary and in satellite outer space settlements In order to simulate the experience of the astronauts in long duration missions one of the dominant characteristics of the Space confined habitats is the absence of the earthlings solar cycles references The Sun is the main references and guidelines of the biological compass and timepiece The organism functions are influenced from the variation of the light in the round of the 24 hours the human circadian rhythms In these habitats it is therefore necessary to reproduce the color and intensity of the solar light variations along the arc of the day according to defined scientific programs assuring a better performance of the human organism subsubsection Multilayer Foldable Screens as biological environmental variable In the project Multilayer Foldable Screens are the monitors posed in the ceiling of an Outer Space habitat and are made of liquid crystals and covered with Kevlar they stand for a modulate and flexible structure for different arrangements and different visions Screens work sout s on all the solar light frequencies and display the images that the subject needs They are characterized from the emission of an environmental light that restores the earthly solar cycle for intensity and color temperature to irradiate
Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S
1996-09-15
For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.
Research priorities and plans for the International Space Station-results of the 'REMAP' Task Force
NASA Technical Reports Server (NTRS)
Kicza, M.; Erickson, K.; Trinh, E.
2003-01-01
Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
Phase 1 research program overview
NASA Technical Reports Server (NTRS)
Uri, J. J.; Lebedev, O. N.
2001-01-01
The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.
Phase 1 research program overview.
Uri, J J; Lebedev, O N
2001-01-01
The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.
The Comet Cometh: Evolving Developmental Systems.
Jaeger, Johannes; Laubichler, Manfred; Callebaut, Werner
In a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology (EvoDevo) may easily take another 100 years. He identifies methodological, epistemological, and social differences as causes for this supposed separation. Our article provides a contrasting view. We argue that Duboule's prediction is based on a one-sided understanding of systems biology as a science that is only interested in functional, not evolutionary, aspects of biological processes. Instead, we propose a research program for an evolutionary systems biology, which is based on local exploration of the configuration space in evolving developmental systems. We call this approach-which is based on reverse engineering, simulation, and mathematical analysis-the natural history of configuration space. We discuss a number of illustrative examples that demonstrate the past success of local exploration, as opposed to global mapping, in different biological contexts. We argue that this pragmatic mode of inquiry can be extended and applied to the mathematical analysis of the developmental repertoire and evolutionary potential of evolving developmental mechanisms and that evolutionary systems biology so conceived provides a pragmatic epistemological framework for the EvoDevo synthesis.
NASA Technical Reports Server (NTRS)
Chiaramonte, Fran
2002-01-01
This paper presents viewgraphs of NASA's strategic and fundamental research program at the Office of Biological and Physical Research (OBPR). The topics include: 1) Colloid-Polymer Samples; 2) Pool Boiling Experiment; 3) The Dynamics of Miscible Interfaces: A Space Flight Experiment (MIDAS); and 4) ISS and Ground-based Facilities.
Space Life-Support Engineering Program
NASA Technical Reports Server (NTRS)
Seagrave, Richard C. (Principal Investigator)
1995-01-01
This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.
1983-07-01
problems . Six appendices offer more detailed environmental assessments for the key issues of air quality impacts, inadvertent weather modification...research studies in problem areas, and newly- acquired knowledge of the affected environment. The physical, chemi- cal, biological, and...Shuttle program, in conjunction with other projects within the county, will aggravate short-tenm problems concerning housing, and the quality and quantity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Mark J; Efroymson, Rebecca Ann; Adams, Marshall
The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream inmore » Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.« less
Cancer Risk from Exposure to Galactic Cosmic Rays - Implications for Human Space Exploration
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Durant, marco
2006-01-01
Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. However, space radiation is a major barrier to human exploration of the solar system because the biological effects of high-energy and charge (HZE) ions, which are the main contributors to radiation risks in deep space, are poorly understood. Predictions of the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Great efforts have been dedicated worldwide in recent years toward a better understanding of the oncogenic potential of galactic cosmic rays. A review of the new results in this field will be presented here.
Decades of Data: Extracting Trends from Microgravity Crystallization History
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Snell, Edward H.; Kephart, Richard; vanderWoerd, Mark; Curreri, Peter A. (Technical Monitor)
2002-01-01
The reduced acceleration environment of an orbiting spacecraft has been posited as an ideal environment for biological crystal growth since buoyancy driven convection and sedimentation are greatly reduced. Since the first sounding rocket flight in 1981 many crystallization experiments have flown with some showing improvement and others not. To further explore macromolecule crystal improvement in microgravity we have accumulated data from published reports and reports submitted by individual investigators to NASA, forming a database called BIOSEArCH (Biological Space Experiment Archive of Crystallization History). To date it contains information from 63 missions including, the Space Shuttle program, unmanned satellites, the Russian Space Station MIR and sounding rocket experiments, containing reports for more than 736 macromolecule experiments. While it is not at this point in time a comprehensive record of all flight crystallization experimental results, there is however sufficient information for emerging trends to be identified. These trends will be highlighted.
Martin-Brennan, Cindy; Joshi, Jitendra
2003-12-01
Space life sciences research activities are reviewed for 2003. Many life sciences experiments were lost with the tragic loss of STS-107. Life sciences experiments continue to fly as small payloads to the International Space Station (ISS) via the Russian Progress vehicle. Health-related studies continue with the Martian Radiation Environment Experiment (MARIE) aboard the Odyssey spacecraft, collecting data on the radiation environment in Mars orbit. NASA Ames increased nanotechnology research in all areas, including fundamental biology, bioastronautics, life support systems, and homeland security. Plant research efforts continued at NASA Kennedy, testing candidate crops for ISS. Research included plant growth studies at different light intensities, varying carbon dioxide concentrations, and different growth media. Education and outreach efforts included development of a NASA/USDA program called Space Agriculture in the Classroom. Canada sponsored a project called Tomatosphere, with classrooms across North America exposing seeds to simulated Mars environment for growth studies. NASA's Office of Biological and Physical Research released an updated strategic research plan.
Science Goals in Radiation Protection for Exploration
NASA Technical Reports Server (NTRS)
Cucinotta, Francs A.
2008-01-01
Space radiation presents major challenges to future missions to the Earth s moon or Mars. Health risks of concern include cancer, degenerative and performance risks to the central nervous system, heart and lens, and the acute radiation syndromes. The galactic cosmic rays (GCR) contain high energy and charge (HZE) nuclei, which have been shown to cause qualitatively distinct biological damage compared to terresterial radiation, such as X-rays or gamma-rays, causing risk estimates to be highly uncertain. The biological effects of solar particle events (SPE) are similar to terresterial radiation except for their biological dose-rate modifiers; however the onset and size of SPEs are difficult to predict. The high energies of GCR reduce the effectiveness of shielding, while SPE s can be shielded however the current gap in radiobiological knowledge hinders optimization. Methods used to project risks on Earth must be modified because of the large uncertainties in projecting health risks from space radiation, and thus impact mission requirements and costs. We describe NASA s unique approach to radiation safety that applies probabilistic risk assessments and uncertainty based criteria within the occupational health program for astronauts and to mission design. The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in radiation risk projection models. Exploration science goals in radiation protection are centered on ground-based research to achieve the necessary biological knowledge, and in the development of new technologies to improve SPE monitoring and optimize shielding. Radiobiology research is centered on a ground based program investigating the radiobiology of high-energy protons and HZE nuclei at the NASA Space Radiation Laboratory (NSRL) located at DoE s Brookhaven National Laboratory in Upton, NY. We describe recent NSRL results that are closing the knowledge gap in HZE radiobiology and improving exploration risk estimates. Linking probabilistic risk assessment to research goals makes it possible to express risk management objectives in terms of quantitative metrics, which include the number of days in space without exceeding a given risk level within well defined confidence limits, and probabilistic assessments of the effectiveness of design trade spaces such as material type, mass, solar cycle, crew selection criteria, and biological countermeasures. New research in SPE alert and risk assessment, individual radiation sensitivity, and biological countermeasure development are described.
Commercial opportunities in bioseparations and physiological testing aboard Space Station Freedom
NASA Technical Reports Server (NTRS)
Hymer, W. C.
1992-01-01
The Center for Cell Research (CCR) is a NASA Center for the Commercial Development of Space which has as its main goal encouraging industry-driven biomedical/biotechnology space projects. Space Station Freedom (SSF) will provide long duration, crew-tended microgravity environments which will enhance the opportunities for commercial biomedical/biotechnology projects in bioseparations and physiological testing. The CCR bioseparations program, known as USCEPS (for United States Commercial Electrophoresis Program in Space), is developing access for American industry to continuous-flow electrophoresis aboard SSF. In space, considerable scale-up of continuous free-flow electrophoresis is possible for cells, sub cellular particles, proteins, growth factors, and other biological products. The lack of sedemination and buoyancy-driven convection flow enhances purity of separations and the amount of material processed/time. Through the CCR's physiological testing program, commercial organizations will have access aboard SSF to physiological systems experiments (PSE's); the Penn State Biomodule; and telemicroscopy. Physiological systems experiments involve the use of live animals for pharmaceutical product testing and discovery research. The Penn State Biomodule is a computer-controlled mini lab useful for projects involving live cells or tissues and macro molecular assembly studies, including protein crystallization. Telemicroscopy will enable staff on Earth to manipulate and monitor microscopic specimens on SSF for product development and discovery research or for medical diagnosis of astronaut health problems. Space-based product processing, testing, development, and discovery research using USCEPS and CCR's physiological testing program offer new routes to improved health on Earth. Direct crew involvement-in biomedical/biotechnology projects aboard SSF will enable better experimental outcomes. The current data base shows that there is reason for considerable optimism regarding what the CCDS program and the biomedical/biotechnology industry can expect to gain from a permanent manned presence in space.
NASA Microgravity Combustion Science Research Plans for the ISS
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.
2003-01-01
A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.
NASA Technical Reports Server (NTRS)
Savage, Paul D.; Connolly, J. P.; Navarro, B. J.
1999-01-01
Ames Research Center's Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.
[Biological experiments on "Kosmos-1887"].
Alpatov, A M; I'lin, E A; Antipov, V V; Tairbekov, M G
1989-01-01
In the 13-ray space flight on Kosmos-1887 various experiments in the field of cell biology, genetics, biorhythm, developmental biology and regeneration were performed using bacteria, protozoa, plants, worms, insects, fish and amphibia. Paramecia showed enhanced cell proliferation, spheroidization and diminished protein content. Experiments on fruit-flies, newt oocytes and primate lymphocytes confirmed involvement of the cell genetic apparatus in responses to microgravity. Beetles exhibited a reduction of the length of the spontaneous period of freely running circadian rhythms. Carausius morosus developed latent changes in early embryogenesis which manifested at later stages of ontogenesis. Exposure to microgravity did not prevent recovery of injured tissues; moreover their regeneration may be accelerated after recovery. Biology research programs in future biosatellite flights are discussed.
NASA Technical Reports Server (NTRS)
Anderson, M.; Rummel, J. A. (Editor); Deutsch, S. (Editor)
1979-01-01
United States space life science experiments, encompassing 27 years of experience beginning with sounding rocket flights carrying primates (1948) to the last U.S. spaceflight, the joint US/USSR Apollo Test Project (1975), are presented. The information for each experiment includes Principal Investigators, the program and mission on which it was flown, the specimens used, the objectives, protocol, equipment, results, conclusions, and bibliographic reference citations for publications derived from each experiment.
Physical Sciences Research Priorities and Plans in OBPR
NASA Technical Reports Server (NTRS)
Trinh, Eugene
2002-01-01
This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.
Harada, K; Sugahara, T; Ohnishi, T; Ozaki, Y; Obiya, Y; Miki, S; Miki, T; Imamura, M; Kobayashi, Y; Watanabe, H; Akashi, M; Furusawa, Y; Mizuma, N; Yamanaka, H; Ohashi, E; Yamaoka, C; Yajima, M; Fukui, M; Nakano, T; Takahashi, S; Amano, T; Sekikawa, K; Yanagawa, K; Nagaoka, S
1998-05-01
We participated in a space experiment, part of the National Space Development Agency of Japan (NASDA) Phase I Space Radiation Environment Measurement Program, conducted during the National Aeronautics and Space Administration (NASA) Shuttle/Mir Mission No. 6 (S/MM-6) project. The aim of our study was to investigate the effects of microgravity on the DNA repair processes of living organisms in the
2004-06-30
KENNEDY SPACE CENTER, FLA. - Kimberly Beck, a college trainee in Controlled Biological Systems in the Spaceflight and Life Sciences Training Program, is helping with growth studies supporting payload development. Behind her is part of the WONDER (Water Offset Nutrient Delivery Experiment) flight payload that is investigating hydroponic plant crop production in microgravity.
The Evolution of Global Positioning System (GPS) Technology.
ERIC Educational Resources Information Center
Kumar, Sameer; Moore, Kevin B.
2002-01-01
Describes technological advances in the Global Positioning System (GPS), which is also known as the NAVSTAR GPS satellite constellation program developed in 1937, and changes in the nature of our world by GPS in the areas of agriculture, health, military, transportation, environment, wildlife biology, surveying and mapping, space applications, and…
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Kimberly Beck, a college trainee in Controlled Biological Systems in the Spaceflight and Life Sciences Training Program, is helping with growth studies supporting payload development. Behind her is part of the WONDER (Water Offset Nutrient Delivery Experiment) flight payload that is investigating hydroponic plant crop production in microgravity.
NASA Technical Reports Server (NTRS)
Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer
2009-01-01
This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.
Open Innovation Drug Discovery (OIDD): a potential path to novel therapeutic chemical space.
Alvim-Gaston, Maria; Grese, Timothy; Mahoui, Abdelaziz; Palkowitz, Alan D; Pineiro-Nunez, Marta; Watson, Ian
2014-01-01
The continued development of computational and synthetic methods has enabled the enumeration or preparation of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, commercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform (OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant disease biology models. In this article we will discuss several computational approaches towards describing novel, biologically active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped molecules that may aid in the search for innovative pharmaceuticals.
NASA Technical Reports Server (NTRS)
Massa, Gioia; Hummerick, Mary; Douglas, Grace; Wheeler, Raymond
2015-01-01
Researchers from the Human Research Program (HRP) have teamed up with plant biologists at KSC to explore the potential for plant growth and food production on the international space station (ISS) and future exploration missions. KSC Space Biology (SB) brings a history of plant and plant-microbial interaction research for station and for future bioregenerative life support systems. JSC HRP brings expertise in Advanced Food Technology (AFT), Advanced Environmental Health (AEH), and Behavioral Health and Performance (BHP). The Veggie plant growth hardware on the ISS is the platform that first drove these interactions. As we prepared for the VEG-01 validation test of Veggie, we engaged with BHP to explore questions that could be asked of the crew that would contribute both to plant and to behavioral health research. AFT, AEH and BHP stakeholders were engaged immediately after the return of the Veggie flight samples of space-grown lettuce, and this team worked with the JSC human medical offices to gain approvals for crew consumption of the lettuce on ISS. As we progressed with Veggie testing we began performing crop selection studies for Veggie that were initiated through AFT. These studies consisted of testing and down selecting leafy greens, dwarf tomatoes, and dwarf pepper crops based on characteristics of plant growth and nutritional levels evaluated at KSC, and organoleptic quality evaluated at JSCs Sensory Analysis lab. This work has led to a successful collaborative proposal to the International Life Sciences Research Announcement for a jointly funded HRP-SB investigation of the impacts of light quality and fertilizer on salad crop productivity, nutrition, and flavor in Veggie on the ISS. With this work, and potentially with other pending joint projects, we will continue the synergistic research that will advance the space biology knowledge base, help close gaps in the human research roadmap, and enable humans to venture out to Mars and beyond.
NASA light emitting diode medical applications from deep space to deep sea
NASA Astrophysics Data System (ADS)
Whelan, Harry T.; Buchmann, Ellen V.; Whelan, Noel T.; Turner, Scott G.; Cevenini, Vita; Stinson, Helen; Ignatius, Ron; Martin, Todd; Cwiklinski, Joan; Meyer, Glenn A.; Hodgson, Brian; Gould, Lisa; Kane, Mary; Chen, Gina; Caviness, James
2001-02-01
This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. We present the results of LED-treatment of cells grown in culture and the effects of LEDs on patients' chronic and acute wounds. LED-technology is also biologically optimal for photodynamic therapy of cancer and we discuss our successes using LEDs in conjunction with light-activated chemotherapeutic drugs. .
GeneLab: Multi-Omics Investigation of Rodent Research-1 Bio-Banked Tissues
NASA Technical Reports Server (NTRS)
Lai, San-Huei; Boyko, Valery; Chakravarty, Kaushik; Chen, Rick; Dueck, Sandra; Berrios, Daniel C.; Fogle, Homer; Marcu, Oana; Timucin, Linda; Reinsch, Sigrid;
2016-01-01
NASAs Rodent Research (RR) project is playing a critical role in advancing biomedical research on the physiological effects of space environments. Due to the limited resources for conducting biological experiments aboard the International Space Station (ISS), it is imperative to use crew time efficiently while maximizing high-quality science return. NASAs GeneLab project has as its primary objectives to 1) further increase the value of these experiments using a multi-omics, systems biology-based approach, and 2) disseminate these data without restrictions to the scientific community. The current investigation assessed viability of RNA, DNA, and protein extracted from archived RR-1 tissue samples for epigenomic, transcriptomic, and proteomic assays. During the first RR spaceflight experiment, a variety of tissue types were harvested from subjects, snap-frozen or RNAlater-preserved, and then stored at least a year at -80OC after return to Earth. They were then prioritized for this investigation based on likelihood of significant scientific value for spaceflight research. All tissues were made available to GeneLab through the bio-specimen sharing program managed by the Ames Life Science Data Archive and included mouse adrenal glands, quadriceps, gastrocnemius, tibialis anterior, extensor digitorum longus, soleus, eye, and kidney. We report here protocols for and results of these tissue extractions, and thus, the feasibility and value of these kinds of omics analyses. In addition to providing additional opportunities for investigation of spaceflight effects on the mouse transcriptome and proteome in new kinds of tissues, our results may also be of value to program managers for the prioritization of ISS crew time for rodent research activities. Support from the NASA Space Life and Physical Sciences Division and the International Space Station Program is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Slutskin, R. L.
2001-12-01
Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.
2001-06-05
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).
2001-06-05
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).
2001-06-05
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
The NASA Microgravity Fluid Physics Program: Research Plans for the ISS
NASA Technical Reports Server (NTRS)
Kohl, Fred J.; Singh, Bhim S.; Shaw, Nancy J.; Chiaramonte, Francis P.
2003-01-01
Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. NASA's Biological and Physical Research Enterprise seeks to exploit the space environment to conduct research supporting human exploration of space (strategic research), research of intrinsic scientific importance and impact (fundamental research), and commercial research. The strategic research thrust will build the vital knowledge base needed to enable NASA's mission to explore the Universe and search for life. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, niultiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA- sponsored flight experiments in microgravity fluid physics and transport phenomena will be carried out on the International Space Station (ISS) in the Fluids Integrated Rack (FIR), in the Microgravity Science Glovebox (MSG), in EXPRESS racks, and in other facilities provided by international partners. This paper presents an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to enable this research.
Biological Based Risk Assessment for Space Exploration
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2011-01-01
Exposures from galactic cosmic rays (GCR) - made up of high-energy protons and high-energy and charge (HZE) nuclei, and solar particle events (SPEs) - comprised largely of low- to medium-energy protons are the primary health concern for astronauts for long-term space missions. Experimental studies have shown that HZE nuclei produce both qualitative and quantitative differences in biological effects compared to terrestrial radiation, making risk assessments for cancer and degenerative risks, such as central nervous system effects and heart disease, highly uncertain. The goal for space radiation protection at NASA is to be able to reduce the uncertainties in risk assessments for Mars exploration to be small enough to ensure acceptable levels of risks are not exceeded and to adequately assess the efficacy of mitigation measures such as shielding or biological countermeasures. We review the recent BEIR VII and UNSCEAR-2006 models of cancer risks and their uncertainties. These models are shown to have an inherent 2-fold uncertainty as defined by ratio of the 95% percent confidence level to the mean projection, even before radiation quality is considered. In order to overcome the uncertainties in these models, new approaches to risk assessment are warranted. We consider new computational biology approaches to modeling cancer risks. A basic program of research that includes stochastic descriptions of the physics and chemistry of radiation tracks and biochemistry of metabolic pathways, to emerging biological understanding of cellular and tissue modifications leading to cancer is described.
SCIENCE EDUCATION IN THE JUNIOR COLLEGE, PROBLEMS AND PRACTICES.
ERIC Educational Resources Information Center
EISS, ALBERT F.
MAJOR ADDRESSES AND SUMMARIES OF GROUP ACTIVITIES FROM FOUR CONFERENCES ON TEACHING SCIENCE IN THE JUNIOR COLLEGE ARE PRESENTED. THE PRESENT STATUS OF JUNIOR COLLEGE SCIENCE IS EXAMINED AND SUGGESTIONS ARE MADE FOR IMPROVEMENT. NEW APPROACHES TO PHYSICAL SCIENCE AND BIOLOGICAL ASPECTS OF THE SPACE PROGRAM ARE CONSIDERED. WORKING GROUP REPORTS…
2000-04-20
Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.
Deformable Mirrors Capture Exoplanet Data, Reflect Lasers
NASA Technical Reports Server (NTRS)
2014-01-01
To image and characterize exoplanets, Goddard Space Flight Center turned to deformable mirrors (DMs). Berkeley, California-based Iris AO, Inc. worked with Goddard through the SBIR program to improve the company’s microelectromechanical DMs, which are now being evaluated and used for biological research, industrial applications, and could even be used by drug manufacturers.
The International Space Station: A Pathway to the Future
NASA Technical Reports Server (NTRS)
Kitmacher, Gary H.; Gerstenmaier, William H.; Bartoe, John-David F.; Mustachio, Nicholas
2004-01-01
Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 16 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the longterm effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.
LifeSat engineering in-house vehicle design
NASA Technical Reports Server (NTRS)
Adkins, A.; Badhwar, G.; Bryant, L.; Caram, J.; Conley, G.; Crull, T.; Cuthbert, P.; Darcy, E.; Delaune, P.; Edeen, M.
1992-01-01
The LifeSat program was initiated to research the effects of microgravity and cosmic radiation on living organisms. The effects of long-term human exposure to free-space radiation fields over a range of gravitational environments has long been recognized as one of the primary design uncertainties for human space exploration. A critical design issue in the radiation biology requirements was the lack of definition of the minimum radiation absorbed dosage required to produce statistically meaningful data. The Phase A study produced a spacecraft conceptual design resembling a Discoverer configuration with a total weight of approximately 2800 pounds that would carry a 525-pound payload module (45 inches in diameter and 36 inches long) and support up to 12 rodents and a general biology module supporting lower life forms for an on-orbit duration of up to 60 days. The phase B conceptual designs focused on gravitational biology requirements and only briefly addressed the design impacts of the shift toward radiobiological science that occurred during the latter half of the Phase B studies.
Higginson, Ellen E; Galen, James E; Levine, Myron M; Tennant, Sharon M
2016-11-01
Space exploration programs have long been interested in the effects of spaceflight on biology. This research is important not only in its relevance to future deep space exploration, but also because it has allowed investigators to ask questions about how gravity impacts cell behavior here on Earth. In the 1980s, scientists designed and built the first rotating wall vessel, capable of mimicking the low shear environment found in space. This vessel has since been used to investigate growth of both microorganisms and human tissue cells in low shear modeled microgravity conditions. Bacterial behavior has been shown to be altered both in space and under simulated microgravity conditions. In some cases, bacteria appear attenuated, whereas in others virulence is enhanced. This has consequences not only for manned spaceflight, but poses larger questions about the ability of bacteria to sense the world around them. By using the microgravity environment as a tool, we can exploit this phenomenon in the search for new therapeutics and preventatives against pathogenic bacteria for use both in space and on Earth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Wells, H. B.
1972-01-01
A preliminary study of the environmental control and life support subsystems (EC/LSS) necessary for an earth orbital spacecraft to conduct biological experiments is presented. The primary spacecraft models available for conducting these biological experiments are the space shuttle and modular space station. The experiments would be housed in a separate module that would be contained in either the shuttle payload bay or attached to the modular space station. This module would be manned only for experiment-related tasks, and would contain a separate EC/LSS for the crew and animals. Metabolic data were tabulated on various animals that are considered useful for a typical experiment program. The minimum payload for the 30-day space shuttle module was found to require about the equivalent of a one-man EC/LSS; however, the selected two-man shuttle assemblies will give a growth and contingency factor of about 50 percent. The maximum payloads for the space station mission will require at least a seven-man EC/LSS for the laboratory colony and a nine-man EC/LSS for the centrifuge colony. There is practically no room for growth or contingencies in these areas.
Earth orbital experiment program and requirements study, volume 1, sections 1 - 6
NASA Technical Reports Server (NTRS)
1971-01-01
A reference manual for planners of manned earth-orbital research activity is presented. The manual serves as a systems approach to experiment and mission planning based on an integrated consideration of candidate research programs and the appropriate vehicle, mission, and technology development requirements. Long range goals and objectives for NASA activities during the 1970 to 1980 time period are analyzed. The useful and proper roles of manned and automated spacecraft for implementing NASA experiments are described. An integrated consideration of NASA long range goals and objectives, the system and mission requirements, and the alternative implementation plans are developed. Specific areas of investigation are: (1) manned space flight requirements, (2) space biology, (3) spaceborne astronomy, (4) space communications and navigation, (5) earth observation, (6) supporting technology development requirements, (7) data management system matrices, (8) instrumentation matrices, and (9) biotechnology laboratory experiments.
An overview of Korean astronaut’s space experiments
NASA Astrophysics Data System (ADS)
Lee, J. H.; Kim, Y. K.; Yi, S. Y.; Kim, K. S.; Kang, S. W.; Choi, G. H.; Sim, E. S.
2010-10-01
The paper presents an overview of the scientific space experiments in the Korean Astronaut Program (KAP) that were conducted on the International Space Station (ISS), beginning with launch of the Soyuz TMA-12 spacecraft with the first Korean astronaut and two Russian astronauts on April 8, 2008 and returning to Earth on April 19, 2008. During the 10 days aboard the ISS, the Korean astronaut successfully completed thirteen scientific experiments in biology, life science, material science, earth science, and system engineering, five educational space experiments, and three kinds of international collaboration experiments. These experiments were the first Korean manned space experiments and these missions were the first steps toward the manned space exploration by Korea. In this paper, we briefly discuss the descriptions, conduct, and results of the space experiments and discuss future plans. In addition, the lessons learned with respect to the performing of these manned space experiments on the ISS are presented.
End-to-End Data System Architecture for the Space Station Biological Research Project
NASA Technical Reports Server (NTRS)
Mian, Arshad; Scimemi, Sam; Adeni, Kaiser; Picinich, Lou; Ramos, Rubin (Technical Monitor)
1998-01-01
The Space Station Biological Research Project (SSBRP) Is developing hardware referred to as the "facility" for providing life sciences research capability on the International Space Station. This hardware includes several biological specimen habitats, habitat holding racks, a centrifuge and a glovebox. An SSBRP end to end data system architecture has been developed to allow command and control of the facility from the ground, either with crew assistance or autonomously. The data system will be capable of handling commands, sensor data, and video from multiple cameras. The data will traverse through several onboard and ground networks and processing entities including the SSBRP and Space Station onboard and ground data systems. A large number of onboard and ground (,entities of the data system are being developed by the Space Station Program, other NASA centers and the International Partners. The SSBRP part of the system which includes the habitats, holding racks, and the ground operations center, User Operations Facility (UOF) will be developed by a multitude of geographically distributed development organizations. The SSBRP has the responsibility to define the end to end data and communications systems to make the interfaces manageable and verifiable with multiple contractors with widely varying development constraints and schedules. This paper provides an overview of the SSBRP end-to-end data system. Specifically, it describes the hardware, software and functional interactions of individual systems, and interface requirements among various entities of the end-to-end system.
Expose : procedure and results of the joint experiment verification tests
NASA Astrophysics Data System (ADS)
Panitz, C.; Rettberg, P.; Horneck, G.; Rabbow, E.; Baglioni, P.
The International Space Station will carry the EXPOSE facility accommodated at the universal workplace URM-D located outside the Russian Service Module. The launch will be affected in 2005 and it is planned to stay in space for 1.5 years. The tray like structure will accomodate 2 chemical and 6 biological PI-experiments or experiment systems of the ROSE (Response of Organisms to Space Environment) consortium. EXPOSE will support long-term in situ studies of microbes in artificial meteorites, as well as of microbial communities from special ecological niches, such as endolithic and evaporitic ecosystems. The either vented or sealed experiment pockets will be covered by an optical filter system to control intensity and spectral range of solar UV irradiation. Control of sun exposure will be achieved by the use of individual shutters. To test the compatibility of the different biological systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed. The procedure and first results of this joint Experiment Verification Tests (EVT) will be presented. The results will be essential for the success of the EXPOSE mission and have been done in parallel with the development and construction of the final hardware design of the facility. The results of the mission will contribute to the understanding of the organic chemistry processes in space, the biological adaptation strategies to extreme conditions, e.g. on early Earth and Mars, and the distribution of life beyond its planet of origin.
NASA Astrophysics Data System (ADS)
2012-02-01
James Yoder, vice president for academic programs and dean at the Woods Hole Oceanographic Institution, Woods Hole, Mass., has been selected as a fellow of the Oceanography Society (TOS) “for his innovative and visionary application of satellite ocean color technologies to interdisciplinary oceanography and his extraordinary service to oceanography.” TOS also has three new councilors. Blanche Meeson of NASA Goddard Space Flight Center, Greenbelt, Md., is TOS's education councilor; Janet Sprintall, Scripps Institution of Oceanography, La Jolla, Calif., is TOS's councilor for physical biology; and Deborah Steinberg, Virginia Institute of Marine Sciences, Gloucester Point, is biological oceanography councilor.
GeneLab Phase 2: Integrated Search Data Federation of Space Biology Experimental Data
NASA Technical Reports Server (NTRS)
Tran, P. B.; Berrios, D. C.; Gurram, M. M.; Hashim, J. C. M.; Raghunandan, S.; Lin, S. Y.; Le, T. Q.; Heher, D. M.; Thai, H. T.; Welch, J. D.;
2016-01-01
The GeneLab project is a science initiative to maximize the scientific return of omics data collected from spaceflight and from ground simulations of microgravity and radiation experiments, supported by a data system for a public bioinformatics repository and collaborative analysis tools for these data. The mission of GeneLab is to maximize the utilization of the valuable biological research resources aboard the ISS by collecting genomic, transcriptomic, proteomic and metabolomic (so-called omics) data to enable the exploration of the molecular network responses of terrestrial biology to space environments using a systems biology approach. All GeneLab data are made available to a worldwide network of researchers through its open-access data system. GeneLab is currently being developed by NASA to support Open Science biomedical research in order to enable the human exploration of space and improve life on earth. Open access to Phase 1 of the GeneLab Data Systems (GLDS) was implemented in April 2015. Download volumes have grown steadily, mirroring the growth in curated space biology research data sets (61 as of June 2016), now exceeding 10 TB/month, with over 10,000 file downloads since the start of Phase 1. For the period April 2015 to May 2016, most frequently downloaded were data from studies of Mus musculus (39) followed closely by Arabidopsis thaliana (30), with the remaining downloads roughly equally split across 12 other organisms (each 10 of total downloads). GLDS Phase 2 is focusing on interoperability, supporting data federation, including integrated search capabilities, of GLDS-housed data sets with external data sources, such as gene expression data from NIHNCBIs Gene Expression Omnibus (GEO), proteomic data from EBIs PRIDE system, and metagenomic data from Argonne National Laboratory's MG-RAST. GEO and MG-RAST employ specifications for investigation metadata that are different from those used by the GLDS and PRIDE (e.g., ISA-Tab). The GLDS Phase 2 system will implement a Google-like, full-text search engine using a Service-Oriented Architecture by utilizing publicly available RESTful web services Application Programming Interfaces (e.g., GEO Entrez Programming Utilities) and a Common Metadata Model (CMM) in order to accommodate the different metadata formats between the heterogeneous bioinformatics databases. GLDS Phase 2 completion with fully implemented capabilities will be made available to the general public in September 2017.
Life sciences research in space: The requirement for animal models
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Philips, R. W.; Ballard, R. W.
1987-01-01
Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.
Project Explorer takes its second step: GAS-608 in engineering development
NASA Technical Reports Server (NTRS)
Kitchens, Philip H.
1988-01-01
An a continuation of its Project Explorer series, the Alabama Space and Rocket Center is sponsoring the development of two additional Get Away Special payloads. Details are given of GAS-608, including descriptions of its six experiments in organic crystal growth, roach eggs, yeast, radish seeds, bacterial morphology, and silicon crystals. A brief summary is also presented of GAS-105 and the Space Camp program for stimulating student first hand participation in space flight studies. GAS-608 will carry six student experiments, which will involve biology, crystal growth, and biochemistry in addition to a centralized package for electronics and power supply.
NASA Technical Reports Server (NTRS)
Gill, Paul S.; Garcia, Danny; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)
2002-01-01
The National Aeronautics and Space Agency consists of fourteen Facilities throughout the United States. They are organized to support the Agency's principal Enterprises: (1) Space Science, (2) Earth Science, (3) Aerospace Technology, (4) Human Exploration and Development of Space, and (5) Biological and Physical Research. Technical Standards are important to the activities of each Enterprise and have been an integral part in the development and operation of NASA Programs and Projects since the Agency was established in 1959. However, for years each Center was responsible for its own standards development and selection of non-NASA technical standards that met the needs of Programs and Projects for which they were responsible. There were few Agencywide applicable Technical Standards, mainly those in area of safety. Department of Defense Standards and Specifications were the foundation and main source for Technical Standards used by the Agency. This process existed until about 1997 when NASA embarked on a Program to convert NASA's Center-developed Technical Standards into Agencywide endorsed NASA Preferred Technical Standards. In addition, action was taken regarding the formal adoption of non-NASA Technical Standards (DOD, SAE, ASTM, ASME, IEEE, etc.) as NASA Preferred Technical Standards.
BioSIGHT: Interactive Visualization Modules for Science Education
NASA Technical Reports Server (NTRS)
Wong, Wee Ling
1998-01-01
Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high-speed network capabilities. The BioSIGHT project at is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches toward the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Vanhala, H. A. T.; Johnson, M.; Hulslander, M.
2012-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 42 experiments to space, on behalf of students from middle school through community college, on 3 missions: each of the last 2 Space Shuttle flights, and the first SpaceX resupply flight to the International Space Station (ISS). SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. Over 9000 students participated in the initial 3 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 2 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches (that also fly to space). Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
STS-68 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1995-01-01
The STS-68 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fifth flight of the Space Shuttle Program and the seventh flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-65; three SSMEs that were designated as serial numbers 2028, 2033, and 2026 in positions 1, 2, and 3, respectively; and two SRBs that were designated BI-067. The RSRMs that were installed in each SRB were designated as 360W040A for the left SRB and 360W040B for the right SRB. The primary objective of this flight was to successfully perform the operations of the Space Radar Laboratory-2 (SRL-2). The secondary objectives of the flight were to perform the operations of the Chromosome and Plant Cell Division in Space (CHROMEX), the Commercial Protein Crystal Growth (CPCG), the Biological Research in Canisters (BRIC), the Cosmic Radiation Effects and Activation Monitor (CREAM), the Military Application of Ship Tracks (MAST), and five Get-Away Special (GAS) payloads.
A New Direction for the NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)
2002-01-01
In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.
A New Direction for NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)
2001-01-01
NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.
X-ray Crystallography Facility
NASA Technical Reports Server (NTRS)
2000-01-01
Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.
NASA Technical Reports Server (NTRS)
1985-01-01
From its inception, the main charter of Life Sciences has been to define biomedical requirements for the design and development of spacecraft systems and to participate in NASA's scientific exploration of the universe. The role of the Life Sciences Division is to: (1) assure the health, well being and productivity of all individuals who fly in space; (2) study the origin, evolution, and distribution of life in the universe; and (3) to utilize the space environment as a tool for research in biology and medicine. The activities, programs, and accomplishments to date in the efforts to achieve these goals are detailed and the future challenges that face the division as it moves forward from the shuttle era to a permanent manned presence in space space station's are examined.
Ames Life Science Data Archive: Translational Rodent Research at Ames
NASA Technical Reports Server (NTRS)
Wood, Alan E.; French, Alison J.; Ngaotheppitak, Ratana; Leung, Dorothy M.; Vargas, Roxana S.; Maese, Chris; Stewart, Helen
2014-01-01
The Life Science Data Archive (LSDA) office at Ames is responsible for collecting, curating, distributing and maintaining information pertaining to animal and plant experiments conducted in low earth orbit aboard various space vehicles from 1965 to present. The LSDA will soon be archiving data and tissues samples collected on the next generation of commercial vehicles; e.g., SpaceX & Cygnus Commercial Cargo Craft. To date over 375 rodent flight experiments with translational application have been archived by the Ames LSDA office. This knowledge base of fundamental research can be used to understand mechanisms that affect higher organisms in microgravity and help define additional research whose results could lead the way to closing gaps identified by the Human Research Program (HRP). This poster will highlight Ames contribution to the existing knowledge base and how the LSDA can be a resource to help answer the questions surrounding human health in long duration space exploration. In addition, it will illustrate how this body of knowledge was utilized to further our understanding of how space flight affects the human system and the ability to develop countermeasures that negate the deleterious effects of space flight. The Ames Life Sciences Data Archive (ALSDA) includes current descriptions of over 700 experiments conducted aboard the Shuttle, International Space Station (ISS), NASA/MIR, Bion/Cosmos, Gemini, Biosatellites, Apollo, Skylab, Russian Foton, and ground bed rest studies. Research areas cover Behavior and Performance, Bone and Calcium Physiology, Cardiovascular Physiology, Cell and Molecular Biology, Chronobiology, Developmental Biology, Endocrinology, Environmental Monitoring, Gastrointestinal Physiology, Hematology, Immunology, Life Support System, Metabolism and Nutrition, Microbiology, Muscle Physiology, Neurophysiology, Pharmacology, Plant Biology, Pulmonary Physiology, Radiation Biology, Renal, Fluid and Electrolyte Physiology, and Toxicology. These experiment descriptions and data can be accessed online via the public LSDA website (http://lsda.jsc.nasa.gov) and information can be requested via the Data Request form at http://lsda.jsc.nasa.gov/common/dataRequest/dataRequest.aspx or by contacting the ALSDA Office at: Alison.J.French@nasa.gov
Low Gravity Materials Science Research for Space Exploration
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.
2004-01-01
On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed. Additional information is included in the original extended abstract.
OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.
Zhou, Guangyan; Xia, Jianguo
2018-06-07
Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.
Fundamental plant biology enabled by the space shuttle.
Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J
2013-01-01
The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Blacknall, Carolyn; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry
1989-01-01
The JSC Life Sciences Project Division has been directly supporting NASA Headquarters, Life Sciences Division, in the preparation of data from JSC and ARC to assist in defining the Space Biology Initiative (SBI). GE Government Services and Horizon Aerospace have provided contract support for the development and integration of review data, reports, presentations, and detailed supporting data. An SBI Definition (Non-Advocate) Review at NASA Headquarters, Code B, has been scheduled for the June-July 1989 time period. In a previous NASA Headquarters review, NASA determined that additional supporting data would be beneficial to determine the potential advantages in modifying commercial off-the-shelf (COTS) hardware for some SBI hardware items. In order to meet the demands of program implementation planning with the definition review in late spring of 1989, the definition trade study analysis must be adjusted in scope and schedule to be complete for the SBI Definition (Non-Advocate) Review. The relative costs of modifying existing commercial off-the-shelf (COTS) hardware is compared to fabricating new hardware. An historical basis for new build versus modifying COTS to meet current NMI specifications for manned space flight hardware is surveyed and identified. Selected SBI hardware are identified as potential candidates for off-the-shelf modification and statistical estimates on the relative cost of modifying COTS versus new build are provided.
The Biotechnology Facility for International Space Station
NASA Technical Reports Server (NTRS)
Goodwin, Thomas; Lundquist, Charles; Hurlbert, Katy; Tuxhorn, Jennifer
2004-01-01
The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput. With the BTF, dedicated ground support, and a community of investigators, the goals of the Cellular Biotechnology Program at Johnson Space Center are to: Support approximately 400 typical investigator experiments during the nominal design life of BTF (10 years). Support a steady increase in investigations per year, starting with stationary bioreactor experiments and adding rotating bioreactor experiments at a later date. Support at least 80% of all new cellular biotechnology investigations selected through the NASA Research Announcement (NRA) process. Modular components - to allow sequential and continuous experiment operations without cross-contamination Increased cold storage capability (+4 C, -80 C, -180 C). Storage of frozen cell culture inoculum - to allow sequential investigations. Storage of post-experiment samples - for return of high quality samples. Increased number of cell cultures per investigation, with replicates - to provide sufficient number of samples for data analysis and publication of results in peer-reviewed scientific journals.
Microbial Monitoring of the International Space Station
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Botkin, Douglas J.; Bruce, Rebekah J.; Castro, Victoria A.; Smith, Melanie J.; Oubre, Cherie M.; Ott, C. Mark
2013-01-01
Humans living and working in the harsh environment of space present many challenges for habitability engineers and microbiologists. Spacecraft must provide an internal environment in which physical (gas composition, pressure, temperature, and humidity), chemical, and biological environmental parameters are maintained at safe levels. Microorganisms are ubiquitous and will accompany all human-occupied spacecraft, but if biological contamination were to reach unacceptable levels, long-term human space flight would be impossible. Prevention of microbiological problems, therefore, must have a high priority. Historically, prevention of infectious disease in the crew has been the highest priority, but experience gained from the NASA-Mir program showed that microbial contamination of vehicle and life-support systems, such as biofouling of water and food, are of equal importance. The major sources of microbiological risk factors for astronauts include food, drinking water, air, surfaces, payloads, research animals, crew members, and personnel in close contact with the astronauts. In our efforts to eliminate or mitigate the negative effects of microorganisms in spacecraft, the National Aeronautics and Space Administration (NASA) implemented comprehensive microbial analyses of the major risk factors. This included the establishment of acceptability requirements for food, water, air, surfaces, and crew members. A robust monitoring program was then implemented to verify that the risks were within acceptable limits. Prevention of microbiological problems is preferred over mitigation of problems during flight, and preventive steps must begin very early in the design phase. Spacecraft development must include requirements to control free water from humidity, condensate, hygiene activities, and other releases. If water is available, microbes are likely to grow because sufficient nutrients are potentially available. Materials selected for the spacecraft must not promote or support microbial growth. Air filtration can dramatically reduce the number of airborne bacteria, fungi, and particulates in spacecraft breathing air. Waterborne bacteria can be reduced to acceptable levels by thermal inactivation of bacteria during water processing, along with a residual biocide, and filtration at the point of use can ensure safety. System design must include onboard capability to achieve recovery of the system from contamination. Robust housekeeping procedures that include periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Food for consumption in space must be thoroughly tested for excessive microbial content and pathogens before launch. Thorough preflight examination of flight crews, consumables, payloads, and the environment can greatly reduce pathogens in spacecraft. Many of the lessons learned from the Space Shuttle and previous programs were applied in the early design phase of the International Space Station, resulting in the safest space habitat to date. This presentation describes the monitoring program for the International Space Station and will summarize results from preflight and on-orbit monitoring.
SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.
Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi
2010-01-01
Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.
The International Space Station: A National Laboratory
NASA Technical Reports Server (NTRS)
Giblin, Timothy W.
2012-01-01
After more than a decade of assembly missions and the end of the space shuttle program, the International Space Station (ISS) has reached assembly completion. With other visiting spacecraft now docking with the ISS on a regular basis, the orbiting outpost now serves as a National Laboratory to scientists back on Earth. The ISS has the ability to strengthen relationships between NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. The ISS National Laboratory also opens new paths for the exploration and economic development of space. In this presentation we will explore the operation of the ISS and the realm of scientific research onboard that includes: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science.
Without Gravity: Designing Science Equipment for the International Space Station and Beyond
NASA Technical Reports Server (NTRS)
Sato, Kevin Y.
2016-01-01
This presentation discusses space biology research, the space flight factors needed to design hardware to conduct biological science in microgravity, and examples of NASA and commercial hardware that enable space biology study.
2001-02-08
At a groundbreaking ceremony, participants and guests get ready to dig in, signifying the start of construction on a new roadway through KSC. It is the start of a construction project that includes the Space Experiment Research & Processing Laboratory (SERPL). From left are Dr. Pamella J. Dana, from the executive office of Florida’s governor, Jeb Bush; Deputy Associate Administrator Michael Hawes, Space Station, NASA; Sen. George Kirkpatrick; Spaceport Florida Authority Executive Director Ed Gormel; Executive Director Dr. Samuel T. Durrance, Florida Space Research Institute; Florida’s Lt. Gov. Frank Brogan; Congressman Dave Weldon; Center Director Roy Bridges Jr.; SFA SERPL Program Manager Debra Holliday; KSC SERPL Program Manager Jan Heuser; District Manager Cheryl Harrison-Lee, Florida Department of Transportation; State Senator Jim Sebesta; and KSC Director JoAnn H. Morgan, External Relations and Business Development. The project is enabled by a partnership and collaboration between NASA and the State of Florida to create a vital resource for international and commercial space customers. SERPL is considered a magnet facility, and will support the development and processing of life sciences experiments destined for the International Space Station and accommodate NASA, industry and academic researchers performing associated biological research
Commercial Instrumentation Technology Associates' Biomedical Experiments
NASA Technical Reports Server (NTRS)
2003-01-01
Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Student Marnix Aklian and ITA's Mark Bem prepare biological samples for flight as part of ITA's hands-on student outreach program on STS-95. Similar activities are a part of the CIBX-2 payload. The experiments are sponsored by NASA's Space Product Development Program (SPD).
NRC Grants for Federal Research
NASA Astrophysics Data System (ADS)
The National Research Council is accepting applications for the 1989 Resident, Cooperative, and Postdoctoral Research Associateship Programs in science and engineering. NRC administers the awards for 30 federal agencies and research institutions, which have 115 participating laboratories in the U.S.About 450 new full-time Associateships will be given for research in biological, health, behaviorial sciences and biotechnology; chemistry; Earth and atmospheric sciences; engineering and applied sciences; mathematics; physics; and space and planetary sciences. Most of the programs are open to recent Ph.D.s and senior investigators and to citizens of the U.S. and other countries. More than 5500 scientists have received Associateships since the programs began in 1954.
2003 NASA Faculty Fellowship Program at Glenn Research Center
NASA Technical Reports Server (NTRS)
Prahl, Joseph M.; Heyward, An O.; Kankam, Mark D.
2003-01-01
The Office of Education at NASA Headquarters provides overall policy and direction for the NASA Faculty Fellowship Program (NFFP). The American Society for Engineering Education (ASEE) and the Universities Space Research Association (USRA) have joined in partnership to recruit participants, accept applications from a broad range of participants, and provide overall evaluation of the NFFP. The NASA Centers, through their University Affairs Officers, develop and operate the experiential part of the program. In concert with co-directing universities and the Centers, Fellows are selected and provided the actual research experiences. This report summarizes the 2003 session conducted at the Glenn Research Center (GRC).Research topics covered a variety of areas including, but not limited to, biological sensors, modeling of biological fluid systems, electronic circuits, ceramics and coatings, unsteady probablistic analysis and aerodynamics, gas turbines, environmental monitoring systems for water quality, air quality, gaseous and particulate emissions, bearings for flywheel energy storage, shape memory alloys,photonic interrogation and nanoprocesses,carbon nanotubes, polymer synthesis for fuel cells, aviation communications, algorithm development and RESPlan Database.
Space research - At a crossroads
NASA Technical Reports Server (NTRS)
Mcdonald, Frank B.
1987-01-01
Efforts which must be expended if U.S. space research is to regain vitality in the next few years are discussed. Small-scale programs are the cornerstone for big science projects, giving both researchers and students a chance to practice the development of space missions and hardware and identify promising goals for larger projects. Small projects can be carried aloft by balloons, sounding rockets, the Shuttle and ELVs. It is recommended that NASA continue the development of remote sensing systems, and join with other government agencies to fund space-based materials science, space biology and medical research. Increased international cooperation in space projects is necessary for affording moderate to large scale missions, for political reasons, and to maximize available space resources. Finally, the establishment and funding of long-range goals in space, particularly the development of the infrastructure and technologies for the exploration and colonization of the planets, must be viewed as the normal outgrowth of the capabilities being developed for LEO operations.
Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T
1994-01-01
The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.
Before the long journey. [the development of space biology and medicine
NASA Technical Reports Server (NTRS)
Gazenko, O. G.
1978-01-01
One of the leading specialists in space biology and medicine Oleg Geogiyevich Gazenko discusses the development of space biology and medicine and the problems which its specialists solve. The application of space medicine discoveries to terrestrial medicine is also discussed.
NASA/MSFC/NSSTC Science Communication Roundtable
NASA Technical Reports Server (NTRS)
Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.
Microbial Contamination in the Spacecraft
NASA Technical Reports Server (NTRS)
Pierson, Duane L.
2001-01-01
Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human spaceflight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) spaceflight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of spaceflight on biological functions and population dynamics of microorganisms in spacecraft.
The NASA land processes program - Status and future directions
NASA Technical Reports Server (NTRS)
Murphy, R. E.
1984-01-01
For most of the past decade, NASA focused its efforts on the immediate exploitation of space-based sensors in earth-oriented programs. After an assessment of the current situation with respect to the conducted programs, NASA has restructured its earth-oriented programs to concentrate on the scientific use of its satellites while other agencies and private enterprise have assumed responsibility for programs of interest to them. In making this change of direction, NASA has conducted a series of studies to obtain information as a basis for its planning activities regarding future programs. Attention is given to a plan for Land Global Habitability, the development of a basic structure for the land program, a program plan for global biology, and a study on the role of biochemical cycles. The three major facets of the land processes program are discussed along with some examples of current work.
Space biology research development
NASA Technical Reports Server (NTRS)
Bonting, Sjoerd L.
1993-01-01
The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.
USSR Space Life Sciences Digest, issue 29
NASA Technical Reports Server (NTRS)
Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)
1991-01-01
This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.
Grand challenges in space synthetic biology
Montague, Michael G.; Cumbers, John; Hogan, John A.
2015-01-01
Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. PMID:26631337
NASA Astrophysics Data System (ADS)
Durante, Marco
2008-07-01
Interest in energetic heavy ions is rapidly increasing in the field of biomedicine. Heavy ions are normally excluded from radiation protection, because they are not normally experienced by humans on Earth. However, knowledge of heavy ion biophysics is necessary in two fields: charged particle cancer therapy (hadrontherapy), and radiation protection in space missions. The possibility to cure tumours using accelerated heavy charged particles was first tested in Berkeley in the sixties, but results were not satisfactory. However, about 15 years ago therapy with carbon ions was resumed first in Japan and then in Europe. Heavy ions are preferable to photons for both physical and biological characteristics: the Bragg peak and limited lateral diffusion ensure a conformal dose distribution, while the high relative biological effectiveness and low oxygen enhancement ration in the Bragg peak region make the beam very effective in treating radioresistant and hypoxic tumours. Recent results coming from the National Institute of Radiological Sciences in Chiba (see the paper by Dr Tsujii and co-workers in this issue) and GSI (Germany) provide strong clinical evidence that heavy ions are indeed an extremely effective weapon in the fight against cancer. However, more research is needed in the field, especially on optimization of the treatment planning and risk of late effects in normal tissue, including secondary cancers. On the other hand, high-energy heavy ions are present in galactic cosmic radiation and, although they are rare as compared to protons, they give a major contribution in terms of equivalent dose to the crews of manned space exploratory-class missions. Exploration of the Solar System is now the main goal of the space program, and the risk caused by exposure to galactic cosmic radiation is considered a serious hindrance toward this goal, because of the high uncertainty on late effects of energetic heavy nuclei, and the lack of effective countermeasures. Risks include carcinogenesis, late degenerative tissue effects (including damage to the central nervous system), and hereditary effects. For these studies, microbeams represent an essential tool, considering that in space each cell in the human body will not experience more than one heavy-ion traversal. Both NASA and ESA are investing important resources in ground-based space radiation research programs, to reduce risk uncertainty and to develop countermeasures. For both cancer therapy and space radiation protection a better understanding of the effects of energetic heavy ions is needed. Physics should be improved, especially the measurements of nuclear fragmentation cross-sections, and the transport calculations. Biological effects need to be studied in greater detail, and clearly only understanding the mechanisms of heavy-ion induced biological damage will reduce the uncertainty on late effects in humans. This focus issue of New Journal of Physics aims to provide the state-of-the-art of the biophysics of energetic heavy ions and to highlight the areas where more research is urgently needed for therapy and the space program. Focus on Heavy Ions in Biophysics and Medical Physics Contents Heavy ion microprobes: a unique tool for bystander research and other radiobiological applications K O Voss, C Fournier and G Taucher-Scholz Heavy ions light flashes and brain functions: recent observations at accelerators and in spaceflight L Narici Clinical advantages of carbon-ion radiotherapy Hirohiko Tsujii, Tadashi Kamada, Masayuki Baba, Hiroshi Tsuji, Hirotoshi Kato, Shingo Kato, Shigeru Yamada, Shigeo Yasuda, Takeshi Yanagi, Hiroyuki Kato, Ryusuke Hara, Naotaka Yamamoto and Junetsu Mizoe Heavy-ion effects: from track structure to DNA and chromosome damage F Ballarini, D Alloni, A Facoetti and A Ottolenghi Shielding experiments with high-energy heavy ions for spaceflight applications C Zeitlin, S Guetersloh, L Heilbronn, J Miller, N Elkhayari, A Empl, M LeBourgeois, B W Mayes, L Pinsky, M Christl and E Kuznetsov Heavy charged particles in radiation biology and biophysics H Nikjoo, S Uehara, D Emfietzoglou and A Brahme Impact of track structure calculations on biological treatment planning in ion radiotherapy Thilo Elsässer, Richard Cunrath, Michael Krämer and Michael Scholz The physical basis for the biological action of heavy ions Jürgen Kiefer Secondary beam fragments produced by 200 MeV u-1 12C ions in water and their dose contributions in carbon ion radiotherapy K Gunzert-Marx, H Iwase, D Schardt and R S Simon
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
NASA Technical Reports Server (NTRS)
Bandurski, R. S.; Singh, N.
1983-01-01
A major laboratory dedicated to biological-medical research is proposed for the Space Platform. The laboratory would focus on sensor physiology and biochemistry since sensory physiology represents the first impact of the new space environment on living organisms. Microgravity and the high radiation environment of space would be used to help solve the problems of prolonged sojourns in space but, more importantly, to help solve terrestrial problems of human health and agricultural productivity. The emphasis would be on experimental use of microorganisms and small plants and small animals to minimize the space and time required to use the Space Platform for maximum human betterment. The Alpha Helix Concept, that is, the use of the Space Platform to bring experimental biomedicine to a new and extreme frontier is introduced so as to better understand the worldly environment. Staffing and instrumenting the Space Platform biomedical laboratory in a manner patterned after successful terrestrial sensory physiology laboratories is also proposed.
NASA Astrophysics Data System (ADS)
Bandurski, R. S.; Singh, N.
1983-10-01
A major laboratory dedicated to biological-medical research is proposed for the Space Platform. The laboratory would focus on sensor physiology and biochemistry since sensory physiology represents the first impact of the new space environment on living organisms. Microgravity and the high radiation environment of space would be used to help solve the problems of prolonged sojourns in space but, more importantly, to help solve terrestrial problems of human health and agricultural productivity. The emphasis would be on experimental use of microorganisms and small plants and small animals to minimize the space and time required to use the Space Platform for maximum human betterment. The Alpha Helix Concept, that is, the use of the Space Platform to bring experimental biomedicine to a new and extreme frontier is introduced so as to better understand the worldly environment. Staffing and instrumenting the Space Platform biomedical laboratory in a manner patterned after successful terrestrial sensory physiology laboratories is also proposed.
A Strategy to Safely Live and Work in the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Corbin, Barbara J.; Sulzman, Frank M.; Krenek, Sam
2006-01-01
The goal of the National Aeronautics and Space Agency and the Space Radiation Project is to ensure that astronauts can safely live and work in the space radiation environment. The space radiation environment poses both acute and chronic risks to crew health and safety, but unlike some other aspects of space travel, space radiation exposure has clinically relevant implications for the lifetime of the crew. The term safely means that risks are sufficiently understood such that acceptable limits on mission, post-mission and multi-mission consequences (for example, excess lifetime fatal cancer risk) can be defined. The Space Radiation Project strategy has several elements. The first element is to use a peer-reviewed research program to increase our mechanistic knowledge and genetic capabilities to develop tools for individual risk projection, thereby reducing our dependency on epidemiological data and population-based risk assessment. The second element is to use the NASA Space Radiation Laboratory to provide a ground-based facility to study the understanding of health effects/mechanisms of damage from space radiation exposure and the development and validation of biological models of risk, as well as methods for extrapolation to human risk. The third element is a risk modeling effort that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects. To understand the biological basis for risk, we must also understand the physical aspects of the crew environment. Thus the fourth element develops computer codes to predict radiation transport properties, evaluate integrated shielding technologies and provide design optimization recommendations for the design of human space systems. Understanding the risks and determining methods to mitigate the risks are keys to a successful radiation protection strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzke, D.J.; Osowski, D.M.; Radtke, M.L.
1976-01-01
This progress report describes the objectives and results of the intercollegiate Energy Resource Alternatives competition. The one-year program concluded in August 1975, with a final testing program of forty student-built alternative energy projects at the Sandia Laboratories in Albuquerque, New Mexico. The goal of the competition was to design and build prototype hardware which could provide space heating and cooling, hot water, and electricity at a level appropriate to the needs of homes, farms, and light industry. The hardware projects were powered by such nonconventional energy sources as solar energy, wind, biologically produced gas, coal, and ocean waves. The competitionmore » rules emphasized design innovation, economic feasibility, practicality, and marketability. (auth)« less
Life sciences payloads for Shuttle
NASA Technical Reports Server (NTRS)
Dunning, R. W.
1974-01-01
The Life Sciences Program for utilization of the Shuttle in the 1980's is presented. Requirements for life sciences research experiments in space flight are discussed along with study results of designs to meet these requirements. The span of life sciences interests in biomedicine, biology, man system integration, bioinstrumentation and life support/protective systems is described with a listing of the research areas encompassed in these descriptions. This is followed by a description of the approach used to derive from the life sciences disciplines, the research functions and instrumentation required for an orbital research program. Space Shuttle design options for life sciences experiments are identified and described. Details are presented for Spacelab laboratories for dedicated missions, mini-labs with carry on characteristics and carry on experiments for shared payload missions and free flying satellites to be deployed and retrieved by the Shuttle.
Alexander, Robert H.
1964-01-01
Space science has been called “the collection of scientific problems to which space vehicles can make some specific contributions not achievable by ground-based experiments.” Geography, the most spatial of the sciences, has now been marked as one of these “space sciences.” The National Aeronautics and Space Administration (NASA) is sponsoring an investigation to identify the Potential geographic benefits from the nation’s space program. This is part of NASA’s long-range inquiry to determine the kinds of scientific activities which might profitably be carried out on future space missions. Among such future activities which are now being planned by NASA are a series of manned earth orbital missions, many of which would be devoted to research. Experiments in physics, astronomy, geophysics, meteorology, and biology are being discussed for these long-range missions. The question which is being put to geographers is, essentially, what would it mean to geographic research to have an observation satellite (or many such satellites) orbiting the earth, gathering data about earth-surface features and environments?
Materials processing in space: Future technology trends
NASA Technical Reports Server (NTRS)
Barter, N. J.
1980-01-01
NASA's materials processing in space- (MPS) program involves both ground and space-based research and looks to frequent and cost effective access to the space environment for necessary progress. The first generation payloads for research are under active design and development. They will be hosted by the Space Shuttle/Spacelab on Earth orbital flights in the early 1980's. hese missions will focus on the acquisition of materials behavior research data, the potential enhancement of Earth based technology, and the implementation of space based processing for specialized, high value materials. Some materials to be studied in these payloads may provide future breakthroughs for stronger alloys, ultrapure glasses, superior electronic components, and new or better chemicals. An operational 25 kW power system is expected to be operational to support sustained, systematic space processing activity beyond shuttle capability for second generation payload systems for SPACELAB and free flyer missions to study solidification and crystal growth and to process metal/alloys, glasses/ceramics, and chemicals and biologicals.
Synthetic biology in space: considering the broad societal and ethical implications
NASA Astrophysics Data System (ADS)
Race, Margaret S.; Moses, Jacob; McKay, Christopher; Venkateswaran, Kasthuri J.
2012-02-01
Although the field of synthetic biology is still in its infancy, there are expectations for great advances in the coming decades, both on Earth and potentially in space. Promising applications for long duration space missions include a variety of biologically engineered products and biologically aided processes and technologies, which will undoubtedly be scrutinized for risks and benefits in the broad context of ethical, legal and social realms. By comparing and contrasting features of Earth-based and space-applied synthetic biology, it is possible to identify the likely similarities and differences, and to identify possible challenges ahead for space applications that will require additional research, both in the short and long terms. Using an analytical framework associated with synthetic biology and new technologies on Earth, this paper analyses the kinds of issues and concerns ahead, and identifies those areas where space applications may require additional examination. In general, while Earth- and space-based synthetic biology share many commonalities, space applications have additional challenges such as those raised by space microbiology and environmental factors, legal complications, planetary protection, lack of decision-making infrastructure(s), long duration human missions, terraforming and the possible discovery of extraterrestrial (ET) life. For synthetic biology, the way forward offers many exciting opportunities, but is not without legitimate concerns - for life, environments and society, both on Earth and beyond.
From Earth to Space: Application of Biological Treatment for the Removal of Ammonia from Water
NASA Technical Reports Server (NTRS)
Ghosh, Amlan; Seidel, Chad; Adam, Niklas; Pickering, Karen; White, Dawn
2014-01-01
Managing ammonia is often a challenge in both drinking water and wastewater treatment facilities. Ammonia is unregulated in drinking water, but its presence may result in numerous water quality issues in the distribution system such as loss of residual disinfectant, nitrification, and corrosion. Ammonia concentrations need to be managed in wastewater effluent to sustain the health of receiving water bodies. Biological treatment involves the microbiological oxidation of ammonia to nitrate through a two-step process. While nitrification is common in the environment, and nitrifying bacteria can grow rapidly on filtration media, appropriate conditions, such as the presence of dissolved oxygen and required nutrients, need to be established. This presentation will highlight results from two ongoing research programs - one at NASA's Johnson Space Center, and the other at a drinking water facility in California. Both programs are designed to demonstrate nitrification through biological treatment. The objective of NASA's research is to be able to recycle wastewater to potable water for spaceflight mission. To this end, a biological water processor (BWP) has been integrated with a forward osmosis secondary treatment system (FOST). Bacteria mineralize organic carbon to carbon dioxide as well as ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system testing planned for this year is expected to produce water that requires only a polishing step to meet potable water requirements for spaceflight. The pilot study in California is being conducted on Golden State Water Company's Yukon wellsthat have hydrogen sulfide odor, color, total organic carbon, bromide, iron and manganese in addition to ammonia. A treatment evaluation, conducted in 2011, recommended the testing of biological oxidation filtration for the removal of ammonia and production of biologically stable water. A 8-month pilot testing program was conducted to develop and optimize key design and operational variables. Steadystate operational data was collected to demonstrate long-term performance and inform California Department of Public Health permitting of the full-scale process. As ammonia continues to present challenges to water and wastewater systems, innovative strategies such as biological treatment can be applied to successfully manage it. This presentation will discuss application of cutting-age research being conducted by NASA that will bridge existing information gaps, and benefit municipal utilities.
From Earth to Space: Application of Biological Treatment for the Removal of Ammonia from Water
NASA Technical Reports Server (NTRS)
Pickering, Karen; Adam, Niklas; White, Dawn; Ghosh, Amlan; Seidel, Chad
2014-01-01
Managing ammonia is often a challenge in both drinking water and wastewater treatment facilities. Ammonia is unregulated in drinking water, but its presence may result in numerous water quality issues in the distribution system such as loss of residual disinfectant, nitrification, and corrosion. Ammonia concentrations need to be managed in wastewater effluent to sustain the health of receiving water bodies. Biological treatment involves the microbiological oxidation of ammonia to nitrate through a two-step process. While nitrification is common in the environment, and nitrifying bacteria can grow rapidly on filtration media, appropriate conditions, such as the presence of dissolved oxygen and required nutrients, need to be established. This presentation will highlight results from two ongoing research programs - one at NASA's Johnson Space Center, and the other at a drinking water facility in California. Both programs are designed to demonstrate nitrification through biological treatment. The objective of NASA's research is to be able to recycle wastewater to potable water for spaceflight missions. To this end, a biological water processor (BWP) has been integrated with a forward osmosis secondary treatment system (FOST). Bacteria mineralize organic carbon to carbon dioxide as well as ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system testing planned for this year is expected to produce water that requires only a polishing step to meet potable water requirements for spaceflight. The pilot study in California is being conducted on Golden State Water Company's Yukon wells that have hydrogen sulfide odor, color, total organic carbon, bromide, iron and manganese in addition to ammonia. A treatment evaluation, conducted in 2011, recommended the testing of biological oxidation filtration for the removal of ammonia and production of biologically stable water. An 8-month pilot testing program was conducted to develop and optimize key design and operational variables. Steadystate operational data was collected to demonstrate long-term performance and inform California Department of Public Health permitting of the full-scale process. As ammonia continues to present challenges to water and wastewater systems, innovative strategies such as biological treatment can be applied to successfully manage it. This presentation will discuss application of cutting-age research being conducted by NASA that will bridge existing information gaps, and benefit municipal utilities.
Some Thoughts on Interdisciplinary Science *
Stannard, J. Newell
1966-01-01
The development of the “new biology” is largely a story of developments in interdisciplinary science. This paper considers a few of these of special interest to the author and active at the University of Rochester; namely, dental research, biophysics, radiation biology, health physics, biomedical engineering, and space biology. Rochester pioneered advanced academic training in radiation biology, a field which, despite some earlier tendencies to become associated with techniques rather than scientific problems, is now clearly a substantive discipline. Using biophysics as an example, the paper points to the futility of trying to define in detail the exact nature of each new “interdisciplinary discipline,” yet it also decries the coining of new names without due cause. Health physics and its related field, radiological health, are described as centered on problems of radiation protection and as professional in their overtones. The interrelationships between engineering and bioscience are seen most clearly in biomedical engineering and the growing programs in space biology which require complete cooperation and mutual understanding between engineers and bioscientists for their ultimate success. After presenting some implications for medical libraries, the paper closes with a plea that the developers of new interdisciplinary fields and their powerful tools maintain historical perspective, simplicity of approach, and respect for nature's infinite resourcefulness. PMID:5910383
Biospheric Life Support - integrating biological regeneration into protection of humans in space.
NASA Astrophysics Data System (ADS)
Rocha, Mauricio; Iha, Koshun
2016-07-01
A biosphere stands for a set of biomes (regional biological communities) interacting in a materially closed (though energetically open) ecological system (CES). Earth's biosphere, the thin layer of life on the planet's surface, can be seen as a natural CES- where life "consumables" are regenerated/restored via biological, geological and chemical processes. In Life Sciences, artificial CESs- local ecosystems extracts with varying scales and degrees of closure, are considered convenient/representatives objects of study. For outer space, these concepts have been applied to the issue of life support- a significant consideration as long as distance from Earth increases. In the nineties, growing on the Russian expertise on biological life support, backed by a multidisciplinary science team, the famous Biosphere 2 appeared. That private project innovated, by assembling a set of Earth biomes samples- plus an organic ag one, inside a closed Mars base-like structure, next to 1.5 ha under glass, in Arizona, US. The crew of 8 inside completed their two years contract, though facing setbacks- the system failed, e.g., to produce enough food/air supplies. But their "failures"- if this word can be fairly applied to science endeavors, were as meaningful as their achievements for the future of life support systems (LSS) research. By this period, the Russians had accumulated experience in extended orbital stays, achieving biological outcomes inside their stations- e.g. complete wheat cycles. After reaching the Moon, the US administration decided to change national priorities, putting the space program as part of a "détente" policy, to relieve international tensions. Alongside the US space shuttle program, the Russians were invited to join the new International Space Station (ISS), bringing to that pragmatic project, also their physical/chemical LSS- top air/water regenerative technology at the time. Present US policy keeps the ISS operational, extending its service past its planned retirement (2016). The extension will allow partner agencies to deploy new experiments there, resuming basic research focusing more forward-looking goals. For deep-space, since consumables logistics becomes more difficult- and habitability an issue, with diminishing Earth's view, further research has been recommended. Four major areas have been identified for human protection: (1) radiation mitigation; (2) highly recyclable bio-regenerative (BR) LSS; (3) micro-gravity countermeasures- including artificial gravity (AG), and (4) psychological safety. To contribute to the efforts to address these issues, a basic lab/virtual iterative research has been proposed, assuming (in a worst case scenario) that: I) It won't be possible to send people to long deep space missions, safely, with the current (low quality of life) support technology (ISS micro-gravity 'up-gradings'); II) The alternative to implant a Mars surface human supportive biosphere would also not be possible, due to environmental/ evolutionary restraints (life could adapt and survive, but not necessarily to favor humans). From the above considerations arises the question: Would an average approach be possible where, by applying the artificial gravity concept to S/Cs, a fragment of Earth bio-regenerative environment could be integrated inside reusable manned vehicles- thus enhancing its habitability/autonomy in long deep space missions? For this research question a provisory answer/hypothesis has been provided. And to test it, a small AG+BR bench simulator (plus computer methods) has been devised.
The impacts of land use, radiative forcing, and biological changes on regional climate in Japan
NASA Astrophysics Data System (ADS)
Dairaku, K.; Pielke, R. A., Sr.
2013-12-01
Because regional responses of surface hydrological and biogeochemical changes are particularly complex, it is necessary to develop assessment tools for regional scale adaptation to climate. We developed a dynamical downscaling method using the regional climate model (NIED-RAMS) over Japan. The NIED-RAMS model includes a plant model that considers biological processes, the General Energy and Mass Transfer Model (GEMTM) which adds spatial resolution to accurately assess critical interactions within the regional climate system for vulnerability assessments to climate change. We digitalized a potential vegetation map that formerly existed only on paper into Geographic Information System data. It quantified information on the reduction of green spaces and the expansion of urban and agricultural areas in Japan. We conducted regional climate sensitivity experiments of land use and land cover (LULC) change, radiative forcing, and biological effects by using the NIED-RAMS with horizontal grid spacing of 20 km. We investigated regional climate responses in Japan for three experimental scenarios: 1. land use and land cover is changed from current to potential vegetation; 2. radiative forcing is changed from 1 x CO2 to 2 x CO2; and 3. biological CO2 partial pressures in plants are doubled. The experiments show good accuracy in reproducing the surface air temperature and precipitation. The experiments indicate the distinct change of hydrological cycles in various aspects due to anthropogenic LULC change, radiative forcing, and biological effects. The relative impacts of those changes are discussed and compared. Acknowledgments This study was conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA), and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.
Self-restoration as fundamental property of CES providing their sustainability
NASA Astrophysics Data System (ADS)
Gitelson, I. I.; Degermendzhy, A. G.; Rodicheva, E. K.
Sustainability is one of the most important criteria in the creation and evaluation of human life support systems intended for use during long space flights. The common feature of biological and physicochemical life support systems is that basically they are both catalytic. But there are two fundamental properties distinguishing biological systems: 1) they are auto-catalytic: their catalysts — enzymes of protein nature — are continuously reproduced when the system functions; 2) the program of every process performed by enzymes and the program of their reproduction are inherent in the biological system itself — in the totality of genomes of the species involved in the functioning of the ecosystem. Actually, one cell with the genome capable of the phenotypic realization is enough for the self-restoration of the function performed by the cells of this species in the ecosystem. The continuous microalgal culture of Chlorella vulgaris was taken to investigate quantitatively the process of self-restoration in unicellular algae population. Based on the data obtained, we proposed a mathematical model of the restoration process in a cell population that has suffered an acute radiation damage.
Operational plans for life science payloads - From experiment selection through postflight reporting
NASA Technical Reports Server (NTRS)
Mccollum, G. W.; Nelson, W. G.; Wells, G. W.
1976-01-01
Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.
Plant-module for autonomous space-support (p-mass).
NASA Technical Reports Server (NTRS)
Luttges, M. W.; Stodieck, L.; Hoehn, A.
1994-01-01
A wide variety of technical and science questions arise when attempting to envision the long-term support of plants, algae and bacteria in space. Currently, spaceflight data remain elusive since there are no U.S. carriers for investigating either the germane technical or scientific issues. The first flight of the Commercial Experiment Transporter (COMET) will provide a nominal 30 day orbital opportunity to evlauate such issues. The P-Mass is a small payload that is designed to meet the mass (40 lbs), Volume (1.5cu. ft.), and power (120 W0 constraints of one of several COMET payloads while enabling flight evaluations of plants, algae and bacteria. Various biological sub-systems have been similarly evaluated. Through a variety of sensors coupled with color video, the P-Mass performance and the supported biological systems will be compared for terrestrial controls versus spaceflight materials. This small, low cost payload should return valuable regarding the requirements for hardware and biological systems needed to move toward biogenerative life support systems in space. In addition, it should be possible to accurately identify major unresolved difficulties that may arise in the long-term, this generic spaceflight capability should enable a variety of plant research programs focused on the use of microgravity to modulate and exploit plant products for commercial applications ranging from new agricultural products to pharmacological feedstocks and new controlled agricultural strategies.
Applications of genetic programming in cancer research.
Worzel, William P; Yu, Jianjun; Almal, Arpit A; Chinnaiyan, Arul M
2009-02-01
The theory of Darwinian evolution is the fundamental keystones of modern biology. Late in the last century, computer scientists began adapting its principles, in particular natural selection, to complex computational challenges, leading to the emergence of evolutionary algorithms. The conceptual model of selective pressure and recombination in evolutionary algorithms allow scientists to efficiently search high dimensional space for solutions to complex problems. In the last decade, genetic programming has been developed and extensively applied for analysis of molecular data to classify cancer subtypes and characterize the mechanisms of cancer pathogenesis and development. This article reviews current successes using genetic programming and discusses its potential impact in cancer research and treatment in the near future.
Bauer, Johann; Bussen, Markus; Wise, Petra; Wehland, Markus; Schneider, Sabine; Grimm, Daniela
2016-07-01
More than one hundred reports were published about the characterization of cells from malignant and healthy tissues, as well as of endothelial cells and stem cells exposed to microgravity conditions. We retrieved publications about microgravity related studies on each type of cells, extracted the proteins mentioned therein and analyzed them aiming to identify biological processes affected by microgravity culture conditions. The analysis revealed 66 different biological processes, 19 of them were always detected when papers about the four types of cells were analyzed. Since a response to the removal of gravity is common to the different cell types, some of the 19 biological processes could play a role in cellular adaption to microgravity. Applying computer programs, to extract and analyze proteins and genes mentioned in publications becomes essential for scientists interested to get an overview of the rapidly growing fields of gravitational biology and space medicine.
Technical developments at the NASA Space Radiation Laboratory.
Lowenstein, D I; Rusek, A
2007-06-01
The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26-29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program's Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described.
NASA Space Radiation Program Integrative Risk Model Toolkit
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris
2015-01-01
NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.
On Beyond Star Trek, the Role of Synthetic Biology in Nasa's Missions
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.
2016-01-01
The time has come to for NASA to exploit the nascent field of synthetic biology in pursuit of its mission, including aeronautics, earth science, astrobiology and notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particularly space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement and the 2012 team has expanded the use of synthetic biology to estimate the potential for life in the clouds of other planets (http://2012.igem.org/Team:Stanford-Brown; http://www.calacademy.org/sciencetoday/igem-competition/). More recent projects from the Stanford-Brown team have expanded our ideas of how synthetic biology can aid NASA's missions from "Synthetic BioCommunication" (http://2013.igem.org/Team:Stanford-Brown) to a "Biodegradable UAS (drone)" in collaboration with Spelman College (http://2014.igem.org/Team:StanfordBrownSpelman#SBS%20iGEM) and most recently, "Self-Folding Origami" (http://2015.igem.org/Team:Stanford-Brown), the winner of the 2015 award for Manufacturing.
Implementing planetary protection requirements for sample return missions.
Rummel, J D
2000-01-01
NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.
The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.;
2014-01-01
The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.
The O/OREOS mission—Astrobiology in low Earth orbit
NASA Astrophysics Data System (ADS)
Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; Mancinelli, R.; Mattioda, A.; Nicholson, W.; Quinn, R.; Santos, O.; Tahu, G.; Voytek, M.; Beasley, C.; Bica, L.; Diaz-Aguado, M.; Friedericks, C.; Henschke, M.; Landis, D.; Luzzi, E.; Ly, D.; Mai, N.; Minelli, G.; McIntyre, M.; Neumann, M.; Parra, M.; Piccini, M.; Rasay, R.; Ricks, R.; Schooley, A.; Stackpole, E.; Timucin, L.; Yost, B.; Young, A.
2014-01-01
The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small-Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72°), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cm3) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA's scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.
Planetary and Space Simulation Facilities (PSI) at DLR
NASA Astrophysics Data System (ADS)
Panitz, Corinna; Rabbow, E.; Rettberg, P.; Kloss, M.; Reitz, G.; Horneck, G.
2010-05-01
The Planetary and Space Simulation facilities at DLR offer the possibility to expose biological and physical samples individually or integrated into space hardware to defined and controlled space conditions like ultra high vacuum, low temperature and extraterrestrial UV radiation. An x-ray facility stands for the simulation of the ionizing component at the disposal. All of the simulation facilities are required for the preparation of space experiments: - for testing of the newly developed space hardware - for investigating the effect of different space parameters on biological systems as a preparation for the flight experiment - for performing the 'Experiment Verification Tests' (EVT) for the specification of the test parameters - and 'Experiment Sequence Tests' (EST) by simulating sample assemblies, exposure to selected space parameters, and sample disassembly. To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed among many others for the ESA facilities of the ongoing missions EXPOSE-R and EXPOSE-E on board of the International Space Station ISS . Several experiment verification tests EVTs and an experiment sequence test EST have been conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allowed the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. EXPOSE-E had been attached to the outer balcony of the European Columbus module of the ISS in February 2008 and stayed for 1,5 years in space; EXPOSE-R has been attached to the Russian Svezda module of the ISS in spring 2009 and mission duration will be approx. 1,5 years. The missions will give new insights into the survivability of terrestrial organisms in space and will contribute to the understanding of the organic chemistry processes in space, the biological adaptation strategies to extreme conditions, e.g. on early Earth and Mars, and the distribution of life beyond its planet of origin The results gained during the simulation experiments demonstrated mission preparation as a basic requirement for successful and significant results of every space flight experiment. Hence, the Mission preparation program that was performed in the context of the space missions EXPOSE-E and EXPOSE-R proofed the outstanding importance and accentuated need for ground based experiments before and during a space mission. The facilities are also necessary for the performance of the ground control experiment during the mission, the so-called Mission Simulation Test (MST) under simulated space conditions, by parallel exposure of samples to simulated space parameters according to flight data received by telemetry. Finally the facilities also provide the possibility to simulate the surface and climate conditions of the planet Mars. In this way they offer the possibility to investigate under simulated Mars conditions the chances for development of life on Mars and to gain previous knowledge for the search for life on today's Mars and in this context especially the parameters for a manned mission to Mars. References [1] Rabbow E, Rettberg P, Panitz C, Drescher J, Horneck G, Reitz G (2005) SSIOUX - Space Simulation for Investigating Organics, Evolution and Exobiology, Adv. Space Res. 36 (2) 297-302, doi:10.1016/j.asr.2005.08.040Aman, A. and Bman, B. (1997) JGR, 90,1151-1154. [2] Fekete A, Modos K, Hegedüs M, Kovacs G, Ronto Gy, Peter A, Lammer H, Panitz C (2005) DNA Damage under simulated extraterrestrial conditions in bacteriophage T7 Adv. Space Res. 305-310Aman, A. et al. (1997) Meteoritics & Planet. Sci., 32,A74. [3] Cockell Ch, Schuerger AC, Billi D., Friedmann EI, Panitz C (2005) Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029, Astrobiology, 5/2 127-140Aman, A. (1996) LPS XXVII, 1344-1 [4] de la Torre Noetzel, R.; Sancho, L.G.; Pintado,A.; Rettberg, Petra; Rabbow, Elke; Panitz,Corinna; Deutschmann, U.; Reina, M.; Horneck, Gerda (2007): BIOPAN experiment LICHENS on the Foton M2 mission Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem. COSPAR [Hrsg.]: Advances in Space Research, 40, Elsevier, S. 1665 - 1671, DOI 10.1016/j.asr.2007.02.022
Tálas, M; Bátkai, L; Stöger, I; Nagy, K; Hiros, L; Konstantinova, I; Kozharinov, V
1983-01-01
The influence of spaceflight conditions on the biological activity of HuIFN-alpha preparations (lyophilized, in solution and in ointment) and interferon inducers was studied. In antiviral activity no difference was observed between the samples kept aboard the spaceship and the controls kept under ground conditions. The interferon inducers poly I:C, poly G:C and gossipol placed in the space laboratory for 7 days maintained their interferon-inducing capacity. The circulating interferon level in mice was the same irrespective of the induction being performed with flight or ground-control samples of inducers.
NASA Technical Reports Server (NTRS)
Brakman, B.; Dioso, L.; Parker, D.; Segal, L.; Merriman, C.; Howard, I.; Vu, H.; Anderson, K.; Riley, S.; Amery, D.
1989-01-01
This report summarizes the efforts of the NASA/USRA Advanced Design Program during the 1988-89 scholastic year. The primary goal was to address specific needs in the design of an integrated system to grow higher order plants in space. The initial phase of the design effort concentrated on studying such a system and identifying its needs. Once these needs were defined, emphasis was placed on the design and fabrication of devices to meet them. Specific attention was placed on a hand-held harvester, a nutrient concentration sensor, an air-water separator, and a closed-loop biological system simulation.
Artificial gravity - The evolution of variable gravity research
NASA Technical Reports Server (NTRS)
Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard
1987-01-01
The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.
Strategic Research Directions In Microgravity Materials Science
NASA Technical Reports Server (NTRS)
Clinton, Raymond G., Jr.; Wargo, Michael J.; Marzwell, Neville L.; Sanders, Gerald; Schlagheck, Ron; Semmes, Ed; Bassler, Julie; Cook, Beth
2004-01-01
The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects, and products with the vision for space exploration. Research in advanced materials is a critical element in meeting exploration goals. Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration: 1) Space Radiation Shielding; 2) In Situ Resource Utilization; 3) In Situ Fabrication and Repair; 4) Materials Science for Spacecraft and Propulsion Systems; 5) Materials Science for Advanced Life Support Systems. Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.
NASA spinoffs to bioengineering and medicine
NASA Technical Reports Server (NTRS)
Rouse, D. J.; Winfield, D. L.; Canada, S. C.
1991-01-01
Through the active transfer of technology, the National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Program assists private companies, associations, and government agencies to make effective use of NASA's technological resources to improve U.S. economic competitiveness and to provide societal benefit. Aerospace technology from areas such as digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging have found many secondary applications in medicine. Examples of technology spinoffs are briefly discussed to illustrate the benefits realized through adaptation of aerospace technology to solve health care problems. Successful implementation of new technologies increasingly requires the collaboration of industry, universities, and government, and the TU Program serves as the liaison to establish such collaborations with NASA. NASA technology is an important resource to support the development of new medical products and techniques that will further advance the quality of health care available in the U.S. and worldwide.
Contamination of planets by nonsterile flight hardware.
NASA Technical Reports Server (NTRS)
Wolfson, R. P.; Craven, C. W.
1971-01-01
The various factors about space missions and spacecraft involved in the study of nonsterile space flight hardware with respect to their effects on planetary quarantine are reviewed. It is shown that methodology currently exists to evaluate the various potential contamination sources and to take appropriate steps in the design of spacecraft ha rdware and mission parameters so that quarantine constraints are met. This work should be done for each program so that the latest knowledge pertaining to various biological questions is utilized, and so that the specific hardware designs of the program can be assessed. The general trend of specific recommendations include: (1) biasing the launch trajectory away from planet to assure against accidental impact of the spacecraft; (2) selecting planetary orbits that meet quarantine requirements - both for accidental impact and for minimizing contamination probabilities due to ejecta; and (3) manufacturing and handling spacecraft under cleanliness conditions assuring minimum bioload.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitesell, C.D.; DeBell, D.S.; Schubert, T.H.
1992-11-01
A 10-year research and development program was conducted on the island of Hawaii, where nearly 230,000 acres are suitable for growing biomass in short-rotation Eucalyptus plantations. Successful techniques are described for seedling production, plantation establishment (site preparation, weed control, planting), maintenance (weed control, fertilization), biomass yield estimation, and harvest. Basic biological relationships are described to aid decisions on site selection, initial spacing, fertilizer schedules, and rotation length. Environmental issues likely to be faced by growers of Eucalyptus plantations are discussed, including soil erosion, nutrient depletion, and monocultures. Continuing programs for tree improvement, monitoring, and silviculture research are recommeded. Production costsmore » for biomass yields are estimated for three promising management regimes, representing pure Eucalyptus plantings at dense and wide spacings and a mixed species plantation where Albizia is used as a nurse crop to provide nitrogen needed for optimum Eucalyptus growth.« less
USSR Space Life Sciences Digest, issue 9
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.
1987-01-01
This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.
Automatic design of synthetic gene circuits through mixed integer non-linear programming.
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.
Scientific Goals and Objectives for the Human Exploration of Mars: 1. Biology and Atmosphere/Climate
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Garvin, J. B.; Anbar, A. D.; Beaty, D. W.; Bell, M. S.; Clancy, R. T.; Cockell, C. S.; Connerney, J. E.; Doran, P. T.; Delory, G.;
2008-01-01
To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, T. A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-12-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory. 2012 Oct 06 - Astronaut Sunita Williams operating a Fluid Mixing Enclosure during SSEP Mission 2 on the International Space Station.
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio
2012-01-01
The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with those from standard laboratory protocols. Once developed, the system can be used with minor modifications for multiple experiments on different platforms in space, including extension to higher organisms and microbial monitoring. A proposed version of GEMM that is capable of handling both microbial and tissue samples on the International Space Station will be briefly summarized.
Ways to Bring a "Far Out" Subject SPACE BIOLOGY Into the Classroom.
ERIC Educational Resources Information Center
Lamb, Janice
This document describes a grade 10-12 biology course designed to increase student interest by introducing topics in space biology including: the book "Andromeda Strain"; weightlessness; centrifuge; cosmic radiation; space research; origins of life; extraterrestrial life; and the Mars Viking Mission. (SL)
NASA Technical Reports Server (NTRS)
Grindeland, R. E.; Ballard, R. W.; Connol, J. P.; Vasques, M. F.
1992-01-01
The COSMOS 2044 spaceflight was the ninth Soviet-International joint mission dedicated to space biomedicine and the seventh in which the United States has participated. The unmanned Vostok vehicle carried 10 rats and two rhesus monkeys on its 14-day voyage. This spaceflight yielded an unprecedented bounty of data on physiological responses to the microgravity environment. The tissues studied and the numbers and types of studies performed by members of the international science community constituted a new record. Many of the results obtained by the approximately 80 American scientists who participated are reported in the series of COSMOS 2044 papers in this issue. Descriptions of the spaceflight and animal procedures are detailed elsewhere. The broad goals of the space biomedical program are threefold. The first is to characterize qualitatively and quantitatively the biological responses to the microgravity environment, be they adaptive or pathological. The second goal is to clarify the physiological-biochemical mechanisms mediating the responses to microgravity. The third goal of this program is to use the space environment as a tool to better understand adaptive and disease processes in terrestrial organisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoehn, A.; Chamberlain, D.J.; Forsyth, S.W.
PGBA, a plant growth facility developed for space flight biotechnology research, successfully grew a total of 30 plants in a closed, multi-crop chamber for 10 days aboard the Space Shuttle Endeavor (STS-77). {ital Artemisia annua, Catharanthus roseus, Pinus taeda, Spinacia oleracea and Trifolium repens} were the five species studied during this mission. The primary mission objectives were to study the effects of microgravity for commercial and pharmaceutical production purposes. PGBA is a payload that represents a consortium of interests including BioServe Space Technologies (payload sponsor), NASA Ames Research Center (Controlled Ecological Life Support System, CELSS, Flight Program), Wisconsin Center formore » Space Automation and Robotics (WCSAR), and industrial affiliates (spaceflight effects on plants and formation of plant products such as pharmaceuticals). Although BioServe is responsible for the flight hardware development and integration of PGBA, NASA Ames, WSCAR and industrial affiliates provide significant hardware subsystems and technical biological expertise support. {copyright} {ital 1997 American Institute of Physics.}« less
Klein, Max; Sharma, Rati; Bohrer, Chris H; Avelis, Cameron M; Roberts, Elijah
2017-01-15
Data-parallel programming techniques can dramatically decrease the time needed to analyze large datasets. While these methods have provided significant improvements for sequencing-based analyses, other areas of biological informatics have not yet adopted them. Here, we introduce Biospark, a new framework for performing data-parallel analysis on large numerical datasets. Biospark builds upon the open source Hadoop and Spark projects, bringing domain-specific features for biology. Source code is licensed under the Apache 2.0 open source license and is available at the project website: https://www.assembla.com/spaces/roberts-lab-public/wiki/Biospark CONTACT: eroberts@jhu.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The Arecibo Observatory Space Academy
NASA Astrophysics Data System (ADS)
Rodriguez-Ford, Linda A.; Zambrano-Marin, Luisa; Petty, Bryan M.; Sternke, Elizabeth; Ortiz, Andrew M.; Rivera-Valentin, Edgard G.
2015-11-01
The Arecibo Observatory Space Academy (AOSA) is a ten (10) week pre-college research program for students in grades 9-12. Our mission is to prepare students for academic and professional careers by allowing them to receive an independent and collaborative research experience on topics related to space and aide in their individual academic and social development. Our objectives are to (1) Supplement the student’s STEM education via inquiry-based learning and indirect teaching methods, (2) Immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) To foster in every student an interest in science by exploiting their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. AOSA provides students with the opportunity to share lectures with Arecibo Observatory staff, who have expertise in various STEM fields. Each Fall and Spring semester, selected high school students, or Cadets, from all over Puerto Rico participate in this Saturday academy where they receive experience designing, proposing, and carrying out research projects related to space exploration, focusing on four fields: Physics/Astronomy, Biology, Engineering, and Sociology. Cadets get the opportunity to explore their topic of choice while practicing many of the foundations of scientific research with the goal of designing a space settlement, which they present at the NSS-NASA Ames Space Settlement Design Contest. At the end of each semester students present their research to their peers, program mentors, and Arecibo Observatory staff. Funding for this program is provided by NASA SSERVI-LPI: Center for Lunar Science and Exploration with partial support from the Angel Ramos Visitor Center through UMET and management by USRA.
NASA Strategy to Safely Live and Work in the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wu, Honglu; Corbin, Barbara J.; Sulzman, Frank M.; Krenek, Sam
2007-01-01
In space, astronauts are constantly bombarded with energetic particles. The goal of the National Aeronautics and Space Agency and the NASA Space Radiation Project is to ensure that astronauts can safely live and work in the space radiation environment. The space radiation environment poses both acute and chronic risks to crew health and safety, but unlike some other aspects of space travel, space radiation exposure has clinically relevant implications for the lifetime of the crew. Among the identified radiation risks are cancer, acute and late CNS damage, chronic and degenerative tissue decease, and acute radiation syndrome. The term "safely" means that risks are sufficiently understood such that acceptable limits on mission, post-mission and multi-mission consequences can be defined. The NASA Space Radiation Project strategy has several elements. The first element is to use a peer-reviewed research program to increase our mechanistic knowledge and genetic capabilities to develop tools for individual risk projection, thereby reducing our dependency on epidemiological data and population-based risk assessment. The second element is to use the NASA Space Radiation Laboratory to provide a ground-based facility to study the health effects/mechanisms of damage from space radiation exposure and the development and validation of biological models of risk, as well as methods for extrapolation to human risk. The third element is a risk modeling effort that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting the identified radiation risks. To understand the biological basis for risk, we must also understand the physical aspects of the crew environment. Thus, the fourth element develops computer algorithms to predict radiation transport properties, evaluate integrated shielding technologies and provide design optimization recommendations for the design of human space systems. Understanding the risks and determining methods to mitigate the risks are keys to a successful radiation protection strategy.
NASA Astrophysics Data System (ADS)
Sato, K. Y.; Tomko, D. L.; Levine, H. G.; Quincy, C. D.; Rayl, N. A.; Sowa, M. B.; Taylor, E. M.; Sun, S. C.; Kundrot, C. E.
2018-02-01
Model organisms are foundational for conducting physiological and systems biology research to define how life responds to the deep space environment. The organisms, areas of research, and Deep Space Gateway capabilities needed will be presented.
LIGO detector characterization with genetic programming
NASA Astrophysics Data System (ADS)
Cavaglia, Marco; Staats, Kai; Errico, Luciano; Mogushi, Kentaro; Gabbard, Hunter
2017-01-01
Genetic Programming (GP) is a supervised approach to Machine Learning. GP has for two decades been applied to a diversity of problems, from predictive and financial modelling to data mining, from code repair to optical character recognition and product design. GP uses a stochastic search, tournament, and fitness function to explore a solution space. GP evolves a population of individual programs, through multiple generations, following the principals of biological evolution (mutation and reproduction) to discover a model that best fits or categorizes features in a given data set. We apply GP to categorization of LIGO noise and show that it can effectively be used to characterize the detector non-astrophysical noise both in low latency and offline searches. National Science Foundation award PHY-1404139.
Brooks, Antone L
2015-04-01
This commentary provides a very brief overview of the book "A History of the United States Department of Energy (DOE) Low Dose Radiation Research Program: 1998-2008" ( http://lowdose.energy.gov ). The book summarizes and evaluates the research progress, publications and impact of the U.S. Department of Energy Low Dose Radiation Research Program over its first 10 years. The purpose of this book was to summarize the impact of the program's research on the current thinking and low-dose paradigms associated with the radiation biology field and to help stimulate research on the potential adverse and/or protective health effects of low doses of ionizing radiation. In addition, this book provides a summary of the data generated in the low dose program and a scientific background for anyone interested in conducting future research on the effects of low-dose or low-dose-rate radiation exposure. This book's exhaustive list of publications coupled with discussions of major observations should provide a significant resource for future research in the low-dose and dose-rate region. However, because of space limitations, only a limited number of critical references are mentioned. Finally, this history book provides a list of major advancements that were accomplished by the program in the field of radiation biology, and these bulleted highlights can be found in last part of chapters 4-10.
Gravitational biology on the space station
NASA Technical Reports Server (NTRS)
Keefe, J. R.; Krikorian, A. D.
1983-01-01
The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.
Bonar, Scott A.; Fife, Deanna A.; Bonar, John S.
2016-01-01
We represent several generations of biology educators – with teaching experiences beginning in the 1940s and continuing to the present, from elementary school to graduate-level programs. We find the vast array of subjects that biology teachers can now cover both thrilling and mind-boggling. Depending on the grade level, units exist that focus on neurobiology, forensics, DNA analysis, biotechnology, marine biology, and a host of other topics.Although science teachers cover a potpourri of advanced topics, we must ask ourselves – no matter our biology-teaching responsibilities – how well we are teaching carrying capacity, one of the most fundamental biological concepts for our society, knowledge of which becomes more important every day. As biology teachers, most of you know that carrying capacity is defined as the maximum population an environment can sustain, given the amounts of food, habitat, and other resources available. Every environment – from your goldfish bowl to the local forest to planet Earth – can only sustain a set number (weight) of a particular species, based on available resources and space. Currently, most science classes teach …
STS-78 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table 3. The Marshall Space Flight Center (MSFC) Problem Tracking List is shown in Table 4. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).
NASA Astrophysics Data System (ADS)
Venkateswaran, K.; Wang, C.; Smith, D.; Mason, C.; Landry, K.; Rettberg, P.
2018-02-01
Extremophilic microbial survival, adaptation, biological functions, and molecular mechanisms associated with outer space radiation can be tested by exposing them onto Deep Space Gateway hardware (inside/outside) using microbiology and molecular biology techniques.
How watching Pinocchio movies changes our subjective experience of extrapersonal space.
Fini, Chiara; Committeri, Giorgia; Müller, Barbara C N; Deschrijver, Eliane; Brass, Marcel
2015-01-01
The way we experience the space around us is highly subjective. It has been shown that motion potentialities that are intrinsic to our body influence our space categorization. Furthermore, we have recently demonstrated that in the extrapersonal space, our categorization also depends on the movement potential of other agents. When we have to categorize the space as "Near" or "Far" between a reference and a target, the space categorized as "Near" is wider if the reference corresponds to a biological agent that has the potential to walk, instead of a biological and non-biological agent that cannot walk. But what exactly drives this "Near space extension"? In the present paper, we tested whether abstract beliefs about the biological nature of an agent determine how we categorize the space between the agent and an object. Participants were asked to first read a Pinocchio story and watch a correspondent video in which Pinocchio acts like a real human, in order to become more transported into the initial story. Then they had to categorize the location ("Near" or "Far") of a target object located at progressively increasing or decreasing distances from a non-biological agent (i.e., a wooden dummy) and from a biological agent (i.e., a human-like avatar). The results indicate that being transported into the Pinocchio story, induces an equal "Near" space threshold with both the avatar and the wooden dummy as reference frames.
Bone Quest - A Space-Based Science and Health Education Unit
NASA Technical Reports Server (NTRS)
Smith, Scott M.; David-Street, Janis E.; Abrams, Steve A.
2000-01-01
This proposal addresses the need for effective and innovative science and health education materials that focus on space bone biology and its implications for bone health on Earth. The focus of these materials, bone biology and health, will increase science knowledge as well as health awareness. Current investigations of the bone loss observed after long-duration space missions provide a link between studies of bone health in space, and studies of osteoporosis, a disease characterized by bone loss and progressive skeletal weakness. The overall goal of this project is to design and develop web-based and print-based materials for high school science students, that will address the following: a) knowledge of normal bone biology and bone biology in a microgravity environment; b) knowledge of osteoporosis; c) knowledge of treatment modalities for space- and Earth-based bone loss; and d} bone-related nutrition knowledge and behavior. To this end, we propose to design and develop a Bone Biology Tutorial which will instruct students about normal bone biology, bone biology in a microgravity environment, osteoporosis - its definition, detection, risk factors, and prevention, treatment modalities for space- and Earth-based bone loss, and the importance of nutrition in bone health. Particular emphasis will be placed on current trends in . adolescent nutrition, and their relationships to bone health. Additionally, we propose to design and develop two interactive nutrition/health ' education activities that will allow students to apply the information provided in the Bone Biology Tutorial. In the first, students will apply constructs provided in the Bone Biology Tutorial to design "Bone Health Plans" for space travelers.
OSSA Space Station Freedom science utilization plans
NASA Astrophysics Data System (ADS)
Cressy, Philip J.
Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.
OSSA Space Station Freedom science utilization plans
NASA Technical Reports Server (NTRS)
Cressy, Philip J.
1992-01-01
Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.
BioSIGHT: Interactive Visualization Modules for Science Education
NASA Technical Reports Server (NTRS)
Wong, Wee Ling
1998-01-01
Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science, Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students. Our collaborators include TERC, a research and education organization with extensive k-12 math and science curricula development from Cambridge, MA.; SRI International of Menlo Park, CA.; teachers and students from local area high schools (Newbury Park High School, USC's Family of Five schools, Chadwick School, and Pasadena Polytechnic High School).
Foundations of Space Biology and Medicine. Volume 3: Space Medicine and Biotechnology
NASA Technical Reports Server (NTRS)
Calvin, M. (Editor); Gazenko, O. G. (Editor)
1975-01-01
The results of medical and biological research in space are presented. Specific topics discussed include: methods of providing life support systems for astronauts, characteristics of integrated life support systems, protection against adverse factors of space flight, selection and training of astronauts, and future space biomedical research.
USSR Space Life Sciences Digest, issue 14
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph
1988-01-01
This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.
STS-64 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1995-01-01
The STS-64 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fourth flight of the Space Shuttle Program and the nineteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-66; three SSMEs that were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-068. The RSRM's that were installed in each SRB were designated as 360L041 A for the left SRB, and 360L041 B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the Lidar In-Space Technology Experiment (LITE), and to deploy the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) -201 payload. The secondary objectives were to perform the planned activities of the Robot Operated Materials Processing System (ROMPS), the Shuttle Amateur Radio Experiment - 2 (SAREX-2), the Solid Surface Combustion Experiment (SSCE), the Biological Research in Canisters (BRIC) experiment, the Radiation Monitoring Equipment-3 (RME-3) payload, the Military Application of Ship Tracks (MAST) experiment, and the Air Force Maui Optical Site Calibration Test (AMOS) payload.
Interim Consequence Management Guidance for a Wide-Area Biological Attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raber, Ellen; Kirvel, Robert; MacQueen, Don
2011-05-17
The Interagency Biological Restoration Demonstration (IBRD) program is a collaborative, interagency effort co-chaired by the Department of Homeland Security and Department of Defense aimed at improving the nation‘s ability to respond to and recover from a large-scale, wide-area, domestic attack involving the release of an environmentally persistent biological warfare agent. The program is focused on understanding interactions between the civilian and military sectors, and in building mutual support to carry out such remediations. This Interim Consequence Management Guidance document provides guidance for decisionmakers in executing activities required to respond to and recover from a biological incident affecting a wide urbanmore » area insofar as information is currently available. The spore-forming bacterium Bacillus anthracis is discussed as the biological agent of primary concern because it is the most difficult of known bioterrorism agents to inactivate and is considered to be one of the key threat agents. Most other biological threat agents are much easier to remediate, and in many cases, inactivation would occur naturally within days as a result of environmental exposure; however, the framework and operational questions that need to be addressed are expected to remain the same. The guidance in this document is applicable to (1) enclosed facilities, such as commercial, residential, and continental U.S. military facilities; (2) semi-enclosed facilities, such as subways and public transit facilities; (3) outdoor areas (both localized and wide area), such as building exteriors, streets, parks, and other open spaces; (4) drinking water facilities; and (5) drinking water sources. This document follows an interagency framework [Planning Guidance for Recovery Following Biological Incidents (DHS and EPA 2009)]—which considered Raber et al. (2002) in its development—but takes the framework to a more operational level and provides guidance at key action and decision points.« less
Space Biophysics: Accomplishments, Trends, Challenges
NASA Technical Reports Server (NTRS)
Smith, Jeffrey D.
2015-01-01
Physics and biology are inextricably linked. All the chemical and biological processes of life are dutifully bound to follow the rules and laws of physics. In space, these physical laws seem to turn on their head and biological systems, from microbes to humans, adapt and evolve in myriad ways to cope with the changed physical influences of the space environment. Gravity is the most prominent change in space that influences biology. In microgravity, the physical processes of sedimentation, density-driven convective flow, influence of surface tension and fluid pressure profoundly influence biology at the molecular and cellular level as well as at the whole-body level. Gravity sensing mechanisms are altered, structural and functional components of biology (such as bone and muscle) are reduced and changes in the way fluids and gasses behave also drive the way microbial systems and biofilms grow as well as the way plants and animals adapt. The radiation environment also effects life in space. Solar particle events and high energy cosmic radiation can cause serious damage to DNA and other biomolecules. The results can cause mutation, cellular damage or death, leading to health consequences of acute radiation damage or long-term health consequences such as increased cancer risk. Space Biophysics is the study and utilization of physical changes in space that cause changes in biological systems. The unique physical environment in space has been used successfully to grow high-quality protein crystals and 3D tissue cultures that could not be grown in the presence of unidirectional gravitational acceleration here on Earth. All biological processes that change in space have their root in a biophysical alteration due to microgravity and/or the radiation environment of space. In order to fully-understand the risks to human health in space and to fully-understand how humans, plants, animals and microbes can safely and effectively travel and eventually live for long periods beyond the protective environment of Earth, the biophysical properties underlying these changes must be studied, characterized and understood. This lecture reviews the current state of NASA biophysics research accomplishments and identifies future trends and challenges for biophysics research on the International Space Station and beyond.
The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform
NASA Technical Reports Server (NTRS)
Bhattacharya, S.
2018-01-01
Over the last several decades important information has been gathered by conducting life science experiments on the Space Shuttle and on the International Space Station. It is now time to leverage that scientific knowledge, as well as aspects of the hardware that have been developed to support the biological model systems, to NASA's next frontier - the Deep Space Gateway. In order to facilitate long duration deep space exploration for humans, it is critical for NASA to understand the effects of long duration, low dose, deep space radiation on biological systems. While carefully controlled ground experiments on Earth-based radiation facilities have provided valuable preliminary information, we still have a significant knowledge gap on the biological responses of organisms to chronic low doses of the highly ionizing particles encountered beyond low Earth orbit. Furthermore, the combined effects of altered gravity and radiation have the potential to cause greater biological changes than either of these parameters alone. Therefore a thorough investigation of the biological effects of a cis-lunar environment will facilitate long term human exploration of deep space.
USSR Space Life Sciences Digest, Issue 18
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1988-01-01
This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.
USSR Space Life Sciences Digest, issue 16
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)
1988-01-01
This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.
Single track effects, Biostack and risk assessment
NASA Technical Reports Server (NTRS)
Curtis, S. B.; Chatterjee, A. (Principal Investigator)
1994-01-01
The scientific career of Prof. Bucker has spanned a very exciting period in the fledgling science of Space Radiation Biology. The capability for placing biological objects in space was developed, and the methods for properly packaging, retrieving and analyzing them were worked out. Meaningful results on the effects of radiation were obtained for the first time. In fact, many of the successful techniques and methodologies for handling biological samples were developed in Prof. Bucker's laboratories, as attested by the extensive Biostack program. He was the first to suggest and successfully carry out experiments in space directly aimed at measuring effects of single tracks of high-energy heavy galactic cosmic rays by specifically identifying whether or not the object had been hit by a heavy particle track. Because the "hit" frequencies of heavy galactic cosmic rays to cell nuclei in the bodies of space travelers will be low, it is expected that any effects to humans on the cellular level will be dominated by single-track cell traversals. This includes the most important generally recognized late effect of space radiation exposure: radiation-induced cancer. This paper addresses the single-track nature of the space radiation environment, and points out the importance of single "hits" in the evaluation of radiation risk for long-term missions occurring outside the earth's magnetic field. A short review is made of biological objects found to show increased effects when "hit" by a single heavy charged-particle in space. A brief discussion is given of the most provocative results from the bacterial spore Bacillus subtilis: experimental evidence that tracks can affect biological systems at much larger distances from the trajectory than previously suspected, and that the resultant inactivation cross section in space calculated for this system is very large. When taken at face value, the implication of these results, when compared to those from experiments performed at ground-based accelerators with beams at low energies in the same LET range, is that high-energy particles can exert their influence a surprising distance from their trajectory and the inactivation cross sections are some 20 times larger than expected. Clearly, beams from high-energy heavy-ion accelerators should be used to confirm these results. For those end points that can also be caused by low-LET beams such as high-energy protons, it is important to measure their action cross sections as well. The ratio of the cross sections for a high-LET beam to that of a low-LET beam is an interesting experimental ratio and, we suggest, of more intrinsic interest than the RBE (Relative Biological Effectiveness). It is a measure of the "biological" importance of one particle type relative to another particle type. This ratio will be introduced and given the name RPPE (Relative Per Particle Effectiveness). Values of RPPE have appeared in the literature and will be discussed. A rather well-known value of this quantity (13,520) has been suggested for the RPPE of high-energy iron ions to high-energy protons. This value was suggested by Letaw et al. Nature 330, 709-710 (1987)] we will call it the Letaw limit. It will be discussed in terms of the importance of the heavy-ion component vs light-ion component of the galactic cosmic rays. It is also pointed out, however, that there may be unique effects from single tracks of heavy ions that do not occur from light-ion tracks. For such effects, the concepts of both RBE and RPPE lose their meaning.
Historical parallels of biological space experiments from Soyuz, Salyut and Mir to Shenzhou flights
NASA Astrophysics Data System (ADS)
Nechitailo, Galina S.; Kondyurin, Alexey
2016-07-01
Human exploitation of space is a great achievement of our civilization. After the first space flights a development of artificial biological environment in space systems is a second big step. First successful biological experiments on a board of space station were performed on Salyut and Mir stations in 70-90th of last century such as - first long time cultivation of plants in space (wheat, linen, lettuce, crepis); - first flowers in space (Arabidopsis); - first harvesting of seeds in space (Arabidopsis); - first harvesting of roots (radish); - first full life cycle from seeds to seeds in space (wheat), Guinness recorded; - first tissue culture experiments (Panax ginseng L, Crocus sativus L, Stevia rebaundiana B; - first tree growing in space for 2 years (Limonia acidissima), Guinness recorded. As a new wave, the modern experiments on a board of Shenzhou Chinese space ships are performed with plants and tissue culture. The space flight experiments are now focused on applications of the space biology results to Earth technologies. In particular, the tomato seeds exposed 6 years in space are used in pharmacy industry in more then 10 pharmaceutical products. Tissue culture experiments are performed on the board of Shenzhou spaceship for creation of new bioproducts including Space Panax ginseng, Space Spirulina, Space Stetatin, Space Tomato and others products with unique properties. Space investments come back.
Heuristic reusable dynamic programming: efficient updates of local sequence alignment.
Hong, Changjin; Tewfik, Ahmed H
2009-01-01
Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.
NASA Astrophysics Data System (ADS)
Vista SSEP Mission 11 Team; Hagstrom, Danielle; Bartee, Christine; Collins, Eva-Maria S.
2018-05-01
The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS) showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP) to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.
Programmable polyproteams built using twin peptide superglues
Veggiani, Gianluca; Nakamura, Tomohiko; Brenner, Michael D.; Yan, Jun; Robinson, Carol V.; Howarth, Mark
2016-01-01
Programmed connection of amino acids or nucleotides into chains introduced a revolution in control of biological function. Reacting proteins together is more complex because of the number of reactive groups and delicate stability. Here we achieved sequence-programmed irreversible connection of protein units, forming polyprotein teams by sequential amidation and transamidation. SpyTag peptide is engineered to spontaneously form an isopeptide bond with SpyCatcher protein. By engineering the adhesin RrgA from Streptococcus pneumoniae, we developed the peptide SnoopTag, which formed a spontaneous isopeptide bond to its protein partner SnoopCatcher with >99% yield and no cross-reaction to SpyTag/SpyCatcher. Solid-phase attachment followed by sequential SpyTag or SnoopTag reaction between building-blocks enabled iterative extension. Linear, branched, and combinatorial polyproteins were synthesized, identifying optimal combinations of ligands against death receptors and growth factor receptors for cancer cell death signal activation. This simple and modular route to programmable “polyproteams” should enable exploration of a new area of biological space. PMID:26787909
An investigation of a sterile access technique for the repair and adjustment of sterile spacecraft
NASA Technical Reports Server (NTRS)
Farmer, F. H.; Fuller, H. V.; Hueschen, R. M.
1973-01-01
A description is presented of a unique system for the sterilization and sterile repair of spacecraft and the results of a test program designed to assess the biological integrity and engineering reliability of the system. This trailer-mounted system, designated the model assembly sterilizer for testing (MAST), is capable of the dry-heat sterilization of spacecraft and/or components less than 2.3 meters in diameter at temperatures up to 433 K and the steam sterilization of components less than 0.724 meter in diameter. Sterile access to spacecraft is provided by two tunnel suits, called the bioisolator suit systems (BISS), which are contiguous with the walls of the sterilization chambers. The test program was designed primarily to verify the biological and engineering reliability of the MAST system by processing simulated space hardware. Each test cycle simulated the initial sterilization of a spacecraft, sterile repair of a failed component, removal of the spacecraft from the MAST for mating with the bus, and a sterile recycle repair.
Programmable polyproteams built using twin peptide superglues.
Veggiani, Gianluca; Nakamura, Tomohiko; Brenner, Michael D; Gayet, Raphaël V; Yan, Jun; Robinson, Carol V; Howarth, Mark
2016-02-02
Programmed connection of amino acids or nucleotides into chains introduced a revolution in control of biological function. Reacting proteins together is more complex because of the number of reactive groups and delicate stability. Here we achieved sequence-programmed irreversible connection of protein units, forming polyprotein teams by sequential amidation and transamidation. SpyTag peptide is engineered to spontaneously form an isopeptide bond with SpyCatcher protein. By engineering the adhesin RrgA from Streptococcus pneumoniae, we developed the peptide SnoopTag, which formed a spontaneous isopeptide bond to its protein partner SnoopCatcher with >99% yield and no cross-reaction to SpyTag/SpyCatcher. Solid-phase attachment followed by sequential SpyTag or SnoopTag reaction between building-blocks enabled iterative extension. Linear, branched, and combinatorial polyproteins were synthesized, identifying optimal combinations of ligands against death receptors and growth factor receptors for cancer cell death signal activation. This simple and modular route to programmable "polyproteams" should enable exploration of a new area of biological space.
Biology-Inspired Explorers for Space Systems
NASA Astrophysics Data System (ADS)
Ramohalli, Kumar; Lozano, Peter; Furfaro, Roberto
2002-01-01
Building upon three innovative technologies, each of which received a NTR award from NASA, a specific explorer is described. This "robot" does away with conventional gears, levers, pulleys,.... And uses "Muscle Materials" instead; these shape-memory materials, formerly in the Nickel-Titanium family, but now in the much wider class of ElectroActivePolymers(EAP), have the ability to precisely respond to pre"programmed" shape changes upon application of an electrical input. Of course, the pre"programs" are at the molecular level, much like in biological systems. Another important feature is the distributed power. That is, the power use in the "limbs" is distributed, so that if one "limb" should fail, the others can still function. The robot has been built and demonstrated to the media (newspapers and television). The fundamental control aspects are currently being worked upon, and we expect to have a more complete mathematical description of its operation. Future plans, and specific applications for reliable planetary exploration will be outlined.
Remote sensing of the biosphere
NASA Technical Reports Server (NTRS)
1986-01-01
The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.
USSR Space Life Sciences Digest, issue 19
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1988-01-01
This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.
DOT2: Macromolecular Docking With Improved Biophysical Models
Roberts, Victoria A.; Thompson, Elaine E.; Pique, Michael E.; Perez, Martin S.; Eyck, Lynn Ten
2015-01-01
Computational docking is a useful tool for predicting macromolecular complexes, which are often difficult to determine experimentally. Here we present the DOT2 software suite, an updated version of the DOT intermolecular docking program. DOT2 provides straightforward, automated construction of improved biophysical models based on molecular coordinates, offering checkpoints that guide the user to include critical features. DOT has been updated to run more quickly, allow flexibility in grid size and spacing, and generate a complete list of favorable candidate configu-rations. Output can be filtered by experimental data and rescored by the sum of electrostatic and atomic desolvation energies. We show that this rescoring method improves the ranking of correct complexes for a wide range of macromolecular interactions, and demonstrate that biologically relevant models are essential for biologically relevant results. The flexibility and versatility of DOT2 accommodate realistic models of complex biological systems, improving the likelihood of a successful docking outcome. PMID:23695987
Cell biology and biotechnology research for exploration of the Moon and Mars
NASA Astrophysics Data System (ADS)
Pellis, N.; North, R.
Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to conduct experiments in the early phase of the development of requirements for exploration. Supporting the NASA concept of stepping stones, we believe that ground based, International Space Station, robotic and satellite missions offer the ideal environment to perform experiments and secure answers necessary for human exploration.
Invited review article: Advanced light microscopy for biological space research.
De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K
2014-10-01
As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.
Invited Review Article: Advanced light microscopy for biological space research
NASA Astrophysics Data System (ADS)
De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.
2014-10-01
As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.
Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398
USSR Space Life Sciences Digest, issue 25
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1990-01-01
This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.
National Aeronautics and Space Administration Biological and Physical Research Enterprise Strategy
NASA Technical Reports Server (NTRS)
2003-01-01
As the 21st century begins, NASA's new Vision and Mission focuses the Agency's Enterprises toward exploration and discovery.The Biological and Physical Research Enterprise has a unique and enabling role in support of the Agency's Vision and Mission. Our strategic research seeks innovations and solutions to enable the extension of life into deep space safely and productively. Our fundamental research, as well as our research partnerships with industry and other agencies, allow new knowledge and tech- nologies to bring improvements to life on Earth. Our interdisciplinary research in the unique laboratory of microgravity addresses opportunities and challenges on our home planet as well as in space environments. The Enterprise maintains a key role in encouraging and engaging the next generation of explorers from primary school through the grad- uate level via our direct student participation in space research.The Biological and Physical Research Enterprise encompasses three themes. The biological sciences research theme investigates ways to support a safe human presence in space. This theme addresses the definition and control of physiological and psychological risks from the space environment, including radiation,reduced gravity, and isolation. The biological sciences research theme is also responsible for the develop- ment of human support systems technology as well as fundamental biological research spanning topics from genomics to ecologies. The physical sciences research theme supports research that takes advantage of the space environment to expand our understanding of the fundamental laws of nature. This theme also supports applied physical sciences research to improve safety and performance of humans in space. The research partnerships and flight support theme establishes policies and allocates space resources to encourage and develop entrepreneurial partners access to space research.Working together across research disciplines, the Biological and Physical Research Enterprise is performing vital research and technology development to extend the reach of human space flight.
Microgravity Fluids for Biology, Workshop
NASA Technical Reports Server (NTRS)
Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.
2013-01-01
Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.
NASA Technical Reports Server (NTRS)
Tobias, C. A.; Grigoryev, Y. G.
1975-01-01
The biological effects of ionizing radiation encountered in space are considered. Biological experiments conducted in space and some experiences of astronauts during space flight are described. The effects of various levels of radiation exposure and the determination of permissible dosages are discussed.
USSR Space Life Sciences Digest, issue 13
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)
1987-01-01
This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.
Novel cell-biological ideas deducible from morphological observations on "dark" neurons revisited.
Gallyas, Ferenc
2007-05-30
The origin, nature and fate of "dark" (dramatically shrunken and hyperbasophilic) neurons are century-old problems in both human and experimental neuropathology. Until a few years ago, hardly any cell-biological conclusion had been drawn from their histological investigation. On the basis of light and electron microscopic findings in animal experiments performed during the past few years, my research team has put forward novel ideas concerning 1. the nature of "dark" neurons (malfunction of an energy-storing gel-structure that is ubiquitously present in all intracellular spaces between the ultrastructural elements), 2. the mechanism of their formation (non-programmed initiation of a whole-cell phase-transition in this gel-structure), 3. their capability of recovery (programmed for some physiological purpose), 4. their death mode (neither necrotic nor apoptotic), and 5. their relationship with the apoptotic cell death (the gel structure in question is programmed for the morphological execution of ontogenetic apoptosis). Based on morphological observations, this paper revisits these ideas in order to bring them to the attention of researchers who are in a position to investigate their validity by means of experimental paradigms other than those used here.
Cell biology experiments conducted in space
NASA Technical Reports Server (NTRS)
Taylor, G. R.
1977-01-01
A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.
DataWarrior: an open-source program for chemistry aware data visualization and analysis.
Sander, Thomas; Freyss, Joel; von Korff, Modest; Rufener, Christian
2015-02-23
Drug discovery projects in the pharmaceutical industry accumulate thousands of chemical structures and ten-thousands of data points from a dozen or more biological and pharmacological assays. A sufficient interpretation of the data requires understanding, which molecular families are present, which structural motifs correlate with measured properties, and which tiny structural changes cause large property changes. Data visualization and analysis software with sufficient chemical intelligence to support chemists in this task is rare. In an attempt to contribute to filling the gap, we released our in-house developed chemistry aware data analysis program DataWarrior for free public use. This paper gives an overview of DataWarrior's functionality and architecture. Exemplarily, a new unsupervised, 2-dimensional scaling algorithm is presented, which employs vector-based or nonvector-based descriptors to visualize the chemical or pharmacophore space of even large data sets. DataWarrior uses this method to interactively explore chemical space, activity landscapes, and activity cliffs.
1969-07-09
In this photograph, laboratory technician Bart Ruark visually inspects a Japanese Qail confined within a class III cabinet in the Intervertebrae, Aves, and Fish Laboratory of the Lunar Receiving Laboratory, Building 37 of the Manned Spacecraft Center (MSC) in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.
1969-07-09
In this photograph, a laboratory technician handles a portion of the more than 20 different plant lines that were used within the Lunar Receiving Laboratory, Building 37 of the Manned Spacecraft Center (MSC) in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.
NASA Astrophysics Data System (ADS)
Hertz, P.
2003-03-01
The Structure and Evolution of the Universe (SEU) theme within NASA's Office of Space Science seeks to explore and understand the dynamic transformations of energy in the Universe - the entire web of biological and physical interactions that determine the evolution of our cosmic habitat. This search for understanding will enrich the human spirit and inspire a new generation of explorers, scientists, and engineers. To that end, NASA's strategic planning process has generated a new Roadmap to enable those goals. Called "Beyond Einstein", this Roadmap identifies three science objectives for the SEU theme: (1) Find out what powered the Big Bang; (2) Observe how black holes manipulate space, time, and matter; and (3) Identify the mysterious dark energy pullingthe Universe apart. These objectives can be realized through a combination of large observatories (Constellation-X, LISA), moderate sized, PI-led missions (the Einstein Probes), and a contuinuing program of technology development, research and analysis, and education/public outreach. In this presentation, NASA's proposed Beyond Einstein Program will be described. The full Roadmap is available at http://universe.nasa.gov/.
1992-06-25
The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs and provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. In this photograph, astronaut Carl Meade is reviewing the manual to activate the Generic Bioprocessing Apparatus (GBA) inside the Spacelab module. The GBA for the USML-1 mission was a multipurpose facility that could help us answer important questions about the relationship between gravity and biology. This unique facility allowed scientists to study biological processes in samples ranging from molecules to small organisms. For example, scientists would examine how collagen, a protein substance found in cornective tissue, bones, and cartilage, forms fibers. In microgravity, it might be possible to alter collagen fiber assembly so that this material could be used more effectively as artificial skin, blood vessels, and other parts of the body. The USML-1 was managed by the Marshall Space Flight Center and waslaunched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.
NASA Technical Reports Server (NTRS)
1992-01-01
The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs and provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. In this photograph, astronaut Carl Meade is reviewing the manual to activate the Generic Bioprocessing Apparatus (GBA) inside the Spacelab module. The GBA for the USML-1 mission was a multipurpose facility that could help us answer important questions about the relationship between gravity and biology. This unique facility allowed scientists to study biological processes in samples ranging from molecules to small organisms. For example, scientists would examine how collagen, a protein substance found in cornective tissue, bones, and cartilage, forms fibers. In microgravity, it might be possible to alter collagen fiber assembly so that this material could be used more effectively as artificial skin, blood vessels, and other parts of the body. The USML-1 was managed by the Marshall Space Flight Center and waslaunched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.
Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept
NASA Technical Reports Server (NTRS)
Ennico, K. A.; Sandford, S. A.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.
2004-01-01
The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T < 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission s observational program would make fundamental scientific progress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars, 2) The Diffuse Interstellar Medium, 3) Dense Molecular Clouds, Star Formation Regions, and Young StellarPlanetary Systems, 4) Planets, Satellites, and Small Bodies within the Solar System, and 5 ) The Interstellar Media of Other Galaxies. ABE could make fundamental progress in all of these areas by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micron spectral range at a spectral resolution of R > 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects. Keywords: Astrobiology, infrared, Explorers, interstellar organics, telescope, spectrometer, space, infrared detectors
Before the long journey: Development of Soviet space biology and medicine
NASA Technical Reports Server (NTRS)
Gazenko, O. G.
1978-01-01
Academician O. Gazenko, Chief of the Institute of Biomedical Problems, USSR Ministry of Public Health, reviewed the short but intense history of Soviet research in space biology and medicine. The solid academic approach of the Soviet Academy of Sciences in giving a good start at the very beginning of the space age is stressed and key people and institutions who initiated these studies are named. The basic feature of the first period of space biology is seen as the search for answers to a few fundamental questions of survival in space. It is pointed out that the initiated investigations were replaced by refined, in-depth studies of the biological, biophysical, and biochemical processes in human organism in the space environment and the search for methods which should enable cosmonaut crews to live in space for several years during interplanetary journeys. Discussing the typical problems of this effort, Gazenko each time showed how they benefit medical science and practice in general.
NASA Astrophysics Data System (ADS)
Anderson, G. A.; MacCallum, T. K.; Poynter, J. E.; Klaus, D., Dr.
1998-01-01
Paragon Space Development Corporation (SDC) has developed an Autonomous Biological System (ABS) that can be flown in space to provide for long term growth and breeding of aquatic plants, animals, microbes and algae. The system functions autonomously and in isolation from the spacecraft life support systems and with no mandatory crew time required for function or observation. The ABS can also be used for long term plant and animal life support and breeding on a free flyer space craft. The ABS units are a research tool for both pharmaceutical and basic space biological sciences. Development flights in May of 1996 and September, 1996 through January, 1997 were largely successful, showing both that the hardware and life systems are performing with beneficial results, though some surprises were still found. The two space flights, plus the current flight now on Mir, are expected to result in both a scientific and commercially usable system for breeding and propagation of animals and plants in space.
Advanced Environmental Monitoring and Control Program: Technology Development Requirements
NASA Technical Reports Server (NTRS)
Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)
1996-01-01
Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.
Residual acceleration data on IML-1: Development of a data reduction and dissemination plan
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Alexander, J. Iwan D.; Wolf, Randy
1992-01-01
The need to record some measure of the low-gravity environment of an orbiting space vehicle was recognized at an early stage of the U.S. Space Program. Such information was considered important for both the assessment of an astronaut's physical condition during and after space missions and the analysis of the fluid physics, materials processing, and biological sciences experiments run in space. Various measurement systems were developed and flown on space platforms beginning in the early 1970's. Similar in concept to land based seismometers that measure vibrations caused by earthquakes and explosions, accelerometers mounted on orbiting space vehicles measure vibrations in and of the vehicle due to internal and external sources, as well as vibrations in a sensor's relative acceleration with respect to the vehicle to which it is attached. The data collected over the years have helped to alter the perception of gravity on-board a space vehicle from the public's early concept of zero-gravity to the science community's evolution of thought from microgravity to milligravity to g-jitter or vibrational environment. Since the advent of the Shuttle Orbiter Program, especially since the start of Spacelab flights dedicated to scientific investigations, the interest in measuring the low-gravity environment in which experiments are run has increased. This interest led to the development and flight of numerous accelerometer systems dedicated to specific experiments. It also prompted the development of the NASA MSAD-sponsored Space Acceleration Measurement System (SAMS). The first SAMS units flew in the Spacelab on STS-40 in June 1991 in support of the first Spacelab Life Sciences mission (SLS-1). SAMS is currently manifested to fly on all future Spacelab missions.
NASA Technical Reports Server (NTRS)
Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis;
2017-01-01
Space radiation consists of energetic charged particles of varying charges and energies. Exposure of astronauts to space radiation on future long duration missions to Mars, or missions back to the Moon, is expected to result in deleterious consequences such as cancer and comprised central nervous system (CNS) functions. Space radiation can also cause mutation in microorganisms, and potentially influence the evolution of life in space. Measurement of the space radiation environment has been conducted since the very beginning of the space program. Compared to the quantification of the space radiation environment using physical detectors, reports on the direct measurement of biological consequences of space radiation exposure have been limited, due primarily to the low dose and low dose rate nature of the environment. Most of the biological assays fail to detect the radiation effects at acute doses that are lower than 5 centiSieverts. In a recent study, we flew cultured confluent human fibroblasts in mostly G1 phase of the cell cycle to the International Space Station (ISS). The cells were fixed in space after arriving on the ISS for 3 and 14 days, respectively. The fixed cells were later returned to the ground and subsequently stained with the gamma-H2AX (Histone family, member X) antibody that are commonly used as a marker for DNA damage, particularly DNA double strand breaks, induced by both low-and high-linear energy transfer radiation. In our present study, the gamma-H2AX (Histone family, member X) foci were captured with a laser confocal microscope. To confirm that some large track-like foci were from space radiation exposure, we also exposed, on the ground, the same type of cells to both low-and high-linear energy transfer protons, and high-linear energy transfer Fe ions. In addition, we exposed the cells to low dose rate gamma rays, in order to rule out the possibility that the large track-like foci can be induced by chronic low-linear energy transfer radiation.
A Hypothesis on Biological Protection from Space Radiation Through the Use of Therapeutic Gases
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael
2011-01-01
This slide presentation proposes a hypothesis to use therapeutic gases in space to enhance the biological protection for astronauts from space radiation. The fundamental role in how radiation causes biological damage appears to be radiolysis, the dissociation of water by radiation. A chain of events appears to cause molecular and biological transformations that ultimately manifest into medical diseases. The hypothesis of this work is that applying medical gases may increase resistance to radiation, by possessing the chemical properties that effectively improve the radical scavenging and enhance bond repair and to induce biological processes which enhance and support natural resistance and repair mechanisms.
NASA Technical Reports Server (NTRS)
Calvin, M. (Editor); Gazenko, O. G. (Editor)
1975-01-01
The influence on living organisms of radiant energy, the psychophysical problems of space flight, methods of physiological investigations in flight, and the transmission of information are considered.
Opportunities and questions for the fundamental biological sciences in space
NASA Technical Reports Server (NTRS)
Sharp, Joseph C.; Vernikos, Joan
1993-01-01
With the advent of sophisticated space facilities we discuss the overall nature of some biological questions that can be addressed. We point out the need for broad participation by the biological community, the necessary facilities, and some unique requirements.
Karouia, Fathi; Peyvan, Kianoosh; Pohorille, Andrew
2017-11-15
Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis. Published by Elsevier Inc.
Space Station Biological Research Project.
Johnson, C C; Wade, C E; Givens, J J
1997-06-01
To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.
Space Station Biological Research Project
NASA Technical Reports Server (NTRS)
Johnson, C. C.; Wade, C. E.; Givens, J. J.
1997-01-01
To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.
1978-01-01
Coastal Commission University of California, Irvine 1540 Market Street Department of Ecology and Evolutionary San Francisco, CA 94102 Biology FROM...Category... 4-5 4.2-3 North County I3ffbase Land Requirements for Projected Development to 1990 ............... 4-ti ..-1 Special Interest Plants to be...c•iacb•ii, and concrete batch plants . CONSTRULiCTIdh Je•v-. *1p rotitttr•,y 1.4 x 116 si ft hb 0I-ich thick Istisii rlIouy or?,’ ifaIt Ant ntilltd
A Common Lunar Lander (CLL) for the Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Bailey, Stephen
1991-01-01
Information is given in viewgraph form on the Artemis project, a plan to establish a permanent base on the Moon. Information includes a summary of past and future events, the program rationale, a summary of potential payloads, the physical characteristics of experiments, sketches of equipment, design study objectives, and details of such payloads as the Geophysical Station Network, teleoperated rovers, astronomical telescopes, a Moon-Earth radio interferometer, very low frequency radio antennas, the Lunar Polar Crater Telescope, Lunar Resource Utilization Experiments, and biological experiments.
Spatial education: improving conservation delivery through space-structured decision making
Moore, Clinton T.; Shaffer, Terry L.; Gannon, Jill J.
2013-01-01
Adaptive management is a form of structured decision making designed to guide management of natural resource systems when their behaviors are uncertain. Where decision making can be replicated across units of a landscape, learning can be accelerated, and biological processes can be understood in a larger spatial context. Broad-based partnerships among land management agencies, exemplified by Landscape Conservation Cooperatives (conservation partnerships created through the U.S. Department of the Interior), are potentially ideal environments for implementing spatially structured adaptive management programs.
Studies in neuroendocrine pharmacology
NASA Technical Reports Server (NTRS)
Maickel, R. P.
1976-01-01
The expertise and facilities available within the Medical Sciences Program section on Pharmacology were used along with informational input from various NASA sources to study areas relevant to the manned space effort. Topics discussed include effects of drugs on deprivation-induced fluid consumption, brain biogenic amines, biochemical responses to stressful stimuli, biochemical and behavioral pharmacology of amphetamines, biochemical and pharmacological studies of analogues to biologically active indole compounds, chemical pharmacology: drug metabolism and disposition, toxicology, and chemical methodology. Appendices include a bibliography, and papers submitted for publication or already published.
NASA Technical Reports Server (NTRS)
Singh, Bhim (Compiler)
2002-01-01
The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This CP (conference proceeding) is a compilation of the abstracts, presentations, and posters presented at the conference.
Advanced Food Technology Workshop Report. Volumes 1 and 2
NASA Technical Reports Server (NTRS)
Perchonok, Michele
2003-01-01
The Advanced Human Support Technology (AHST) Program conducts research and technology development to provide new technologies and next-generation system that will enable humans to live and work safely and effectively in space. One program element within the AHST Program is Advanced Life Support (ALS). The goal of the ALS program element is to develop regenerative life support systems directed at supporting National Aeronautics and Space Administration's (NASA) future long-duration missions. Such missions could last from months to years and make resupply impractical, thereby necessitating self-sufficiency. Thus, subsystems must be developed to fully recycle air and water, recover resources from solid wastes grow plants, process raw plant products into nutritious and palatable foods, control the thermal environment, while reducing the overall system mass. ALS systems will be a combination of physico-chemical and biological components depending on the specific mission requirements. In the transit vehicle, the food system will primarily be a prepackaged food system with the possible addition of salad crops that can be picked and eaten with limited preparation. On the lunar or planetary evolved base, the food system will be a combination of the prepackaged menu item and ingredients that are processed from the grown crops. Food processing and food preparation will be part of this food system.
Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space.
Shah, Falgun; Greene, Nigel
2014-01-21
The U.S. Environmental Protection Agency (EPA) launched the ToxCast program in 2007 with the goal of evaluating high-throughput in vitro assays to prioritize chemicals that need toxicity testing. Their goal was to develop predictive bioactivity signatures for toxic compounds using a set of in vitro assays and/or in silico properties. In 2009, Pfizer joined the ToxCast initiative by contributing 52 compounds with preclinical and clinical data for profiling across the multiple assay platforms available. Here, we describe the initial analysis of the Pfizer subset of compounds within the ToxCast chemical (n = 1814) and in vitro assay (n = 486) space. An analysis of the hit rate of Pfizer compounds in the ToxCast assay panel allowed us to focus our mining of assays potentially most relevant to the attrition of our compounds. We compared the bioactivity profile of Pfizer compounds to other compounds in the ToxCast chemical space to gain insights into common toxicity pathways. Additionally, we explored the similarity in the chemical and biological spaces between drug-like compounds and environmental chemicals in ToxCast and compared the in vivo profiles of a subset of failed pharmaceuticals having high similarity in both spaces. We found differences in the chemical and biological spaces of pharmaceuticals compared to environmental chemicals, which may question the applicability of bioactivity signatures developed exclusively based on the latter to drug-like compounds if used without prior validation with the ToxCast Phase-II chemicals. Finally, our analysis has allowed us to identify novel interactions for our compounds in particular with multiple nuclear receptors that were previously not known. This insight may help us to identify potential liabilities with future novel compounds.
The space elevator: a new tool for space studies.
Edwards, Bradley C
2003-06-01
The objective has been to develop a viable scenario for the construction, deployment and operation of a space elevator using current or near future technology. This effort has been primarily a paper study with several experimental tests of specific systems. Computer simulations, engineering designs, literature studies and inclusion of existing programs have been utilized to produce a design for the first space elevator. The results from this effort illustrate a viable design using current and near-term technology for the construction of the first space elevator. The timeline for possible construction is within the coming decades and estimated costs are less than $10 B. The initial elevator would have a 5 ton/day capacity and operating costs near $100/lb for payloads going to any Earth orbit or traveling to the Moon, Mars, Venus or the asteroids. An operational space elevator would allow for larger and much longer-term biological space studies at selectable gravity levels. The high-capacity and low operational cost of this system would also allow for inexpensive searches for life throughout our solar system and the first tests of environmental engineering. This work is supported by a grant from the NASA Institute for Advanced Concepts (NIAC).
NASA Astrophysics Data System (ADS)
Hoehn, Alex; Chamberlain, Dale J.; Forsyth, Sasha W.; Hanna, David S.; Scovazzo, Paul; Horner, Michael B.; Stodieck, Louis S.; Todd, Paul; Heyenga, A. Gerard; Kliss, Mark H.; Bula, Raymond; Yetka, Robert
1997-01-01
PGBA, a plant growth facility developed for space flight biotechnology research, successfully grew a total of 30 plants in a closed, multi-crop chamber for 10 days aboard the Space Shuttle Endeavor (STS-77). Artemisia annua, Catharanthus roseus, Pinus taeda, Spinacia oleracea and Trifolium repens were the five species studied during this mission. The primary mission objectives were to study the effects of microgravity for commercial and pharmaceutical production purposes. PGBA is a payload that represents a consortium of interests including BioServe Space Technologies (payload sponsor), NASA Ames Research Center (Controlled Ecological Life Support System, CELSS, Flight Program), Wisconsin Center for Space Automation and Robotics (WCSAR), and industrial affiliates (spaceflight effects on plants and formation of plant products such as pharmaceuticals). Although BioServe is responsible for the flight hardware development and integration of PGBA, NASA Ames, WSCAR and industrial affiliates provide significant hardware subsystems and technical biological expertise support.
NASA Astrophysics Data System (ADS)
Sytnik, K. M.; Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Tarasenko, V. A.
Research in cellular reproduction, differentiation and vital activity, i.e. processes underlying the development and functioning of organisms, plants included, is essential for solving fundamental and applied problems of space biology. Detailed anatomical analysis of roots of higher plants grown on board the Salyut 6 orbital research station show that under conditions of weightlessness for defined duration mitosis, cytokinesis and tissue differentiation in plant vegetative organs occur essentially normally. At the same time, certain rearrangements in the structural organization of cellular organelles - mainly the plastid apparatus, mitochondria, Golgi apparatus and nucleus - are established in the root meristem and cap of the experimental plants. This is evidence for considerable changes in cellular metabolism. The structural changes in the subcellular level arising under spaceflight conditions are partially absent in clinostat experiments designed to simulate weightlessness. Various clinostatic conditions have different influences on the cell structural and functional organization than does space flight. It is suggested that alterations of cellular metabolism under weightlessness and clinostatic conditions occur within existing genetic programs.
Using Autonomous Bio Nanosatellites for Deep Space Exploration
NASA Astrophysics Data System (ADS)
Santa Maria, S. R.; Liddell, L. C.; Tieze, S. M.; Ricco, A. J.; Hanel, R.; Bhattacharya, S.
2018-02-01
NASA's BioSentinel mission will conduct the first study of biological response to deep-space radiation in 45 years. It is an automated nanosatellite that will measure the DNA damage response to ambient space radiation in a model biological organism.
NASA Technical Reports Server (NTRS)
McClain, Charles; Esaias, Wayne; Feldman, Gene; Gregg, Watson; Hooker, Stanford; Frouin, Robert
2002-01-01
As a result of the Earth Observing System (EOS) restructuring exercise during the last half of fiscal year 1994, the EOS Color mission, which was scheduled to be a data-buy with a 1998 launch was dropped from the EOS mission manifest primarily because of the number of international ocean color missions scheduled for launch in the 1998 time frame. In lieu of a new mission, NASA Goddard Space Flight Center (GSFC) was tasked by NASA Headquarters to develop an ocean color satellite calibration and validation plan for multiple sensors. The objective of the activity was to develop a methodology and operational capability to combine data products from the various ocean color missions in a manner that ensures the best possible global coverage and data quality. The program was called the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project coined from the biological term "symbiosis." This document is the original proposal that was developed and submitted in May 1995. SIMBIOS was approved in 1996 and initiated in 1997 with a project office and technical staff at GSFC and a science team to assist in the development of validation data sets, sensor calibration, atmospheric correction, and bio-optical and data merger algorithms. Since its inception, the SIMBIOS program has resulted in a broad-based international collaboration on the calibration and validation of a number of ocean color satellites.
NASA Technical Reports Server (NTRS)
Bloom, H. L.
1977-01-01
The study elicited over 100 ideas for Space Processing. Of the elicited ideas, more than 20% involved processing of biologicals, or related medical and life sciences applications. Among these were High Purity Separation of Isoenzymes, and Development of Biorhythms applications data. Program planning for four products is outlined. Experimentation and testing resulted in definition of nearly 70 series of tests in ground-based laboratories, sounding rockets, etc., and space shuttle. Development schedules established timing and interrelationships of decisions involved in carrying these products to the point of production. The potential profitability of the four products is determined. Resources needed to achieve full scale production included use of shuttle for transportation, for which cost apportionment model was developed. R and D resources for the four products totalled $46,000,000 with Isoenzymes requiring the smallest expenditure, $4,000,000. A computerized profitability model (INVEST) was used to determine the measures of profitability of each product. Results build confidence that there will be a payoff.
1998-01-01
Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).
NASA Technical Reports Server (NTRS)
1998-01-01
Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).
Near-critical fluids under microgravity : status of the eseme program and perspectives for the iss
NASA Astrophysics Data System (ADS)
Beysens, D.; Garrabos, Y.
2001-03-01
Started 16 years ago, the ESEME program has led to a number of important findings. We note a simple and unified view of phase transitions, which has been applied to the development of biological patterns, and a very fast thermalization mode that we coined the "piston effect". This effect has been applied to control the cryogenic reservoirs of the Ariane 5 rocket. All these findings have been obtained thanks to the good coordination of the ESA and CNES space facilities and the construction of high technology experimental modules. The future of the program is linked to the CNES DECLIC facility and the ESA Fluid Science Laboratory (FSL). DECLIC has been designed to increase the temperature regulation above the critical point of water (550 K) so as to investigate chemical reactions under conditions of supercritical water, and in relation to the promising applications of waste treatment by supercritical oxidation. Thanks to the construction of a special vibrational Experiment Container for FSL, the thermal and mechanical behavior of fluids under forced vibration can be investigated. The results of such studies will help to estimate the effect of g-jitter on fluids, and control gases and liquids in space.
2016 Summer Series - Michael Flynn - Synthetic Biological Membrane
2016-08-02
Full understanding leads to creation capability, which results in customization capacity. Synthetic biology uses our knowledge of biology to engineer novel biological devices or organisms that can perform tasks not found in nature. For Human space exploration, synthetic biology approaches will reduce risk, mass carried and increase Human reach. Michael Flynn will discuss the International Space Station (ISS) water recycling and his current work on developing a water filtration system capable of self-repair.
STS-70 Space Shuttle Mission Report - September 1995
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1995-01-01
The STS-70 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventieth flight of the Space Shuttle Program, the forty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-71; three SSMEs that were designated as serial numbers 2036, 2019, and 2017 in positions 1, 2, and 3, respectively; and two SRBs that were designated 81-073. The RSRMs, designated RSRM-44, were installed in each SRB and were designated as 36OL044A for the left SRB, and 36OL044B for the right SRB. The primary objective of this flight was to deploy the Tracking and Data Relay Satellite-G/Inertial Upper Stage (TDRS-G/IUS). The secondary objectives were to fulfill the requirements of the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R); Bioreactor Demonstration System (BDS); Commercial Protein Crystal Growth (CPCG) experiment; Space Tissue Loss/National Institutes of Health - Cells (STL/NIH-C) experiment; Biological Research in Canisters (BRIC) experiment; Shuttle Amateur Radio Experiment-2 (SAREX-2); Visual Function Tester-4 (VFT-4); Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly Location-Targeting and Environmental System (HERCULES); Microencapsulation in Space-B (MIS-B) experiment; Window Experiment (WINDEX); Radiation Monitoring Equipment-3 (RME-3); and the Military Applications of Ship Tracks (MAST) payload.
NASA's Biomedical Research Program
NASA Technical Reports Server (NTRS)
Ahn, Chung-Hae
1981-01-01
The biomedical research program has been established to investigate the major physiological and psychological problems encountered by man when he undertakes spaceflight. The program seeks to obtain a better definition of each problem, an understanding of its underlying mechanism, and ultimately a means of prevention. In pursuing these goals the program also includes a major effort to develop the research tools and procedures it needs where these are not being developed elsewhere. After almost twenty years of manned spaceflight activities and after a much longer period of space related ground-based research, the program now recognizes two characteristics of spaceflight which are truly unique to space. These are weightlessness and one specific form of radiation. In its present stage of maturity much of the research focuses on mechanisms underlying the basic responses of man and animals to weightlessness. The program consists of nine elements. Eight of these are referable to specific physiological problems that have either been encountered in previous manned spaceflight or which are anticipated to occur as spaceflights last longer, traverse steeper orbital inclinations, or are otherwise different from previous missions. The ninth addresses problems that have neither arisen nor can be reasonably predicted but are suspected on the basis of theoretical models, ground-based animal research, or for other reasons. The program's current emphasis is directed toward the motion sickness problem because of its relevance to Space Shuttle operations. Increased awareness and understanding of the radiation hazard has resulted in more emphasis being placed on the biological effects of high energy, high mass number particulate radiation and upon radiation protection . Cardiovascular and musculoskeleta1 studies are pursued in recognition of the considerable fundamental knowledge that must be acquired in these areas before effective countermeasures to the effects of repetitive or long-term flight can be devised. Major new avenues of research will deal with the psychological accompaniments of spaceflight and with mathematical modelling of physiological systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent; Beghuin, Didier
As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALMmore » ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.« less
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
2003-01-01
The Microgravity and Strategic research at Marshall s Biological and Physical Space Research Laboratory will be reviewed. The environment in orbit provides a unique opportunity to study Materials Science and Biotechnology in the absence of sedimentation and convection. There are a number of peer-selected investigations that have been selected to fly on the Space Station that have been conceived and are led by Marshall s Biological and Physical Research Laboratory s scientists. In addition to Microgravity research the Station will enable research in "Strategic" Research Areas that focus on enabling humans to live, work, and explore the solar system safely. New research in Radiation Protection, Strategic Molecular Biology, and In-Space Fabrication will be introduced.
Potential health effects of space radiation
NASA Technical Reports Server (NTRS)
Yang, Chui-Hsu; Craise, Laurie M.
1993-01-01
Crewmembers on missions to the Moon or Mars will be exposed to radiation belts, galactic cosmic rays, and possibly solar particle events. The potential health hazards due to these space radiations must be considered carefully to ensure the success of space exploration. Because there is no human radioepidemiological data for acute and late effects of high-LET (Linear-Energy-Transfer) radiation, the biological risks of energetic charged particles have to be estimated from experimental results on animals and cultured cells. Experimental data obtained to date indicate that charged particle radiation can be much more effective than photons in causing chromosome aberrations, cell killing, mutation, and tumor induction. The relative biological effectiveness (RBE) varies with biological endpoints and depends on the LET of heavy ions. Most lesions induced by low-LET radiation can be repaired in mammalian cells. Energetic heavy ions, however, can produce large complex DNA damages, which may lead to large deletions and are irreparable. For high-LET radiation, therefore, there are less or no dose rate effects. Physical shielding may not be effective in minimizing the biological effects on energetic heavy ions, since fragments of the primary particles can be effective in causing biological effects. At present the uncertainty of biological effects of heavy particles is still very large. With further understanding of the biological effects of space radiation, the career doses can be kept at acceptable levels so that the space radiation environment need not be a barrier to the exploitation of the promise of space.
NASA Technical Reports Server (NTRS)
Calvin, M. (Editor); Gazenko, O. G. (Editor)
1975-01-01
Barometric pressure, gas composition, toxicity, and thermal exchange of spacecraft cabin atmospheres are discussed. Effects of gravitation, acceleration, weightlessness, noise, and vibration on human behavior and performance during space flight are also described.
The Use of Microgravity Simulators for Space Research
NASA Technical Reports Server (NTRS)
Zhang, Ye; Richards, Stephanie E.; Richards, Jeffrey T.; Levine, Howard G.
2016-01-01
The spaceflight environment is known to influence biological processes ranging from stimulation of cellular metabolism to possible impacts on cellular damage repair, suppression of immune functions, and bone loss in astronauts. Microgravity is one of the most significant stress factors experienced by living organisms during spaceflight, and therefore, understanding cellular responses to altered gravity at the physiological and molecular level is critical for expanding our knowledge of life in space. Since opportunities to conduct experiments in space are scarce, various microgravity simulators and analogues have been widely used in space biology ground studies. Even though simulated microgravity conditions have produced some, but not all of the biological effects observed in the true microgravity environment, they provide test beds that are effective, affordable, and readily available to facilitate microgravity research. Kennedy Space Center (KSC) provides ground microgravity simulator support to offer a variety of microgravity simulators and platforms for Space Biology investigators. Assistance will be provided by both KSC and external experts in molecular biology, microgravity simulation, and engineering. Comparisons between the physical differences in microgravity simulators, examples of experiments using the simulators, and scientific questions regarding the use of microgravity simulators will be discussed.
The Use of Microgravity Simulators for Space Research
NASA Technical Reports Server (NTRS)
Zhang, Ye; Richards, Stephanie E.; Wade, Randall I.; Richards, Jeffrey T.; Fritsche, Ralph F.; Levine, Howard G.
2016-01-01
The spaceflight environment is known to influence biological processes ranging from stimulation of cellular metabolism to possible impacts on cellular damage repair, suppression of immune functions, and bone loss in astronauts. Microgravity is one of the most significant stress factors experienced by living organisms during spaceflight, and therefore, understanding cellular responses to altered gravity at the physiological and molecular level is critical for expanding our knowledge of life in space. Since opportunities to conduct experiments in space are scarce, various microgravity simulators and analogues have been widely used in space biology ground studies. Even though simulated microgravity conditions have produced some, but not all of the biological effects observed in the true microgravity environment, they provide test beds that are effective, affordable, and readily available to facilitate microgravity research. A Micro-g Simulator Center is being developed at Kennedy Space Center (KSC) to offer a variety of microgravity simulators and platforms for Space Biology investigators. Assistance will be provided by both KSC and external experts in molecular biology, microgravity simulation, and engineering. Comparisons between the physical differences in microgravity simulators, examples of experiments using the simulators, and scientific questions regarding the use of microgravity simulators will be discussed.
USSR Space Life Sciences Digest, issue 1
NASA Technical Reports Server (NTRS)
Hooke, L. R.; Radtke, M.; Rowe, J. E.
1985-01-01
The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology.
Open-Air Biowarfare Testing and the Evolution of Values
2016-01-01
The United States and the United Kingdom ended outdoor biological warfare testing in populated areas nearly half a century ago. Yet, the conduct, health effects, and propriety of those tests remain controversial. The varied views reflect the limits of currently available test information and evolving societal values on research involving human subjects. Western political culture has changed since the early days of the American and British testing programs. People have become less reluctant to question authority, and institutional review boards must now pre-approve research involving human subjects. Further, the heightened stringency of laboratory containment has accentuated the safety gap between a confined test space and one without physical boundaries. All this makes it less likely that masses of people would again be unwittingly subjected to secret open-air biological warfare tests. PMID:27564984
Evident Biological Effects of Space Radiation in Astronauts
NASA Technical Reports Server (NTRS)
Wu, Honglu
2004-01-01
Though cancer risks are the primary concern for astronauts exposed to space radiation and a number of astronauts have developed cancer, identifying a direct association or cause of disease has been somewhat problematic due to a lack of statistics and a lack of an appropriate control group. However, several bio,logical effects observed in astronauts are believed to be primarily due to exposure to space radiation. Among those are, light flashes experienced by astronauts from early missions, cataract development in the crewmembers and excess chromosome aberrations detected in astronauts' lymphocytes postmission. The space radiation environment and evident biological effects will be discussed.
USSR Space Life Sciences Digest, issue 31
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1990-01-01
This is the thirty first issue of NASA's Space Life Sciences Digest. It contains abstracts of 55 journal papers or book chapters published in Russian and of 5 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, biological rhythms, cardiovascular and respiratory systems, endocrinology, enzymology, genetics, group dynamics, habitability and environmental effects, hematology, life support systems, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and space biology and medicine.
Spooner, B S
1993-04-01
The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.
NASA Technical Reports Server (NTRS)
Spooner, B. S.
1993-01-01
The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.
ERIC Educational Resources Information Center
Lee, Tom E.; And Others
This compilation of resource units concerns the latest developments in space biology. Some of the topics included are oxygen consumption, temperature, radiation, rhythms, weightlessness, acceleration and vibration stress, toxicity, and sensory and perceptual problems. Many of the topics are interdisciplinary and relate biology, physiology,…
Digest of Russian Space Life Sciences, issue 33
NASA Technical Reports Server (NTRS)
Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)
1993-01-01
This is the thirty-third issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 55 papers published in Russian journals. The abstracts in this issue have been identified as relevant to the following areas of space biology and medicine: biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, equipment and instrumentation, gastrointestinal system, genetics, hematology, human performance, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and reproductive system.
Perspectives from space: NASA classroom information and activities
NASA Technical Reports Server (NTRS)
1992-01-01
This booklet contains the information and classroom activities included on the backs of the eight poster series, 'Perspectives From Space'. The first series, Earth, An Integrated System, contains information on global ecology, remote sensing from space, data products, earth modeling, and international environmental treaties. The second series, Patterns Among Planets, contains information on the solar system, planetary processes, impacts and atmospheres, and a classroom activity on Jupiter's satellite system. The third series, Our Place In The Cosmos, contains information on the scale of the universe, origins of the universe, mission to the universe, and three classroom activities. The fourth series, Our Sun, The Nearest Star, contains information on the Sun. The fifth series, Oasis Of Life, contains information on the development of life, chemical and biological evolution on Earth and the search for other life in the universe. The sixth series, The Influence Of Gravity, contains information on Newton's Law of Gravity, space and microgravity, microgravity environment, and classroom activities on gravity. The seventh series, The Spirit Of Exploration, contains information on space exploration, the Apollo Program, future exploration activities, and two classroom activities. The eighth series, Global Cooperation, contains information on rocketry, the space race, and multi-nation exploration projects.
NASA Astrophysics Data System (ADS)
Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh
2012-07-01
The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions, under light and dark cycles exposed to polar orbit for a period of 6 months. The integration and end-to-end technology validation of this instrument will be discussed. In particular, preliminary results demonstrating that the instrument properly carries out cellular lysis, nucleic acid extraction and its purification is being assessed by reverse transcription polymerase chain reaction (PCR) and real time PCR, in addition to microarray analysis of selected genes. Once developed, the system can be used with minor modifications for multiple experiments on different platforms in space, including extensions to higher organisms and microbial monitoring. A proposed version of GEMM that is capable of handing both microbial and tissue samples on the International Space Station will be briefly reviewed.
Maréchal, Eric
2008-09-01
Chemogenomics is the study of the interaction of functional biological systems with exogenous small molecules, or in broader sense the study of the intersection of biological and chemical spaces. Chemogenomics requires expertises in biology, chemistry and computational sciences (bioinformatics, cheminformatics, large scale statistics and machine learning methods) but it is more than the simple apposition of each of these disciplines. Biological entities interacting with small molecules can be isolated proteins or more elaborate systems, from single cells to complete organisms. The biological space is therefore analyzed at various postgenomic levels (genomic, transcriptomic, proteomic or any phenotypic level). The space of small molecules is partially real, corresponding to commercial and academic collections of compounds, and partially virtual, corresponding to the chemical space possibly synthesizable. Synthetic chemistry has developed novel strategies allowing a physical exploration of this universe of possibilities. A major challenge of cheminformatics is to charter the virtual space of small molecules using realistic biological constraints (bioavailability, druggability, structural biological information). Chemogenomics is a descendent of conventional pharmaceutical approaches, since it involves the screening of chemolibraries for their effect on biological targets, and benefits from the advances in the corresponding enabling technologies and the introduction of new biological markers. Screening was originally motivated by the rigorous discovery of new drugs, neglecting and throwing away any molecule that would fail to meet the standards required for a therapeutic treatment. It is now the basis for the discovery of small molecules that might or might not be directly used as drugs, but which have an immense potential for basic research, as probes to explore an increasing number of biological phenomena. Concerns about the environmental impact of chemical industry open new fields of research for chemogenomics.
Biology Intensive Orientation for Students (BIOS): A Biology "Boot Camp"
ERIC Educational Resources Information Center
Wischusen, Sheri Maples; Wischusen, E. William
2007-01-01
The Biology Intensive Orientation for Students (BIOS) Program was designed to assess the impact of a 5-d intensive prefreshman program on success and retention of biological science majors at Louisiana State University. The 2005 pilot program combined content lectures and examinations for BIOL 1201, Introductory Biology for Science Majors, as well…
Developmental Gene Regulation and Mechanisms of Evolution
NASA Technical Reports Server (NTRS)
1998-01-01
The Marine Biological Laboratory and the National Aeronautics and Space Administration have established a cooperative agreement with the formation of a Center for Advanced Studies 'in the Space Life Sciences (CASSLS) at the MBL. This Center serves as an interface between NASA and the basic science community, addressing issues of mutual interest. The Center for Advanced Studies 'in the Space Life Sciences provides a forum for scientists to think and discuss, often for the first time, the role that gravity and aspects of spaceflight may play 'in fundamental cellular and physiologic processes. In addition the Center will sponsor discussions on evolutionary biology. These interactions will inform the community of research opportunities that are of interest to NASA. This workshop is one of a series of symposia, workshops and seminars that will be held at the MBL to advise NASA on a wide variety of topics in the life sciences, including cell biology, developmental biology, mg evolutionary biology, molecular biology, neurobiology, plant biology and systems biology.
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir; Ablameyko, Sergey; Ponariadov, Vladimir
Belarus has inherited a significant space research potential created back in the Soviet era. It is one of the countries in the world capable of research, engineering and production across a wide range of space technologies, such as remote sensing systems, satellite telecommunication systems and positioning systems etc. Despite these strengths, the participation of Belarusian space organizations in the UN space activity and International research programs is very low. Belarusian State University (BSU) is the leading research and high school education organization of Belarus in several fields of research and development. It was deeply involved into various space research projects, including Soviet Lunar Program, Space Station “Mir”, Space Shuttle “Buran”. From 2004, when the national space programs were restarted, branches of BSU like Institute of Physics and Aerospace Technologies (IPAT), Center for aerospace education, Research laboratory of applied space technologies are leading the research and development works in the field of space communication systems, Earth observation tools and technologies, electronic and optic sensors, etc. The mail fields of activity are: • Hard and software development for small satellites and university satellites in particular. • Development of sensor satellite systems. • Small satellite research experiments (biological and medical in particular). • Earth, airplane and satellite remote monitoring systems including hard and software. • Early warning ecological and industrial Systems. • Geographic information systems of several natural and industrial areas. • Climate change investigation. We have partners from several universities and research institutes from Russian Federation, Ukraine, Kazakhstan and Germany etc. We have a ground station to receive satellite data in RF L and X bands and are very interested to be incorporated into international remote monitoring network. This activity can be combined with astrometry and ballistic data processing. Next point is university satellite. We are developing now several modules for education: data acquisition, telemetry, communication systems and also are very interested to cooperate in this field with international partners. Space Research is certainly a “high end” of any science system such as material sciences and engineering, applied mathematics, cybernetics, ICT, radio physics, electronics, etc. Moreover, space research capacities enable cutting edge research works in such areas as Environment (e.g. Earth observation), Biotechnologies, Health, New Materials, etc. Progress in integrating Belarusian Space Research potential into international society will serve as a catalyst and enabler for all critically important scientific and technological fields to advance on the way of development and global integration.
USSR Space Life Sciences Digest, issue 15
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1988-01-01
This is the 15th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 59 papers published in Russian language periodicals or presented at conferences and of two new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is a review of a conference devoted to the physiology of extreme states. The abstracts included in this issue have been identified as relevant to 29 areas of space biology and medicine. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, enzymology, equipment and instrumentation, exobiology, genetics, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception. personnel selection, psychology, radiobiology, reproductive biology, and space biology and medicine.
Biological life-support systems for Mars mission.
Gitelson, J I
1992-01-01
Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.
Research Programs Constituting U.S. Participation in the International Biological Program.
ERIC Educational Resources Information Center
National Academy of Sciences--National Research Council, Washington, DC. Div. of Biology and Agriculture.
The United States contribution to the International Biological Program, which aims to understand more clearly the interrelationships within ecosystems, is centered on multidisciplinary research programs investigating the biological basis of ecological productivity and human welfare. Integrated research programs have been established for the…
NASA Technical Reports Server (NTRS)
Scott, T. K. (Principal Investigator)
1997-01-01
Papers presented at the International Workshop on Plant Biology in Space include reviews, reports, and perspectives related to plant gravitational biology. Presentations focused on nine subject areas: gravitropism in unicellular plants, gravitropism in fungi, cell development, gravity perception in multicellular plants, gravity responses in multicellular plants, plant reproduction, evaluation of a clinostat for weightlessness simulation, biological life support systems, and future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Electric Research and Management, Inc.
1997-03-11
The goal of this project is to develop a protocol for measuring the electric and magnetic fields around sources. Data from these measurements may help direct future biological effects research by better defining the complexity of magnetic and electric fields to which humanity is exposed, as well asprovide the basis for rigorous field exposure analysis and risk assessment once the relationship between field exposure and biological response. is better understood. The data base also should have sufficient spatial and temporal characteristics to guide electric and magnetic field management. The goal of Task A is to construct a set of characteristicsmore » that would be ideal to have for guiding and interpreting biological studies and for focusing any future effort at field management. This ideal set will then be quantified and reduced according to the availability (or possible development of) instrumentation to measure the desired characteristics. Factors that also will be used to define pragmatic data sets will be the cost of collecting the data, the cost of developing an adequate data base, and the needed precision in measuring specific characteristics. A field, electric or magnetic, will always be ,some function of time and space. The first step in this section of the protocol development will be to determine what span of time and what portion of space are required to quantify the electric and magnetic fields around sources such as appliances and electrical apparatus. Constraints on time will be set by examining measurement limitations and biological data requirements.« less
Memory-efficient dynamic programming backtrace and pairwise local sequence alignment.
Newberg, Lee A
2008-08-15
A backtrace through a dynamic programming algorithm's intermediate results in search of an optimal path, or to sample paths according to an implied probability distribution, or as the second stage of a forward-backward algorithm, is a task of fundamental importance in computational biology. When there is insufficient space to store all intermediate results in high-speed memory (e.g. cache) existing approaches store selected stages of the computation, and recompute missing values from these checkpoints on an as-needed basis. Here we present an optimal checkpointing strategy, and demonstrate its utility with pairwise local sequence alignment of sequences of length 10,000. Sample C++-code for optimal backtrace is available in the Supplementary Materials. Supplementary data is available at Bioinformatics online.
Application of sunlight and lamps for plant irradiation in space bases
NASA Astrophysics Data System (ADS)
Sager, J. C.; Wheeler, R. M.
The radiation sources used for plant growth on a space base must meet the biological requirements for photosynthesis and photomorphogensis. In addition the sources must be energy and volume efficient, while maintaining the required irradiance levels, spectral, spatial and temporal distribution. These requirements are not easily met, but as the biological and mission requirements are better defined, then specific facility designs can begin to accommodate both the biological requirements and the physical limitations of a space based plant growth system.
Application of sunlight and lamps for plant irradiation in space bases
NASA Technical Reports Server (NTRS)
Sager, J. C.; Wheeler, R. M.
1992-01-01
The radiation sources used for plant growth on a space base must meet the biological requirements for photosynthesis and photomorphogenesis. In addition, the sources must be energy and volume efficient, while maintaining the required irradiance levels, spectral, spatial and temporal distribution. These requirements are not easily met, but as the biological and mission requirements are better defined, then specific facility designs can begin to accommodate both the biological requirements and the physical limitations of a space-based plant growth system.
Shea, Katheryn E; Wagner, Elizabeth L; Marchesani, Leah; Meagher, Kevin; Giffen, Carol
2017-02-01
Reducing costs by improving storage efficiency has been a focus of the National Heart, Lung, and Blood Institute (NHLBI) Biologic Specimen Repository (Biorepository) and Biologic Specimen and Data Repositories Information Coordinating Center (BioLINCC) programs for several years. Study specimen profiles were compiled using the BioLINCC collection catalog. Cost assessments and calculations on the return on investments to consolidate or reduce a collection, were developed and implemented. Over the course of 8 months, the NHLBI Biorepository evaluated 35 collections that consisted of 1.8 million biospecimens. A total of 23 collections were selected for consolidation, with a total of 1.2 million specimens located in 21,355 storage boxes. The consolidation resulted in a savings of 4055 boxes of various sizes and 10.2 mechanical freezers (∼275 cubic feet) worth of space. As storage costs in a biorepository increase over time, the development and use of information technology tools to assess the potential advantage and feasiblity of vial consolidation can reduce maintenance expenses.
The Biophysics Microgravity Initiative
NASA Technical Reports Server (NTRS)
Gorti, S.
2016-01-01
Biophysical microgravity research on the International Space Station using biological materials has been ongoing for several decades. The well-documented substantive effects of long duration microgravity include the facilitation of the assembly of biological macromolecules into large structures, e.g., formation of large protein crystals under micro-gravity. NASA is invested not only in understanding the possible physical mechanisms of crystal growth, but also promoting two flight investigations to determine the influence of µ-gravity on protein crystal quality. In addition to crystal growth, flight investigations to determine the effects of shear on nucleation and subsequent formation of complex structures (e.g., crystals, fibrils, etc.) are also supported. It is now considered that long duration microgravity research aboard the ISS could also make possible the formation of large complex biological and biomimetic materials. Investigations of various materials undergoing complex structure formation in microgravity will not only strengthen NASA science programs, but may also provide invaluable insight towards the construction of large complex tissues, organs, or biomimetic materials on Earth.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
FEMME: a precursor experiment for the evaluation of bioregenerative life support systems
NASA Astrophysics Data System (ADS)
Paille, Ch.; Albiol, J.; Curwy, R.; Lasseur, Ch.; Godia, F.
2000-04-01
In long term manned space missions, oxygen, water and food supplies are a critical issue. Bioregenerative systems, and among them those relying on microbial processes, represent one of the most promising alternatives. Studies of these systems from the engineering point of view, requires the development of mathematical models and their validation with small scale experimental systems (breadboards, pilot plants, etc.). Usually, these studies do not take into account the effects of space environment (i.e. reduced gravity or microgravity, radiation, direct sunlight, temperature, etc …). Despite several scientific experiments, intending to qualify such effects, only few quantitative results are available. In this paper, the possibility of an autonomous off-board experiment, named the First Extraterrestrial Man Made Ecosystem, is investigated. The experiment is based on a very simplified ecosystem consisting in a photoautotrophic compartment and a heterotrophic one, linked by their gas phase. According to its biological concept, this experiment should provide data on microbial growth kinetics in space, and the effects of radiation and gravity. It has been conceived as an entirely automatic device. Its design involves several technological concepts such as thermal control, the use of direct sunlight and radiation shielding. This work is done under the framework of ESA biological life support systems research program. The aim of this document is to provide a preliminary concept of the experiment.
NASA Technical Reports Server (NTRS)
Lewis, Brian; Hanel, Robert; Bhattacharya, Sharmila; Ricco, Antonion J.; Agasid, Elwood; Reiss-Bubenheim, Debra; Straume, Tore; Parra, Macerena; Boone, Travis; Santa Maria, Sergio;
2015-01-01
We are designing and developing a "6U" (10 x 22 x 34 cm; 14 kg) nanosatellite as a secondary payload to fly aboard NASA's Space Launch System (SLS) Exploration Mission (EM) 1, scheduled for launch in late 2017. For the first time in over forty years, direct experimental data from biological studies beyond low Earth orbit (LEO) will be obtained during BioSentinel's 12- to 18- month mission. BioSentinel will measure the damage and repair of DNA in a biological organism and allow us to compare that to information from onboard physical radiation sensors. In order to understand the relative contributions of the space environment's two dominant biological perturbations, reduced gravity and ionizing radiation, results from deep space will be directly compared to data obtained in LEO (on ISS) and on Earth. These data points will be available for validation of existing biological radiation damage and repair models, and for extrapolation to humans, to assist in mitigating risks during future long-term exploration missions beyond LEO. The BioSentinel Payload occupies 4U of the spacecraft and will utilize the monocellular eukaryotic organism Saccharomyces cerevisiae (yeast) to report DNA double-strand-break (DSB) events that result from ambient space radiation. DSB repair exhibits striking conservation of repair proteins from yeast to humans. Yeast was selected because of 1) its similarity to cells in higher organisms, 2) the well-established history of strains engineered to measure DSB repair, 3) its spaceflight heritage, and 4) the wealth of available ground and flight reference data. The S. cerevisiae flight strain will include engineered genetic defects to prevent growth and division until a radiation-induced DSB activates the yeast's DNA repair mechanisms. The triggered culture growth and metabolic activity directly indicate a DSB and its successful repair. The yeast will be carried in the dry state within the 1-atm P/L container in 18 separate fluidics cards with each card having 16 independent culture microwells, with integral microchannels and filters to supply nutrients and reagents, confine the yeast to the wells, and enable optical measurement. The measurement subsystem will monitor each subgroup of culture wells continuously for several weeks, optically tracking DSBtriggered cell growth and metabolism. BioSentinel will also include physical radiation sensors based on the TimePix sensor, as implemented by JSC's RadWorks group, which record individual radiation events including estimates of their linear-energytransfer (LET) values. Radiation-dose and LET data will be compared directly to the rate of DSB-and-repair events measured by the S. cerevisiae biosentinels. The spacecraft bus will operate in a deep space environment with functions that include command and data handling, communications, power generation (via deployable solar panels) and storage, and attitude determination-and-control system with micropropulsion. Development of the BioSentinel spacecraft will mature and prove multiple nanosatellite advances in order to function well beyond LEO: Communications from distances of = 500,000 km; Autonomous attitude control, momentum management, and safe mode of nanosatellites in deep space; Shielding-, hardening-, design-, and software-derived radiation tolerance for electronics; Reliable functionality for 12 - 18 months of key subsystems for biofluidics, memory, communications, power, etc.; Close integration of living biological radiation event monitors with miniature physical radiation spectrometers; Biological measurement of solar particle events beyond Earth orbit In addition to providing the first biological results from beyond LEO in over 4 decades, BioSentinel will provide an adaptable small-satellite instrument platform to perform a range of human-exploration-relevant measurements that characterize the biological consequences of multiple outer space environments. BioSentinel is being developed under NASA's Advanced Exploration Systems program.
Evolving discriminators for querying video sequences
NASA Astrophysics Data System (ADS)
Iyengar, Giridharan; Lippman, Andrew B.
1997-01-01
In this paper we present a framework for content based query and retrieval of information from large video databases. This framework enables content based retrieval of video sequences by characterizing the sequences using motion, texture and colorimetry cues. This characterization is biologically inspired and results in a compact parameter space where every segment of video is represented by an 8 dimensional vector. Searching and retrieval is done in real- time with accuracy in this parameter space. Using this characterization, we then evolve a set of discriminators using Genetic Programming Experiments indicate that these discriminators are capable of analyzing and characterizing video. The VideoBook is able to search and retrieve video sequences with 92% accuracy in real-time. Experiments thus demonstrate that the characterization is capable of extracting higher level structure from raw pixel values.
Decades of Data: Extracting Trends from Microgravity Crystallization History
NASA Technical Reports Server (NTRS)
Judge, R. A.; Snell, E. H.; Kephart, R.; vanderWoerd, M.
2004-01-01
The reduced acceleration environment of an orbiting spacecraft has been proposed as an ideal environment for biological crystal growth as the first sounding rocket flight in 1981 many crystallization experiments have flown with some showing improvement and others not. To further explore macromolecule crystal improvement in microgravity we have accumulated data from published reports and reports submitted by 63 missions including the Space Shuttle program, unmanned satellites, the Russian Space Station MIR and sounding rocket experiments. While it is not at this point in time a comprehensive record of all flight crystallization experimental results, there is however sufficient information for emerging trends to be identified. In this study the effects of the acceleration environment, the techniques of crystallization, sample molecular weight and the response of individual macromolecules to microgravity crystallization will be investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calhoon, E.C.; Starring, P.W. eds.
1959-08-01
Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less
The Problem of Extraterrestrial Civilizations and Extrasolar Planets
NASA Astrophysics Data System (ADS)
Mickaelian, A. M.
2015-07-01
The problem of extraterrestrial intelligence is the best example of multidisciplinary science. Here philosophy and religion, astronomy, radiophysics, spectrography, space flights and astronautics, geology and planetology, astroecology, chemistry and biology, history and archaeology, psychology, sociology, linguistics, diplomacy, UFOs and peculiar phenomena are involved. Among these many-sided studies, astronomers have probably displayed the most progress by discovering thousands of extrasolar planets. At present, a number of search programs are being accomplished, including those with space telescopes, and planets in so-called "habitable zone" are considered as most important ones, for which various orbital and physical parameters are being calculated. As the discovery of extraterrestrial life is the final goal, a special attention is given to Earth-like planets, for the discovery of which most sensitive technical means are necessary.
ERIC Educational Resources Information Center
Lazarev, V. G.
1976-01-01
Space biology and medicine provide conceptions and empirical data that serve as classroom topics and illustrations of biology. This approach spreads space achievement information, stimulates student interest, and relates theory to practice. (Author/ND)
International collaboration on Russian spacecraft and the case for free flyer biosatellites
NASA Technical Reports Server (NTRS)
Grindeland, Richard E.; Ilyin, Eugene A.; Holley, Daniel C.; Skidmore, Michael G.
2005-01-01
Animal research has been critical to the initiation and progress of space exploration. Animals were the original explorers of "space" two centuries ago and have played a crucial role by demonstrating that the space environment, with precautions, is compatible with human survival. Studies of mammals have yielded much of our knowledge of space physiology. As spaceflights to other planets are anticipated, animal research will continue to be essential to further reveal space physiology and to enable the longer missions. Much of the physiology data collected from space was obtained from the Cosmos (Bion) spaceflights, a series of Russian (Soviet)-International collaborative flights, over a 22 year period, which employed unmanned, free flyer biosatellites. Begun as a Soviet-only program, after the second flight the Russians invited American and other foreign scientists to participate. This program filled the 10 year hiatus between the last US biosatellite and the first animal experiments on the shuttles. Of the 11 flights in the Cosmos program nine of them were international; the flights continued over the years regardless of political differences between the Soviet Union and the Western world. The science evolved from sharing tissues to joint international planning and development, and from rat postmortem tissue analysis to in vivo measurements of a host of monkey physiological parameters during flight. Many types of biological specimens were carried on the modified Vostok spacecraft, but only the mammalian studies are discussed herein. The types of studies done encompass the full range of physiology and have begun to answer "critical" questions of space physiology posed by various ad hoc committees. The studies have not only yielded a prodigious and significant body of data, they have also introduced some new perspectives in physiology. A number of the physiological insights gained are relevant to physiology on Earth. The Cosmos flights also added significantly to flight-related technology, some of which also has application on our planet. In summary, the Cosmos biosatellite flights were extremely productive and of low cost. The Bion vehicles are versatile in that they can be placed into a variety of orbits and altitudes, and can carry radiation sources or other hazardous material which cannot be carried on manned vehicles. With recent advances in sensor, robotic, and data processing technology, future free flyers will be even more productive, and will largely preclude the need to fly animal experiments on manned vehicles. Currently, mammalian researchers do not have access to space for an unknown time, seriously impeding the advancement and understanding of space physiology during long duration missions. Initiation of a new, international program of free flyer biosatellites is critical to our further understanding of space physiology, and essential to continued human exploration of space.
Centrifuge Facility Conceptual System Study. Volume 1: Facility overview and habitats
NASA Technical Reports Server (NTRS)
Synnestvedt, Robert (Editor)
1990-01-01
The results are presented for a NASA Phase 1 study conducted from mid 1987 through mid 1989 at Ames Research Center. The Centrifuge Facility is the major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using non-human specimens (such as small primates, rodents, plants, insects, cell tissues). Five systems are described which comprise the Facility: habitats, holding units, centrifuge, glovebox, and service unit. Volume 1 presents a facility overview and describes the habitats - modular units which house living specimens.
The earth in technological balance
NASA Astrophysics Data System (ADS)
Stout, Dorothy L.
1998-08-01
The K-12 National Science Education Standards have been developed and published by the National Research Council (1995)to "improve scientific literacy across the nation to prepare our students to be scientifically literate". The Standards stress that a quality science education requires an "active learning" approach to science inquiry within the areas of science teaching, professional development, assessment, science content, science education programs and science education systems. In this time of increasing technological advance, the equal treatment of earth and space science alongside biology, physics and chemistry bodes well for the future.
Six-month space greenhouse experiments--a step to creation of future biological life support systems
NASA Technical Reports Server (NTRS)
Ivanova, T. N.; Kostov, P. T.; Sapunova, S. M.; Dandolov, I. W.; Salisbury, F. B.; Bingham, G. E.; Sytchov, V. N.; Levinskikh, M. A.; Podolski, I. G.; Bubenheim, D. B.;
1998-01-01
SVET Space Greenhouse (SG)--the first automated facility for growing of higher plants in microgravity was designed in the eighty years to be used for the future BLSS. The first successful experiment with vegetables was carried out in 1990 on the MIR Space Station (SS). The experiments in SVET SG were resumed in 1995, when an American Gas Exchange Measurement System (GEMS) was added. A three-month wheat experiment was carried out as part of MIR-SHUTTLE'95 program. SVET-2 SG Bulgarian equipment of a new generation with optimised characteristics was developed (financed by NASA). The new SVET-GEMS equipment was launched on board the MIR SS and a successful six-month experiments for growing up of two crops of wheat were conducted in 1996 - 97 as part of MIR-NASA-3 program. The first of these "Greenhouse" experiments (123 days) with the goal to grow wheat through a complete life cycle is described. Nearly 300 heads developed but no seeds were produced. A second crop of wheat was planted and after 42 days the plants were frozen for biochemical investigations. The main environmental parameters during the six-month experiments in SVET (substrate moisture and lighting period) are given. The results and the contribution to BLSS are discussed.
Biological response of plantation cottonwood to spacing, pruning and thinning
R. J. Gascon; R. M. Krinard
1976-01-01
A literature review and a sampling of data obtained from cottonwood growers of the biological response of plantation-grown cottonwood trees to initial spacings in the Midsouth have indicated the following trends: as spacing increased, dbh increased, height of dominants not practically affected, total cubic volume decreased, basal area decreased, natural pruning...
[Progress in synthetic biology of "973 Funding Program" in China].
Chen, Guoqiang; Wang, Ying
2015-06-01
This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.
Peculiarities of biological action of hadrons of space radiation.
Akoev, I G; Yurov, S S
1975-01-01
Biological investigations in space enable one to make a significant contribution on high-energy hadrons to biological effects under the influence of factors of space flights. Physical and molecular principles of the action of high-energy hadrons are analysed. Genetic and somatic hadron effects produced by the secondary radiation from 70 GeV protons have been studied experimentally. The high biological effectiveness of hadrons, great variability in biological effects, and specifically of their action, are associated with strong interactions of high-energy hadrons. These are the probability of nuclear interaction with any atom nucleus, generation of a great number of secondary particles (among them, probably, highly effective multicharged and heavy nuclei, antiprotons, pi(-)-mesons), and the spatial distribution of secondary particles as a narrow cone with extremely high density of particles in its first part. The secondary radiation generated by high- and superhigh-energy hadrons upon their interaction with the spaceship is likely to be the greatest hazard of radiation to the crew during space flights.
The biological effects of space radiation during long stays in space.
Ohnishi, Ken; Ohnishi, Takeo
2004-12-01
Many space experiments are scheduled for the International Space Station (ISS). Completion of the ISS will soon become a reality. Astronauts will be exposed to low-level background components from space radiation including heavy ions and other high-linear energy transfer (LET) radiation. For long-term stay in space, we have to protect human health from space radiation. At the same time, we should recognize the maximum permissible doses of space radiation. In recent years, physical monitoring of space radiation has detected about 1 mSv per day. This value is almost 150 times higher than that on the surface of the Earth. However, the direct effects of space radiation on human health are currently unknown. Therefore, it is important to measure biological dosimetry to calculate relative biological effectiveness (RBE) for human health during long-term flight. The RBE is possibly modified by microgravity. In order to understand the exact RBE and any interaction with microgravity, the ISS centrifugation system will be a critical tool, and it is hoped that this system will be in operation as soon as possible.
International Research Results and Accomplishments From the International Space Station
NASA Technical Reports Server (NTRS)
Ruttley, Tara M.; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka;
2016-01-01
In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a collection of summaries of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/issscience) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It reflects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a way that will impact humanity like no laboratory on Earth. The ISS Program Science Forum will continue to capture and report on these results in the form of journal publications, conference proceedings, and patents. We anticipate that successful ISS research will continue to contribute to the science literature in a way that helps to formulate new hypotheses and conclusions that will enable science advancements across a wide range of scientific disciplines both in space and on Earth.
APPLYING DATA MINING APPROACHES TO FURTHER ...
This dataset will be used to illustrate various data mining techniques to biologically profile the chemical space. This dataset will be used to illustrate various data mining techniques to biologically profile the chemical space.
NASA Astrophysics Data System (ADS)
Dodson, Maria
The underrepresentation of women enrolled in the physical sciences continues to challenge academic leaders despite over 40 years of programming to promote gender equity within these curricula. This study employed a quantitative, causal comparative method to explore if and to what extent career concerns differed among female and male undergraduate physical and biological science students. The theory of planned behavior and life-span, life-space theory served as the theoretical framework for the study. Quantitative survey data were collected from 43 students at four institutions across the United States. The findings indicated that undergraduate women in physical science programs of study had a significantly different level of concern about the Innovating sub-category of the third stage of career development, Maintenance, as compared to undergraduate women in biological science curricula [F(1,33) = 6.244, p = 0.018]. Additionally, there was a statistically significant difference between female undergraduate physical science students and undergraduate male science students in the sub-categories of Implementation [F(1,19) = 7.228, p = 0.015], Advancing [F(1,19) = 11.877, p = 0.003], and Innovating [F(1,19) = 11.782, p = 0.003] within the first three stages of career development (Exploration, Establishment, and Maintenance). The comparative differences among the study groups offers new information about undergraduate career concerns that may contribute to the underrepresentation of women enrolled in the physical sciences. Suggestions for future research and programs within higher education targeted at reducing the career concerns of current and prospective female students in physical science curricula are discussed.
Development of a Biological Control Program for Eurasian Watermilfoil (Myriophyllum spicatum)
2008-08-01
spicatum). Rawalpindi: Pakistan Station Commonwealth Institute of Biological Control. Gleason, H. A ., and A . Cronquist . 1991. Manual of vascular plants...ER D C/ EL T R- 08 -2 2 Aquatic Plant Control Research Program Development of a Biological Control Program for Eurasian Watermilfoil... a Biological Control Program for Eurasian Watermilfoil (Myriophyllum spicatum) Matthew J. W. Cock, Hariet L. Hinz, Gitta Grosskopf, and Patrick
Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences
NASA Astrophysics Data System (ADS)
Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.
The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge Rotor, which is capable of supporting variable gravity experiments from microgravity through 2g.
Biological Life Support Technologies: Commercial Opportunities
NASA Technical Reports Server (NTRS)
Nelson, Mark (Editor); Soffen, Gerald (Editor)
1990-01-01
The papers from the workshop on Biological Life Support Technologies: Commercial Opportunities are presented. The meeting attracted researchers in environmental and bioregenerative systems. The role of biological support technologies was evaluated in the context of the global environmental challenge on Earth and the space exploration initiative, with its goal of a permanent space station, lunar base, and Mars exploration.
Directed evolution of a synthetic phylogeny of programmable Trp repressors.
Ellefson, Jared W; Ledbetter, Michael P; Ellington, Andrew D
2018-04-01
As synthetic regulatory programs expand in sophistication, an ever increasing number of biological components with predictable phenotypes is required. Regulators are often 'part mined' from a diverse, but uncharacterized, array of genomic sequences, often leading to idiosyncratic behavior. Here, we generate an entire synthetic phylogeny from the canonical allosteric transcription factor TrpR. Iterative rounds of positive and negative compartmentalized partnered replication (CPR) led to the exponential amplification of variants that responded with high affinity and specificity to halogenated tryptophan analogs and novel operator sites. Fourteen repressor variants were evolved with unique regulatory profiles across five operators and three ligands. The logic of individual repressors can be modularly programmed by creating heterodimeric fusions, resulting in single proteins that display logic functions, such as 'NAND'. Despite the evolutionarily limited regulatory role of TrpR, vast functional spaces exist around this highly conserved protein scaffold and can be harnessed to create synthetic regulatory programs.
Health and Environmental Research [OHER], the program that supported most Biology in the Department. The origins of DOE's biology program traced to the Manhattan Project, the World War II program that produced Technical Report; 1964 Impact of Radiation Biology on Fundamental Insights in Biology; DOE Technical Report
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Behavioral and biological interactions with small groups in confined microsocieties
NASA Technical Reports Server (NTRS)
Brady, Joseph V.
1986-01-01
Research on small group performance in confined microsocieties was focused upon the development of principles and procedures relevant to the selection and training of space mission personnel, upon the investigation of behavioral programming, preventive monitoring and corrective procedures to enhance space mission performance effectiveness, and upon the evaluation of behavioral and physiological countermeasures to the potentially disruptive effects of unfamiliar and stressful environments. An experimental microsociety environment was designed and developed for continuous residence of human volunteers over extended time periods. Studies were then undertaken to analyze experimentally: (1) conditions that sustain group cohesion and productivity and that prevent social fragmentation and performance deterioration, (2) motivational effects performance requirements, and (3) behavioral and physiological effects resulting from changes in group size and composition. The results show that both individual and group productivity can be enhanced under such conditions by the direct application of contingency management principles to designated high-value tasks. Similarly, group cohesiveness can be promoted and individual social isolation and/or alienation prevented by the application of contingency management principles to social interaction segments of the program.
1969-07-09
In this photograph, technicians are transferring mice from a support germ free isolator, through a hypochlorite dunk tank, into the class III cabinetry in the Germ-free and Conventional Animal Laboratories of the Lunar Receiving Laboratory, building 37, of the Manned Spacecraft Center in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.
Space Station Biological Research Project
NASA Technical Reports Server (NTRS)
Johnson, Catherine C.; Hargens, Alan R.; Wade, Charles E.
1995-01-01
NASA Ames Research Center is responsible for the development of the Space Station Biological Research Project (SSBRP) which will support non-human life sciences research on the International Space Station Alpha (ISSA). The SSBRP is designed to support both basic research to understand the effect of altered gravity fields on biological systems and applied research to investigate the effects of space flight on biological systems. The SSBRP will provide the necessary habitats to support avian and reptile eggs, cells and tissues, plants and rodents. In addition a habitat to support aquatic specimens will be provided by our international partners. Habitats will be mounted in ISSA compatible racks at u-g and will also be mounted on a 2.5 m diameter centrifuge except for the egg incubator which has an internal centrifuge. The 2.5 m centrifuge will provide artificial gravity levels over the range of 0.01 G to 2 G. The current schedule is to launch the first rack in 1999, the Life Sciences glovebox and a second rack early in 2001, a 4 habitat 2.5 in centrifuge later the same year in its own module, and to upgrade the centrifuge to 8 habitats in 2004. The rodent habitats will be derived from the Advanced Animal Habitat currently under development for the Shuttle program and will be capable of housing either rats or mice individually or in groups (6 rats/group and at least 12 mice/group). The egg incubator will be an upgraded Avian Development Facility also developed for the Shuttle program through a Small Business and Innovative Research grant. The Space Tissue Loss cell culture apparatus, developed by Walter Reed Army Institute of Research, is being considered for the cell and tissue culture habitat. The Life Sciences Glovebox is crucial to all life sciences experiments for specimen manipulation and performance of science procedures. It will provide two levels of containment between the work volume and the crew through the use of seals and negative pressure. The glovebox will accommodate use by two crew persons simultaneously and the capability for real time video down-link and data acquisition. In house testbeds and Phase B studies of the centrifuge validated the concepts of vibration isolation and autobalancing systems to meet the ISSA microgravity requirements. The vibration isolation system is effective above the centrifuge rotation frequency while the autobalancing system on the rotor removes vibration at and below the rotation rate. Torque of the Station, induced by spin-up/spindown of the centrifuge, can be minimized by controlling spin-up/spin-down rates. The SSBRP and ISSA will provide the opportunity to perform long-term, repeatable and high quality science. The long duration increments available on the Station will permit multigeneration studies of both plants and animals which have not previously been possible. The u-g habitat racks and the eight habitat centrifuge will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will, for the first time, permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of u-g from other environmental factors and to examine artificial gravity as a potential countermeasure for the physical deconditioning observed during space flight.
Rabal, Obdulia; Oyarzabal, Julen
2012-05-25
The definition and pragmatic implementation of biologically relevant chemical space is critical in addressing navigation strategies in the overlapping regions where chemistry and therapeutically relevant targets reside and, therefore, also key to performing an efficient drug discovery project. Here, we describe the development and implementation of a simple and robust method for representing biologically relevant chemical space as a general reference according to current knowledge, independently of any reference space, and analyzing chemical structures accordingly. Underlying our method is the generation of a novel descriptor (LiRIf) that converts structural information into a one-dimensional string accounting for the plausible ligand-receptor interactions as well as for topological information. Capitalizing on ligand-receptor interactions as a descriptor enables the clustering, profiling, and comparison of libraries of compounds from a chemical biology and medicinal chemistry perspective. In addition, as a case study, R-groups analysis is performed to identify the most populated ligand-receptor interactions according to different target families (GPCR, kinases, etc.), as well as to evaluate the coverage of biologically relevant chemical space by structures annotated in different databases (ChEMBL, Glida, etc.).
Concepts and challenges in cancer risk prediction for the space radiation environment
NASA Astrophysics Data System (ADS)
Barcellos-Hoff, Mary Helen; Blakely, Eleanor A.; Burma, Sandeep; Fornace, Albert J.; Gerson, Stanton; Hlatky, Lynn; Kirsch, David G.; Luderer, Ulrike; Shay, Jerry; Wang, Ya; Weil, Michael M.
2015-07-01
Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight. Estimating the carcinogenic risks for humans who will be exposed to heavy ions during deep space exploration has very large uncertainties at present. There are no human data that address risk from extended exposure to complex radiation fields. The overarching goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling and predicting risk and designing countermeasures. This white paper reviews broad issues related to experimental models and concepts in space radiation carcinogenesis as well as the current state of the field to place into context recent findings and concepts derived from the NASA Space Radiation Program.
1992-06-25
This is a photograph of the Spacelab module for the first United States Microgravity Laboratory (USML-1) mission, showing logos of the Spacelab mission on the left and the USML-1 mission on the right. The USML-1 was one part of a science and technology program that opened NASA's next great era of discovery and established the United States' leadership in space. From investigations designed to gather fundamental knowledge in a variety of areas to demonstrations of new equipment, USML-1 forged the way for future USML missions and helped prepare for advanced microgravity research and processing aboard the Space Station. Thirty-one investigations comprised the payload of the first USML-1 mission. The experiments aboard USML-1 covered five basic areas: fluid dynamics, the study of how liquids and gases respond to the application or absence of differing forces; crystal growth, the production of inorganic and organic crystals; combustion science, the study of the processes and phenomena of burning; biological science, the study of plant and animal life; and technology demonstrations. The USML-1 was managed by the Marshall Space Flight Center and launched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.
Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept
NASA Technical Reports Server (NTRS)
Ennico, Kimberly; Sandford, S.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.
2004-01-01
The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T less than 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observaticxiai program woiild make fundamental scieztific: prngress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars; 2) The Diffuse Interstellar Medium (DISM); 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems; 4) Planets, Satellites, and Small Bodies within the Solar System; and 5) The Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these area by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5 - 20 micron spectral range at a spectral resolution of R greater than 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.
Phytoremediation of Indoor Air: NASA, Bill Wolverton, and the Development of an Industry
NASA Technical Reports Server (NTRS)
Stutte, Gary W.
2012-01-01
It was during this period of the early 1970's and 1980's when the issues associated with Sick Building Syndrome were gaining attention that the United States National Aeronautics and Space Administration (NASA) became an unlikely leader in identifying biological solutions to the problem of poor indoor air quality. NASA had been supporting work using biological systems for atmospheric regeneration since the 1950's, with the emphasis on using photosynthetic systems for the removal of carbon dioxide and regeneration of oxygen as part of a life support system. The then Soviet Union was conducting tests using algae systems in the BIO-1 program (1964-1968) to regenerate the air at the Siberian Branch of the Soviet Academy of Sciences in Krasnoyarsk (Later renamed the Institute of Biophysics). These tests were expanded to include the use of higher plants in the BIOS-2 testing in the 1970's, and humans during BIO-3 in the 1980'SI3. Within NASA, large scale testing of bioregenerative life support systems was conducted in the Biomass Production Chamber (BPC) at Kennedy Space Center, Florida as part of the Controlled Ecological Life Support Systems (CELSS) Breadboard project.
USSR Space Life Sciences Digest, issue 32
NASA Technical Reports Server (NTRS)
Stone, Lydia Razran (Editor); Rowe, Joseph (Editor)
1992-01-01
This is the thirty-second issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 34 journal or conference papers published in Russian and of 4 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, aviation medicine, biological rhythms, biospherics, cardiovascular and respiratory systems, developmental biology, exobiology, habitability and environmental effects, human performance, hematology, mathematical models, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, and reproductive system.
Benefit evaluation of space processing of biological materials
NASA Technical Reports Server (NTRS)
1977-01-01
A rational analytical basis for the evaluation of potential benefits of space processing of biological materials is described. A preliminary evaluation of three candidate space processed biological materials was accomplished. Materials investigated were human lymphocytes, urokinase, and Beta cells. Separation of lymphocyte groups was considered in order to improve the matching of donors and recipients for kidney transplantation, while urokinase was examined in regard to treatment of thromboembolic diseases. Separation of Beta cells was studied since it could provide a highly effective means for the treatment of juvenile-onset diabetes.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2007-01-01
Space radiation presents major challenges to astronauts on the International Space Station and for future missions to the Earth s moon or Mars. Methods used to project risks on Earth need to be modified because of the large uncertainties in projecting cancer risks from space radiation, and thus impact safety factors. We describe NASA s unique approach to radiation safety that applies uncertainty based criteria within the occupational health program for astronauts: The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in the radiation cancer projection model. NASA s acceptable level of risk for ISS and their new lunar program have been set at the point-estimate of a 3-percent risk of exposure induced death (REID). Tissue-averaged organ dose-equivalents are combined with age at exposure and gender-dependent risk coefficients to project the cumulative occupational radiation risks incurred by astronauts. The 95% CL criteria in practice is a stronger criterion than ALARA, but not an absolute cut-off as is applied to a point projection of a 3% REID. We describe the most recent astronaut dose limits, and present a historical review of astronaut organ doses estimates from the Mercury through the current ISS program, and future projections for lunar and Mars missions. NASA s 95% CL criteria is linked to a vibrant ground based radiobiology program investigating the radiobiology of high-energy protons and heavy ions. The near-term goal of research is new knowledge leading to the reduction of uncertainties in projection models. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. The current model for projecting space radiation cancer risk relies on the three assumptions of linearity, additivity, and scaling along with the use of population averages. We describe uncertainty estimates for this model, and new experimental data that sheds light on the accuracy of the underlying assumptions. These methods make it possible to express risk management objectives in terms of quantitative metrics, i.e., the number of days in space without exceeding a given risk level within well defined confidence limits. The resulting methodology is applied to several human space exploration mission scenarios including lunar station, deep space outpost, and a Mars mission. Factors that dominate risk projection uncertainties and application of this approach to assess candidate mitigation approaches are described.
The Pleurodele, an animal model for space biology studies
NASA Astrophysics Data System (ADS)
Gualandris, L.; Grinfeld, S.; Foulquier, F.; Kan, P.; Duprat, A. M.
Pleurodeles waltl, an Urodele amphibian is proposed as a model for space biology studies. Our laboratory is developing three types of experiments in space using this animal: 1) in vivo fertilization and development (``FERTILE'' project); 2) influence of microgravity and space radiation on the organization and preservation of spacialized structures in the neurons and muscle cells (in vitro; ``CELIMENE'' PROJECT); 3) influence of microgravity on tissue regeneration (muscle, bone, epidermis and spinal cord).
Gerstein, Mark; Greenbaum, Dov; Cheung, Kei; Miller, Perry L
2007-02-01
Computational biology and bioinformatics (CBB), the terms often used interchangeably, represent a rapidly evolving biological discipline. With the clear potential for discovery and innovation, and the need to deal with the deluge of biological data, many academic institutions are committing significant resources to develop CBB research and training programs. Yale formally established an interdepartmental Ph.D. program in CBB in May 2003. This paper describes Yale's program, discussing the scope of the field, the program's goals and curriculum, as well as a number of issues that arose in implementing the program. (Further updated information is available from the program's website, www.cbb.yale.edu.)
1985-07-01
This photograph shows the Instrument Pointing System (IPS) for Spacelab-2 being deployed in the cargo bay of the Space Shuttle Orbiter Challenger. The European Space Agency (ESA) developed this irnovative pointing system for the Spacelab program. Previously, instruments were pointed toward particular celestial objects or areas by maneuvering the Shuttle to an appropriate attitude. The IPS could aim instruments more accurately than the Shuttle and kept them fixed on a target as the Shuttle moved. On the first pallet, three solar instruments and one atmospheric instrument were mounted on the IPS. Spacelab-2 was the first pallet-only mission. One of the goals of the mission was to verify that the pallets' configuration was satisfactory for observations and research. Except for two biological experiments and an experiment that uses ground-based instruments, the Spacelab-2 scientific instruments needed direct exposure to space. The Spacelab-2 mission was designed to capitalize on the Shuttle-Spacelab capabilities to carry very large instruments, launch and retrieve satellites, and point several instruments independently with accuracy and stability. Spacelab-2 (STS-51F, 19th Shuttle mission) was launched on July 29, 1985 aboard the Space Shuttle Orbiter Challenger. The Marshall Space Flight Center had overall management responsibilities of the Spacelab missions.
1985-07-01
This photograph shows the Instrument Pointing System (IPS) for Spacelab-2 being deployed in the cargo bay of the Space Shuttle Orbiter Challenger. The European Space Agency (ESA) developed this irnovative pointing system for the Spacelab program. Previously, instruments were pointed toward particular celestial objects or areas by maneuvering the Shuttle to an appropriate attitude. The IPS could aim instruments more accurately than the Shuttle and kept them fixed on a target as the Shuttle moved. On the first pallet, three solar instruments and one atmospheric instrument were mounted on the IPS. Spacelab-2 was the first pallet-only mission. One of the goals of the mission was to verify that the pallets' configuration was satisfactory for observations and research. Except for two biological experiments and an experiment that used ground-based instruments, the Spacelab-2 scientific instruments needed direct exposure to space. The Spacelab-2 mission was designed to capitalize on the Shuttle-Spacelab capabilities to carry very large instruments, launch and retrieve satellites, and point several instruments independently with accuracy and stability. Spacelab-2 (STS-51F, 19th Shuttle mission) was launched on July 29, 1985 aboard the Space Shuttle Orbiter Challenger. The Marshall Space Flight Center had overall management responsibilities of the Spacelab missions.
Concepts and challenges in cancer risk prediction for the space radiation environment.
Barcellos-Hoff, Mary Helen; Blakely, Eleanor A; Burma, Sandeep; Fornace, Albert J; Gerson, Stanton; Hlatky, Lynn; Kirsch, David G; Luderer, Ulrike; Shay, Jerry; Wang, Ya; Weil, Michael M
2015-07-01
Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight. Estimating the carcinogenic risks for humans who will be exposed to heavy ions during deep space exploration has very large uncertainties at present. There are no human data that address risk from extended exposure to complex radiation fields. The overarching goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling and predicting risk and designing countermeasures. This white paper reviews broad issues related to experimental models and concepts in space radiation carcinogenesis as well as the current state of the field to place into context recent findings and concepts derived from the NASA Space Radiation Program. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
What Threats to Human Health Does Space Radiation Pose in Orbit
NASA Technical Reports Server (NTRS)
Wu, Honglu; Semones, Eddie; Weyland, Mark; Zapp, Neal; Cucinotta, Francis A.
2011-01-01
The Space Shuttle program spanned more than the entire length of a solar cycle. Investigations aimed towards understanding the health risks of the astronauts from exposures to space radiation involved mostly physical measurements of the dose and the linear energy transfer (LET) spectrum. Measurement of the dose rate on the Shuttle provided invariable new data for different periods of the solar cycle, whereas measurement of the LET spectrum using the tissue equivalent proportional counter (TEPC) produced the most complete mapping of the radiation environment of the low Earth orbits (LEO). Exposures to the Shuttle astronauts were measured by the personal dosimeter worn by the crewmembers. Analysis of over 300 personal dosimeter readings indicated a dependence on the mission duration, the altitude and inclination of the orbit, and the solar cycle, with the crewmembers on the launch and repair of the Hubble telescope receiving the highest doses due to the altitude of the mission. Secondary neutrons inside the Shuttle were determined by recoil protons or with Bonner spheres, and may contribute significantly to the risks of the crewmembers. In addition, the skin dose and the doses received at different organs were compared using a human phantom onboard a Shuttle mission. A number of radiobiology investigations wer e also performed. The biological doses were determined on six astronauts/cosmonauts on long-duration Shuttle/Mir missions and on two crewmembers on a Hubble repair mission by analyzing the damages in the chromosomes of the crewmembers? white blood cells. Several experiments were also conducted to address the question of possible synergistic effects of spaceflight, microgravity in particular, on the repair of radiation-induced DNA damages. The experimental design included exposure of cells before launch, during flight, or after landing. These physical and biological studies were invaluable in predicting the health risks for astronauts on ISS and future exploration missions. Educational Objectives: A group of high school students flew color negative films on tw o Shuttle missions to detect the radiation environment in orbit. This and other experiments onboard of the Shuttle were aimed at educating the general public of the space program.
Toward a microgravity research strategy
NASA Technical Reports Server (NTRS)
1992-01-01
Recommendations of the Committee on Microgravity Research (CMGR) of the Space Studies Board of the National Research Council are found in the Summary and Recommendations in the front of the report. The CMGR recommends a long-range research strategy. The main rationale for the microgravity research program should be to improve our fundamental scientific and technical knowledge base, particularly in the areas that are likely to lead to improvements in processing and manufacturing on earth. The CMGR recommends research be categorized as Biological science and technology, Combustion, Fluid science, Fundamental phenomena, Materials, and Processing science and technology. The committee also recommends that NASA apply a set of value criteria and measurement indicators to define the research and analysis program more clearly. The CMGR recommends that the funding level for research and analysis in microgravity science be established as a fixed percentage of the total program of NASA's Microgravity Science and Applications Division in order to build a strong scientific base for future experiments. The committee also recommends a cost-effective approach to experiments. Finally the CMGR recommends that a thorough technical review of the centers for commercial development of space be conducted to determine the quality of their activities and to ascertain to what degree their original mission has been accomplished.
US and Russian Cooperation in Space Biology and Medicine
NASA Technical Reports Server (NTRS)
Sawin, C.F.; Hanson, S.I.; House, N.G.; Pestov, I.D.
2009-01-01
This slide presentation concerns the 5th volume of a joint publication that describes the cooperation between the United States and Russia in research into space biology and medicine. Each of the chapters is briefly summarized.
USSR Space Life Sciences Digest, Issue 10
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Garshnek, Victoria; Rowe, Joseph E.
1987-01-01
The USSR Space Life Sciences Digest contains abstracts of 37 papers recently published in Russian language periodicals and bound collections and of five new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include the translation of a book chapter concerning use of biological rhythms as a basis for cosmonaut selection, excerpts from the diary of a participant in a long-term isolation experiment, and a picture and description of the Mir space station. The abstracts included in this issue were identified as relevant to 25 areas of aerospace medicine and space biology. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculosketal system, neurophysiology, nutrition, personnel selection, psychology, and radiobiology.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
ERIC Educational Resources Information Center
Moody, John Charles
Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…
NASA's new Mars Exploration Program: the trajectory of knowledge.
Garvin, J B; Figueroa, O; Naderi, F M
2001-01-01
NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."
NASA's new Mars Exploration Program: the trajectory of knowledge
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Figueroa, O.; Naderi, F. M.
2001-01-01
NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils.".
NASA's New Mars Exploration Program: The Trajectory of Knowledge
NASA Astrophysics Data System (ADS)
Garvin, James B.; Figueroa, Orlando; Naderi, Firouz M.
2001-12-01
NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."
Bioprocessing: Prospects for space electrophoresis
NASA Technical Reports Server (NTRS)
Bier, M.
1977-01-01
The basic principles of electrophoresis are reviewed in light of its past contributions to biology and medicine. The near-zero gravity environment of orbiting spacecraft may present some unique advantages for a variety of processes, by abolishing the major source of convection in fluids. As the ground-based development of electrophoresis was heavily influenced by the need to circumvent the effects of gravity, this process should be a prime candidate for space operation. Nevertheless, while a space facility for electrophoresis may overcome the limitations imposed by gravity, it will not necessarily overcome all problems inherent in electrophoresis. These are, mainly, electroosmosis and the dissipation of the heat generated by the electric field. The NASA program has already led to excellent coatings to prevent electroosmosis, while the need for heat dissipation will continue to impose limits on the actual size of equipment. It is also not excluded that, once the dominant force of gravity is eliminated, disturbances in fluid stability may originate from weaker forces, such as surface tension.
BLSS: A Contribution to Future Life Support
NASA Technical Reports Server (NTRS)
Skoog, A. I.
1985-01-01
The problem of the supply of basic life supporting ingredients was analyzed. Storage volume and launch weight of water, oxygen and food in a conventional nonregenerable life support system are directly proportional to the crew size and the length of the mission. Because of spacecraft payload limitations this requires that the carbon, or food, recycling loop, the third and final part in the life support system, be closed to further reduce logistics cost. Advanced life support systems need to be developed in which metabolic waste products are regenerated and food is produced. Biological life support systems (BLSS) satisfy the space station environmental control functions and close the food cycle. Numerous scientific space experiments were delineated, the results of which are applicable to the support of BLSS concepts. Requirements and concepts are defined and the feasibility of BLSS for space application are analyzed. The BLSS energy mass relation, and the possibilities to influence it to achieve advantages for the BLSS are determined. A program for the development of BLSS is proposed.
An overview of Japanese CELSS research activities
NASA Technical Reports Server (NTRS)
Nitta, Keiji
1987-01-01
Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.
The inception and evolution of a unique masters program in cancer biology, prevention and control.
Cousin, Carolyn; Blancato, Jan
2010-09-01
The University of the District of Columbia (UDC) and the Lombardi Comprehensive Cancer Center (LCCC), Georgetown University Medical Center established a Masters Degree Program in Cancer Biology, Prevention and Control at UDC that is jointly administered and taught by UDC and LCCC faculty. The goal of the Masters Degree Program is to educate students as master-level cancer professionals capable of conducting research and service in cancer biology, prevention, and control or to further advance the education of students to pursue doctoral studies. The Program's unique nature is reflected in its philosophy "the best cancer prevention and control researchers are those with a sound understanding of cancer biology". This program is a full-time, 2-year, 36-credit degree in which students take half of their coursework at UDC and half of their coursework at LCCC. During the second year, students are required to conduct research either at LCCC or UDC. Unlike most cancer biology programs, this unique Program emphasizes both cancer biology and cancer outreach training.
Landing in the future: Biological experiments on Earth and in space orbit
NASA Astrophysics Data System (ADS)
Pokrovskiy, A.
1980-09-01
The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.
Landing in the future: Biological experiments on Earth and in space orbit
NASA Technical Reports Server (NTRS)
Pokrovskiy, A.
1980-01-01
The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.
Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction
NASA Astrophysics Data System (ADS)
Pottinger, James E.
With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space science courses are different than typical online courses in that they need to incorporate an inquiry-based component to ensure students fully understand the course concepts and science principles in the Earth and Space sciences. Studies have addressed the barriers in other inquiry-based online science courses, including biology, physics, and chemistry. This holistic, multiple-case qualitative study investigated perceived barriers and strategies to effective online Earth and Space science instruction through in-depth interviews with six experienced post-secondary online science instructors. Data from this study was analyzed using a thematic analysis approach and revealed four common themes when teaching online Earth and Space science. A positive perception and philosophy of online teaching is essential, the instructor-student interaction is dynamic, course structure and design modification will occur, and online lab activities must make science operational and relevant. The findings in this study demonstrated that online Earth and Space science instructors need institutional support in the form of a strong faculty development program and support staff in order to be as effective as possible. From this study, instructors realize that the instructor-student relationship and course structure is paramount, especially when teaching online science with labs. A final understanding from this study was that online Earth and Space science lab activities must incorporate the use and application of scientific skills and knowledge. Recommendations for future research include (a) qualitative research conducted in specific areas within the Earth and Space sciences to determine if similar conclusions may be reached, (b) conduct a quantitative study looking at the available online technologies and their effectiveness in each area, and (c) utilize students that took online Earth and Space science classes and compare their perception of effectiveness to the instructor's perception of effectiveness in the online Earth and Space science classroom.
Chen, Yi-An; Tripathi, Lokesh P; Mizuguchi, Kenji
2016-01-01
Data analysis is one of the most critical and challenging steps in drug discovery and disease biology. A user-friendly resource to visualize and analyse high-throughput data provides a powerful medium for both experimental and computational biologists to understand vastly different biological data types and obtain a concise, simplified and meaningful output for better knowledge discovery. We have previously developed TargetMine, an integrated data warehouse optimized for target prioritization. Here we describe how upgraded and newly modelled data types in TargetMine can now survey the wider biological and chemical data space, relevant to drug discovery and development. To enhance the scope of TargetMine from target prioritization to broad-based knowledge discovery, we have also developed a new auxiliary toolkit to assist with data analysis and visualization in TargetMine. This toolkit features interactive data analysis tools to query and analyse the biological data compiled within the TargetMine data warehouse. The enhanced system enables users to discover new hypotheses interactively by performing complicated searches with no programming and obtaining the results in an easy to comprehend output format. Database URL: http://targetmine.mizuguchilab.org. © The Author(s) 2016. Published by Oxford University Press.
Chen, Yi-An; Tripathi, Lokesh P.; Mizuguchi, Kenji
2016-01-01
Data analysis is one of the most critical and challenging steps in drug discovery and disease biology. A user-friendly resource to visualize and analyse high-throughput data provides a powerful medium for both experimental and computational biologists to understand vastly different biological data types and obtain a concise, simplified and meaningful output for better knowledge discovery. We have previously developed TargetMine, an integrated data warehouse optimized for target prioritization. Here we describe how upgraded and newly modelled data types in TargetMine can now survey the wider biological and chemical data space, relevant to drug discovery and development. To enhance the scope of TargetMine from target prioritization to broad-based knowledge discovery, we have also developed a new auxiliary toolkit to assist with data analysis and visualization in TargetMine. This toolkit features interactive data analysis tools to query and analyse the biological data compiled within the TargetMine data warehouse. The enhanced system enables users to discover new hypotheses interactively by performing complicated searches with no programming and obtaining the results in an easy to comprehend output format. Database URL: http://targetmine.mizuguchilab.org PMID:26989145
Dynamics of a Subterranean Trophic Cascade in Space and Time
Ram, Karthik; Gruner, Daniel S.; McLaughlin, John P.; Preisser, Evan L.; Strong, Donald R.
2008-01-01
Trophic cascades, whereby predators indirectly benefit plant biomass by reducing herbivore pressure, form the mechanistic basis for classical biological control of pest insects. Entomopathogenic nematodes (EPN) are lethal to a variety of insect hosts with soil-dwelling stages, making them promising biocontrol agents. EPN biological control programs, however, typically fail because nematodes do not establish, persist and/or recycle over multiple host generations in the field. A variety of factors such as local abiotic conditions, host quantity and quality, and rates of movement affect the probability of persistence. Here, we review results from 13 years of study on the biology and ecology of an endemic population of Heterorhabditis marelatus (Rhabditida: Heterorhabditidae) in a California coastal prairie. In a highly seasonal abiotic environment with intrinsic variation in soils, vegetation structure, and host availability, natural populations of H. marelatus persisted at high incidence at some but not all sites within our study area. Through a set of field and lab experiments, we describe mechanisms and hypotheses to understand the persistence of H. marelatus. We suggest that further ecological study of naturally occurring EPN populations can yield significant insight to improve the practice and management of biological control of soil-dwelling insect pests. PMID:19259524
Reusable Reentry Satellite (RRS) system design study: System cost estimates document
NASA Technical Reports Server (NTRS)
1991-01-01
The Reusable Reentry Satellite (RRS) program was initiated to provide life science investigators relatively inexpensive, frequent access to space for extended periods of time with eventual satellite recovery on earth. The RRS will provide an on-orbit laboratory for research on biological and material processes, be launched from a number of expendable launch vehicles, and operate in Low-Altitude Earth Orbit (LEO) as a free-flying unmanned laboratory. SAIC's design will provide independent atmospheric reentry and soft landing in the continental U.S., orbit for a maximum of 60 days, and will sustain three flights per year for 10 years. The Reusable Reentry Vehicle (RRV) will be 3-axis stabilized with artificial gravity up to 1.5g's, be rugged and easily maintainable, and have a modular design to accommodate a satellite bus and separate modular payloads (e.g., rodent module, general biological module, ESA microgravity botany facility, general botany module). The purpose of this System Cost Estimate Document is to provide a Life Cycle Cost Estimate (LCCE) for a NASA RRS Program using SAIC's RRS design. The estimate includes development, procurement, and 10 years of operations and support (O&S) costs for NASA's RRS program. The estimate does not include costs for other agencies which may track or interface with the RRS program (e.g., Air Force tracking agencies or individual RRS experimenters involved with special payload modules (PM's)). The life cycle cost estimate extends over the 10 year operation and support period FY99-2008.
NASA Technical Reports Server (NTRS)
Verigo, V. V.
1979-01-01
Simulation models were used to study theoretical problems of space biology and medicine. The reaction and adaptation of the main physiological systems to the complex effects of space flight were investigated. Mathematical models were discussed in terms of their significance in the selection of the structure and design of biological life support systems.
Gravity regulated genes in Arabidopsis thaliana (GENARA experiment)
NASA Astrophysics Data System (ADS)
Boucheron-Dubuisson, Elodie; Carnero-D&íaz, Eugénie; Medina, Francisco Javier; Gasset, Gilbert; Pereda-Loth, Veronica; Graziana, Annick; Mazars, Christian; Le Disquet, Isabelle; Eche, Brigitte; Grat, Sabine; Gauquelin-Koch, Guillemette
2012-07-01
In higher plants, post-embryonic development is possible through the expression of a set of genes constituting the morphogenetic program that contribute to the production of tissues and organs during the whole plant life cycle. Plant development is mainly controlled by internal factors such as phytohormones, as well as by environmental factors, among which gravity plays a key role (gravi-morphogenetic program). The GENARA space experiment has been designed with the goal of contributing to a better understanding of this gravi-morphogenetic program through the identification and characterization of some gravity regulated proteins (GR proteins) by using quantitative proteomic methods, and through the study of the impact of plant hormones on the expression of this program. Among plant hormones, auxin is the major regulator of organogenesis. In fact, it affects numerous plant developmental processes, e.g. cell division and elongation, autumnal loss of leaves, and the formation of buds, roots, flowers and fruits. Furthermore, it also plays a key role in the mechanisms of different tropisms (including gravitropism) that modulate fundamental features of plant growth. The expression of significant genes involved in auxin transport and in auxin signal perception in root cells is being studied in space-grown seedlings and compared with the corresponding ground controls. This experiment was scheduled to be performed in The European Modular Cultivation System (EMCS), a new facility for plant cultivation and Plant Molecular Biology studies, at ISS. However only one aspect of this experiment was flown and concerns the qualitative and quantitative changes in membrane proteins supposed to be mainly associated with cell signaling and has been called GENARA A. The second part dealing with the function of auxin in the gravi-morphogenetic program and the alterations induced by microgravity will be studied through mutants affected on biosynthesis, transport or perception of auxin in a future experiment called GENARA B. Membrane proteins differentially accumulated under microgravity versus 1g controls have been selectively extracted from membranes and being identified by mass spectrometry using LC MS/MS. The first data issued from mass spectra analysis will be presented. Overall the expected results from the GENARA experiment should significantly increase our knowledge on the alterations induced by the space environment on plant growth and development and the molecular mechanisms involved in these alterations. This knowledge is absolutely required for making possible the successful culture of plants on board of space vehicles, which is a pre-requisite for the plans of space exploration currently promoted by the most important Space Agencies of the world.
Life sciences space biology project planning
NASA Technical Reports Server (NTRS)
Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.
1988-01-01
The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.
NASA Technical Reports Server (NTRS)
Cohen, Jacob
2013-01-01
This presentation will discuss recent space exploration results (LCROSS, KEPLER, etc.), increase access to space and the small and cube satellites platform as it relates to the future of space exploration. It will highlight the concept of modularization and the use of biology, and specifically synthetic biology in the future. The presentation will be a general public presentation. When speaking to a younger audience, I will discuss my background. All slides contain only public information. No technical ITAR/Export controlled material will be discussed.
NASA Technical Reports Server (NTRS)
1962-01-01
The realization in recent years that outer space is traversed by high-energy radiations has caused man to reevaluate the feasibility of manned or even instrumented exploration outside our atmosphere. Fortunately, it is possible to determine the nature and intensities of these radiations and to produce similar radiations on earth by means of accelerators. Thus we can learn how to attenuate them and to design capsules which afford protection against them. Of course this protection carries a weight penalty so that there is a premium on optimizing the shield design. Many groups in the United states are engaged in research to this end,and it was the purpose of this symposium to bring these groups together so that they could exchange information. To make the meeting more comprehensive, sessions on the nature of the radiations and their effects on people and things were included. However, the major part of the meeting was devoted to discussions on shielding research, comprising theoretical calculations and experiments carried out mainly with high-energy accelerators. The symposium committee feels that the aims of the symposium were met and that progress in space research program was greatly accelerated thereby.
1981-01-01
Spacelab was a versatile laboratory carried in the Space Shuttle's cargo bay for special research flights. Its various elements could be combined to accommodate the many types of scientific research that could best be performed in space. Spacelab consisted of an enclosed, pressurized laboratory module and open U-shaped pallets located at the rear of the laboratory module. The laboratory module contained utilities, computers, work benches, and instrument racks to conduct scientific experiments in astronomy, physics, chemistry, biology, medicine, and engineering. Equipment, such as telescopes, anternas, and sensors, was mounted on pallets for direct exposure to space. A 1-meter (3.3-ft.) diameter aluminum tunnel, resembling a z-shaped tube, connected the crew compartment (mid deck) to the module. The reusable Spacelab allowed scientists to bring experiment samples back to Earth for post-flight analysis. Spacelab was a cooperative venture of the European Space Agency (ESA) and NASA. ESA was responsible for funding, developing, and building of Spacelab, while NASA was responsible for the launch and operational use of Spacelab. Spacelab missions were cooperative efforts between scientists and engineers from around the world. Teams from NASA centers, universities, private industry, government agencies and international space organizations designed the experiments. The Marshall Space Flight Center was NASA's lead center for monitoring the development of Spacelab and managing the program.
Interactive evolution of camouflage.
Reynolds, Craig
2011-01-01
This article presents an abstract computation model of the evolution of camouflage in nature. The 2D model uses evolved textures for prey, a background texture representing the environment, and a visual predator. A human observer, acting as the predator, is shown a cohort of 10 evolved textures overlaid on the background texture. The observer clicks on the five most conspicuous prey to remove ("eat") them. These lower-fitness textures are removed from the population and replaced with newly bred textures. Biological morphogenesis is represented in this model by procedural texture synthesis. Nested expressions of generators and operators form a texture description language. Natural evolution is represented by genetic programming (GP), a variant of the genetic algorithm. GP searches the space of texture description programs for those that appear least conspicuous to the predator.
Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts
NASA Technical Reports Server (NTRS)
Singh, Bhim (Compiler)
2002-01-01
The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.
Foundations in Science and Mathematics Program for Middle School and High School Students
NASA Astrophysics Data System (ADS)
Desai, Karna Mahadev; Yang, Jing; Hemann, Jason
2016-01-01
The Foundations in Science and Mathematics (FSM) is a graduate student led summer program designed to help middle school and high school students strengthen their knowledge and skills in mathematics and science. FSM provides two-week-long courses over a broad spectrum of disciplines including astronomy, biology, chemistry, computer programming, geology, mathematics, and physics. Students can chose two types of courses: (1) courses that help students learn the fundamental concepts in basic sciences and mathematics (e.g., "Precalculus"); and (2) knowledge courses that might be excluded from formal schooling (e.g., "Introduction to Universe"). FSM has served over 500 students in the Bloomington, IN, community over six years by acquiring funding from Indiana University and the Indiana Space Grant Consortium. FSM offers graduate students the opportunity to obtain first hand experience through independent teaching and curriculum design as well as leadership experience.We present the design of the program, review the achievements, and explore the challenges we face. We are open to collaboration with similar educational outreach programs. For more information, please visit http://www.indiana.edu/~fsm/ .
NASA Technical Reports Server (NTRS)
Patel, Zarana S.; Wettergreen, Matthew A.; Huff, Janice L.
2014-01-01
We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3-D organotypic epithelial-stromal cultures that require an air-liquid interface. These complex 3-D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an air-liquid interface, these 3-D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissue-like human epithelial-stromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for air-liquid, liquid-liquid, and liquid-air exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of add-on capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program.
Mars 96 small station biological decontamination
NASA Astrophysics Data System (ADS)
Debus, A.; Runavot, J.; Rogovski, G.; Bogomolov, V.; Khamidullina, N.; Darbord, J. C.; Plombin, B. J.; Trofimov, V.; Ivanov, M.
In the context of extraterrestrial exploration missions and since the beginning of solar system exploration, it is required, according to the article IX of the Outer Space Treaty (London/Washington January 27, 1967) to preserve planets and the Earth from cross contamination. Consequently, COSPAR (Committee of Space Research) has established some planetary protection recommendations in order to protect the environments of other worlds from biological contamination by terrestrial microorganisms, to protect exobiological science for searching for life on planets, and to protect the Earth's environment from back contamination. For the upcoming Mars exploration missions, and after updating the planetary protection recommendations, a biological decontamination program has been designed for Mars 96 landers. After sterilization or biocleaning of equipment and instruments, these are integrated into a cleanroom and kept in sterile conditions with recontamination control in order to satisfy the surface contamination requirements. The Mars 96 orbiter does not need any implementation of sterilization procedures because the probability of spacecraft crash does not exceed 10^-5 and because it's orbit is in accordance with quarantine requirements (orbit lifetime with 0.9999 confidence for the first 20 years and 0.95 confidence during the next 20 years). For the Mars 96 small stations, different methods have been used and especially for the French and Finnish payload, a complete description of hydrogen peroxide gas plasma sterilization will be given, including bioburden assessments and sterility level determination. Probe integration implementation and procedures are described in the second part of this paper.
NASA Astrophysics Data System (ADS)
Tarasashvili, M. V.; Sabashvili, Sh. A.; Tsereteli, S. L.; Aleksidze, N. D.; Dalakishvili, O.
2017-10-01
The Mars Climate Simulation Chamber (MCSC) (GEO PAT 12 522/01) is designed for the investigation of the possible past and present habitability of Mars, as well as for the solution of practical tasks necessary for the colonization and Terraformation of the Planet. There are specific tasks such as the experimental investigation of the biological parameters that allow many terrestrial organisms to adapt to the imitated Martian conditions: chemistry of the ground, atmosphere, temperature, radiation, etc. MCSC is set for the simulation of the conduction of various biological experiments, as well as the selection of extremophile microorganisms for the possible Settlement, Ecopoesis and/or Terraformation purposes and investigation of their physiological functions. For long-term purposes, it is possible to cultivate genetically modified organisms (e.g., plants) adapted to the Martian conditions for future Martian agriculture to sustain human Mars missions and permanent settlements. The size of the chamber allows preliminary testing of the functionality of space-station mini-models and personal protection devices such as space-suits, covering and building materials and other structures. The reliability of the experimental biotechnological materials can also be tested over a period of years. Complex and thorough research has been performed to acquire the most appropriate technical tools for the accurate engineering of the MCSC and precious programmed simulation of Martian environmental conditions. This paper describes the construction and technical details of the equipment of the MCSC, which allows its semi-automated, long-term operation.
Presidential Leadership in the Development of the U.S. Space Program
NASA Technical Reports Server (NTRS)
Launius, Roger D. (Editor); Mccurdy, Howard E. (Editor)
1994-01-01
Papers presented at a historical symposium on Presidential leadership in the space program include the following: 'The Imperial Presidency in the History of Space Exploration'; 'The Reluctant Racer: Dwight D. Eisenhower and United States Space Policy'; 'Kennedy and the Decision to Go to the Moon'; 'Johnson, Project Apollo, and the Politics of Space Program Planning'; 'The Presidency, Congress, and the Deceleration of the U.S. Space Program in the 1970s'; 'Politics not Science: The U.S. Space Program in the Reagan and Bush Years'; 'Presidential Leadership and International Aspects of the Space Program'; 'National Leadership and Presidential Power'; and 'Epilogue: Beyond NASA Exceptionalism'.