Earth Observation from Space: Competition or Cooperation?
1992-04-01
or remote sensing from space (2). Earth observations or remote sensing includes all forms of observation by sensors borne by a space object including...3). The capabilities of remote sensing are as varied as the sensors that are built and put in orbit, but =- • I •1 capabilities fall into two...adversary or ally. For example, the ability of one nation to observe and study another through space-borne sensors permits strategic assessment of a
NASA Technical Reports Server (NTRS)
Deshpande, Manohar; Piepmeier, Jeffrey
2015-01-01
Design and Development of VHF Antennas for Space Borne Signal of Opportunity Receivers for Cubesat Platforms. Space borne microwave remote sensors at VHF/UHF frequencies are important instruments to observe reflective properties of land surfaces through thick and heavy forestation on a global scale. One of the most cost effective ways of measuring land reflectivity at VHF/UHF frequencies is to use signals transmitted by existing communication satellites (operating at VHF/UHF band) as a signal of opportunity (SoOp) signal and passive receivers integrated with airborne/space borne platforms operating in the Low Earth Orbit (LEO). One of the critical components of the passive receiver is two antennas (one to receive only direct signal and other to receive only reflected signal) which need to have ideally high (>30dB) isolation. However, because of small size of host platforms and broad beam width of dipole antennas, achieving adequate isolation between two channels is a challenging problem and need to be solved for successful implementation of space borne SoOp technology for remote sensing. In this presentation a novel enabling VHF antenna technology for Cubesat platforms is presented to receive direct as well as reflected signal with needed isolation. The novel scheme also allows enhancing the gain of individual channels by factor of 2 without use of reflecting ground plane
Design VHF Antennas for Space Borne Receivers for SmallSats
NASA Technical Reports Server (NTRS)
Deshpande, Manohar
2017-01-01
Space borne microwave remote sensors at VHF/UHF frequencies are important instruments to observe reflective properties of land surfaces through thick and heavy forestation on a global scale. One of the most cost effective ways of measuring land reflectivity at VHF/UHF frequencies is to use signals transmitted by existing communication satellites (operating at VHF/UHF band) as a signal of opportunity (SoOp) signal and passive receivers integrated with airborne/space borne platforms operating in the Low Earth Orbit (LEO). One of the critical components of the passive receiver is two antennas (one to receive only direct signal and other to receive only reflected signal) which need to have ideally high (>30dB) isolation. However, because of small size of host platforms and broad beam width of dipole antennas, achieving adequate isolation between two channels is a challenging problem and need to be solved for successful implementation of space borne SoOp technology for remote sensing. In this presentation a novel enabling VHF antenna technology for Cubesat platforms is presented to receive direct as well as reflected signal with needed isolation. The novel scheme also allows enhancing the gain of individual channels by factor of 2 without use of reflecting ground plane.
The integrated design and archive of space-borne signal processing and compression coding
NASA Astrophysics Data System (ADS)
He, Qiang-min; Su, Hao-hang; Wu, Wen-bo
2017-10-01
With the increasing demand of users for the extraction of remote sensing image information, it is very urgent to significantly enhance the whole system's imaging quality and imaging ability by using the integrated design to achieve its compact structure, light quality and higher attitude maneuver ability. At this present stage, the remote sensing camera's video signal processing unit and image compression and coding unit are distributed in different devices. The volume, weight and consumption of these two units is relatively large, which unable to meet the requirements of the high mobility remote sensing camera. This paper according to the high mobility remote sensing camera's technical requirements, designs a kind of space-borne integrated signal processing and compression circuit by researching a variety of technologies, such as the high speed and high density analog-digital mixed PCB design, the embedded DSP technology and the image compression technology based on the special-purpose chips. This circuit lays a solid foundation for the research of the high mobility remote sensing camera.
A survey of light-scattering techniques used in the remote monitoring of atmospheric aerosols
NASA Technical Reports Server (NTRS)
Deirmendjian, D.
1980-01-01
A critical survey of the literature on the use of light-scattering mechanisms in the remote monitoring of atmospheric aerosols, their geographical and spatial distribution, and temporal variations was undertaken to aid in the choice of future operational systems, both ground based and air or space borne. An evaluation, mainly qualitative and subjective, of various techniques and systems is carried out. No single system is found to be adequate for operational purposes. A combination of earth surface and space-borne systems based mainly on passive techniques involving solar radiation with active (lidar) systems to provide auxiliary or backup information is tentatively recommended.
Palaniyandi, M
2012-12-01
There have been several attempts made to the appreciation of remote sensing and GIS for the study of vectors, biodiversity, vector presence, vector abundance and the vector-borne diseases with respect to space and time. This study was made for reviewing and appraising the potential use of remote sensing and GIS applications for spatial prediction of vector-borne diseases transmission. The nature of the presence and the abundance of vectors and vector-borne diseases, disease infection and the disease transmission are not ubiquitous and are confined with geographical, environmental and climatic factors, and are localized. The presence of vectors and vector-borne diseases is most complex in nature, however, it is confined and fueled by the geographical, climatic and environmental factors including man-made factors. The usefulness of the present day availability of the information derived from the satellite data including vegetation indices of canopy cover and its density, soil types, soil moisture, soil texture, soil depth, etc. is integrating the information in the expert GIS engine for the spatial analysis of other geoclimatic and geoenvironmental variables. The present study gives the detailed information on the classical studies of the past and present, and the future role of remote sensing and GIS for the vector-borne diseases control. The ecological modeling directly gives us the relevant information to understand the spatial variation of the vector biodiversity, vector presence, vector abundance and the vector-borne diseases in association with geoclimatic and the environmental variables. The probability map of the geographical distribution and seasonal variations of horizontal and vertical distribution of vector abundance and its association with vector -borne diseases can be obtained with low cost remote sensing and GIS tool with reliable data and speed.
Vasu Kilaru's expertise is in Geographic Information Systems, Spatial Analysis, and satellite remote sensing particularly with respect to trying to detect ground-level fine particles using space borne instruments.
A fiber-coupled gas cell for space application
NASA Astrophysics Data System (ADS)
Thomin, Stéphane; Bera, Olivier; Beraud, Pascal; Lecallier, Arnaud; Tonck, Laurence; Belmana, Salem
2017-09-01
An increasing number of space-borne optical instruments now include fiber components. Telecom-type components have proved their reliability and versatility for space missions. Fibered lasers are now used for various purposes, such as remote IR-sounding missions, metrology, scientific missions and optical links (satellite-to-satellite, Earth-to-satellite).
Steve Frolking; Stephen Hagen; Bobby Braswell; Tom Milliman; Christina Herrick; Seth Peterson; Dar Roberts; Michael Keller; Michael Palace; Krishna Prasad Vadrevu
2017-01-01
Amazonia has experienced large-scale regional droughts that affect forest productivity and biomass stocks. Space-borne remote sensing provides basin-wide data on impacts of meteorological anomalies, an important complement to relatively limited ground observations across the Amazonâs vast and remote humid tropical forests. Morning overpass QuikScat Ku-band microwave...
NASA Technical Reports Server (NTRS)
Estes, Sue; Haynes, John; Kiang, Richard; Brown, Molly; Reisen, William
2008-01-01
Satellite earth observations present a unique vantage point of the earth's environment from space which offers a wealth of health applications for the imaginative investigator. The session will present research results of the remote sensing environmental observations of earth and health applications. This session will an overview of many of the NASA public health applications using Remote Sensing Data and will also discuss opportunities to become a research collaborator with NASA.
Emissivity of half-space random media. [in passive remote sensing
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.
1976-01-01
Scattering of electromagnetic waves by a half-space random medium with three-dimensional correlation functions is studied with the Born approximation. The emissivity is calculated from a simple integral and is illustrated for various cases. The results are valid over a wavelength range smaller or larger than the correlation lengths.
Developments in Space Research in Nigeria
NASA Astrophysics Data System (ADS)
Oke, O.
2006-08-01
Nigeria's desire to venture into space technology was first made known to ECA/ OAU member countries at an inter-governmental meeting in Addis Ababa, 1976. The Nigerian space research is highly rated in Africa in terms of reputation and scientific results. The National Space Research and Development Agency (NASRDA), Nigeria's space research coordinating body; has taken a more active role to help Nigeria's space research community to succeed internationally. The paper presents recent examples of Nigeria's successes in space and its detailed applications in areas such as remote sensing, meteorology, communication and Information Technology. and many more. It gave an analysis of the statistics of Nigerian born space scientists working in the other space-faring nations. The analysis have been used to develop a model for increasing Nigerian scientist's involvement in the development of space research in Nigeria. It concluded with some thoughts on the current and future of Nigeria's space borne scientific experiments, policies and programs.
NASA Astrophysics Data System (ADS)
Costanzo, Antonio; Montuori, Antonio; Silva, Juan Pablo; Silvestri, Malvina; Musacchio, Massimo; Buongiorno, Maria Fabrizia; Stramondo, Salvatore
2016-08-01
In this work, a web-GIS procedure to map the risk of road blockage in urban environments through the combined use of space-borne and airborne remote sensing sensors is presented. The methodology concerns (1) the provision of a geo-database through the integration of space-borne multispectral images and airborne LiDAR data products; (2) the modeling of building vulnerability, based on the corresponding 3D geometry and construction time information; (3) the GIS-based mapping of road closure due to seismic- related building collapses based on the building characteristic height and the width of the road. Experimental results, gathered for the Cosenza urban area, allow demonstrating the benefits of both the proposed approach and the GIS-based integration of multi-platforms remote sensing sensors and techniques for seismic road assessment purposes.
Satellite, environmental, and medical information applied to epidemiological monitoring
NASA Technical Reports Server (NTRS)
Roberts, Donald R.; Legters, Llewellyn J.
1991-01-01
Improved communications and space-science technologies, such as remote sensing, offer hope of new, more holistic approaches to combating many arthropod-borne disease problems. The promise offered by these technologies has surfaced at a time when global and national efforts at disease control are in decline. Indeed, these programs seem to be losing ground against the arthropod-borne diseases just as rapidly as we seem to be moving forward in technological development. Given these circumstances, we can only hope that remote sensing and geographic information system (GIS) technologies can be pressed into service to help target the temporal and spatial application of control measures and to help in developing new control strategies.
Infrared Detector Activities at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.
2008-01-01
Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.
Developments in Space Research in Nigeria
NASA Astrophysics Data System (ADS)
Oke, O.
Nigeria s desire to venture into space technology was first made known to ECA OAU member countries at an inter-governmental meeting in Addis Ababa 1976 The Nigerian space research is highly rated in Africa in terms of reputation and scientific results The National Space Research and Development Agency NASRDA Nigeria s space research coordinating body has taken a more active role to help Nigeria s space research community to succeed internationally The paper presents recent examples of Nigeria s successes in space and its detailed applications in areas such as remote sensing meteorology communication and Information Technology and many more It gave an analysis of the statistics of Nigerian born space scientists working in the other space-faring nations The analysis have been used to develop a model for increasing Nigerian scientist s involvement in the development of space research in Nigeria It concluded with some thoughts on the current and future of Nigeria s space borne scientific experiments policies and programs
Interactive information processing for NASA's mesoscale analysis and space sensor program
NASA Technical Reports Server (NTRS)
Parker, K. G.; Maclean, L.; Reavis, N.; Wilson, G.; Hickey, J. S.; Dickerson, M.; Karitani, S.; Keller, D.
1985-01-01
The Atmospheric Sciences Division (ASD) of the Systems Dynamics Laboratory at NASA's Marshall Space Flight Center (MSFC) is currently involved in interactive information processing for the Mesoscale Analysis and Space Sensor (MASS) program. Specifically, the ASD is engaged in the development and implementation of new space-borne remote sensing technology to observe and measure mesoscale atmospheric processes. These space measurements and conventional observational data are being processed together to gain an improved understanding of the mesoscale structure and the dynamical evolution of the atmosphere relative to cloud development and precipitation processes. To satisfy its vast data processing requirements, the ASD has developed a Researcher Computer System consiting of three primary computer systems which provides over 20 scientists with a wide range of capabilities for processing and displaying a large volumes of remote sensing data. Each of the computers performs a specific function according to its unique capabilities.
Multispectral image enhancement processing for microsat-borne imager
NASA Astrophysics Data System (ADS)
Sun, Jianying; Tan, Zheng; Lv, Qunbo; Pei, Linlin
2017-10-01
With the rapid development of remote sensing imaging technology, the micro satellite, one kind of tiny spacecraft, appears during the past few years. A good many studies contribute to dwarfing satellites for imaging purpose. Generally speaking, micro satellites weigh less than 100 kilograms, even less than 50 kilograms, which are slightly larger or smaller than the common miniature refrigerators. However, the optical system design is hard to be perfect due to the satellite room and weight limitation. In most cases, the unprocessed data captured by the imager on the microsatellite cannot meet the application need. Spatial resolution is the key problem. As for remote sensing applications, the higher spatial resolution of images we gain, the wider fields we can apply them. Consequently, how to utilize super resolution (SR) and image fusion to enhance the quality of imagery deserves studying. Our team, the Key Laboratory of Computational Optical Imaging Technology, Academy Opto-Electronics, is devoted to designing high-performance microsat-borne imagers and high-efficiency image processing algorithms. This paper addresses a multispectral image enhancement framework for space-borne imagery, jointing the pan-sharpening and super resolution techniques to deal with the spatial resolution shortcoming of microsatellites. We test the remote sensing images acquired by CX6-02 satellite and give the SR performance. The experiments illustrate the proposed approach provides high-quality images.
The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Tanre, D.; Remer, Lorraine
1999-01-01
Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.
NASA Technical Reports Server (NTRS)
King, Michael C.
2016-01-01
The National Aeronautics and Space Administration (NASA) has developed a system for remotely detecting the hazardous conditions leading to aircraft icing in flight, the NASA Icing Remote Sensing System (NIRSS). Newly developed, weather balloon-borne instruments have been used to obtain in-situ measurements of supercooled liquid water during March 2014 to validate the algorithms used in the NIRSS. A mathematical model and a processing method were developed to analyze the data obtained from the weather balloon soundings. The data from soundings obtained in March 2014 were analyzed and compared to the output from the NIRSS and pilot reports.
Satellites as Sentinels for Environment & Health
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2002-01-01
Satellites as Sentinels for Environment & Health Remotely-sensed data and observations are providing powerful new tools for addressing human and ecosystem health by enabling improved understanding of the relationships and linkages between health-related environmental parameters and society as well as techniques for early warning of potential health problems. NASA Office of Earth Science Applications Program has established a new initiative to utilize its data, expertise, and observations of the Earth for public health applications. In this initiative, lead by Goddard Space Flight Center, remote sensing, geographic information systems, improved computational capabilities, and interdisciplinary research between the Earth and health science communities are being combined in rich collaborative efforts resulting in more rapid problem-solving, early warning, and prevention in global health issues. This presentation provides a number of recent examples of applications of advanced remote sensing and other technologies to health.and security issues related to the following: infectious and vector-borne diseases; urban, regional and global air pollution; African and Asian airborne dust; heat stress; UV radiation; water-borne disease; extreme weather; contaminant pathways (ocean, atmosphere, ice)
Balloon-borne measurements of middle atmosphere aerosols and trace gases in Antarctica
NASA Technical Reports Server (NTRS)
Hofmann, D. J.
1988-01-01
This paper reviews data on in situ balloon-borne measurements on stratospheric ozone concentrations and aerosol contents obtained prior to 1986, along with the measurements obtained in 1986 during the National Ozone Expedition. The data indicate that the phenomenon of ozone depletion appears to be shaped spatially and temporally by dynamical stratospheric phenomena. In terms of Antarctic stratospheric research, it appears that the most important problems at the moment involve delineating the springtime ozone depletion through accurate in situ measurements of temperature, trace gas, and particle size (in addition to remote sensing from space).
The NASA CYGNSS mission: a pathfinder for GNSS scatterometry remote sensing applications
NASA Astrophysics Data System (ADS)
Rose, Randy; Gleason, Scott; Ruf, Chris
2014-10-01
Global Navigation Satellite System (GNSS) based scatterometry offers breakthrough opportunities for wave, wind, ice, and soil moisture remote sensing. Recent developments in electronics and nano-satellite technologies combined with modeling techniques developed over the past 20 years are enabling a new class of remote sensing capabilities that present more cost effective solutions to existing problems while opening new applications of Earth remote sensing. Key information about the ocean and global climate is hidden from existing space borne observatories because of the frequency band in which they operate. Using GNSS-based bi-static scatterometry performed by a constellation of microsatellites offers remote sensing of ocean wave, wind, and ice data with unprecedented temporal resolution and spatial coverage across the full dynamic range of ocean wind speeds in all precipitating conditions. The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a space borne mission being developed to study tropical cyclone inner core processes. CYGNSS consists of 8 GPS bi-static radar receivers to be deployed on separate micro-satellites in October 2016. CYGNSS will provide data to address what are thought to be the principle deficiencies with current tropical cyclone intensity forecasts: inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the tropical cyclone life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. It is anticipated that numerous additional Earth science applications can also benefit from the cost effective high spatial and temporal sampling capabilities of GNSS remote sensing. These applications include monitoring of rough and dangerous sea states, global observations of sea ice cover and extent, meso-scale ocean circulation studies, and near surface soil moisture observations. This presentation provides a primer for GNSS based scatterometry, an overview of NASA's CYGNSS mission and its expected performance, as well as a summary of possible other GNSS based remote sensing applications.
Surveillance of Arthropod Vector-Borne Infectious Diseases Using Remote Sensing Techniques: A Review
Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha
2007-01-01
Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed. PMID:17967056
Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring
Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael
2015-01-01
Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413
Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.
Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael
2015-09-30
Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.
Tourre, Yves M; Lacaux, Jean-Pierre; Vignolles, Cécile; Lafaye, Murielle
2009-11-11
Climate and environment vary across many spatio-temporal scales, including the concept of climate change, which impact on ecosystems, vector-borne diseases and public health worldwide. To develop a conceptual approach by mapping climatic and environmental conditions from space and studying their linkages with Rift Valley Fever (RVF) epidemics in Senegal. Ponds in which mosquitoes could thrive were identified from remote sensing using high-resolution SPOT-5 satellite images. Additional data on pond dynamics and rainfall events (obtained from the Tropical Rainfall Measuring Mission) were combined with hydrological in-situ data. Localisation of vulnerable hosts such as penned cattle (from QuickBird satellite) were also used. Dynamic spatio-temporal distribution of Aedes vexans density (one of the main RVF vectors) is based on the total rainfall amount and ponds' dynamics. While Zones Potentially Occupied by Mosquitoes are mapped, detailed risk areas, i.e. zones where hazards and vulnerability occur, are expressed in percentages of areas where cattle are potentially exposed to mosquitoes' bites. This new conceptual approach, using precise remote-sensing techniques, simply relies upon rainfall distribution also evaluated from space. It is meant to contribute to the implementation of operational early warning systems for RVF based on both natural and anthropogenic climatic and environmental changes. In a climate change context, this approach could also be applied to other vector-borne diseases and places worldwide.
NASA Technical Reports Server (NTRS)
Chandrasekar, V.; Hou, Arthur; Smith, Eric; Bringi, V. N.; Rutledge, S. A.; Gorgucci, E.; Petersen, W. A.; SkofronickJackson, Gail
2008-01-01
Dual-polarization weather radars have evolved significantly in the last three decades culminating in the operational deployment by the National Weather Service. In addition to operational applications in the weather service, dual-polarization radars have shown significant potential in contributing to the research fields of ground based remote sensing of rainfall microphysics, study of precipitation evolution and hydrometeor classification. Furthermore the dual-polarization radars have also raised the awareness of radar system aspects such as calibration. Microphysical characterization of precipitation and quantitative precipitation estimation are important applications that are critical in the validation of satellite borne precipitation measurements and also serves as a valuable tool in algorithm development. This paper presents the important role played by dual-polarization radar in validating space borne precipitation measurements. Starting from a historical evolution, the various configurations of dual-polarization radar are presented. Examples of raindrop size distribution retrievals and hydrometeor type classification are discussed. The quantitative precipitation estimation is a product of direct relevance to space borne observations. During the TRMM program substantial advancement was made with ground based polarization radars specially collecting unique observations in the tropics which are noted. The scientific accomplishments of relevance to space borne measurements of precipitation are summarized. The potential of dual-polarization radars and opportunities in the era of global precipitation measurement mission is also discussed.
i-LOVE: ISS-JEM lidar for observation of vegetation environment
NASA Astrophysics Data System (ADS)
Asai, Kazuhiro; Sawada, Haruo; Sugimoto, Nobuo; Mizutani, Kohei; Ishii, Shoken; Nishizawa, Tomoaki; Shimoda, Haruhisa; Honda, Yoshiaki; Kajiwara, Koji; Takao, Gen; Hirata, Yasumasa; Saigusa, Nobuko; Hayashi, Masatomo; Oguma, Hiroyuki; Saito, Hideki; Awaya, Yoshio; Endo, Takahiro; Imai, Tadashi; Murooka, Jumpei; Kobatashi, Takashi; Suzuki, Keiko; Sato, Ryota
2012-11-01
It is very important to watch the spatial distribution of vegetation biomass and changes in biomass over time, representing invaluable information to improve present assessments and future projections of the terrestrial carbon cycle. A space lidar is well known as a powerful remote sensing technology for measuring the canopy height accurately. This paper describes the ISS(International Space Station)-JEM(Japanese Experimental Module)-EF(Exposed Facility) borne vegetation lidar using a two dimensional array detector in order to reduce the root mean square error (RMSE) of tree height due to sloped surface.
NASA Astrophysics Data System (ADS)
Podest, E.; De La Torre Juarez, M.; McDonald, K. C.; Jensen, K.; Ceccato, P.
2014-12-01
Predicting the risk of vector-borne disease outbreaks is a required step towards their control and eradication. Satellite observations can provide needed data to support agency decisions with respect to deployment of preventative measures and control resources. The coverage and persistence of open water is one of the primary indicators of conditions suitable for mosquito breeding habitats. This is currently a poorly measured variable due to its spatial and temporal variability across landscapes, especially in remote areas. Here we develop a methodology for monitoring these conditions through optical remote sensing images from Landsat. We pansharpen the images and apply a decision tree classification approach using Random Forests to generate 15 meter resolution maps of open water. In addition, since some mosquitos breed in clear water while others in turbid water, we classify water bodies according to their water color properties and we validate the results using field knowledge. We focus in East Africa where we assses the usefulness of these products to improve prediction of malaria outbreaks. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Charged dust phenomena in the near-Earth space environment.
Scales, W A; Mahmoudian, A
2016-10-01
Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.
Progress in Laser Risk Reduction for 1 micron lasers at GSFC
NASA Technical Reports Server (NTRS)
Heaps, William S.
2007-01-01
In recent years, lasers have proven themselves to be invaluable to a variety of remote sensing applications. LIDAR techniques have been used to measure atmospheric aerosols and a variety of trace species, profile winds, and develop high resolution topographical maps. Often it would be of great advantage to make these measurements from an orbiting satellite. Unfortunately, the space environment is a challenging one for the high power lasers that would enable many LIDAR missions. Optical mounts must maintain precision alignment during and after launch. Outgassing materials in the vacuum of space lead to contamination of laser optics. Electronic components and optical materials must survive the space environment, including a vacuum atmosphere, thermal cycling, and radiation exposure. Laser designs must be lightweight, compact, and energy efficient. Many LIDAR applications require frequency conversion systems that have never been designed or tested for use in space. For the last six years the National Aeronautical and Space Administration (NASA) has undertaken a program specifically directed at addressing the durability and long term reliability issues that face space-borne lasers. The effort is shared between NASA Goddard Space Flight Center in Greenbelt, Maryland, and NASA Langley Research Center in Hampton, Virginia. This paper is an overview of the issues facing space-borne lasers and the efforts that Goddard has been pursuing to address them.
Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang
2016-01-06
Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users.
Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang
2016-01-01
Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users. PMID:26751445
Research on the space-borne coherent wind lidar technique and the prototype experiment
NASA Astrophysics Data System (ADS)
Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao
2016-10-01
Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.
NASA Astrophysics Data System (ADS)
Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang
2017-08-01
According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.
Tourre, Yves M.; Lacaux, Jean-Pierre; Vignolles, Cécile; Lafaye, Murielle
2009-01-01
Background Climate and environment vary across many spatio-temporal scales, including the concept of climate change, which impact on ecosystems, vector-borne diseases and public health worldwide. Objectives To develop a conceptual approach by mapping climatic and environmental conditions from space and studying their linkages with Rift Valley Fever (RVF) epidemics in Senegal. Design Ponds in which mosquitoes could thrive were identified from remote sensing using high-resolution SPOT-5 satellite images. Additional data on pond dynamics and rainfall events (obtained from the Tropical Rainfall Measuring Mission) were combined with hydrological in-situ data. Localisation of vulnerable hosts such as penned cattle (from QuickBird satellite) were also used. Results Dynamic spatio-temporal distribution of Aedes vexans density (one of the main RVF vectors) is based on the total rainfall amount and ponds’ dynamics. While Zones Potentially Occupied by Mosquitoes are mapped, detailed risk areas, i.e. zones where hazards and vulnerability occur, are expressed in percentages of areas where cattle are potentially exposed to mosquitoes’ bites. Conclusions This new conceptual approach, using precise remote-sensing techniques, simply relies upon rainfall distribution also evaluated from space. It is meant to contribute to the implementation of operational early warning systems for RVF based on both natural and anthropogenic climatic and environmental changes. In a climate change context, this approach could also be applied to other vector-borne diseases and places worldwide. PMID:20052381
Regression techniques for oceanographic parameter retrieval using space-borne microwave radiometry
NASA Technical Reports Server (NTRS)
Hofer, R.; Njoku, E. G.
1981-01-01
Variations of conventional multiple regression techniques are applied to the problem of remote sensing of oceanographic parameters from space. The techniques are specifically adapted to the scanning multichannel microwave radiometer (SMRR) launched on the Seasat and Nimbus 7 satellites to determine ocean surface temperature, wind speed, and atmospheric water content. The retrievals are studied primarily from a theoretical viewpoint, to illustrate the retrieval error structure, the relative importances of different radiometer channels, and the tradeoffs between spatial resolution and retrieval accuracy. Comparisons between regressions using simulated and actual SMMR data are discussed; they show similar behavior.
NASA Technical Reports Server (NTRS)
Tsang, L.; Kubacsi, M. C.; Kong, J. A.
1981-01-01
The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.
Advanced Aerobots for Scientific Exploration
NASA Technical Reports Server (NTRS)
Behar, Alberto; Raymond, Carol A.; Matthews, Janet B.; Nicaise, Fabien; Jones, Jack A.
2010-01-01
The Picosat and Uninhabited Aerial Vehicle Systems Engineering (PAUSE) project is developing balloon-borne instrumentation systems as aerobots for scientific exploration of remote planets and for diverse terrestrial purposes that can include scientific exploration, mapping, and military surveillance. The underlying concept of balloon-borne gondolas housing outer-space-qualified scientific instruments and associated data-processing and radio-communication equipment is not new. Instead, the novelty lies in numerous design details that, taken together, make a PAUSE aerobot smaller, less expensive, and less massive, relative to prior aerobots developed for similar purposes: Whereas the gondola (including the instrumentation system housed in it) of a typical prior aerobot has a mass of hundreds of kilograms, the mass of the gondola (with instrumentation system) of a PAUSE aerobot is a few kilograms.
NASA Astrophysics Data System (ADS)
Anh, N. K.; Liou, Y. A.
2017-12-01
Ecological and climate indicators play a vital role in defining patterns of human activities and behaviors, such as seasonal features, migration, winter-summer lifestyles, which in turn might be associated with vector-borne disease habitats and transmission risks. Remote sensing has been instrumental in deriving environmental variables and indicators. GIS is shown to be a powerful tool in spatiotemporal visualization and distribution of vector-borne diseases and for analysis of associations between environmental conditions and characteristics of vector-borne habitats. Vietnam is in the sub-tropical climate zone with high humidity and abundant precipitation, while the distribution of precipitation is uneven leading to frequently annual occurrence of drought and flood disasters. Moreover, urban heat island effect is significantly enhanced in urbanized areas in recent years. The increase in the frequency and magnitude of severity of weather extremes that are potentially linked to climate change and anthropogenic processes have highlighted the demand of research into health risk assessment and adaptive capacity. This research focuses on the analysis of physical features of environmental indicators and its association with vector-borne diseases as well as adaptive capacity. The study illustrates how remotely sensed data has been utilized in geohealth applications, surveillance, and health risk mapping. In addition, promising possibilities of allowing disease early-warning systems with citizen participation platform will be proposed. Keywords: Vector-borne diseases; environmental indicators; remote sensing; GIS; Vietnam.
NASA Technical Reports Server (NTRS)
Soman, Vishwas V.; Crosson, William L.; Laymon, Charles; Tsegaye, Teferi
1998-01-01
Soil moisture is an important component of analysis in many Earth science disciplines. Soil moisture information can be obtained either by using microwave remote sensing or by using a hydrologic model. In this study, we combined these two approaches to increase the accuracy of profile soil moisture estimation. A hydrologic model was used to analyze the errors in the estimation of soil moisture using the data collected during Huntsville '96 microwave remote sensing experiment in Huntsville, Alabama. Root mean square errors (RMSE) in soil moisture estimation increase by 22% with increase in the model input interval from 6 hr to 12 hr for the grass-covered plot. RMSEs were reduced for given model time step by 20-50% when model soil moisture estimates were updated using remotely-sensed data. This methodology has a potential to be employed in soil moisture estimation using rainfall data collected by a space-borne sensor, such as the Tropical Rainfall Measuring Mission (TRMM) satellite, if remotely-sensed data are available to update the model estimates.
NASA Astrophysics Data System (ADS)
Said, N. M.; Mahmud, M. R.; Hasan, R. C.
2017-10-01
Over the years, the acquisition technique of bathymetric data has evolved from a shipborne platform to airborne and presently, utilising space-borne acquisition. The extensive development of remote sensing technology has brought in the new revolution to the hydrographic surveying. Satellite-Derived Bathymetry (SDB), a space-borne acquisition technique which derives bathymetric data from high-resolution multispectral satellite imagery for various purposes recently considered as a new promising technology in the hydrographic surveying industry. Inspiring by this latest developments, a comprehensive study was initiated by National Hydrographic Centre (NHC) and Universiti Teknologi Malaysia (UTM) to analyse SDB as a means for shallow water area acquisition. By adopting additional adjustment in calibration stage, a marginal improvement discovered on the outcomes from both Stumpf and Lyzenga algorithms where the RMSE values for the derived (predicted) depths were 1.432 meters and 1.728 meters respectively. This paper would deliberate in detail the findings from the study especially on the accuracy level and practicality of SDB over the tropical environmental setting in Malaysia.
Hot rocket plume experiment - Survey and conceptual design. [of rhenium-iridium bipropellants
NASA Technical Reports Server (NTRS)
Millard, Jerry M.; Luan, Taylor W.; Dowdy, Mack W.
1992-01-01
Attention is given to a space-borne engine plume experiment study to fly an experiment which will both verify and quantify the reduced contamination from advanced rhenium-iridium earth-storable bipropellant rockets (hot rockets) and provide a correlation between high-fidelity, in-space measurements and theoretical plume and surface contamination models. The experiment conceptual design is based on survey results from plume and contamination technologists throughout the U.S. With respect to shuttle use, cursory investigations validate Hitchhiker availability and adaptability, adequate remote manipulator system (RMS) articulation and dynamic capability, acceptable RMS attachment capability, adequate power and telemetry capability, and adequate flight altitude and attitude/orbital capability.
NASA Astrophysics Data System (ADS)
Amato, Umberto; Antoniadis, Anestis; De Feis, Italia; Masiello, Guido; Matricardi, Marco; Serio, Carmine
2009-03-01
Remote sensing of atmosphere is changing rapidly thanks to the development of high spectral resolution infrared space-borne sensors. The aim is to provide more and more accurate information on the lower atmosphere, as requested by the World Meteorological Organization (WMO), to improve reliability and time span of weather forecasts plus Earth's monitoring. In this paper we show the results we have obtained on a set of Infrared Atmospheric Sounding Interferometer (IASI) observations using a new statistical strategy based on dimension reduction. Retrievals have been compared to time-space colocated ECMWF analysis for temperature, water vapor and ozone.
Remote sensing of earth terrain
NASA Technical Reports Server (NTRS)
Yueh, Herng-Aung; Kong, Jin AU
1991-01-01
In remote sensing, the encountered geophysical media such as agricultural canopy, forest, snow, or ice are inhomogeneous and contain scatters in a random manner. Furthermore, weather conditions such as fog, mist, or snow cover can intervene the electromagnetic observation of the remotely sensed media. In the modelling of such media accounting for the weather effects, a multi-layer random medium model has been developed. The scattering effects of the random media are described by three-dimensional correlation functions with variances and correlation lengths corresponding to the fluctuation strengths and the physical geometry of the inhomogeneities, respectively. With proper consideration of the dyadic Green's function and its singularities, the strong fluctuation theory is used to calculate the effective permittivities which account for the modification of the wave speed and attenuation in the presence of the scatters. The distorted Born approximation is then applied to obtain the correlations of the scattered fields. From the correlation of the scattered field, calculated is the complete set of scattering coefficients for polarimetric radar observation or brightness temperature in passive radiometer applications. In the remote sensing of terrestrial ecosystems, the development of microwave remote sensing technology and the potential of SAR to measure vegetation structure and biomass have increased effort to conduct experimental and theoretical researches on the interactions between microwave and vegetation canopies. The overall objective is to develop inversion algorithms to retrieve biophysical parameters from radar data. In this perspective, theoretical models and experimental data are methodically interconnected in the following manner: Due to the complexity of the interactions involved, all theoretical models have limited domains of validity; the proposed solution is to use theoretical models, which is validated by experiments, to establish the region in which the radar response is most sensitive to the parameters of interest; theoretically simulated data will be used to generate simple invertible models over the region. For applications to the remote sensing of sea ice, the developed theoretical models need to be tested with experimental measurements. With measured ground truth such as ice thickness, temperature, salinity, and structure, input parameters to the theoretical models can be obtained to calculate the polarimetric scattering coefficients for radars or brightness temperature for radiometers and then compare theoretical results with experimental data. Validated models will play an important role in the interpretation and classification of ice in monitoring global ice cover from space borne remote sensors in the future. We present an inversion algorithm based on a recently developed inversion method referred to as the Renormalized Source-Type Integral Equation approach. The objective of this method is to overcome some of the limitations and difficulties of the iterative Born technique. It recasts the inversion, which is nonlinear in nature, in terms of the solution of a set of linear equations; however, the final inversion equation is still nonlinear. The derived inversion equation is an exact equation which sums up the iterative Neuman (or Born) series in a closed form and, thus, is a valid representation even in the case when the Born series diverges; hence, the name Renormalized Source-Type Integral Equation Approach.
Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions
NASA Astrophysics Data System (ADS)
Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.
2017-12-01
Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.
1994-06-01
S.C. 1992. Simulated Retrieval of Atmospheric Ozone from Aircraft ,A Interferometer Observations. Masters 7.5 thesis . University of Wisconsin...laser-based sensor system for long-path ab- presented. (p. 72) sorption measurements of atmospheric concentration and near-ir molecular spectral...performance of satellite- borne lidar-based wind sensors. (p. 247) 2:30 pm-3:00 pm COFFEE BREAK 11:20 am WB5 Simulation of space-based Doppler lidar wind SALON
Characterization of air pollution in Mexico City by remote sensing
NASA Astrophysics Data System (ADS)
Grutter, Michel; Arellano, Josue; Bezanilla, Alejandro; Friedrich, Martina; Plaza, Eddy; Rivera, Claudia; Stremme, Wolfgang
2014-05-01
Megacities, like the Mexico City Metropolitan Area, are home to a large fraction of the population of the world and a consequence is that they are one of the biggest sources of contaminants and greenhouse gases emitted to the atmosphere. The pollution is visible form space through remote sensing instruments, however, satellite observations like those with NADIR viewing geometries have decreased sensitivity near the Earth's surface and the analytical algorithms are in generally optimized to detect pollution plumes in the free troposphere or above. Ground-based observations are thus necessary in order to reduce uncertainties from satellite products. As we will show, Mexico City and its surroundings is well characterized by ground-based remote sensing measurements like from two stations with solar-absorption FTIR spectrometers and a newly formed network of MAX-DOAS and LIDAR instruments. Examples will be provided of how the evolution of the mixing-layer height is characterized and the vertical column densities and profiles of gases in and outside the urban area are continuously monitored. The combination of ground-based and space-borne measurements are used to improve the current knowledge in the spatial and temporal distribution of key pollutants from this megacity.
English/Russian terminology on radiometric calibration of space-borne optoelectronic sensors
NASA Astrophysics Data System (ADS)
Privalsky, V.; Zakharenkov, V.; Humpherys, T.; Sapritsky, V.; Datla, R.
The efficient use of data acquired through exo-atmospheric observations of the Earth within the framework of existing and newly planned programs requires a unique understanding of respective terms and definitions. Yet, the last large-scale document on the subject - The International Electrotechnical Vocabulary - had been published 18 years ago. This lack of a proper document, which would reflect the changes that had occurred in the area since that time, is especially detrimental to the developing international efforts aimed at global observations of the Earth from space such as the Global Earth Observations Program proposed by the U.S.A. at the 2003 WMO Congress. To cover this gap at least partially, a bi-lingual explanatory dictionary of terms and definitions in the area of radiometric calibration of space-borne IR sensors is developed. The objectives are to produce a uniform terminology for the global space-borne observations of the Earth, establish a unique understanding of terms and definitions by the radiometric communities, including a correspondence between the Russian and American terms and definitions, and to develop a formal English/Russian reference dictionary for use by scientists and engineers involved in radiometric observations of the Earth from space. The dictionary includes close to 400 items covering basic concepts of geometric, wave and corpuscular optics, remote sensing technologies, and ground-based calibration as well as more detailed treatment of terms and definitions in the areas of radiometric quantities, symbols and units, optical phenomena and optical properties of objects and media, and radiometric systems and their properties. The dictionary contains six chapters: Basic Concepts, Quantities, Symbols, and Units, Optical phenomena, Optical characteristics of surfaces and media, Components of Radiometric Systems, Characteristics of radiometric system components, plus English/Russian and Russian/Inglish indices.
Preferred mirror coatings for UV, visible, and IR space optical instruments
NASA Astrophysics Data System (ADS)
Heaney, James B.; Kauder, Lonny R.; Freese, Scott C.; Quijada, Manuel A.
2012-09-01
This paper will review the suitability of the common four types of reflecting surfaces - Ag, Al, Au and Be - for use aboard satellite borne remote sensing and astrophysical observatories, from the uv to far-ir spectral bands. The choice of appropriate protecting and reflectance enhancing overcoats for these reflecting metals will be discussed. Laboratory test data and optical diagnostic techniques used to verify durability of the selected coatings in a terrestrial storage environment and their sensitivity to a space radiation and cold temperature environment will be presented. For some of the selected coatings, a connection will be made between pre-launch laboratory quality checks and post-launch performance on orbit.
Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker
2018-04-02
The performance of a space-borne water vapour and temperature lidar exploiting the vibrational and pure rotational Raman techniques in the ultraviolet is simulated. This paper discusses simulations under a variety of environmental and climate scenarios. Simulations demonstrate the capability of Raman lidars deployed on-board low-Earth-orbit satellites to provide global-scale water vapour mixing ratio and temperature measurements in the lower to middle troposphere, with accuracies exceeding most observational requirements for numerical weather prediction (NWP) and climate research applications. These performances are especially attractive for measurements in the low troposphere in order to close the most critical gaps in the current earth observation system. In all climate zones, considering vertical and horizontal resolutions of 200 m and 50 km, respectively, mean water vapour mixing ratio profiling precision from the surface up to an altitude of 4 km is simulated to be 10%, while temperature profiling precision is simulated to be 0.40-0.75 K in the altitude interval up to 15 km. Performances in the presence of clouds are also simulated. Measurements are found to be possible above and below cirrus clouds with an optical thickness of 0.3. This combination of accuracy and vertical resolution cannot be achieved with any other space borne remote sensing technique and will provide a breakthrough in our knowledge of global and regional water and energy cycles, as well as in the quality of short- to medium-range weather forecasts. Besides providing a comprehensive set of simulations, this paper also provides an insight into specific possible technological solutions that are proposed for the implementation of a space-borne Raman lidar system. These solutions refer to technological breakthroughs gained during the last decade in the design and development of specific lidar devices and sub-systems, primarily in high-power, high-efficiency solid-state laser sources, low-weight large aperture telescopes, and high-gain, high-quantum efficiency detectors.
Remote Sensing Proxies for Vector-borne Disease Risk Assessment (Invited)
NASA Astrophysics Data System (ADS)
Anyamba, A.
2010-12-01
The spread of re-emerging vector-borne diseases such Rift Valley fever (RVF) and Chikungunya (CHIK) is a major issue of global public health concern. This combined with a variable climate regime has opened an avenue for satellite remote sensing to contribute towards a comprehensive understanding of some of the drivers influencing such vector-borne disease outbreaks. Satellite derived measurements such as vegetation indices, rainfall estimates, and land-surface temperature; can be used to infer the complex mosaic of factors that influence ecology and habitat suitability, emergence and population dynamics of disease vectors. However, there are still some gaps in application including appropriate temporal resolution of remote sensing measurements, the complexity of the virus-vector-disease-ecology system and human components that contribute to disease risk that need to be addressed. Geographic Distribution of Recent Rift Valley fever oubreaks
Remote sensing of fire and deforestation in the tropics from the International Space Station
NASA Astrophysics Data System (ADS)
Hoffman, James W.; Riggan, Philip J.; Brass, James A.
2000-01-01
In August of 1999 over 30,000 fire counts were registered by the Advanced Very High Resolution Radiometer aboard NOAA satellites over central Brazil, and an extensive smoke pall produced a health hazard and hindered commercial aviation across large portions of the states of Mato Grosso and Mato Grosso do Sul. Clearly fire was an important part of the Brazilian environment, but limitations in satellite and airborne remote sensing prevented a clear picture of what was burning, how much biomass was consumed, where the most critical resources were threatened, or exactly what was the global environmental impact. Another important problem that must be addressed is the deforestation of the rain forest by unauthorized logging operations. To detect these illegal clear cutting activities, continuous, high resolution monitoring must be initiated. The low altitude Space Station offers an ideal platform from which to monitor the tropical regions for both fires and deforestation from an equatorial orbit. A new micro-bolometer-based thermal imager, the FireMapper, has been designed to provide a solution for these problems in fire and resource monitoring. In this paper we describe potential applications of the FireMapper aboard the International Space Station for demonstration of space-borne fire detection and measurement. .
Implementation of RF Circuitry for Real-Time Digital Beam-Forming SAR Calibration Schemes
NASA Technical Reports Server (NTRS)
Horst, Stephen J.; Hoffman, James P.; Perkovic-Martin, Dragana; Shaffer, Scott; Thrivikraman, Tushar; Yates, Phil; Veilleux, Louise
2012-01-01
The SweepSAR architecture for space-borne remote sensing applications is an enabling technology for reducing the temporal baseline of repeat-pass interferometers while maintaining near-global coverage. As part of this architecture, real-time digital beam-forming would be performed on the radar return signals across multiple channels. Preserving the accuracy of the combined return data requires real-time calibration of the transmit and receive RF paths on each channel. This paper covers several of the design considerations necessary to produce a practical implementation of this concept.
A technique for determining cloud free versus cloud contaminated pixels in satellite imagery
NASA Technical Reports Server (NTRS)
Wohlman, Richard A.
1994-01-01
Weather forecasting has been called the second oldest profession. To do so accurately and with some consistency requires an ability to understand the processes which create the clouds, drive the winds, and produce the ever changing atmospheric conditions. Measurement of basic parameters such as temperature, water vapor content, pressure, windspeed and wind direction throughout the three dimensional atmosphere form the foundation upon which a modern forecast is created. Doppler radar, and space borne remote sensing have provided forecasters the new tools with which to ply their trade.
Intelligent Systems: Terrestrial Observation and Prediction Using Remote Sensing Data
NASA Technical Reports Server (NTRS)
Coughlan, Joseph C.
2005-01-01
NASA has made science and technology investments to better utilize its large space-borne remote sensing data holdings of the Earth. With the launch of Terra, NASA created a data-rich environment where the challenge is to fully utilize the data collected from EOS however, despite unprecedented amounts of observed data, there is a need for increasing the frequency, resolution, and diversity of observations. Current terrestrial models that use remote sensing data were constructed in a relatively data and compute limited era and do not take full advantage of on-line learning methods and assimilation techniques that can exploit these data. NASA has invested in visualization, data mining and knowledge discovery methods which have facilitated data exploitation, but these methods are insufficient for improving Earth science models that have extensive background knowledge nor do these methods refine understanding of complex processes. Investing in interdisciplinary teams that include computational scientists can lead to new models and systems for online operation and analysis of data that can autonomously improve in prediction skill over time.
Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark
2005-01-01
We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.
Spectroscopic data for thermal infrared remote sensing
NASA Technical Reports Server (NTRS)
Varanasi, P.; Nemtchinov, V.; Li, Z.
1995-01-01
There has been extensive world-wide use of chloro-fluoro-carbons (CFC's), especially CFC-11 (CFCl3) and CFC-12 (CF2Cl2), hydro-chloro-fluoro-carbons (HCFC's), HCFC-22 (CHFCl2) in particular, and sulphur hexaflouride (SF6) in numerous many industrial applications. These chemicals possess either a strong ozone-depletion potential or a global-warming potential, or both, and pose a threat to the inhabitability of our planet. Recognition of this fact has led to significant curtailment, if not total banishment, of their use globally. However, as recent satellite observations have shown, decline in their atmospheric concentrations may not be immediate. The marked depletion of ozone which has been observed in recent years at high latitudes has made infrared remote sensing of the atmosphere an activity of high priority. The success of any infrared remote sensing experiment conducted in the atmosphere depends upon the availability of accurate, high-resolution, spectroscopic data that are applicable to that experiment. This paper presents a preliminary phase of a multi-faceted work using a Fourier-transform spectrometer (FTS) which is in progress in our laboratory. The concept of how laboratory-borne measurements can be geared toward obtaining a database that is directly applicable to satellite-borne remote sensing missions is the main thrust of this paper which addresses itself to ongoing or planned international space missions. Spectroscopic data on the unresolvable bands of the above mentioned as well as several other man-made gases and on the individual spectral lines of such naturally present trace gases as CO2, N2O, NH3, and CH4 are presented. There is often significant overlap between the isolated lines of better known bands of the more abundant species and the weaker absorption features identifiable as bands of the currently less abundant CFC's, HCFC's, and SF6.
Fiber Lasers and Amplifiers for Space-based Science and Exploration
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Coyle, Barry; Numata, Kenji; Camp, Jordan; Abshire, James B.; Allan, Graham R.; Li, Steven X.;
2012-01-01
We present current and near-term uses of high-power fiber lasers and amplifiers for NASA science and spacecraft applications. Fiber lasers and amplifiers offer numerous advantages for the deployment of instruments on exploration and science remote sensing satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. NASA fiber-laser-based instruments include laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pulsed or pseudo-noise (PN) code laser ranging system in the near infrared (NIR) wavelength band. The associated fiber transmitters include high-power erbium, ytterbium, and neodymium systems and a fiber laser pumped optical parametric oscillator. We discuss recent experimental progress on these systems and instrument prototypes for ongoing development efforts.
NASA Astrophysics Data System (ADS)
Rapp, M.; Ehret, G.; Fix, A.; Wirth, M.; Amediek, A.; Kiemle, C.; Quatrevalet, M.; Butz, A.; Roiger, A.; Joeckel, P.
2017-12-01
For meeting the goals of the Paris agreement it is highly desirable to obtain objective global information on anthropogenic greenhouse gas emission rates. A promising approach for a space based observation system is the combination of active and passive remote sensing from satellites in Low Earth Orbit (LEO). While LIDAR techniques have the potential to yield low bias observations which are independent of solar illumination and hence also work during night and at polar winter latitudes, spectroscopic observations of scattered sunlight are suitable for imaging atmospheric concentrations at high spatial resolution. This presentation reviews progress and plans of work conducted at the German Aerospace Center (DLR). Regarding active remote sensing, DLR has developed the airborne Integrated Path Differential Absorption (IPDA)-Lidar CHARM-F (CO2 and CH4 Remote Monitoring—Flugzeug) for the quantification of carbon dioxide and methane column mixing ratios. CHARM-F has been deployed in an initial airborne field campaign in spring 2015 and results of strong anthropogenic sources detected during these flights will be presented. In addition, DLR is in the process of preparing an international airborne campaign (CoMet - Carbon Dioxide and Methane Mission for HALO) for April 2018 which will be supported by various in-situ, ground based, and modelling activities. These airborne field campaigns are important steps towards the German-French satellite mission MERLIN which also utilizes an IPDA-LIDAR. Also, DLR has started to further investigate concepts for a future space borne IPDA-Lidar for the quantification of strong anthropogenic CO2 point sources. Jointly with the latter, DLR is currently further studying the concept of a passive spectrometer for the observation of CO2 point emissions.
NASA Technical Reports Server (NTRS)
Salomonson, V. V. (Editor); Walter, L. S. (Editor); Maetzler, C. (Editor); Rott, H. (Editor)
1989-01-01
The present conference discusses topics in the spaceborne study of the earth's surface, crust, and lithosphere, recent results from SPOT and Landsat TM investigations, and microwave observations of snowpack and soil properties. Attention is given to airborne and satellite-borne gravimetry, stereoviewing from space, TM studies of volcanism and tectonism in central Mexico, remote sensing of volcanoes, the uses of SPOT in forest management, the tectonics of the central Andes, and the application of VLBI to crustal movement studies. Also discussed are Landsat TM band ratios for soil investigations, snow dielectric measurements, the microwave radiometry of snow, microwave signatures of bare soil, the estimation of Alpine snow properties from Landsat TM data, and an experimental study of vegetable canopy microwave emissions.
Microwave scattering and emission from a half-space anisotropic random medium
NASA Astrophysics Data System (ADS)
Mudaliar, Saba; Lee, Jay Kyoon
1990-12-01
This paper is a sequel to an earlier paper (Lee and Mudaliar, 1988) where the backscattering coefficients of a half-space anisotropic random medium were obtained. Here the bistatic scattering coefficients are calculated by solving the modified radiative transfer equations under a first-order approximation. The effects of multiple scattering on the results are observed. Emissivities are calculated and compared with those obtained using the Born approximation (single scattering). Several interesting properties of the model are brought to notice using numerical examples. Finally, as an application, the theory is used to interpret the passive remote sensing data of multiyear sea ice in the microwave frequency range. A quite close agreement between theoretical prediction and the measured data is found.
Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee
2008-01-01
From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.
Secure and Efficient Transmission of Hyperspectral Images for Geosciences Applications
NASA Astrophysics Data System (ADS)
Carpentieri, Bruno; Pizzolante, Raffaele
2017-12-01
Hyperspectral images are acquired through air-borne or space-borne special cameras (sensors) that collect information coming from the electromagnetic spectrum of the observed terrains. Hyperspectral remote sensing and hyperspectral images are used for a wide range of purposes: originally, they were developed for mining applications and for geology because of the capability of this kind of images to correctly identify various types of underground minerals by analysing the reflected spectrums, but their usage has spread in other application fields, such as ecology, military and surveillance, historical research and even archaeology. The large amount of data obtained by the hyperspectral sensors, the fact that these images are acquired at a high cost by air-borne sensors and that they are generally transmitted to a base, makes it necessary to provide an efficient and secure transmission protocol. In this paper, we propose a novel framework that allows secure and efficient transmission of hyperspectral images, by combining a reversible invisible watermarking scheme, used in conjunction with digital signature techniques, and a state-of-art predictive-based lossless compression algorithm.
NASA Technical Reports Server (NTRS)
Laymon, Charles; Srinivasan, Karthik; Limaye, Ashutosh
2011-01-01
Passive remote sensing of the Earth s surface and atmosphere from space has significant importance in operational and research environmental studies, in particular for the scientific understanding, monitoring and prediction of climate change and its impacts. Passive remote sensing requires the measurement of naturally occurring radiations, usually of very low power levels, which contain essential information on the physical process under investigation. As such, these sensed radio frequency bands are a unique natural resource enabling space borne passive sensing of the atmosphere and the Earth s surface that deserves adequate allocation to the Earth Exploration Satellite Service and absolute protection from interference. Unfortunately, radio frequency interference (RFI) is an increasing problem for Earth remote sensing, particularly for passive observations of natural emissions. Because these natural signals tend to be very weak, even low levels of interference received by a passive sensor may degrade the fidelity of scientific data. The characteristics of RFI (low-level interference and radar-pulse noise) are not well known because there has been no systematic surveillance, spectrum inventory or mapping of RFI. While conducting a flight experiment over central Tennessee in May 2010, RFI, a concern for any instrument operating in the passive L band frequency, was observed across 16 subbands between 1402-1427 MHz. Such a survey provides rare characterization data from which to further develop mitigation technologies as well as to identify bandwidths to avoid in future sensor formulation.
Soil water content spatial pattern estimated by thermal inertia from air-borne sensors
NASA Astrophysics Data System (ADS)
Coppola, Antonio; Basile, Angelo; Esposito, Marco; Menenti, Massimo; Buonanno, Maurizio
2010-05-01
Remote sensing of soil water content from air- or space-borne platforms offer the possibility to provide large spatial coverage and temporal continuity. The water content can be actually monitored in a thin soil layer, usually up to a depth of 0.05m below the soil surface. To the contrary, difficulties arise in the estimation of the water content storage along the soil profile and its spatial (horizontal) distribution, which are closely connected to soil hydraulic properties and their spatial distribution. A promising approach for estimating soil water contents profiles is the integration of remote sensing of surface water content and hydrological modeling. A major goal of the scientific group is to develop a practical and robust procedure for estimating water contents throughout the soil profile from surface water content. As a first step, in this work, we will show some preliminary results from aircraft images analysis and their validation by field campaigns data. The data extracted from the airborne sensors provided the opportunity of retrieving land surface temperatures with a very high spatial resolution. The surface water content pattern, as deduced by the thermal inertia estimations, was compared to the surface water contents maps measured in situ by time domain reflectometry-based probes.
Applications of the Hyper Angular Rainbow Polarimeter (HARP) instrument from aircraft and from space
NASA Astrophysics Data System (ADS)
Martins, J. V.; Fernandez Borda, R. A.; McBride, B.; Remer, L. A.; Barbosa, H. M.; Dubovik, O.
2017-12-01
The remote sensing of aerosol and cloud microphysics is essential for the global assessment of aerosol and cloud properties. Current spectral techniques utilized by MODIS, VIIRS and similar sensors lack details on the retrieval of the cloud and aerosol particle microphysical properties desired by the scientific community. Multi-spectral hyperangular polarization measurements provide enough information for this additional microphysical retrievals. The HARP (HyperAngular Rainbow Polarimeter) is a compact and modular imaging instrument with wide Field Of View (94 deg cross track and up to 114 degrees along track) and up to 60 along track viewing angles. Spectrally, HARP is envisioned to have modules in the UV, VNIR and SWIR ranges. Currently there are two existing HARP VNIR sensors, for airborne (AirHARP) and space-borne applications respectively, both with 4 wavelengths centered at 440, 550, 670, and 865nm. The space-borne HARP sensor has been designed for a 3U CubeSat satellite currently scheduled for launch to the International Space Station in January 2018 and to be released as a free flying satellite shortly after. At this orbit HARP will provide pixel resolution at the ground of about 400m, which will be binned to coarse resolutions (e.g. 2.5 Km) for data rate reduction. The AirHARP instrument has recently flown in the NASA Langley UC12 aircraft during the LMOS (Lake Michigan Ozone Study) collecting a large data set on aerosol, clouds, and surface properties. AirHARP will also fly in the ACEPOL campaign on board the NASA ER2 aircraft in October/November 2017. These campaigns are supporting HARP's algorithm development and validation in preparation to HARP's Cubesat launch and possibly other HARP space-borne missions. This presentation will describe details of the HARP and AirHARP instruments, as well and preliminary results with level 1 and level 2 data collected during the LMOS and the ACEPOL aircraft campaigns showing clouds and aerosol retrieval results.
THE NEW DIMENSIONS OF REMOTE SENSING AND GLOBAL SECURITY
Remote sensing as a science and as a paradigm was borne from the critical need for battlefield intelligence and grew and thrived as one of the fundamental cornerstones of national security. To a great extent, the development ofmany aspects and accepted principals of remote sensin...
Analysis of Radar and Optical Space Borne Data for Large Scale Topographical Mapping
NASA Astrophysics Data System (ADS)
Tampubolon, W.; Reinhardt, W.
2015-03-01
Normally, in order to provide high resolution 3 Dimension (3D) geospatial data, large scale topographical mapping needs input from conventional airborne campaigns which are in Indonesia bureaucratically complicated especially during legal administration procedures i.e. security clearance from military/defense ministry. This often causes additional time delays besides technical constraints such as weather and limited aircraft availability for airborne campaigns. Of course the geospatial data quality is an important issue for many applications. The increasing demand of geospatial data nowadays consequently requires high resolution datasets as well as a sufficient level of accuracy. Therefore an integration of different technologies is required in many cases to gain the expected result especially in the context of disaster preparedness and emergency response. Another important issue in this context is the fast delivery of relevant data which is expressed by the term "Rapid Mapping". In this paper we present first results of an on-going research to integrate different data sources like space borne radar and optical platforms. Initially the orthorectification of Very High Resolution Satellite (VHRS) imagery i.e. SPOT-6 has been done as a continuous process to the DEM generation using TerraSAR-X/TanDEM-X data. The role of Ground Control Points (GCPs) from GNSS surveys is mandatory in order to fulfil geometrical accuracy. In addition, this research aims on providing suitable processing algorithm of space borne data for large scale topographical mapping as described in section 3.2. Recently, radar space borne data has been used for the medium scale topographical mapping e.g. for 1:50.000 map scale in Indonesian territories. The goal of this on-going research is to increase the accuracy of remote sensing data by different activities, e.g. the integration of different data sources (optical and radar) or the usage of the GCPs in both, the optical and the radar satellite data processing. Finally this results will be used in the future as a reference for further geospatial data acquisitions to support topographical mapping in even larger scales up to the 1:10.000 map scale.
Unmanned Aerial Mass Spectrometer Systems for In-Situ Volcanic Plume Analysis
NASA Astrophysics Data System (ADS)
Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C. Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin
2015-02-01
Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis.
Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin
2015-02-01
Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
Remote sensing and human health: new sensors and new opportunities.
Beck, L R; Lobitz, B M; Wood, B L
2000-01-01
Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Système Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.
Remote sensing and human health: new sensors and new opportunities
NASA Technical Reports Server (NTRS)
Beck, L. R.; Lobitz, B. M.; Wood, B. L.
2000-01-01
Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Systeme Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.
NASA Technical Reports Server (NTRS)
1992-01-01
The objectives, status, and accomplishments of the research tasks supported under the NASA Upper Atmosphere Research Program (UARP) are presented. The topics covered include the following: balloon-borne in situ measurements; balloon-borne remote measurements; ground-based measurements; aircraft-borne measurements; rocket-borne measurements; instrument development; reaction kinetics and photochemistry; spectroscopy; stratospheric dynamics and related analysis; stratospheric chemistry, analysis, and related modeling; and global chemical modeling.
Remote Sensing the Patterns of Vector-borne Disease in El Nino and non-El Nino Years
NASA Technical Reports Server (NTRS)
Wood, B. L.; Chang, J.; Lobitz, B.; Beck, L.; DAntoni, Hector (Technical Monitor)
1997-01-01
The relationship between El Nino and non-El Nino and the patterns of vector-borne disease can be viewed at a variety of spatial and temporal scales. At one extreme are long term predictions of changing precipitation and temperature patterns at continental and global scales. At the opposite extreme are the local or site specific ecological changes associated with the long term events. In order to understand and address the human health consequences of El Nino events, especially the patterns of vector-borne diseases, it is necessary to combine both scales of observation. At a local or regional scale the patterns of vector-borne diseases are determined by temperature, precipitation, and habitat availability. These factors, as well as disease incidence can be altered by El Nino events. Remote sensing data such as that acquired by the NOAA AVHRR and Landsat TM sensors can be used to characterize and monitor changing ecological conditions and therefore predict vector-borne disease patterns. The authors present the results of preliminary work on the analysis of historical AVHRR and TM data acquired during El Nino and nonfatal Nino years to characterize ecological conditions in Peru on a monthly basis. This information will then be combined with disease data to determine the relationship between changes in ecological conditions and disease incidence. Our goal is to produce a sequence of remotely sensed images which can be used to show the ecological and disease patterns associated with long term El Nino events and predictions.
Remote sensing - A new view for public health
NASA Technical Reports Server (NTRS)
Morrison, D. R.; Barnes, C. M.; Fuller, C. E.
1973-01-01
It is shown that the technology of remote sensing can be of great importance to the field of public health. This possibility is based on the deepened understanding of the biologies and ecologies of the vector/organism/host interelationships of arthropod-, soil-, and water-borne diseases to result from the information that remote sensing can provide.
Extreme Weather Events and Impacts on Vector-borne Diseases and Agriculture
USDA-ARS?s Scientific Manuscript database
Extreme weather events during the period 2010-2012 impacted agriculture and vector-borne disease throughout the world. We evaluated specific weather events with satellite remotely sensed environmental data and evaluated crop production and diseases associated with these events. Significant droughts ...
A potential hyperspectral remote sensing imager for water quality measurements
NASA Astrophysics Data System (ADS)
Zur, Yoav; Braun, Ofer; Stavitsky, David; Blasberger, Avigdor
2003-04-01
Utilization of Pan Chromatic and Multi Spectral Remote Sensing Imagery is wide spreading and becoming an established business for commercial suppliers of such imagery like ISI and others. Some emerging technologies are being used to generate Hyper-Spectral imagery (HSI) by aircraft as well as other platforms. The commercialization of such technology for Remote Sensing from space is still questionable and depends upon several parameters including maturity, cost, market reception and many others. HSI can be used in a variety of applications in agriculture, urban mapping, geology and others. One outstanding potential usage of HSI is for water quality monitoring, a subject studied in this paper. Water quality monitoring is becoming a major area of interest in HSI due to the increase in water demand around the globe. The ability to monitor water quality in real time having both spatial and temporal resolution is one of the advantages of Remote Sensing. This ability is not limited only for measurements of oceans and inland water, but can be applied for drinking and irrigation water reservoirs as well. HSI in the UV-VNIR has the ability to measure a wide range of constituents that define water quality. Among the constituents that can be measured are the pigment concentration of various algae, chlorophyll a and c, carotenoids and phycocyanin, thus enabling to define the algal phyla. Other parameters that can be measured are TSS (Total Suspended Solids), turbidity, BOD (Biological Oxygen Demand), hydrocarbons, oxygen demand. The study specifies the properties of such a space borne device that results from the spectral signatures and the absorption bands of the constituents in question. Other parameters considered are the repetition of measurements, the spatial aspects of the sensor and the SNR of the sensor in question.
Woerd, Hendrik J van der; Wernand, Marcel R
2015-10-09
The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne "ocean colour" instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10) of narrow (≈10 nm) bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data. In this paper we re-introduce colour as a valuable parameter that can be expressed mainly by the hue angle (α). Based on a set of 500 synthetic spectra covering a broad range of natural waters a simple algorithm is developed to derive the hue angle from SeaWiFS, MODIS, MERIS and OLCI data. The algorithm consists of a weighted linear sum of the remote sensing reflectance in all visual bands plus a correction term for the specific band-setting of each instrument. The algorithm is validated by a set of 603 hyperspectral measurements from inland-, coastal- and near-ocean waters. We conclude that the hue angle is a simple objective parameter of natural waters that can be retrieved uniformly for all space-borne ocean colour instruments.
Four Decades of Space-Borne Radio Sounding
NASA Technical Reports Server (NTRS)
Benson, Robert F.
2010-01-01
A review is given of the 38 rocket, satellite, and planetary payloads dedicated to ionospheric/magnetospheric radio sounding since 1961. Between 1961 and 1995, eleven sounding-rocket payloads from four countries evolved from proof-of-concept flights to sophisticated instruments. Some involved dual payloads, with the sounder transmitter on one and the sounder receiver on the other. The rocket sounders addressed specific space-plasma-wave questions, and provided improved measurements of ionospheric electron-density (N(sub e)) field-aligned irregularities (FAI). Four countries launched 12 ionospheric topside-sounder satellites between 1962 and 1994, and an ionospheric sounder was placed on the Mir Space Station in 1998. Eleven magnetospheric radio sounders, most of the relaxation type, were launched from 1977 to 2000. The relaxation sounders used low-power transmitters, designed to stimulate plasma resonances for accurate local Ne determinations. The latest magnetospheric sounder designed for remote sensing incorporated long antennas and digital signal processing techniques to overcome the challenges posed by low Ne values and large propagation distances. Three radio sounders from three countries were included on payloads to extraterrestrial destinations from 1990 to 2003. The scientific accomplishments of space-borne radio sounders included (1) a wealth of global N(sub e) information on the topside ionosphere and magnetosphere, based on vertical and magnetic-field-aligned N(sub e) profiles; (2) accurate in-situ N(sub e) values, even under low-density conditions; and (3) fundamental advances in our understanding of the excitation and propagation of plasma waves, which have even led to the prediction of a new plasma-wave mode.
NASA Astrophysics Data System (ADS)
Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan
2017-04-01
Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.
sCMOS detector for imaging VNIR spectrometry
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian
2013-09-01
The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.
NASA Technical Reports Server (NTRS)
Diak, George R.; Stewart, Tod R.
1989-01-01
A method is presented for evaluating the fluxes of sensible and latent heating at the land surface, using satellite-measured surface temperature changes in a composite surface layer-mixed layer representation of the planetary boundary layer. The basic prognostic model is tested by comparison with synoptic station information at sites where surface evaporation climatology is well known. The remote sensing version of the model, using satellite-measured surface temperature changes, is then used to quantify the sharp spatial gradient in surface heating/evaporation across the central United States. An error analysis indicates that perhaps five levels of evaporation are recognizable by these methods and that the chief cause of error is the interaction of errors in the measurement of surface temperature change with errors in the assigment of surface roughness character. Finally, two new potential methods for remote sensing of the land-surface energy balance are suggested which will relay on space-borne instrumentation planned for the 1990s.
Working Toward a Healthy Planet
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2003-01-01
Using information from NASA s Earth Science Public Health Applications Program, Dr. Maynard will address how remote sensing data and associated technologies can be used toward a better understanding of the links among human health, the environment and weather/climate - and, how this increased understanding plus improved information sharing can empower local health and environmental decision-makers to better predict climate-related health problems, take preventive measures, and improve response actions. Remotely-sensed data and observations are providing powerful new tools for addressing climate and environment-related human health problems through increased capabilities for monitoring and surveillance of parameters useful to such problems as infectious and vector-borne diseases, air and water quality, harmful algal blooms, UV radiation, contaminant and pathogen transport in air and water, and thermal stress. NASA s multi-disciplinary scientific team is demonstrating how satellites from their unique vantage point in space can serve as sentinels for weather, climate, and health problems through studies on asthma, malaria, Rift Valley Fever, Asian and African dust, and West Nile Virus
NASA Technical Reports Server (NTRS)
Johnson, J. R.; Ruff, S. W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N. A.; Cockell, C.; Gazis, P.; Newsom, H. E.
2000-01-01
The 1999 Marsokhod Field Experiment (MFE) provided an opportunity to test the suitability of rover-borne visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site.
Preface: Electromagnetic and Light Scattering by Nonspherical Particles XIV
NASA Technical Reports Server (NTRS)
Dubovik, Oleg; Labonnete, Laurent; Litvinov, Pavel; Parol, Frederic; Mischenko, Michael
2014-01-01
The 14th Electromagnetic and Light Scattering Conference (ELS-XIV) was held at the Universit de Lille 1, Villeneuve d'Ascq, France on 17-21 June 2013. The conference was attended by 200 scientists from 26 countries. The scientific program included one plenary lecture, 12 invited reviews, 100 contributed oral talks, and 86 poster presentations. The program, the abstracts, and the slides of the oral presentations are available at the conference web site http:www-loa.univ-lille1.frELS-XIV. To highlight one of the traditional ELS themes, the ELS-XIV featured a special session on Remote sensing of aerosols and clouds using polarimetric observations. This session was sponsored and co-organized by the French space agency CNES and attracted representatives from nearly all research teams word-wide involved in the development and active use of space-borne, in situ, and ground-based polarimetric observations.
Aerosol Absorption Measurements from LANDSAT and CIMEL
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Tanre, D.; Karnieli, A.; Remer, L.; Holben, B.
1999-01-01
Spectral remote observations of dust properties from space and from the ground create a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat space-borne measurements at 0.47 to 2.2 micrometer over Senegal with ground-based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater than 0.6 micrometer. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large-scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.
Passive and Active Detection of Clouds: Comparisons between MODIS and GLAS Observations
NASA Technical Reports Server (NTRS)
Mahesh, Ashwin; Gray, Mark A.; Palm, Stephen P.; Hart, William D.; Spinhirne, James D.
2003-01-01
The Geoscience Laser Altimeter System (GLAS), launched on board the Ice, Cloud and Land Elevation Satellite in January 2003 provides space-borne laser observations of atmospheric layers. GLAS provides opportunities to validate passive observations of the atmosphere for the first time from space with an active optical instrument. Data from the Moderate Resolution Imaging Spectrometer aboard the Aqua satellite is examined along with GLAS observations of cloud layers. In more than three-quarters of the cases, MODIS scene identification from spectral radiances agrees with GLAS. Disagreement between the two platforms is most significant over snow-covered surfaces in the northern hemisphere. Daytime clouds detected by GLAS are also more easily seen in the MODIS data as well, compared to observations made at night. These comparisons illustrate the capabilities of active remote sensing to validate and assess passive measurements, and also to complement them in studies of atmospheric layers.
Geodetic glacier mass balancing on ice caps - inseparably connected to firn modelling?
NASA Astrophysics Data System (ADS)
Saß, Björn L.; Sauter, Tobias; Seehaus, Thorsten; Braun, Matthias H.
2017-04-01
Observed melting of glaciers and ice caps in the polar regions contribute to the ongoing global sea level rise (SLR). A rising sea level and its consequences are one of the major challenges for coastal societies in the next decades to centuries. Gaining knowledge about the main drivers of SLR and bringing it together is one recent key-challenge for environmental science. The high arctic Svalbard archipelago faced a strong climatic change in the last decades, associated with a change in the cryosphere. Vestfonna, a major Arctic ice cap in the north east of Svalbard, harbors land and marine terminating glaciers, which expose a variability of behavior. We use high resolution remote sensing data from space-borne radar (TanDEM-X, TerraSAR-X, Sentinel-1a), acquired between 2009 and 2015, to estimate glacier velocity and high accurate surface elevation changes. For DEM registration we use space-borne laser altimetry (ICESat) and an existing in-situ data archive (IPY Kinnvika). In order to separate individual glacier basin changes for a detailed mass balance study and for further SLR contribution estimates, we use glacier outlines from the Global Land Ice Measurements from Space (GLIMS) project. Remaining challenges of space-borne observations are the reduction of measurement uncertainties, in the case of Synthetic Aperture Radar most notably signal penetration into the glacier surface. Furthermore, in order to convert volume to mass change one has to use the density of the changed mass (conversion factor) and one has to account for the mass conservation processes in the firn package (firn compaction). Both, the conversion factor and the firn compaction are not (yet) measurable for extensive ice bodies. They have to be modelled by coupling point measurements and regional gridded climate data. Results indicate a slight interior thickening contrasted with wide spread thinning in the ablation zone of the marine terminating outlets. While one glacier system draining to the north west shows re-advance and possibly surge evidence, the majority of the outlets draining south- and eastwards are in stable or retreating dynamic conditions. Only two southern outlet glaciers speeded up between 2009 and 2015. We target measurement uncertainties by using in-situ missions as well as further comparable space-borne sensors. The mass conversion factor ('dhdt-problem') and the compaction processes are estimated by an pythonic offline firn compaction model (FCM) which is forced with Regional Climate Model (RCM) data. The RCM data and the FCM output are validated against an in-situ data archive.
Assessing uncertainties of GRACE-derived terrestrial water-storage fields
NASA Astrophysics Data System (ADS)
Fereria, Vagner; Montecino, Henry
2017-04-01
Space-borne sensors are producing many remotely sensed data and, consequently, different measurements of the same field are available to end users. Furthermore, different satellite processing centres are producing extensive products based on the data of only one mission. This is exactly the case with the Gravity Recovery and Climate Experiment (GRACE) mission, which has been monitoring terrestrial water storage (TWS) since April 2002, while the Centre for Space Research (CSR), the Jet Propulsion Laboratory (JPL), the GeoForschungsZentrum (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), among others, provide individual monthly solutions in the form of Stokes's coefficients. The inverted TWS maps from Stokes's coefficients are being used in many applications and, therefore, as no ground truth data exist, the uncertainties are unknown. An assessment of the uncertainties associated with these different products is mandatory in order to guide data producers and support the users to choose the best dataset. However, the estimation of uncertainties of space-borne products often relies on ground truth data, and in the absence of such data, an assessment of their qualities is a challenge. A recent study (Ferreira et al. 2016) evaluates the quality of each processing centre (CSR, JPL, GFZ, and GRGS) by estimating their individual uncertainties using a generalised formulation of the three-cornered hat (TCH) method. It was found that the TCH results for the study period of August 2002 to June 2014 indicate that on a global scale, the CSR, GFZ, GRGS, and JPL present uncertainties of 9.4, 13.7, 14.8, and 13.2 mm, respectively. On a basin scale, the overall good performance of the CSR is observed at 91 river basins. The TCH-based results are confirmed by a comparison with an ensemble solution from the four GRACE processing centres. Reference Ferreira VG, Montecino HDC, Yakubu CI and Heck B (2016) Uncertainties of the Gravity Recovery and Climate Experiment time-variable gravity-field solutions based on three-cornered hat method. Journal of Applied Remote Sensing, 10(1), pp 015015-(1-20). doi: 10.1117/1.JRS.10.015015
NASA Technical Reports Server (NTRS)
Barney, Timothy A.; Shin, Y. S.; Agrawal, B. N.
2001-01-01
This research develops an adaptive controller that actively suppresses a single frequency disturbance source at a remote position and tests the system on the NPS Space Truss. The experimental results are then compared to those predicted by an ANSYS finite element model. The NPS space truss is a 3.7-meter long truss that simulates a space-borne appendage with sensitive equipment mounted at its extremities. One of two installed piezoelectric actuators and an Adaptive Multi-Layer LMS control law were used to effectively eliminate an axial component of the vibrations induced by a linear proof mass actuator mounted at one end of the truss. Experimental and analytical results both demonstrate reductions to the level of system noise. Vibration reductions in excess of 50dB were obtained through experimentation and over 100dB using ANSYS, demonstrating the ability to model this system with a finite element model. This report also proposes a method to use distributed quartz accelerometers to evaluate the location, direction, and energy of impacts on the NPS space truss using the dSPACE data acquisition and processing system to capture the structural response and compare it to known reference Signals.
NASA Astrophysics Data System (ADS)
Frankenberg, Christian; Kulawik, Susan S.; Wofsy, Steven C.; Chevallier, Frédéric; Daube, Bruce; Kort, Eric A.; O'Dell, Christopher; Olsen, Edward T.; Osterman, Gregory
2016-06-01
In recent years, space-borne observations of atmospheric carbon dioxide (CO2) have been increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column-averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network (TCCON). Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) flights from 01/2009 through 09/2011 to validate CO2 measurements from satellites (Greenhouse Gases Observing Satellite - GOSAT, Thermal Emission Sounder - TES, Atmospheric Infrared Sounder - AIRS) and atmospheric inversion models (CarbonTracker CT2013B, Monitoring Atmospheric Composition and Climate (MACC) v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, in particular at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of -0.06 ppm, and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm, and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm, and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20, and 50 atmospheric soundings have been averaged for GOSAT, TES, and AIRS, respectively. Overall, we find that GOSAT soundings over the remote Pacific Ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO2 observations.
NASA Astrophysics Data System (ADS)
Tourre, Y. M.
2009-12-01
Climate and environment vary on many spatio-temporal scales, including climate change, with impacts on ecosystems, vector-borne diseases and public health worldwide. This study is to enable societal benefits from a conceptual approach by mapping climatic and environmental conditions from space and understanding the mechanisms within the Health Social Benefit GEOSS area. The case study is for Rift Valley Fever (RVF) epidemics in Senegal is presented. Ponds contributing to mosquitoes’ thriving, were identified from remote sensing using high-resolution SPOT-5 satellite images. Additional data on ponds’ dynamics and rainfall events (obtained from the Tropical Rainfall Measuring Mission) were combined with hydrological in-situ data. Localization of vulnerable hosts such as parked cattle (from QuickBird satellite) are also used. Dynamic spatio-temporal distribution of Aedes vexans density (one of the main RVF vectors) is based on the total rainfall amount and ponds’ dynamics. While Zones Potentially Occupied by Mosquitoes (ZPOM) are mapped, detailed risks areas, i.e. zones where hazards and vulnerability occur, are expressed in percentages of parks where cattle is potentially exposed to mosquitoes’ bites. This new conceptual approach, using remote-sensing techniques belonging to GEOSS, simply relies upon rainfall distribution also evaluated from space. It is meant to contribute to the implementation of integrated operational early warning system within the health application communities since climatic and environmental conditions (both natural and anthropogenic) are changing rapidly.
NASA Astrophysics Data System (ADS)
Zeng, Yi; Han, Xue-bing; Yang, Dong-shang; Gui, Li-jia; Zhao, Xiao-xiang; Si, Fu-qi
2016-03-01
A space-borne differential optical absorption spectrometer is a high precision aerospace optical remote sensor. It obtains the hyper-spectral,high spatial resolution radiation information by using the spectrometer with CCD(Charge Coupled Device)array detectors. Since a few CCDs are used as the key detector, the performance of the entire instrument is greatly affected by working condition of CCDs. The temperature of CCD modules has a great impact on the instrument measurement accuracy. It requires strict temperature control. The selection of the thermal conductive filler sticking CCD to the radiator is important in the CCD thermal design. Besides,due tothe complex and compact structure, it needs to take into account the anti-pollution of the optical system. Therefore, it puts forward high requirements on the selection of the conductive filler. In this paper, according to the structure characteristics of the CCD modules and the distribution of heat consumption, the thermal analysis tool I-DEAS/TMG is utilized to compute and simulate the temperature level of the CCD modules, while filling in thermal grease and thermal pad respectively. The temperature distribution of CCD heat dissipation in typical operating conditions is obtained. In addition, the heat balance test was carried out under the condition of two kinds of thermal conductive fillers. The thermal control of CCD was tested under various conditions, and the results were compared with the results of thermal analysis. The results show that there are some differences in thermal performance between the two kinds of thermal conductive fillers. Although they both can meet the thermal performance requirements of the instrument, either would be chosen taking account of other conditions and requirements such as anti-pollution and insulation. The content and results of this paper will be a good reference for the thermal design of the CCD in the aerospace optical payload.
Processing Satellite Data for Slant Total Electron Content Measurements
NASA Technical Reports Server (NTRS)
Stephens, Philip John (Inventor); Komjathy, Attila (Inventor); Wilson, Brian D. (Inventor); Mannucci, Anthony J. (Inventor)
2016-01-01
A method, system, and apparatus provide the ability to estimate ionospheric observables using space-borne observations. Space-borne global positioning system (GPS) data of ionospheric delay are obtained from a satellite. The space-borne GPS data are combined with ground-based GPS observations. The combination is utilized in a model to estimate a global three-dimensional (3D) electron density field.
Present and Future Airborne and Space-borne Systems
2007-02-01
Present and Future Airborne and Space-borne Systems Wolfgang Keydel Microwaves and Radar Institute German Aerospace Research Centre (DLR...airborne and space-borne SAR systems with polarimetric interferometry capability, their technological, system technical and application related...interferometry accuracies in the cm range have been obtained. In order to reach these values an exact system calibration is indispensable. The calibration of
NASA Astrophysics Data System (ADS)
Argaman, E.; Egozi, R.; Goldshlager, N.
2012-04-01
Water availability in arid regions is a major limiting factor, which affect plant development. Therefore, knowledge about preliminary and ongoing spatial & temporal conditions (e.g. land surface properties, hydrological regime and vegetation dynamics) can improve greatly afforestation practice. The Ambassadors forest is one of the Jewish National Fund (JNF) new afforestation projects (initiated on 2005), which rely on water harvesting irrigation systems, located at the northern Negev region, Israel. Temporal and spatial processes are studied utilizing ground, air-borne and space-borne techniques for assessment of surface processes, that take place due to significant land-use change. Since 2005 the area shows significant variation of surface energy balance components which impact the spatial and temporal forest generation. Both human and climate affect these parameters, hence their influence is essential for future study of the region. Parameters of surface Albedo & Temperature and Vegetation dynamics are gathered by space-borne sensors (e.g. MODIS, Landsat & ALI) and verified at field scale in conjunction with ground-truth measurements of climate and soil properties. In addition, the project study various scenarios that might result from diverse climate trajectories that impact soil formation factors and therefore forest development. Preliminary results show that surface physical & ecoligical properties had changed significantly since the aforestation project began, comparing previous years. Sharp increase of surface albedo detected since 2005 that raised from 0.25 to 0.32, while vegetation density, estimated from NDVI, had dropped from annaul average of 0.21 down to 0.13 during 10-year time period. These changes are related to human interferance. The current paper presents the first phase of the long-term study of the Remote Sensing analysis and the current surface monitoring phase.
Use of Satellite data by the USDA to Forecast Global Vector-borne Human and Animal Diseases
USDA-ARS?s Scientific Manuscript database
In recent years satellite remote sensing has been used increasingly for public health applications. In this symposium, experts from four government departments and agencies with major roles in leading and promoting such applications will discuss the state of the art of using remote sensing for epide...
NASA Technical Reports Server (NTRS)
Guenther, Bruce W. (Editor)
1991-01-01
Various papers on the calibration of passive remote observing optical and microwave instrumentation are presented. Individual topics addressed include: on-board calibration device for a wide field-of-view instrument, calibration for the medium-resolution imaging spectrometer, cryogenic radiometers and intensity-stabilized lasers for EOS radiometric calibrations, radiometric stability of the Shuttle-borne solar backscatter ultraviolet spectrometer, ratioing radiometer for use with a solar diffuser, requirements of a solar diffuser and measurements of some candidate materials, reflectance stability analysis of Spectralon diffuse calibration panels, stray light effects on calibrations using a solar diffuser, radiometric calibration of SPOT 23 HRVs, surface and aerosol models for use in radiative transfer codes. Also addressed are: calibrated intercepts for solar radiometers used in remote sensor calibration, radiometric calibration of an airborne multispectral scanner, in-flight calibration of a helicopter-mounted Daedalus multispectral scanner, technique for improving the calibration of large-area sphere sources, remote colorimetry and its applications, spatial sampling errors for a satellite-borne scanning radiometer, calibration of EOS multispectral imaging sensors and solar irradiance variability.
Chang, Ni-Bin; Yang, Y Jeffrey; Goodrich, James A; Daranpob, Ammarin
2010-06-01
Global climate change will influence environmental conditions including temperature, surface radiation, soil moisture, and sea level, and it will also significantly impact regional-scale hydrologic processes such as evapotranspiration (ET), precipitation, runoff, and snowmelt. The quantity and quality of water available for drinking and other domestic usage is also likely to be affected by changes in these processes. Consequently, it is necessary to assess and reflect upon the challenges ahead for water infrastructure and the general public in metropolitan regions. One approach to the problem is to use index-based assessment, forecasting and planning. The drought indices previously developed were not developed for domestic water supplies, and thus are insufficient for the purpose of such an assessment. This paper aims to propose and develop a "Metropolitan Water Availability Index (MWAI)" to assess the status of both the quantity and quality of available potable water sources diverted from the hydrologic cycle in a metropolitan region. In this approach, the accessible water may be expressed as volume per month or week (i.e., m(3)/month or m(3)/week) relative to a prescribed historical record, and such a trend analysis may result in final MWAI values ranging from -1 to +1 for regional water management decision making. The MWAI computation uses data and information from both historical point measurements and spatial remote-sensing based monitoring. Variables such as precipitation, river discharge, and water quality changes at drinking water plant intakes at specific locations are past "point" measurements in MWAI calculations. On the other hand, remote sensing provides information on both spatial and temporal distributions of key variables. Examples of remote-sensing images and sensor network technologies are in-situ sensor networks, ground-based radar, air-borne aircraft, and even space-borne satellites. A case study in Tampa Bay, Florida is described to demonstrate the short-term assessment of the MWAI concept at a practical level. It is anticipated that such a forecasting methodology may be extended for middle-term and long-term water supply assessment. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hemmings, S.; Renneboog, N.; Firsing, S.; Capilouto, E.; Harden, J.; Hyden, R.; Tipre, M.; Zhang, Y.
2010-01-01
Lyme disease (LD) accounts for most vector-borne disease reports in the U.S., and although its existence in Alabama remains controversial, other tick-borne illnesses (TBI) such as Southern Tick-Associated Rash Illness (STARI) pose a health concern in the state. Phase One of the Marshall Space Flight Center-UAB DEVELOP study of TBI identified the presence of the chain of infection for LD (Ixodes scapularis ticks carrying Borrelia burgdorferi bacteria) and STARI (Amblyomma americanum ticks and an as-yet-unconfirmed agent) in Alabama. Both LD and STARI are associated with the development of erythema migrans rashes around an infected tick bite, and while treatable with oral antibiotics, a review of educational resources available to state residents revealed low levels of prevention information. To improve prevention, recognition, and treatment of TBI in Alabama, Phase Two builds a health communication campaign based on vector habitat mapping and risk perception assessment. NASA Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery identified likely tick habitats using remotely sensed measurements of vegetation vigor (Normalized Difference Vegetation Index) and soil moisture. Likely tick habitats, identified as those containing both high vegetation density and soil moisture, included Oak Mountain State Park, Bankhead National Forest, and Talladega National Forest. To target a high-risk group -- outdoor recreation program participants at Alabama universities -- the study developed a behavior survey instrument based on existing studies of LD risk factors and theoretical constructs from the Social Ecological Model and Health Belief Model. The survey instrument was amended to include geographic variables in the assessment of TBI knowledge, attitudes, and prevention behaviors, and the vector habitat model will be expanded to incorporate additional environmental variables and in situ data. Remotely sensed environmental data combined with risk perception assessments inform an ongoing outreach campaign consisting of stakeholder meetings and educational seminars.
Recent Developments and Applications of Quantum Well Infrared Photodetector Focal Plane Arrays
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Bandara, S. V.
2000-01-01
There are many applications that require long wavelength, large, uniform, reproducible, low cost, stable, and radiation-hard infrared (IR) focal plane arrays (FPAs). For example, the absorption lines of many gas molecules, such as ozone, water, carbon monoxide, carbon dioxide, and nitrous oxide occur in the wavelength region from 3 to 18 micron. Thus, IR imaging systems that operate in the long wavelength IR (LWIR) region (6 - 18 micron) are required in many space borne applications such as monitoring the global atmospheric temperature profiles, relative humidity profiles, cloud characteristics, and the distribution of minor constituents in the atmosphere which are being planned for future NASA Earth and planetary remote sensing systems. Due to higher radiation hardness, lower 1/f noise, and larger array size the GaAs based Quantum Well Infrared Photodetector (QWIP) FPAs are very attractive for such space borne applications compared to intrinsic narrow band gap detector arrays. In this presentation we will discuss the optimization of the detector design, material growth and processing that has culminated in realization of large format long-wavelength QWIP FPAs, portable and miniature LWIR cameras, holding forth great promise for myriad applications in 6-18 micron wavelength range in science, medicine, defense and industry. In addition, we will present some system demonstrations using broadband, two-color, and high quantum efficiency long-wavelength QWIP FPAs.
van der Woerd, Hendrik J.; Wernand, Marcel R.
2015-01-01
The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne “ocean colour” instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10) of narrow (≈10 nm) bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data. In this paper we re-introduce colour as a valuable parameter that can be expressed mainly by the hue angle (α). Based on a set of 500 synthetic spectra covering a broad range of natural waters a simple algorithm is developed to derive the hue angle from SeaWiFS, MODIS, MERIS and OLCI data. The algorithm consists of a weighted linear sum of the remote sensing reflectance in all visual bands plus a correction term for the specific band-setting of each instrument. The algorithm is validated by a set of 603 hyperspectral measurements from inland-, coastal- and near-ocean waters. We conclude that the hue angle is a simple objective parameter of natural waters that can be retrieved uniformly for all space-borne ocean colour instruments. PMID:26473859
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Holben, Brent N.
2008-01-01
From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations contain large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. The development and deployment of AERONET (AErosol RObotic NETwork) sunphotometer network and SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile supersite are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To characterize the regional natural and anthropogenic aerosols, AERONET is an internationally federated network of unique sunphotometry that contains more than 250 permanent sites worldwide. Since 1993, there are more than 480 million aerosol optical depth observations and about 15 sites have continuous records longer than 10 years for annual/seasonal trend analyses. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instrument into three categories: flux radiometer, radiance sensor and in-situ probe. Through participation in many satellite remote-sensing/retrieval and validation projects over eight years, SMART-COMMIT have gradually refine( and been proven vital for field deployment. In this paper, we will demonstrate the capability of AERONET SMART-COMMIT in current Asian Monsoon Year-2008 campaigns that are designed and being executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., airborne dust, smoke, mega-city pollutant). Feedback mechanisms between aerosol radiative effects and monsoon dynamics have been recently proposed, however there is a lack of consensus on whether aerosol forcing would be more likely to enhance or reduce the strength of the monsoon circulation. We envision robust approaches which well-collocated ground-based measurements and space-borne observations will greatly advance our understanding of absorbing aerosols (e.g., "Global Dimming" vs. "Elevated Heat-Pump" effects) on aerosol cloud water cycle interactions.
Remote Sensing Applied to Geology (Latest Citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning the use of remote sensing in geological resource exploration. Technologies discussed include thermal, optical, photographic, and electronic imaging using ground-based, aerial, and satellite-borne devices. Analog and digital techniques to locate, classify, and assess geophysical features, structures, and resources are also covered. Application of remote sensing to petroleum and minerals exploration is treated in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.)
Remote helicopter-borne detector for searching of methane leaks.
Berezin, A G; Malyugin, S V; Nadezhdinskii, A I; Namestnikov, D Yu; Ponurovskii, Ya Ya; Rudov, S G; Stavrovskii, D B; Shapovalov, Yu P; Vyazov, I E; Zaslavskii, V Ya
2007-04-01
Measurements of the content of various molecular impurities in the ambient air using helicopter- and aircraft-borne systems represent an extremely urgent challenge. In this respect, of special interest are the devices that that provide leakage monitoring in gas lines in order to prevent emergencies. In the paper results of the tunable diode laser-based instrument development and testing are presented.
Ghosh, Manonita; Holman, C D'Arcy J; Preen, David B
2015-02-01
To explore parental country of birth differences in the use of stimulants for attention deficit hyperactivity disorder (ADHD) in Western Australian (WA) children and adolescents. Statutory WA stimulant notification and dispensing records from 2003 to 2007 were linked to whole-population state data from 1980 to 2007. Parental attributes were obtained through the WA Family Connections genealogical linkage system. Using multivariate logistic and linear regression, the differences in WA stimulant use for ADHD by parental country of birth, socioeconomic status and geographical remoteness were examined. Of 671,231 people born in WA between 1980 and 2007, 13,555 (2%) used stimulants for ADHD. Of these, 734 (5%) had parents born in Africa, Asia, the Middle East or South America, and 12,006 (87%) had parents born in Australia, North America and Europe. Children and adolescents with parents born in traditionally non-Anglophonic countries were less likely to be treated with stimulants (OR=0.17, 95%CI 0.14-0.21) than those with parents born in Anglophonic countries. Socioeconomic advantage and residential remoteness were also significant independent predictors of a decreased likelihood of stimulant use. The results highlight the importance of improving knowledge about cultural differences in access to and attitudes towards the diagnosis of ADHD and different approaches to its treatment. © 2014 Public Health Association of Australia.
NASA Technical Reports Server (NTRS)
Fishman, Jack; Al-Saadi, Jassim A.; Neil, Doreen O.; Creilson, John K.; Severance, Kurt; Thomason, Larry W.; Edwards, David R.
2008-01-01
When the first observations of a tropospheric trace gas were obtained in the 1980s, carbon monoxide enhancements from tropical biomass burning dominated the observed features. In 2005, an active remote-sensing system to provide detailed information on the vertical distribution of aerosols and clouds was launched, and again, one of the most imposing features observed was the presence of emissions from tropical biomass burning. This paper presents a brief overview of space-borne observations of the distribution of trace gases and aerosols and how tropical biomass burning, primarily in the Southern Hemisphere, has provided an initially surprising picture of the distribution of these species and how they have evolved from prevailing transport patterns in that hemisphere. We also show how interpretation of these observations has improved significantly as a result of the improved capability of trajectory modeling in recent years and how information from this capability has provided additional insight into previous measurements form satellites. Key words: pollution; biomass burning; aerosols; tropical trace gas emissions; Southern Hemisphere; carbon monoxide.
NASA Astrophysics Data System (ADS)
Liebel, L.; Körner, M.
2016-06-01
In optical remote sensing, spatial resolution of images is crucial for numerous applications. Space-borne systems are most likely to be affected by a lack of spatial resolution, due to their natural disadvantage of a large distance between the sensor and the sensed object. Thus, methods for single-image super resolution are desirable to exceed the limits of the sensor. Apart from assisting visual inspection of datasets, post-processing operations—e.g., segmentation or feature extraction—can benefit from detailed and distinguishable structures. In this paper, we show that recently introduced state-of-the-art approaches for single-image super resolution of conventional photographs, making use of deep learning techniques, such as convolutional neural networks (CNN), can successfully be applied to remote sensing data. With a huge amount of training data available, end-to-end learning is reasonably easy to apply and can achieve results unattainable using conventional handcrafted algorithms. We trained our CNN on a specifically designed, domain-specific dataset, in order to take into account the special characteristics of multispectral remote sensing data. This dataset consists of publicly available SENTINEL-2 images featuring 13 spectral bands, a ground resolution of up to 10m, and a high radiometric resolution and thus satisfying our requirements in terms of quality and quantity. In experiments, we obtained results superior compared to competing approaches trained on generic image sets, which failed to reasonably scale satellite images with a high radiometric resolution, as well as conventional interpolation methods.
The Application of NASA Remote Sensing Technology to Human Health
NASA Technical Reports Server (NTRS)
Watts, C. T.
2007-01-01
With the help of satellites, the Earth's environment can be monitored from a distance. Earth observing satellites and sensors collect data and survey patterns that supply important information about the environment relating to its affect on human health. Combined with ground data, such patterns and remote sensing data can be essential to public health applications. Remote sensing technology is providing information that can help predict factors that affect human health, such as disease, drought, famine, and floods. A number of public health concerns that affect Earth's human population are part of the current National Aeronautics and Space Administration (NASA) Earth Science Applications Plan to provide remotely gathered data to public health decision-makers to aid in forming and implementing policy to protect human health and preserve well-being. These areas of concern are: air quality; water quality; weather and climate change; infectious, zoonotic, and vector-borne disease; sunshine; food resource security; and health risks associated with the built environment. Collaborations within the Earth Science Applications Plan join local, state, national, or global organizations and agencies as partners. These partnerships engage in projects that strive to understand the connection between the environment and health. The important outcome is to put this understanding to use through enhancement of decision support tools that aid policy and management decisions on environmental health risks. Future plans will further employ developed models in formats that are compatible and accessible to all public health organizations.
NASA Technical Reports Server (NTRS)
Crowell, Sean M. R.; Kawa, S. Randolph; Browell, Edward V.; Hammerling, Dorit M.; Moore, Berrien; Schaefer, Kevin; Doney, Scott C.
2018-01-01
Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT (Greenhouse Gases Observing Satellite) and OCO-2 (Orbiting Carbon Observatory 2), however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint. Plain Language Summary: Active and passive remote sensors show the potential to provide unprecedented information on the carbon cycle. With the all-season sampling, active remote sensors are more capable of constraining high-latitude emissions. The reduced sensitivity to cloud and aerosol also makes active sensors more capable of providing information in cloudy and polluted scenes with sufficient accuracy. These experiments account for errors that are fundamental to the top-down approach for constraining emissions, and even including these sources of error, we show that satellite remote sensors are critical for understanding the carbon cycle.
Satellites as Sentinels for Health
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.; Yland, Jan-Marcus
2001-01-01
Remotely-sensed data and observations are providing powerful new tools for addressing the human health aspects of sustainability by enabling improved understanding of the relationships and linkages between health-related environmental parameters and society as well as techniques for early warning of potential health problems. Remote sensing, geographic information systems, improved computational capabilities, and interdisciplinary research between the Earth and health science communities are being combined in rich collaborative efforts resulting in more rapid problem-solving, early warning, and prevention in global health issues. This paper provides a number of recent examples of applications of these technologies to health issues related to the following: infectious and vector-borne diseases; urban, regional and global air pollution; heat stress; UV radiation; water-borne disease; extreme weather; contaminant pathways (ocean, atmosphere, ice).
ERIC Educational Resources Information Center
Xie, Yichun; Henry, Andy; Bydlowski, David; Musial, Joseph
2014-01-01
A majority of secondary science teachers are found to include the topic of climate change in their courses. However, teachers informally and sporadically discuss climate change and students rarely understand the underlying scientific concepts. The project team developed an innovative pedagogical approach, in which teachers and students learn…
USDA-ARS?s Scientific Manuscript database
Remotely sensed vegetation measurements for the last 30 years combined with other climate data sets such as rainfall and sea surface temperatures have come to play an important role in the study of the ecology of vector-borne diseases. We show that episodic outbreaks of Rift Valley fever are influen...
Managing the natural disasters from space technology inputs
NASA Astrophysics Data System (ADS)
Jayaraman, V.; Chandrasekhar, M. G.; Rao, U. R.
1997-01-01
Natural disasters, whether of meteorological origin such as Cyclones, Floods, Tornadoes and Droughts or of having geological nature such as earthquakes and volcanoes, are well known for their devastating impacts on human life, economy and environment. With tropical climate and unstable land forms, coupled with high population density, poverty, illiteracy and lack of infrastructure development, developing countries are more vulnerable to suffer from the damaging potential of such disasters. Though it is almost impossible to completely neutralise the damage due to these disasters, it is, however possible to (i) minimise the potential risks by developing disaster early warning strategies (ii) prepare developmental plans to provide resilience to such disasters, (iii) mobilize resources including communication and telemedicinal services and (iv) to help in rehabilitation and post-disaster reconstruction. Space borne platforms have demonstrated their capability in efficient disaster management. While communication satellites help in disaster warning, relief mobilisation and telemedicinal support, Earth observation satellites provide the basic support in pre-disaster preparedness programmes, in-disaster response and monitoring activities, and post-disaster reconstruction. The paper examines the information requirements for disaster risk management, assess developing country capabilities for building the necessary decision support systems, and evaluate the role of satellite remote sensing. It describes several examples of initiatives from developing countries in their attempt to evolve a suitable strategy for disaster preparedness and operational framework for the disaster management Using remote sensing data in conjunction with other collateral information. It concludes with suggestions and recommendations to establish a worldwide network of necessary space and ground segments towards strengthening the technological capabilities for disaster management and mitigation.
NASA Technical Reports Server (NTRS)
Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)
2000-01-01
The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.
NASA Technical Reports Server (NTRS)
Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John
1998-01-01
Knowledge of the amount of water in the soil is of great importance to many earth science disciplines. Soil moisture is a key variable in controlling the exchange of water and energy between the land surface and the atmosphere. Thus, soil moisture information is valuable in a wide range of applications including weather and climate, runoff potential and flood control, early warning of droughts, irrigation, crop yield forecasting, soil erosion, reservoir management, geotechnical engineering, and water quality. Despite the importance of soil moisture information, widespread and continuous measurements of soil moisture are not possible today. Although many earth surface conditions can be measured from satellites, we still cannot adequately measure soil moisture from space. Research in soil moisture remote sensing began in the mid 1970s shortly after the surge in satellite development. Recent advances in remote sensing have shown that soil moisture can be measured, at least qualitatively, by several methods. Quantitative measurements of moisture in the soil surface layer have been most successful using both passive and active microwave remote sensing, although complications arise from surface roughness and vegetation type and density. Early attempts to measure soil moisture from space-borne microwave instruments were hindered by what is now considered sub-optimal wavelengths (shorter than 5 cm) and the coarse spatial resolution of the measurements. L-band frequencies between 1 and 3 GHz (10-30 cm) have been deemed optimal for detection of soil moisture in the upper few centimeters of soil. The Electronically Steered Thinned Array Radiometer (ESTAR), an aircraft-based instrument operating a 1,4 GHz, has shown great promise for soil moisture determination. Initiatives are underway to develop a similar instrument for space. Existing space-borne synthetic aperture radars (SARS) operating at C- and L-band have also shown some potential to detect surface wetness. The advantage of radar is its much higher resolution than passive microwave systems, but it is currently hampered by surface roughness effects and the lack of a good algorithm based on a single frequency and single polarization. In addition, its repeat frequency is generally low (about 40 days). In the meantime, two new radiometers offer some hope for remote sensing of soil moisture from space. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), launched in November 1997, possesses a 10.65 GHz channel and the Advanced Microwave Scanning Radiometer (AMSR) on both the ADEOS-11 and Earth Observing System AM-1 platforms to be launched in 1999 possesses a 6.9 GHz channel. Aside from issues about interference from vegetation, the coarse resolution of these data will provide considerable challenges pertaining to their application. The resolution of TMI is about 45 km and that of AMSR is about 70 km. These resolutions are grossly inconsistent with the scale of soil moisture processes and the spatial variability of factors that control soil moisture. Scale disparities such as these are forcing us to rethink how we assimilate data of various scales in hydrologic models. Of particular interest is how to assimilate soil moisture data by reconciling the scale disparity between what we can expect from present and future remote sensing measurements of soil moisture and modeling soil moisture processes. It is because of this disparity between the resolution of space-based sensors and the scale of data needed for capturing the spatial variability of soil moisture and related properties that remote sensing of soil moisture has not met with more widespread success. Within a single footprint of current sensors at the wavelengths optimal for this application, in most cases there is enormous heterogeneity in soil moisture created by differences in landcover, soils and topography, as well as variability in antecedent precipitation. It is difficult to interpret the meaning of 'mean' soil moisture under such conditions and even more difficult to apply such a value. Because of the non-linear relationships between near-surface soil moisture and other variables of interest, such as surface energy fluxes and runoff, mean soil moisture has little applicability at such large scales. It is for these reasons that the use of remote sensing in conjunction with a hydrologic model appears to be of benefit in capturing the complete spatial and temporal structure of soil moisture. This paper is Part I of a four-part series describing a method for intermittently assimilating remotely-sensed soil moisture information to improve performance of a distributed land surface hydrology model. The method, summarized in section II, involves the following components, each of which is detailed in the indicated section of the paper or subsequent papers in this series: Forward radiative transfer model methods (section II and Part IV); Use of a Kalman filter to assimilate remotely-sensed soil moisture estimates with the model profile (section II and Part IV); Application of a soil hydrology model to capture the continuous evolution of the soil moisture profile within and below the root zone (section III); Statistical aggregation techniques (section IV and Part II); Disaggregation techniques using a neural network approach (section IV and Part III); and Maximum likelihood and Bayesian algorithms for inversely solving for the soil moisture profile in the upper few cm (Part IV).
Birth Order, Age-Spacing, IQ Differences, and Family Relations.
ERIC Educational Resources Information Center
Pfouts, Jane H.
1980-01-01
Very close age spacing was an obstacle to high academic performance for later borns. In family relations and self-esteem, first borns scored better and performed in school as well as their potentially much more able younger siblings, regardless of age spacing. (Author)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and.... Abstract NOAA has established requirements for the licensing of private operators of remote-sensing space... Land Remote- Sensing Policy Act of 1992 and with the national security and international obligations of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-24
... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and... for the licensing of private operators of remote-sensing space systems. The information in applications and subsequent reports is needed to ensure compliance with the Land Remote- Sensing Policy Act of...
Stratospheric measurement requirements and satellite-borne remote sensing capabilities
NASA Technical Reports Server (NTRS)
Carmichael, J. J.; Eldridge, R. G.; Frey, E. J.; Friedman, E. J.; Ghovanlou, A. H.
1976-01-01
The capabilities of specific NASA remote sensing systems to provide appropriate measurements of stratospheric parameters for potential user needs were assessed. This was used to evaluate the capabilities of the remote sensing systems to perform global monitoring of the stratosphere. The following conclusions were reached: (1) The performance of current remote stratospheric sensors, in some cases, compares quite well with identified measurement requirements. Their ability to measure other species has not been demonstrated. (2) None of the current, in-situ methods have the capability to satisfy the requirements for global monitoring and the temporal constraints derived from the users needs portion of the study. (3) Existing, non-remote techniques will continue to play an important role in stratospheric investigations for both corroboration of remotely collected data and in the evolutionary development of future remote sensors.
NASA Astrophysics Data System (ADS)
Brown, Heidi E.
Spatially explicit information is increasingly available for infectious disease modeling. However, such information is reluctantly or inappropriately incorporated. My dissertation research uses spatially explicit data to assess relationships between landscape and mosquito species distribution and discusses challenges regarding accurate predictive risk modeling. The goal of my research is to use remotely sensed environmental information and spatial statistical methods to better understand mosquito-borne disease epidemiology for improvement of public health responses. In addition to reviewing the progress of spatial infectious disease modeling, I present four research projects. I begin by evaluating the biases in surveillance data and build up to predictive modeling of mosquito species presence. In the first study I explore how mosquito surveillance trap types influence estimations of mosquito populations. Then. I use county-based human surveillance data and landscape variables to identify risk factors for West Nile virus disease. The third study uses satellite-based vegetation indices to identify spatial variation among West Nile virus vectors in an urban area and relates the variability to virus transmission dynamics. Finally, I explore how information from three satellite sensors of differing spatial and spectral resolution can be used to identify and distinguish mosquito habitat across central Connecticut wetlands. Analyses presented here constitute improvements to the prediction of mosquito distribution and therefore identification of disease risk factors. Current methods for mosquito surveillance data collection are labor intensive and provide an extremely limited, incomplete picture of the species composition and abundance. Human surveillance data offers additional challenges with respect to reporting bias and resolution, but is nonetheless informative in identifying environmental risk factors and disease transmission dynamics. Remotely sensed imagery supports mosquito and human disease surveillance data by providing spatially explicit, line resolution information about environmental factors relevant to vector-borne disease processes. Together, surveillance and remotely sensed environmental data facilitate improved description and modeling of disease transmission. Remote sensing can be used to develop predictive maps of mosquito distribution in relation to disease risk. This has implications for increased accuracy of mosquito control efforts. The projects presented in this dissertation enhance current public health capacities by examining the applications of spatial modeling with respect to mosquito-borne disease.
NASA Astrophysics Data System (ADS)
McDonald, K. C.; Kimball, J. S.
2004-12-01
The transition of the landscape between predominantly frozen and non-frozen conditions in seasonally frozen environments impacts climate, hydrological, ecological and biogeochemical processes profoundly. Satellite microwave remote sensing is uniquely capable of detecting and monitoring a range of related biophysical processes associated with the measurement of landscape freeze/thaw status. We present the development, physical basis, current techniques and selected hydrological applications of satellite-borne microwave remote sensing of landscape freeze/thaw states for the terrestrial cryosphere. Major landscape hydrological processes embracing the remotely-sensed freeze/thaw signal include timing and spatial dynamics of seasonal snowmelt and associated soil thaw, runoff generation and flooding, ice breakup in large rivers and lakes, and timing and length of vegetation growing seasons and associated productivity and trace gas exchange. Employing both active and passive microwave sensors, we apply a selection of temporal change classification algorithms to examine a variety of hydrologic processes. We investigate contemporaneous and retrospective applications of the QuikSCAT scatterometer, and the SSM/I and SMMR radiometers to this end. Results illustrate the strong correspondence between regional thawing, seasonal ice break up for rivers, and the springtime pulse in river flow. We present the physical principles of microwave sensitivity to landscape freeze/thaw state, recent progress in applying these principles toward satellite remote sensing of freeze/thaw processes over broad regions, and potential for future global monitoring of this significant phenomenon of the global cryosphere. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and at the University of Montana, Missoula, under contract to the National Aeronautics and Space Administration.
Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: random error estimation
NASA Astrophysics Data System (ADS)
Matvienko, G. G.; Sukhanov, A. Y.
2015-11-01
Possibilities of measuring the CO2 column concentration by spaceborne integrated path differential lidar (IPDA) signals in the near IR absorption bands are investigated. It is shown that coherent detection principles applied in the nearinfrared spectral region promise a high sensitivity for the measurement of the integrated dry air column mixing ratio of the CO2. The simulations indicate that for CO2 the target observational requirements (0.2%) for the relative random error can be met with telescope aperture 0.5 m, detector bandwidth 10 MHz, laser energy per impulse 0.3 mJ and averaging 7500 impulses. It should also be noted that heterodyne technique allows to significantly reduce laser power and receiver overall dimensions compared to direct detection.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.
1996-01-01
This progress report consists of two separate reports. The first one describes our work on the use of variable gain amplifiers to increase the receiver dynamic range of space borne laser altimeters such as NASA's Geoscience Laser Altimeter Systems (GLAS). The requirement of the receiver dynamic range was first calculated. A breadboard variable gain amplifier circuit was made and the performance was fully characterized. The circuit will also be tested in flight on board the Shuttle Laser Altimeter (SLA-02) next year. The second report describes our research on the master clock oscillator frequency calibration for space borne laser altimeter systems using global positioning system (GPS) receivers.
Satellite remote sensing of particulate matter air quality: the cloud-cover problem.
Christopher, Sundar A; Gupta, Pawan
2010-05-01
Satellite assessments of particulate matter (PM) air quality that use solar reflectance methods are dependent on availability of clear sky; in other words, mass concentrations of PM less than 2.5 microm in aerodynamic diameter (PM2.5) cannot be estimated from satellite observations under cloudy conditions or bright surfaces such as snow/ice. Whereas most ground monitors measure PM2.5 concentrations on an hourly basis regardless of cloud conditions, space-borne sensors can only estimate daytime PM2.5 in cloud-free conditions, therefore introducing a bias. In this study, an estimate of this clear-sky bias is provided from monthly to yearly time scales over the continental United States. One year of the Moderate Resolution Imaging Spectroradiometer (MODIS) 550-nm aerosol optical depth (AOD) retrievals from Terra and Aqua satellites, collocated with 371 U.S. Environmental Protection Agency (EPA) ground monitors, have been analyzed. The results indicate that the mean differences between PM2.5 reported by ground monitors and PM2.5 calculated from ground monitors during the satellite overpass times during cloud-free conditions are less than +/- 2.5 microg m(-3), although this value varies by season and location. The mean differences are not significant as calculated by t tests (alpha = 0.05). On the basis of this analysis, it is concluded that for the continental United States, cloud cover is not a major problem for inferring monthly to yearly PM2.5 from space-borne sensors.
1985-12-01
shows Good’s 2 data between 500 m and 40 km. Good obtained thisCn profile by differential temperature measurement between two balloon-borne microthermal ...Cn profiles. However, they are difficult to obtain by remote measurements. In Chapters IV and V, I presented a profile measured by microthermal probes
The Use of Digital Educational Technology and Third Spaces with Foreign-Born Latinos
ERIC Educational Resources Information Center
Guerra-Nunez, Oscar
2017-01-01
This article addresses the concept of educational third spaces that move beyond the paternalistic concept of a teacher as a font of knowledge filling the empty vessels of the students' minds, especially for foreign-born Latino (FBL) students. These students often struggle and lag behind their native-born peers as they master the new language of…
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
A Novel Modified Omega-K Algorithm for Synthetic Aperture Imaging Lidar through the Atmosphere
Guo, Liang; Xing, Mendao; Tang, Yu; Dan, Jing
2008-01-01
The spatial resolution of a conventional imaging lidar system is constrained by the diffraction limit of the telescope's aperture. The combination of the lidar and synthetic aperture (SA) processing techniques may overcome the diffraction limit and pave the way for a higher resolution air borne or space borne remote sensor. Regarding the lidar transmitting frequency modulation continuous-wave (FMCW) signal, the motion during the transmission of a sweep and the reception of the corresponding echo were expected to be one of the major problems. The given modified Omega-K algorithm takes the continuous motion into account, which can compensate for the Doppler shift induced by the continuous motion efficiently and azimuth ambiguity for the low pulse recurrence frequency limited by the tunable laser. And then, simulation of Phase Screen (PS) distorted by atmospheric turbulence following the von Karman spectrum by using Fourier Transform is implemented in order to simulate turbulence. Finally, the computer simulation shows the validity of the modified algorithm and if in the turbulence the synthetic aperture length does not exceed the similar coherence length of the atmosphere for SAIL, we can ignore the effect of the turbulence. PMID:27879865
An Environmental Data Set for Vector-Borne Disease Modeling and Epidemiology
Chabot-Couture, Guillaume; Nigmatulina, Karima; Eckhoff, Philip
2014-01-01
Understanding the environmental conditions of disease transmission is important in the study of vector-borne diseases. Low- and middle-income countries bear a significant portion of the disease burden; but data about weather conditions in those countries can be sparse and difficult to reconstruct. Here, we describe methods to assemble high-resolution gridded time series data sets of air temperature, relative humidity, land temperature, and rainfall for such areas; and we test these methods on the island of Madagascar. Air temperature and relative humidity were constructed using statistical interpolation of weather station measurements; the resulting median 95th percentile absolute errors were 2.75°C and 16.6%. Missing pixels from the MODIS11 remote sensing land temperature product were estimated using Fourier decomposition and time-series analysis; thus providing an alternative to the 8-day and 30-day aggregated products. The RFE 2.0 remote sensing rainfall estimator was characterized by comparing it with multiple interpolated rainfall products, and we observed significant differences in temporal and spatial heterogeneity relevant to vector-borne disease modeling. PMID:24755954
Building a new space weather facility at the National Observatory of Athens
NASA Astrophysics Data System (ADS)
Kontogiannis, Ioannis; Belehaki, Anna; Tsiropoula, Georgia; Tsagouri, Ioanna; Anastasiadis, Anastasios; Papaioannou, Athanasios
2016-01-01
The PROTEAS project has been initiated at the Institute of Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS) of the National Observatory of Athens (NOA). One of its main objectives is to provide observations, processed data and space weather nowcasting and forecasting products, designed to support the space weather research community and operators of commercial and industrial systems. The space weather products to be released by this facility, will be the result of the exploitation of ground-based, as well as space-borne observations and of model results and tools already available or under development by IAASARS researchers. The objective will be achieved through: (a) the operation of a small full-disk solar telescope to conduct regular observations of the Sun in the H-alpha line; (b) the construction of a database with near real-time solar observations which will be available to the community through a web-based facility (HELIOSERVER); (c) the development of a tool for forecasting Solar Energetic Particle (SEP) events in relation to observed solar eruptive events; (d) the upgrade of the Athens Digisonde with digital transceivers and the capability of operating in bi-static link mode and (e) the sustainable operation of the European Digital Upper Atmosphere Server (DIAS) upgraded with additional data sets integrated in an interface with the HELIOSERVER and with improved models for the real-time quantification of the effects of solar eruptive events in the ionosphere.
NASA Astrophysics Data System (ADS)
Singh, Leeth; Mutanga, Onisimo; Mafongoya, Paramu; Peerbhay, Kabir
2017-07-01
The concentration of forage fiber content is critical in explaining the palatability of forage quality for livestock grazers in tropical grasslands. Traditional methods of determining forage fiber content are usually time consuming, costly, and require specialized laboratory analysis. With the potential of remote sensing technologies, determination of key fiber attributes can be made more accurately. This study aims to determine the effectiveness of known absorption wavelengths for detecting forage fiber biochemicals, neutral detergent fiber, acid detergent fiber, and lignin using hyperspectral data. Hyperspectral reflectance spectral measurements (350 to 2500 nm) of grass were collected and implemented within the random forest (RF) ensemble. Results show successful correlations between the known absorption features and the biochemicals with coefficients of determination (R2) ranging from 0.57 to 0.81 and root mean square errors ranging from 6.97 to 3.03 g/kg. In comparison, using the entire dataset, the study identified additional wavelengths for detecting fiber biochemicals, which contributes to the accurate determination of forage quality in a grassland environment. Overall, the results showed that hyperspectral remote sensing in conjunction with the competent RF ensemble could discriminate each key biochemical evaluated. This study shows the potential to upscale the methodology to a space-borne multispectral platform with similar spectral configurations for an accurate and cost effective mapping analysis of forage quality.
NASA Astrophysics Data System (ADS)
Wilson, Machelle; Ustin, Susan L.; Rocke, David
2003-03-01
Remote sensing technologies with high spatial and spectral resolution show a great deal of promise in addressing critical environmental monitoring issues, but the ability to analyze and interpret the data lags behind the technology. Robust analytical methods are required before the wealth of data available through remote sensing can be applied to a wide range of environmental problems for which remote detection is the best method. In this study we compare the classification effectiveness of two relatively new techniques on data consisting of leaf-level reflectance from plants that have been exposed to varying levels of heavy metal toxicity. If these methodologies work well on leaf-level data, then there is some hope that they will also work well on data from airborne and space-borne platforms. The classification methods compared were support vector machine classification of exposed and non-exposed plants based on the reflectance data, and partial east squares compression of the reflectance data followed by classification using logistic discrimination (PLS/LD). PLS/LD was performed in two ways. We used the continuous concentration data as the response during compression, and then used the binary response required during logistic discrimination. We also used a binary response during compression followed by logistic discrimination. The statistics we used to compare the effectiveness of the methodologies was the leave-one-out cross validation estimate of the prediction error.
Geospatial Analysis Using Remote Sensing Images: Case Studies of Zonguldak Test Field
NASA Astrophysics Data System (ADS)
Bayık, Çağlar; Topan, Hüseyin; Özendi, Mustafa; Oruç, Murat; Cam, Ali; Abdikan, Saygın
2016-06-01
Inclined topographies are one of the most challenging problems for geospatial analysis of air-borne and space-borne imageries. However, flat areas are mostly misleading to exhibit the real performance. For this reason, researchers generally require a study area which includes mountainous topography and various land cover and land use types. Zonguldak and its vicinity is a very suitable test site for performance investigation of remote sensing systems due to the fact that it contains different land use types such as dense forest, river, sea, urban area; different structures such as open pit mining operations, thermal power plant; and its mountainous structure. In this paper, we reviewed more than 120 proceeding papers and journal articles about geospatial analysis that are performed on the test field of Zonguldak and its surroundings. Geospatial analysis performed with imageries include elimination of systematic geometric errors, 2/3D georeferencing accuracy assessment, DEM and DSM generation and validation, ortho-image production, evaluation of information content, image classification, automatic feature extraction and object recognition, pan-sharpening, land use and land cover change analysis and deformation monitoring. In these applications many optical satellite images are used i.e. ASTER, Bilsat-1, IKONOS, IRS-1C, KOMPSAT-1, KVR-1000, Landsat-3-5-7, Orbview-3, QuickBird, Pleiades, SPOT-5, TK-350, RADARSAT-1, WorldView-1-2; as well as radar data i.e. JERS-1, Envisat ASAR, TerraSAR-X, ALOS PALSAR and SRTM. These studies are performed by Departments of Geomatics Engineering at Bülent Ecevit University, at İstanbul Technical University, at Yıldız Technical University, and Institute of Photogrammetry and GeoInformation at Leibniz University Hannover. These studies are financially supported by TÜBİTAK (Turkey), the Universities, ESA, Airbus DS, ERSDAC (Japan) and Jülich Research Centre (Germany).
2011-06-01
Remote sensing from space provides critical data for many commercial space applications. Due to global market demand, it has undergone tremendous...commercial space imaging capability in the future, remote sensing policy makers, systems engineers, and industry analysts must be aware of the implications to United States National Security....available dissemination and accessibility. The analysis results, together with the findings from a review of commercial programs, initiatives, and remote
Estimating changing snow water resources over the Himalaya from remote sensing at the weekly scale
NASA Astrophysics Data System (ADS)
Ackroyd, C.; Skiles, M.
2017-12-01
Water resources in South Asia are critically dependent on High Mountain Asia, namely as the headwaters for the Indus, Ganges, and Brahmaputra River Basins. For water and economic security it is important to understand how the natural snow water reservoir is changing at a time scale that is relevant for water management, which can most feasibly be achieved across this vast and complex landscape through remote sensing. Here we present results from recent efforts to develop an optimal method that combines MODIS fractional snow covered area (MODSCAG) with retrievals of SWE from space borne microwave data (AMSR2) over the Hindu Kush Himalaya, which is further combined with MODIS dust radiative forcing (MODDRFS) to monitor rate of snow darkening, and provide a simple snowmelt metric that informs the contribution to melt by light absorbing particulates like dust and black carbon. For data consistency we are using 8 day composites of all products, and therefore the difference from time step to time step is a weekly, first order approximation, of the amount of SWE lost or gained from the region. MODIS retrievals are valuable for studying the hydrology of South Asia because there are mature sub kilometer scale products for the reflectance and fractional extent of the snow cover, the melt from which is mainly controlled by net solar radiation. The value of retrievals of SWE from space borne microwave data is less well established due to numerous sources of error (e.g. grain size and density, forest obscuration, penetration depth reduction, saturation) and the coarse 25 km spatial scale, which cannot capture the variation in SWE at the scale of individual mountain massifs. Despite these limitations it is currently the only available satellite based SWE product. This research effort is part of a larger NASA-SERVIR project that aims to join SWE estimates from MODIS and AMSR2, subsurface water storage variations from GRACE, and the RAPID river routing model to assess water resource variability at the management scale in South Asia and then transfer knowledge, and share developed tools and datasets, to local stakeholders.
NASA Astrophysics Data System (ADS)
Günther, F.; Grosse, G.; Ulrich, M.; Nitze, I.; Sachs, T.; Jones, B. M.
2017-12-01
The unique feature of permafrost in the Arctic is the presence of a large amount of ice below the earth surface. Thermal degradation and subsequent permafrost destabilization causes thaw subsidence and thermokarst development. Because these processes are difficult to detect due to the lack of timely and accurate elevation datasets they have received not much attention, despite their potentially global significance through the permafrost carbon feedback. Thanks to remote sensing pioneering works in Alaska and Siberia, widespread thaw subsidence has been documented and is increasingly perceived as a potentially widespread permafrost landscape response to contemporary climate change. Clearly, however, detailed local inventories are required to calibrate regional long and short-term assessments for measuring surface deformation due to permafrost thaw. The objective of our study is to analyze time series of repeat terrestrial, air-, and space borne laser scanning (rLiDAR) for quantification of land surface lowering due to permafrost thaw, which is poorly resolved in terms of recent landscape development in the Arctic. Our work aims at finding commonalities and differences of change or no change on ground-ice-rich primary surfaces that are preserved as uplands, which cover 15 to 20% of the Teshekpuk Lake Special Area on the Arctic Coastal Plain of northern Alaska. Our approach focuses on quantifying modern thaw subsidence and thermokarst rates with high spatial resolution data over several decades as well as high temporal resolution data of inter-annual intervals. Multi-annual measurements of rLiDAR over Arctic Alaska have been made by aircraft in 2016 and in 2015+2017 through on-site surveys during field expeditions. These in situ data serve as a basis for large scale surface change assessments using time series of photogrammetrically derived elevation data from very high resolution historical aerial photographs and modern satellite imagery. The synergistic data fusion approach enhances permafrost degradation monitoring and better resolves surface deformation associated with thaw subsidence. The novel datasets also provide insights into previously unrecognized patterns of rapid permafrost thaw and related interconnections.
Lydeamore, M J; Campbell, P T; Cuningham, W; Andrews, R M; Kearns, T; Clucas, D; Gundjirryirr Dhurrkay, R; Carapetis, J; Tong, S Y C; McCaw, J M; McVernon, J
2018-05-08
Prevalence of skin sores and scabies in remote Australian Aboriginal communities remains unacceptably high, with Group A Streptococcus (GAS) the dominant pathogen. We aim to better understand the drivers of GAS transmission using mathematical models. To estimate the force of infection, we quantified the age of first skin sores and scabies infection by pooling historical data from three studies conducted across five remote Aboriginal communities for children born between 2001 and 2005. We estimated the age of the first infection using the Kaplan-Meier estimator; parametric exponential mixture model; and Cox proportional hazards. For skin sores, the mean age of the first infection was approximately 10 months and the median was 7 months, with some heterogeneity in median observed by the community. For scabies, the mean age of the first infection was approximately 9 months and the median was 8 months, with significant heterogeneity by the community and an enhanced risk for children born between October and December. The young age of the first infection with skin sores and scabies reflects the high disease burden in these communities.
Tailoring Laser Propulsion for Future Applications in Space
NASA Astrophysics Data System (ADS)
Eckel, Hans-Albert; Scharring, Stefan
2010-10-01
Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites. First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.
NASA Astrophysics Data System (ADS)
Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.
2017-12-01
Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.
NASA Technical Reports Server (NTRS)
Dugdale, Richard C.; Wilkerson, Frances P.
1995-01-01
During this project we have collected numerous shipboard data-bases of oceanic nitrate and silicate versus temperature for both equatorial and coastal upwelling regions. These cruises all have accompanying N-15 measurements of new production. The inverse relationships between nutrients and temperatures have been determined and are being used to obtain surface nutrient fields from sea surface temperatures measured remotely by satellite borne sensors- i.e. AVHRR data from NOAA satellites contained in the MCSST data set for the world ocean provided by the University of Miami. The images and data derived from space in this way show the strong seasonal fluctuations and interannual el Nino fluctuations of the nitrate field. the nitrate data has been used to make estimates of new production for the equatorial pacific which are compared with shipboard measurements when available. The importance of silicate as a nutrient driving new production and the ratio of nitrate to silicate has been discovered to be crucial to better understand the causes of new production variability, so we have added these parameters to our study and have begun to make estimates of these for the equatorial Pacific, derived from the weekly averaged sea surface temperatures (SSTs).
NASA Astrophysics Data System (ADS)
Feng, Wanwan; Wang, Leiguang; Xie, Junfeng; Yue, Cairong; Zheng, Yalan; Yu, Longhua
2018-04-01
Forest biomass is an important indicator for the structure and function of forest ecosystems, and an accurate assessment of forest biomass is crucial for understanding ecosystem changes. Remote sensing has been widely used for inversion of biomass. However, in mature or over-mature forest areas, spectral saturation is prone to occur. Based on existing research, this paper synthesizes domestic high resolution satellites, ZY3-01 satellites, and GLAS14-level data from space-borne Lidar system, and other data set. Extracting texture and elevation features respectively, for the inversion of forest biomass. This experiment takes Shangri-La as the research area. Firstly, the biomass in the laser spot was calculated based on GLAS data and other auxiliary data, DEM, the second type inventory of forest resources data and the Shangri-La vector boundary data. Then, the regression model was established, that is, the relationship between the texture factors of ZY3-01 and biomass in the laser spot. Finally, by using this model and the forest distribution map in Shangri-La, the biomass of the whole area is obtained, which is 1.3972 × 108t.
Satellites as Sentinels for Climate and Health
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2003-01-01
Remotely-sensed data and observations are providing powerful new tools for addressing climate and environment-related human health problems through increased capabilities for monitoring, risk mapping, and surveillance of parameters useful to such problems as vector- borne and infectious diseases, air and water quality,. harmful algal blooms, W radiation, contaminant and pathogen transport in air and water, and thermal stress. Remote sensing, geographic information systems (GIs), global positioning systems (GPS), improved computation capabilities, and interdisciplinary research between the Earth and health science communities, together with local knowledge, are being combined in rich collaborative efforts resulting in more rapid problem-solving, early warning, and prevention in global climate and health issues. These collaborative efforts are enabling increased understanding of the relationships among changes in temperature, rainfall, wind, soil moisture, solar radiation, vegetation, and the patterns of extreme weather events and health issues. This increased understanding and improved information and data sharing, in turn, empowers local health and environmental decision-makers to better predict climate-related health problems, decrease vulnerability, take preventive measures, and improve response actions. This paper provides a number of recent examples of how satellites - from their unique vantage point in space - can serve as sentinels for climate and health.
Flood mapping from Sentinel-1 and Landsat-8 data: a case study from river Evros, Greece
NASA Astrophysics Data System (ADS)
Kyriou, Aggeliki; Nikolakopoulos, Konstantinos
2015-10-01
Floods are suddenly and temporary natural events, affecting areas which are not normally covered by water. The influence of floods plays a significant role both in society and the natural environment, therefore flood mapping is crucial. Remote sensing data can be used to develop flood map in an efficient and effective way. This work is focused on expansion of water bodies overtopping natural levees of the river Evros, invading the surroundings areas and converting them in flooded. Different techniques of flood mapping were used using data from active and passive remote sensing sensors like Sentinlel-1 and Landsat-8 respectively. Space borne pairs obtained from Sentinel-1 were processed in this study. Each pair included an image during the flood, which is called "crisis image" and another one before the event, which is called "archived image". Both images covering the same area were processed producing a map, which shows the spread of the flood. Multispectral data From Landsat-8 were also processed in order to detect and map the flooded areas. Different image processing techniques were applied and the results were compared to the respective results of the radar data processing.
1988-05-25
Chongqing Acad- emy of Social Sciences: "The CPC’s Third Echelon of Successors and Their Special Role"] [Text] The CPC’s plan for raising a third echelon...students who graduated after 1949; 2) Those who became communist cadres after 1949; 3) Those born during or after 1928. Persons born a year or two earlier...restrictions that obstruct the development of productive forces must be removed. They believe that socialism and communism are things far away in the remote
Telescience testbedding for life science missions on the Space Station
NASA Technical Reports Server (NTRS)
Rasmussen, D.; Mian, A.; Bosley, J.
1988-01-01
'Telescience', defined as the ability of distributed system users to perform remote operations associated with NASA Space Station life science operations, has been explored by a developmental testbed project allowing rapid prototyping to evaluate the functional requirements of telescience implementation in three areas: (1) research planning and design, (2) remote operation of facilities, and (3) remote access to data bases for analysis. Attention is given to the role of expert systems in telescience, its use in realistic simulation of Space Shuttle payload remote monitoring, and remote interaction with life science data bases.
NASA Technical Reports Server (NTRS)
Royer, A.; Picard, G.; Arnaud, L.; Brucker, L.; Fily, M..
2014-01-01
Space-borne microwave radiometers are among the most useful tools to study snow and to collect information on the Antarctic climate. They have several advantages over other remote sensing techniques: high sensitivity to snow properties of interest (temperature, grain size, density), subdaily coverage in the polar regions, and their observations are independent of cloud conditions and solar illumination. Thus, microwave radiometers are widely used to retrieve information over snow-covered regions. For the Antarctic Plateau, many studies presenting retrieval algorithms or numerical simulations have assumed, explicitly or not, that the subpixel-scale heterogeneity is negligible and that the retrieved properties were representative of whole pixels. In this presentation, we investigate the spatial variations of brightness temperature over arange of a few kilometers in the Dome C area (Antarctic Plateau).
The evaluation and development of the Met Office Unified Model using surface and space borne radar.
NASA Astrophysics Data System (ADS)
Petch, J.
2012-12-01
The Met Office Unified Model is used for the prediction of weather and climate on time scales of hours through to centuries. Therefore, the parametrizations in that model need to work on weather and climate timescale, and with grid-lengths from hundres of meters through to several hundred kilometres. Focusing on the development of the cloud and radiation schemes I will discuss how we are using ground-based remote-sensing observations from Chilbolton (England) and a combination of Cloudsat and Calipso data to evaluate and improve the performance of the model. I will show how the prediction of the clouds has improved since the AR5 version of the model and how we have developed an improved cloud generator to rebresent the sub-grid variability of clouds for radiative transfer.
NASA Technical Reports Server (NTRS)
Meintel, A. J., Jr.; Will, R. W.
1985-01-01
This presentation consists of four sections. The first section is a brief introduction to the NASA Space Program. The second portion summarized the results of a congressionally mandated study of automation and robotics for space station. The third portion presents a number of concepts for space teleoperator systems. The remainder of the presentation describes Langley Research Center's teleoperator/robotic research to support remote space operations.
Hyperresolution: an hyperspectral and high resolution imager for Earth observation
NASA Astrophysics Data System (ADS)
De Vidi, R.; Chiarantini, L.; Bini, A.
2017-11-01
Hyperspectral space imagery is an emerging technology that supports many scientific, civil, security and defence operational applications. The main advantage of this remote sensing technique is that it allows the so-called Feature Extraction: in fact the spectral signature allows the recognition of the materials composing the scene. Hyperspectral Products and their applications have been investigated in the past years by Galileo Avionica to direct the instrument characteristics design. Sample products have been identified in the civil / environment monitoring fields (such as coastal monitoring, vegetation, hot spot and urban classification) and in defense / security applications: their performances have been verified by means of airborne flight campaigns. The Hyperspectral and High Resolution Imager is a space-borne instrument that implement a pushbroom technique to get strip spectral images over the Hyperspectral VNIR and SWIR bands, with a ground sample distance at nadir of 20m in a 20 km wide ground swath, with 200 spectral channels, realizing an average spectral resolution of 10nm. The High Resolution Panchromatic Channel insists in the same swath to allow for multiresolution data fusion of hyperspectral imagery.
Test Flight Results of the New Airborne CH4 and CO2 Lidar CHARM-F
NASA Astrophysics Data System (ADS)
Kiemle, Christoph; Amediek, Axel; Fix, Andreas; Wirth, Martin; Quatrevalet, Mathieu; Büdenbender, Christian; Ehret, Gerhard
2017-04-01
Installed onboard the German research aircraft HALO the integrated-path differential-absorption (IPDA) lidar CHARM-F measures weighted vertical columns of the greenhouse gases CO2 and CH4 below the aircraft and along its flight track aiming at high accuracy and precision. CHARM-F was designed and built as an airborne demonstrator for the space lidar MERLIN, the "Methane Remote Lidar Mission", conducted by the German and French space agencies DLR and CNES with launch foreseen in 2021. It provides excellent opportunities for targeted measurements of regional fluxes and hot spots. We present exemplary measurements from several flights performed in spring 2015 over Central Europe. Our analyses reveal a measurement precision of below 0.5% for 20-km averages. A methane plume from a coal mine ventilation shaft was overflown, as well as a carbon dioxide plume from a large coal-fired power plant. The method to estimate fluxes from the lidar signals will be explained. The results show good agreement with reported emission rates. The airborne measurements are expected to improve the retrieval of future space-borne IPDA lidar systems such as MERLIN. CHARM-F measurements over mountains, water and clouds help assess the strength and variability of backscatter from such challenging surfaces. The IPDA weighting function, or measurement sensitivity, is dependent on atmospheric pressure and temperature. We use ECMWF analyses interpolated in space and time to the aircraft track that provide these auxiliary data. The relatively coarse model representation of orography, with respect to the lidar, causes uncertainties that we assess. CHARM-F will be a key instrument in the upcoming CoMet field experiment, where active and passive remote sensing, as well as in-situ instruments will be installed onboard HALO. The flights are scheduled in April and May 2017 over Central Europe and will focus on point sources such as power plants, coal mines, and landfills, as well as on urban gradients and more extended sources such as agriculture and wetlands.
Space transportation, satellite services, and space platforms
NASA Technical Reports Server (NTRS)
Disher, J. H.
1979-01-01
The paper takes a preview of the progressive development of vehicles for space transportation, satellite services, and orbital platforms. A low-thrust upper stage of either the ion engine or chemical type will be developed to transport large spacecraft and space platforms to and from GEO. The multimission spacecraft, space telescope, and other scientific platforms will require orbital serves going beyond that provided by the Shuttle's remote manipulator system, and plans call for extravehicular activity tools, improved remote manipulators, and a remote manned work station (the cherry picker).
Needs, opportunities and strategies for a long-term oceanic sciences satellite program
NASA Technical Reports Server (NTRS)
Ruttenberg, S. (Editor)
1981-01-01
Several areas of the National Oceanic Satellite System are addressed including Satellite-borne communication systems, subsurface remote sensing, data coordination, color scanners, formatting important historical data sets, and sea surface temperature observations.
Remote preparation of a qudit using maximally entangled states of qubits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Changshui; Song Heshan; Wang Yahong
2006-02-15
Known quantum pure states of a qudit can be remotely prepared onto a group of particles of qubits exactly or probabilistically with the aid of two-level Einstein-Podolsky-Rosen states. We present a protocol for such kind of remote state preparation. We are mainly focused on the remote preparation of the ensembles of equatorial states and those of states in real Hilbert space. In particular, a kind of states of qudits in real Hilbert space have been shown to be remotely prepared in faith without the limitation of the input space dimension.
Variability of the volume and thickness of sea ice in the Bay of Bothnia
NASA Astrophysics Data System (ADS)
Ronkainen, Iina; Lehtiranta, Jonni; Lensu, Mikko; Rinne, Eero; Hordoir, Robinson; Haapala, Jari
2017-04-01
Variability of the volume and thickness of sea ice in the Bay of Bothnia In our study, we want to quantify the variability of sea ice volume and thickness in the Bay of Bothnia and to introduce the drivers of the observed variability. There has been similar studies, but only for fast ice. We use various different data sets: in-situ ice thickness data, remote sensing data, model data and ice charts. In-situ data is from the regular monitoring stations in the coastal fast ice zone and from field campaigns. The remote sensing data is helicopter-borne and ship-borne electromagnetic data. The models we use are HELMI and NEMO-Nordic. We analyze the different data sets and compare them to each other to solve the inter-annual variability and to discuss the ratio of level and deformed ice.
Space-Borne Laser Altimeter Geolocation Error Analysis
NASA Astrophysics Data System (ADS)
Wang, Y.; Fang, J.; Ai, Y.
2018-05-01
This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.
Remote sensing, global warming, and vector-borne disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, B.; Beck, L.; Dister, S.
1997-12-31
The relationship between climate change and the pattern of vector-borne disease can be viewed at a variety of spatial and temporal scales. At one extreme are changes such as global warming, which are continental in scale and occur over periods of years, decades, or longer. At the opposite extreme are changes associated with severe weather events, which can occur at local and regional scales over periods of days, weeks, or months. Key ecological factors affecting the distribution of vector-borne diseases include temperature, precipitation, and habitat availability, and their impact on vectors, pathogens, reservoirs, and hosts. Global warming can potentially altermore » these factors, thereby affecting the spatial and temporal patterns of disease.« less
Advancement of China’s Visible Light Remote Sensing Technology In Aerospace,
1996-03-19
Aerospace visible light film systems were among the earliest space remote sensing systems to be developed in China. They have been applied very well...makes China the third nation in the world to master space remote sensing technology, it also puts recoverable remote sensing satellites among the first
An Elder's View of Community Resilience.
Gladue, Ruth; Lund, Carrielynn
2008-01-01
This paper is an interview between Carrielynn Lund and Cree Elder Ruth Gladue on research and community resilience in her semi-remote, northern Alberta community. Ruth is a Cree Elder born "during the war years." She is married and has two girls, one boy, and "a few grandchildren." Ruth has worked as a Community Health Representative (CHR) and Licensed Practical Nurse (LPN) for over forty years. She lives in a semi-remote First Nations community in northern Alberta.
NASA Astrophysics Data System (ADS)
Othman, Arsalan; Gloaguen, Richard
2015-04-01
Topographic effects and complex vegetation cover hinder lithology classification in mountain regions based not only in field, but also in reflectance remote sensing data. The area of interest "Bardi-Zard" is located in the NE of Iraq. It is part of the Zagros orogenic belt, where seven lithological units outcrop and is known for its chromite deposit. The aim of this study is to compare three machine learning algorithms (MLAs): Maximum Likelihood (ML), Support Vector Machines (SVM), and Random Forest (RF) in the context of a supervised lithology classification task using Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite, its derived, spatial information (spatial coordinates) and geomorphic data. We emphasize the enhancement in remote sensing lithological mapping accuracy that arises from the integration of geomorphic features and spatial information (spatial coordinates) in classifications. This study identifies that RF is better than ML and SVM algorithms in almost the sixteen combination datasets, which were tested. The overall accuracy of the best dataset combination with the RF map for the all seven classes reach ~80% and the producer and user's accuracies are ~73.91% and 76.09% respectively while the kappa coefficient is ~0.76. TPI is more effective with SVM algorithm than an RF algorithm. This paper demonstrates that adding geomorphic indices such as TPI and spatial information in the dataset increases the lithological classification accuracy.
NASA Astrophysics Data System (ADS)
Chirayath, V.
2014-12-01
Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.
NASA Astrophysics Data System (ADS)
Ciampalini, Andrea; Raspini, Federico; Bianchini, Silvia; Frodella, William; Bardi, Federica; Lagomarsino, Daniela; Di Traglia, Federico; Moretti, Sandro; Proietti, Chiara; Pagliara, Paola; Onori, Roberta; Corazza, Angelo; Duro, Andrea; Basile, Giuseppe; Casagli, Nicola
2015-11-01
Landslide geodatabases, including inventories and thematic data, today are fundamental tools for national and/or local authorities in susceptibility, hazard and risk management. A well organized landslide geo-database contains different kinds of data such as past information (landslide inventory maps), ancillary data and updated remote sensing (space-borne and ground based) data, which can be integrated in order to produce landslide susceptibility maps, updated landslide inventory maps and hazard and risk assessment maps. Italy is strongly affected by landslide phenomena which cause victims and significant economic damage to buildings and infrastructure, loss of productive soils and pasture lands. In particular, the Messina Province (southern Italy) represents an area where landslides are recurrent and characterized by high magnitude, due to several predisposing factors (e.g. morphology, land use, lithologies) and different triggering mechanisms (meteorological conditions, seismicity, active tectonics and volcanic activity). For this area, a geodatabase was created by using different monitoring techniques, including remote sensing (e.g. SAR satellite ERS1/2, ENVISAT, RADARSAT-1, TerraSAR-X, COSMO-SkyMed) data, and in situ measurements (e.g. GBInSAR, damage assessment). In this paper a complete landslide geodatabase of the Messina Province, designed following the requirements of the local and national Civil Protection authorities, is presented. This geo-database was used to produce maps (e.g. susceptibility, ground deformation velocities, damage assessment, risk zonation) which today are constantly used by the Civil Protection authorities to manage the landslide hazard of the Messina Province.
Wang, Fu-tao; Wang, Shi-xin; Zhou, Yi; Wang, Li-tao; Yan, Fu-li; Li, Wen-jun; Liu, Xiong-fei
2016-01-01
The secondary geological disasters triggered by the Lushan earthquake on April 20, 2013, such as landslides, collapses, debris flows, etc., had caused great casualties and losses. We monitored the number and spatial distribution of the secondary geological disasters in the earthquake-hit area from airborne remote sensing images, which covered areas about 3 100 km2. The results showed that Lushan County, Baoxing County and Tianquan County were most severely affected; there were 164, 126 and 71 secondary geological disasters in these regions. Moreover, we analyzed the relationship between the distribution of the secondary geological disasters, geological structure and intensity. The results indicate that there were 4 high-hazard zones in the monitored area, one focused within six kilometers from the epicenter, and others are distributed along the two main fault zones of the Longmen Mountain. More than 97% secondary geological disasters occurred in zones with a seismic intensity of VII to IX degrees, a slope between 25 A degrees and 50 A degrees, and an altitude of between 800 and 2 000 m. At last, preliminary suggestions were proposed for the rehabilitation and reconstruction planning of Lushan earthquake. According to the analysis result, airborne and space borne remote sensing can be used accurately and effectively in almost real-time to monitor and assess secondary geological disasters, providing a scientific basis and decision making support for government emergency command and post-disaster reconstruction.
Preliminary results of BTDF calibration of transmissive solar diffusers for remote sensing
NASA Astrophysics Data System (ADS)
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-09-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their onboard transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
Space-Based CO2 Active Optical Remote Sensing using 2-μm Triple-Pulse IPDA Lidar
NASA Astrophysics Data System (ADS)
Singh, Upendra; Refaat, Tamer; Ismail, Syed; Petros, Mulugeta
2017-04-01
Sustained high-quality column CO2 measurements from space are required to improve estimates of regional and global scale sources and sinks to attribute them to specific biogeochemical processes for improving models of carbon-climate interactions and to reduce uncertainties in projecting future change. Several studies show that space-borne CO2 measurements offer many advantages particularly over high altitudes, tropics and southern oceans. Current satellite-based sensing provides rapid CO2 monitoring with global-scale coverage and high spatial resolution. However, these sensors are based on passive remote sensing, which involves limitations such as full seasonal and high latitude coverage, poor sensitivity to the lower atmosphere, retrieval complexities and radiation path length uncertainties. CO2 active optical remote sensing is an alternative technique that has the potential to overcome these limitations. The need for space-based CO2 active optical remote sensing using the Integrated Path Differential Absorption (IPDA) lidar has been advocated by the Advanced Space Carbon and Climate Observation of Planet Earth (A-Scope) and Active Sensing of CO2 Emission over Nights, Days, and Seasons (ASCENDS) studies in Europe and the USA. Space-based IPDA systems can provide sustained, high precision and low-bias column CO2 in presence of thin clouds and aerosols while covering critical regions such as high latitude ecosystems, tropical ecosystems, southern ocean, managed ecosystems, urban and industrial systems and coastal systems. At NASA Langley Research Center, technology developments are in progress to provide high pulse energy 2-μm IPDA that enables optimum, lower troposphere weighted column CO2 measurements from space. This system provides simultaneous ranging; information on aerosol and cloud distributions; measurements over region of broken clouds; and reduces influences of surface complexities. Through the continual support from NASA Earth Science Technology Office, current efforts are focused on developing an aircraft-based 2-μm triple-pulse IPDA lidar for independent and simultaneous monitoring of CO2 and water vapor (H2O). Triple-pulse IPDA design, development and integration is based on the knowledge gathered from the successful demonstration of the airborne CO2 2-μm double-pulse IPDA lidar. IPDA transmitter enhancements include generating high-energy (80 mJ) and high repetition rate (50Hz) three successive pulses using a single pump pulse. IPDA receiver enhancement include an advanced, low noise (1 fW/Hz1/2) MCT e-APD detection system for improved measurement sensitivity. In place of H2O sensing, the triple-pulse IPDA can be tuned to measure CO2 with two different weighting functions using two on-lines and a common off-line. Modeling of a space-based high-energy 2-µm triple-pulse IPDA lidar was conducted to demonstrate CO2 measurement capability and to evaluate random and systematic errors. Projected performance shows <0.12% random error and <0.07% residual systematic error. These translate to near-optimum 0.5 ppm precision and 0.3 ppm bias in low-tropospheric column CO2 mixing ratio measurements from space for 10 second signal averaging over Railroad Valley reference surface using US Standard atmospheric model. In addition, measurements can be optimized by tuning on-lines based upon ground target scenarios, environment and science objectives. With 10 MHz detection bandwidth, surface ranging with an uncertainty of <3 m can be achieved as demonstrated from earlier airborne flights.
Satellites as Shared Resources for Caribbean Climate and Health Studies
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2002-01-01
Remotely-sensed data and observations are providing powerful new tools for addressing climate and environment-related human health problems through increased capabilities for monitoring, risk mapping, and surveillance of parameters useful to such problems as vector-borne and infectious diseases, air and water quality, harmful algal blooms, UV (ultraviolet) radiation, contaminant and pathogen transport in air and water, and thermal stress. Remote sensing, geographic information systems (GIS), global positioning systems (GPS), improved computational capabilities, and interdisciplinary research between the Earth and health science communities are being combined in rich collaborative efforts resulting in more rapid problem-solving, early warning, and prevention in global health issues. Collaborative efforts among scientists from health and Earth sciences together with local decision-makers are enabling increased understanding of the relationships between changes in temperature, rainfall, wind, soil moisture, solar radiation, vegetation, and the patterns of extreme weather events and the occurrence and patterns of diseases (especially, infectious and vector-borne diseases) and other health problems. This increased understanding through improved information and data sharing, in turn, empowers local health and environmental officials to better predict health problems, take preventive measure, and improve response actions. This paper summarizes the remote sensing systems most useful for climate, environment and health studies of the Caribbean region and provides several examples of interdisciplinary research projects in the Caribbean currently using remote sensing technologies. These summaries include the use of remote sensing of algal blooms, pollution transport, coral reef monitoring, vectorborne disease studies, and potential health effects of African dust on Trinidad and Barbados.
Addendum to proceedings of the 1978 Synthetic Aperture Radar Technology Conference
NASA Technical Reports Server (NTRS)
1978-01-01
Various research projects on synthetic aperture radar are reported, including SAR calibration techniques. Slot arrays, sidelobe suppression, and wide swaths on satellite-borne radar were examined. The SAR applied to remote sensing was also considered.
Crash in Australian outback ends NASA ballooning season
NASA Astrophysics Data System (ADS)
Harris, Margaret
2010-06-01
NASA has temporarily suspended all its scientific balloon launches after the balloon-borne Nuclear Compton Tele scope (NCT) crashed during take-off, scattering a trail of debris across the remote launch site and overturning a nearby parked car.
Single-Mode, High Repetition Rate, Compact Ho:YLF Laser for Space-Borne Lidar Applications
NASA Technical Reports Server (NTRS)
Bai, Yingxin; Yu, Jirong; Wong, Teh-Hwa; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.
2014-01-01
A single transverse/longitudinal mode, compact Q-switched Ho:YLF laser has been designed and demonstrated for space-borne lidar applications. The pulse energy is between 34-40 mJ for 100-200 Hz operation. The corresponding peak power is >1 MW.
Fiber-optic apparatus and method for measurement of luminescence and raman scattering
Myrick, Michael L.; Angel, Stanley M.
1993-01-01
A dual fiber forward scattering optrode for Raman spectroscopy with the remote ends of the fibers in opposed, spaced relationship to each other to form a analyte sampling space therebetween and the method of measuring Raman spectra utilizing same. One optical fiber is for sending an exciting signal to the remote sampling space and, at its remote end, has a collimating microlens and an optical filter for filtering out background emissions generated in the fiber. The other optical fiber is for collecting the Raman scattering signal at the remote sampling space and, at its remote end, has a collimating microlens and an optical filter to prevent the exciting signal from the exciting fiber from entering the collection fiber and to thereby prevent the generation of background emissions in the collecting fiber.
NASA Astrophysics Data System (ADS)
Kozoderov, V. V.; Kondranin, T. V.; Dmitriev, E. V.
2017-12-01
The basic model for the recognition of natural and anthropogenic objects using their spectral and textural features is described in the problem of hyperspectral air-borne and space-borne imagery processing. The model is based on improvements of the Bayesian classifier that is a computational procedure of statistical decision making in machine-learning methods of pattern recognition. The principal component method is implemented to decompose the hyperspectral measurements on the basis of empirical orthogonal functions. Application examples are shown of various modifications of the Bayesian classifier and Support Vector Machine method. Examples are provided of comparing these classifiers and a metrical classifier that operates on finding the minimal Euclidean distance between different points and sets in the multidimensional feature space. A comparison is also carried out with the " K-weighted neighbors" method that is close to the nonparametric Bayesian classifier.
An Elder’s View of Community Resilience
Gladue, Ruth; Lund, Carrielynn
2010-01-01
This paper is an interview between Carrielynn Lund and Cree Elder Ruth Gladue on research and community resilience in her semi-remote, northern Alberta community. Ruth is a Cree Elder born “during the war years.” She is married and has two girls, one boy, and “a few grandchildren.” Ruth has worked as a Community Health Representative (CHR) and Licensed Practical Nurse (LPN) for over forty years. She lives in a semi-remote First Nations community in northern Alberta. PMID:20835300
A Unique Perspective from Space on our Planet: Science, Technologies and Applications
NASA Technical Reports Server (NTRS)
Habib, Shaid
2006-01-01
The study of Planet earth is a very complex problem. It has many non-linear and chaotic systems operating in parallel and have interdependencies. In reality, these systems/phenomena s are not well understood or mathematically modeled because of our lack of knowledge of such intricate processes. However, in order to further the subject of Earth as an integrated system, space provides excellent vantage points to look at these processes in multidimensional framework. For example, we can make strives to understand the global water cycle, carbon cycle, atmospheric chemistry, biomass changes, oceans and solid Earth variations by making multitude of global measurements such as soil moisture, precipitation, tropospheric and stratospheric gases, aerosols, tropospheric winds, ocean salinity, ocean color, vegetation cover, crustal dynamics and many more. Such suites of measurements derive the coupled models so we may predict the changes due to natural and anthropogenic forcing. NASA along with other international space agencies have made tremendous investments in recent years in developing and flying remote sensing space borne sensors to enable these measurements. These science measurements and products are further used to address pressing issues such as coastal zone erosion, air quality, severe weather, water availability and quality, public health, fires, earthquakes, land slides and others for societal benefits. This presentation provides a comprehensive overview of NASA s science investigations, related technologies and satellites/sensors and applications.
NASA Technical Reports Server (NTRS)
Farmer, F. H.; Brown, C. A., Jr.; Jarrett, O., Jr.; Campbell, J. W.; Staton, W. L.
1979-01-01
An aircraft-borne remote system is presented that utilizes narrow-band light from multiple dye lasers to excite selected algae photopigments and then measures the resultant flourescence emitted from chlorophyll a at 685 nm. Tests were conducted with both pure and mixed cultures of marine algae from a series of field tests taken from piers and bridges of Narragansett Bay, and a prototype remote fluorosensor was flown over the Bay during the 1978 winter-spring diatom bloom. Remote fluorescence obtained at hover points over sea-truth stations showed correlations with in situ fluorescence, total chlorophyll a, and cell count. It was concluded that the ratio of remote fluorescence to direct chlorophyll a concentration was less variable than expected, and the distribution of total chlorophyll a between two major photoplankton color groups showed three distinct areas, within the Bay, of green and golden-brown species.
Surface Forcing from CH4 at the North Slope of Alaska and Southern Great Plains Sites
NASA Astrophysics Data System (ADS)
Collins, W.; Feldman, D.; Turner, D. D.
2014-12-01
Recent increases in atmospheric CH4 have been spatially heterogeneous as indicated by in situ flask measurements and space-borne remote-sensing retrievals from the AIRS instrument, potentially leading to increased radiative forcing. We present detailed, specialized measurements at the DOE ARM North Slope of Alaska (NSA) and Southern Great Plains (SGP) sites to derive the time-series of both CH4 atmospheric concentrations and associated radiative implications at highly-contrasting natural and anthropogenic sources. Using a combination of spectroscopic measurements, in situ observations, and ancillary data for the atmospheric thermodynamic state from radiosondes and cloud-clearing from active sounders, we can separate out the contribution of CH4 to clear-sky downwelling radiance spectra and its infrared surface forcing. The time-series indicates year-to-year variation in shoulder season increases of CH4 concentration and forcing at NSA and large signals from anthropogenic activity at SGP.
Kokaly, R.F.; King, T.V.V.; Hoefen, T.M.
2011-01-01
Identifying materials by measuring and analyzing their reflectance spectra has been an important method in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow scientists to detect materials and map their distributions across the landscape. With new satellite-borne hyperspectral sensors planned for the future, for example, HYSPIRI (HYPerspectral InfraRed Imager), robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral-feature based analysis of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described in this paper. The core concepts and calculations of MICA are presented. A MICA command file has been developed and applied to map minerals in the full-country coverage of the 2007 Afghanistan HyMap hyperspectral data. ?? 2011 IEEE.
Surface Deformation and Gravity Changes from Surface and Internal Loads
NASA Technical Reports Server (NTRS)
Hager, Bradford H.; Fang, Ming
2002-01-01
Air and space borne remote sensing have made it possible to monitor the mass and energy transport at various scales within the cryosphere-hydrosphere-atmosphere system. The recent surface mass balance (the rate of net gain of snow and ice at a geographic point) map for the Antarctic ice sheet is constructed by interpolating sparse in situ observations (about 1,800 points) with empirically calibrated satellite data of passive back emission of microwaves. The digital elevation model obtained from satellite radar altimetry is used to improve the delineation of the ice flow drainage basins. As important as these results are, the uncertainty remains up to about 2 mm/yr of eustatic sea level change with the net imbalance. In other words, we are still unable to determine even the sign of the contribution of the Antarctic ice sheet to contemporary sea level change. The problem is more likely with the discharge rather than accumulation.
NASA Technical Reports Server (NTRS)
Imhoff, M.; Vermillion, C.
1986-01-01
The synoptic view afforded by orbiting Earth sensors can be extremely valuable for resource evaluation, environmental monitoring and development planning. For many regions of the world, however, cloud cover has prevented the acquisition of remotely sensed data during the most environmentally stressful periods of the year. This paper discusses how synthetic aperture imaging radar can be used to provide valuable data about the condition of the Earth's surface during periods of bad weather. Examples are given of applications using data from the Shuttle Imaging Radars (SIR) A and B for agriculture land use and crop condition assessment, monsoon flood boundary and flood damage assessment, water resource monitoring and terrain modeling, coastal forest mapping and vegetation penetration, and coastal development monitoring. Recent SIR-B results in Bangladesh are emphasized, radar system basics are reviewed and future SAR systems discussed.
Distinguishing remobilized ash from erupted volcanic plumes using space-borne multi-angle imaging.
Flower, Verity J B; Kahn, Ralph A
2017-10-28
Volcanic systems are comprised of a complex combination of ongoing eruptive activity and secondary hazards, such as remobilized ash plumes. Similarities in the visual characteristics of remobilized and erupted plumes, as imaged by satellite-based remote sensing, complicate the accurate classification of these events. The stereo imaging capabilities of the Multi-angle Imaging SpectroRadiometer (MISR) were used to determine the altitude and distribution of suspended particles. Remobilized ash shows distinct dispersion, with particles distributed within ~1.5 km of the surface. Particle transport is consistently constrained by local topography, limiting dispersion pathways downwind. The MISR Research Aerosol (RA) retrieval algorithm was used to assess plume particle microphysical properties. Remobilized ash plumes displayed a dominance of large particles with consistent absorption and angularity properties, distinct from emitted plumes. The combination of vertical distribution, topographic control, and particle microphysical properties makes it possible to distinguish remobilized ash flows from eruptive plumes, globally.
NASA Technical Reports Server (NTRS)
Kahn, Ralph
2016-01-01
Space-borne instruments are providing increasing amounts of data relating to global aerosol spectral optical depth, horizontal and vertical distribution, and very loose, but spatially and temporally extensive, constraints on particle micro-physical properties. The data sets, and many of the underlying techniques, are evolving rapidly. They represent a vast amount of information, potentially useful to the AAAR community. However, there are also issues, some quite subtle, that scientific users must take into consideration. This tutorial will provide one view of the answers to the following four questions: 1) What satellite-derived aerosol products are available? 2) What are their strengths and limitations? 3) How are they being used now? 4) How might they be used in conjunction with each other, with sub-orbital measurements, and with models to address cutting-edge aerosol questions?
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Vermillion, C. H.
1986-01-01
The synoptic view afforded by orbiting Earth sensors can be extremely valuable for resource evaluation, environmental monitoring and development planning. For many regions of the world, however, cloud cover has prevented the acquisition of remotely sensed data during the most environmentally stressful periods of the year. How synthetic aperture imaging radar can be used to provide valuable data about the condition of the Earth's surface during periods of bad weather is discussed. Examples are given of applications using data from the Shuttle Imaging Radars (SIR) A and B for agricultural land use and crop condition assessment, monsoon flood boundary and flood damage assessment, water resource monitoring and terrain modeling, coastal forest mapping and vegetation penetration, and coastal development monitoring. Recent SIR-B results in Bangladesh are emphasized, radar system basics are reviewed and future SAR systems are discussed.
Recognition of a porphyry system using ASTER data in Bideghan - Qom province (central of Iran)
NASA Astrophysics Data System (ADS)
Feizi, F.; Mansouri, E.
2014-07-01
The Bideghan area is located south of the Qom province (central of Iran). The most impressive geological features in the studied area are the Eocene sequences which are intruded by volcanic rocks with basic compositions. Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) image processing have been used for hydrothermal alteration mapping and lineaments identification in the investigated area. In this research false color composite, band ratio, Principal Component Analysis (PCA), Least Square Fit (LS-Fit) and Spectral Angel Mapping (SAM) techniques were applied on ASTER data and argillic, phyllic, Iron oxide and propylitic alteration zones were separated. Lineaments were identified by aid of false color composite, high pass filters and hill-shade DEM techniques. The results of this study demonstrate the usefulness of remote sensing method and ASTER multi-spectral data for alteration and lineament mapping. Finally, the results were confirmed by field investigation.
NASA Astrophysics Data System (ADS)
Lin, Wei-Cheng; Chang, Shenq-Tsong; Yu, Zong-Ru; Lin, Yu-Chuan; Ho, Cheng-Fong; Huang, Ting-Ming; Chen, Cheng-Huan
2014-09-01
A Cassegrain telescope with a 450 mm clear aperture was developed for use in a spaceborne optical remote-sensing instrument. Self-weight deformation and thermal distortion were considered: to this end, Zerodur was used to manufacture the primary mirror. The lightweight scheme adopted a hexagonal cell structure yielding a lightweight ratio of 50%. In general, optical testing on a lightweight mirror is a critical technique during both the manufacturing and assembly processes. To prevent unexpected measurement errors that cause erroneous judgment, this paper proposes a novel and reliable analytical method for optical testing, called the bench test. The proposed algorithm was used to distinguish the manufacturing form error from surface deformation caused by the mounting, supporter and gravity effects for the optical testing. The performance of the proposed bench test was compared with a conventional vertical setup for optical testing during the manufacturing process of the lightweight mirror.
Mapping detailed 3D information onto high resolution SAR signatures
NASA Astrophysics Data System (ADS)
Anglberger, H.; Speck, R.
2017-05-01
Due to challenges in the visual interpretation of radar signatures or in the subsequent information extraction, a fusion with other data sources can be beneficial. The most accurate basis for a fusion of any kind of remote sensing data is the mapping of the acquired 2D image space onto the true 3D geometry of the scenery. In the case of radar images this is a challenging task because the coordinate system is based on the measured range which causes ambiguous regions due to layover effects. This paper describes a method that accurately maps the detailed 3D information of a scene to the slantrange-based coordinate system of imaging radars. Due to this mapping all the contributing geometrical parts of one resolution cell can be determined in 3D space. The proposed method is highly efficient, because computationally expensive operations can be directly performed on graphics card hardware. The described approach builds a perfect basis for sophisticated methods to extract data from multiple complimentary sensors like from radar and optical images, especially because true 3D information from whole cities will be available in the near future. The performance of the developed methods will be demonstrated with high resolution radar data acquired by the space-borne SAR-sensor TerraSAR-X.
Tailoring Laser Propulsion for Future Applications in Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckel, Hans-Albert; Scharring, Stefan
Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic andmore » sample return missions as well as position keeping and attitude control of satellites.First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.« less
Fiber-optic apparatus and method for measurement of luminescence and Raman scattering
Myrick, M.L.; Angel, S.M.
1993-03-16
A dual fiber forward scattering optrode for Raman spectroscopy with the remote ends of the fibers in opposed, spaced relationship to each other to form a analyte sampling space therebetween and the method of measuring Raman spectra utilizing same are described. One optical fiber is for sending an exciting signal to the remote sampling space and, at its remote end, has a collimating microlens and an optical filter for filtering out background emissions generated in the fiber. The other optical fiber is for collecting the Raman scattering signal at the remote sampling space and, at its remote end, has a collimating microlens and an optical filter to prevent the exciting signal from the exciting fiber from entering the collection fiber and to thereby prevent the generation of background emissions in the collecting fiber.
Analysis of remote operating systems for space-based servicing operations, volume 1
NASA Technical Reports Server (NTRS)
1985-01-01
A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.
Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space
2000-02-20
Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving...atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses
Hakkenberg, C R; Zhu, K; Peet, R K; Song, C
2018-02-01
The central role of floristic diversity in maintaining habitat integrity and ecosystem function has propelled efforts to map and monitor its distribution across forest landscapes. While biodiversity studies have traditionally relied largely on ground-based observations, the immensity of the task of generating accurate, repeatable, and spatially-continuous data on biodiversity patterns at large scales has stimulated the development of remote-sensing methods for scaling up from field plot measurements. One such approach is through integrated LiDAR and hyperspectral remote-sensing. However, despite their efficiencies in cost and effort, LiDAR-hyperspectral sensors are still highly constrained in structurally- and taxonomically-heterogeneous forests - especially when species' cover is smaller than the image resolution, intertwined with neighboring taxa, or otherwise obscured by overlapping canopy strata. In light of these challenges, this study goes beyond the remote characterization of upper canopy diversity to instead model total vascular plant species richness in a continuous-cover North Carolina Piedmont forest landscape. We focus on two related, but parallel, tasks. First, we demonstrate an application of predictive biodiversity mapping, using nonparametric models trained with spatially-nested field plots and aerial LiDAR-hyperspectral data, to predict spatially-explicit landscape patterns in floristic diversity across seven spatial scales between 0.01-900 m 2 . Second, we employ bivariate parametric models to test the significance of individual, remotely-sensed predictors of plant richness to determine how parameter estimates vary with scale. Cross-validated results indicate that predictive models were able to account for 15-70% of variance in plant richness, with LiDAR-derived estimates of topography and forest structural complexity, as well as spectral variance in hyperspectral imagery explaining the largest portion of variance in diversity levels. Importantly, bivariate tests provide evidence of scale-dependence among predictors, such that remotely-sensed variables significantly predict plant richness only at spatial scales that sufficiently subsume geolocational imprecision between remotely-sensed and field data, and best align with stand components including plant size and density, as well as canopy gaps and understory growth patterns. Beyond their insights into the scale-dependent patterns and drivers of plant diversity in Piedmont forests, these results highlight the potential of remotely-sensible essential biodiversity variables for mapping and monitoring landscape floristic diversity from air- and space-borne platforms. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Othman, Arsalan A.; Gloaguen, Richard
2017-09-01
Lithological mapping in mountainous regions is often impeded by limited accessibility due to relief. This study aims to evaluate (1) the performance of different supervised classification approaches using remote sensing data and (2) the use of additional information such as geomorphology. We exemplify the methodology in the Bardi-Zard area in NE Iraq, a part of the Zagros Fold - Thrust Belt, known for its chromite deposits. We highlighted the improvement of remote sensing geological classification by integrating geomorphic features and spatial information in the classification scheme. We performed a Maximum Likelihood (ML) classification method besides two Machine Learning Algorithms (MLA): Support Vector Machine (SVM) and Random Forest (RF) to allow the joint use of geomorphic features, Band Ratio (BR), Principal Component Analysis (PCA), spatial information (spatial coordinates) and multispectral data of the Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite. The RF algorithm showed reliable results and discriminated serpentinite, talus and terrace deposits, red argillites with conglomerates and limestone, limy conglomerates and limestone conglomerates, tuffites interbedded with basic lavas, limestone and Metamorphosed limestone and reddish green shales. The best overall accuracy (∼80%) was achieved by Random Forest (RF) algorithms in the majority of the sixteen tested combination datasets.
A Hybrid Remote Sensing Approach for Detecting the Florida Red Tide
NASA Astrophysics Data System (ADS)
Carvalho, G. A.; Minnett, P. J.; Banzon, V.; Baringer, W.
2008-12-01
Harmful algal blooms (HABs) have caused major worldwide economic losses commonly linked with health problems for humans and wildlife. In the Eastern Gulf of Mexico the toxic marine dinoflagellate Karenia brevis is responsible for nearly annual, massive red tides causing fish kills, shellfish poisoning, and acute respiratory irritation in humans: the so-called Florida Red Tide. Near real-time satellite measurements could be an effective method for identifying HABs. The use of space-borne data would be a highly desired, low-cost technique offering the remote and accurate detection of K. brevis blooms over the West Florida Shelf, bringing tremendous societal benefits to the general public, scientific community, resource managers and medical health practitioners. An extensive in situ database provided by the Florida Fish and Wildlife Conservation Commission's Research Institute was used to examine the long-term accuracy of two satellite- based algorithms at detecting the Florida Red Tide. Using MODIS data from 2002 to 2006, the two algorithms are optimized and their accuracy assessed. It has been found that the sequential application of the algorithms results in improved predictability characteristics, correctly identifying ~80% of the cases (for both sensitivity and specificity, as well as overall accuracy), and exhibiting strong positive (70%) and negative (86%) predictive values.
Assessing the Tundra-taiga Boundary with Multi-Sensor Satellite Data
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Sun, G.; Kharuk, V. I.; Kovacs, K.
2004-01-01
Monitoring the dynamics of the circumpolar boreal forest (taiga) and Arctic tundra boundary is important for understanding the causes and consequences of changes observed in these areas. This ecotone, the world's largest, stretches for over 13,400 km and marks the transition between the northern limits of forests and the southern margin of the tundra. Because of the inaccessibility and large extent of this zone, remote sensing data can play an important role for mapping the characteristics and monitoring the dynamics. Basic understanding of the capabilities of existing space borne instruments for these purposes is required. In this study we examined the use of several remote sensing techniques for identifying the existing tundra- taiga ecotone. These include Landsat-7, MISR, MODIS and RADARSAT data. Historical cover maps, recent forest stand measurements and high-resolution IKONOS images were used for local ground truth. It was found that a tundra-taiga transitional area can be characterized using multi- spectral Landsat ETM+ summer images, multi-angle MISR red band reflectance images, RADARSAT images with larger incidence angle, or multi-temporal and multi-spectral MODIS data. Because of different resolutions and spectral regions covered, the transition zone maps derived from different data types were not identical, but the general patterns were consistent.
Reconciling temporal trends in water-use efficiency from tree rings to continents
NASA Astrophysics Data System (ADS)
Poulter, B.; Frank, D. C.; Piao, S.; Ciais, P.; Fisher, J. B.
2016-12-01
The direct effects of rising atmospheric carbon dioxide (CO2) concentrations on leaf to ecosystem scale processes continue to remain elusive and difficult to quantify. Measurements of the so called "CO2 fertilization effect" based on tree rings, flux towers, and satellites, are confounded by temporal and spatial scaling issues, statistical sampling and detrending artefacts, and interactions with climatic and land-use drivers. In contrast, water-use efficiency (WUE), which integrates carbon uptake from photosynthesis (A) with water loss via transpiration (T), can be measured directly from carbon isotopes and indirectly from in situ fluxes or remote sensing models of A and T, and provide a link between observations with physiological theory. Here, we contrast recent studies of reconstructions of WUE from tree rings, with flux tower and remote sensing based observations. Despite agreement that WUE has increased over the past several decades, differences in temporal coverage, the definition of WUE, i.e., intrinsic versus inherent, and in methodology continue to cause divergence in the magnitude of the response, and put measurements at odds with theory. A deeper appreciation of the drivers behind these differences will help direct new field measurement campaigns, experimental manipulations, and space-borne observations such as the new NASA ECOSTRESS mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crombie, M. K.; Gillies, R. R.; Arvidson, R. E.
1999-12-01
This paper applies a relatively straightforward remote sensing method that is commonly used to derive climatological variables. Measurements of surface reflectance and surface radiant temperature derived from Landsat Thematic Mapper data were used to create maps of fractional vegetation and surface soil moisture availability for the southern Nile delta in Egypt. These climatological variables were subsequently used to investigate the spatial distribution of the vector borne disease Bancroftian filariasis in the Nile delta where it is focally endemic and a growing problem. Averaged surface soil moisture values, computed for a 5-km border area around affected villages, were compared to filariasismore » prevalence rates. Prevalence rates were found to be negligible below a critical soil moisture value of 0.2, presumably because of a lack of appropriate breeding sites for the Culex Pipiens mosquito species. With appropriate modifications to account for local conditions and vector species, this approach should be useful as a means to map, predict, and control insect vector-borne diseases that critically depend on wet areas for propagation. This type of analysis may help governments and health agencies that are involved in filariasis control to better focus limited resources to identifiable high-risk areas.« less
Passive microwave remote sensing of an anisotropic random-medium layer
NASA Technical Reports Server (NTRS)
Lee, J. K.; Kong, J. A.
1985-01-01
The principle of reciprocity is invoked to calculate the brightness temperatures for passive microwave remote sensing of a two-layer anisotropic random medium. The bistatic scattering coefficients are first computed with the Born approximation and then integrated over the upper hemisphere to be subtracted from unity, in order to obtain the emissivity for the random-medium layer. The theoretical results are illustrated by plotting the emissivities as functions of viewing angles and polarizations. They are used to interpret remote sgnsing data obtained from vegetation canopy where the anisotropic random-medium model applies. Field measurements with corn stalks arranged in various configurations with preferred azimuthal directions are successfully interpreted with this model.
Space-borne profiling of atmospheric thermodynamic variables with raman lidar
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker
2018-04-01
The performance of a space-borne water vapour and temperature Raman lidar has been simulated, with a specific attention to the Earth Explorer Missions in the frame of ESA's Living Planet Program. We report simulations under a variety of atmospheric scenarios, demonstrating the capability of a space Raman lidar to provide global-scale water vapour and temperature measurements in the troposphere with an accuracy fulfilling most observational requirements for numerical weather prediction (NWP) and climate research.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
Code of Federal Regulations, 2012 CFR
2012-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
Code of Federal Regulations, 2013 CFR
2013-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
Code of Federal Regulations, 2011 CFR
2011-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
Code of Federal Regulations, 2014 CFR
2014-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
NASA Astrophysics Data System (ADS)
Xie, Jibo; Li, Guoqing
2015-04-01
Earth observation (EO) data obtained by air-borne or space-borne sensors has the characteristics of heterogeneity and geographical distribution of storage. These data sources belong to different organizations or agencies whose data management and storage methods are quite different and geographically distributed. Different data sources provide different data publish platforms or portals. With more Remote sensing sensors used for Earth Observation (EO) missions, different space agencies have distributed archived massive EO data. The distribution of EO data archives and system heterogeneity makes it difficult to efficiently use geospatial data for many EO applications, such as hazard mitigation. To solve the interoperable problems of different EO data systems, an advanced architecture of distributed geospatial data infrastructure is introduced to solve the complexity of distributed and heterogeneous EO data integration and on-demand processing in this paper. The concept and architecture of geospatial data service gateway (GDSG) is proposed to build connection with heterogeneous EO data sources by which EO data can be retrieved and accessed with unified interfaces. The GDSG consists of a set of tools and service to encapsulate heterogeneous geospatial data sources into homogenous service modules. The GDSG modules includes EO metadata harvesters and translators, adaptors to different type of data system, unified data query and access interfaces, EO data cache management, and gateway GUI, etc. The GDSG framework is used to implement interoperability and synchronization between distributed EO data sources with heterogeneous architecture. An on-demand distributed EO data platform is developed to validate the GDSG architecture and implementation techniques. Several distributed EO data achieves are used for test. Flood and earthquake serves as two scenarios for the use cases of distributed EO data integration and interoperability.
DeLacy, Michael J; Louca, Christalla; Smithers-Sheedy, Hayley; McIntyre, Sarah
2016-02-01
To determine if families of children with cerebral palsy living in Australia move to less remote areas between birth and 5 years. Children on the Australian Cerebral Palsy Register (n=3399) born 1996 to 2005, were assigned a remoteness value for family residence at birth and 5 years using a modification of the Australian Statistical Geography Standard. Each value at birth was subtracted from the value at 5 years yielding a positive difference if they moved more remotely, negative difference if they moved less remotely and a value of zero if they did not move or moved to an equally remote residence. The small net increase in remoteness across this cohort was non-significant (p=0.43). Fifty-seven per cent of families changed postcode but only 20% changed remoteness, 11% more remotely, and 9% less remotely. There was a small trend for families with a child with more impaired gross motor function (Gross Motor Function Classification System levels IV and V) to move to a less remote area. This cohort of families with children with cerebral palsy did not appear to move to less remote areas by age 5 years. Remoteness at birth and level of gross motor function seem to have little effect. © 2016 The Authors. Developmental Medicine & Child Neurology © 2016 Mac Keith Press.
Theme: Agricultural Education and Distance Education.
ERIC Educational Resources Information Center
Murphy, Tim H.; And Others
1996-01-01
Includes "The Time Is Now" (Murphy); "Technological Solution in Search of an Instructional Problem" (Willis, Touchstone); "'Principles' of Distance Education" (Peasley); "A Star Is Born!" (Swan); "Enrichment in the Classroom" (Blume, Talbert); "Practical Applications for Distance Education Technologies in Remote and Rural Areas" (Davis, Frick);…
PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING.
Georgiev, Georgi T; Butler, James J; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
Preliminary Results of BTDF Calibration of Transmissive Solar Diffusers for Remote Sensing
NASA Technical Reports Server (NTRS)
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute’s (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA’s Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples. PMID:28003712
Crooke, Benjamin; McKinna, Lachlan I W; Cetinić, Ivona
2017-04-17
Fowler's Sneaker Depth (FSD), analogous to the well known Secchi disk depth (Zsd), is a visually discerned citizen scientist metric used to assess water clarity in the Patuxent River estuary. In this study, a simple remote sensing algorithm was developed to derive FSD from space-borne spectroradiometric imagery. An empirical model was formed that estimates FSD from red-end remote sensing reflectances at 645 nm, Rrs(645). The model is based on a hyperbolic function relating water clarity to Rrs(645) that was established using radiative transfer modeling and fine tuned using in-water FSD measurements and coincident Rrs(645) data observed by NASA's Moderate Resolution Imaging Spectroradiometer aboard the Aqua spacecraft (MODISA). The resultant FSD algorithm was applied to Landsat-8 Operational Land Imager data to derive a short time-series for the Patuxent River estuary from January 2015 to June 2016. Satellite-derived FSD had an inverse, statistically significant relationship (p<0.005) with total suspended sediment concentration (TSS). Further, a distinct negative relationship between FSD and chlorophyll concentration was discerned during periods of high biomass (> 4 μg L-1). The complex nature of water quality in the mid-to-upper Chesapeake Bay was captured using a MODISA-based FSD time series (2002-2016). This study demonstrates how a citizen scientist-conceived observation can be coupled with remote sensing. With further refinement and validation, the FSD may be a useful tool for delivering scientifically relevant results and for informing and engaging local stakeholders and policy makers.
Remote Sensing of Precipitation from Space
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz
2010-01-01
This slide presentation reviews the use of remote sensing of precipitation from satellite observations. The purpose of the presentation is to introduce the three prime instrument types for measuring precipitation from space, give an overview of the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, provides examples of how measurements from space can be used, and provides simple, high level scenarios for how remote sensed precipitation data can be used by planners and managers.
A micro-vibration generated method for testing the imaging quality on ground of space remote sensing
NASA Astrophysics Data System (ADS)
Gu, Yingying; Wang, Li; Wu, Qingwen
2018-03-01
In this paper, a novel method is proposed, which can simulate satellite platform micro-vibration and test the impact of satellite micro-vibration on imaging quality of space optical remote sensor on ground. The method can generate micro-vibration of satellite platform in orbit from vibrational degrees of freedom, spectrum, magnitude, and coupling path. Experiment results show that the relative error of acceleration control is within 7%, in frequencies from 7Hz to 40Hz. Utilizing this method, the system level test about the micro-vibration impact on imaging quality of space optical remote sensor can be realized. This method will have an important applications in testing micro-vibration tolerance margin of optical remote sensor, verifying vibration isolation and suppression performance of optical remote sensor, exploring the principle of micro-vibration impact on imaging quality of optical remote sensor.
System architecture for asynchronous multi-processor robotic control system
NASA Technical Reports Server (NTRS)
Steele, Robert D.; Long, Mark; Backes, Paul
1993-01-01
The architecture for the Modular Telerobot Task Execution System (MOTES) as implemented in the Supervisory Telerobotics (STELER) Laboratory is described. MOTES is the software component of the remote site of a local-remote telerobotic system which is being developed for NASA for space applications, in particular Space Station Freedom applications. The system is being developed to provide control and supervised autonomous control to support both space based operation and ground-remote control with time delay. The local-remote architecture places task planning responsibilities at the local site and task execution responsibilities at the remote site. This separation allows the remote site to be designed to optimize task execution capability within a limited computational environment such as is expected in flight systems. The local site task planning system could be placed on the ground where few computational limitations are expected. MOTES is written in the Ada programming language for a multiprocessor environment.
25 Years of Atmospheric Science with the Balloon-borne Limb Sounder MIPAS-B
NASA Astrophysics Data System (ADS)
Oelhaf, H.; Friedl-Vallon, F.; Wetzel, G.; Ebersoldt, A.; Hoepfner, M.; Kleinert, A.; Maucher, G.; Maurer, K.; Nordmeyer, H.; Piesch, C.; Ruhnke, R.; Sartorius, C.; Sinnhuber, B. M.; Orphal, J.; Fischer, H.
2017-12-01
MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding - Balloon) is a balloon-borne limb-emission sounder for atmospheric research. The heart of the instrument is a Fourier spectrometer that covers the mid-infrared spectral range (4 to 14 µm) operating at a temperature of approximately 215 K. Essential for this application is the sophisticated line of sight stabilization system, which is based on an inertial navigation system and supplemented with a star camera reference system. The major scientific benefit of the instrument is the simultaneous detection of complete trace gas families in the stratosphere, without restrictions concerning time of the day and viewing directions. MIPAS-B is an in-house development that was started in the mid-eighties. It initially served as proof of concept for the proposed space borne MIPAS instrument that was later realized and operated on the ESA satellite ENVISAT between 2002 and 2012. But actually it soon became obvious that operation from stratospheric balloons offered a number of benefits to address dedicated scientific questions in an optimal way. MIPAS-B was operated in two versions during 24 flights at tropical, mid-latitudinal and arctic latitudes between 1989 and 2014 covering the `golden era' of ozone loss research and the full operational period of ENVISAT. This paper describes briefly specifications, design considerations, technological upgrades and the characterization of the instrument. Evolving skills with respect to its remote operation from ground and to data analysis in the course of the 25 years are outlined. Scientific applications in the field of atmospheric research, spectroscopy and satellite validation are highlighted with a focus on recent research concerning bromine nitrate and age of air.
Active microwave remote sensing of an anisotropic random medium layer
NASA Technical Reports Server (NTRS)
Lee, J. K.; Kong, J. A.
1985-01-01
A two-layer anisotropic random medium model has been developed to study the active remote sensing of the earth. The dyadic Green's function for a two-layer anisotropic medium is developed and used in conjunction with the first-order Born approximation to calculate the backscattering coefficients. It is shown that strong cross-polarization occurs in the single scattering process and is indispensable in the interpretation of radar measurements of sea ice at different frequencies, polarizations, and viewing angles. The effects of anisotropy on the angular responses of backscattering coefficients are also illustrated.
China national space remote sensing infrastructure and its application
NASA Astrophysics Data System (ADS)
Li, Ming
2016-07-01
Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.
BTDI detector technology for reconnaissance application
NASA Astrophysics Data System (ADS)
Hilbert, Stefan; Eckardt, Andreas; Krutz, David
2017-11-01
The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design in a BTDI (Bidirectional Time Delay and Integration) architecture. This project demonstrates an approved technological design for high or multi-spectral resolution spaceborne instruments. DLR OS and BAE Systems were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy in order to keep pace with ambitious scientific and user requirements. Resulting from customer requirements and available technologies the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high-spectral resolution with intelligent control applications and new focal plane concepts opens the door to new remote sensing and smart deep space instruments. The paper gives an overview of the detector development and verification program at DLR on detector module level and key parameters like SNR, linearity, spectral response, quantum efficiency, PRNU, DSNU and MTF.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.
1995-01-01
This Interim report consists of a manuscript, 'Receiver Design for Satellite to Satellite Laser Ranging Instrument,' and copies of two papers we co-authored, 'Demonstration of High Sensitivity Laser Ranging System' and 'Semiconductor Laser-Based Ranging Instrument for Earth Gravity Measurements. ' These two papers were presented at the conference Semiconductor Lasers, Advanced Devices and Applications, August 21 -23, 1995, Keystone Colorado. The manuscript is a draft in the preparation for publication, which summarizes the theory we developed on space-borne laser ranging instrument for gravity measurements.
Defence Science and Technology Organisation.
1983-01-01
impacto (vlnv borne debis 2 1 with weapon guidance. remotely piloted aircraft and gun propulsion resear’h )r I.\\. Napier weapons systems are rocket...the Tasnman ticeanic front which extends ducting over water, ambient seta notise and the thetry oL between Australia and New Zealand. This work ho
Lunar Neutral Exposphere Properties from Pickup Ion Analysis
NASA Technical Reports Server (NTRS)
Hartle, R. E.; Sarantos, M.; Killen, R.; Sittler, E. C. Jr.; Halekas, J.; Yokota, S.; Saito, Y.
2009-01-01
Composition and structure of neutral constituents in the lunar exosphere can be determined through measurements of phase space distributions of pickup ions borne from the exosphere [1]. An essential point made in an early study [ 1 ] and inferred by recent pickup ion measurements [2, 3] is that much lower neutral exosphere densities can be derived from ion mass spectrometer measurements of pickup ions than can be determined by conventional neutral mass spectrometers or remote sensing instruments. One approach for deriving properties of neutral exospheric source gasses is to first compare observed ion spectra with pickup ion model phase space distributions. Neutral exosphere properties are then inferred by adjusting exosphere model parameters to obtain the best fit between the resulting model pickup ion distributions and the observed ion spectra. Adopting this path, we obtain ion distributions from a new general pickup ion model, an extension of a simpler analytic description obtained from the Vlasov equation with an ion source [4]. In turn, the ion source is formed from a three-dimensional exospheric density distribution, which can range from the classical Chamberlain type distribution to one with variable exobase temperatures and nonthermal constituents as well as those empirically derived. The initial stage of this approach uses the Moon's known neutral He and Na exospheres to deriv e He+ and Na+ pickup ion exospheres, including their phase space distributions, densities and fluxes. The neutral exospheres used are those based on existing models and remote sensing studies. As mentioned, future ion measurements can be used to constrain the pickup ion model and subsequently improve the neutral exosphere descriptions. The pickup ion model is also used to estimate the exosphere sources of recently observed pickup ions on KAGUYA [3]. Future missions carrying ion spectrometers (e.g., ARTEMIS) will be able to study the lunar neutral exosphere with great sensitivity, yielding the necessary ion velocity spectra needed to further analysis of parent neutral exosphere properties.
NASA Technical Reports Server (NTRS)
2002-01-01
Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes. Archaeology through Space: Experience in Indian Subcontinent. The creation of a GIS Archaeological Site Location Catalogue in Yucatan: A Tool to preserve its Cultural Heritage. Mapping the Ancient Anasazi Roads of Southeast Utah. Remote Sensing and GIS Technology for Identification of Conservation and Heritage sites in Urban Planning. Mapping Angkor: For a new appraisal of the Angkor region. Angkor and radar imaging: seeing a vast pre-industrial low-density, dispersed urban complex. Technical and methodological aspects of archaeological CRM integrating high resolution satellite imagery. The contribution of satellite imagery to archaeological survey: an example from western Syria. The use of satellite images, digital elevation models and ground truth for the monitoring of land degradation in the "Cinque Terre" National park. Remote Sensing and GIS Applications for Protection and Conservation of World Heritage Site on the coast - Case Study of Tamil Nadu Coast, India. Multispectral high resolution satellite imagery in combination with "traditional" remote sensing and ground survey methods to the study of archaeological landscapes. The case study of Tuscany. Use of Remotely-Sensed Imagery in Cultural Landscape. Characterisation at Fort Hood, Texas. Heritage Learning and Data Collection: Biodiversity & Heritage Conservation through Collaborative Monitoring & Research. A collaborative project by UNESCO's WHC (World Heritage Center) & The GLOBE Program (Global Learning and Observations to Benefit the Environment). Practical Remote Sensing Activities in an Interdisciplinary Master-Level Space Course.
Climate Change in the US: Potential Consequences for Human Health
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2001-01-01
The U.S. National Assessment identified five major areas of consequences of climate change in the United States: temperature-related illnesses and deaths, health effects related to extreme weather events, air pollution-related health effects, water- and food-borne diseases, and insect-, tick-, and rodent-borne diseases. The U.S. National Assessment final conclusions about these potential health effects will be described. In addition, a summary of some of the new tools for studying human health aspects of climate change as well as environment-health linkages through remotely sensed data and observations will be provided.
NASA Astrophysics Data System (ADS)
Luvall, J. C.
2016-12-01
It is estimated that by the year 2025, 80% of the world's population will live in cities. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. The urban heat island (UHI) results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature differences between the urban and surrounding countryside can be 2-8 o C. The UHI was one of the earliest recognized and measured phenomena of urbanization which was reported as early as 1833 for London (Howard, 1833) and 1862 for Paris. Research studies from many cities have documented that these effects range from decreases in air quality, increased energy consumption, and alteration of regional climate to direct effects on human health. To understand why the UHI phenomena exists, it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo are major components of the surface energy budget. Knowledge of it is important in any attempt to describe the radiative and mass fluxes that occur at the surface. Use of energy terms in modeling surface energy budgets allows the direct comparison of various land surfaces encountered in an urban landscape, from vegetated (forest and herbaceous) to non-vegetated (bare soil, roads, and buildings). These terms are also easily measured using remote sensing from aircraft or satellite platforms allowing one to examine the spatial variability of the urban surface. Planned NASA space borne missions include an ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) a five channel, 37x 50m resolution thermal instrument on space station and a Hyperspectral Infrared Imager (HyspIRI), a 30m resolution hyperspectral and 60m resolution multispectral channel mid/thermal infrared instrument. These instruments build on a long heritage of NASA funded research using aircraft based urban remote sensing instruments to develop techniques for assessing the UHI. HyspIRI will provide the global datasets necessary to monitor and study the impacts of urbanization on a global scale.
NASA Astrophysics Data System (ADS)
Jin, Y.; Liang, Z.
2002-12-01
The vector radiative transfer (VRT) equation is an integral-deferential equation to describe multiple scattering, absorption and transmission of four Stokes parameters in random scatter media. From the integral formal solution of VRT equation, the lower order solutions, such as the first-order scattering for a layer medium or the second order scattering for a half space, can be obtained. The lower order solutions are usually good at low frequency when high-order scattering is negligible. It won't be feasible to continue iteration for obtaining high order scattering solution because too many folds integration would be involved. In the space-borne microwave remote sensing, for example, the DMSP (Defense Meterological Satellite Program) SSM/I (Special Sensor Microwave/Imager) employed seven channels of 19, 22, 37 and 85GHz. Multiple scattering from the terrain surfaces such as snowpack cannot be neglected at these channels. The discrete ordinate and eigen-analysis method has been studied to take into account for multiple scattering and applied to remote sensing of atmospheric precipitation, snowpack etc. Snowpack was modeled as a layer of dense spherical particles, and the VRT for a layer of uniformly dense spherical particles has been numerically studied by the discrete ordinate method. However, due to surface melting and refrozen crusts, the snowpack undergoes stratifying to form inhomegeneous profiles of the ice grain size, fractional volume and physical temperature etc. It becomes necessary to study multiple scattering and emission from stratified snowpack of dense ice grains. But, the discrete ordinate and eigen-analysis method cannot be simply applied to multi-layers model, because numerically solving a set of multi-equations of VRT is difficult. Stratifying the inhomogeneous media into multi-slabs and employing the first order Mueller matrix of each thin slab, this paper developed an iterative method to derive high orders scattering solutions of whole scatter media. High order scattering and emission from inhomogeneous stratifying media of dense spherical particles are numerically obtained. The brightness temperature at low frequency such as 5.3 GHz without high order scattering and at SSM/I channels with high order scattering are obtained. This approach is also compared with the conventional discrete ordinate method for an uniform layer model. Numerical simulation for inhomogeneous snowpack is also compared with the measurements of microwave remote sensing.
NIAC Phase II Orbiting Rainbows: Future Space Imaging with Granular Systems
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Basinger, Scott; Arumugam, Darmindra; Swartzlander, Grover
2017-01-01
Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft swarms to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exo-planet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exo-planet search, large apertures allow for unprecedented high resolution to discern continents and important features of other planets, hyperspectral imaging, adaptive systems, spectroscopy imaging through limb, and stable optical systems from Lagrange-points. Furthermore, future micro-miniaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other associated capabilities. Our objective in Phase II was to experimentally and numerically investigate how to optically manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an adaptable ultra-lightweight surface. Our solution is based on the aperture being an engineered granular medium, instead of a conventional monolithic aperture. This allows building of apertures at a reduced cost, enables extremely fault-tolerant apertures that cannot otherwise be made, and directly enables classes of missions for exoplanet detection based on Fourier spectroscopy with tight angular resolution and innovative radar systems for remote sensing. In this task, we have examined the advanced feasibility of a crosscutting concept that contributes new technological approaches for space imaging systems, autonomous systems, and space applications of optical manipulation. The proposed investigation has matured the concept that we started in Phase I to TRL 3, identifying technology gaps and candidate system architectures for the space-borne cloud as an aperture.
Bistatic Space Borne Radar for Early Warning
2006-08-01
bandwidth of about 1.2 MHz. hr ht RX TX z x α α α α αr αt y R30 R10 R31 R11 vRx vTx P Bistatic Space Borne Radar for Early Warning...B V R == (12) where VRX is the receiver velocity and BA is the Doppler chirp bandwidth defined by equation (5). The time necessary to obtain
NASA Technical Reports Server (NTRS)
Frolking, S.; McDonald, K. C.; Kimball, J. S.; Way, J. B.; Zimmermann, R.; Running, S. W.
1998-01-01
We hypothesize that the strong sensitivity of radar backscatter to surface dielectric properties, and hence to the phase (solid or liquid) of any water near the surface, should make space-borne radar observations a powerful tool for large-scale spatial monitoring of the freeze/thaw state of the land surface, and thus ecosystem growing season length.
NASA Technical Reports Server (NTRS)
Ahamed, Aakash; Bolten, John; Doyle, Colin; Fayne, Jessica
2016-01-01
Floods are the costliest natural disaster, causing approximately 6.8 million deaths in the twentieth century alone. Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD. Extended duration floods also pose longer term threats to food security, water, sanitation, hygiene, and community livelihoods, particularly in developing countries. Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest that precipitation extremes, rainfall intensity, storm intensity, and variability are increasing due to climate change. Increasing hydrologic uncertainty will likely lead to unprecedented extreme flood events. As such, there is a vital need to enhance and further develop traditional techniques used to rapidly assess flooding and extend analytical methods to estimate impacted population and infrastructure. Measuring flood extent in situ is generally impractical, time consuming, and can be inaccurate. Remotely sensed imagery acquired from space-borne and airborne sensors provides a viable platform for consistent and rapid wall-to-wall monitoring of large flood events through time. Terabytes of freely available satellite imagery are made available online each day by NASA, ESA, and other international space research institutions. Advances in cloud computing and data storage technologies allow researchers to leverage these satellite data and apply analytical methods at scale. Repeat-survey earth observations help provide insight about how natural phenomena change through time, including the progression and recession of floodwaters. In recent years, cloud-penetrating radar remote sensing techniques (e.g., Synthetic Aperture Radar) and high temporal resolution imagery platforms (e.g., MODIS and its 1-day return period), along with high performance computing infrastructure, have enabled significant advances in software systems that provide flood warning, assessments, and hazard reduction potential. By incorporating social and economic data, researchers can develop systems that automatically quantify the socioeconomic impacts resulting from flood disaster events.
Deb, Dibyendu; Singh, J P; Deb, Shovik; Datta, Debajit; Ghosh, Arunava; Chaurasia, R S
2017-10-20
Determination of above ground biomass (AGB) of any forest is a longstanding scientific endeavor, which helps to estimate net primary productivity, carbon stock and other biophysical parameters of that forest. With advancement of geospatial technology in last few decades, AGB estimation now can be done using space-borne and airborne remotely sensed data. It is a well-established, time saving and cost effective technique with high precision and is frequently applied by the scientific community. It involves development of allometric equations based on correlations of ground-based forest biomass measurements with vegetation indices derived from remotely sensed data. However, selection of the best-fit and explanatory models of biomass estimation often becomes a difficult proposition with respect to the image data resolution (spatial and spectral) as well as the sensor platform position in space. Using Resourcesat-2 satellite data and Normalized Difference Vegetation Index (NDVI), this pilot scale study compared traditional linear and nonlinear models with an artificial intelligence-based non-parametric technique, i.e. artificial neural network (ANN) for formulation of the best-fit model to determine AGB of forest of the Bundelkhand region of India. The results confirmed the superiority of ANN over other models in terms of several statistical significance and reliability assessment measures. Accordingly, this study proposed the use of ANN instead of traditional models for determination of AGB and other bio-physical parameters of any dry deciduous forest of tropical sub-humid or semi-arid area. In addition, large numbers of sampling sites with different quadrant sizes for trees, shrubs, and herbs as well as application of LiDAR data as predictor variable were recommended for very high precision modelling in ANN for a large scale study.
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Tapete, Deodato; Cigna, Francesca; Perissin, Daniele; Salzer, Jacqueline; Lundgren, Paul; Fielding, Eric; Burgmann, Roland; Biondi, Filippo; Milillo, Giovanni; Serio, Carmine
2016-10-01
Structural health monitoring (SHM) of engineered structures consists of an automated or semi-automated survey system that seeks to assess the structural condition of an anthropogenic structure. The aim of an SHM system is to provide insights into possible induced damage or any inherent signals of deformation affecting the structure in terms of detection, localization, assessment, and prediction. During the last decade there has been a growing interest in using several remote sensing techniques, such as synthetic aperture radar (SAR), for SHM. Constellations of SAR satellites with short repeat time acquisitions permit detailed surveys temporal resolution and millimetric sensitivity to deformation that are at the scales relevant to monitoring large structures. The all-weather multi-temporal characteristics of SAR make its products suitable for SHM systems, especially in areas where in situ measurements are not feasible or not cost effective. To illustrate this capability, we present results from COSMO-SkyMed (CSK) and TerraSAR-X SAR observations applied to the remote sensing of engineered structures. We show how by using multiple-geometry SAR-based products which exploit both phase and amplitude of the SAR signal we can address the main objectives of an SHM system including detection and localization. We highlight that, when external data such as rain or temperature records are available or simple elastic models can be assumed, the SAR-based SHM capability can also provide an interpretation in terms of assessment and prediction. We highlight examples of the potential for such imaging capabilities to enable advances in SHM from space, focusing on dams and cultural heritage areas.
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors
Zheng, Guang; Moskal, L. Monika
2009-01-01
The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels. PMID:22574042
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.
Zheng, Guang; Moskal, L Monika
2009-01-01
The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels.
Remotely Guided Breast Sonography for Long-Term Space Missions: A Case Report and Discussion.
Silva-Martinez, Jackelynne P; Sorice Genaro, Andreia; Wen, Hui Annie; Glauber, Naama; Russomano, Thais
2017-12-01
Space radiation can cause different types of cancers in crewmembers, especially during long-term space missions. To date, a complete bilateral breast ultrasound has not been performed at the International Space Station (ISS). A breast screening imaging technique could be a useful tool for early identification of breast cancer in astronauts. We hypothesized that breast ultrasound performed by a crewmember while being remotely guided by a specialist from the ground could be an essential tool for medical diagnosis in space. This project aimed to test an ultrasound screening protocol for breast tissue using real-time remotely guided telemedicine techniques. One female volunteer, with no previous medical experience, performed a self-scanned bilateral breast ultrasound exam guided by a remote sonographer. Dynamic ultrasound images were collected using a 25 mm broadband linear array transducer. To simulate fluid shift on the volunteer during microgravity, the bed was tilted -6°. Recorded ultrasound images were analyzed by radiologists, comparing the findings with a gold standard. The experiment demonstrated that real-time remotely guided sonography exam is feasible and can yield meaningful clinical results. This case study showed that remotely guided breast ultrasound can be performed and might become an important tool for diagnosis of breast cancer in space missions. The results cannot be generalized based on one subject, and additional research is warranted in this area in addition to its validation on the ISS. This technique, however, has potential for use as part of preventive medicine procedures for long-term space missions at the ISS, and eventually for human settlements on the Moon and Mars.
NASA Astrophysics Data System (ADS)
Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herreteau, Vincent; Revillion, Christophe; Dessay, Nadine
2016-08-01
Vector-borne diseases like malaria represent a major public health issue worldwide. Other mosquito-borne diseases affect more and more countries and people, with effects on health which are not all identified yet. Recent developments in the field of remote-sensing allow to consider overriding the existing limits of studying such diseases in tropical regions, where cloud and vegetation cover often prevent to identify and characterize environmental features.We highlight the potential of SAR-optical fusion for the mapping of land cover, the identification of wetlands, and the monitoring of environmental changes in different habitats related to vector-borne diseases in the French Guiana - Brazil cross-border area. This study is the foundation of a landscape-based model of malaria transmission risk. Environmental factors, together with epidemiological, socio-economic, behavioral, demographics, and entomological ones, contribute to assess risks related to such pathologies and support disease control and decision-making by local public health actors.
NASA Technical Reports Server (NTRS)
Kindle, E. C.; Condon, E.; Casas, J.
1976-01-01
The research to develop the capabilities for sensing air pollution constituencies using satellite or airborne remote sensors is reported. Sensor evaluation and calibration are analyzed including data reduction. The proposed follow-on research is presented.
Combined active and passive microwave remote sensing of vegetated surfaces at l-band
USDA-ARS?s Scientific Manuscript database
In previous work the distorted Born approximation (DBA) of volume scattering was combined with the numerical solutions of Maxwell equations (NMM3D) for a rough surface to calculate the radar backscattering coefficient for the Soil Moisture Active Passive (SMAP) mission. The model results were valida...
Remote Operations and Ground Control Centers
NASA Technical Reports Server (NTRS)
Bryant, Barry S.; Lankford, Kimberly; Pitts, R. Lee
2004-01-01
The Payload Operations Integration Center (POIC) at the Marshall Space Flight Center supports the International Space Station (ISS) through remote interfaces around the world. The POIC was originally designed as a gateway to space for remote facilities; ranging from an individual user to a full-scale multiuser environment. This achievement was accomplished while meeting program requirements and accommodating the injection of modern technology on an ongoing basis to ensure cost effective operations. This paper will discuss the open POIC architecture developed to support similar and dissimilar remote operations centers. It will include technologies, protocols, and compromises which on a day to day basis support ongoing operations. Additional areas covered include centralized management of shared resources and methods utilized to provide highly available and restricted resources to remote users. Finally, the effort of coordinating the actions of participants will be discussed.
Laboratory Investigation of Space and Planetary Dust Grains
NASA Technical Reports Server (NTRS)
Spann, James
2005-01-01
Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.
Implementation of space satellite remote sensing programs in developing countries (Ecuador)
NASA Technical Reports Server (NTRS)
Segovia, A.
1982-01-01
The current state of space satellite remote sensing programs in developing countries is discussed. Sensors being utilized and results obtained are described. Requirements are presented for the research of resources in developing countries. It is recommended that a work procedure be developed for the use of satellite remote sensing data tailored to the necessities of the different countries.
RFI and Remote Sensing of the Earth from Space
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.
2016-01-01
Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.
NASA Astrophysics Data System (ADS)
Armante, Raymond; Scott, Noelle; Crevoisier, Cyril; Capelle, Virginie; Crepeau, Laurent; Jacquinet, Nicole; Chédin, Alain
2016-09-01
The quality of spectroscopic parameters that serve as input to forward radiative transfer models are essential to fully exploit remote sensing of Earth atmosphere. However, the process of updating spectroscopic databases in order to provide the users with a database that insures an optimal characterization of spectral properties of molecular absorption for radiative transfer modeling is challenging. The evaluation of the databases content and the underlying choices made by the managing team is thus a crucial step. Here, we introduce an original and powerful approach for evaluating spectroscopic parameters: the Spectroscopic Parameters And Radiative Transfer Evaluation (SPARTE) chain. The SPARTE chain relies on the comparison between forward radiative transfer simulations made by the 4A radiative transfer model and observations of spectra made from various observations collocated over several thousands of well-characterized atmospheric situations. Averaging the resulting 'calculated-observed spectral' residuals minimizes the random errors coming from both the radiometric noise of the instruments and the imperfect description of the atmospheric state. The SPARTE chain can be used to evaluate any spectroscopic databases, from the visible to the microwave, using any type of remote sensing observations (ground-based, airborne or space-borne). We show that the comparison of the shape of the residuals enables: (i) identifying incorrect line parameters (line position, intensity, width, pressure shift, etc.), even for molecules for which interferences between the lines have to be taken into account; (ii) proposing revised values, in cooperation with contributing teams; and (iii) validating the final updated parameters. In particular, we show that the simultaneous availability of two databases such as GEISA and HITRAN helps identifying remaining issues in each database. The SPARTE chain has been here applied to the validation of the update of GEISA-2015 in 2 spectral regions of particular interest for several currently exploited or planned Earth space missions: the thermal infrared domain and the short-wave infrared domain, for which observations from the space-borne IASI instrument and from the ground-based FTS instruments at the Parkfalls TCCON site are used respectively. Main results include: (i) the validation of the positions and intensities of line parameters, with overall significantly lower residuals for GEISA-2015 than for GEISA-2011 and (iii) the validation of the choice made on the parameters (such as pressure shift and air-broadened width) which has not been given by the provider but completed by ourselves. For example, comparisons between residuals obtained with GEISA-2015 and HITRAN-2012 have highlighted a specific issue with some HWHM values in the latter that can be clearly identified on the 'calculated-observed' residuals.
NASA Technical Reports Server (NTRS)
Vonzahn, U.
1989-01-01
The project Winter in Northern Europe (WINE) of the international Middle Atmosphere Program (MAP) comprised a multinational study of the structure, dynamics and composition of the middle atmosphere in winter at high latitudes. Coordinated field measurements were performed during the winter 1983 to 1984 by a large number of ground-based, air-borne, rocket-borne and satellite-borne instruments. Many of the individual experiments were performed in the European sector of the high latitude and polar atmosphere. Studies of the stratosphere, were, in addition, expanded to hemispheric scales by the use of data obtained from remotely sensing satellites. Beyond its direct scientific results, which are reviewed, MAP/WINE has stimulated quite a number of follow-on experiments and projects which address the aeronomy of the middle atmosphere at high and polar latitudes.
An advanced scanning method for space-borne hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Wang, Yue-ming; Lang, Jun-Wei; Wang, Jian-Yu; Jiang, Zi-Qing
2011-08-01
Space-borne hyper-spectral imagery is an important means for the studies and applications of earth science. High cost efficiency could be acquired by optimized system design. In this paper, an advanced scanning method is proposed, which contributes to implement both high temporal and spatial resolution imaging system. Revisit frequency and effective working time of space-borne hyper-spectral imagers could be greatly improved by adopting two-axis scanning system if spatial resolution and radiometric accuracy are not harshly demanded. In order to avoid the quality degradation caused by image rotation, an idea of two-axis rotation has been presented based on the analysis and simulation of two-dimensional scanning motion path and features. Further improvement of the imagers' detection ability under the conditions of small solar altitude angle and low surface reflectance can be realized by the Ground Motion Compensation on pitch axis. The structure and control performance are also described. An intelligent integration technology of two-dimensional scanning and image motion compensation is elaborated in this paper. With this technology, sun-synchronous hyper-spectral imagers are able to pay quick visit to hot spots, acquiring both high spatial and temporal resolution hyper-spectral images, which enables rapid response of emergencies. The result has reference value for developing operational space-borne hyper-spectral imagers.
NASA Astrophysics Data System (ADS)
Galluzzi, M. C.
2018-02-01
Three goals can be achieved by 2030: 1. NASA will have the capability for remote on-demand 3d printing of critical hardware using regolith material as feedstock, 2. Logistics footprint reduced by 35%, 3. Deep Space Gateway will become 75% self-sustaining.
Remote control circuit breaker evaluation testing. [for space shuttles
NASA Technical Reports Server (NTRS)
Bemko, L. M.
1974-01-01
Engineering evaluation tests were performed on several models/types of remote control circuit breakers marketed in an attempt to gain some insight into their potential suitability for use on the space shuttle vehicle. Tests included the measurement of several electrical and operational performance parameters under laboratory ambient, space simulation, acceleration and vibration environmental conditions.
Sale, Christopher H.; Kaltenbaugh, Daniel R.
2004-08-10
An apparatus for remote delivery and manipulation of a miniature tool adjacent a work piece in a restricted space, includes a tool camer, a camage for manipulating the tool carrier relative to the work piece, a first actuator for operating the carnage, and an optional remote secondary operating actuator for operating the first actuator.
Public health applications of remote sensing of vector borne and parasitic diseases
NASA Technical Reports Server (NTRS)
1976-01-01
Results of an investigation of the potential application of remote sensing to various fields of public health are presented. Specific topics discussed include: detection of snail habitats in connection with the epidemiology of schistosomiasis; the detection of certain Anopheles breeding sites, and location of transient human populations, both in connection with malaria eradication programs; and detection of overwintering population sites for the primary screwworm (Cochliomyia americana). Emphasis was placed on the determination of ground truth data on the biological, chemical, and physical characteristics of ground waters which would or would not support the growth of significant populations of mosquitoes.
NASA Astrophysics Data System (ADS)
Manore, C.; Conrad, J.; Del Valle, S.; Ziemann, A.; Fairchild, G.; Generous, E. N.
2017-12-01
Mosquito-borne diseases such as Zika, dengue, and chikungunya viruses have dynamics coupled to weather, ecology, human infrastructure, socio-economic demographics, and behavior. We use time-varying remote sensing and weather data, along with demographics and ecozones to predict risk through time for Zika, dengue, and chikungunya outbreaks in Brazil. We use distributed lag methods to quantify the lag between outbreaks and weather. Our statistical model indicates that the relationships between the variables are complex, but that quantifying risk is possible with the right data at appropriate spatio-temporal scales.
On-Orbit Prospective Echocardiography on International Space Station
NASA Technical Reports Server (NTRS)
Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David; Garcia, Kathleen M.; Melton, Shannon; Feiverson, Alan; Dulchavsky, Scott A.
2010-01-01
A number of echocardiographic research projects and experiments have been flown on almost every space vehicle since 1970, but validation of standard methods and the determination of Space Normal cardiac function has not been reported to date. Advanced Diagnostics in Microgravity (ADUM) -remote guided echocardiographic technique provides a novel and effective approach to on-board assessment of cardiac physiology and structure using a just-in-time training algorithm and real-time remote guidance aboard the International Space Station (ISS). The validation of remotely guided echocardiographic techniques provides the procedures and protocols to perform scientific and clinical echocardiography on the ISS and the Moon. The objectives of this study were: 1.To confirm the ability of non-physician astronaut/cosmonaut crewmembers to perform clinically relevant remotely guided echocardiography using the Human Research Facility on board the ISS. 2.To compare the preflight, postflight and in-flight echocardiographic parameters commonly used in clinical medicine.
Brazil's remote sensing activities in the Eighties
NASA Technical Reports Server (NTRS)
Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.
1985-01-01
Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.
Progresses on the Intensive Observation Period of Watershed Allied Telemetry Experimental Research
NASA Astrophysics Data System (ADS)
Li, Xin; Li, Xiaowen; Li, Zengyuan; Ma, Mingguo; Wang, Jian; Liu, Qiang; Xiao, Qing; Chen, Erxue; Che, Tao; Hu, Zeyong
2010-05-01
The Watershed Allied Telemetry Experimental Research (WATER) is an intensively simultaneous airborne, satellite-borne and ground based remote sensing experiment aiming to improve the observability, understanding, and predictability of hydrological and related ecological processes at catchment scale. It was taken place in the Heihe River Basin, the second largest inland river basin in the arid regions of northwest China. WATER consists of the cold region, forest, and arid region hydrological experiments as well as a hydrometeorology experiment. It was divided into 4 phases, namely, the experiment planning period, pre-observation period, intensive observation period (IOP) and persistent observation period. The field campaigns have been completed, with the IOP lasting from March 7 to April 12, May 15 to July 22, and August 23 to September 5, 2008, in total, 120 days, more than 280 individuals of scientists, engineers, students, and aircrews from 28 different institutes and universities were involved in. A total of 26 airborne missions, about 110 hours were flown. Airborne sensors including microwave radiometers at L, K and Ka bands, imaging spectrometer, thermal imager, CCD and LIDAR were used. Ground measurements were carried out concurrently with the airborne and space-borne remote sensing at four scales, i.e., key experimental area, foci experimental area, experiment site and elementary sampling plot. A network of hydro meteorological and flux observations was established in the upper and middle reaches of the Heihe River Basin. The network was composed of 12 super Automatic Meteorological Stations (AMS), 6 Eddy Covariance (EC) systems, 2 Large Aperture Scintillometers (LAS), and plenty of China Meteorological Administration (CMA) operational meteorological and hydrological stations. Additionally, we also used ground-based remote sensing instruments, such as Doppler Radar, ground based microwave radiometer and truck-mounted scatterometer and lots of auto measurements instruments. Various and abundant satellite data were collected, consisting of visible/near infrared, thermal infrared, active microwave, LIDAR and other data. In the presentation, we introduced the preliminary results obtained from the observations of hydrological variables, particularly on snow, frozen soil, precipitation, soil moisture and evapotranspiration. The retrievals of the forest structure, biogeophysical and biogeochemical parameters from remote sensing were also introduced. The developments of scaling methods and catchment-scale hydrological data assimilation system were briefly described. With the accomplishment of the IOP, WATER has achieved a preliminary goal of establishing a public experimental field and developing a multi-scale, multi-resolution and high quality integrated dataset. The analysis of the data, developing and validation for models and algorithms, and building of the information system of WATER will continue in the next stage and limited revisits to the field are anticipated.
A Model with Ellipsoidal Scatterers for Polarimetric Remote Sensing of Anisotropic Layered Media
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Kwok, R.; Kong, J. A.; Shin, R. T.
1993-01-01
This paper presents a model with ellipsoidal scatterers for applications to polarimetric remote sensing of anisotropic layered media at microwave frequencies. The physical configuration includes an isotropic layer covering an anisotropic layer above a homogeneous half space. The isotropic layer consists of randomly oriented spheroids. The anisotropic layer contains ellipsoidal scatterers with a preferential vertical alignment and random azimuthal orientations. Effective permittivities of the scattering media are calculated with the strong fluctuation theory extended to account for the nonspherical shapes and the scatterer orientation distributions. On the basis of the analytic wave theory, dyadic Green's functions for layered media are used to derive polarimetric backscattering coefficients under the distorted Born approximation. The ellipsoidal shape of the scatterers gives rise to nonzero cross-polarized returns from the untilted anisotropic medium in the first-order approximation. Effects of rough interfaces are estimated by an incoherent addition method. Theoretical results and experimental data are matched at 9 GHz for thick first-year sea ice with a bare surface and with a snow cover at Point Barrow, Alaska. The model is then used to study the sensitivity of polarimetric backscattering coefficients with respect to correlation lengths representing the geometry of brine inclusions. Polarimetric signatures of bare and snow-covered sea ice are also simulated based on the model to investigate effects of different scattering mechanisms.
NASA Technical Reports Server (NTRS)
Estes, Sue; Haynes, John; Omar, Ali
2013-01-01
Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.
NASA Technical Reports Server (NTRS)
Estes, Sue; Haynes, John; Omar, Ali
2012-01-01
Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.
NASA Astrophysics Data System (ADS)
Andersen, O. B.; Krogh, P. E.; Michailovsky, C.; Bauer-Gottwein, P.; Christiansen, L.; Berry, P.; Garlick, J.
2008-12-01
Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terrestrial water storage monitoring. Merging remote sensing data from GRACE with other remote sensing data like satellite altimetry and also ground based observations are important to hydrological model calibration and water balance monitoring of large regions and can serve as either supplement or as vital information in un-gauged regions. A system of GRACE custom designed Mass Concentration blocks (Mascons) have been designed to model time-variable gravity changes for the largest basins in Southern Africa (Zambezi, Okavango, Limpopo and Orange) covering an area of 9 mill km2 with a resolution of 1 by 1.25 degree. Satellite altimetry have been used to derive high resolution point-wise river height in some of the un-gauged rivers in the region by using dedicated retracking to recovers nearly un-interrupted time series over these rivers. First result from the HYDROGRAV project analyzing GRACE derived mass change from 2002 to 2008 along with in-situ gravity time-lapse observations and radar altimetry monitoring of surface water for the southern Africa river basins will be presented.
A First Approach to Global Runoff Simulation using Satellite Rainfall Estimation
NASA Technical Reports Server (NTRS)
Hong, Yang; Adler, Robert F.; Hossain, Faisal; Curtis, Scott; Huffman, George J.
2007-01-01
Many hydrological models have been introduced in the hydrological literature to predict runoff but few of these have become common planning or decision-making tools, either because the data requirements are substantial or because the modeling processes are too complicated for operational application. On the other hand, progress in regional or global rainfall-runoff simulation has been constrained by the difficulty of measuring spatiotemporal variability of the primary causative factor, i.e. rainfall fluxes, continuously over space and time. Building on progress in remote sensing technology, researchers have improved the accuracy, coverage, and resolution of rainfall estimates by combining imagery from infrared, passive microwave, and space-borne radar sensors. Motivated by the recent increasing availability of global remote sensing data for estimating precipitation and describing land surface characteristics, this note reports a ballpark assessment of quasi-global runoff computed by incorporating satellite rainfall data and other remote sensing products in a relatively simple rainfall-runoff simulation approach: the Natural Resources Conservation Service (NRCS) runoff Curve Number (CN) method. Using an Antecedent Precipitation Index (API) as a proxy of antecedent moisture conditions, this note estimates time-varying NRCS-CN values determined by the 5-day normalized API. Driven by multi-year (1998-2006) Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis, quasi-global runoff was retrospectively simulated with the NRCS-CN method and compared to Global Runoff Data Centre data at global and catchment scales. Results demonstrated the potential for using this simple method when diagnosing runoff values from satellite rainfall for the globe and for medium to large river basins. This work was done with the simple NRCS-CN method as a first-cut approach to understanding the challenges that lie ahead in advancing the satellite-based inference of global runoff. We expect that the successes and limitations revealed in this study will lay the basis for applying more advanced methods to capture the dynamic variability of the global hydrologic process for global runoff monltongin real time. The essential ingredient in this work is the use of global satellite-based rainfall estimation.
Scaling forest phenology from trees to the landscape using an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Klosterman, S.; Melaas, E. K.; Martinez, A.; Richardson, A. D.
2013-12-01
Vegetation phenology monitoring has yielded a decades-long archive documenting the impacts of global change on the biosphere. However, the coarse spatial resolution of remote sensing obscures the organismic level processes driving phenology, while point measurements on the ground limit the extent of observation. Unmanned aerial vehicles (UAVs) enable low altitude remote sensing at higher spatial and temporal resolution than available from space borne platforms, and have the potential to elucidate the links between organism scale processes and landscape scale analyses of terrestrial phenology. This project demonstrates the use of a low cost multirotor UAV, equipped with a consumer grade digital camera, for observation of deciduous forest phenology and comparison to ground- and tower-based data as well as remote sensing. The UAV was flown approximately every five days during the spring green-up period in 2013, to obtain aerial photography over an area encompassing a 250m resolution MODIS (Moderate Resolution Imaging Spectroradiometer) pixel at Harvard Forest in central Massachusetts, USA. The imagery was georeferenced and tree crowns were identified using a detailed species map of the study area. Image processing routines were used to extract canopy 'greenness' time series, which were used to calculate phenology transition dates corresponding to early, middle, and late stages of spring green-up for the dominant canopy trees. Aggregated species level phenology estimates from the UAV data, including the mean and variance of phenology transition dates within species in the study area, were compared to model predictions based on visual assessment of a smaller sample size of individual trees, indicating the extent to which limited ground observations represent the larger landscape. At an intermediate scale, the UAV data was compared to data from repeat digital photography, integrating over larger portions of canopy within and near the study area, as a validation step and to see how well tower-based approaches characterize the surrounding landscape. Finally, UAV data was compared to MODIS data to determine how tree crowns within a remote sensing pixel combine to create the aggregate landscape phenology measured by remote sensing, using an area weighted average of the phenology of all dominant crowns.
Capabilities and Limitations of Space-Borne Passive Remote Sensing of Dust
NASA Technical Reports Server (NTRS)
Kalashnikova, Olga
2008-01-01
Atmospheric dust particles have significant effects on the climate and the environment and despite notable recent advances in modeling and observation, wind-blown dust radiative effects remain poorly quantified in both magnitude and sign [IPCC, 2001]. To address this issue, many scientists are using passive satellite observations to study dust properties and to constrain emission/transport models, because the information provided is both time-resolved and global in coverage. In order to assess the effects of individual dust outbreaks on atmospheric radiation and circulation, relatively high temporal resolution (of the order of hours or days) is required in the observational data. Data should also be available over large geographical areas, as dust clouds may cover hundreds of thousands of square kilometers and will exhibit significant spatial variation in their vertical structure, composition and optical properties, both between and within dust events. Spatial and temporal data continuity is necessary if the large-scale impact of dust loading on climate over periods ranging from hours to months is to be assessed.
Application of theoretical models to active and passive remote sensing of saline ice
NASA Technical Reports Server (NTRS)
Han, H. C.; Kong, J. A.; Shin, R. T.; Nghiem, S. V.; Kwok, R.
1992-01-01
The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is used to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. Thermal emissions based on the reciprocity and energy conservation principles are calculated. The effects of the random roughness at the air-ice, and ice-water interfaces are explained by adding the surface scattering to the volume scattering return incoherently. The theoretical model, which has been successfully applied to analyze the radar backscatter data of first-year sea ice, is used to interpret the measurements performed in the Cold Regions Research and Engineering Laboratory's CRRELEX program.
An Overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign
NASA Astrophysics Data System (ADS)
Timmermans, Wim J.; van der Tol, Christiaan; Timmermans, Joris; Ucer, Murat; Chen, Xuelong; Alonso, Luis; Moreno, Jose; Carrara, Arnaud; Lopez, Ramon; de la Cruz Tercero, Fernando; Corcoles, Horacio L.; de Miguel, Eduardo; Sanchez, Jose A. G.; Pérez, Irene; Franch, Belen; Munoz, Juan-Carlos J.; Skokovic, Drazen; Sobrino, Jose; Soria, Guillem; MacArthur, Alasdair; Vescovo, Loris; Reusen, Ils; Andreu, Ana; Burkart, Andreas; Cilia, Chiara; Contreras, Sergio; Corbari, Chiara; Calleja, Javier F.; Guzinski, Radoslaw; Hellmann, Christine; Herrmann, Ittai; Kerr, Gregoire; Lazar, Adina-Laura; Leutner, Benjamin; Mendiguren, Gorka; Nasilowska, Sylwia; Nieto, Hector; Pachego-Labrador, Javier; Pulanekar, Survana; Raj, Rahul; Schikling, Anke; Siegmann, Bastian; von Bueren, Stefanie; Su, Zhongbo (Bob)
2015-12-01
The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made.
Aerosol profiling during the large scale field campaign CINDI-2
NASA Astrophysics Data System (ADS)
Apituley, Arnoud; Roozendael, Michel Van; Richter, Andreas; Wagner, Thomas; Friess, Udo; Hendrick, Francois; Kreher, Karin; Tirpitz, Jan-Lukas
2018-04-01
For the validation of space borne observations of NO2 and other trace gases from hyperspectral imagers, ground based instruments based on the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. To ensure proper traceability of the MAXDOAS observations, a thorough validation and intercomparison is mandatory. Advanced MAXDOAS observation and retrieval techniques enable inferring vertical structure of trace gases and aerosols. These techniques and their results need validation by e.g. lidar techniques. For the proper understanding of the results from passive remote sensing techniques, independent observations are needed that include parameters needed to understand the light paths, i.e. in-situ aerosol observations of optical and microphysical properties, and essential are in particular the vertical profiles of aerosol optical properties by (Raman) lidar. The approach used in the CINDI-2 campaign held in Cabauw in 2016 is presented in this paper and the results will be discussed in the presentation at the conference.
High-density Schottky barrier IRCCD sensors for remote sensing applications
NASA Astrophysics Data System (ADS)
Elabd, H.; Tower, J. R.; McCarthy, B. M.
1983-01-01
It is pointed out that the ambitious goals envisaged for the next generation of space-borne sensors challenge the state-of-the-art in solid-state imaging technology. Studies are being conducted with the aim to provide focal plane array technology suitable for use in future Multispectral Linear Array (MLA) earth resource instruments. An important new technology for IR-image sensors involves the use of monolithic Schottky barrier infrared charge-coupled device arrays. This technology is suitable for earth sensing applications in which moderate quantum efficiency and intermediate operating temperatures are required. This IR sensor can be fabricated by using standard integrated circuit (IC) processing techniques, and it is possible to employ commercial IC grade silicon. For this reason, it is feasible to construct Schottky barrier area and line arrays with large numbers of elements and high-density designs. A Pd2Si Schottky barrier sensor for multispectral imaging in the 1 to 3.5 micron band is under development.
NASA Technical Reports Server (NTRS)
Li, Xiaowen; Friedl, Mark; Strahler, Alan
2002-01-01
The general objectives of this project were to improve understanding of the directional emittance properties of land surfaces in the thermal infrared (TIR) region of the electro-magnetic spectrum. To accomplish these objectives our research emphasized a combination of theoretical model development and empirical studies designed to improve land surface temperature (LST) retrievals from space-borne remote sensing instruments. Following the proposal, the main tasks for this project were to: (1) Participate in field campaigns; (2) Acquire and process field, aircraft, and ancillary data; (3) Develop and refine models of LST emission; (4) Develop algorithms for LST retrieval; and (5) Explore LST retrieval methods for use in energy balance models. In general all of these objectives were addressed, and for the most part achieved. The main results from this project are described in the publications arising from this effort. We summarize our efforts related to each of the objectives.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, Jin AU; Yueh, Herng-Aung
1990-01-01
The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The vegetation canopy is modeled as an anisotropic random medium containing nonspherical scatterers with preferred alignment. The underlying medium is considered as a homogeneous half space. The scattering effect of the vegetation canopy are characterized by 3-D correlation functions with variances and correlation lengths respectively corresponding to the fluctuation strengths and the physical geometries of the scatterers. The strong fluctuation theory is used to calculate the anisotropic effective permittivity tensor of the random medium and the distorted Born approximation is then applied to obtain the covariance matrix which describes the fully polarimetric scattering properties of the vegetation field. This model accounts for all the interaction processes between the boundaries and the scatterers and includes all the coherent effects due to wave propagation in different directions such as the constructive and destructive interferences. For a vegetation canopy with low attenuation, the boundary between the vegetation and the underlying medium can give rise to significant coherent effects.
NASA Technical Reports Server (NTRS)
Goetz, Michael B.
2011-01-01
The Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) entered its third and final year of development with an overall goal of providing a unified tool to simulate active and passive space borne atmospheric remote sensing instruments. These simulations focus on the atmosphere ranging from UV to microwaves. ISSARS handles all assumptions and uses various models on scattering and microphysics to fill the gaps left unspecified by the atmospheric models to create each instrument's measurements. This will help benefit mission design and reduce mission cost, create efficient implementation of multi-instrument/platform Observing System Simulation Experiments (OSSE), and improve existing models as well as new advanced models in development. In this effort, various aerosol particles are incorporated into the system, and a simulation of input wavelength and spectral refractive indices related to each spherical test particle(s) generate its scattering properties and phase functions. These atmospheric particles being integrated into the system comprise the ones observed by the Multi-angle Imaging SpectroRadiometer(MISR) and by the Multiangle SpectroPolarimetric Imager(MSPI). In addition, a complex scattering database generated by Prof. Ping Yang (Texas A&M) is also incorporated into this aerosol database. Future development with a radiative transfer code will generate a series of results that can be validated with results obtained by the MISR and MSPI instruments; nevertheless, test cases are simulated to determine the validity of various plugin libraries used to determine or gather the scattering properties of particles studied by MISR and MSPI, or within the Single-scattering properties of tri-axial ellipsoidal mineral dust particles database created by Prof. Ping Yang.
Frolking, Steve; Hagen, Stephen; Braswell, Bobby; Milliman, Tom; Herrick, Christina; Peterson, Seth; Roberts, Dar; Keller, Michael; Palace, Michael
2017-01-01
Amazonia has experienced large-scale regional droughts that affect forest productivity and biomass stocks. Space-borne remote sensing provides basin-wide data on impacts of meteorological anomalies, an important complement to relatively limited ground observations across the Amazon's vast and remote humid tropical forests. Morning overpass QuikScat Ku-band microwave backscatter from the forest canopy was anomalously low during the 2005 drought, relative to the full instrument record of 1999-2009, and low morning backscatter persisted for 2006-2009, after which the instrument failed. The persistent low backscatter has been suggested to be indicative of increased forest vulnerability to future drought. To better ascribe the cause of the low post-drought backscatter, we analyzed multiyear, gridded remote sensing data sets of precipitation, land surface temperature, forest cover and forest cover loss, and microwave backscatter over the 2005 drought region in the southwestern Amazon Basin (4°-12°S, 66°-76°W) and in adjacent 8°x10° regions to the north and east. We found moderate to weak correlations with the spatial distribution of persistent low backscatter for variables related to three groups of forest impacts: the 2005 drought itself, loss of forest cover, and warmer and drier dry seasons in the post-drought vs. the pre-drought years. However, these variables explained only about one quarter of the variability in depressed backscatter across the southwestern drought region. Our findings indicate that drought impact is a complex phenomenon and that better understanding can only come from more extensive ground data and/or analysis of frequent, spatially-comprehensive, high-resolution data or imagery before and after droughts.
Spectroscopic remote sensing for material identification, vegetation characterization, and mapping
Kokaly, Raymond F.; Lewis, Paul E.; Shen, Sylvia S.
2012-01-01
Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.
Hagen, Stephen; Braswell, Bobby; Milliman, Tom; Herrick, Christina; Peterson, Seth; Roberts, Dar; Keller, Michael; Palace, Michael
2017-01-01
Amazonia has experienced large-scale regional droughts that affect forest productivity and biomass stocks. Space-borne remote sensing provides basin-wide data on impacts of meteorological anomalies, an important complement to relatively limited ground observations across the Amazon’s vast and remote humid tropical forests. Morning overpass QuikScat Ku-band microwave backscatter from the forest canopy was anomalously low during the 2005 drought, relative to the full instrument record of 1999–2009, and low morning backscatter persisted for 2006–2009, after which the instrument failed. The persistent low backscatter has been suggested to be indicative of increased forest vulnerability to future drought. To better ascribe the cause of the low post-drought backscatter, we analyzed multiyear, gridded remote sensing data sets of precipitation, land surface temperature, forest cover and forest cover loss, and microwave backscatter over the 2005 drought region in the southwestern Amazon Basin (4°-12°S, 66°-76°W) and in adjacent 8°x10° regions to the north and east. We found moderate to weak correlations with the spatial distribution of persistent low backscatter for variables related to three groups of forest impacts: the 2005 drought itself, loss of forest cover, and warmer and drier dry seasons in the post-drought vs. the pre-drought years. However, these variables explained only about one quarter of the variability in depressed backscatter across the southwestern drought region. Our findings indicate that drought impact is a complex phenomenon and that better understanding can only come from more extensive ground data and/or analysis of frequent, spatially-comprehensive, high-resolution data or imagery before and after droughts. PMID:28873422
Dynamic analysis of space robot remote control system
NASA Astrophysics Data System (ADS)
Kulakov, Felix; Alferov, Gennady; Sokolov, Boris; Gorovenko, Polina; Sharlay, Artem
2018-05-01
The article presents analysis on construction of two-stage remote control for space robots. This control ensures efficiency of the robot control system at large delays in transmission of control signals from the ground control center to the local control system of the space robot. The conditions for control stability of and high transparency are found.
NASA Astrophysics Data System (ADS)
Camy-Peyret, Claude; Payan, Sébastien; Jeseck, Pascal; Té, Yao
2001-09-01
Infrared spectroscopy is a powerful tool for precise measurements of atmospheric trace species concentrations through the use of characteristic spectral signatures of the different molecular species and their associated vibration-rotation bands in the mid- or near-infrared. Different methods based on quantitative spectroscopy permit tropospheric or stratospheric measurements: in situ long path absorption, atmospheric absorption/emission by Fourier transform spectroscopy with high spectral resolution instruments on the ground, airborne, balloon-borne or satellite-borne.
Remote sensing of natural resources: Quarterly literature review
NASA Technical Reports Server (NTRS)
1976-01-01
A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.
Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science
NASA Astrophysics Data System (ADS)
Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.
2017-09-01
Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.
NASA Technical Reports Server (NTRS)
Masubuchi, K.; Agapakis, J. E.; Debiccari, A.; Vonalt, C.
1985-01-01
A six month research program entitled Feasibility of Remotely Manipulated Welding in Space - A Step in the Development of Novel Joining Technologies is performed at the Massachusetts Institute of Technology for the Office of Space Science and Applications, NASA, under Contract No. NASW-3740. The work is performed as a part of the Innovative Utilization of the Space Station Program. The final report from M.I.T. was issued in September 1983. This paper presents a summary of the work performed under this contract. The objective of this research program is to initiate research for the development of packaged, remotely controlled welding systems for space construction and repair. The research effort includes the following tasks: (1) identification of probable joining tasks in space; (2) identification of required levels of automation in space welding tasks; (3) development of novel space welding concepts; (4) development of recommended future studies; and (5) preparation of the final report.
Strobel, Natalie A; Peter, Sue; McAuley, Kimberley E; McAullay, Daniel R; Marriott, Rhonda; Edmond, Karen M
2017-01-01
Objectives Our primary objective was to determine the incidence of hospital admission and emergency department presentation in Indigenous and non-Indigenous preterm infants aged postdischarge from birth admission to 11 months in Western Australia. Secondary objectives were to assess incidence in the poorest infants from remote areas and to determine the primary causes of hospital usage in preterm infants. Design Prospective population-based linked data set. Setting and participants All preterm babies born in Western Australia during 2010 and 2011. Main outcome measures All-cause hospitalisations and emergency department presentations. Results There were 6.9% (4211/61 254) preterm infants, 13.1% (433/3311) Indigenous preterm infants and 6.5% (3778/57 943) non-Indigenous preterm infants born in Western Australia. Indigenous preterm infants had a higher incidence of hospital admission (adjusted incident rate ratio (aIRR) 1.24, 95% CI 1.08 to 1.42) and emergency department presentation (aIRR 1.71, 95% CI 1.44 to 2.02) compared with non-Indigenous preterm infants. The most disadvantaged preterm infants (7.8/1000 person days) had a greater incidence of emergency presentation compared with the most advantaged infants (3.1/1000 person days) (aIRR 1.61, 95% CI 1.30 to 2.00). The most remote preterm infants (7.8/1000 person days) had a greater incidence of emergency presentation compared with the least remote preterm infants (3.0/1000 person days; aIRR 1.82, 95% CI 1.49 to 2.22). Conclusions In Western Australia, preterm infants have high hospital usage in their first year of life. Infants living in disadvantaged areas, remote area infants and Indigenous infants are at increased risk. Our data highlight the need for improved postdischarge care for preterm infants. PMID:28100563
Strobel, Natalie A; Peter, Sue; McAuley, Kimberley E; McAullay, Daniel R; Marriott, Rhonda; Edmond, Karen M
2017-01-18
Our primary objective was to determine the incidence of hospital admission and emergency department presentation in Indigenous and non-Indigenous preterm infants aged postdischarge from birth admission to 11 months in Western Australia. Secondary objectives were to assess incidence in the poorest infants from remote areas and to determine the primary causes of hospital usage in preterm infants. Prospective population-based linked data set. All preterm babies born in Western Australia during 2010 and 2011. All-cause hospitalisations and emergency department presentations. There were 6.9% (4211/61 254) preterm infants, 13.1% (433/3311) Indigenous preterm infants and 6.5% (3778/57 943) non-Indigenous preterm infants born in Western Australia. Indigenous preterm infants had a higher incidence of hospital admission (adjusted incident rate ratio (aIRR) 1.24, 95% CI 1.08 to 1.42) and emergency department presentation (aIRR 1.71, 95% CI 1.44 to 2.02) compared with non-Indigenous preterm infants. The most disadvantaged preterm infants (7.8/1000 person days) had a greater incidence of emergency presentation compared with the most advantaged infants (3.1/1000 person days) (aIRR 1.61, 95% CI 1.30 to 2.00). The most remote preterm infants (7.8/1000 person days) had a greater incidence of emergency presentation compared with the least remote preterm infants (3.0/1000 person days; aIRR 1.82, 95% CI 1.49 to 2.22). In Western Australia, preterm infants have high hospital usage in their first year of life. Infants living in disadvantaged areas, remote area infants and Indigenous infants are at increased risk. Our data highlight the need for improved postdischarge care for preterm infants. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Kurien, James; Rajan, Kanna
1999-01-01
We describe the computer demonstration of the Remote Agent Experiment (RAX). The Remote Agent is a high-level, model-based, autonomous control agent being validated on the NASA Deep Space 1 spacecraft.
ERIC Educational Resources Information Center
Allen, Joseph P.
1973-01-01
Discusses the scientific objectives of the space missions to illustrate the role of scientists in space-borne research studies. Included is a tentative list of demonstration experiments worth conducting in order to attain pedagogical goals. (CC)
Earth observations from space: Outlook for the geological sciences
NASA Technical Reports Server (NTRS)
Short, N. M.; Lowman, P. D., Jr.
1973-01-01
Remote sensing from space platforms is discussed as another tool available to geologists. The results of Nimbus observations, the ERTS program, and Skylab EREP are reviewed, and a multidisciplinary approach is recommended for meeting the challenges of remote sensing.
NASA Astrophysics Data System (ADS)
Jensen, K.; McDonald, K. C.; Ceccato, P.; Schroeder, R.; Podest, E.
2014-12-01
The potential impact of climate variability and change on the spread of infectious disease is of increasingly critical concern to public health. Newly-available remote sensing datasets may be combined with predictive modeling to develop new capabilities to mitigate risks of vector-borne diseases such as malaria, leishmaniasis, and rift valley fever. We have developed improved remote sensing-based products for monitoring water bodies and inundation dynamics that have potential utility for improving risk forecasts of vector-borne disease epidemics. These products include daily and seasonal surface inundation based on the global mappings of inundated area fraction derived at the 25-km scale from active and passive microwave instruments ERS, QuikSCAT, ASCAT, and SSM/I data - the Satellite Water Microwave Product Series (SWAMPS). Focusing on the East African region, we present validation of this product using multi-temporal classification of inundated areas in this region derived from high resolution PALSAR (100m) and Landsat (30m) observations. We assess historical occurrence of malaria in the east African country of Eritrea with respect to the time series SWAMPS datasets, and we aim to construct a framework for use of these new datasets to improve prediction of future malaria risk in this region. This work is supported through funding from the NASA Applied Sciences Program, the NASA Terrestrial Ecology Program, and the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Program. This study is also supported and monitored by National Oceanic and Atmospheric Administration (NOAA) under Grant - CREST Grant # NA11SEC4810004. The statements contained within the manuscript/research article are not the opinions of the funding agency or the U.S. government, but reflect the authors' opinions. This work was conducted in part under the framework of the ALOS Kyoto and Carbon Initiative. ALOS PALSAR data were provided by JAXA EORC.
SAR-EDU - An education initiative for applied Synthetic Aperture Radar remote sensing
NASA Astrophysics Data System (ADS)
Eckardt, Robert; Richter, Nicole; Auer, Stefan; Eineder, Michael; Roth, Achim; Hajnsek, Irena; Walter, Diana; Braun, Matthias; Motagh, Mahdi; Pathe, Carsten; Pleskachevsky, Andrey; Thiel, Christian; Schmullius, Christiane
2013-04-01
Since the 1970s, radar remote sensing techniques have evolved rapidly and are increasingly employed in all fields of earth sciences. Applications are manifold and still expanding due to the continuous development of new instruments and missions as well as the availability of very high-quality data. The trend worldwide is towards operational employment of the various algorithms and methods that have been developed. However, the utilization of operational services does not keep up yet with the rate of technical developments and the improvements in sensor technology. With the enhancing availability and variety of space borne Synthetic Aperture Radar (SAR) data and a growing number of analysis algorithms the need for a vital user community is increasing. Therefore the German Aerospace Center (DLR) together with the Friedrich-Schiller-University Jena (FSU) and the Technical University Munich (TUM) launched the education initiative SAR-EDU. The aim of the project is to facilitate access to expert knowledge in the scientific field of radar remote sensing. Within this effort a web portal will be created to provide seminar material on SAR basics, methods and applications to support both, lecturers and students. The overall intension of the project SAR-EDU is to provide seminar material for higher education in radar remote sensing covering the topic holistically from the very basics to the most advanced methods and applications that are available. The principles of processing and interpreting SAR data are going to be taught using test data sets and open-source as well as commercial software packages. The material that is provided by SAR-EDU will be accessible at no charge from a DLR web portal. The educational tool will have a modular structure, consisting of separate modules that broach the issue of a particular topic. The aim of the implementation of SAR-EDU as application-oriented radar remote sensing educational tool is to advocate the development and wider use of operational services on the base of pre-existing algorithms and sensors on the one hand, and to aid the extension of radar remote sensing techniques to a broader field of application on the other. SAR-EDU therefore combines the knowledge, expertise and experience of an excellent German consortium.
The use of the Space Shuttle for land remote sensing
NASA Technical Reports Server (NTRS)
Thome, P. G.
1982-01-01
The use of the Space Shuttle for land remote sensing will grow significantly during the 1980's. The main use will be for general land cover and geological mapping purposes by worldwide users employing specialized sensors such as: high resolution film systems, synthetic aperture radars, and multispectral visible/IR electronic linear array scanners. Because these type sensors have low Space Shuttle load factors, the user's preference will be for shared flights. With this strong preference and given the present prognosis for Space Shuttle flight frequency as a function of orbit inclination, the strongest demand will be for 57 deg orbits. However, significant use will be made of lower inclination orbits. Compared with freeflying satellites, Space Shuttle mission investment requirements will be significantly lower. The use of the Space Shuttle for testing R and D land remote sensors will replace the free-flying satellites for most test programs.
Study on identifying deciduous forest by the method of feature space transformation
NASA Astrophysics Data System (ADS)
Zhang, Xuexia; Wu, Pengfei
2009-10-01
The thematic remotely sensed information extraction is always one of puzzling nuts which the remote sensing science faces, so many remote sensing scientists devotes diligently to this domain research. The methods of thematic information extraction include two kinds of the visual interpretation and the computer interpretation, the developing direction of which is intellectualization and comprehensive modularization. The paper tries to develop the intelligent extraction method of feature space transformation for the deciduous forest thematic information extraction in Changping district of Beijing city. The whole Chinese-Brazil resources satellite images received in 2005 are used to extract the deciduous forest coverage area by feature space transformation method and linear spectral decomposing method, and the result from remote sensing is similar to woodland resource census data by Chinese forestry bureau in 2004.
[Analysis of the effect of detector's operating temperature on SNR in space-based remote sensor].
Li, Zhan-feng; Wang, Shu-rong; Huang, Yu
2012-03-01
Limb viewing is a new viewing geometry for space-based atmospheric remote sensing, but the spectral radiance of atmosphere scattering reduces rapidly with limb height. So the signal-noise-ratio (SNR) is a key performance parameter of limb remote sensor. A SNR model varying with detector's temperature is proposed, based on analysis of spectral radiative transfer and noise' source in representative instruments. The SNR at limb height 70 km under space conditions was validated by simulation experiment on limb remote sensing spectrometer prototype. Theoretic analysis and experiment's results indicate congruously that when detector's temperature reduces to some extent, a maximum SNR will be reached. After considering the power consumption, thermal conductivity and other issues, optimal operating temperature of detector can be decided.
NASA Astrophysics Data System (ADS)
Heine, Frank; Schwander, Thomas; Lange, Robert; Smutny, Berry
2006-04-01
Tesat-Spacecom has developed a series of fiber coupled single frequency lasers for space applications ranging from onboard metrology for space borne FTIR spectrometers to step tunable seed lasers for LIDAR applications. The cw-seed laser developed for the ESA AEOLUS Mission shows a 3* 10 -11 Allen variance from 1 sec time intervals up to 1000 sec. Q-switched lasers with stable beam pointing under space environments are another field of development. One important aspect of a space borne laser system is a reliable fiber coupled laser diode pump source around 808nm. A dedicated development concerning chip design and packaging yielded in a 5*10 6h MTTF (mean time to failure) for the broad area emitters. Qualification and performance test results for the different laser assemblies will be presented and their application in the different space programs.
Goddard Technology Efforts to Improve Space Borne Laser Reliability
NASA Technical Reports Server (NTRS)
Heaps, William S.
2006-01-01
In an effort to reduce the risk, perceived and actual, of employing instruments containing space borne lasers NASA initiated the Laser Risk Reduction Program (LRRP) in 2001. This program managed jointly by NASA Langley and NASA Goddard and employing lasers researchers from government, university and industrial labs is nearing the conclusion of its planned 5 year duration. This paper will describe some of the efforts and results obtained by the Goddard half of the program.
Nanotechnology-Enhanced Lubricants for RF MEMS Switches
2011-03-01
and have greater capabilities. 2.1. Problem Background The Air Force employs numerous communication links between space -borne assets, airborne...beyond 10B of rated cold-switched life, such as high-value space -borne assets with 12+ year horizons to deployment. Warm-switched operation refers to...lids for 5 min. at 300W in oxygen 5. Stud bump substrates using a gold- silver alloy wire bonder – packages may be stored 6. Tack seal pre-form to lid
Merlin: an integrated path differential absorption (IPDA) lidar for global methane remote sensing
NASA Astrophysics Data System (ADS)
Bode, M.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.
2017-11-01
The Methane Remote Sensing LIDAR Mission (MERLIN) is a joint French-German cooperation on the development, launch and operation of a climate monitoring satellite, executed by the French Space Agency CNES and the German Space Administration DLR.
Merlin: an integrated path differential absorption (IPDA) lidar for global methane remote sensing
NASA Astrophysics Data System (ADS)
Bode, M.; Wührer, C.; Alpers, M.; Millet, B.; Ehret, G.; Bousquet, P.
2017-09-01
The Methane Remote Sensing LIDAR Mission (MERLIN) is a joint French-German cooperation on the development, launch and operation of a climate monitoring satellite, executed by the French Space Agency CNES and the German Space Administration DLR.
Adaptive strategies of remote systems operators exposed to perturbed camera-viewing conditions
NASA Technical Reports Server (NTRS)
Stuart, Mark A.; Manahan, Meera K.; Bierschwale, John M.; Sampaio, Carlos E.; Legendre, A. J.
1991-01-01
This report describes a preliminary investigation of the use of perturbed visual feedback during the performance of simulated space-based remote manipulation tasks. The primary objective of this NASA evaluation was to determine to what extent operators exhibit adaptive strategies which allow them to perform these specific types of remote manipulation tasks more efficiently while exposed to perturbed visual feedback. A secondary objective of this evaluation was to establish a set of preliminary guidelines for enhancing remote manipulation performance and reducing the adverse effects. These objectives were accomplished by studying the remote manipulator performance of test subjects exposed to various perturbed camera-viewing conditions while performing a simulated space-based remote manipulation task. Statistical analysis of performance and subjective data revealed that remote manipulation performance was adversely affected by the use of perturbed visual feedback and performance tended to improve with successive trials in most perturbed viewing conditions.
Remote surface inspection system. [of large space platforms
NASA Technical Reports Server (NTRS)
Hayati, Samad; Balaram, J.; Seraji, Homayoun; Kim, Won S.; Tso, Kam S.
1993-01-01
This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.
Remote sensing; Proceedings of the Meeting, Orlando, FL, Apr. 3, 4, 1986
NASA Technical Reports Server (NTRS)
Menzies, Robert T. (Editor)
1986-01-01
Advances in optical technology for remote sensing are discussed in reviews and reports of recent experimental investigations. Topics examined include industrial applications, laser diagnostics for combustion research, laser remote sensing for ranging and altimetry, and imaging systems for terrestrial remote sensing from space. Consideration is given to LIF in forensic diagnostics, time-resolved laser-induced-breakdown spectrometry for rapid analysis of alloys, CARS in practical combustion environments, airborne inertial surveying using laser tracking and profiling techniques, earth-resources instrumentation for the EOS polar platform of the Space Station, and the SAR for EOS.
Observation infrastructure for airborne hazards in the framework of the EUNADICS-AV project
NASA Astrophysics Data System (ADS)
Mona, Lucia; Pappalardo, Gelsomina; Stammes, Piet; Lihavainen, Heikki; Paatero, Jussi; Hirtl, Marcus; Schlager, Hans; Graf, Kaspar; Hedelt, Pascal; Theys, Nicolas; Coltelli, Mauro; Vargas, Arturo; Clarisse, Lieven; Nína Petersen, Guðrún; de Leeuw, Gerrit; Papagiannopoulos, Nikolaos; Apituley, Arnoud; Haefele, Alexander; Delcloo, Andy; Wotawa, Gerhard
2017-04-01
During the 2010 and 2011 Icelandic volcanic eruptions, the availability of integrated, validated data sets was identified as a major challenge in the effort to gain a rapid situation assessment. These environmental crisis situations may happen again, also from other types ofairborne hazards, like big fires. Currently, the issue is not so much that data and observations do not exist, it is rather the rapid accessibility, the cross-calibration of different sensors, the integration of new platforms and the harmonization of standards and protocols that needs further work and attention. A specific activity is planned within the H-2020 project EUNADICS -AV ("European Natural Disaster Coordination and Information System for Aviation") for addressing this critical issue. In order to achieve the rapid data accessibility, work will be carried out with full consideration of the main European Research Infrastructures, projects and national/international monitoring networks that are able to provide crucial information related to the dispersion of airborne hazards. The integrated data sets are based on satellite and ground-based remote sensing as well as in situ ground-based and aircraft observations. Networks of ground based remote sensing of atmospheric profiles are particularly important, since these will provide the needed height information that cannot be obtained unambiguously from the vast majority of space borne sensors. A new aspect not treated in any project and initiative so far is the integration of special crisis measurements, for example by aircraft or UAV systems. Particularly suited for the purposes of the project are satellite data from operational sensors aboard EUMETSAT and ESA satellites. Improved retrievals are investigated, and the new generation of Sentinel satellites currently being launched under the Copernicus umbrella and their added value are considered. Especially when the ground based and space borne observations are combined, the much needed spatial-temporal developments of the dispersion of atmospheric plumes can be followed. This capability will further be augmented by data assimilation, such that better homogeneity and reliability of data is assured where data is available and gaps can be identified. This integration initiative not only assures that such data can be used in the models during a crisis, but helps towards deploying such systems in a way that the added value can be maximised. Acknowledgments: EUNADICS-AV Project is funded by the European Union's Horizon 2020 research programme for Societal challenges - smart, green and integrated transport under grant agreement no. 723986.
Update on Tick-Borne Bacterial Diseases in Travelers.
Eldin, Carole; Parola, Philippe
2018-05-22
Ticks are the second most important vectors of infectious diseases after mosquitoes worldwide. The growth of international tourism including in rural and remote places increasingly exposes travelers to tick bite. Our aim was to review the main tick-borne infectious diseases reported in travelers in the past 5 years. In recent years, tick-borne bacterial diseases have emerged in travelers including spotted fever group (SFG) rickettsioses, borrelioses, and diseases caused by bacteria of the Anaplasmataceae family. African tick-bite fever, due to Rickettsia africae, is the most frequent agent reported in travelers returned from Sub-Saharan areas. Other SFG agents are increasingly reported in travelers, and clinicians should be aware of them. Lyme disease can be misdiagnosed in Southern countries. Organisms causing tick-borne relapsing fever are neglected pathogens worldwide, and reports in travelers have allowed the description of new species. Infections due to Anaplasmataceae bacteria are more rarely described in travelers, but a new species of Neoehrlichia has recently been detected in a traveler. The treatment of these infections relies on doxycycline, and travelers should be informed before the trip about prevention measures against tick bites.
NASA Astrophysics Data System (ADS)
Leidner, A. K.; Skidmore, A. K.; Turner, W. W.; Geller, G. N.
2017-12-01
The biodiversity community is working towards developing a consensus on a set of Essential Biodiversity Variables (EBVs) that can be used to measure and monitor biodiversity change over time. These EBVs will inform research, modeling, policy, and assessment efforts. The synoptic coverage provided by satellite data make remote sensing a particularly important observation tool to inform many EBVs. Biodiversity is a relatively new subject matter for space agencies, and thus the definition, description, and requirements of EBVs with a significant remote sensing component can foster ways for the biodiversity community to clearly and concisely communicate observational needs to space agencies and the Committee on Earth Observing Satellites (CEOS, the international coordinating body for civilian space agencies). Here, we present an overview of EBVs with a particular emphasis on those for which remote sensing will play a significant role and also report on the results of recent workshops to prioritize and refine EBVs. Our goal is to provide a framework for the biodiversity community to coalesce around a set of observational needs to convey to space agencies. Compared to many physical science disciplines, the biodiversity community represents a wide range of sub-disciplines and organizations (academia, non-governmental organizations, research institutes, national and local natural resource management agencies, etc.), which creates additional challenges when communicating needs to space agencies unfamiliar with the topic. EBVs thus offer a communication pathway that could increase awareness within space agencies of the uses of remote sensing for biodiversity research and applications, which in turn could foster greater use of remote sensing in the broader biodiversity community.
CMOS-TDI detector technology for reconnaissance application
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Reulke, Ralf; Jung, Melanie; Sengebusch, Karsten
2014-10-01
The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design CMOS in a TDI (Time Delay and Integration) architecture. This project includes the technological design of future high or multi-spectral resolution spaceborne instruments and the possibility of higher integration. DLR OS and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) in Duisburg were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large-swath and high-spectral resolution with intelligent synchronization control, fast-readout ADC (analog digital converter) chains and new focal-plane concepts opens the door to new remote-sensing and smart deep-space instruments. The paper gives an overview of the detector development status and verification program at DLR, as well as of new control possibilities for CMOS-TDI detectors in synchronization control mode.
NASA Astrophysics Data System (ADS)
Crowell, Sean M. R.; Randolph Kawa, S.; Browell, Edward V.; Hammerling, Dorit M.; Moore, Berrien; Schaefer, Kevin; Doney, Scott C.
2018-01-01
Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT and OCO-2, however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint.
Varandas, A J C; Sarkar, B
2011-05-14
Generalized Born-Oppenheimer equations including the geometrical phase effect are derived for three- and four-fold electronic manifolds in Jahn-Teller systems near the degeneracy seam. The method is readily extendable to N-fold systems of arbitrary dimension. An application is reported for a model threefold system, and the results are compared with Born-Oppenheimer (geometrical phase ignored), extended Born-Oppenheimer, and coupled three-state calculations. The theory shows unprecedented simplicity while depicting all features of more elaborated ones.
UAV-based remote sensing of the Heumoes landslide, Austria Vorarlberg
NASA Astrophysics Data System (ADS)
Niethammer, U.; Joswig, M.
2009-04-01
The Heumoes landslide, is located in the eastern Vorarlberg Alps, Austria, 10 km southeast of Dornbirn. The extension of the landslide is about 2000 m in west to east direction and about 500 m at its widest extent in north to south direction. It occurs between an elevation of 940 m in the east and 1360 m in the west, slope angles of more than 60 % can be observed as well as almost flat areas. Its total volume is estimated to be 9.400.000 cubic meters and its average velocities amount to some centimeter per year. Surface signatures or 'photolineations' of creeping landslides, e.g. fractures and rupture lines in sediments and street pavings, and vegetation contrasts by changes of water table in shallow vegetation in principle can be resolved by remote sensing. The necessary ground cell resolution of few centimeters, however, generally can't be achieved by routine areal or satellite imagery. The fast technological progress of unmanned areal vehicles (UAV) and the reduced payload by miniaturized optical cameras now allow for UAV remote sensing applications that are below the high financial limits of military intelligence. Even with 'low-cost' equipment, the necessary centimeter-scale ground cell resolution can be achieved by adapting the flight altitude to some ten to one hundred meters. Operated by scientists experienced in remote-control flight models, UAV remote sensing can now be performed routinely, and campaign-wise after any significant event of, e.g., heavy rainfall, or partial mudflow. We have investigated a concept of UAV-borne remote sensing based on motorized gliders, and four-propeller helicopters or 'quad-rotors'. Several missions were flown over the Heumoes landslide. Between 2006 and 2008 three series UAV-borne photographs of the Heumoes landslide were taken and could be combined to orto-mosaics of the slope area within few centimeters ground cell resolution. We will present the concept of our low cost quad-rotor UAV system and first results of the image-processing based evaluation of the acquired images to characterize spatial and temporal details of landslide behaviour. We will also sketch first schemes of joint interpretation or 'data fusion' of UAV-based remote sensing with the results from geophysical mapping of underground distribution of soil moisture and fracture processes (Walter & Joswig, EGU 2009).
Supervisory autonomous local-remote control system design: Near-term and far-term applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul
1993-01-01
The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.
Restoration of color in a remote sensing image and its quality evaluation
NASA Astrophysics Data System (ADS)
Zhang, Zuxun; Li, Zhijiang; Zhang, Jianqing; Wang, Zhihe
2003-09-01
This paper is focused on the restoration of color remote sensing (including airborne photo). A complete approach is recommended. It propose that two main aspects should be concerned in restoring a remote sensing image, that are restoration of space information, restoration of photometric information. In this proposal, the restoration of space information can be performed by making the modulation transfer function (MTF) as degradation function, in which the MTF is obtained by measuring the edge curve of origin image. The restoration of photometric information can be performed by improved local maximum entropy algorithm. What's more, a valid approach in processing color remote sensing image is recommended. That is splits the color remote sensing image into three monochromatic images which corresponding three visible light bands and synthesizes the three images after being processed separately with psychological color vision restriction. Finally, three novel evaluation variables are obtained based on image restoration to evaluate the image restoration quality in space restoration quality and photometric restoration quality. An evaluation is provided at last.
Processing for spaceborne synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Lybanon, M.
1973-01-01
The data handling and processing in using synthetic aperture radar as a satellite-borne earth resources remote sensor is considered. The discussion covers the nature of the problem, the theory, both conventional and potential advanced processing techniques, and a complete computer simulation. It is shown that digital processing is a real possibility and suggests some future directions for research.
NASA Technical Reports Server (NTRS)
Koblinsky, C. J.
1984-01-01
Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.
USDA-ARS?s Scientific Manuscript database
The distorted Born approximation (DBA) combined with the numerical solutions of Maxwell equations (NMM3D) has been used for the radar backscattering model for the SMAP mission. The models for vegetated surfaces such as wheat, grass, soybean and corn have been validated with the Soil Moisture Active ...
NASA Technical Reports Server (NTRS)
Stucky, Richard K.; Krishtalka, Leonard
1991-01-01
Since 1986, remote sensing images derived from satellite and aircraft-borne sensor data have been used to study the stratigraphy and sedimentology of the vertebrate-bearing Wind River and Wagon Bed formations in the Wind River Basin (Wyoming). Landsat 5 TM and aircraft Thermal Infrared Multispectral Scanner data were combined with conventional geologic analyses. The remote sensing data have contributed significantly to: (1) geologic mapping at the formation, member, and bed levels; (2) stratigraphic correlation; (3) reconstruction of ancient depositional environments; and (4) identification of structural complexity. This information is critical to vertebrate paleontology in providing the stratigraphic, sedimentologic, and structural framework required for evolutionary and paleoecologic studies. Of primary importance is the ability to map at minimal cost the geology of large areas (20,000 sq km or greater) at a high level of precision. Remote sensing data can be especially useful in geologically and paleontologically unexplored or poorly understood regions.
Design and performance of an integrated ground and space sensor web for monitoring active volcanoes.
NASA Astrophysics Data System (ADS)
Lahusen, Richard; Song, Wenzhan; Kedar, Sharon; Shirazi, Behrooz; Chien, Steve; Doubleday, Joshua; Davies, Ashley; Webb, Frank; Dzurisin, Dan; Pallister, John
2010-05-01
An interdisciplinary team of computer, earth and space scientists collaborated to develop a sensor web system for rapid deployment at active volcanoes. The primary goals of this Optimized Autonomous Space In situ Sensorweb (OASIS) are to: 1) integrate complementary space and in situ (ground-based) elements into an interactive, autonomous sensor web; 2) advance sensor web power and communication resource management technology; and 3) enable scalability for seamless addition sensors and other satellites into the sensor web. This three-year project began with a rigorous multidisciplinary interchange that resulted in definition of system requirements to guide the design of the OASIS network and to achieve the stated project goals. Based on those guidelines, we have developed fully self-contained in situ nodes that integrate GPS, seismic, infrasonic and lightning (ash) detection sensors. The nodes in the wireless sensor network are linked to the ground control center through a mesh network that is highly optimized for remote geophysical monitoring. OASIS also features an autonomous bidirectional interaction between ground nodes and instruments on the EO-1 space platform through continuous analysis and messaging capabilities at the command and control center. Data from both the in situ sensors and satellite-borne hyperspectral imaging sensors stream into a common database for real-time visualization and analysis by earth scientists. We have successfully completed a field deployment of 15 nodes within the crater and on the flanks of Mount St. Helens, Washington. The demonstration that sensor web technology facilitates rapid network deployments and that we can achieve real-time continuous data acquisition. We are now optimizing component performance and improving user interaction for additional deployments at erupting volcanoes in 2010.
NASA Astrophysics Data System (ADS)
Pela, F.; Tsugawa, R. K.; Andreoli, L. J.
2004-12-01
The National Polar-Orbiting NPOESS, a tri-agency program, supports missions of the Department of Commerce (DOC)/National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA). NPOESS provides a critical, timely, reliable, and high quality space-based sensing capability to acquire and process global and regional environmental imagery and specialized meteorological, climatic, terrestrial, oceanographic, solar-geophysical, and other data products. These products are delivered to national weather and environmental facilities operated by NOAA and DoD, to NASA, and to environmental remote sensing science community users to support civil and military functions. These data are also provided in real time to field terminals deployed worldwide. The NPOESS architecture is built on a foundation of affordability, and the three pillars of data quality, latency, availability. Affordability refers to an over-arching awareness of cost to provide the best value to the government for implementing a converged system; some dimensions of cost include the cost for system development and implementation, the balance between development costs and operation and maintenance costs, and the fiscal year expenditure plans that meet schedule commitments. Data quality is characterized in terms of the attributes associated with Environmental Data Records (EDRs), and the products that are delivered to the four US Operational Centrals and field users. These EDRs are generated by the system using raw data from the space-borne sensors and spacecraft, in conjunction with science algorithms and calibration factors. Data latency refers to the time period between the detection of energy by a space-borne sensor to the delivery of a corresponding EDR. The system was designed to minimize data latency, and hence provide users with timely data. Availability refers to both data availability and system operational availability. Data availability is ensured by the way data is stored and routed throughout the system, on the spacecraft and on the ground, so that it can be retrieved and resent if the first transmittal is not successful. Operational availability is a measure of how well around-the-clock operations are supported, through the careful deployment of hot spares and fault tolerance of the system. Both types of availability are very high for the NPOESS architecture. Overall, the NPOESS architecture successfully delivers to the government a best-value solution featuring high data quality, low data latency, and high data/system availability.
A demonstrator for an incoherent Doppler wind lidar receiver
NASA Astrophysics Data System (ADS)
Fabre, F.; Marini, A.; Sidler, Thomas C.; Morancais, Didier; Fongy, G.; Vidal, Ph.
2018-04-01
The knowledge of wind fields for a global terrestrial coverage and accurate altitude sampling is one of the main keys for improvement of meteorological predictions and general understanding of atmosphere behaviour. The best way to recover this information is remote sensing from space using low Earth orbit satellites. The measurement principle is to analyse the Doppler shift of the flux emitted by the space instrument and backscattered by the atmosphere. One of the most promising principle for Doppler shift measurement is the direct detection which does not need local oscillators. what significantly simplifies the design of such a space-borne receiver. ESA-ESTEC initiated at early 95' a programme called "lncoherent Doppler Wind Lidar (IDWL) technologies" for the study and bread-boarding phase. MMS won this contract proposing an original concept based on the use of a Fizeau high resolution interferometer working in the UV band. coupled with an intensified CCD. This concept is patented by MMS, as well as the special CCD timing sequence that will be depicted below. The programme begun by a study of the space-borne instrument in order to identify main constraints and define the receiver as could be for a flight model. A detailed performance model was established and parametric analysis allowed to optimise the concept in order to reach required performances. This study phase finally provided the definition of a bread-board for expected performances demonstration. Moreover, the Laser Signal Simulator (LSS) which is used to simulate the Lidar echo in term of amplitude as well as frequency modulation was defined at this step. The performances of this test support equipment are of main importance for the validation of the demonstrator design and performances. The second part of the study aimed at defining the derailed design of the demonstrator and associated test support equipment as well as initiating preliminary validation experiments on most critical technologies, like Fizeau interferometer which needs particularly high thermal stability and spectral resolution. At the end of this design phase. the test bench equipment begun to be manufactured and equipment test results preliminary assessed the study phase results. After integration, the correct operation and control of the overall test bench were assessed and performance tests were undertaken . The final conclusion of this programme aimed at updating the performance simulation software in order to refine expected performances for the future flight instrument.
Results from the July 1981 Workshop on Passive Remote Sensing of the Troposphere
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr.; Reichle, H. G., Jr.
1982-01-01
Potential roles of passive remote sensors in the study of the chemistry and related dynamics of the lower atmosphere were defined by a Tropospheric Passive Remote Sensing Workshop, and technology advances required to implement these roles were identified. A promising role is in making global-scale, multilayer measurements of the more abundant trace tropospheric gaseous species (e.g., O3, CO, CH4, HNO3) and of aerosol thickness and size distribution. It includes both nadirand limb-viewing measurements. Technology advances focus on both scanning- and fixed-spectra, nadir-viewing techniques with resolutions of 0.1 kaysers or better. Balloon- and Shuttle-borne experiments should be performed to study the effects of instrument noise and background fluctuations on data inversion and to determine the utility of simultaneously obtained nadir- and limb-viewing data.
NASA Astrophysics Data System (ADS)
Li, Xin; Menenti, Massimo
2010-10-01
The general objective of project 5322 in the Dragon 2 programme is to quantitatively retrieve some key eco- hydrological parameters by using remote sensed data, especially from ESA, Chinese, and the Third Party Mission (TPM). To achieve this goal, a comprehensive observation experiment, Watershed Allied Telemetry Experimental Research (WATER) was carried out. WARER is a simultaneously airborne, satellite-borne, and ground-based remote sensing experiment took place in the Heihe River Basin, a typical inland river basin in the northwest of China. This paper introduces the background and implementation of WATER. Data have been obtained so far are described in details. After a period of data analysis for two years, numerous results have also been achieved. This paper presents some early results of WATER as well.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.
1994-01-01
Accomplishments in the following areas of research are presented: receiver performance study of spaceborne laser altimeters and cloud and aerosol lidars; receiver performance analysis for space-to-space laser ranging systems; and receiver performance study for the Mars Environmental Survey (MESUR).
NASA Technical Reports Server (NTRS)
Stow, S. H.; Price, R. C.; Hoehner, F.; Wielchowsky, C.
1976-01-01
The feasibility of using aerial photography for lithologic differentiation in a heavily vegetated region is investigated using multispectral imagery obtained from LANDSAT satellite and aircraft-borne photography. Delineating and mapping of localized vegetal zones can be accomplished by the use of remote sensing because a difference in morphology and physiology results in different natural reflectances or signatures. An investigation was made to show that these local plant zones are affected by altitude, topography, weathering, and gullying; but are controlled by lithology. Therefore, maps outlining local plant zones were used as a basis for lithologic map construction.
Prospects and limitations for use of frequency spectrum from 40 to 300 GHz
NASA Technical Reports Server (NTRS)
Catoe, C. E.
1979-01-01
The existing and future use of the electromagnetic spectrum from 40 to 300 gigahertz is discussed. The activities envisioned for this segment of the electromagnetic spectrum fall generically into two basic categories: communications and remote sensing. The communications services considered for this region are focused on the existing and future frequency allocations that are required for terrestrial radio services, space to ground radio services, space to space radio services, and space to deep space radio services. The remote sensing services considered for this region are divided into two groups of activities: earth viewing and space viewing.
NASA Technical Reports Server (NTRS)
Kosmo, Joseph J.
2006-01-01
This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.
2000-09-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Mobile Remote Servicer Base System (MBS) is viewed from the front right side. The MBS is part of the Canadian Space Agency’s (CSA) Space Station Remote Manipulator System (SSRMS), known as the Canadian arm. Scheduled to be launched in February 2002 on flight UF-2 to the International Space Station, the MBS will complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites on the Space Station
2000-09-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Mobile Remote Servicer Base System (MBS) is viewed from the left right side. The MBS is part of the Canadian Space Agency’s (CSA) Space Station Remote Manipulator System (SSRMS), known as the Canadian arm. Scheduled to be launched in February 2002 on flight UF-2 to the International Space Station, the MBS will complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites on the Space Station
2000-09-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Mobile Remote Servicer Base System (MBS) is viewed from the left right side. The MBS is part of the Canadian Space Agency’s (CSA) Space Station Remote Manipulator System (SSRMS), known as the Canadian arm. Scheduled to be launched in February 2002 on flight UF-2 to the International Space Station, the MBS will complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites on the Space Station
2000-09-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Mobile Remote Servicer Base System (MBS) is viewed from the front right side. The MBS is part of the Canadian Space Agency’s (CSA) Space Station Remote Manipulator System (SSRMS), known as the Canadian arm. Scheduled to be launched in February 2002 on flight UF-2 to the International Space Station, the MBS will complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites on the Space Station
STS-100 Onboard Photograph-International Space Station Remote Manipulator System
NASA Technical Reports Server (NTRS)
2001-01-01
This is a Space Shuttle STS-100 mission onboard photograph. Astronaut Scott Parazynski totes a Direct Current Switching Unit while anchored on the end of the Canadian-built Remote Manipulator System (RMS) robotic arm. The RMS is in the process of moving Parazynski to the exterior of the Destiny laboratory (right foreground), where he will secure the spare unit, a critical part of the station's electrical system, to the stowage platform in case future crews will need it. Also in the photograph are the Italian-built Raffaello multipurpose Logistics Module (center) and the new Canadarm2 (lower right) or Space Station Remote Manipulator System.
Remote Sensing: A Film Review.
ERIC Educational Resources Information Center
Carter, David J.
1986-01-01
Reviews the content of 19 films on remote sensing published between 1973 and 1980. Concludes that they are overly simplistic, notably outdated, and generally too optimistic about the potential of remote sensing from space for resource exploration and environmental problem-solving. Provides names and addresses of more current remote sensing…
NASA Technical Reports Server (NTRS)
Heer, E.
1973-01-01
Free-flying teleoperator systems are discussed, giving attention to earth-orbit mission considerations and Space Tug requirements, free-flying teleoperator requirements and conceptual design, system requirements for a free-flying teleoperator to despin, and the experimental evaluation of remote manipulator systems. Shuttle-Attached Manipulator Systems are considered, together with remote surface vehicle systems, manipulator systems technology, remote sensor and display technology, the man-machine interface, and control and machine intelligence. Nonspace applications are also explored, taking into account implications of nonspace applications, naval applications of remote manipulators, and hand tools and mechanical accessories for a deep submersible. Individual items are announced in this issue.
NASA Astrophysics Data System (ADS)
Sausen, Tania Maria
The initial activities on space education began right after World War II, in the early 1950s, when USA and USSR started the Space Race. At that time, Space education was only and exclusively available to researchers and technicians working directly in space programs. This new area was restricted only to post-graduate programs (basically master and doctoral degree) or to very specific training programs dedicated for beginners. In South America, at that time there was no kind of activity on space education, simply because there was no activity in space research. In the beginning of the 1970s, Brazil, through INPE, had created masteral and doctoral courses on several space areas such as remote sensing and meteorology. Only in the mid-1980s did Brazil, after a UN request, create its specialisation course on remote sensing dedicated to Latin American professionals. At the same period, the Agustin Codazzi Institute (Bogota, Colombia) began to offer specialisation courses in remote sensing. In South America, educational space programs are currently being created for elementary and high schools and universities, but the author personally estimates that 90% of these educational programs still make use of traditional educational materials — such as books, tutorials, maps and graphics. There is little educational material that uses multimedia resources, advanced computing or communication methods and, basically, these are the materials that are best suited to conduct instructions in remote sensing, GIS, meteorology and astronomy.
Multiorder etalon sounder (MOES) development and test for balloon experiment
NASA Technical Reports Server (NTRS)
Hays, Paul B.; Wnag, Jinxue; Wu, Jian
1993-01-01
The Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution has been used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2), the High Resolution Doppler Imager (HRDI), and the Cryogenic Limb Array Etalon Spectrometer (CLAES) flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible and infrared spectral region. The successful space flight of DE-FPI, HRDI, and CLAES on UARS demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory. The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. The combination of FPI and CLIO allows the development of more sensitive Fabry-Perot interferometers in the infrared for the remote sensing of the lower atmospheres of Earth and possibly other planets. The Multiorder Etalon Sounder (MOES), a combination of the rugged etalon and the CLIO, compares very favorably to other space-borne optical instruments in terms of performance versus complexity. The new instrument is expected to be rugged, compact, and very suitable for an operational temperature and moisture sounder. With this technique, the contamination of radiance measurements by emissions of other gases is also minimized. At the Space Physics Research Laboratory (SPRL), the MOES concept and laboratory experiments were worked on for the past several years. Both theoretical studies and laboratory prototype experiments showed that MOES is very competitive compared with other high resolution sounders in terms of complexity and performance and has great potential as a compact and rugged high resolution atmospheric temperature and trace species sounder from the polar platform or the geostationary platform. The logical next step is to convert our laboratory prototype to a balloon instrument, so that field test of MOES can be carried out to prove the feasibility and capability of this new technology. Some of the activities related to the development of MOES for a possible balloon flight demonstration are described. Those research activities include the imaging quality study on the CLIO, the design and construction of a MOES laboratory prototype, the test and calibration of the MOES prototype, and the design of the balloon flight gondola.
The use of a cubesat to validate technological bricks in space
NASA Astrophysics Data System (ADS)
Rakotonimbahy, E.; Vives, S.; Dohlen, K.; Savini, G.; Iafolla, V.
2017-11-01
In the framework of the FP7 program FISICA (Far Infrared Space Interferometer Critical Assessment), we are developing a cubesat platform which will be used for the validation in space of two technological bricks relevant for FIRI. The first brick is a high-precision accelerometer which could be used in a future space mission as fundamental element for the dynamic control loop of the interferometer. The second brick is a miniaturized version of an imaging multi-aperture telescope. Ultimately, such an instrument could be composed of numerous space-born mirror segments flying in precise formation on baselines of hundreds or thousands of meters, providing high-resolution glimpses of distant worlds. We are proposing to build a very first space-born demonstrator of such an instrument which will fit into the limited resources of one cubesat. In this paper, we will describe the detailed design of the cubesat hosting the two payloads.
Space Flight Middleware: Remote AMS over DTN for Delay-Tolerant Messaging
NASA Technical Reports Server (NTRS)
Burleigh, Scott
2011-01-01
This paper describes a technique for implementing scalable, reliable, multi-source multipoint data distribution in space flight communications -- Delay-Tolerant Reliable Multicast (DTRM) -- that is fully supported by the "Remote AMS" (RAMS) protocol of the Asynchronous Message Service (AMS) proposed for standardization within the Consultative Committee for Space Data Systems (CCSDS). The DTRM architecture enables applications to easily "publish" messages that will be reliably and efficiently delivered to an arbitrary number of "subscribing" applications residing anywhere in the space network, whether in the same subnet or in a subnet on a remote planet or vehicle separated by many light minutes of interplanetary space. The architecture comprises multiple levels of protocol, each included for a specific purpose and allocated specific responsibilities: "application AMS" traffic performs end-system data introduction and delivery subject to access control; underlying "remote AMS" directs this application traffic to populations of recipients at remote locations in a multicast distribution tree, enabling the architecture to scale up to large networks; further underlying Delay-Tolerant Networking (DTN) Bundle Protocol (BP) advances RAMS protocol data units through the distribution tree using delay-tolerant storeand- forward methods; and further underlying reliable "convergence-layer" protocols ensure successful data transfer over each segment of the end-to-end route. The result is scalable, reliable, delay-tolerant multi-source multicast that is largely self-configuring.
NASA Technical Reports Server (NTRS)
Lubin, Philip M.; Tomizuka, Masayoshi; Chingcuanco, Alfredo O.; Meinhold, Peter R.
1991-01-01
A balloon-born stabilized platform has been developed for the remotely operated altitude-azimuth pointing of a millimeter wave telescope system. This paper presents a development and implementation of model reference adaptive control (MRAC) for the azimuth-pointing system of the stabilized platform. The primary goal of the controller is to achieve pointing rms better than 0.1 deg. Simulation results indicate that MRAC can achieve pointing rms better than 0.1 deg. Ground test results show pointing rms better than 0.03 deg. Data from the first flight at the National Scientific Balloon Facility (NSBF) Palestine, Texas show pointing rms better than 0.02 deg.
NASA Technical Reports Server (NTRS)
Madigan, J. A.; Earhart, R. W.
1978-01-01
NASA's Office of Space and Terrestrial Applications (OSTA) is currently assessing approaches to transferring NASA technology to both the public and private sectors. As part of this assessment, NASA is evaluating the effectiveness of an ongoing program in remote sensing technology transfer conducted by 20 university contractors/grantees, each supported totally or partially by NASA funds. The University-Space Applications program has as its objective the demonstration of practical benefits from the use of remote sensing technology to a broad spectrum of new users, principally in state and local governments. To evaluate the University-Space Applications program, NASA has a near-term requirement for data on each university effort including total funding, funding sources, length of program, program description, and effectiveness measures.
NASA Astrophysics Data System (ADS)
Mutlow, C. T.; ZáVody, A. M.; Barton, I. J.; Llewellyn-Jones, D. T.
1994-11-01
The along-track scanning radiometer (ATSR) was launched in July 1991 on the European Space Agency's first remote sensing satellite, ERS 1. An initial analysis of ATSR data demonstrates that the sea surface temperature (SST) can be measured from space with very high accuracy. Comparison of simultaneous measurements of SST made from ATSR and from a ship-borne radiometer show that they agree to within 0.3°C. To assess data consistency, a complementary analysis of SST data from ATSR was also carried out. The ATSR global SST field was compared on a daily basis with daily SST analysis of the United Kingdom Meteorological Office (UKMO). The ATSR global field is consistently within 1.0°C of the UKMO analysis. Also, to demonstrate the benefits of along-track scanning SST determination, the ATSR SST data were compared with high-quality bulk temperature observations from drifting buoys. The likely causes of the differences between ATSR and the bulk temperature data are briefly discussed. These results provide early confidence in the quantitative benefit of ATSR's two-angle view of the Earth and its high radiometric performance and show a significant advance on the data obtained from other spaceborne sensors. It should be noted that these measurements were made at a time when the atmosphere was severely contaminated with volcanic aerosol particles, which degrade infrared measurements of the Earth's surface made from space.
NASA Technical Reports Server (NTRS)
Nelson, David L.; Kahn, Ralph A.
2014-01-01
Airborne particles desert dust, wildfire smoke, volcanic effluent, urban pollution affect Earth's climate as well as air quality and health. They are found in the atmosphere all over the planet, but vary immensely in amount and properties with season and location. Most aerosol particles are injected into the near-surface boundary layer, but some, especially wildfire smoke, desert dust and volcanic ash, can be injected higher into the atmosphere, where they can stay aloft longer, travel farther, produce larger climate effects, and possibly affect human and ecosystem health far downwind. So monitoring aerosol injection height globally can make important contributions to climate science and air quality studies. The Multi-angle Imaging Spectro-Radiometer (MISR) is a space borne instrument designed to study Earths clouds, aerosols, and surface. Since late February 2000 it has been retrieving aerosol particle amount and properties, as well as cloud height and wind data, globally, about once per week. The MINX visualization and analysis tool complements the operational MISR data products, enabling users to retrieve heights and winds locally for detailed studies of smoke plumes, at higher spatial resolution and with greater precision than the operational product and other space-based, passive remote sensing techniques. MINX software is being used to provide plume height statistics for climatological studies as well as to investigate the dynamics of individual plumes, and to provide parameterizations for climate modeling.
NASA Technical Reports Server (NTRS)
Ross, Kenton; Graham, William D.; Prados, Donald; Spruce, Joseph
2006-01-01
A remote sensing index was developed to allow improved monitoring of vegetation dryness conditions on a regional basis. This remote sensing index was rapidly prototyped at Stennis Space Center in response to drought conditions in the local area in spring 2006.
Solid-State, High Energy 2-Micron Laser Development for Space-Based Remote Sensing
NASA Technical Reports Server (NTRS)
Singh, Upendra N.
2010-01-01
Lidar (light detection and ranging) remote sensing enjoys the advantages of excellent vertical and horizontal resolution; pointing capability; a signal source independent from natural light; and control and knowledge of transmitted wavelength, pulse shape, and polarization and received polarization. Lidar in space is an emerging technology now being developing to fit applications where passive sensors cannot meet current measurement requirements. Technical requirements for space lidar are more demanding than for ground-based or airborne systems. Perhaps the most distinguishing characteristics of space lidars are the environmental requirements. Space lidar systems must be specially designed to survive the mechanical vibration loads of launch and operate in the vacuum of space where exposure to ionizing radiation limits the electronic components available. Finally, space lidars must be designed to be highly reliable because they must operate without the need for repair or adjustment. Lifetime requirements tend to be important drivers of the overall system design. The maturity of the required technologies is a key to the development of any space lidar system. NASA entered a new era in the 1990 s with the approval of several space-based remote sensing missions employing laser radar (lidar) techniques. Following the steps of passive remote sensing and then active radar remote sensing, lidar sensors were a logical next step, providing independence from natural light sources, and better spatial resolution and smaller sensor size than radar sensors. The shorter electromagnetic wavelengths of laser light also allowed signal reflectance from air molecules and aerosol particles. The smaller receiver apertures allowed the concept of scanning the sensor field of view. However, technical problems with several space-based lidar missions during that decade led to concern at NASA about the risk of lidar missions. An external panel was convened to make recommendations to NASA. Their report in 2000 strongly advocated that NASA maintain in-house laser and lidar capability, and that NASA should work to lower the technology risk for all future lidar missions. A multi-Center NASA team formulated an integrated NASA strategy to provide the technology and maturity of systems necessary to make Lidar/Laser systems viable for space-based study and monitoring of the Earth's atmosphere. In 2002 the NASA Earth Science Enterprise (ESE) and Office of Aerospace Technology (OAT) created the Laser Risk Reduction Program (LRRP) and directed NASA Langley Research Center (LaRC) and Goddard Space Flight Center to carry out synergistic and complementary research towards solid-state lasers/lidars developments for space-based remote sensing applications.
Development of reaction-sintered SiC mirror for space-borne optics
NASA Astrophysics Data System (ADS)
Yui, Yukari Y.; Kimura, Toshiyoshi; Tange, Yoshio
2017-11-01
We are developing high-strength reaction-sintered silicon carbide (RS-SiC) mirror as one of the new promising candidates for large-diameter space-borne optics. In order to observe earth surface or atmosphere with high spatial resolution from geostationary orbit, larger diameter primary mirrors of 1-2 m are required. One of the difficult problems to be solved to realize such optical system is to obtain as flat mirror surface as possible that ensures imaging performance in infrared - visible - ultraviolet wavelength region. This means that homogeneous nano-order surface flatness/roughness is required for the mirror. The high-strength RS-SiC developed and manufactured by TOSHIBA is one of the most excellent and feasible candidates for such purpose. Small RS-SiC plane sample mirrors have been manufactured and basic physical parameters and optical performances of them have been measured. We show the current state of the art of the RS-SiC mirror and the feasibility of a large-diameter RS-SiC mirror for space-borne optics.
Optimal Design of Calibration Signals in Space-Borne Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Ferroni, Valerio;
2016-01-01
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterisation of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
Optimal Design of Calibration Signals in Space Borne Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Thorpe, James I.
2014-01-01
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterization of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
Hadfield works robotic controls in the Cupola Module
2013-01-10
ISS034-E-027317 (10 Jan. 2013) --- In the Cupola aboard the Earth-orbiting International Space Station, Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, works the controls at the Robotic workstation to maneuver the Space Station Remote Manipulator System (SSRMS) or CanadArm2 from its parked position to grapple the Mobile Remote Servicer (MRS) Base System (MBS) Power and Data Grapple Fixture 4 (PDGF-4).
Ionospheric Profiles from Ultraviolet Remote Sensing
1998-01-01
remote sensing of the ionosphere from orbiting space platforms. Remote sensing of the nighttime ionosphere is a relatively straightforward process due to the absence of the complications brought about by daytime solar radiation. Further, during the nighttime hours, the O(+)-H(+) transition level in both the mid- and low-latitude ionospheres lies around 750 km, which is within the range of accuracy of the path matrix inversion. The intensity of the O(+)-e(-) recombination radiation as observed from orbiting space platforms can now be used to
The progress of sub-pixel imaging methods
NASA Astrophysics Data System (ADS)
Wang, Hu; Wen, Desheng
2014-02-01
This paper reviews the Sub-pixel imaging technology principles, characteristics, the current development status at home and abroad and the latest research developments. As Sub-pixel imaging technology has achieved the advantages of high resolution of optical remote sensor, flexible working ways and being miniaturized with no moving parts. The imaging system is suitable for the application of space remote sensor. Its application prospect is very extensive. It is quite possible to be the research development direction of future space optical remote sensing technology.
O'Toole, Malcolm D; Lea, Mary-Anne; Guinet, Christophe; Hindell, Mark A
2014-01-01
The deployment of animal-borne electronic tags is revolutionizing our understanding of how pelagic species respond to their environment by providing in situ oceanographic information such as temperature, salinity, and light measurements. These tags, deployed on pelagic animals, provide data that can be used to study the ecological context of their foraging behaviour and surrounding environment. Satellite-derived measures of ocean colour reveal temporal and spatial variability of surface chlorophyll-a (a useful proxy for phytoplankton distribution). However, this information can be patchy in space and time resulting in poor correspondence with marine animal behaviour. Alternatively, light data collected by animal-borne tag sensors can be used to estimate chlorophyll-a distribution. Here, we use light level and depth data to generate a phytoplankton index that matches daily seal movements. Time-depth-light recorders (TDLRs) were deployed on 89 southern elephant seals (Mirounga leonina) over a period of 6 years (1999-2005). TDLR data were used to calculate integrated light attenuation of the top 250 m of the water column (LA(250)), which provided an index of phytoplankton density at the daily scale that was concurrent with the movement and behaviour of seals throughout their entire foraging trip. These index values were consistent with typical seasonal chl-a patterns as measured from 8-daySea-viewing Wide Field-of-view Sensor (SeaWiFs) images. The availability of data recorded by the TDLRs was far greater than concurrent remotely sensed chl-a at higher latitudes and during winter months. Improving the spatial and temporal availability of phytoplankton information concurrent with animal behaviour has ecological implications for understanding the movement of deep diving predators in relation to lower trophic levels in the Southern Ocean. Light attenuation profiles recorded by animal-borne electronic tags can be used more broadly and routinely to estimate lower trophic distribution at sea in relation to deep diving predator foraging behaviour.
Observing the Earth from an Astronaut's View - Applied Remote Sensing in Schools
NASA Astrophysics Data System (ADS)
Rienow, Andreas; Hodam, Henryk; Menz, Gunter; Kerstin, Voß
2015-04-01
Since spring 2014, NASA conducts the High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS). HDEV consists of four cameras mounted at ESA's Columbus laboratory. They continuously observe our earth in three different perspectives. Hence, they provide not only footage showing the Sun and the Moon rising and setting but also regular images of landscapes that are difficult to access, such as mountain ranges, deserts, and tropical rainforests. The German educational project "Columbus Eye", which is executed by the University of Bonn and is funded by the German Aerospace Center (DLR), aims at the implementation of the HDEV imagery and videos in a teaching portal: www.columbuseye.uni-bonn.de. Pupils should be motivated to work with the footage in order to learn about pattern and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (www.fis.uni-bonn.de/en). Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents in German and English have been created throughout the last 7 years since FIS' kickoff. The talk presents the educational valorization of ISS and satellite borne imagery data as well as their interactive implementation for teachers and pupils in both learning portals. It will be shown which possibilities the topic of earth observation from space holds ready for teaching the regular STEM curricula. A report of first experiences of a nationwide road show accompanying the mission of the ESA astronaut Alexander Gerst will be given. Among others it involved an event during which pupils from a secondary school in North Rhine-Westphalia have talked to the astronaut via ham radio. Accordingly, the presentation addresses the question of how synergies of human space travels can be used to enhance the fascination of earth observation imagery in the light of problem-based learning in everyday school lessons.
NASA Astrophysics Data System (ADS)
Setare, M. R.; Sahraee, M.
2013-12-01
In this paper, we investigate the behavior of linearized gravitational excitation in the Born-Infeld gravity in AdS3 space. We obtain the linearized equation of motion and show that this higher-order gravity propagate two gravitons, massless and massive, on the AdS3 background. In contrast to the R2 models, such as TMG or NMG, Born-Infeld gravity does not have a critical point for any regular choice of parameters. So the logarithmic solution is not a solution of this model, due to this one cannot find a logarithmic conformal field theory as a dual model for Born-Infeld gravity.
Interactive intelligent remote operations: application to space robotics
NASA Astrophysics Data System (ADS)
Dupuis, Erick; Gillett, G. R.; Boulanger, Pierre; Edwards, Eric; Lipsett, Michael G.
1999-11-01
A set of tolls addressing the problems specific to the control and monitoring of remote robotic systems from extreme distances has been developed. The tools include the capability to model and visualize the remote environment, to generate and edit complex task scripts, to execute the scripts to supervisory control mode and to monitor and diagnostic equipment from multiple remote locations. Two prototype systems are implemented for demonstration. The first demonstration, using a prototype joint design called Dexter, shows the applicability of the approach to space robotic operation in low Earth orbit. The second demonstration uses a remotely controlled excavator in an operational open-pit tar sand mine. This demonstrates that the tools developed can also be used for planetary exploration operations as well as for terrestrial mining applications.
Remote surface inspection system
NASA Astrophysics Data System (ADS)
Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.
1993-02-01
This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.
Remote surface inspection system
NASA Technical Reports Server (NTRS)
Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.
1993-01-01
This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.
Space-Based Remote Sensing of the Earth: A Report to the Congress
NASA Technical Reports Server (NTRS)
1987-01-01
The commercialization of the LANDSAT Satellites, remote sensing research and development as applied to the Earth and its atmosphere as studied by NASA and NOAA is presented. Major gaps in the knowledge of the Earth and its atmosphere are identified and a series of space based measurement objectives are derived. The near-term space observations programs of the United States and other countries are detailed. The start is presented of the planning process to develop an integrated national program for research and development in Earth remote sensing for the remainder of this century and the many existing and proposed satellite and sensor systems that the program may include are described.
Rascher, U; Alonso, L; Burkart, A; Cilia, C; Cogliati, S; Colombo, R; Damm, A; Drusch, M; Guanter, L; Hanus, J; Hyvärinen, T; Julitta, T; Jussila, J; Kataja, K; Kokkalis, P; Kraft, S; Kraska, T; Matveeva, M; Moreno, J; Muller, O; Panigada, C; Pikl, M; Pinto, F; Prey, L; Pude, R; Rossini, M; Schickling, A; Schurr, U; Schüttemeyer, D; Verrelst, J; Zemek, F
2015-12-01
Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun-induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun-induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun-induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun-induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress. © 2015 John Wiley & Sons Ltd.
Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska
Liu, Lin; Schaefer, Kevin; Gusmeroli, Alessio; Grosse, Guido; Jones, Benjamin M.; Zhang, Tinjun; Parsekian, Andrew; Zebker, Howard
2014-01-01
Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3–4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10–35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.
NASA Astrophysics Data System (ADS)
Tapete, Deodato; Cigna, Francesca
2016-08-01
Timely availability of images of suitable spatial resolution, temporal frequency and coverage is currently one of the major technical constraints on the application of satellite SAR remote sensing for the conservation of heritage assets in urban environments that are impacted by human-induced transformation. TerraSAR-X and Sentinel-1A, in this regard, are two different models of SAR data provision: very high resolution on-demand imagery with end user-selected acquisition parameters, on one side, and freely accessible GIS-ready products with intended regular temporal coverage, on the other. What this means for change detection analyses in urban areas is demonstrated in this paper via the experiment over Homs, the third largest city of Syria with an history of settlement since 2300 BCE, where the impacts of the recent civil war combine with pre- and post-conflict urban transformation . The potential performance of Sentinel-1A StripMap scenes acquired in an emergency context is simulated via the matching StripMap beam mode offered by TerraSAR-X. Benefits and limitations of the different radar frequency band, spatial resolution and single/multi-channel polarization are discussed, as a proof-of-concept of regular monitoring currently achievable with space-borne SAR in historic urban settings. Urban transformation observed across Homs in 2009, 2014 and 2015 shows the impact of the Syrian conflict on the cityscape and proves that operator-driven interpretation is required to understand the complexity of multiple and overlapping urban changes.
NASA Astrophysics Data System (ADS)
Setiyono, T. D.
2014-12-01
Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.
Remote Sensing of Snow Cover. Section; Snow Extent
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Frei, Allan; Drey, Stephen J.
2012-01-01
Snow was easily identified in the first image obtained from the Television Infrared Operational Satellite-1 (TIROS-1) weather satellite in 1960 because the high albedo of snow presents a good contrast with most other natural surfaces. Subsequently, the National Oceanic and Atmospheric Administration (NOAA) began to map snow using satellite-borne instruments in 1966. Snow plays an important role in the Earth s energy balance, causing more solar radiation to be reflected back into space as compared to most snow-free surfaces. Seasonal snow cover also provides a critical water resource through meltwater emanating from rivers that originate from high-mountain areas such as the Tibetan Plateau. Meltwater from mountain snow packs flows to some of the world s most densely-populated areas such as Southeast Asia, benefiting over 1 billion people (Immerzeel et al., 2010). In this section, we provide a brief overview of the remote sensing of snow cover using visible and near-infrared (VNIR) and passive-microwave (PM) data. Snow can be mapped using the microwave part of the electromagnetic spectrum, even in darkness and through cloud cover, but at a coarser spatial resolution than when using VNIR data. Fusing VNIR and PM algorithms to produce a blended product offers synergistic benefits. Snow-water equivalent (SWE), snow extent, and melt onset are important parameters for climate models and for the initialization of atmospheric forecasts at daily and seasonal time scales. Snowmelt data are also needed as input to hydrological models to improve flood control and irrigation management.
Remote sensing and image interpretation
NASA Technical Reports Server (NTRS)
Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)
1979-01-01
A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.
NASA Astrophysics Data System (ADS)
Javier Romualdez, Luis
Scientific balloon-borne instrumentation offers an attractive, competitive, and effective alternative to space-borne missions when considering the overall scope, cost, and development timescale required to design and launch scientific instruments. In particular, the balloon-borne environment provides a near-space regime that is suitable for a number of modern astronomical and cosmological experiments, where the atmospheric interference suffered by ground-based instrumentation is negligible at stratospheric altitudes. This work is centered around the analytical strategies and implementation considerations for the attitude determination and control of SuperBIT, a scientific balloon-borne payload capable of meeting the strict sub-arcsecond pointing and image stability requirements demanded by modern cosmological experiments. Broadly speaking, the designed stability specifications of SuperBIT coupled with its observational efficiency, image quality, and accessibility rivals state-of-the-art astronomical observatories such as the Hubble Space Telescope. To this end, this work presents an end-to-end design methodology for precision pointing balloon-borne payloads such as SuperBIT within an analytical yet implementationally grounded context. Simulation models of SuperBIT are analytically derived to aid in pre-assembly trade-off and case studies that are pertinent to the dynamic balloon-borne environment. From these results, state estimation techniques and control methodologies are extensively developed, leveraging the analytical framework of simulation models and design studies. This pre-assembly design phase is physically validated during assembly, integration, and testing through implementation in real-time hardware and software, which bridges the gap between analytical results and practical application. SuperBIT attitude determination and control is demonstrated throughout two engineering test flights that verify pointing and image stability requirements in flight, where the post-flight results close the overall design loop by suggesting practical improvements to pre-design methodologies. Overall, the analytical and practical results presented in this work, though centered around the SuperBIT project, provide generically useful and implementationally viable methodologies for high precision balloon-borne instrumentation, all of which are validated, justified, and improved both theoretically and practically. As such, the continuing development of SuperBIT, built from the work presented in this thesis, strives to further the potential for scientific balloon-borne astronomy in the near future.
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1990-01-01
A new method is presented for scanning balloon-borne experiments, free-flying spacecraft, and gimballed experiments mounted to the space shuttle or the space station. It uses rotating-unbalanced-mass (RUM) devices for generating circular, line, or raster scan patterns and an auxiliary control system for target acquisition, keeping the scan centered on the target, and producing complementary motion for raster scanning. It is ideal for applications where the only possible way to accomplish the required scan is to physically scan the entire experiment or spacecraft as in x ray and gamma ray experiments. In such cases, this new method should have advantages over prior methods in terms of either power, weight, cost, performance, stability, or a combination of these.
Remote sensing by satellite - Technical and operational implications for international cooperation
NASA Technical Reports Server (NTRS)
Doyle, S. E.
1976-01-01
International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.
Second Symposium on Space Industrialization. [space commercialization
NASA Technical Reports Server (NTRS)
Jernigan, C. M. (Editor)
1984-01-01
The policy, legal, and economic aspects of space industrialization are considered along with satellite communications, material processing, remote sensing, and the role of space carriers and a space station in space industrialization.
NASA Astrophysics Data System (ADS)
Sandy, M.; Companion, J. A.; Connors, V. S.
2007-05-01
NASA Langley Research Center approached the Virginia Space Grant Consortium, a NASA-sponsored coalition of universities, NASA research centers and state agencies with the opportunity to develop a scientific mission and flight opportunities for an un-flown atmospheric composition remote sensor, MicroMAPS. The resulting partnership led to new life for this instrument from a space-borne carbon monoxide remote sensor to an high altitude airborne instrument that measures tropospheric carbon monoxide in the near infrared portion of the spectrum. The five year effort to date has leveraged the existing instrument with work by student teams overseen by faculty and NASA advisors, with both NASA and industry contributions. The result is a viable instrument system that has flown in four international scientific field campaigns aboard the Scaled Composites Proteus aircraft, generating 300 plus hours of CO data to date over North America, Italy, the Mediterranean, England, the North Sea, Darwin, Northern Australia, the Atlantic Ocean, the Indian Ocean, and the Pacific Ocean between Australia and California. A relatively small investment by NASA and contributions by 56 students and nine faculty members, both active and retired NASA engineers and scientists, as well as a Canadian aerospace research company (which designed and built the MicroMAPS instrument) yielded successful results that go well beyond the instrument and data retrieved. The effort provided a valuable educational research experience for students from three universities whose work included contributions in: 1) Development of the instrument system and pod design for the Proteus flights; 2) Development of assessment strategy and analysis of instrument performance; 3) Development of the operations and data management strategy; 4) Contributions to development of design, implementation, and analysis of sensor calibration at Resonance Ltd., Barrie, Canada 5) Development of a new data reduction strategy for the airborne configuration over northern mid-latitudes and tropical regions. 6) Development of the instrument system and pod design for possible flights on Altair (a unmanned airborne vehicle managed at the NASA Dryden Flight Center) and 7) Geo-referencing of MicroMAPS data. An overview of the MicroMAPS project partnership will be presented and the potential for collaboration between federal laboratories and industry with National Space Grant Consortia and their Space Grant universities on similar partnerships will be described.
Private sector involvement in civil space remote sensing. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
1980-01-01
The U.S. Space Policy concerning the investment and direct participation in the establishment and operations of remote sensing systems is addressed. Private sector views and state and local government views are presented. Results of a market analysis are pregiven and the economic feasibility of such a program is considered.
Monitoring forests from space: quantifying forest change by using satellite data.
Jonathan Thompson
2006-01-01
Change is the only constant in forest ecosystems. Quantifying regional-scale forest change is increasingly done with remote sensing, which relies on data sent from digital camera-like sensors mounted to Earth-orbiting satellites. Through remote sensing, changes in forests can be studied comprehensively and uniformly across time and space.
Station Astronaut Drives Rover from Space During Telerobotics Test (Reporter Pkg for Web)
2013-07-26
During a technology demonstration test, an astronaut onboard the International Space Station will remotely control a rover at NASA's Ames Research Center, Moffett Field, Calif. The test is designed to identify the technology and skills needed to remotely operate rovers on the surface of the moon, Mars or an asteroid.
How to Study the Earth From Space.
ERIC Educational Resources Information Center
Boyer, Robert E.
This booklet is one in a series of instructional aids designed for use by elementary and secondary school science teachers. It reviews how the various forms of remote sensing can provide invaluable knowledge about the earth as the need for environmental information continues to increase. Remote sensing involves space photography, infrared imagery,…
The International Space Station: A Unique Platform For Terrestrial Remote Sensing
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Evans, Cynthia A.
2012-01-01
The International Space Station (ISS) became operational in November of 2000, and until recently remote sensing activities and operations have focused on handheld astronaut photography of the Earth. This effort builds from earlier NASA and Russian space programs (e.g. Evans et al. 2000; Glazovskiy and Dessinov 2000). To date, astronauts have taken more than 600,000 images of the Earth s land surface, oceans, and atmospheric phenomena from orbit using film and digital cameras as part two payloads: NASA s Crew Earth Observations experiment (http://eol.jsc.nasa.gov/) and Russia s Uragan experiment (Stefanov et al. 2012). Many of these images have unique attributes - varying look angles, ground resolutions, and illumination - that are not available from other remote sensing platforms. Despite this large volume of imagery and clear capability for Earth remote sensing, the ISS historically has not been perceived as an Earth observations platform by many remote sensing scientists. With the recent installation of new facilities and sophisticated sensor systems, and additional systems manifested and in development, that perception is changing to take advantage of the unique capabilities and viewing opportunities offered by the ISS.
Software to Facilitate Remote Sensing Data Access for Disease Early Warning Systems
Liu, Yi; Hu, Jiameng; Snell-Feikema, Isaiah; VanBemmel, Michael S.; Lamsal, Aashis; Wimberly, Michael C.
2015-01-01
Satellite remote sensing produces an abundance of environmental data that can be used in the study of human health. To support the development of early warning systems for mosquito-borne diseases, we developed an open-source, client based software application to enable the Epidemiological Applications of Spatial Technologies (EASTWeb). Two major design decisions were full automation of the discovery, retrieval and processing of remote sensing data from multiple sources, and making the system easily modifiable in response to changes in data availability and user needs. Key innovations that helped to achieve these goals were the implementation of a software framework for data downloading and the design of a scheduler that tracks the complex dependencies among multiple data processing tasks and makes the system resilient to external errors. EASTWeb has been successfully applied to support forecasting of West Nile virus outbreaks in the United States and malaria epidemics in the Ethiopian highlands. PMID:26644779
Archaeological Remote Sensing: Searching for Fort Clatsop from Space
NASA Technical Reports Server (NTRS)
Karsmizki, Kenneth W.; Spruce, Joe; Giardino, Marco
2002-01-01
The Columbia Gorge Discovery Center and NASA's Stennis Space Center have teamed up to use high-resolution aerial and satellite-based remote sensing in the search for Lewis and Clark expedition campsites. A Space Act Agreement between NASA and the Discovery Center has evolved into a study that employs remote sensing, plus modern and historical map data for relocating several Lewis and Clark encampments. Satellite data being studied include 30-meter Landsat Thematic Mapper and 1-meter Space Imaging IKONOS data. This paper includes an overview of the working relationship between NASA and the Discovery Center. It also reports on geospatial analyses of the Fort Clatsop site to demonstrate the ways geospatial technologies interface with the written and cartographic records of the expedition and how they are applied to the search for Lewis and Clark campsites.
Complex Neurological and Oto-Neurological Remote Care: From Space Station to Clinic
NASA Astrophysics Data System (ADS)
Marchbanks, Robert J.; Good, Edward F.
2013-02-01
The main aim of this paper is to highlight the synergy between the remote care requirements for NASA and community/rural based medicine. It demonstrates the appropriateness of applying similar health-care models for space-based medicine, as for ‘2020 vision’ community-based medicine, and the common use of screening devices with telemedicine capabilities. There is a requirement to diagnose and manage complex cases remotely and the need to empower on-site medically trained personnel to undertake the physiological measurements and decision-making. For space exploration at greater distances, the telemedicine systems will require additional sophistication to support autonomous crew medical diagnosis and interventions.1 Non-invasive intracranial pressure measurement is a priority both for terrestrial and space medicine. Arguably it is the most important neurological physiological measurement yet to be mastered and to be routinely used.
Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2011-01-01
Intense millisecond flashes of MeV photons have been observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma- Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for these TGF observations. On several occasions, intense beams of high-energy electrons and positrons have been observed at the geomagnetic conjugate points of TGFs.
Tests of the gravitational redshift effect in space-born and ground-based experiments
NASA Astrophysics Data System (ADS)
Vavilova, I. B.
2018-02-01
This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.
Tian, Xin; Li, Zengyuan; Chen, Erxue; Liu, Qinhuo; Yan, Guangjian; Wang, Jindi; Niu, Zheng; Zhao, Shaojie; Li, Xin; Pang, Yong; Su, Zhongbo; van der Tol, Christiaan; Liu, Qingwang; Wu, Chaoyang; Xiao, Qing; Yang, Le; Mu, Xihan; Bo, Yanchen; Qu, Yonghua; Zhou, Hongmin; Gao, Shuai; Chai, Linna; Huang, Huaguo; Fan, Wenjie; Li, Shihua; Bai, Junhua; Jiang, Lingmei; Zhou, Ji
2015-01-01
The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques. PMID:26332035
2014-01-01
Background Due to rapid sequencing of genomes, there are now millions of deposited protein sequences with no known function. Fast sequence-based comparisons allow detecting close homologs for a protein of interest to transfer functional information from the homologs to the given protein. Sequence-based comparison cannot detect remote homologs, in which evolution has adjusted the sequence while largely preserving structure. Structure-based comparisons can detect remote homologs but most methods for doing so are too expensive to apply at a large scale over structural databases of proteins. Recently, fragment-based structural representations have been proposed that allow fast detection of remote homologs with reasonable accuracy. These representations have also been used to obtain linearly-reducible maps of protein structure space. It has been shown, as additionally supported from analysis in this paper that such maps preserve functional co-localization of the protein structure space. Methods Inspired by a recent application of the Latent Dirichlet Allocation (LDA) model for conducting structural comparisons of proteins, we propose higher-order LDA-obtained topic-based representations of protein structures to provide an alternative route for remote homology detection and organization of the protein structure space in few dimensions. Various techniques based on natural language processing are proposed and employed to aid the analysis of topics in the protein structure domain. Results We show that a topic-based representation is just as effective as a fragment-based one at automated detection of remote homologs and organization of protein structure space. We conduct a detailed analysis of the information content in the topic-based representation, showing that topics have semantic meaning. The fragment-based and topic-based representations are also shown to allow prediction of superfamily membership. Conclusions This work opens exciting venues in designing novel representations to extract information about protein structures, as well as organizing and mining protein structure space with mature text mining tools. PMID:25080993
Criteria for successful government-industry-academic partnerships
NASA Astrophysics Data System (ADS)
Brannon, David P.
1996-03-01
The mission of the Commercial Remote Sensing Program (CRSP) Office at NASA's John C. Stennis Space Center is to maximize U.S. industry's commercial use of remote sensing and related space-based technologies and to develop advanced technical responses to spatial information requirements. The CRSP Office carries out this mission by offering several commercial partnership programs that help companies to apply remote sensing technologies in business applications and to buy down the risk of bringing new or improved products and services to market. Through its commercial partnerships, the CRSP seeks to increase the market demand for remote sensing products and related advanced technologies, thus increasing the use and reducing the cost of spatial information.
Wolters, Mark A; Dean, C B
2017-01-01
Remote sensing images from Earth-orbiting satellites are a potentially rich data source for monitoring and cataloguing atmospheric health hazards that cover large geographic regions. A method is proposed for classifying such images into hazard and nonhazard regions using the autologistic regression model, which may be viewed as a spatial extension of logistic regression. The method includes a novel and simple approach to parameter estimation that makes it well suited to handling the large and high-dimensional datasets arising from satellite-borne instruments. The methodology is demonstrated on both simulated images and a real application to the identification of forest fire smoke.
Mapping the Risks of Malaria, Dengue and Influenza Using Satellite Data
NASA Astrophysics Data System (ADS)
Kiang, R. K.; Soebiyanto, R. P.
2012-07-01
It has long been recognized that environment and climate may affect the transmission of infectious diseases. The effects are most obvious for vector-borne infectious diseases, such as malaria and dengue, but less so for airborne and contact diseases, such as seasonal influenza. In this paper, we examined the meteorological and environmental parameters that influence the transmission of malaria, dengue and seasonal influenza. Remotely sensed parameters that provide such parameters were discussed. Both statistical and biologically inspired, processed based models can be used to model the transmission of these diseases utilizing the remotely sensed parameters as input. Examples were given for modelling malaria in Thailand, dengue in Indonesia, and seasonal influenza in Hong Kong.
NASA Astrophysics Data System (ADS)
Helger, Arne
The Swedish National Space Board (SNSB) under the Ministry of Industry is the central governmental agency responsible for the goverment-funded Swedish national and international space and remote sensing activities. The technical implementation is mainly contracted by the Board to the state-owned Swedish Space Corporation (SSC). International cooperation is a cornerstone in the Swedish space activities, absorbing more than 80% of the total national budget. Within ESA, Sweden participates in practically all infrastructure and applications programs. Basic research, mainly concentrated to the near earth space physics, microgravity and remote sensing are important elements in the Swedish space program. Sweden participates in the French Spot program. At Esrange, data reception, and satellite control, and tracking, telemetry command (TT&C) are performed for many international satellite projects. An SSC subsidiary, SATELLITBILD, is archiving, processing and distributing remote sensing data worldwide. The National Space Development Agency of Japan (NASDA) has established a portable TT&C station for JERS-1 at Esrange, Kiruna. A center for international research on the ozone problem has been established at Esrange and Kiruna. A new sounding rocket for 15 minutes of microgravity research, MAXUS, has been developed by SSC in cooperation with Germany. A national scientific satellite, FREJA, is planned to be launched late 1992.
NASA Astrophysics Data System (ADS)
Embleton, B. J. J.; Kingwell, J.
1997-01-01
Every year, an average of eight new civilian remote sensing satellite missions are launched. Cumulatively, over 250 such missions, each with a cost equivalent in current value to between US 100 million to US 1000 million, have been sponsored by space agencies in perhaps two dozen countries. These missions produce data and information products which are vital for informed decision making all over the world, on matters relating to natural resource exploitation, health and safety, sustainable national development, infrastructure planning, and a host of other applications. By contributing to better scientific understanding of global changes in the atmosphere, land surface, oceans and ice caps, these silently orbiting sentinels in the sky make it possible for governments and industries to make wiser environmental policy decisions and support the economic development needs of humanity. The international Committee on Earth Observation Satellites (CEOS) is the premier world body for co-ordinating and planning civilian satellite missions for Earth observation. Through its technical working groups and special task teams, it endeavours to: • maximise the international benefits from Earth observation satellites; and • harmonise practice in calibration, validation, data management and information systems for Earth observation. CEOS encompasses not only space agencies (data providers), but also the great international scientific and operational programs which rely on Earth science data from space. The user organisations affiliated with CEOS, together with the mission operators, attempt to reconcile user needs with the complex set of considerations — including national interests, cost, schedule — which affect the undertaking of space missions. Without such an internationally co-ordinated consensual approach, there is a much greater risk of waste through duplication, and of missed opportunity, or through the absence of measurements of some vital physical or biological parameter by space borne sensors. Mechanisms used by CEOS to carry out these tasks are built upon consensus and understanding, as well as on technology transfer between countries. An area of recent heightened endeavour in CEOS has been to determine and address the special needs of developing countries in respect of Earth observation data. In the next several years, a new wave of Earth observation will break, as the private sector, revitalised with decommissioned military technology, brings exciting new capabilities to international remote sensing. With rapidly burgeoning markets in spatial information or geomatics, as well as the continuing thirst of science programs for spatial information, there is a challenge upon the international space community to reassess continually, the most expedient and socially constructive means of making available in a fair and open way, geographically-reference information obtained with space observation systems.
Dual use display systems for telerobotics
NASA Technical Reports Server (NTRS)
Massimino, Michael J.; Meschler, Michael F.; Rodriguez, Alberto A.
1994-01-01
This paper describes a telerobotics display system, the Multi-mode Manipulator Display System (MMDS), that has applications for a variety of remotely controlled tasks. Designed primarily to assist astronauts with the control of space robotics systems, the MMDS has applications for ground control of space robotics as well as for toxic waste cleanup, undersea, remotely operated vehicles, and other environments which require remote operations. The MMDS has three modes: (1) Manipulator Position Display (MPD) mode, (2) Joint Angle Display (JAD) mode, and (3) Sensory Substitution (SS) mode. These three modes are discussed in the paper.
Microwave remote sensing from space for earth resource surveys
NASA Technical Reports Server (NTRS)
1977-01-01
The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated.
The Future of Remote Sensing from Space: Civilian Satellite Systems and Applications.
1993-07-01
image shows abundant (dark green) vegetation across the Amazon of South America, while lack of vegetation (black areas) is seen across the Sahara Desert...primarily through the space shuttle and space station Freedom programs.25 Hence, if NASA’s overall budget remains flat or includes only modest growth... remain the primary collector of satellite remote sensing data for both meteorolog- ical and climate monitoring efforts through the decade of the 1990s
Remote sensing of atmospheric chemistry; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1991
NASA Technical Reports Server (NTRS)
Mcelroy, James L. (Editor); Mcneal, Robert J. (Editor)
1991-01-01
The present volume on remote sensing of atmospheric chemistry discusses special remote sensing space observations and field experiments to study chemical change in the atmosphere, network monitoring for detection of stratospheric chemical change, stratospheric chemistry studies, and the combining of model, in situ, and remote sensing in atmospheric chemistry. Attention is given to the measurement of tropospheric carbon monoxide using gas filter radiometers, long-path differential absorption measurements of tropospheric molecules, air quality monitoring with the differential optical absorption spectrometer, and a characterization of tropospheric methane through space-based remote sensing. Topics addressed include microwave limb sounder experiments for UARS and EOS, an overview of the spectroscopy of the atmosphere using an FIR emission experiment, the detection of stratospheric ozone trends by ground-based microwave observations, and a FIR Fabry-Perot spectrometer for OH measurements.
Man-systems requirements for the control of teleoperators in space
NASA Technical Reports Server (NTRS)
Shields, Nicholas L., Jr.
1988-01-01
The microgravity of the space environment has profound effects on humans and, consequently, on the design requirements for subsystems and components with which humans interact. There are changes in the anthropometry, vision, the perception of orientation, posture, and the ways in which we exert energy. The design requirements for proper human engineering must reflect each of the changes that results, and this is especially true in the exercise of control over remote and teleoperated systems where the operator is removed from any direct sense of control. The National Aeronautics and Space Administration has recently completed the first NASA-wide human factors standard for microgravity. The Man-Systems Integration Standard, NASA-STD-3000, contains considerable information on the appropriate design criteria for microgravity, and there is information that is useful in the design for teleoperated systems. There is not, however, a dedicated collection of data which pertains directly to the special cases of remote and robotic operations. The design considerations for human-system interaction in the control of remote systems in space are discussed, with brief details on the information to be found in the NASA-STD-3000, and arguments for a dedicated section within the Standard which deals with robotic, teleoperated and remote systems and the design requirements for effective human control of these systems in the space environment, and from the space environment.
NASA Astrophysics Data System (ADS)
Meier, V. L.; Scuderi, L.; Fischer, T.; Realmuto, V.; Hilton, D.
2006-12-01
Measurements of volcanic SO2 emissions provide insight into the processes working below a volcano, which can presage volcanic events. Being able to measure SO2 in near real-time is invaluable for the planning and response of hazard mitigation teams. Currently, there are several methods used to quantify the SO2 output of degassing volcanoes. Ground and aerial-based measurements using the differential optical absorption spectrometer (mini-DOAS) provide real-time estimates of SO2 output. Satellite-based measurements, which can provide similar estimates in near real-time, have increasingly been used as a tool for volcanic monitoring. Direct Broadcast (DB) real-time processing of remotely sensed data from NASA's Earth Observing System (EOS) satellites (MODIS Terra and Aqua) presents volcanologists with a range of spectral bands and processing options for the study of volcanic emissions. While the spatial resolution of MODIS is 1 km in the Very Near Infrared (VNIR) and Thermal Infrared (TIR), a high temporal resolution and a wide range of radiance measurements in 32 channels between VNIR and TIR combine to provide a versatile space borne platform to monitor SO2 emissions from volcanoes. An important question remaining to be answered is how well do MODIS SO2 estimates compare with DOAS estimates? In 2004 ground-based plume measurements were collected on April 24th and 25th at Anatahan volcano in the Mariana Islands using a mini-DOAS (Fischer and Hilton). SO2 measurements for these same dates have also been calculated using MODIS images and SO2 mapping software (Realmuto). A comparison of these different approaches to the measurement of SO2 for the same plume is presented. Differences in these observations are used to better quantify SO2 emissions, to assess the current mismatch between ground based and remotely sensed retrievals, and to develop an approach to continuously and accurately monitor volcanic activity from space in near real-time.
Ionospheric Profiles from Ultraviolet Remote Sensing
1997-09-30
The long-term goal of this project is to obtain ionospheric profiles from ultraviolet remote sensing of the ionosphere from orbiting space platforms... Remote sensing of the nighttime ionosphere is a more straightforward process because of the absence of the complications brought about by daytime
View of the Columbia's remote manipulator system (RMS)
1982-11-13
STS002-13-226 (13 Nov. 1981) --- Backdropped against Earth's horizon and the darkness of space, the space shuttle Columbia's remote manipulator system (RMS) gets its first workout in zero-gravity during the STS-2 mission. A television camera is mounted near the elbow and another is partially visible near the wrist of the RMS. Photo credit: NASA
A multi-mode manipulator display system for controlling remote robotic systems
NASA Technical Reports Server (NTRS)
Massimino, Michael J.; Meschler, Michael F.; Rodriguez, Alberto A.
1994-01-01
The objective and contribution of the research presented in this paper is to provide a Multi-Mode Manipulator Display System (MMDS) to assist a human operator with the control of remote manipulator systems. Such systems include space based manipulators such as the space shuttle remote manipulator system (SRMS) and future ground controlled teleoperated and telescience space systems. The MMDS contains a number of display modes and submodes which display position control cues position data in graphical formats, based primarily on manipulator position and joint angle data. Therefore the MMDS is not dependent on visual information for input and can assist the operator especially when visual feedback is inadequate. This paper provides descriptions of the new modes and experiment results to date.
Fincke, E Michael; Padalka, Gennady; Lee, Doohi; van Holsbeeck, Marnix; Sargsyan, Ashot E; Hamilton, Douglas R; Martin, David; Melton, Shannon L; McFarlin, Kellie; Dulchavsky, Scott A
2005-02-01
Investigative procedures were approved by Henry Ford Human Investigation Committee and NASA Johnson Space Center Committee for Protection of Human Subjects. Informed consent was obtained. Authors evaluated ability of nonphysician crewmember to obtain diagnostic-quality musculoskeletal ultrasonographic (US) data of the shoulder by following a just-in-time training algorithm and using real-time remote guidance aboard the International Space Station (ISS). ISS Expedition-9 crewmembers attended a 2.5-hour didactic and hands-on US training session 4 months before launch. Aboard the ISS, they completed a 1-hour computer-based Onboard Proficiency Enhancement program 7 days before examination. Crewmembers did not receive specific training in shoulder anatomy or shoulder US techniques. Evaluation of astronaut shoulder integrity was done by using a Human Research Facility US system. Crew used special positioning techniques for subject and operator to facilitate US in microgravity environment. Common anatomic reference points aided initial probe placement. Real-time US video of shoulder was transmitted to remote experienced sonologists in Telescience Center at Johnson Space Center. Probe manipulation and equipment adjustments were guided with verbal commands from remote sonologists to astronaut operators to complete rotator cuff evaluation. Comprehensive US of crewmember's shoulder included transverse and longitudinal images of biceps and supraspinatus tendons and articular cartilage surface. Total examination time required to guide astronaut operator to acquire necessary images was approximately 15 minutes. Multiple arm and probe positions were used to acquire dynamic video images that were of excellent quality to allow evaluation of shoulder integrity. Postsession download and analysis of high-fidelity US images collected onboard demonstrated additional anatomic detail that could be used to exclude subtle injury. Musculoskeletal US can be performed in space by minimally trained operators by using remote guidance. This technique can be used to evaluate shoulder integrity in symptomatic crewmembers after strenuous extravehicular activities or to monitor microgravity-associated changes in musculoskeletal anatomy. Just-in-time training, combined with remote experienced physician guidance, may provide a useful approach to complex medical tasks performed by nonexperienced personnel in a variety of remote settings, including current and future space programs. (c) RSNA, 2004.
NASA Technical Reports Server (NTRS)
Fincke, E. Michael; Padalka, Gennady; Lee, Doohi; van Holsbeeck, Marnix; Sargsyan, Ashot E.; Hamilton, Douglas R.; Martin, David; Melton, Shannon L.; McFarlin, Kellie; Dulchavsky, Scott A.
2005-01-01
Investigative procedures were approved by Henry Ford Human Investigation Committee and NASA Johnson Space Center Committee for Protection of Human Subjects. Informed consent was obtained. Authors evaluated ability of nonphysician crewmember to obtain diagnostic-quality musculoskeletal ultrasonographic (US) data of the shoulder by following a just-in-time training algorithm and using real-time remote guidance aboard the International Space Station (ISS). ISS Expedition-9 crewmembers attended a 2.5-hour didactic and hands-on US training session 4 months before launch. Aboard the ISS, they completed a 1-hour computer-based Onboard Proficiency Enhancement program 7 days before examination. Crewmembers did not receive specific training in shoulder anatomy or shoulder US techniques. Evaluation of astronaut shoulder integrity was done by using a Human Research Facility US system. Crew used special positioning techniques for subject and operator to facilitate US in microgravity environment. Common anatomic reference points aided initial probe placement. Real-time US video of shoulder was transmitted to remote experienced sonologists in Telescience Center at Johnson Space Center. Probe manipulation and equipment adjustments were guided with verbal commands from remote sonologists to astronaut operators to complete rotator cuff evaluation. Comprehensive US of crewmember's shoulder included transverse and longitudinal images of biceps and supraspinatus tendons and articular cartilage surface. Total examination time required to guide astronaut operator to acquire necessary images was approximately 15 minutes. Multiple arm and probe positions were used to acquire dynamic video images that were of excellent quality to allow evaluation of shoulder integrity. Postsession download and analysis of high-fidelity US images collected onboard demonstrated additional anatomic detail that could be used to exclude subtle injury. Musculoskeletal US can be performed in space by minimally trained operators by using remote guidance. This technique can be used to evaluate shoulder integrity in symptomatic crewmembers after strenuous extravehicular activities or to monitor microgravity-associated changes in musculoskeletal anatomy. Just-in-time training, combined with remote experienced physician guidance, may provide a useful approach to complex medical tasks performed by nonexperienced personnel in a variety of remote settings, including current and future space programs. (c) RSNA, 2004.
Proceedings of the Seventh International Space University Alumni Conference
NASA Technical Reports Server (NTRS)
Bailey, Sheila (Editor)
1998-01-01
The Seventh Alumni Conference of the International Space University, coordinated by the ISU U.S. Alumni Organization (IUSAO), was held at Cleveland State University in Cleveland, Ohio on Friday, July 24, 1998. These proceedings are a record of the presentations. The following topics are included: Remote sensing education in developing countries; Integrated global observing strategy; NASA's current earth science program; Europe's lunar initiative; Lunarsat: Searching for the South Polar cold traps; Asteroid hazards; ESA exobiological activities; Space testbed for photovoltaics; Teledesic Space infrastructure; Space instrument's concurrent design; NASA advanced fuel program; Mission preparation and training for the European Robotic Arm (ERA); and Global access to remote sensing systems.
Using remote sensing and machine learning for the spatial modelling of a bluetongue virus vector
NASA Astrophysics Data System (ADS)
Van doninck, J.; Peters, J.; De Baets, B.; Ducheyne, E.; Verhoest, N. E. C.
2012-04-01
Bluetongue is a viral vector-borne disease transmitted between hosts, mostly cattle and small ruminants, by some species of Culicoides midges. Within the Mediterranean basin, C. imicola is the main vector of the bluetongue virus. The spatial distribution of this species is limited by a number of environmental factors, including temperature, soil properties and land cover. The identification of zones at risk of bluetongue outbreaks thus requires detailed information on these environmental factors, as well as appropriate epidemiological modelling techniques. We here give an overview of the environmental factors assumed to be constraining the spatial distribution of C. imicola, as identified in different studies. Subsequently, remote sensing products that can be used as proxies for these environmental constraints are presented. Remote sensing data are then used together with species occurrence data from the Spanish Bluetongue National Surveillance Programme to calibrate a supervised learning model, based on Random Forests, to model the probability of occurrence of the C. imicola midge. The model will then be applied for a pixel-based prediction over the Iberian peninsula using remote sensing products for habitat characterization.
SAR Imaging through the Earth’s Ionosphere
2013-11-06
or, otherwise, if polarimetry puts too high of a demand on storage, downlink capacity, etc.), then the approach based on the Faraday rotation is not...reflected fields for both are the same in the first Born approximation. Modern practical applications of radar polarimetry employ different empirical and...Fruneau, and J.-P. Rudant. Classification of tropical vegetation using multifrequency partial SAR polarimetry . IEEE Geoscience and Remote Sensing Letters
NASA Astrophysics Data System (ADS)
Detsis, Emmanouil; Brodsky, Yuval; Knudtson, Peter; Cuba, Manuel; Fuqua, Heidi; Szalai, Bianca
2012-11-01
Space assets have a unique opportunity to play a more active role in global resource management. There is a clear need to develop resource management tools in a global framework. Illegal, Unregulated and Unreported (IUU) fishing is placing pressure on the health and size of fishing stocks around the world. Earth observation systems can provide fishery management organizations with cost effective monitoring of large swaths of ocean. Project Catch is a fisheries management project based upon the complimentary, but independent Catch-VMS and Catch-GIS systems. Catch-VMS is a Vessel Monitoring System with increased fidelity over existing offerings. Catch-GIS is a Geographical Information System that combines VMS information with existing Earth Observation data and other data sources to identify Illegal, Unregulated and Unreported (IUU) fishing. Project Catch was undertaken by 19 Masters students from the 2010 class of the International Space University. In this paper, the space-based system architecture of Project Catch is presented and analyzed. The rationale for the creation of the system, as well as the engineering trade-off studies in its creation, are discussed. The Catch-VMS proposal was envisaged in order to address two specific problems: (1) the expansion of illegal fishing to high-latitude regions where existing satellite systems coverage is an issue and (2) the lack of coverage in remote oceanic regions due to reliance on coastal-based monitoring. Catch-VMS utilizes ship-borne transponders and hosted-payload receivers on a Global Navigation Satellite System in order to monitor the position and activity of compliant fishing vessels. Coverage is global and continuous with multiple satellites in view providing positional verification through multilateration techniques. The second part of the paper briefly describes the Catch-GIS system and investigates its cost of implementation.
NASA Technical Reports Server (NTRS)
Haines, D. Mark; Reinisch, Bodo W.
1995-01-01
The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of unprecedented precision and coverage in the plasmasphere, inner magnetosphere and magnetopause, from which the structure, inter-relationship, and variations of different plasma regions can be determined (Armstrong Johnson, 1995). A space-borne Radio Plasma Imager (RPI) could provide a unique global view of the magnetosphere revealing the underlying structure of remote plasma regions, thereby providing a framework for the interpretation of images obtained by other techniques as identified in the technical areas TA1 to TA4 in the MSFC NRA8-8.
Non-Topographic Space-Based Laser Remote Sensing
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Abshire, James B.; Riris, Haris; Purucker, Michael; Janches, Diego; Getty, Stephanie; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Li, Steve X.;
2016-01-01
In the past 20+ years, NASA Goddard Space Flight Center (GSFC) has successfully developed and flown lidars for mapping of Mars, the Earth, Mercury and the Moon. As laser and electro-optics technologies expand and mature, more sophisticated instruments that once were thought to be too complicated for space are being considered and developed. We will present progress on several new, space-based laser instruments that are being developed at GSFC. These include lidars for remote sensing of carbon dioxide and methane on Earth for carbon cycle and global climate change; sodium resonance fluorescence lidar to measure environmental parameters of the middle and upper atmosphere on Earth and Mars and a wind lidar for Mars orbit; in situ laser instruments include remote and in-situ measurements of the magnetic fields; and a time-of-flight mass spectrometer to study the diversity and structure of nonvolatile organics in solid samples on missions to outer planetary satellites and small bodies.
Fundamentals and advances in the development of remote welding fabrication systems
NASA Technical Reports Server (NTRS)
Agapakis, J. E.; Masubuchi, K.; Von Alt, C.
1986-01-01
Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.
International Space Station Remote Sensing Pointing Analysis
NASA Technical Reports Server (NTRS)
Jacobson, Craig A.
2007-01-01
This paper analyzes the geometric and disturbance aspects of utilizing the International Space Station for remote sensing of earth targets. The proposed instrument (in prototype development) is SHORE (Station High-Performance Ocean Research Experiment), a multiband optical spectrometer with 15 m pixel resolution. The analysis investigates the contribution of the error effects to the quality of data collected by the instrument. This analysis supported the preliminary studies to determine feasibility of utilizing the International Space Station as an observing platform for a SHORE type of instrument. Rigorous analyses will be performed if a SHORE flight program is initiated. The analysis begins with the discussion of the coordinate systems involved and then conversion from the target coordinate system to the instrument coordinate system. Next the geometry of remote observations from the Space Station is investigated including the effects of the instrument location in Space Station and the effects of the line of sight to the target. The disturbance and error environment on Space Station is discussed covering factors contributing to drift and jitter, accuracy of pointing data and target and instrument accuracies.
Electromagnetic modelling of a space-borne far-infrared interferometer
NASA Astrophysics Data System (ADS)
Donohoe, Anthony; O'Sullivan, Créidhe; Murphy, J. Anthony; Bracken, Colm; Savini, Giorgio; Pascale, Enzo; Ade, Peter; Sudiwala, Rashmi; Hornsby, Amber
2016-02-01
In this paper I will describe work done as part of an EU-funded project `Far-infrared space interferometer critical assessment' (FISICA). The aim of the project is to investigate science objectives and technology development required for the next generation THz space interferometer. The THz/FIR is precisely the spectral region where most of the energy from stars, exo-planetary systems and galaxy clusters deep in space is emitted. The atmosphere is almost completely opaque in the wave-band of interest so any observation that requires high quality data must be performed with a space-born instrument. A space-borne far infrared interferometer will be able to answer a variety of crucial astrophysical questions such as how do planets and stars form, what is the energy engine of most galaxies and how common are the molecule building blocks of life. The FISICA team have proposed a novel instrument based on a double Fourier interferometer that is designed to resolve the light from an extended scene, spectrally and spatially. A laboratory prototype spectral-spatial interferometer has been constructed to demonstrate the feasibility of the double-Fourier technique at far infrared wavelengths (0.15 - 1 THz). This demonstrator is being used to investigate and validate important design features and data-processing methods for future instruments. Using electromagnetic modelling techniques several issues related to its operation at long baselines and wavelengths, such as diffraction, have been investigated. These are critical to the design of the concept instrument and the laboratory testbed.
Using SPOT–5 HRG Data in Panchromatic Mode for Operational Detection of Small Ships in Tropical Area
Corbane, Christina; Marre, Fabrice; Petit, Michel
2008-01-01
Nowadays, there is a growing interest in applications of space remote sensing systems for maritime surveillance which includes among others traffic surveillance, maritime security, illegal fisheries survey, oil discharge and sea pollution monitoring. Within the framework of several French and European projects, an algorithm for automatic ship detection from SPOT–5 HRG data was developed to complement existing fishery control measures, in particular the Vessel Monitoring System. The algorithm focused on feature–based analysis of satellite imagery. Genetic algorithms and Neural Networks were used to deal with the feature–borne information. Based on the described approach, a first prototype was designed to classify small targets such as shrimp boats and tested on panchromatic SPOT–5, 5–m resolution product taking into account the environmental and fishing context. The ability to detect shrimp boats with satisfactory detection rates is an indicator of the robustness of the algorithm. Still, the benchmark revealed problems related to increased false alarm rates on particular types of images with a high percentage of cloud cover and a sea cluttered background. PMID:27879859
Application of theoretical models to active and passive remote sensing of saline ice
NASA Technical Reports Server (NTRS)
Han, H. C.; Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Kwok, R.
1992-01-01
The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is employed to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. We also calculate the thermal emissions based on the reciprocity and energy conservation principles. The effects of the random roughness at the air-ice, and ice-water interfaces are accounted for by adding the surface scattering to the volume scattering return incoherently. The above theoretical model, which has been successfully applied to analyze the radar backscatter data of the first-year sea ice near Point Barrow, AK, is used to interpret the measurements performed in the CRRELEX program.
Mars channel observations 1877-90, compared with modern Orbiter data
NASA Astrophysics Data System (ADS)
Gerstbach, G.
2003-10-01
The astronomic sensation of 1877, Schiaparelli's Canali, were a main research topic for 80 years (in a way they are it now again). Up to Mariner 4 (1965) many institutes believed in melted ice and periodic vegetation along the gray or green linear structures. Mars mapping reached a 2nd summit by Antoniadi, whose map 1936 was the basis of the US Mariner program. But ~1915 the shift from linear to area drawing caused some quality losses in planetography. In the fifties the Canali were mostly interpreted as optical illusions or contrast effects. The rivers and tectonics seen by Orbiters encouraged me to special studies: 60% of Schiaparelli channels correlate with: Albedo patterns, terrace-shadow structures, broad valley systems (e.g. Valles Marineris) and rows of craters or clouds. Experienced observers know that linear structures can be "seen" even if their elements are below the resolution. Feedback of this fact to space-born Remote Sensing is recommended - for maximal use of the modern planet Orbiters and special studies of geology, dust storms and clouds.
75 FR 52307 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-25
...: National Oceanic and Atmospheric Administration (NOAA). Title: Licensing of Private Remote-Sensing Space... National Satellite Land Remote Sensing Data Archive; 3 hours for the submission of an operational quarterly... and Uses: NOAA has established requirements for the licensing of private operators of remote-sensing...
Telerobot local-remote control architecture for space flight program applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John
1993-01-01
The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.
Enhancing Human Health Using Space Imagery: Summary of Research
NASA Technical Reports Server (NTRS)
Finarelli, Margaret G.
2002-01-01
The International Space University (ISU) 2002 Summer Session was conducted in Pomona, California, June 29-August 30, 2002. Ninety-nine professionals and students from thirty-one countries attended the Summer Session. More than half of these students participated in the Student Research Design Project entitled, "HI-STAR: Health Improvements through Space Technologies and Resources." ISU's interdisciplinary Student Research Design Projects are intended to have great educational value for the participants and, at the same time, to result in a product that will be useful to the field. The HI-STAR project was a success on both counts. The mission of the ISU students' effort on HI-STAR was to develop and promote a global strategy to help combat malaria using space technology. Like the tiny yet powerful mosquito, HI-STAR is a small program that aspires to make a difference. Timely detection of malaria danger zones is essential to help health authorities and policy makers make decisions about how to manage limited resources for combating malaria. In 2001, the technical support network for prevention and control of malaria epidemics published a study called "Malaria Early Warning Systems: Concepts, Indicators and Partners." This study, funded by Roll Back Malaria, a World Health Organization initiative, offered a framework for a monitoring and early warning system. HI-STAR seeks to build on this proposal and enhance the space elements of the suggested framework. Malaria disease dynamics and distributions are related to environmental variables. From space, environmental conditions that support the growth of mosquito populations can be monitored, Malaria-specific information can be gathered from satellite-borne remote sensing instruments and ground-based sensors. This information can be integrated via geographic information systems (GIS) into a Malaria Information System (MIS) that can provide assessment analyses and risk maps as output. HI-STAR defines and suggests the development of an active MIS as a low-cost tool to help organizations plan their efforts to fight malaria.
Space platform expendables resupply concept definition study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1984-01-01
NASA has recognized that the capability for remote resupply of space platform expendable fluids will help transition space utilization into a new era of operational efficiency and cost/effectiveness. The emerging Orbital Maneuvering System (OMV) in conjunction with an expendables resupply module will introduce the capability for fluid resupply enabling satellite lifetime extension at locations beyond the range of the Orbiter. This report summarizes a Phase A study of a remote resupply module for the OMV. Volume 1 is the executive summary.
Space platform expendables resupply concept definition study, volume 2
NASA Technical Reports Server (NTRS)
1984-01-01
NASA has recognized that the capability for remote resupply of space platform expendable fluids will help transition space utilization into a new era of operational efficiency and cost/effectiveness. The emerging Orbital Maneuvering System (OMV) in conjunction with an expendables resupply module will introduce the capability for fluid resupply enabling satellite lifetime extension at locations beyond the range of the Orbiter. This report summarizes a Phase A study of a remote resupply module for the OMV. Volume 2 represents study results.
Enhancing Remotely Sensed TIR Data for Public Health Applications: Is West Nile Virus Heat-Related?
NASA Astrophysics Data System (ADS)
Weng, Q.; Liu, H.; Jiang, Y.
2014-12-01
Public health studies often require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. This technological limitation prevents the wide usage of remote sensing data in epidemiological studies. To solve this issue, we have developed a few image fusion techniques to generate high temporally-resolved image data. We downscaled GOES LST data to 15-minute 1-km resolution to assess community-based heat-related risk in Los Angeles County, California and simulated ASTER datasets by fusing ASTER and MODIS data to derive biophysical variables, including LST, NDVI, and normalized difference water index, to examine the effects of those environmental characteristics on WNV outbreak and dissemination. A spatio-temporal analysis of WNV outbreak and dissemination was conducted by synthesizing the remote sensing variables and mosquito surveillance data, and by focusing on WNV risk areas in July through September due to data sufficiency of mosquito pools. Moderate- and high-risk areas of WNV infections in mosquitoes were identified for five epidemiological weeks. These identified WNV-risk areas were then collocated in GIS with heat hazard, exposure, and vulnerability maps to answer the question of whether WNV is a heat related virus. The results show that elevation and built-up conditions were negatively associated with the WNV propagation, while LST positively correlated with the viral transmission. NDVI was not significantly associated with WNV transmission. San Fernando Valley was found to be the most vulnerable to mosquito infections of WNV. This research provides important insights into how high temporal resolution remote sensing imagery may be used to study time-dependant events in public health, especially in the operational surveillance and control of vector-borne, water-borne, or other epidemic diseases.
A local network integrated into a balloon-borne apparatus
NASA Astrophysics Data System (ADS)
Imori, Masatosi; Ueda, Ikuo; Shimamura, Kotaro; Maeno, Tadashi; Murata, Takahiro; Sasaki, Makoto; Matsunaga, Hiroyuki; Matsumoto, Hiroshi; Shikaze, Yoshiaki; Anraku, Kazuaki; Matsui, Nagataka; Yamagami, Takamasa
A local network is incorporated into an apparatus for a balloon-borne experiment. A balloon-borne system implemented in the apparatus is composed of subsystems interconnected through a local network, which introduces modular architecture into the system. The network decomposes the balloon-borne system into subsystems, which are similarly structured from the point of view that the systems is kept under the control of a ground station. The subsystem is functionally self-contained and electrically independent. A computer is integrated into a subsystem, keeping the subsystem under the control. An independent group of batteries, being dedicated to a subsystem, supplies the whole electricity of the subsystem. The subsystem could be turned on and off independently of the other subsystems. So communication among the subsystems needs to be based on such a protocol that could guarantee the independence of the individual subsystems. An Omninet protocol is employed to network the subsystems. A ground station sends commands to the balloon-borne system. The command is received and executed at the system, then results of the execution are returned to the ground station. Various commands are available so that the system borne on a balloon could be controlled and monitored remotely from the ground station. A subsystem responds to a specific group of commands. A command is received by a transceiver subsystem and then transferred through the network to the subsystem to which the command is addressed. Then the subsystem executes the command and returns results to the transceiver subsystem, where the results are telemetered to the ground station. The network enhances independence of the individual subsystems, which enables programs of the individual subsystems to be coded independently. Independence facilitates development and debugging of programs, improving the quality of the system borne on a balloon.
New method for scanning spacecraft and balloon-borne/space-based experiments
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1991-01-01
A new method is presented for scanning balloon-borne experiments, free-flying spacecraft, and gimballed experiments mounted to the space shuttle or the space station. It uses rotating-unbalanced-mass (RUM) devices for generating circular, line, or raster scan patterns and an auxiliary control system for target acquisition, keeping the scan centered on the target, and producing complementary motion for raster scanning. It is ideal for applications where the only possible way to accomplish the required scan is to physically scan the entire experiment or spacecraft as in X-ray and gamma ray experiments. In such cases, this new method should have advantages over prior methods in terms of either power, weight, cost, performance, stability, or a combination of these.
Comparisons of Ground Truth and Remote Spectral Measurements of the FORMOSAT and ANDE Spacecrafts
NASA Technical Reports Server (NTRS)
JorgensenAbercromby, Kira; Hamada, Kris; Okada, Jennifer; Guyote, Michael; Barker, Edwin
2006-01-01
Determining the material type of objects in space is conducted using laboratory spectral reflectance measurements from common spacecraft materials and comparing the results to remote spectra. This past year, two different ground-truth studies commenced. The first, FORMOSAT III, is a Taiwanese set of six satellites to be launched in March 2006. The second is ANDE (Atmospheric Neutral Density Experiment), a Naval Research Laboratory set of two satellites set to launch from the Space Shuttle in November 2006. Laboratory spectra were obtained of the spacecraft and a model of the anticipated spectra response was created for each set of satellites. The model takes into account phase angle and orientation of the spacecraft relative to the observer. Once launched, the spacecraft are observed once a month to determine the space aging effects of materials as deduced from the remote spectra. Preliminary results will be shown of the FORMOSAT III comparison with laboratory data and remote data while results from only the laboratory data will be shown for the ANDE spacecraft.
Using Spacelab as a precursor of science operations for the Space Station
NASA Technical Reports Server (NTRS)
Marmann, R. A.
1997-01-01
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.
NASA Technical Reports Server (NTRS)
Barr, B. G.
1974-01-01
A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies.
Smarter Software For Enhanced Vehicle Health Monitoring and Inter-Planetary Exploration
NASA Technical Reports Server (NTRS)
Larson, William E.; Goodrich, Charles H.; Steinrock, Todd (Technical Monitor)
2001-01-01
The existing philosophy for space mission control was born in the early days of the space program when technology did not exist to put significant control responsibility onboard the spacecraft. NASA relied on a team of ground control experts to troubleshoot systems when problems occurred. As computing capability improved, more responsibility was handed over to the systems software. However, there is still a large contingent of both launch and flight controllers supporting each mission. New technology can update this philosophy to increase mission assurance and reduce the cost of inter-planetary exploration. The advent of model-based diagnosis and intelligent planning software enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. The manifests for recent missions include multiple subsystems and complex experiments. Spacecraft must operate at longer distances from earth where communications delays make earthbound command and control impractical. NASA's Ames Research Center (ARC) has demonstrated the utility of onboard diagnosis and planning with the Remote Agent experiment in 1999. KSC has pioneered model-based diagnosis and demonstrated its utility for ground support operations. KSC and ARC are cooperating in research to improve the state of the art of this technology. This paper highlights model-based reasoning applications for Moon and Mars missions including in-situ resource utilization and enhanced vehicle health monitoring.
A study of the potential of remote sensors in urban transportation planning
NASA Technical Reports Server (NTRS)
Rietschier, D.; Modlin, D. G., Jr.
1973-01-01
The potential uses of remotely sensed data as applied to the transportation planning process are presented. By utilizing the remote sensing technology developed by the National Aeronautics and Space Administration in the various space programs, it is hoped that both the expense and errors inherent in the conventional data collection techniques can be avoided. Additional bonuses derived from the use of remotely sensed data are those of the permanent record nature of the data and the traffic engineering data simultaneously made available. The major mathematical modeling phases and the role remotely sensed data might play in replacing conventionally collected data are discussed. Typical surveys undertaken in the overall planning process determine the nature and extent of travel desires, land uses, transportation facilities and socio-economic characteristics. Except for the socio-economic data, data collected in the other surveys mentioned can be taken from photographs in sufficient detail to be useful in the modeling procedures.
CSPICE - A C Version of JPL's SPICELIB Toolkit
NASA Technical Reports Server (NTRS)
Wright, E.
1999-01-01
The Navigation Ancillary Information Facility (NAIF), under the direction of NASA's Office of Space Science, built the SPICE data system to assist scientists with planning and interpretation of scientific observations from space borne-instruments.
Earth Observations from the International Space Station: Benefits for Humanity
NASA Technical Reports Server (NTRS)
Stefanov, William L.
2015-01-01
The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.
End-to-end remote sensing at the Science and Technology Laboratory of John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Kelly, Patrick; Rickman, Douglas; Smith, Eric
1991-01-01
The Science and Technology Laboratory (STL) of Stennis Space Center (SSC) was developing an expertise in remote sensing for more than a decade. Capabilities at SSC/STL include all major areas of the field. STL includes the Sensor Development Laboratory (SDL), Image Processing Center, a Learjet 23 flight platform, and on-staff scientific investigators.
OAST-Flyer is deployed by the Remote Manipulator System (RMS) as viewed from the flight deck
1996-01-14
STS072-320-014 (17 Jan. 1996) --- The end effect of the Space Shuttle Endeavour's Remote Manipulator System (RMS) is about to grapple the Office of Aeronautics and Space Technology's (OAST) -- Flyer satellite. The view was recorded with a 35mm camera aimed through one of Endeavour's overheard windows on the aft flight deck.
Long-range strategy for remote sensing: an integrated supersystem
NASA Astrophysics Data System (ADS)
Glackin, David L.; Dodd, Joseph K.
1995-12-01
Present large space-based remote sensing systems, and those planned for the next two decades, remain dichotomous and custom-built. An integrated architecture might reduce total cost without limiting system performance. An example of such an architecture, developed at The Aerospace Corporation, explores the feasibility of reducing overall space systems costs by forming a 'super-system' which will provide environmental, earth resources and theater surveillance information to a variety of users. The concept involves integration of programs, sharing of common spacecraft bus designs and launch vehicles, use of modular components and subsystems, integration of command and control and data capture functions, and establishment of an integrated program office. Smart functional modules that are easily tested and replaced are used wherever possible in the space segment. Data is disseminated to systems such as NASA's EOSDIS, and data processing is performed at established centers of expertise. This concept is advanced for potential application as a follow-on to currently budgeted and planned space-based remote sensing systems. We hope that this work will serve to engender discussion that may be of assistance in leading to multinational remote sensing systems with greater cost effectiveness at no loss of utility to the end user.
15 CFR 960.11 - Conditions for operation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.11 Conditions for... all facilities which comprise the remote sensing space system for the purpose of conducting license... possession, the licensee shall offer such data to the National Satellite Land Remote Sensing Data Archive at...
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.3 Definitions. For purposes of the regulations in this part, the following terms have the following meanings: Act means the Land Remote Sensing... application for a NOAA license to operate a remote sensing space system. Assistant Administrator means the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Code of Federal Regulations, 2012 CFR
2012-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Code of Federal Regulations, 2014 CFR
2014-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Wave Geometry: a Plurality of Singularities
NASA Astrophysics Data System (ADS)
Berry, M. V.
Five interconnected wave singularities are discussed: phase monopoles, at eigenvalue degeneracies in parameter space, where the 2-form generating the geomeeic phase is singular, phase dislocations, at zeros of complex wavefunctions in position space, where different wavefronts (surfaces of constant phase) meet; caustics, that is envelopes (foci) of families of classical paths or geometrical rays, where real rays are born violently and which are complementary to dislocations; Stokes sets, at which a complex ray is born gently where it is maximally dominated by another ray; and complex degeneracies, which are the sources of adiabatic quantum transtions in analytic Hamiltonians.
NASA Technical Reports Server (NTRS)
Lu, Xiaomei; Hu, Yongxiang; Pelon, Jacques; Trepte, Chip; Liu, Katie; Rodier, Sharon; Zeng, Shan; Luckher, Patricia; Verhappen, Ron; Wilson, Jamie;
2016-01-01
A new approach has been proposed to determine ocean subsurface particulate backscattering coefficient bbp from CALIOP 30deg off-nadir lidar measurements. The new method also provides estimates of the particle volume scattering function at the 180deg scattering angle. The CALIOP based layer-integrated lidar backscatter and particulate backscattering coefficients are compared with the results obtained from MODIS ocean color measurements. The comparison analysis shows that ocean subsurface lidar backscatter and particulate backscattering coefficient bbp can be accurately obtained from CALIOP lidar measurements, thereby supporting the use of space-borne lidar measurements for ocean subsurface studies.
Monitoring Seawall Deformation With Repeat-Track Space-Borne SAR Images
NASA Astrophysics Data System (ADS)
Pei, Yuanyuan; Wan, Qing; Wei, Lianhuan; Fang, Zhilei; Liao, Mingsheng
2010-10-01
Seawalls are constructed to protect coastal cities from typhoon, flood and sea tide. It is necessary to monitor the deformation of seawalls in real time. Repeat-track space-borne SAR images are useful for environment monitoring, especially ground deformation monitoring. Shanghai sits on the Yangtze River Delta on China's eastern coast. Each year, the city is hit by typhoons from Pacific Ocean and threatened by the flood of the Yangtze River. PS-InSAR technique is carried out to monitor the deformation of the seawalls. Experiment exhibits that the seawalls around Pudong airport and Lingang town suffered serious deformation.
NASA Technical Reports Server (NTRS)
2002-01-01
A dengue fever outbreak has plagued Rio de Janeiro since January 2002. Dengue fever is a mosquito-borne disease. The elimination of standing water, which is a breeding ground for the mosquitoes, is a primary defense against mosquito-borne diseases like dengue. Removing such water remains a difficult problem in many urban regions. The International Space Station astronauts took this image (ISS001-ESC-5418) of Rio de Janeiro in December 2000. Image provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center (JSC). Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.
Towards automatic lithological classification from remote sensing data using support vector machines
NASA Astrophysics Data System (ADS)
Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael
2010-05-01
Remote sensing data can be effectively used as a mean to build geological knowledge for poorly mapped terrains. Spectral remote sensing data from space- and air-borne sensors have been widely used to geological mapping, especially in areas of high outcrop density in arid regions. However, spectral remote sensing information by itself cannot be efficiently used for a comprehensive lithological classification of an area due to (1) diagnostic spectral response of a rock within an image pixel is conditioned by several factors including the atmospheric effects, spectral and spatial resolution of the image, sub-pixel level heterogeneity in chemical and mineralogical composition of the rock, presence of soil and vegetation cover; (2) only surface information and is therefore highly sensitive to the noise due to weathering, soil cover, and vegetation. Consequently, for efficient lithological classification, spectral remote sensing data needs to be supplemented with other remote sensing datasets that provide geomorphological and subsurface geological information, such as digital topographic model (DEM) and aeromagnetic data. Each of the datasets contain significant information about geology that, in conjunction, can potentially be used for automated lithological classification using supervised machine learning algorithms. In this study, support vector machine (SVM), which is a kernel-based supervised learning method, was applied to automated lithological classification of a study area in northwestern India using remote sensing data, namely, ASTER, DEM and aeromagnetic data. Several digital image processing techniques were used to produce derivative datasets that contained enhanced information relevant to lithological discrimination. A series of SVMs (trained using k-folder cross-validation with grid search) were tested using various combinations of input datasets selected from among 50 datasets including the original 14 ASTER bands and 36 derivative datasets (including 14 principal component bands, 14 independent component bands, 3 band ratios, 3 DEM derivatives: slope/curvatureroughness and 2 aeromagnetic derivatives: mean and variance of susceptibility) extracted from the ASTER, DEM and aeromagnetic data, in order to determine the optimal inputs that provide the highest classification accuracy. It was found that a combination of ASTER-derived independent components, principal components and band ratios, DEM-derived slope, curvature and roughness, and aeromagnetic-derived mean and variance of magnetic susceptibility provide the highest classification accuracy of 93.4% on independent test samples. A comparison of the classification results of the SVM with those of maximum likelihood (84.9%) and minimum distance (38.4%) classifiers clearly show that the SVM algorithm returns much higher classification accuracy. Therefore, the SVM method can be used to produce quick and reliable geological maps from scarce geological information, which is still the case with many under-developed frontier regions of the world.
Development of the Synthetic Aperture Radiometer ESTAR and the Next Generation
NASA Technical Reports Server (NTRS)
LeVine, David M.; Haken, Michael; Swift, Calvin T.
2004-01-01
ESTAR is a research instrument built to develop the technology of aperture synthesis for passive remote sensing of Earth from space. Aperture synthesis is an interferometric technology that addresses the problem of putting large antenna apertures in space to achieve the spatial resolution needed for remote sensing at long wavelengths ESTAR was a first step (synthesis only across track and only at horizontal polarization). The development has progressed to a new generation instrument that is dual polarized and does aperture synthesis in two dimensions. Among the plans for the future is technology to combine active and passive remote sensing.
Environmental Control Subsystem Development
NASA Technical Reports Server (NTRS)
Laidlaw, Jacob; Zelik, Jonathan
2017-01-01
Kennedy Space Center's Launch Pad 39B, part of Launch Complex 39, is currently undergoing construction to prepare it for NASA's Space Launch System missions. The Environmental Control Subsystem, which provides the vehicle with an air or nitrogen gas environment, required development of its local and remote display screens. The remote displays, developed by NASA contractors and previous interns, were developed without complete functionality; the remote displays were revised, adding functionality to over 90 displays. For the local displays, multiple test procedures were developed to assess the functionality of the screens, as well as verify requirements. One local display screen was also developed.
NASA Technical Reports Server (NTRS)
Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)
1989-01-01
Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.
The dumbest experiment in space. [problems in laboratory apparatus adaption to space environment
NASA Technical Reports Server (NTRS)
Prouty, C. R.
1981-01-01
A simple conceptual experiment is used to illustrate (1) the fundamentals of performing an experiment, including the theoretical concept, the experiment design, the performance of the experiment, and the recording of observations; (2) the increasing challenges posed by performance of the same experiment in a location remote from the experimenter, such as additional planning and equipment and their associated cost increases; and (3) the significant growth of difficulties to be overcome when the simple experiment is performed in a highly restrictive environment, such as a spacecraft in orbit, with someone else remotely operating the experiment. It is shown that performing an experiment in the remote, hostile environment of space will pose difficulties equaling or exceeding those of the experiment itself, entailing mastery of a widening range of disciplines.
Single Event Effect Hardware Trojans with Remote Activation
2017-03-01
kinetically as in the SDI approach. These high-energy directed energy weapons have been studied and developed largely for the purpose remote sensing and...Single Event Effect Hardware Trojans with Remote Activation Paul A. Quintana; John McCollum; William A. Hill Microsemi Corporation, San Jose...space qualified semiconductors the use of SEE sensitive circuits may represents a latent and remotely -triggered hardware Trojan which would be
Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stottmeister, Alexander, E-mail: alexander.stottmeister@gravity.fau.de; Thiemann, Thomas, E-mail: thomas.thiemann@gravity.fau.de
2016-06-15
This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems,more » which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).« less
NASA Astrophysics Data System (ADS)
Kuldeep, Kuldeep; Banu, Vijaya
2016-07-01
The introduction of the novel technology mostly leads to a number of advantages to the society. The space technology has shown such benefits in many fields including the areas of health and education, communication sectors, land and water resources management, weather forecasting and disaster management. It has vast potential for addressing a variety of societal problems of the developing countries especially in India in a effective manner. Large population which is spread over vast and remote areas of the nation, reaching out to them is a difficult task. This manuscript aims to explain the benefits originated from the application of space technology. The satellite imagery and its derived products can better be utilized for local level planning and sustainable development of a region. A case-study using Bhuvan Panchayat Portal developed by National Remote Sensing Centre, ISRO under the project "Space Based Information Support for De-Centralised Planning" towards Digital Empowerment of Society for Panchayat level Planning and Governance has been carried out, which list out the benefits that have accrued from the use of space technology for planning and development at grass root level in India. It covers, in particular, the benefits expected to be derived from the Indian Remote Sensing Satellite (IRS) Images and derived products. Certain conclusions about the benefits from space based inputs have been drawn that may be generally applicable to all developing countries. This paper also investigates the various possibilities and potentials of Remote Sensing technologies for societal applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2011 CFR
2011-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2014 CFR
2014-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2012 CFR
2012-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Frontiers of Remote Sensing of the Oceans and Troposphere from Air and Space Platforms
NASA Technical Reports Server (NTRS)
1984-01-01
Several areas of remote sensing are addressed including: future satellite systems; air-sea interaction/wind; ocean waves and spectra/S.A.R.; atmospheric measurements (particulates and water vapor); synoptic and weather forecasting; topography; bathymetry; sea ice; and impact of remote sensing on synoptic analysis/forecasting.
Inquiry-Based Learning in Remote Sensing: A Space Balloon Educational Experiment
ERIC Educational Resources Information Center
Mountrakis, Giorgos; Triantakonstantis, Dimitrios
2012-01-01
Teaching remote sensing in higher education has been traditionally restricted in lecture and computer-aided laboratory activities. This paper presents and evaluates an engaging inquiry-based educational experiment. The experiment was incorporated in an introductory remote sensing undergraduate course to bridge the gap between theory and…
Code of Federal Regulations, 2010 CFR
2010-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and...
NASA Technical Reports Server (NTRS)
1997-01-01
The Commercial Remote Sensing Program at Stennis Space Center assists numerous companies across the United States, in learning to use remote sensing capabilities to enhance their competitiveness. Through the Visiting Investigator Program, SSC helped Coast Delta Realty in Diamondhead, Miss., incorporate remote sensing and Geogrpahic Information System technology for real estate marketing and management.
Remote sensing of the Earth from Space: A program in crisis
NASA Technical Reports Server (NTRS)
1985-01-01
The present situation in earth remote sensing, determining why certain problems exist, and trying to find out what can be done to solve these problems are discussed. The conclusion is that operational remote sensing is in disarray. The difficulties involve policy and institutional issues. Recommendations are given.
A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of
NASA Technical Reports Server (NTRS)
1996-01-01
STS-75 LAUNCH VIEW --- A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of the Space Shuttle Columbia as it cleared the tower to begin the mission. The liftoff occurred on schedule at 3:18:00 p.m. (EST), February 22, 1996. Onboard Columbia for the scheduled two-week mission were astronauts Andrew M. Allen, commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and astronauts Maurizio Cheli, Jeffrey A. Hoffman and Claude Nicollier, along with payload specialist Umberto Guidioni. Cheli and Nicollier represent the European Space Agency (ESA), while Guidioni represents the Italian Space Agency (ASI).
Power components for the Space Station 20-kHz power distribution system
NASA Technical Reports Server (NTRS)
Renz, David D.
1988-01-01
Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of the Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.
Power components for the space station 20-kHz power distribution system
NASA Technical Reports Server (NTRS)
Renz, David D.
1988-01-01
Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of The Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.
Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.
2011-01-01
Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving as network or supersite observations, which have been playing key roles in major international research projects over diverse aerosol regimes to complement and enrich the EOS scientific research.
Gulf Coast Disaster Management: Forest Damage Detection and Carbon Flux Estimation
NASA Astrophysics Data System (ADS)
Maki, A. E.; Childs, L. M.; Jones, J.; Matthews, C.; Spindel, D.; Batina, M.; Malik, S.; Allain, M.; Brooks, A. O.; Brozen, M.; Chappell, C.; Frey, J. W.
2008-12-01
Along the Gulf Coast and Eastern Seaboard, tropical storms and hurricanes annually cause defoliation and deforestation amongst coastal forests. After a severe storm clears, there is an urgent need to assess impacts on timber resources for targeting state and national resources to assist in recovery. It is important to identify damaged areas following the storm, due to their increased probability of fire risk, as well as the effect upon the carbon budget. Better understanding and management of the immediate and future effects on the carbon cycle in the coastal forest ecosystem is especially important. Current methods of detection involve assessment through ground-based field surveys, aerial surveys, computer modeling of meteorological data, space-borne remote sensing, and Forest Inventory and Analysis field plots. Introducing remotely-sensed data from NASA and NASA-partnered Earth Observation Systems (EOS), this project seeks to improve the current methodology and focuses on a need for methods that are more synoptic than field surveys and more closely linked to the phenomenology of tree loss and damage than passive remote sensing methods. The primary concentration is on the utilization of Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) data products to detect changes in forest canopy height as an indicator of post-hurricane forest disturbances. By analyzing ICESat data over areas affected by Hurricane Katrina, this study shows that ICESsat is a useful method of detecting canopy height change, though further research is needed in mixed forest areas. Other EOS utilized in this study include Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), and the NASA verified and validated international Advanced Wide Field Sensor (AWiFS) sensor. This study addresses how NASA could apply ICESat data to contribute to an improved method of detecting hurricane-caused forest damage in coastal areas; thus to pinpoint areas more susceptible to fire damage and subsequent loss of carbon sequestration.
NASA Astrophysics Data System (ADS)
Krumov, A.; Nikolova, A.; Vassilev, N.; Vassilev, V.
Monitoring of terrestrial vegetation for the needs of agriculture, forestry and scientific investigation has demonstrated significant contribution to Earth' sciences in general and particular in ecological surveys and disaster management. Remote sensing of specific vegetation signature by space-born instruments is the only technique allowing large scale (regional or global) repeated observation, which can be used for early warning of natural hazards. Nowadays reflectance spectra are the main optical signatures used for monitoring of plant biomes. However, such a spectrum provides only data primarily related to the total quantity of vegetation and the concentration of their constituents. In fact, changes in the reflectance signature appear only after serious damage of the bio-systems has occurred. Thus, the use of reflectance signal as an early indicator of stress factors is rather impossible. More recently, the interest of the scientific community is increasingly devoted to the vegetation fluorescence emission, known to be an intrinsic early indicator of plant photosynthetic activity. With respect to reflectance, fluorescence is more specific as an observable of the basic biophysical processes in the plant cells. Several projects dedicated to remote measurements of solar-induced plant fluorescence, have shown the feasibility the fluorescence signal to be remotely sensed from a satellite altitudes. However, the correlation between reflectance and fluorescence still needs to be investigated. This work presents a set of experiments aimed to investigate the link between reflectance and fluorescence emission under controlled illumination conditions. They were performed in a specially designed laboratory bio chamber. The hardware of the bio-chamber allows monitoring of the plants vitality both by fluorescence and reflectance spectral imaging. Different types of stress factors (water, drought stress, acid impact etc.) were investigated. The acquired fluorescence and spectral data are analysed, interpreted and compared by their sensibility, rapidity of changes in response to stress changes, and informational diversity. Selected images illustrate an early detection of plant dysfunction and also regeneration of plants after removing of the negative factors.
Unmanned aerial systems for forest reclamation monitoring: throwing balloons in the air
NASA Astrophysics Data System (ADS)
Andrade, Rita; Vaz, Eric; Panagopoulos, Thomas; Guerrero, Carlos
2014-05-01
Wildfires are a recurrent phenomenon in Mediterranean landscapes, deteriorating environment and ecosystems, calling out for adequate land management. Monitoring burned areas enhances our abilities to reclaim them. Remote sensing has become an increasingly important tool for environmental assessment and land management. It is fast, non-intrusive, and provides continuous spatial coverage. This paper reviews remote sensing methods, based on space-borne, airborne or ground-based multispectral imagery, for monitoring the biophysical properties of forest areas for site specific management. The usage of satellite imagery for land use management has been frequent in the last decades, it is of great use to determine plants health and crop conditions, allowing a synergy between the complexity of environment, anthropogenic landscapes and multi-temporal understanding of spatial dynamics. Aerial photography increments on spatial resolution, nevertheless it is heavily dependent on airborne availability as well as cost. Both these methods are required for wide areas management and policy planning. Comprising an active and high resolution imagery source, that can be brought at a specific instance, reducing cost while maintaining locational flexibility is of utmost importance for local management. In this sense, unmanned aerial vehicles provide maximum flexibility with image collection, they can incorporate thermal and multispectral sensors, however payload and engine operation time limit flight time. Balloon remote sensing is becoming increasingly sought after for site specific management, catering rapid digital analysis, permitting greater control of the spatial resolution as well as of datasets collection in a given time. Different wavelength sensors may be used to map spectral variations in plant growth, monitor water and nutrient stress, assess yield and plant vitality during different stages of development. Proximity could be an asset when monitoring forest plants vitality. Early predictions of re-vegetation success facilitate precise and timely diagnosis of stress, thus remedial actions can be taken at localized detail.
On the use of RADARSAT-1 for monitoring malaria risk in Kenya
NASA Astrophysics Data System (ADS)
Ross, S. G.; Thomson, M. C.; Pultz, T.; Mbogo, C. M.; Regens, J. L.; Swalm, C.; Githure, J.; Yan, G.; Gu, W.; Beier, J. C.
2002-01-01
The incidence and spread of vector-borne infectious diseases are increasing concerns in many parts of the world. Earth obervation techniques provide a recognised means for monitoring and mapping disease risk as well as correlating environmental indicators with various disease vectors. Because the areas most impacted by vector-borne disease are remote and not easily monitored using traditional, labor intensive survey techniques, high spatial and temporal coverage provided by spaceborne sensors allows for the investigation of large areas in a timely manner. However, since the majority of infectious diseases occur in tropical areas, one of the main barriers to earth observation techniques is persistent cloud-cover. Synthetic Aperture Radar (SAR) technology offers a solution to this problem by providing all-weather, day and night imaging capability. Based on SAR's sensitivity to target moisture conditions, sensors such as RADARSAT-1 can be readily used to map wetland and swampy areas that are conducive to functioning as aquatic larval habitats. Irrigation patterns, deforestation practises and the effects of local flooding can be monitored using SAR imagery, and related to potential disease vector abundance and proximity to populated areas. This paper discusses the contribution of C-band radar remote sensing technology to monitoring and mapping malaria. Preliminary results using RADARSAT-1 for identifying areas of high mosquito (Anopheles gambiae s.l.) abundance along the Kenya coast will be discussed. The authors consider the potential of RADARSAT-1 data based on SAR sensor characteristics and the preliminary results obtained. Further potential of spaceborne SAR data for monitoring vector-borne disease is discussed with respect to future advanced SAR sensors such as RADARSAT-2.
Towards a space-borne quantum gravity gradiometer: progress in laboratory demonstration
NASA Technical Reports Server (NTRS)
Yu, Nan; Kohel, James M.; Kellogg, James R.; Maleki, Lute
2005-01-01
This paper describes the working principles and technical benefits of atom-wave interferometer-based inertial sensors, and gives a progress report on the development of a quantum gravity gradiometer for space applications at JPL.
MEDSAT - A remote sensing satellite for malaria early warning and control
NASA Technical Reports Server (NTRS)
Vesecky, John; Slawski, James; Stottlemeyer, Bret; De La Sierra, Ruben; Daida, Jason; Wood, Byron; Lawless, James
1992-01-01
A remote sensing, medical satellite (MEDSAT) aids in the control of carrier (vector) borne disease. The prototype design is a light satellite to test for control of malaria. The design features a 340-kg satellite with visual/IR and SAR sensors in a low inclination orbit observing a number of worldwide test sites. The approach is to use four-band visual/IR and dual-polarized L-band SAR images obtained from MEDSAT in concert with in-situ data to estimate the temporal and spatial variations of malaria risk. This allows public health resources to focus on the most vulnerable areas at the appropriate time. It is concluded that a light-satellite design for a MEDSAT satellite with a Pegasus launch is feasible.
NASA Technical Reports Server (NTRS)
Keitz, E. L.
1978-01-01
Stratospheric trace constituent measurement requirements are separated into two somewhat overlapping areas. In the first area, it is assumed that the only problem of interest is ozone; its chemistry chain, environmental effects and measurement requirements. In like manner, in the second area it is assumed that the only problem of interest is stratospheric aerosols; their chemistry, effects and measurement requirements.
2006-09-01
Telecommunications and Information Administration Telecom Telecommunications Telco Telecommunications Company VBIED Vehicle Borne Improvised Explosive... effect the damage to one system or sector would have on another. These concentrations of the sector’s key assets are becoming attractive targets even...critical U.S. infrastructures, such as the nation’s telephone system . Companies make it easier to control their networks from remote locations to save
NASA Technical Reports Server (NTRS)
Talapatra, Dipak C.
1993-01-01
The Indian Space program aimed at providing operation space services in communications and remote sensing and using state-of-the-art space technologies is reviewed. Emphasis is placed on the development and operation of satellites and launch vehicles for providing these space services.
Space Flyable Hg(sup +) Frequency Standards
NASA Technical Reports Server (NTRS)
Prestage, John D.; Maleki, Lute
1994-01-01
We discuss a design for a space based atomic frequency standard (AFS) based on Hg(sup +) ions confined in a linear ion trap. This newly developed AFS should be well suited for space borne applications because it can supply the ultra-high stability of a H-maser but its total mass is comparable to that of a NAVSTAR/GPS cesium clock, i.e., about 11kg. This paper will compare the proposed Hg(sup +) AFS to the present day GPS cesium standards to arrive at the 11 kg mass estimate. The proposed space borne Hg(sup +) standard is based upon the recently developed extended linear ion trap architecture which has reduced the size of existing trapped Hg(sup +) standards to a physics package which is comparable in size to a cesium beam tube. The demonstrated frequency stability to below 10(sup -15) of existing Hg(sup +) standards should be maintained or even improved upon in this new architecture. This clock would deliver far more frequency stability per kilogram than any current day space qualified standard.
Space America's commercial space program
NASA Technical Reports Server (NTRS)
Macleod, N. H.
1984-01-01
Space America prepared a private sector land observing space system which includes a sensor system with eight spectral channels configured for stereoscopic data acquisition of four stereo pairs, a spacecraft bus with active three-axis stabilization, a ground station for data acquisition, preprocessing and retransmission. The land observing system is a component of Space America's end-to-end system for Earth resources management, monitoring and exploration. In the context of the Federal Government's program of commercialization of the US land remote sensing program, Space America's space system is characteristic of US industry's use of advanced technology and of commercial, entrepreneurial management. Well before the issuance of the Request for Proposals for Transfer of the United States Land Remote Sensing Program to the Private Sector by the US Department of Commerce, Space Services, Inc., the managing venturer of Space America, used private funds to develop and manage its sub-orbital launch of its Conestoga launch vehicle.
NASA Technical Reports Server (NTRS)
Coyle, D. Barry; Stysley, Paul R.; Poulios, Demetrios; Fredrickson, Robert M.; Kay, Richard B.; Cory, Kenneth C.
2014-01-01
We report on a newly solid state laser transmitter, designed and packaged for Earth and planetary space-based remote sensing applications for high efficiency, low part count, high pulse energy scalability/stability, and long life. Finally, we have completed a long term operational test which surpassed 2 Billion pulses with no measured decay in pulse energy.
NASA Astrophysics Data System (ADS)
Martin, Annie; Sullivan, Patrick; Beaudry, Catherine; Kuyumjian, Raffi; Comtois, Jean-Marc
2012-12-01
Medical care on the International Space Station (ISS) is provided using real-time communication with limited medical data transmission. In the occurrence of an off-nominal medical event, the medical care paradigm employed is 'stabilization and transportation', involving real-time management from ground and immediate return to Earth in the event that the medical contingency could not be resolved in due time in space. In preparation for future missions beyond Low-Earth orbit (LEO), medical concepts of operations are being developed to ensure adequate support for the new mission profiles: increased distance, duration and communication delays, as well as impossibility of emergency returns and limitations in terms of medical equipment availability. The current ISS paradigm of medical care would no longer be adequate due to these new constraints. The Operational Space Medicine group at the Canadian Space Agency (CSA) is looking towards synergies between terrestrial and space medicine concepts for the delivery of medical care to deal with the new challenges of human space exploration as well as to provide benefits to the Canadian population. Remote and rural communities on Earth are, in fact, facing similar problems such as isolation, remoteness to tertiary care centers, resource scarcity, difficult (and expensive) emergency transfers, limited access to physicians and specialists and limited training of medical and nursing staff. There are a number of researchers and organizations, outside the space communities, working in the area of telehealth. They are designing and implementing terrestrial telehealth programs using real-time and store-and-forward techniques to provide isolated populations access to medical care. The cross-fertilization of space-Earth research could provide support for increased spin-off and spin-in effects and stimulate telehealth and space medicine innovations to engage in the new era of human space exploration. This paper will discuss the benefits of space-Earth research projects for the advancement of both terrestrial and space medicine and will use examples of operational space medicine projects conducted at the CSA in areas such as remote training, tele-mentoring and remote control of an ultrasound.
Earth Observation from Space - The Issue of Environmental Sustainability
NASA Technical Reports Server (NTRS)
Durrieu, Sylvie; Nelson, Ross F.
2013-01-01
Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given that they're rare event, space launches may be benign, but study is merited on upper stratospheric and exospheric layers given the chemical activity associated with rocket combustion by-products. (3) Minimization of Type II error should be considered in situations where minimization of Type I error greatly hampers or precludes our ability to correct the environmental condition being studied. (4) In certain situations, airborne collects may be less expensive and more environmentally benign, and comparative studies should be done to determine which path is wisest. (5) International cooperation and data sharing will reduce instrument and launch costs and mission redundancy. Given fiscal concerns of most of the major space agencies e e.g. NASA, ESA, CNES e it seems prudent to combine resources.
NASA Astrophysics Data System (ADS)
Peng, D. J.; Wu, B.
2012-01-01
With the availability of precise GPS ephemeris and clock solution, the ionospheric range delay is left as the dominant error sources in the post-processing of space-borne GPS data from single-frequency receivers. Thus, the removal of ionospheric effects is a major prerequisite for an improved orbit reconstruction of LEO satellites equipped with low cost single-frequency GPS receivers. In this paper, the use of Global Ionospheric Maps (GIM) in kinematic and dynamic orbit determination for LEO satellites with single-frequency GPS measurements is discussed first,and then, estimating the scale factor of ionosphere to remove the ionospheric effects in C/A code pseudo-range measurements in both kinematic and adynamia orbit defemination approaches is addressed. As it is known the ionospheric path delay of space-borne GPS signals is strongly dependent on the orbit altitudes of LEO satellites, we selected real space-borne GPS data from CHAMP, GRACE, TerraSAR-X and SAC-C satellites with altitudes between 300 km and 800 km as sample data in this paper. It is demonstrated that the approach of eliminating ionospheric effects in space-borne C/A code pseudo-range by estimating the scale factor of ionosphere is highly effective. Employing this approach, the accuracy of both kinematic and dynamic orbits can be improved notably. Among those five LEO satellites, CHAMP with the lowest orbit altitude has the most remarkable orbit accuracy improvements, which are 55.6% and 47.6% for kinematic and dynamic approaches, respectively. SAC-C with the highest orbit altitude has the least orbit accuracy improvements accordingly, which are 47.8% and 38.2%, respectively.
A Spacelab Expert System for Remote Engineering and Science
NASA Technical Reports Server (NTRS)
Groleau, Nick; Colombano, Silvano; Friedland, Peter (Technical Monitor)
1994-01-01
NASA's space science program is based on strictly pre-planned activities. This approach does not always result in the best science. We describe an existing computer system that enables space science to be conducted in a more reactive manner through advanced automation techniques that have recently been used in SLS-2 October 1993 space shuttle flight. Advanced computing techniques, usually developed in the field of Artificial Intelligence, allow large portions of the scientific investigator's knowledge to be "packaged" in a portable computer to present advice to the astronaut operator. We strongly believe that this technology has wide applicability to other forms of remote science/engineering. In this brief article, we present the technology of remote science/engineering assistance as implemented for the SLS-2 space shuttle flight. We begin with a logical overview of the system (paying particular attention to the implementation details relevant to the use of the embedded knowledge for system reasoning), then describe its use and success in space, and conclude with ideas about possible earth uses of the technology in the life and medical sciences.
Remote Maneuver of Space Debris Using Photon Pressure for Active Collision Avoidance
NASA Astrophysics Data System (ADS)
Smith, C.
2014-09-01
The Space Environment Research Corporation (SERC) is a consortium of companies and research institutions that have joined together to pursue research and development of technologies and capabilities that will help to preserve the orbital space environment. The consortium includes, Electro Optics Systems (Australia), Lockheed Martin Australia, Optus Satellite Systems (Australia), The Australian national University, RMIT University, National Institute of Information and Communications Technology (NICT, Japan) as well as affiliates from NASA Ames and ESA. SERC is also the recipient of and Australian Government Cooperative Research Centre grant. SERC will pursue a wide ranging research program including technologies to improve tracking capability and capacity, orbit determination and propagation algorithms, conjunction analysis and collision avoidance. All of these technologies will contribute to the flagship program to demonstrate active collision avoidance using photon pressure to provide remote maneuver of space debris. This project joins of the proposed NASA Lightforce concept with infrastructure and capabilities provided by SERC. This paper will describe the proposed research and development program to provide an on-orbit demonstration within the next five years for remote maneuver of space debris.
JSC Pharmacy Services for Remote Operations
NASA Technical Reports Server (NTRS)
Stoner, Paul S.; Bayuse, Tina
2005-01-01
The Johnson Space Center Pharmacy began operating in March of 2003. The pharmacy serves in two main capacities: to directly provide medications and services in support of the medical clinics at the Johnson Space Center, physician travel kits for NASA flight surgeon staff, and remote operations, such as the clinics in Devon Island, Star City and Moscow; and indirectly provide medications and services for the International Space Station and Space Shuttle medical kits. Process changes that occurred and continued to evolve in the advent of the installation of the new JSC Pharmacy, and the process of stocking medications for each of these aforementioned areas will be discussed. Methods: The incorporation of pharmacy involvement to provide services for remote operations and supplying medical kits was evaluated. The first step was to review the current processes and work the JSC Pharmacy into the existing system. The second step was to provide medications to these areas. Considerations for the timeline of expiring medications for shipment are reviewed with each request. The third step was the development of a process to provide accountability for the medications. Results: The JSC Pharmacy utilizes a pharmacy management system to document all medications leaving the pharmacy. Challenges inherent to providing medications to remote areas were encountered. A process has been designed to incorporate usage into the electronic medical record upon return of the information from these remote areas. This is an evolving program and several areas have been identified for further improvement.
1998 IEEE Aerospace Conference. Proceedings.
NASA Astrophysics Data System (ADS)
The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.
General view looking aft along the port side of the ...
General view looking aft along the port side of the Orbiter Discovery into its payload bay. Note the Remote Manipulator System, Canadarm, in the foreground mounted on the port side longeron. The Remote Sensor Arm is mounted on the opposite, starboard, longeron. Also note the airlock and the protective covering over the docking mechanism. This image was taken in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
View of the shuttle orbiter Discovery's payload bay during RMS checkout
1997-02-12
S82-E-5014 (12 Feb. 1997) --- Space Shuttle Discovery's Remote Manipulator System (RMS) gets a preliminary workout in preparation for a busy work load later in the week. The crewmembers are preparing for a scheduled Extravehicular Activity (EVA) with the Hubble Space Telescope (HST), which will be pulled into the Space Shuttle Discovery's cargo bay with the aid of the Remote Manipulator System (RMS). A series of EVA's will be required to properly service the giant telescope. This view was taken with an Electronic Still Camera (ESC).
Observing orbital debris using space-based telescopes. I - Mission orbit considerations
NASA Technical Reports Server (NTRS)
Reynolds, Robert C.; Talent, David L.; Vilas, Faith
1989-01-01
In this paper, mission orbit considerations are addressed for using the Space Shuttle as a telescope platform for observing man-made orbital debris. Computer modeling of various electrooptical systems predicts that such a space-borne system will be able to detect particles as small as 1-mm diameter. The research is meant to support the development of debris- collision warning sensors through the acquisition of spatial distribution and spectral characteristics for debris and testing of detector combinations on a shuttle-borne telescopic experiment. The technique can also be applied to low-earth-orbit-debris environment monitoring systems. It is shown how the choice of mission orbit, season of launch, and time of day of launch may be employed to provide extended periods of favorable observing conditions.
A TRD for space borne apparatus
NASA Astrophysics Data System (ADS)
Ambriola, M.; Bellotti, R.; Barbarito, E.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Mongelli, M.; Romita, M.; Ruppi, M.; Spinelli, P.
2006-07-01
A Transition Radiation Detector (TRD), has been built to be used as charged particle identifier in satellite born apparatus. Originally conceived to be used in the PAMELA telescope, this TRD has been qualified for space as well. The compact design and the low power consumption make this detector suitable to be used in space researches in which identification is required for particle of relativistic energies (i.e. with Lorentz factor (γ)>1000. In this TRD, carbon fibers are used as radiator material, and 1024 straw tubes as sensitive detectors. All components are piled up in nine sensitive layers of radiators and straws working in proportional mode using a Xe CO2 gas mixture. The detector characteristics will be described along with its performances studied having exposed the detector to both cosmic rays and particle beams at CERN.
NewSpace: The Emerging Commercial Space Industry
NASA Technical Reports Server (NTRS)
Martin, Gary
2016-01-01
A lecture to students at the International Space University. Topics include: - We are at a turning point in the history of space exploration and development the cusp of a revolution, new industries are being born that use space in many non-traditional ways - The established military industrial space sector is no longer the only game in town - Increased competition and new capabilities will change the marketplace forever - Everyone interested in working in the space sector will be affected.
Maynard, Nancy G; Conway, George A
2007-01-01
Provide an overview and examples of some of the remote sensing technologies presently or potentially available, which could be used to address environmental health problems in the Arctic. The vulnerability of Arctic populations to health impacts from environmental, weather, and climate-related factors underscores the need for increased applications of technologies such as remote sensing, Geographic Information Systems (GIS), and global positioning systems (GPS) for empowering local health officials and decision-makers to better predict environment-related health problems, decrease vulnerabilities, take preventative measures, and improve community response actions as well as increase community health literacy. These increased capabilities for monitoring, risk mapping, information sharing, communications, and surveillance of environmental parameters are powerful tools for addressing such environmentally-related health problems as thermal stress; extreme weather; contaminant transport and deposition into oceans, atmosphere, and ice; air and water quality; built environment impacts; ultraviolet radiation (UV); and infectious and vector-borne diseases. For example, systems are now in place, which can observe ocean parameters, providing information on algal blooms, pollutants and pathogens as well as storm assessments and sea level rise. Space-based systems in place can contribute valuable information through monitoring the processes of long-range transport of pollutants to the Arctic, where accumulation in animals and plants can occur. It is well-known that biomagnification up the food chain and ultimate consumption as traditional foods by indigenous peoples have resulted in some of the highest exposures in the world to certain contaminants.
Customizing NASA's Earth Science Research Products for addressing MENA Water Challenges
NASA Technical Reports Server (NTRS)
Habib, Shahid
2012-01-01
As projected by IPCC 2007 report, by the end of this century the Middle East North Mrica (MENA) region is projected to experience an increase of 3 C to 5 C rise in mean temperatures and a 20% decline in precipitation. This poses a serious problem for this geographic zone especially when majority of the hydrological consumption is for the agriculture sector and the remaining amount is for domestic consumption. In late 2011, the World Bank, USAID and NASA have joined hands to establishing integrated, modem, up to date NASA developed capabilities for various countries in the MENA region for addressing water resource issues and adapting to climate change impacts for improved decision making for societal benefits. The main focus of this undertaking is to address the most pressing societal issues which can be modeled and solved by utilizing NASA Earth Science remote sensing data products and hydrological models. The remote sensing data from space is one of the best ways to study such complex issues and further feed into the decision support systems. NASA's fleet of Earth Observing satellites offer a great vantage point from space to look at the globe and provide vital signs necessary to maintain healthy and sustainable ecosystem. NASA has over fifteen satellites and thirty instruments operating on these space borne platforms and generating over 2000 different science products on a daily basis. Some of these products are soil moisture, global precipitation, aerosols, cloud cover, normalized difference vegetation index, land cover/use, ocean altimetry, ocean salinity, sea surface winds, sea surface temperature, ozone and atmospheric gasses, ice and snow measurements, and many more. All of the data products, models and research results are distributed via the Internet freely through out the world. This project will utilize several NASA models such as global Land Data Assimilation System (LDAS) to generate hydrological states and fluxes in near real time. These LDAS products will then be further compared with other NASA satellite observations (MODIS, VIIRS, TRMM, etc.) and other discrete models to compare and optimize evapotranspiration, soil moisture and crop irrigation, drought assessment and water balance. The floods being a critical disaster in many of the MENA countries, NASA's global flood mapping and modeling framework (CREST) will be customized for country specific needs and delivered to the remote sensing organizations for their future use. Training is an important component under this activity and adequate level of training will be offered to build basic capacity to work with NASA provided data products, models for their future use. This paper provides a comprehensive introduction to NASA's Earth Science mission for understanding the behavior of our home Planet, projecting its health for future generations and applying research results solving societal issues.
Secure distribution for high resolution remote sensing images
NASA Astrophysics Data System (ADS)
Liu, Jin; Sun, Jing; Xu, Zheng Q.
2010-09-01
The use of remote sensing images collected by space platforms is becoming more and more widespread. The increasing value of space data and its use in critical scenarios call for adoption of proper security measures to protect these data against unauthorized access and fraudulent use. In this paper, based on the characteristics of remote sensing image data and application requirements on secure distribution, a secure distribution method is proposed, including users and regions classification, hierarchical control and keys generation, and multi-level encryption based on regions. The combination of the three parts can make that the same remote sensing images after multi-level encryption processing are distributed to different permission users through multicast, but different permission users can obtain different degree information after decryption through their own decryption keys. It well meets user access control and security needs in the process of high resolution remote sensing image distribution. The experimental results prove the effectiveness of the proposed method which is suitable for practical use in the secure transmission of remote sensing images including confidential information over internet.
WWWinda Orchestrator: a mechanism for coordinating distributed flocks of Java Applets
NASA Astrophysics Data System (ADS)
Gutfreund, Yechezkal-Shimon; Nicol, John R.
1997-01-01
The WWWinda Orchestrator is a simple but powerful tool for coordinating distributed Java applets. Loosely derived from the Linda programming language developed by David Gelernter and Nicholas Carriero of Yale, WWWinda implements a distributed shared object space called TupleSpace where applets can post, read, or permanently store arbitrary Java objects. In this manner, applets can easily share information without being aware of the underlying communication mechanisms. WWWinda is a very useful for orchestrating flocks of distributed Java applets. Coordination event scan be posted to WWWinda TupleSpace and used to orchestrate the actions of remote applets. Applets can easily share information via the TupleSpace. The technology combines several functions in one simple metaphor: distributed web objects, remote messaging between applets, distributed synchronization mechanisms, object- oriented database, and a distributed event signaling mechanisms. WWWinda can be used a s platform for implementing shared VRML environments, shared groupware environments, controlling remote devices such as cameras, distributed Karaoke, distributed gaming, and shared audio and video experiences.
Instruments for Deep Space Weather Prediction and Science
NASA Astrophysics Data System (ADS)
DeForest, C. E.; Laurent, G.
2018-02-01
We discuss remote space weather monitoring system concepts that could mount on the Deep Space Gateway and provide predictive capability for space weather events including SEP events and CME crossings, and advance heliophysics of the solar wind.
Cirac-Claveras, Gemma
2018-01-01
This article uses a French case to explore the who, how, and why of satellite remote-sensing development and its transition towards routine utilization in the domain of ecosystems ecology. It discusses the evolution of a community of technology developers promoting remote-sensing capabilities (mostly sponsored by the French space agency). They attempted to legitimate quality scientific practices, establish the authority of satellite remote-sensing data within academic institutions, and build a community of technology users. This article, hence, is intended to contribute to historical interest in how a community of users is constructed for a technological system.
Checkout activity on the Remote Manipulator System (RMS) arm
1997-02-12
S82-E-5016 (12 Feb. 1997) --- Astronaut Steven A. Hawley, STS-82 mission specialist, controls Discovery's Remote Manipulation System (RMS), from the aft flight deck. Hawley and his crew mates are preparing for a scheduled Extravehicular Activity (EVA) with the Hubble Space Telescope (HST), which will be pulled into the Space Shuttle Discovery's cargo bay with the aid of the Remote Manipulator System (RMS). A series of EVA's will be required to properly service the giant telescope. Hawley served as a mission specialist on NASA's 1990 mission which was responsible for placing HST in Earth-orbit. This view was taken with an Electronic Still Camera (ESC).
Effects of the Ionosphere on Passive Microwave Remote Sensing of Ocean Salinity from Space
NASA Technical Reports Server (NTRS)
LeVine, D. M.; Abaham, Saji; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
Among the remote sensing applications currently being considered from space is the measurement of sea surface salinity. The salinity of the open ocean is important for understanding ocean circulation and for modeling energy exchange with the atmosphere. Passive microwave remote sensors operating near 1.4 GHz (L-band) could provide data needed to fill the gap in current coverage and to complement in situ arrays being planned to provide subsurface profiles in the future. However, the dynamic range of the salinity signal in the open ocean is relatively small and propagation effects along the path from surface to sensor must be taken into account. In particular, Faraday rotation and even attenuation/emission in the ionosphere can be important sources of error. The purpose or this work is to estimate the magnitude of these effects in the context of a future remote sensing system in space to measure salinity in L-band. Data will be presented as a function of time location and solar activity using IRI-95 to model the ionosphere. The ionosphere presents two potential sources of error for the measurement of salinity: Rotation of the polarization vector (Faraday rotation) and attenuation/emission. Estimates of the effect of these two phenomena on passive remote sensing over the oceans at L-band (1.4 GHz) are presented.
Rocket engine exhaust plume diagnostics and health monitoring/management during ground testing
NASA Technical Reports Server (NTRS)
Chenevert, D. J.; Meeks, G. R.; Woods, E. G.; Huseonica, H. F.
1992-01-01
The current status of a rocket exhaust plume diagnostics program sponsored by NASA is reviewed. The near-term objective of the program is to enhance test operation efficiency and to provide for safe cutoff of rocket engines prior to incipient failure, thereby avoiding the destruction of the engine and the test complex and preventing delays in the national space program. NASA programs that will benefit from the nonintrusive remote sensed rocket plume diagnostics and related vehicle health management and nonintrusive measurement program are Space Shuttle Main Engine, National Launch System, National Aero-Space Plane, Space Exploration Initiative, Advanced Solid Rocket Motor, and Space Station Freedom. The role of emission spectrometry and other types of remote sensing in rocket plume diagnostics is discussed.
Active vibration damping of the Space Shuttle remote manipulator system
NASA Technical Reports Server (NTRS)
Scott, Michael A.; Gilbert, Michael G.; Demeo, Martha E.
1991-01-01
The feasibility of providing active damping augmentation of the Space Shuttle Remote Manipulator System (RMS) following normal payload handling operations is investigated. The approach used in the analysis is described, and the results for both linear and nonlinear performance analysis of candidate laws are presented, demonstrating that significant improvement in the RMS dynamic response can be achieved through active control using measured RMS tip acceleration data for feedback.
Recent developments in space shuttle remote sensing, using hand-held film cameras
NASA Technical Reports Server (NTRS)
Amsbury, David L.; Bremer, Jeffrey M.
1992-01-01
The authors report on the advantages and disadvantages of a number of camera systems which are currently employed for space shuttle remote sensing operations. Systems discussed include the modified Hasselbad, the Rolleiflex 6008, the Linkof 5-inch format system, and the Nikon F3/F4 systems. Film/filter combinations (color positive films, color infrared films, color negative films and polarization filters) are presented.
FAST at MACH 20: clinical ultrasound aboard the International Space Station.
Sargsyan, Ashot E; Hamilton, Douglas R; Jones, Jeffrey A; Melton, Shannon; Whitson, Peggy A; Kirkpatrick, Andrew W; Martin, David; Dulchavsky, Scott A
2005-01-01
Focused assessment with sonography for trauma (FAST) examination has been proved accurate for diagnosing trauma when performed by nonradiologist physicians. Recent reports have suggested that nonphysicians also may be able to perform the FAST examination reliably. A multipurpose ultrasound system is installed on the International Space Station as a component of the Human Research Facility. Nonphysician crew members aboard the International Space Station receive modest training in hardware operation, sonographic techniques, and remotely guided scanning. This report documents the first FAST examination conducted in space, as part of the sustained effort to maintain the highest possible level of available medical care during long-duration space flight. An International Space Station crew member with minimal sonography training was remotely guided through a FAST examination by an ultrasound imaging expert from Mission Control Center using private real-time two-way audio and a private space-to-ground video downlink (7.5 frames/second). There was a 2-second satellite delay for both video and audio. To facilitate the real-time telemedical ultrasound examination, identical reference cards showing topologic reference points and hardware controls were available to both the crew member and the ground-based expert. A FAST examination, including four standard abdominal windows, was completed in approximately 5.5 minutes. Following commands from the Mission Control Center-based expert, the crew member acquired all target images without difficulty. The anatomic content and fidelity of the ultrasound video were excellent and would allow clinical decision making. It is possible to conduct a remotely guided FAST examination with excellent clinical results and speed, even with a significantly reduced video frame rate and a 2-second communication latency. A wider application of trauma ultrasound applications for remote medicine on earth appears to be possible and warranted.
NASA Technical Reports Server (NTRS)
Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy
2010-01-01
Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments
IMIS: An intelligence microscope imaging system
NASA Technical Reports Server (NTRS)
Caputo, Michael; Hunter, Norwood; Taylor, Gerald
1994-01-01
Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.
Space-Borne Radio-Sounding Investigations Facilitated by the Virtual Wave Observatory (VWO)
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Fung, Shing F.; Bilitza,Dieter; Garcia, Leonard N.; Shao, Xi; Galkin, Ivan A.
2011-01-01
The goal of the Virtual Wave Observatory (VWO) is to provide userfriendly access to heliophysics wave data. While the VWO initially emphasized the vast quantity of wave data obtained from passive receivers, the VWO infrastructure can also be used to access active sounder data sets. Here we use examples from some half-million Alouette-2, ISIS-1, and ISIS-2 digital topside-sounder ionograms to demonstrate the desirability of such access to the actual ionograms for investigations of both natural and sounder-stimulated plasma-wave phenomena. By this demonstration, we wish to encourage investigators to make other valuable space-borne sounder data sets accessible via the VWO.
Solar-pumped laser for free space power transmission
NASA Technical Reports Server (NTRS)
Lee, Ja H.
1989-01-01
Laser power transmission; laser systems; space-borne and available lasers; 2-D and 1 MW laser diode array systems; technical issues; iodine solar pumped laser system; and laser power transmission applications are presented. This presentation is represented by viewgraphs only.
Proposal for a remotely manned space station
NASA Technical Reports Server (NTRS)
Minsky, Marvin
1990-01-01
The United States is in trouble in space. The costs of the proposed Space Station Freedom have grown beyond reach, and the present design is obsolete. The trouble has come from imagining that there are only two alternatives: manned vs. unmanned. Both choices have led us into designs that do not appear to be practical. On one side, the United States simply does not possess the robotic technology needed to operate or assemble a sophisticated unmanned space station. On the other side, the manned designs that are now under way seem far too costly and dangerous, with all of its thousands of extravehicular activity (EVA) hours. More would be accomplished at far less cost by proceeding in a different way. The design of a space station made of modular, Erector Set-like parts is proposed which is to be assembled using earth-based remotely-controlled binary-tree telerobots. Earth-based workers could be trained to build the station in space using simulators. A small preassembled spacecraft would be launched with a few telerobots, and then, telerobots could be ferried into orbit along with stocks of additional parts. Trained terrestrial workers would remotely assemble a larger station, and materials for additional power and life support systems could be launched. Finally, human scientists and explorers could be sent to the space station. Other aspects of such a space station program are discussed.
Remote sensing and the Mississippi high accuracy reference network
NASA Technical Reports Server (NTRS)
Mick, Mark; Alexander, Timothy M.; Woolley, Stan
1994-01-01
Since 1986, NASA's Commercial Remote Sensing Program (CRSP) at Stennis Space Center has supported commercial remote sensing partnerships with industry. CRSP's mission is to maximize U.S. market exploitation of remote sensing and related space-based technologies and to develop advanced technical solutions for spatial information requirements. Observation, geolocation, and communications technologies are converging and their integration is critical to realize the economic potential for spatial informational needs. Global positioning system (GPS) technology enables a virtual revolution in geopositionally accurate remote sensing of the earth. A majority of states are creating GPS-based reference networks, or high accuracy reference networks (HARN). A HARN can be defined for a variety of local applications and tied to aerial or satellite observations to provide an important contribution to geographic information systems (GIS). This paper details CRSP's experience in the design and implementation of a HARN in Mississippi and the design and support of future applications of integrated earth observations, geolocation, and communications technology.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...
15 CFR 960.5 - Confidentiality of information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...
Naval EarthMap Observer (NEMO) Hyperspectral Remote Sensing Program
2000-10-01
The NEMO hyperspectral remote sensing program will provide unclassified, space-based hyperspectral passive imagery at moderate resolution that offers substantial potential for direct use by Naval forces and the Civil Sector.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...
15 CFR 960.5 - Confidentiality of information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...
15 CFR 960.5 - Confidentiality of information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...
Code of Federal Regulations, 2013 CFR
2013-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...
15 CFR 960.5 - Confidentiality of information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...
Code of Federal Regulations, 2012 CFR
2012-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...
Code of Federal Regulations, 2014 CFR
2014-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...