Sample records for space charge model

  1. A model and simulation of fast space charge pulses in polymers

    NASA Astrophysics Data System (ADS)

    Lv, Zepeng; Rowland, Simon M.; Wu, Kai

    2017-11-01

    The transport of space charge packets across polyethylene and epoxy resin in high electric fields has been characterized as fast or slow depending on packet mobility. Several explanations for the formation and transport of slow space charge packets have been proposed, but the origins of fast space charge pulses, with mobilities above 10-11 m2 V-1 s-1, are unclear. In one suggested model, it is assumed that the formation of fast charge pulses is due to discontinuous electromechanical compression and charge injection at the electrode-insulation interface, and their transport is related to corresponding relaxation processes. In that model, charges travel as a pulse because of group polarization. This paper provides an alternative model based on the reduction of charge carrier activation energy due to charge density triggered polymer chain movement and subsequent chain relaxation times. The generation and transport of fast charge pulses are readily simulated by a bipolar charge transport model with three additional parameters: reduced activation energy, charge density threshold, and chain relaxation time. Such a model is shown to reproduce key features of fast space charge pulses including speed, duration, repetition rate and pulse size. This model provides the basis for a deep understanding of the physical origins of fast space charge pulses in polymers.

  2. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    DOE PAGES

    Qiang, Ji

    2017-01-23

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  3. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiang, Ji

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  4. Two particle model for studying the effects of space-charge force on strong head-tail instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Yong Ho; Chao, Alexander Wu; Blaskiewicz, Michael M.

    In this paper, we present a new two particle model for studying the strong head-tail instabilities in the presence of the space-charge force. It is a simple expansion of the well-known two particle model for strong head-tail instability and is still analytically solvable. No chromaticity effect is included. It leads to a formula for the growth rate as a function of the two dimensionless parameters: the space-charge tune shift parameter (normalized by the synchrotron tune) and the wakefield strength, Upsilon. The three-dimensional contour plot of the growth rate as a function of those two dimensionless parameters reveals stopband structures. Manymore » simulation results generally indicate that a strong head-tail instability can be damped by a weak space-charge force, but the beam becomes unstable again when the space-charge force is further increased. The new two particle model indicates a similar behavior. In weak space-charge regions, additional tune shifts by the space-charge force dissolve the mode coupling. As the space-charge force is increased, they conversely restore the mode coupling, but then a further increase of the space-charge force decouples the modes again. Lastly, this mode coupling/decoupling behavior creates the stopband structures.« less

  5. Two particle model for studying the effects of space-charge force on strong head-tail instabilities

    DOE PAGES

    Chin, Yong Ho; Chao, Alexander Wu; Blaskiewicz, Michael M.

    2016-01-19

    In this paper, we present a new two particle model for studying the strong head-tail instabilities in the presence of the space-charge force. It is a simple expansion of the well-known two particle model for strong head-tail instability and is still analytically solvable. No chromaticity effect is included. It leads to a formula for the growth rate as a function of the two dimensionless parameters: the space-charge tune shift parameter (normalized by the synchrotron tune) and the wakefield strength, Upsilon. The three-dimensional contour plot of the growth rate as a function of those two dimensionless parameters reveals stopband structures. Manymore » simulation results generally indicate that a strong head-tail instability can be damped by a weak space-charge force, but the beam becomes unstable again when the space-charge force is further increased. The new two particle model indicates a similar behavior. In weak space-charge regions, additional tune shifts by the space-charge force dissolve the mode coupling. As the space-charge force is increased, they conversely restore the mode coupling, but then a further increase of the space-charge force decouples the modes again. Lastly, this mode coupling/decoupling behavior creates the stopband structures.« less

  6. Applying simulation model to uniform field space charge distribution measurements by the PEA method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Salama, M.M.A.

    1996-12-31

    Signals measured under uniform fields by the Pulsed Electroacoustic (PEA) method have been processed by the deconvolution procedure to obtain space charge distributions since 1988. To simplify data processing, a direct method has been proposed recently in which the deconvolution is eliminated. However, the surface charge cannot be represented well by the method because the surface charge has a bandwidth being from zero to infinity. The bandwidth of the charge distribution must be much narrower than the bandwidths of the PEA system transfer function in order to apply the direct method properly. When surface charges can not be distinguished frommore » space charge distributions, the accuracy and the resolution of the obtained space charge distributions decrease. To overcome this difficulty a simulation model is therefore proposed. This paper shows their attempts to apply the simulation model to obtain space charge distributions under plane-plane electrode configurations. Due to the page limitation for the paper, the charge distribution originated by the simulation model is compared to that obtained by the direct method with a set of simulated signals.« less

  7. Spacecraft Charging and Auroral Boundary Predictions in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2016-01-01

    Auroral charging of spacecraft is an important class of space weather impacts on technological systems in low Earth orbit. In order for space weather models to accurately specify auroral charging environments, they must provide the appropriate plasma environment characteristics responsible for charging. Improvements in operational space weather prediction capabilities relevant to charging must be tested against charging observations.

  8. Asymmetric injection and distribution of space charges in propylene carbonate under impulse voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Chen, Qiulin; Sun, Potao; Yang, Ming; Guo, Hongda; Ye, Lian

    2018-05-01

    Space charge can distort the electric field in high voltage stressed liquid dielectrics and lead to breakdown. Observing the evolution of space charge in real time and determining the influencing factors are of considerable significance. The spatio-temporal evolution of space charge in propylene carbonate, which is very complex under impulse voltage, was measured in this study through the time-continuous Kerr electro-optic field mapping measurement. We found that the injection charge from a brass electrode displayed an asymmetric effect; that is, the negative charge injection near the cathode lags behind the positive charge injection near the anode. Physical mechanisms, including charge generation and drift, are analyzed, and a voltage-dependent saturated drift rectification model was established to explain the interesting phenomena. Mutual validation of models and our measurement data indicated that a barrier layer, which is similar to metal-semiconductor contact, was formed in the contact interface between the electrode and propylene carbonate and played an important role in the space charge injection.

  9. The influence of space charge shielding on dielectric multipactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.; Liu, G. Z.; Tang, C. X.

    2009-05-15

    A model of space charge influenced by multipactor electrons and plasma has been established. The positive space charge potential/field for vacuum dielectric multipactor is analytically studied. After considering the plasma, the positive space charge field is further shielded, and multipactor saturates at higher surface accumulated field, compared with that for only considering multipactor electrons. The negative space charge potential/field for dielectric breakdown at high pressure is analyzed. It is found that the negative potential can be nonmonotonously varied, forming a minimum potential well.

  10. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    DOE PAGES

    Halavanau, A.; Piot, P.

    2016-03-03

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. It was pointed out, however, that such \\micro-bunching instabilities" could be potentially useful to support the generation of broadband coherent radiation. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we augment these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program elegant. This high-fidelity model of the space charge ismore » used to benchmark conventional LSC models. We then employ the developed model to optimize the performance of a cascaded longitudinal space charge amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.« less

  11. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  12. Space charge effect in spectrometers of ion mobility increment with cylindrical drift chamber.

    PubMed

    Elistratov, A A; Sherbakov, L A

    2007-01-01

    We have amplified the model for the drift of ions under a non-uniform high-frequency electric field by taking space charge effect into account. By this means, we have investigated the effect of space charge on the dynamics of a single type of ions in a spectrometer of ion mobility increment with a cylindrical drift chamber. The counteraction of the space charge effect and the focusing effect is investigated. The output ion current saturation caused by the effect of the space charge is observed. The shape of the ion peak taking into consideration the space charge effect has been obtained. We show that the effect of the space charge is sufficient for the relative ion density greater than 10 ppt by order of magnitude (for a cylindrical geometry spectrometer with typical parameters).

  13. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    NASA Astrophysics Data System (ADS)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  14. Ultra-low current beams in UMER to model space-charge effects in high-energy proton and ion machines

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Beaudoin, B.; Baumgartner, H.; Ehrenstein, S.; Haber, I.; Koeth, T.; Montgomery, E.; Ruisard, K.; Sutter, D.; Yun, D.; Kishek, R. A.

    2017-03-01

    The University of Maryland Electron Ring (UMER) has operated traditionally in the regime of strong space-charge dominated beam transport, but small-current beams are desirable to significantly reduce the direct (incoherent) space-charge tune shift as well as the tune depression. This regime is of interest to model space-charge effects in large proton and ion rings similar to those used in nuclear physics and spallation neutron sources, and also for nonlinear dynamics studies of lattices inspired on the Integrable Optics Test Accelerator (IOTA). We review the definitions of beam vs. space-charge intensities and discuss three methods for producing very small beam currents in UMER. We aim at generating 60µA - 1.0mA, 100 ns, 10 keV beams with normalized rms emittances of the order of 0.1 - 1.0µm.

  15. Bulk Charging of Dielectrics in Cryogenic Space Environments

    NASA Technical Reports Server (NTRS)

    Minow, J. I.; Coffey, V. N.; Blackwell, W. C., Jr.; Parker, L. N.; Jun, I.; Garrett, H. B.

    2007-01-01

    We use a 1-D bulk charging model to evaluate dielectric charging at cryogenic temperatures relevant to space systems using passive cooling to <100K or extended operations in permanently dark lunar craters and the lunar night.

  16. Dependence of the TMCI Threshold on the Space Charge Tune Shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    2016-07-20

    Transverse mode coupling instability of a bunch with space charge is considered in frameworks of the boxcar model. Presented results demonstrate a monotonous growth of the TMCI threshold at increasing space charge tune shift, and do not support the supposition that the monotony can be violated at a higher SC.

  17. Experimental study and simulation of space charge stimulated discharge

    NASA Astrophysics Data System (ADS)

    Noskov, M. D.; Malinovski, A. S.; Cooke, C. M.; Wright, K. A.; Schwab, A. J.

    2002-11-01

    The electrical discharge of volume distributed space charge in poly(methylmethacrylate) (PMMA) has been investigated both experimentally and by computer simulation. The experimental space charge was implanted in dielectric samples by exposure to a monoenergetic electron beam of 3 MeV. Electrical breakdown through the implanted space charge region within the sample was initiated by a local electric field enhancement applied to the sample surface. A stochastic-deterministic dynamic model for electrical discharge was developed and used in a computer simulation of these breakdowns. The model employs stochastic rules to describe the physical growth of the discharge channels, and deterministic laws to describe the electric field, the charge, and energy dynamics within the discharge channels and the dielectric. Simulated spatial-temporal and current characteristics of the expanding discharge structure during physical growth are quantitatively compared with the experimental data to confirm the discharge model. It was found that a single fixed set of physically based dielectric parameter values was adequate to simulate the complete family of experimental space charge discharges in PMMA. It is proposed that such a set of parameters also provides a useful means to quantify the breakdown properties of other dielectrics.

  18. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  19. Description of bipolar charge transport in polyethylene using a fluid model with a constant mobility: model prediction

    NASA Astrophysics Data System (ADS)

    LeRoy, S.; Segur, P.; Teyssedre, G.; Laurent, C.

    2004-01-01

    We present a conduction model aimed at describing bipolar transport and space charge phenomena in low density polyethylene under dc stress. In the first part we recall the basic requirements for the description of charge transport and charge storage in disordered media with emphasis on the case of polyethylene. A quick review of available conduction models is presented and our approach is compared with these models. Then, the bases of the model are described and related assumptions are discussed. Finally, results on external current, trapped and free space charge distributions, field distribution and recombination rate are presented and discussed, considering a constant dc voltage, a step-increase of the voltage, and a polarization-depolarization protocol for the applied voltage. It is shown that the model is able to describe the general features reported for external current, electroluminescence and charge distribution in polyethylene.

  20. MODELING PARTICULATE CHARGING IN ESPS

    EPA Science Inventory

    In electrostatic precipitators there is a strong interaction between the particulate space charge and the operating voltage and current of an electrical section. Calculating either the space charge or the operating point when the other is fixed is not difficult, but calculating b...

  1. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teyssedre, G., E-mail: gilbert.teyssedre@laplace.univ-tlse.fr; Laurent, C.; CNRS, LAPLACE, F-31062 Toulouse

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are modelmore » of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.« less

  2. Accelerator Technology Division: Annual Report FY 1990

    DTIC Science & Technology

    1991-05-01

    new version of PARMTEQ that includes 3-D space - charge and image- charge effects in the Figure 2.4. Preliminary concept for the SSC RFQ Linac 25...developing a better space - charge model based on the work of Sachercr. We have successfully demonstrated the ability to include off-axis effects in...a way fully consistent with the space - charge forces. Modifying BEDLAM to include these effects will leave almost all of the code (the integrator

  3. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    PubMed Central

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-01-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices. PMID:26670138

  4. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    NASA Astrophysics Data System (ADS)

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-12-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices.

  5. Space Charge Modulated Electrical Breakdown

    PubMed Central

    Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George

    2016-01-01

    Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577

  6. Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Pour, Maria Z. A.

    2016-01-01

    Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.

  7. Comparison between field mill and corona point instrumentation at Kennedy Space Center - Use of these data with a model to determine cloudbase electric fields

    NASA Technical Reports Server (NTRS)

    Markson, R.; Anderson, B.; Govaert, J.; Fairall, C. W.

    1989-01-01

    A novel coronal current-determining instrument is being used at NASA-KSC which overcomes previous difficulties with wind sensitivity and a voltage-threshold 'deadband'. The mounting of the corona needle at an elevated location reduces coronal and electrode layer space-charge influences on electric fields, rendering the measurement of space charge density possible. In conjunction with a space-charge compensation model, these features allow a more realistic estimation of cloud base electric fields and the potential for lightning strike than has previously been possible with ground-based sensors.

  8. The Design of a 100 GHz CARM (Cyclotron Auto-Resonance Maser) Oscillator Experiment

    DTIC Science & Technology

    1988-09-14

    pulsed-power system must be considered. A model of the voltage pulse that consists of a linear voltage rise from zero to the operating voltage...to vary as the voltage to the 3/2 power in order to model space-charge limited flow from a relativistic diode.. As the current rises in the pulse, the...distribution due to a space-charge-limited, laminar flow of electrons based on a one-dimensional, planar, relativistic model . From the charge distribution

  9. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  10. A Core-Particle Model for Periodically Focused Ion Beams with Intense Space-Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, S M; Barnard, J J; Bukh, B

    2006-08-02

    A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam described by the KV distribution. The core beam has uniform density within an elliptical cross-section and can be applied to model both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to removemore » coherent utter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The core-particle model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms matched beam in a periodic quadrupole focusing channel [Lund and Chawla, Nuc. Instr. and Meth. A 561, 203 (2006)]. Further characteristics of these processes are presented here.« less

  11. Space-charge limited photocurrent.

    PubMed

    Mihailetchi, V D; Wildeman, J; Blom, P W M

    2005-04-01

    In 1971 Goodman and Rose predicted the occurrence of a fundamental electrostatic limit for the photocurrent in semiconductors at high light intensities. Blends of conjugated polymers and fullerenes are an ideal model system to observe this space-charge limit experimentally, since they combine an unbalanced charge transport, long lifetimes, high charge carrier generation efficiencies, and low mobility of the slowest charge carrier. The experimental photocurrents reveal all the characteristics of a space-charge limited photocurrent: a one-half power dependence on voltage, a three-quarter power dependence on light intensity, and a one-half power scaling of the voltage at which the photocurrent switches into full saturation with light intensity.

  12. Design of a 10 GHz, 10 MW Gyrotron.

    DTIC Science & Technology

    1985-11-27

    beam, which can be located close to the cavity wall, reducing space charge effects . In addition, high current density beams can be generated (6) with the...calculates electron trajectories within potential boundaries, including the effects of beam space charge , and is fully relativistic. Modeling the... space charge would cause the bottom electrons to have too little perpendicular energy, and vice versa, as illustrated in Figures 11 and 12. The

  13. Superconducting Cavity Development for Free Electron Lasers.

    DTIC Science & Technology

    1986-06-30

    effects have been modeled extensively using the code PARMELA, including finite space charge . The conflict is resolved through the use of harmonically...depends on the specifics of how the whole accelerator is run, i.e., bunch length, interpulse spacing , macrobunch length, charge per bunch, external...this indicates that the bunch length should be as long as possible. 2.4 OPTIMUM BUNCH LENGTH 20 Although wakefield, HOM excitation and space charge

  14. Electron Multipactor: Theory Review, Comparison and Modeling of Mitigation Techniques in ICEPIC

    DTIC Science & Technology

    2009-03-01

    dielectric . This development includes space charge effects . 2.2.1 Conventions, Notations and Definitions...gigawatts, one percent of the RF energy would indeed be enough to cause failure in the dielectric window. For the case in which space charge effects are...buildup of the space - charges along the dielectric surface not allowing the number of multipactoring electrons to evolve beyond a certain point. 0 2 4 6

  15. Discrete space charge affected field emission: Flat and hemisphere emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil; Shiffler, Donald A.; Tang, Wilkin

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surfacemore » roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.« less

  16. Simple phenomenological modeling of transition-region capacitance of forward-biased p-n junction diodes and transistor diodes

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1982-01-01

    The derivation of a simple expression for the capacitance C(V) associated with the transition region of a p-n junction under a forward bias is derived by phenomenological reasoning. The treatment of C(V) is based on the conventional Shockley equations, and simpler expressions for C(V) result that are in general accord with the previous analytical and numerical results. C(V) consists of two components resulting from changes in majority carrier concentration and from free hole and electron accumulation in the space-charge region. The space-charge region is conceived as the intrinsic region of an n-i-p structure for a space-charge region markedly wider than the extrinsic Debye lengths at its edges. This region is excited in the sense that the forward bias creates hole and electron densities orders of magnitude larger than those in equilibrium. The recent Shirts-Gordon (1979) modeling of the space-charge region using a dielectric response function is contrasted with the more conventional Schottky-Shockley modeling.

  17. Atomic Radius and Charge Parameter Uncertainty in Biomolecular Solvation Energy Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiu; Lei, Huan; Gao, Peiyuan

    Atomic radii and charges are two major parameters used in implicit solvent electrostatics and energy calculations. The optimization problem for charges and radii is under-determined, leading to uncertainty in the values of these parameters and in the results of solvation energy calculations using these parameters. This paper presents a method for quantifying this uncertainty in solvation energies using surrogate models based on generalized polynomial chaos (gPC) expansions. There are relatively few atom types used to specify radii parameters in implicit solvation calculations; therefore, surrogate models for these low-dimensional spaces could be constructed using least-squares fitting. However, there are many moremore » types of atomic charges; therefore, construction of surrogate models for the charge parameter space required compressed sensing combined with an iterative rotation method to enhance problem sparsity. We present results for the uncertainty in small molecule solvation energies based on these approaches. Additionally, we explore the correlation between uncertainties due to radii and charges which motivates the need for future work in uncertainty quantification methods for high-dimensional parameter spaces.« less

  18. Simulation of transverse modes with their intrinsic Landau damping for bunched beams in the presence of space charge

    DOE PAGES

    Macridin, Alexandru; Burov, Alexey; Stern, Eric; ...

    2015-07-22

    Transverse dipole modes in bunches with space charge are simulated using the synergia accelerator modeling package and analyzed with dynamic mode decomposition. The properties of the first three space charge modes, including their shape, damping rates, and tune shifts are described over the entire range of space charge strength. As a result, the intrinsic Landau damping predicted and estimated in 2009 by one of the authors is confirmed with a reasonable scaling factor of ≃2.4. For the KV distribution, very good agreement with PATRIC simulations performed by Kornilov and Boine-Frankenheim is obtained.

  19. Multipactor Discharge in High Power Microwave Systems: Analyzing Effects and Mitigation through Simulation in ICEPIC

    DTIC Science & Technology

    2013-03-01

    weapons, 2012. Private Communication. 22. A. Valfells, H.P. Verboncoeur, and Y.Y. Lau. Space - charge effects on multipactor dielectric . Plasma Science...when space charge effects are omitted modeled particles have no associated fields and when emitted from the dielectric do not have leave behind a...Experimental research performed at Texas Tech [16] showed that space charge must be included to properly characterize the multipactor evolution [22

  20. Transverse mode coupling instability threshold with space charge and different wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero atmore » higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. As a result, a comparison of the results with published articles is represented.« less

  1. Transverse mode coupling instability threshold with space charge and different wakefields

    DOE PAGES

    Balbekov, V.

    2017-03-10

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero atmore » higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. As a result, a comparison of the results with published articles is represented.« less

  2. Theoretical models for electron conduction in polymer systems—I. Macroscopic calculations of d.c. transient conductivity after pulse irradiation

    NASA Astrophysics Data System (ADS)

    Bartczak, Witold M.; Kroh, Jerzy

    The simulation of the transient d.c. conductivity in a quasi one-dimensional system of charges produced by a pulse of ionizing radiation in a solid sample has been performed. The simulation is based on the macroscopic conductivity equations and can provide physical insight into d.c. conductivity measurements, particularly for the case of transient currents in samples with internal space charge. We consider the system of mobile (negative) and immobile (positive) charges produced by a pulse of ionizing radiation in the sample under a fixed external voltage V0. The presence of space charge results in an electric field which is a function of both the spatial and the time variable: E( z, t). Given the space charge density, the electric field can be calculated from the Poisson equation. However, for an arbitrary space charge distribution, the corresponding equations can only be solved numerically. The two non-trivial cases for which approximate analytical solutions can be provided are: (i) The density of the current carriers n( z, t) is negligible in comparison with the density of immobile space charge N( z). A general analytical solution has been found for this case using Green's functions. The solutions for two cases, viz. the homogeneous distribution of space charge N( z) = N, and the non-homogeneous exponential distribution N( z) = A exp(- Bz), have been separately discussed. (ii) The space charge created in the pulse without any space charge present prior to the irradiation.

  3. Active space debris charging for contactless electrostatic disposal maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Sternovsky, Zoltán

    2014-01-01

    The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.

  4. MSFC/EV44 Natural Environment Capabilities

    NASA Technical Reports Server (NTRS)

    NeergaardParker, Linda; Willis, Emily M.; Minnow, Joseph I.; Coffey, Vic N.

    2014-01-01

    The Natural Environments Branch at Marshall Space Flight Center is an integral part of many NASA satellite and launch vehicle programs, providing analyses of the space and terrestrial environments that are used for program development efforts, operational support, and anomaly investigations. These capabilities include model development, instrument build and testing, analysis of space and terrestrial related data, spacecraft charging anomaly investigations, surface and internal charging modeling, space environment definition, and radiation assessments for electronic parts. All aspects of space and terrestrial design are implemented with the goal of devising missions that are successful from launch to operations in the space environment of LEO, polar, GEO, and interplanetary orbits.

  5. Initial Efforts in Characterizing Radiation and Plasma Effects on Space Assets: Bridging the Space Environment, Engineering and User Community

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Ganushkina, N. Y.; Guild, T. B.; Jiggens, P.; Jun, I.; Mazur, J. E.; Meier, M. M.; Minow, J. I.; Pitchford, D. A.; O'Brien, T. P., III; Shprits, Y.; Tobiska, W. K.; Xapsos, M.; Rastaetter, L.; Jordanova, V. K.; Kellerman, A. C.; Fok, M. C. H.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) has been leading the community-wide model validation projects for many years. Such effort has been broadened and extended via the newly-launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/), Its objective is to track space weather models' progress and performance over time, which is critically needed in space weather operations. The Radiation and Plasma Effects Working Team is working on one of the many focused evaluation topics and deals with five different subtopics: Surface Charging from 10s eV to 40 keV electrons, Internal Charging due to energetic electrons from hundreds keV to several MeVs. Single Event Effects from solar energetic particles (SEPs) and galactic cosmic rays (GCRs) (several MeV to TeVs), Total Dose due to accumulation of doses from electrons (>100 KeV) and protons (> 1 MeV) in a broad energy range, and Radiation Effects from SEPs and GCRs at aviation altitudes. A unique aspect of the Radiation and Plasma Effects focus area is that it bridges the space environments, engineering and user community. This presentation will summarize the working team's progress in metrics discussion/definition and the CCMC web interface/tools to facilitate the validation efforts. As an example, tools in the areas of surface charging/internal charging will be demoed.

  6. Quasi-integrability in deformed sine-Gordon models and infinite towers of conserved charges

    NASA Astrophysics Data System (ADS)

    Blas, Harold; Callisaya, Hector Flores

    2018-02-01

    We have studied the space-reflection symmetries of some soliton solutions of deformed sine-Gordon models in the context of the quasi-integrability concept. Considering a dual pair of anomalous Lax representations of the deformed model we compute analytically and numerically an infinite number of alternating conserved and asymptotically conserved charges through a modification of the usual techniques of integrable field theories. The charges associated to two-solitons with a definite parity under space-reflection symmetry, i.e. kink-kink (odd parity) and kink-antikink (even parity) scatterings with equal and opposite velocities, split into two infinite towers of conserved and asymptotically conserved charges. For two-solitons without definite parity under space-reflection symmetry (kink-kink and kink-antikink scatterings with unequal and opposite velocities) our numerical results show the existence of the asymptotically conserved charges only. However, we show that in the center-of-mass reference frame of the two solitons the parity symmetries and their associated set of exactly conserved charges can be restored. Moreover, the positive parity breather-like (kink-antikink bound state) solution exhibits a tower of exactly conserved charges and a subset of charges which are periodic in time. We back up our results with extensive numerical simulations which also demonstrate the existence of long lived breather-like states in these models. The time evolution has been simulated by the 4th order Runge-Kutta method supplied with non-reflecting boundary conditions.

  7. Ion-source modeling and improved performance of the CAMS high-intensity Cs-sputter ion source

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; Roberts, M. L.; Southon, J. R.

    2000-10-01

    The interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS) has been computer modeled using the program NEDLab, with the aim of improving negative ion output. Space charge effects on ion trajectories within the source were modeled through a successive iteration process involving the calculation of ion trajectories through Poisson-equation-determined electric fields, followed by calculation of modified electric fields incorporating the charge distribution from the previously calculated ion trajectories. The program has several additional features that are useful in ion source modeling: (1) averaging of space charge distributions over successive iterations to suppress instabilities, (2) Child's Law modeling of space charge limited ion emission from surfaces, and (3) emission of particular ion groups with a thermal energy distribution and at randomized angles. The results of the modeling effort indicated that significant modification of the interior geometry of the source would double Cs + ion production from our spherical ionizer and produce a significant increase in negative ion output from the source. The results of the implementation of the new geometry were found to be consistent with the model results.

  8. Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress

    NASA Astrophysics Data System (ADS)

    Boukhari, Hamed; Rogti, Fatiha

    2016-10-01

    The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.

  9. Circuital characterisation of space-charge motion with a time-varying applied bias

    PubMed Central

    Kim, Chul; Moon, Eun-Yi; Hwang, Jungho; Hong, Hiki

    2015-01-01

    Understanding the behaviour of space-charge between two electrodes is important for a number of applications. The Shockley-Ramo theorem and equivalent circuit models are useful for this; however, fundamental questions of the microscopic nature of the space-charge remain, including the meaning of capacitance and its evolution into a bulk property. Here we show that the microscopic details of the space-charge in terms of resistance and capacitance evolve in a parallel topology to give the macroscopic behaviour via a charge-based circuit or electric-field-based circuit. We describe two approaches to this problem, both of which are based on energy conservation: the energy-to-current transformation rule, and an energy-equivalence-based definition of capacitance. We identify a significant capacitive current due to the rate of change of the capacitance. Further analysis shows that Shockley-Ramo theorem does not apply with a time-varying applied bias, and an additional electric-field-based current is identified to describe the resulting motion of the space-charge. Our results and approach provide a facile platform for a comprehensive understanding of the behaviour of space-charge between electrodes. PMID:26133999

  10. Synergia: an accelerator modeling tool with 3-D space charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amundson, James F.; Spentzouris, P.; /Fermilab

    2004-07-01

    High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab boostermore » accelerator.« less

  11. Numerical analysis of ion wind flow using space charge for optimal design

    NASA Astrophysics Data System (ADS)

    Ko, Han Seo; Shin, Dong Ho; Baek, Soo Hong

    2014-11-01

    Ion wind flow has been widly studied for its advantages of a micro fluidic device. However, it is very difficult to predict the performance of the ion wind flow for various conditions because of its complicated electrohydrodynamic phenomena. Thus, a reliable numerical modeling is required to design an otimal ion wind generator and calculate velocity of the ion wind for the proper performance. In this study, the numerical modeling of the ion wind has been modified and newly defined to calculate the veloctiy of the ion wind flow by combining three basic models such as electrostatics, electrodynamics and fluid dynamics. The model has included presence of initial space charges to calculate transfer energy between space charges and air gas molecules using a developed space charge correlation. The simulation has been performed for a geometry of a pin to parallel plate electrode. Finally, the results of the simulation have been compared with the experimental data for the ion wind velocity to confirm the accuracy of the modified numerical modeling and to obtain the optimal design of the ion wind generator. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2013R1A2A2A01068653).

  12. Evaluation of Radiation Belt Space Weather Forecasts for Internal Charging Analyses

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria N.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    A variety of static electron radiation belt models, space weather prediction tools, and energetic electron datasets are used by spacecraft designers and operations support personnel as internal charging code inputs to evaluate electrostatic discharge risks in space systems due to exposure to relativistic electron environments. Evaluating the environment inputs is often accomplished by comparing whether the data set or forecast tool reliability predicts measured electron flux (or fluence over a given period) for some chosen period. While this technique is useful as a model metric, it does not provide the information necessary to evaluate whether short term deviances of the predicted flux is important in the charging evaluations. In this paper, we use a 1-D internal charging model to compute electric fields generated in insulating materials as a function of time when exposed to relativistic electrons in the Earth's magnetosphere. The resulting fields are assumed to represent the "true" electric fields and are compared with electric field values computed from relativistic electron environments derived from a variety of space environment and forecast tools. Deviances in predicted fields compared to the "true" fields which depend on insulator charging time constants will be evaluated as a potential metric for determining the importance of predicted and measured relativistic electron flux deviations over a range of time scales.

  13. Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalisation in Metal-Organic Frameworks.

    PubMed

    Hua, Carol; Doheny, Patrick William; Ding, Bowen; Chan, Bun; Yu, Michelle; Kepert, Cameron J; D'Alessandro, Deanna M

    2018-05-04

    Understanding the nature of charge transfer mechanisms in 3-dimensional Metal-Organic Frameworks (MOFs) is an important goal owing to the possibility of harnessing this knowledge to design conductive frameworks. These materials have been implicated as the basis for the next generation of technological devices for applications in energy storage and conversion, including electrochromic devices, electrocatalysts, and battery materials. After nearly two decades of intense research into MOFs, the mechanisms of charge transfer remain relatively poorly understood, and new strategies to achieve charge mobility remain elusive and challenging to experimentally explore, validate and model. We now demonstrate that aromatic stacking interactions in Zn(II) frameworks containing cofacial thiazolo[5,4-d]thiazole units lead to a mixed-valence state upon electrochemical or chemical reduction. This through-space Intervalence Charge Transfer (IVCT) phenomenon represents a new mechanism for charge delocalisation in MOFs. Computational modelling of the optical data combined with application of Marcus-Hush theory to the IVCT bands for the mixed-valence framework has enabled quantification of the degree of delocalisation using both in situ and ex situ electro- and spectro-electrochemical methods. A distance dependence for the through-space electron transfer has also been identified on the basis of experimental studies and computational calculations. This work provides a new window into electron transfer phenomena in 3-dimensional coordination space, of relevance to electroactive MOFs where new mechanisms for charge transfer are highly sought after, and to understanding biological light harvesting systems where through-space mixed-valence interactions are operative.

  14. Space charge effect in spectrometers of ion mobility increment with planar drift chamber.

    PubMed

    Elistratov, A A; Sherbakov, L A

    2007-01-01

    The effect of space charge on the ion beam in a spectrometer of ion mobility increment with the planar drift chamber has been investigated. A model for the drift of ions under a non-uniform high-frequency electric field(1-3) has been developed recently. We have amplified this model by taking space charge effect into account. The ion peak shape taking into consideration the space charge effect is obtained. The output current saturation effect limiting the rise of the ion peak with increasing ion density at the input of the drift chamber of a spectrometer is observed. We show that the saturation effect is caused by the following phenomenon. The maximum possible output ion density exists, depending on the ion type (constant ion mobility, k(0)) and the time of the motion of ions through the drift chamber. At the same time, the ion density does not depend on the parameters of the drift chamber.

  15. Application of Gauss's law space-charge limited emission model in iterative particle tracking method

    NASA Astrophysics Data System (ADS)

    Altsybeyev, V. V.; Ponomarev, V. A.

    2016-11-01

    The particle tracking method with a so-called gun iteration for modeling the space charge is discussed in the following paper. We suggest to apply the emission model based on the Gauss's law for the calculation of the space charge limited current density distribution using considered method. Based on the presented emission model we have developed a numerical algorithm for this calculations. This approach allows us to perform accurate and low time consumpting numerical simulations for different vacuum sources with the curved emitting surfaces and also in the presence of additional physical effects such as bipolar flows and backscattered electrons. The results of the simulations of the cylindrical diode and diode with elliptical emitter with the use of axysimmetric coordinates are presented. The high efficiency and accuracy of the suggested approach are confirmed by the obtained results and comparisons with the analytical solutions.

  16. Influences of the coordinate dependent noncommutative space on charged and spin currents

    NASA Astrophysics Data System (ADS)

    Ren, Ya-Jie; Ma, Kai

    2018-06-01

    We study the charged and spin currents on a coordinate dependent noncommutative space. Starting from the noncommutative extended relativistic equation of motion, the nonrelativistic approximation is obtained by using the Foldy-Wouthuysen transformation, and then the charged and spin currents are derived by using the extended Drude model. We find that the charged current is twisted by modifying the off-diagonal elements of the Hall conductivity, however, the spin current is not affected up to leading order of the noncommutative parameter.

  17. An equivalent body surface charge model representing three-dimensional bioelectrical activity

    NASA Technical Reports Server (NTRS)

    He, B.; Chernyak, Y. B.; Cohen, R. J.

    1995-01-01

    A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.

  18. A stochastic model for photon noise induced by charged particles in multiplier phototubes of the space telescope fine guidance sensors

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Kennel, H. F.

    1984-01-01

    The Space Telescope (ST) is subjected to charged particle strikes in its space environment. ST's onboard fine guidance sensors utilize multiplier phototubes (PMT) for attitude determination. These tubes, when subjected to charged particle strikes, generate spurious photons in the form of Cerenkov radiation and fluorescence which give rise to unwanted disturbances in the pointing of the telescope. A stochastic model for the number of these spurious photons which strike the photocathode of the multiplier phototube which in turn produce the unwanted photon noise are presented. The model is applicable to both galactic cosmic rays and charged particles trapped in the Earth's radiation belts. The model which was programmed allows for easy adaption to a wide range of particles and different parameters for the phototube of the multiplier. The probability density functions for photons noise caused by protons, alpha particles, and carbon nuclei were using thousands of simulated strikes. These distributions are used as part of an overall ST dynamics simulation. The sensitivity of the density function to changes in the window parameters was also investigated.

  19. Stochastic model for photon noise induced by charged particles in multiplier phototubes of the Hubble Space Telescope fine guidance sensors

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Kennel, H. F.

    1986-01-01

    The Space Telescope (ST) is subjected to charged particle strikes in its space environment. ST's onboard fine guidance sensors utilize multiplier phototubes (PMT) for attitude determination. These tubes, when subjected to charged particle strikes, generate spurious photons in the form of Cerenkov radiation and fluorescence which give rise to unwanted disturbances in the pointing of the telescope. A stochastic model for the number of these spurious photons which strike the photocathodes of the multiplier phototube which in turn produce the unwanted photon noise are presented. The model is applicable to both galactic cosmic rays and charged particles trapped in the earth's radiation belts. The model which was programmed allows for easy adaption to a wide range of particles and different parameters for the phototube of the multiplier. The probability density functions for photons noise caused by protons, alpha particles, and carbon nuclei were using thousands of simulated strikes. These distributions are used as part of an overall ST dynamics simulation. The sensitivity of the density function to changes in the window parameters was also investigated.

  20. Charge-exchange plasma environment for an ion drive spacecraft. [a model for describing mercury ion engines and its effect on spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Carruth, M. R., Jr.

    1979-01-01

    The charge exchange plasma environment around a spacecraft that uses mercury ion thrusters for propulsion is described. The interactions between the plasma environment and the spacecraft are determined and a model which describes the propagation of the mercury charge exchange plasma is discussed. The model is extended to describe the flow of the molybdenum component of the charge exchange plasma. The uncertainties in the models for various conditions are discussed and current drain to the solar array, charge exchange plasma material deposition, and the effects of space plasma on the charge exchange plasma propagation are addressed.

  1. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    DOE PAGES

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  2. Real-space visualization of remnant Mott gap and magnon excitations.

    PubMed

    Wang, Y; Jia, C J; Moritz, B; Devereaux, T P

    2014-04-18

    We demonstrate the ability to visualize real-space dynamics of charge gap and magnon excitations in the Mott phase of the single-band Hubbard model and the remnants of these excitations with hole or electron doping. At short times, the character of magnetic and charge excitations is maintained even for large doping away from the Mott and antiferromagnetic phases. Doping influences both the real-space patterns and long timescales of these excitations with a clear carrier asymmetry attributable to particle-hole symmetry breaking in the underlying model. Further, a rapidly oscillating charge-density-wave-like pattern weakens, but persists as a visible demonstration of a subleading instability at half-filling which remains upon doping. The results offer an approach to analyzing the behavior of systems where momentum space is either inaccessible or poorly defined.

  3. Validation of the NASCAP model using spaceflight data

    NASA Technical Reports Server (NTRS)

    Stannard, P. R.; Katz, I.; Gedeon, L.; Roche, J. C.; Rubin, A. G.; Tautz, M. F.

    1982-01-01

    The NASA Charging Analyzer Program (NASCAP) has been validated in a space environment. Data collected by the SCATHA (Spacecraft Charging at High Altitude) spacecraft has been used with NASCAP to simulate the charging response of the spacecraft ground conductor and dielectric surfaces with considerable success. Charging of the spacecraft ground observed in eclipse, during moderate and severe substorm environments, and in sunlight has been reproduced using the code. Close agreement between both the currents and potentials measured by the SSPM's, and the NASCAP simulated response, has been obtained for differential charging. It is concluded that NASCAP is able to predict spacecraft charging behavior in a space environment.

  4. Study of space charge layer in silver bromide microcrystals by means of ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Inami, Yoshiyasu

    2000-09-01

    Ultraviolet photoelectron spectroscopy has been successfully used to measure the heights of the tops of the valence bands of the surfaces of AgBr layers on Ag substrates for the verification of the space charge layer model. According to this model, the positive space charge layer (composed of negative charges with excess negative kink sites on the surface and corresponding positive charges with interstitial silver ions in the interior) is formed in silver halides, causing the difference in the electronic energy levels between their surface and interior. The depression of the positive space charge layer of AgBr caused by such adsorbates as photographic stabilizers and antifoggants was estimated from the decrease in the ionic conductivity of cubic AgBr microcrystals by the adsorbates. It was confirmed by the decrease in the heights of the tops of the valence bands of the surfaces of AgBr layers caused by the adsorbates in the presence of thin gelatin membranes on their surfaces. This result provided the explanation for the fact that the adsorbates increased the number of the microcrystals which formed latent image centers on the surface and decreased the number of the microcrystals, which formed latent image centers in the interior.

  5. The Orbit of Water Droplets around Charged Rod

    ERIC Educational Resources Information Center

    Ferstl, Andrew; Burns, Andrew

    2013-01-01

    The motion of charges around a centrally charged object is often compared to gravitational orbits (such as satellites around planets). Recently, a video taken by astronaut Don Pettit onboard the International Space Station shows water droplets orbiting a charged knitting needle. Here we attempt to model this motion and estimate the charges on the…

  6. Particle Tracing Modeling with SHIELDS

    NASA Astrophysics Data System (ADS)

    Woodroffe, J. R.; Brito, T. V.; Jordanova, V. K.

    2017-12-01

    The near-Earth inner magnetosphere, where most of the nation's civilian and military space assets operate, is an extremely hazardous region of the space environment which poses major risks to our space infrastructure. Failure of satellite subsystems or even total failure of a spacecraft can arise for a variety of reasons, some of which are related to the space environment: space weather events like single-event-upsets and deep dielectric charging caused by high energy particles, or surface charging caused by low to medium energy particles; other space hazards are collisions with natural or man-made space debris, or intentional hostile acts. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons on both macro- and microscale. These challenging problems are addressed using a team of world-class experts and state-of-the-art physics-based models and computational facilities. We present first results of a coupled BATS-R-US/RAM-SCB/Particle Tracing Model to evaluate particle fluxes in the inner magnetosphere. We demonstrate that this setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere.

  7. On the mechanism of pattern formation in glow dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Yajun; Li, Ben; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn

    2016-01-15

    The formation mechanism of pattern in glow dielectric barrier discharge is investigated by two-dimensional fluid modeling. Experimental results are shown for comparison. The simulation results show that the non-uniform distribution of space charges makes the discharge be enhanced in the high-density region but weakened in its neighborhood, which is considered as an activation-inhibition effect. This effect shows through during a current pulse (one discharge event) but also in a certain period of time after discharge that determines a driving frequency range for the non-uniformity of space charges to be enhanced. The effects of applied voltage, surface charge, electrode boundary, andmore » external field are also discussed. All these factors affect the formation of dielectric-barrier-discharge pattern by changing the distribution or the dynamics of space charges and hence the activation-inhibition effect of non-uniform space charges.« less

  8. Is the negative glow plasma of a direct current glow discharge negatively charged?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I., E-mail: Vladimir.Demidov@mail.wvu.edu

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculationmore » of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.« less

  9. Effects of polymer graft properties on protein adsorption and transport in ion exchange chromatography: a multiscale modeling study.

    PubMed

    Basconi, Joseph E; Carta, Giorgio; Shirts, Michael R

    2015-04-14

    Multiscale simulation is used to study the adsorption of lysozyme onto ion exchangers obtained by grafting charged polymers into a porous matrix, in systems with various polymer properties and strengths of electrostatic interaction. Molecular dynamics simulations show that protein partitioning into the polymer-filled pore space increases with the overall charge content of the polymers, while the diffusivity in the pore space decreases. However, the combination of greatly increased partitioning and modestly decreased diffusion results in macroscopic transport rates that increase as a function of charge content, as the large concentration driving force due to enhanced pore space partitioning outweighs the reduction in the pore space diffusivity. Matrices having greater charge associated with the grafted polymers also exhibit more diffuse intraparticle concentration profiles during transient adsorption. In systems with a high charge content per polymer and a low protein loading, the polymers preferentially partition toward the surface due to favorable interactions with the surface-bound protein. These results demonstrate the potential of multiscale modeling to illuminate qualitative trends between molecular properties and the adsorption equilibria and kinetic properties observable on macroscopic scales.

  10. Computer Modeling of High-Intensity Cs-Sputter Ion Sources

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; Roberts, M. L.; Southon, J. R.

    The grid-point mesh program NEDLab has been used to computer model the interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS), with the goal of improving negative ion output. NEDLab has several features that are important to realistic modeling of such sources. First, space-charge effects are incorporated in the calculations through an automated ion-trajectories/Poissonelectric-fields successive-iteration process. Second, space charge distributions can be averaged over successive iterations to suppress model instabilities. Third, space charge constraints on ion emission from surfaces can be incorporate under Child's Law based algorithms. Fourth, the energy of ions emitted from a surface can be randomly chosen from within a thermal energy distribution. And finally, ions can be emitted from a surface at randomized angles The results of our modeling effort indicate that significant modification of the interior geometry of the source will double Cs+ ion production from our spherical ionizer and produce a significant increase in negative ion output from the source.

  11. Fractal electrodynamics via non-integer dimensional space approach

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  12. Space charge effects in ultrafast electron diffraction and imaging

    NASA Astrophysics Data System (ADS)

    Tao, Zhensheng; Zhang, He; Duxbury, P. M.; Berz, Martin; Ruan, Chong-Yu

    2012-02-01

    Understanding space charge effects is central for the development of high-brightness ultrafast electron diffraction and microscopy techniques for imaging material transformation with atomic scale detail at the fs to ps timescales. We present methods and results for direct ultrafast photoelectron beam characterization employing a shadow projection imaging technique to investigate the generation of ultrafast, non-uniform, intense photoelectron pulses in a dc photo-gun geometry. Combined with N-particle simulations and an analytical Gaussian model, we elucidate three essential space-charge-led features: the pulse lengthening following a power-law scaling, the broadening of the initial energy distribution, and the virtual cathode threshold. The impacts of these space charge effects on the performance of the next generation high-brightness ultrafast electron diffraction and imaging systems are evaluated.

  13. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.

    2017-02-01

    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  14. Engineering charge ordering into multiferroicity

    NASA Astrophysics Data System (ADS)

    He, Xu; Jin, Kui-juan

    2016-04-01

    Multiferroic materials have attracted great interest but are rare in nature. In many transition-metal oxides, charge ordering and magnetic ordering coexist, so that a method of engineering charge-ordered materials into ferroelectric materials would lead to a large class of multiferroic materials. We propose a strategy for designing new ferroelectric or even multiferroic materials by inserting a spacing layer into each two layers of charge-ordered materials and artificially making a superlattice. One example of the model demonstrated here is the perovskite (LaFeO3)2/LaTiO3 (111) superlattice, in which the LaTiO3 layer acts as the donor and the spacing layer, and the LaFeO3 layer is half doped and performs charge ordering. The collaboration of the charge ordering and the spacing layer breaks the space inversion symmetry, resulting in a large ferroelectric polarization. As the charge ordering also leads to a ferrimagnetic structure, (LaFeO3)2/LaTiO3 is multiferroic. It is expected that this work can encourage the designing and experimental implementation of a large class of multiferroic structures with novel properties.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  16. Negative space charge effects in photon-enhanced thermionic emission solar converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segev, G.; Weisman, D.; Rosenwaks, Y.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionicmore » converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.« less

  17. Steady-State Ion Beam Modeling with MICHELLE

    NASA Astrophysics Data System (ADS)

    Petillo, John

    2003-10-01

    There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.

  18. Measurements of Ionospheric Density, Temperature, and Spacecraft Charging in a Space Weather Constellation

    NASA Astrophysics Data System (ADS)

    Balthazor, R. L.; McHarg, M. G.; Wilson, G.

    2016-12-01

    The Integrated Miniaturized Electrostatic Analyzer (IMESA) is a space weather sensor developed by the United States Air Force Academy and integrated and flown by the DoD's Space Test Program. IMESA records plasma spectrograms from which can be derived plasma density, temperature, and spacecraft frame charging. Results from IMESA currently orbiting on STPSat-3 are presented, showing frame charging effects dependent on a complex function of the number of solar panel cell strings switched in, solar panel current, and plasma density. IMESA will fly on four more satellites launching in the next two calendar years, enabling an undergraduate DoD space weather constellation in Low Earth Orbit that has the ability to significantly improve space weather forecasting capabilities using assimilative forecast models.

  19. High-order space charge effects using automatic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, Michael F.; Bruhwiler, David L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996

    1997-02-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of amore » Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach.« less

  20. Space charge effect in the spiral inflector

    NASA Astrophysics Data System (ADS)

    Toprek, Dragan

    2000-10-01

    This paper presents the analytical and numerical theory of the space charge effects in the beam in the spiral inflector. It considers a simplified model of a "straight" cylindrical beam by using a uniform particle distribution. Numerical results represented in this paper are obtained by using a modified version of the program CASINO.

  1. Light intensity dependence of open-circuit voltage and short-circuit current of polymer/fullerene solar cells

    NASA Astrophysics Data System (ADS)

    Koster, L. Jan A.; Mihailetchi, Valentin D.; Ramaker, Robert; Xie, Hangxing; Blom, Paul W. M.

    2006-04-01

    The open-circuit voltage (Voc) of polymer/fullerene bulk heterojunction solar cells is investigated as a function of light intensity for different temperatures. The observed photogenerated current and V oc are at variance with classical p-n junctionbased models. The influence of light intensity and recombination strength on V oc is consistently explained by a model based on the notion that the quasi-Fermi levels are constant throughout the device, including both drift and diffusion of charge carriers. The light intensity dependence of the short-circuit current density (J sc) is also addressed. A typical feature of polymer/fullerene based solar cells is that Jsc does not scale exactly linearly with light intensity (I). Instead, a power law relationship is found given by Jsc~ Iα, where α ranges from 0.9 to 1. In a number of reports this deviation from unity is attributed to the occurrence of bimolecular recombination. We demonstrate that the dependence of the photocurrent in bulk heterojunction solar cells is governed by the build-up of space charge in the device. The occurrence of space-charge stems from the difference in charge carrier mobility of electrons and holes. In blends of poly(3-hexylthiophene) and 6,6- phenyl C61-butyric acid methyl ester this mobility difference can be tuned in between one and three orders of magnitude, depending on the annealing conditions. This allows us to experimentally verify the relation between space charge build-up and intensity dependence of Jsc. Model calculations confirm that bimolecular recombination leads only to a typical loss of 1% of all free charge carriers at Jsc for these devices. Therefore, bimolecular recombination plays only a minor role as compared to the effect of space charge in the intensity dependence of J sc.

  2. Laboratory Experiments Enabling Electron Beam use in Tenuous Space Plasmas

    NASA Astrophysics Data System (ADS)

    Miars, G.; Leon, O.; Gilchrist, B. E.; Delzanno, G. L.; Castello, F. L.; Borovsky, J.

    2017-12-01

    A mission concept is under development which involves firing a spacecraft-mounted electron beam from Earth's magnetosphere to connect distant magnetic field lines in real time. To prevent excessive spacecraft charging and consequent beam return, the spacecraft must be neutralized in the tenuous plasma environment of the magnetosphere. Particle-In-Cell (PIC) simulations suggest neutralization can be accomplished by emitting a neutral plasma with the electron beam. Interpretation of these simulations also led to an ion emission model in which ion current is emitted from a quasi-neutral plasma as defined by the space charge limit [1,2]. Experiments were performed at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL) to help validate the ion emission model. A hollow cathode plasma contactor was used as a representative spacecraft and charged with respect to the chamber walls to examine the effect of spacecraft charging on ion emission. Retarding Potential Analyzer (RPA) measurements were performed to understand ion flow velocity as this parameter relates directly to the expected space charge limit. Planar probe measurements were also made to identify where ion emission primarily occurred and to determine emission current density levels. Evidence of collisions within the plasma (particularly charge exchange collisions) and a simple model predicting emitted ion velocities are presented. While a detailed validation of the ion emission model and of the simulation tools used in [1,2] is ongoing, these measurements add to the physical understanding of ion emission as it may occur in the magnetosphere. 1. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, J.D. Moulton, and E.A. MacDonald, J. Geophys. Res. Space Physics 120, 3647, 2015. 2. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, and J.D. Moulton, J. Geophys. Res. Space Physics 120, 3588, 2015. ________________________________ * This work is supported by Los Alamos National Laboratory.

  3. Numerical Study of Three Dimensional Effects in Longitudinal Space-Charge Impedance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-06-01

    Longitudinal space-charge (LSC) effects are generally considered as detrimental in free-electron lasers as they can seed instabilities. Such “microbunching instabilities” were recently shown to be potentially useful to support the generation of broadband coherent radiation pulses [1, 2]. Therefore there has been an increasing interest in devising accelerator beamlines capable of sustaining this LSC instability as a mechanism to produce a coherent light source. To date most of these studies have been carried out with a one-dimensional impedance model for the LSC. In this paper we use a N-body “Barnes-Hut” algorithm [3] to simulate the 3D space charge force inmore » the beam combined with elegant [4] and explore the limitation of the 1D model often used« less

  4. MODELING WAVE FORM EFFECTS IN ESPS: THE ALGORITHM IN ESPM AND ESPVI

    EPA Science Inventory

    The paper details the ways in which waveform effects in electrostatic precipitators (ESPs) are modeled. he effects of waveforms on particle charging, space charge corona suppression, and sparking are examined. he paper shows how the models extend these results to the case of inte...

  5. The influence of the breakdown electric field in the configuration of lightning corona sheath on charge distribution in the channel

    NASA Astrophysics Data System (ADS)

    Ignjatovic, Milan; Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Djuric, Radivoje

    2014-11-01

    A model of corona sheath that surrounds the thin core of the lightning channel has been investigated by using a generalized traveling current source return stroke model. The lightning channel is modeled by a charged corona sheath that stretches around a highly conductive central core through which the main current flows. The channel core with the negatively charged outer channel sheath forms a strong electric field, with an overall radial orientation. The return stroke process is modeled as the negative leader charge in the corona sheath being discharged by the positive charge coming from the channel core. Expressions that describe how the corona sheath radius evolves during the return stroke are obtained from the corona sheath model, which predicts charge motion within the sheath. The corona sheath model, set forth by Maslowski and Rakov (2006), Tausanovic et al. (2010), Marjanovic and Cvetic (2009), Cvetic et al. (2011) and Cvetic et al. (2012), divides the sheath onto three zones: zone 1 (surrounding the channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (the outer zone, representing uncharged virgin air). In the present study, we have assumed a constant electric field inside zone 1, as suggested by experimental research of corona discharges in coaxial geometry conducted by Cooray (2000). The present investigation builds upon previous studies by Tausanovic et al. (2010) and Cvetic et al. (2012) in several ways. The value of the breakdown electric field has been varied for probing its effect on channel charge distribution prior and during the return stroke. With the aim of investigating initial space charge distribution along the channel, total electric field at the outer surface of the channel corona sheath, just before the return stroke, is calculated and compared for various return stroke models. A self-consistent algorithm is applied to the generalized traveling current source return stroke model, so that the boundary condition for total electric field is fulfilled. The new density of space charge and the new radius of channel corona envelope, immediately before the return stroke stage, are calculated. The obtained results indicate a strong dependence of channel charge distribution on the breakdown electric field value. Among the compared return stroke models, transmission-line-type models have exhibited a good agreement with the predictions of the Gauss' law regarding total breakdown electric field on the corona sheath's outer surface. The generalized lightning traveling current source return stroke model gives similar results if the adjustment of the space charge density inside the corona sheath is performed.

  6. Specification of the Surface Charging Environment with SHIELDS

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, J. D.; Vernon, L.; Woodroffe, J. R.; Brito, T.; Toth, G.; Welling, D. T.; Yu, Y.; Albert, J.; Birn, J.; Borovsky, J.; Denton, M.; Horne, R. B.; Lemon, C.; Markidis, S.; Thomsen, M. F.; Young, S. L.

    2016-12-01

    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. "space weather", remains a big space physics challenge. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and microscale. Important physics questions related to rapid particle injection and acceleration associated with magnetospheric storms and substorms as well as plasma waves are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. In addition to physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed. Simulations with the SHIELDS framework of the near-Earth space environment where operational satellites reside are presented. Further model development and the organization of a "Spacecraft Charging Environment Challenge" by the SHIELDS project at LANL in collaboration with the NSF Geospace Environment Modeling (GEM) Workshop and the multi-agency Community Coordinated Modeling Center (CCMC) to assess the accuracy of SCE predictions are discussed.

  7. The Importance of Accurate Secondary Electron Yields in Modeling Spacecraft Charging

    DTIC Science & Technology

    1986-05-01

    Release; Distribution Unlimited AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND •IDTIC UNITED STATES AIR FORCE FLECTE HANSCOM AIR FORCE BASE...properties are taken to be those of solor cell rover slip model developed for NASCAP (MandeU et at, (1984)) since most of the exterior surface of the...Research 85, 1155, 1980. Garrett, H. B., "Spacecraft Charging: A Review", in Space Systems and Their Interactions with the Earth’. Space Environment, H

  8. Computer and laboratory simulation of interactions between spacecraft surfaces and charged-particle environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1979-01-01

    Cases where the charged-particle environment acts on the spacecraft (e.g., spacecraft charging phenomena) and cases where a system on the spacecraft causes the interaction (e.g., high voltage space power systems) are considered. Both categories were studied in ground simulation facilities to understand the processes involved and to measure the pertinent parameters. Computer simulations are based on the NASA Charging Analyzer Program (NASCAP) code. Analytical models are developed in this code and verified against the experimental data. Extrapolation from the small test samples to space conditions are made with this code. Typical results from laboratory and computer simulations are presented for both types of interactions. Extrapolations from these simulations to performance in space environments are discussed.

  9. Determination of the space-charge field amplitude in polymeric photorefractive polymers.

    PubMed

    Hwang, Ui-Jung; Choi, Chil-Sung; Vuong, Nguyen Quoc; Kim, Nakjoong

    2005-12-22

    The space-charge field built in a polymeric photorefractive polymer was calculated by a simple method based on the oriented gas model. When anisotropic chromophores in a photorefractive polymer were exposed to an external field, they oriented preferentially to exhibit a birefringence. Then, under illumination of two coherent beams and an external field, they reoriented to form a photorefractive grating. During the formation of the grating, the chromophores were reoriented by the space-charge field as well as by the external applied field. The birefringence induced in the material by an external electric field was determined by measuring the transmittance of the sample which is placed between crossed polarizers, where birefringence depicts the orientation of the chromophores. By measuring the diffraction efficiency with a modified degenerate four-wave mixing setup, the index amplitude of the grating was determined. Finally, the space-charge field was determined by comparing the diffraction efficiency with the birefringence with respect to the applied electric field. In our study, the space-charge field was about 20% of the external applied field, which coincided with previous results obtained from our laboratory.

  10. Effects of hydration on steric and electric charge-induced interstitial volume exclusion--a model.

    PubMed

    Øien, Alf H; Justad, Sigrid R; Tenstad, Olav; Wiig, Helge

    2013-09-03

    The presence of collagen and charged macromolecules like glycosaminoglycans (GAGs) in the interstitial space limits the space available for plasma proteins and other macromolecules. This phenomenon, known as interstitial exclusion, is of importance for interstitial fluid volume regulation. Physical/mathematical models are presented for calculating the exclusion of electrically charged and neutral macromolecules that equilibrate in the interstitium under various degrees of hydration. Here, a central hypothesis is that the swelling of highly electrically charged GAGs with increased hydration shields parts of the neutral collagen of the interstitial matrix from interacting with electrically charged macromolecules, such that exclusion of charged macromolecules exhibits change due to steric and charge effects. GAGs are also thought to allow relatively small neutral, but also charged macromolecules neutralized by a very high ionic strength, diffuse into the interior of GAGs, whereas larger macromolecules may not. Thus, in the model, relatively small electrically charged macromolecules, such as human serum albumin, and larger neutral macromolecules such as IgG, will have quite similar total volume exclusion properties in the interstitium. Our results are in agreement with ex vivo and in vivo experiments, and suggest that the charge of GAGs or macromolecular drugs may be targeted to increase the tissue uptake of macromolecular therapeutic agents. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. A three-dimensional spacecraft-charging computer code

    NASA Technical Reports Server (NTRS)

    Rubin, A. G.; Katz, I.; Mandell, M.; Schnuelle, G.; Steen, P.; Parks, D.; Cassidy, J.; Roche, J.

    1980-01-01

    A computer code is described which simulates the interaction of the space environment with a satellite at geosynchronous altitude. Employing finite elements, a three-dimensional satellite model has been constructed with more than 1000 surface cells and 15 different surface materials. Free space around the satellite is modeled by nesting grids within grids. Applications of this NASA Spacecraft Charging Analyzer Program (NASCAP) code to the study of a satellite photosheath and the differential charging of the SCATHA (satellite charging at high altitudes) satellite in eclipse and in sunlight are discussed. In order to understand detector response when the satellite is charged, the code is used to trace the trajectories of particles reaching the SCATHA detectors. Particle trajectories from positive and negative emitters on SCATHA also are traced to determine the location of returning particles, to estimate the escaping flux, and to simulate active control of satellite potentials.

  12. 2D/3D image charge for modeling field emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin L.; Shiffler, Donald A.; Harris, John R.

    Analytic image charge approximations exist for planar and spherical metal surfaces but approximations for more complex geometries, such as the conical and wirelike structures characteristic of field emitters, are lacking. Such models are the basis for the evaluation of Schottky lowering factors in equations for current density. The development of a multidimensional image charge approximation, useful for a general thermal-field emission equation used in space charge studies, is given and based on an analytical model using a prolate spheroidal geometry. A description of how the model may be adapted to be used with a line charge model appropriate for carbonmore » nanotube and carbon fiber field emitters is discussed. [http://dx.doi.org/10.1116/1.4968007]« less

  13. 2D/3D image charge for modeling field emission

    DOE PAGES

    Jensen, Kevin L.; Shiffler, Donald A.; Harris, John R.; ...

    2017-03-01

    Analytic image charge approximations exist for planar and spherical metal surfaces but approximations for more complex geometries, such as the conical and wirelike structures characteristic of field emitters, are lacking. Such models are the basis for the evaluation of Schottky lowering factors in equations for current density. The development of a multidimensional image charge approximation, useful for a general thermal-field emission equation used in space charge studies, is given and based on an analytical model using a prolate spheroidal geometry. A description of how the model may be adapted to be used with a line charge model appropriate for carbonmore » nanotube and carbon fiber field emitters is discussed. [http://dx.doi.org/10.1116/1.4968007]« less

  14. Space charge effects for multipactor in coaxial lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorolla, E., E-mail: eden.sorolla@xlim.fr; Sounas, A.; Mattes, M.

    2015-03-15

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion.

  15. Modeling the Magnetospheric X-ray Emission from Solar Wind Charge Exchange with Verification from XMM-Newton Observations

    DTIC Science & Technology

    2016-08-26

    Journal of Geophysical Research: Space Physics Modeling the magnetospheric X-ray emission from solar wind charge exchange with verification from XMM...Newton observations Ian C. Whittaker1, Steve Sembay1, Jennifer A. Carter1, AndrewM. Read1, Steve E. Milan1, andMinna Palmroth2 1Department of Physics ...observations, J. Geophys. Res. Space Physics , 121, 4158–4179, doi:10.1002/2015JA022292. Received 21 DEC 2015 Accepted 26 FEB 2016 Accepted article online 29

  16. Secondary electron generation, emission and transport: Effects on spacecraft charging and NASCAP models

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mandell, Myron; Roche, James C.; Purvis, Carolyn

    1987-01-01

    Secondary electrons control a spacecraft's response to a plasma environment. To accurately simulate spacecraft charging, the NASA Charging Analyzer Program (NASCAP) has mathematical models of the generation, emission and transport of secondary electrons. The importance of each of the processes and the physical basis for each of the NASCAP models are discussed. Calculations are presented which show that the NASCAP formulations are in good agreement with both laboratory and space experiments.

  17. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  18. Space charge effects on the current-voltage characteristics of gated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Kodis, M. A.; Murphy, R. A.; Zaidman, E. G.

    1997-07-01

    Microfabricated field emitter arrays (FEAs) can provide the very high electron current densities required for rf amplifier applications, typically on the order of 100 A/cm2. Determining the dependence of emission current on gate voltage is important for the prediction of emitter performance for device applications. Field emitters use high applied fields to extract current, and therefore, unlike thermionic emitters, the current densities can exceed 103A/cm2 when averaged over an array. At such high current densities, space charge effects (i.e., the influence of charge between cathode and collector on emission) affect the emission process or initiate conditions which can lead to failure mechanisms for field emitters. A simple model of a field emitter will be used to calculate the one-dimensional space charge effects on the emission characteristics by examining two components: charge between the gate and anode, which leads to Child's law, and charge within the FEA unit cell, which gives rise to a field suppression effect which can exist for a single field emitter. The predictions of the analytical model are compared with recent experimental measurements designed to assess space charge effects and predict the onset of gate current. It is shown that negative convexity on a Fowler-Nordheim plot of Ianode(Vgate) data can be explained in terms of field depression at the emitter tip in addition to reflection of electrons by a virtual cathode created when the anode field is insufficient to extract all of the current; in particular, the effects present within the unit cell constitute a newly described effect.

  19. Simulation of multipactor on the rectangular grooved dielectric surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Libing; Wang, Jianguo, E-mail: wanguiuc@mail.xjtu.edu.cn; Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024

    2015-11-15

    Multipactor discharge on the rectangular grooved dielectric surface is simulated self-consistently by using a two-and-a-half dimensional (2.5 D) electrostatic particle-in-cell (PIC) code. Compared with the electromagnetic PIC code, the former can give much more accurate solution for the space charge field caused by the multipactor electrons and the deposited surface charge. According to the rectangular groove width and height, the multipactor can be divided into four models, the spatial distributions of the multipactor electrons and the space charge fields are presented for these models. It shows that the rectangular groove in different models gives very different suppression effect on themore » multipactor, effective and efficient suppression on the multipactor can only be reached with a proper groove size.« less

  20. Numerical modeling of field-assisted ion-exchanged channel waveguides by the explicit consideration of space-charge buildup.

    PubMed

    Mrozek, Piotr

    2011-08-01

    A numerical model explicitly considering the space-charge density evolved both under the mask and in the region of optical structure formation was used to predict the profiles of Ag concentration during field-assisted Ag(+)-Na(+) ion exchange channel waveguide fabrication. The influence of the unequal values of diffusion constants and mobilities of incoming and outgoing ions, the value of a correlation factor (Haven ratio), and particularly space-charge density induced during the ion exchange, on the resulting profiles of Ag concentration was analyzed and discussed. It was shown that the incorporation into the numerical model of a small quantity of highly mobile ions other than exclusively Ag(+) and Na(+) may considerably affect the range and shape of calculated Ag profiles in the multicomponent glass. The Poisson equation was used to predict the electric field spread evolution in the glass substrate. The results of the numerical analysis were verified by the experimental data of Ag concentration in a channel waveguide fabricated using a field-assisted process.

  1. SHIELDS Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordanova, Vania Koleva

    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. “space weather”, remains a big space physics challenge. A new capability was developed at Los Alamos National Laboratory (LANL) to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. This framework simulates the dynamics of the Surface Charging Environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. In addition to using physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data frommore » LANL instruments on the Van Allen Probes and geosynchronous satellites were developed. An order of magnitude improvement in the accuracy in the simulation of the spacecraft surface charging environment was thus obtained. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code and to evaluate anomalies' relation to SCE dynamics. Such diagnostics is critically important when performing forensic analyses of space-system failures.« less

  2. High-order space charge effects using automatic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, M.F.; Bruhwiler, D.L.

    1997-02-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of amore » Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach. {copyright} {ital 1997 American Institute of Physics.}« less

  3. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2017-11-01

    Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.

  4. Internal ballistics of the detonation products of a blast-hole charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangush, S.K.; Garbunov, V.A.

    1986-07-01

    The authors investigate the gasdynamic flow of the detonation products of a blast-hole charge (the expansion of the detonation products in the blast hole and the gas outflow and propagation of shock airwaves into the face space). The problem is solved by means of a numerical program for integration of partial differential equations of one-dimensional gas-dynamics. A numerical model of the internal ballistics of a blast-hole charge is presented. In addition to the variation of the thermodynamic parameters in the blast hole, the formation of the shock wave in the face space is shown, which is the source of gasmore » ignition. Further development of the numerical model of the action of blast-hole charges is planned which will involve an analysis of a number of applied problems.« less

  5. Intensity limits of the PSI Injector II cyclotron

    NASA Astrophysics Data System (ADS)

    Kolano, A.; Adelmann, A.; Barlow, R.; Baumgarten, C.

    2018-03-01

    We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ∼ 10% level: the PSI cyclotrons provide relevant experience. As space charge dominates at low beam energy, the injector is critical. Understanding space charge effects and halo formation through detailed numerical modelling gives clues on how to maximise the extracted current. Simulation of a space-charge dominated low energy high intensity (9.5 mA DC) machine, with a complex collimator set up in the central region shaping the bunch, is not trivial. We use the OPAL code, a tool for charged-particle optics calculations in large accelerator structures and beam lines, including 3D space charge. We have a precise model of the present (production) Injector II, operating at 2.2 mA current. A simple model of the proposed future (upgraded) configuration of the cyclotron is also investigated. We estimate intensity limits based on the developed models, supported by fitted scaling laws and measurements. We have been able to perform more detailed analysis of the bunch parameters and halo development than any previous study. Optimisation techniques enable better matching of the simulation set-up with Injector II parameters and measurements. We show that in the production configuration the beam current scales to the power of three with the beam size. However, at higher intensities, 4th power scaling is a better fit, setting the limit of approximately 3 mA. Currents of over 5 mA, higher than have been achieved to date, can be produced if the collimation scheme is adjusted.

  6. Impact of Space-Charge Layers on Sudden Death in Li/O2 Batteries.

    PubMed

    Radin, Maxwell D; Monroe, Charles W; Siegel, Donald J

    2015-08-06

    The performance of Li/O2 batteries is thought to be limited by charge transport through the solid Li2O2 discharge product. Prior studies suggest that electron tunneling is the main transport mechanism through thin, compact Li2O2 deposits. The present study employs a new continuum transport model to explore an alternative scenario, in which charge transport is mediated by polaron hopping. Unlike earlier models, which assume a uniform carrier concentration or local electroneutrality, the possibility of nonuniform space charge is accounted for at the Li2O2/electrolyte and Li2O2/electrode interfaces, providing a more realistic picture of transport in Li2O2 films. The temperature and current-density dependences of the discharge curves predicted by the model are in good agreement with flat-electrode experiments over a wide range of rates, supporting the hypothesis that polaron hopping contributes significantly to charge transport. Exercising the model suggests that this mechanism could explain the observed enhancement in cell performance at elevated temperature and that performance could be further improved by tuning the interfacial orientation of Li2O2 crystallites.

  7. Composite space charge density functions for the calculation of gamma sensitivity of self-powered neutron detectors, using Warren's model

    NASA Astrophysics Data System (ADS)

    Mahant, A. K.; Rao, P. S.; Misra, S. C.

    1994-07-01

    In the calculational model developed by Warren and Shah for the computation of the gamma sensitivity ( Sγ) it has been observed that the computed Sγ value is quite sensitive to the space charge distribution function assumed for the insulator region and the energy of the gamma photons. The Sγ of SPNDs with Pt, Co and V emitters (manufactured by Thermocoax, France) has been measured at 60Co photon energy and a good correlation between the measured and computed values has been obtained using a composite space charge density function (CSCD), the details of which are presented in this paper. The arguments are extended for evaluating the Sγ values of several SPNDs for which Warren and Shah reported the measured values for a prompt fission gamma spectrum obtained in a swimming pool reactor. These results are also discussed.

  8. Space charge effects on the dielectric response of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Shen, Zhong-Hui; Wang, Jian-Jun; Zhang, Xin; Lin, Yuanhua; Nan, Ce-Wen; Chen, Long-Qing; Shen, Yang

    2017-08-01

    Adding high-κ ceramic nanoparticles into polymers is a general strategy to improve the performances in energy storage. Classic effective medium theories may fail to predict the effective permittivity in polymer nanocomposites wherein the space charge effects are important. In this work, a computational model is developed to understand the space charge effects on the frequency-dependent dielectric properties including the real permittivity and the loss for polymer nanocomposites with both randomly distributed and aggregated nanoparticle fillers. It is found that the real permittivity of the SrTiO3/polyethylene (12% SrTiO3 in volume fraction) nanocomposite can be increased to as high as 60 when there is nanoparticle aggregation and the ion concentration in the bulk polymer is around 1016 cm-3. This model can be employed to quantitatively predict the frequency-dependent dielectric properties for polymer nanocomposites with arbitrary microstructures.

  9. Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.

    PubMed

    Muralidharan, Ajay; Pratt, Lawrence R; Hoffman, Gary G; Chaudhari, Mangesh I; Rempe, Susan B

    2018-06-22

    Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  11. Distinctive electrical properties in sandwich-structured Al2O3/low density polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Si-Jiao; Zha, Jun-Wei; Li, Wei-Kang; Dang, Zhi-Min

    2016-02-01

    The sandwich-structured Al2O3/low density polyethylene (Al2O3/LDPE) nanocomposite dielectrics consisting of layer-by-layer with different concentration Al2O3 loading were prepared by melt-blending and following hot pressing method. The space charge distribution from pulsed electro-acoustic method and breakdown strength of the nanocomposites were investigated. Compared with the single-layer Al2O3/LDPE nanocomposites, the sandwich-structured nanocomposites remarkably suppressed the space charge accumulation and presented higher breakdown strength. The charges in the sandwich-structured nanocomposites decayed much faster than that in the single-layer nanocomposites, which was attributed to an effective electric field caused by the formation of the interfacial space charges. The energy depth of shallow and deep traps was estimated as 0.73 eV and 1.17 eV in the sandwich-structured nanocomposites, respectively, according to the thermal excitation theoretical model we proposed. This work provides an attractive strategy of design and fabrication of polymer nanocomposites with excellent space charge suppression.

  12. Make dark matter charged again

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.

  13. Retina as Reciprocal Spatial Fourier Transform Space Implies ``Wave-transformation'' Functions, String Theory, the Inappropriate Uncertainty Principle, and Predicts ``Quarked'' Protons.

    NASA Astrophysics Data System (ADS)

    Mc Leod, Roger David; Mc Leod, David M.

    2007-10-01

    Vision, via transform space: ``Nature behaves in a reciprocal way;' also, Rect x pressure-input sense-reports as Sinc p, indicating brain interprets reciprocal ``p'' space as object space. Use Mott's and Sneddon's Wave Mechanics and Its Applications. Wave transformation functions are strings of positron, electron, proton, and neutron; uncertainty is a semantic artifact. Neutrino-string de Broglie-Schr"odinger wave-function models for electron, positron, suggest three-quark models for protons, neutrons. Variably vibrating neutrino-quills of this model, with appropriate mass-energy, can be a vertical proton string, quills leftward; thread string circumferentially, forming three interlinked circles with ``overpasses''. Diameters are 2:1:2, center circle has quills radially outward; call it a down quark, charge --1/3, charge 2/3 for outward quills, the up quarks of outer circles. String overlap summations are nodes; nodes also far left and right. Strong nuclear forces may be --px. ``Dislodging" positron with neutrino switches quark-circle configuration to 1:2:1, `downers' outside. Unstable neutron charge is 0. Atoms build. With scale factors, retinal/vision's, and quantum mechanics,' spatial Fourier transforms/inverses are equivalent.

  14. Analytical model of a corona discharge from a conical electrode under saturation

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Zubarev, N. M.

    2012-11-01

    Exact partial solutions are found for the electric field distribution in the outer region of a stationary unipolar corona discharge from an ideal conical needle in the space-charge-limited current mode with allowance for the electric field dependence of the ion mobility. It is assumed that only the very tip of the cone is responsible for the discharge, i.e., that the ionization zone is a point. The solutions are obtained by joining the spherically symmetric potential distribution in the drift space and the self-similar potential distribution in the space-charge-free region. Such solutions are outside the framework of the conventional Deutsch approximation, according to which the space charge insignificantly influences the shape of equipotential surfaces and electric lines of force. The dependence is derived of the corona discharge saturation current on the apex angle of the conical electrode and applied potential difference. A simple analytical model is suggested that describes drift in the point-plane electrode geometry under saturation as a superposition of two exact solutions for the field potential. In terms of this model, the angular distribution of the current density over the massive plane electrode is derived, which agrees well with Warburg's empirical law.

  15. Modeling space-charge-limited current transport in spatially disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Ang, Y. S.; Ang, L. K.

    Charge transport properties in organic semiconductors are determined by two kinds of microscopic disorder, namely energetic disorder and the spatial disorder. It is demonstrated that the thickness dependence of space-charge limited current (SCLC) can be related to spatial disorder within the framework of fractional-dimensional space. We present a modified Mott-Gurney (MG) law in different regimes to model the varying thickness dependence in such spatially disordered materials. We analyze multiple experimental results from literature where thickness dependence of SCLC shows that the classical MG law might lead to less accurate extraction of mobility parameter, whereas the modified MG law would be a better choice in such devices. Experimental SCLC measurement in a PPV-based structure was previously modeled using a carrier-density dependent model which contradicts with a recent experiment that confirms a carrier-density independent mobility originating from the disordered morphology of the polymer. Here, this is reconciled by the modified MG law which intrinsically takes into account the effect of spatial disorder without the need of using a carrier-density dependent model. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).

  16. Holographic heavy ion collisions with baryon charge

    DOE PAGES

    Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; ...

    2016-09-19

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. Finally, we find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  17. Mechanism of the free charge carrier generation in the dielectric breakdown

    NASA Astrophysics Data System (ADS)

    Rahim, N. A. A.; Ranom, R.; Zainuddin, H.

    2017-12-01

    Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.

  18. Adaptive matching of the iota ring linear optics for space charge compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, A.; Bruhwiler, D. L.; Cook, N.

    Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a searchmore » for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters« less

  19. Space charge effects and aberrations on electron pulse compression in a spherical electrostatic capacitor.

    PubMed

    Yu, Lei; Li, Haibo; Wan, Weishi; Wei, Zheng; Grzelakowski, Krzysztof P; Tromp, Rudolf M; Tang, Wen-Xin

    2017-12-01

    The effects of space charge, aberrations and relativity on temporal compression are investigated for a compact spherical electrostatic capacitor (α-SDA). By employing the three-dimensional (3D) field simulation and the 3D space charge model based on numerical General Particle Tracer and SIMION, we map the compression efficiency for a wide range of initial beam size and single-pulse electron number and determine the optimum conditions of electron pulses for the most effective compression. The results demonstrate that both space charge effects and aberrations prevent the compression of electron pulses into the sub-ps region if the electron number and the beam size are not properly optimized. Our results suggest that α-SDA is an effective compression approach for electron pulses under the optimum conditions. It may serve as a potential key component in designing future time-resolved electron sources for electron diffraction and spectroscopy experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Analytical and exact solutions of the spherical and cylindrical diodes of Langmuir-Blodgett law

    NASA Astrophysics Data System (ADS)

    Torres-Cordoba, Rafael; Martinez-Garcia, Edgar

    2017-10-01

    This paper discloses the exact solutions of a mathematical model that describes the cylindrical and spherical electron current emissions within the context of a physics approximation method. The solution involves analyzing the 1D nonlinear Poisson equation, for the radial component. Although an asymptotic solution has been previously obtained, we present a theoretical solution that satisfies arbitrary boundary conditions. The solution is found in its parametric form (i.e., φ(r )=φ(r (τ)) ) and is valid when the electric field at the cathode surface is non-zero. Furthermore, the non-stationary spatial solution of the electric potential between the anode and the cathode is also presented. In this work, the particle-beam interface is considered to be at the end of the plasma sheath as described by Sutherland et al. [Phys. Plasmas 12, 033103 2005]. Three regimes of space charge effects—no space charge saturation, space charge limited, and space charge saturation—are also considered.

  1. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Flatscher, R.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Killow, C. J.; Korsakova, N.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D. I.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C.; Sumner, T. J.; Texier, D.; Thorpe, J. I.; Trenkel, C.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.; LISA Pathfinder Collaboration

    2017-04-01

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm s-2 Hz-1 /2 across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  2. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder.

    PubMed

    Armano, M; Audley, H; Auger, G; Baird, J T; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Cruise, M; Danzmann, K; de Deus Silva, M; Diepholz, I; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fitzsimons, E D; Flatscher, R; Freschi, M; Gallegos, J; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Grimani, C; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hueller, M; Huesler, J; Inchauspé, H; Jennrich, O; Jetzer, P; Johlander, B; Karnesis, N; Kaune, B; Killow, C J; Korsakova, N; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Madden, S; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Moroni, A; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Ramos-Castro, J; Reiche, J; Romera Perez, J A; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sarra, P; Schleicher, A; Slutsky, J; Sopuerta, C; Sumner, T J; Texier, D; Thorpe, J I; Trenkel, C; Vetrugno, D; Vitale, S; Wanner, G; Ward, H; Wass, P J; Wealthy, D; Weber, W J; Wittchen, A; Zanoni, C; Ziegler, T; Zweifel, P

    2017-04-28

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0  fm s^{-2} Hz^{-1/2} across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  3. Time-resolved correlative optical microscopy of charge-carrier transport, recombination, and space-charge fields in CdTe heterostructures

    DOE PAGES

    Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.; ...

    2017-02-20

    From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 μm. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm -1) and diffuse (with the mobility of 260 ± 30 cm 2 V -1 s -1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns.more » Furthermore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.« less

  4. Operating in the space plasma environment: A spacecraft charging study of the Solar X-ray Imager

    NASA Technical Reports Server (NTRS)

    Herr, Joel L.; Mccollum, Matthew B.; James, Bonnie F.

    1994-01-01

    This study presents the results of a spacecraft charging effects protection study conducted on the Solar X-ray Imager (SXI). The SXI is being developed by NASA Marshall Space Flight Center for NOAA's Space Environment Laboratory, and will be used to aid in forecasting energetic particle events and geomagnetic storms. Images will provide information on the intensity and location of solar flares, coronal mass ejections, and high speed solar streams. The SXI will be flown on a next-generation GOES sometime in the mid to late 1990's. Charging due to the encounter with a worst-case magnetic substorm environment is modeled using the NASCAP/GEO computer code. Charging levels of exterior surfaces and the floating potential of the spacecraft relative to plasma are determined as a function of spacecraft design, operational configuration, and orbital conditions. Areas where large surface voltage gradients exist on or near the SXI are identified as possible arc-discharge sites. Results of the charging analysis are then used to develop design recommendations that will limit the effects of spacecraft charging on the SXI operation.

  5. Non-Faradaic Li + Migration and Chemical Coordination across Solid-State Battery Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittleson, Forrest S.; El Gabaly, Farid

    Efficient and reversible charge transfer is essential to realizing high-performance solid-state batteries. Efforts to enhance charge transfer at critical electrode–electrolyte interfaces have proven successful, yet interfacial chemistry and its impact on cell function remains poorly understood. Using X-ray photoelectron spectroscopy combined with electrochemical techniques, we elucidate chemical coordination near the LiCoO 2–LIPON interface, providing experimental validation of space-charge separation. Space-charge layers, defined by local enrichment and depletion of charges, have previously been theorized and modeled, but the unique chemistry of solid-state battery interfaces is now revealed. Here we highlight the non-Faradaic migration of Li+ ions from the electrode to themore » electrolyte, which reduces reversible cathodic capacity by ~15%. Inserting a thin, ion-conducting LiNbO 3 interlayer between the electrode and electrolyte, however, can reduce space-charge separation, mitigate the loss of Li+ from LiCoO 2, and return cathodic capacity to its theoretical value. This work illustrates the importance of interfacial chemistry in understanding and improving solid-state batteries.« less

  6. Time-resolved correlative optical microscopy of charge-carrier transport, recombination, and space-charge fields in CdTe heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.

    From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 μm. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm -1) and diffuse (with the mobility of 260 ± 30 cm 2 V -1 s -1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns.more » Furthermore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.« less

  7. Application of the NASCAP Spacecraft Simulation Tool to Investigate Electrodynamic Tether Current Collection in LEO

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi; HabashKrause, Linda

    2012-01-01

    Recent interest in using electrodynamic tethers (EDTs) for orbital maneuvering in Low Earth Orbit (LEO) has prompted the development of the Marshall ElectroDynamic Tether Orbit Propagator (MEDTOP) model. The model is comprised of several modules which address various aspects of EDT propulsion, including calculation of state vectors using a standard orbit propagator (e.g., J2), an atmospheric drag model, realistic ionospheric and magnetic field models, space weather effects, and tether librations. The natural electromotive force (EMF) attained during a radially-aligned conductive tether results in electrons flowing down the tether and accumulating on the lower-altitude spacecraft. The energy that drives this EMF is sourced from the orbital energy of the system; thus, EDTs are often proposed as de-orbiting systems. However, when the current is reversed using satellite charged particle sources, then propulsion is possible. One of the most difficult challenges of the modeling effort is to ascertain the equivalent circuit between the spacecraft and the ionospheric plasma. The present study investigates the use of the NASA Charging Analyzer Program (NASCAP) to calculate currents to and from the tethered satellites and the ionospheric plasma. NASCAP is a sophisticated set of computational tools to model the surface charging of three-dimensional (3D) spacecraft surfaces in a time-varying space environment. The model's surface is tessellated into a collection of facets, and NASCAP calculates currents and potentials for each one. Additionally, NASCAP provides for the construction of one or more nested grids to calculate space potential and time-varying electric fields. This provides for the capability to track individual particles orbits, to model charged particle wakes, and to incorporate external charged particle sources. With this study, we have developed a model of calculating currents incident onto an electrodynamic tethered satellite system, and first results are shown here.

  8. A computer model of solar panel-plasma interactions

    NASA Technical Reports Server (NTRS)

    Cooke, D. L.; Freeman, J. W.

    1980-01-01

    High power solar arrays for satellite power systems are presently being planned with dimensions of kilometers, and with tens of kilovolts distributed over their surface. Such systems face many plasma interaction problems, such as power leakage to the plasma, particle focusing, and anomalous arcing. These effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Laboratory studies of 1 by 10 meter solar array in a simulated low Earth orbit plasma are discussed. The plasma screening process is discussed, program theory is outlined, and a series of calibration models is presented. These models are designed to demonstrate that PANEL is capable of accurate self consistant space charge calculations. Such models include PANEL predictions for the Child-Langmuir diode problem.

  9. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; Chen, G.; Rotaru, M.

    2011-08-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  10. Massless spinning particle and null-string on AdS d : projective-space approach

    NASA Astrophysics Data System (ADS)

    Uvarov, D. V.

    2018-07-01

    The massless spinning particle and the tensionless string models on an AdS d background in the projective-space realization are proposed as constrained Hamiltonian systems. Various forms of particle and string Lagrangians are derived and classical mechanics is studied including the Lax-type representation of the equations of motion. After that, the transition to the quantum theory is discussed. The analysis of potential anomalies in the tensionless string model necessitates the introduction of ghosts and BRST charge. It is shown that a quantum BRST charge is nilpotent for any d if coordinate-momentum ordering for the phase-space bosonic variables, Weyl ordering for the fermions and cb () ordering for the ghosts is chosen, while conformal reparametrizations and space-time dilatations turn out to be anomalous for ordering in terms of positive and negative Fourier modes of the phase-space variables and ghosts.

  11. Transverse Phase Space Reconstruction and Emittance Measurement of Intense Electron Beams using a Tomography Technique

    NASA Astrophysics Data System (ADS)

    Stratakis, D.; Kishek, R. A.; Li, H.; Bernal, S.; Walter, M.; Tobin, J.; Quinn, B.; Reiser, M.; O'Shea, P. G.

    2006-11-01

    Tomography is the technique of reconstructing an image from its projections. It is widely used in the medical community to observe the interior of the human body by processing multiple x-ray images taken at different angles, A few pioneering researchers have adapted tomography to reconstruct detailed phase space maps of charged particle beams. Some questions arise regarding the limitations of tomography technique for space charge dominated beams. For instance is the linear space charge force a valid approximation? Does tomography equally reproduce phase space for complex, experimentally observed, initial particle distributions? Does tomography make any assumptions about the initial distribution? This study explores the use of accurate modeling with the particle-in-cell code WARP to address these questions, using a wide range of different initial distributions in the code. The study also includes a number of experimental results on tomographic phase space mapping performed on the University of Maryland Electron Ring (UMER).

  12. TREDI: A self consistent three-dimensional integration scheme for RF-gun dynamics based on the Lienard-Wiechert potentials formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannessi, Luca; Quattromini, Marcello

    1997-06-01

    We describe the model for the simulation of charged beam dynamics in radiofrequency injectors used in the three dimensional code TREDI, where the inclusion of space charge fields is obtained by means of the Lienard-Wiechert retarded potentials. The problem of charge screening is analyzed in covariant form and some general recipes for charge assignment and noise reduction are given.

  13. Single bunch transverse instability in a circular accelerator with chromaticity and space charge

    DOE PAGES

    Balbekov, V.

    2015-10-21

    The transverse instability of a bunch in a circular accelerator is elaborated in this paper. A new tree-modes model is proposed and developed to describe the most unstable modes of the bunch. This simple and flexible model includes chromaticity and space charge, and can be used with any bunch and wake forms. The dispersion equation for the bunch eigentunes is obtained in form of a third-order algebraic equation. The known head-tail and TMCI modes appear as the limiting cases which are distinctly bounded at zero chromaticity only. It is shown that the instability parameters depend only slightly on the bunchmore » model but they are rather sensitive to the wake shape. In particular, space charge effects are investigated in the paper and it is shown that their influence depends on sign of wake field enhancing the bunch stability if the wake is negative. In addition, the resistive wall wake is considered in detail including a comparison of single and collective effects. A comparison of the results with earlier publications is carried out.« less

  14. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winklehner, D.; Leitner, D., E-mail: leitnerd@nscl.msu.edu; Cole, D.

    2014-02-15

    In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beammore » plasma model as well as simulations.« less

  15. Modeling and simulation of RF photoinjectors for coherent light sources

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Krasilnikov, M.; Stephan, F.; Gjonaj, E.; Weiland, T.; Dohlus, M.

    2018-05-01

    We propose a three-dimensional fully electromagnetic numerical approach for the simulation of RF photoinjectors for coherent light sources. The basic idea consists in incorporating a self-consistent photoemission model within a particle tracking code. The generation of electron beams in the injector is determined by the quantum efficiency (QE) of the cathode, the intensity profile of the driving laser as well as by the accelerating field and magnetic focusing conditions in the gun. The total charge emitted during an emission cycle can be limited by the space charge field at the cathode. Furthermore, the time and space dependent electromagnetic field at the cathode may induce a transient modulation of the QE due to surface barrier reduction of the emitting layer. In our modeling approach, all these effects are taken into account. The beam particles are generated dynamically according to the local QE of the cathode and the time dependent laser intensity profile. For the beam dynamics, a tracking code based on the Lienard-Wiechert retarded field formalism is employed. This code provides the single particle trajectories as well as the transient space charge field distribution at the cathode. As an application, the PITZ injector is considered. Extensive electron bunch emission simulations are carried out for different operation conditions of the injector, in the source limited as well as in the space charge limited emission regime. In both cases, fairly good agreement between measurements and simulations is obtained.

  16. Ion-rejection, electrokinetic and electrochemical properties of a nanoporous track-etched membrane and their interpretation by means of space charge model.

    PubMed

    Yaroshchuk, Andriy; Boiko, Yuriy; Makovetskiy, Alexandre

    2009-08-18

    Due to their straight cylindrical pores, nanoporous track-etched membranes are suitable materials for studies of the fundamentals of nanofluidics. In contrast to single nanochannels, the nano/micro interface, in this case, can be quantitatively considered within the scope of macroscopically 1D models. The pressure-induced changes in the concentration of dilute KCl solutions (salt rejection phenomenon) have been studied experimentally with a commercially available nanoporous track-etched membrane of poly (ethylene terephthalate) (pore diameter ca. 21 nm). Besides that, we have also studied the concomitant stationary transmembrane electrical phenomenon (filtration potential) and carried out time-resolved measurements of the electrical response to a rapid pressure switch-off (within 5-10 ms). The latter has enabled us to split the filtration potential into the streaming potential and membrane potential components. In this way, we could also confirm that the observed nonlinearity of filtration potential, as a function of the transmembrane volume flow, was primarily caused by the salt rejection. The results of experimental measurements have been interpreted by means of a space charge model with the surface charge density being a single fitting parameter (the pore size was estimated from the membrane hydraulic permeability). By using the surface charge density fitted to the salt rejection data, the results of electrical measurements could be reproduced theoretically with a typical accuracy of 10% or better. Taking into account the simplifications made in the modeling, this accuracy appears to be good and confirms the quantitative applicability of the basic concept of space charge model to the description of transport properties of dilute electrolyte solutions in nanochannels of ca. 20 nm.

  17. Theory of Space Charge Limited Current in Fractional Dimensional Space

    NASA Astrophysics Data System (ADS)

    Zubair, Muhammad; Ang, L. K.

    The concept of fractional dimensional space has been effectively applied in many areas of physics to describe the fractional effects on the physical systems. We will present some recent developments of space charge limited (SCL) current in free space and solid in the framework of fractional dimensional space which may account for the effect of imperfectness or roughness of the electrode surface. For SCL current in free space, the governing law is known as the Child-Langmuir (CL) law. Its analogy in a trap-free solid (or dielectric) is known as Mott-Gurney (MG) law. This work extends the one-dimensional CL Law and MG Law for the case of a D-dimensional fractional space with 0 < D <= 1 where parameter D defines the degree of roughness of the electrode surface. Such a fractional dimensional space generalization of SCL current theory can be used to characterize the charge injection by the imperfectness or roughness of the surface in applications related to high current cathode (CL law), and organic electronics (MG law). In terms of operating regime, the model has included the quantum effects when the spacing between the electrodes is small.

  18. Threshold of transverse mode coupling instability with arbitrary space charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    The threshold of the transverse mode coupling instability is calculated in framework of the square well model at arbitrary value of space charge tune shift. A new method of calculation is developed beyond the traditional expansion technique. The square, resistive, and exponential wakes are investigated. It is shown that the instability threshold goes up indefinitely when the tune shift increases. Finally, a comparison with conventional case of the parabolic potential well is performed.

  19. Threshold of transverse mode coupling instability with arbitrary space charge

    DOE PAGES

    Balbekov, V.

    2017-11-30

    The threshold of the transverse mode coupling instability is calculated in framework of the square well model at arbitrary value of space charge tune shift. A new method of calculation is developed beyond the traditional expansion technique. The square, resistive, and exponential wakes are investigated. It is shown that the instability threshold goes up indefinitely when the tune shift increases. Finally, a comparison with conventional case of the parabolic potential well is performed.

  20. Exact solutions to model surface and volume charge distributions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Majumdar, N.; Bhattacharya, P.; Jash, A.; Bhattacharya, D. S.

    2016-10-01

    Many important problems in several branches of science and technology deal with charges distributed along a line, over a surface and within a volume. Recently, we have made use of new exact analytic solutions of surface charge distributions to develop the nearly exact Boundary Element Method (neBEM) toolkit. This 3D solver has been successful in removing some of the major drawbacks of the otherwise elegant Green's function approach and has been found to be very accurate throughout the computational domain, including near- and far-field regions. Use of truly distributed singularities (in contrast to nodally concentrated ones) on rectangular and right-triangular elements used for discretizing any three-dimensional geometry has essentially removed many of the numerical and physical singularities associated with the conventional BEM. In this work, we will present this toolkit and the development of several numerical models of space charge based on exact closed-form expressions. In one of the models, Particles on Surface (ParSur), the space charge inside a small elemental volume of any arbitrary shape is represented as being smeared on several surfaces representing the volume. From the studies, it can be concluded that the ParSur model is successful in getting the estimates close to those obtained using the first-principles, especially close to and within the cell. In the paper, we will show initial applications of ParSur and other models in problems related to high energy physics.

  1. Left-right supersymmetry after the Higgs boson discovery

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Ghosh, Dilip Kumar; Huitu, Katri; Rai, Santosh Kumar; Saha, Ipsita; Waltari, Harri

    2014-12-01

    We perform a thorough analysis of the parameter space of the minimal left-right supersymmetric model in agreement with the LHC data. The model contains left- and right-handed fermionic doublets, two Higgs bidoublets, two Higgs triplet representations, and one singlet, insuring a charge-conserving vacuum. We impose the condition that the model complies with the experimental constraints on supersymmetric particles masses and on the doubly charged Higgs bosons and require that the parameter space of the model satisfies the LHC data on neutral Higgs signal strengths at 2 σ . We choose benchmark scenarios by fixing some basic parameters and scanning over the rest. The lightest supersymmetric particle in our scenarios is always the lightest neutralino. We find that the signals for H →γ γ and H →V V⋆ are correlated, while H →b b ¯ is anticorrelated with all of the other decay modes, and also that the contribution from singly charged scalars dominates that of the doubly charged scalars in H →γ γ and H →Z γ loops, contrary to type II seesaw models. We also illustrate the range for mass spectrum of the LRSUSY model in light of planned measurements of the branching ratio of H →γ γ to 10% level.

  2. Make dark matter charged again

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large,more » a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.« less

  3. Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions.

    PubMed

    Zhang, Peng

    2015-05-19

    When two conductors are separated by a sufficiently thin insulator, electrical current can flow between them by quantum tunneling. This paper presents a self-consistent model of tunneling current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the effects of space charge and exchange correlation potential. It is found that the J-V curve of the junction may be divided into three regimes: direct tunneling, field emission, and space-charge-limited regime. In general, the space charge inside the insulator reduces current transfer across the junction, whereas the exchange-correlation potential promotes current transfer. It is shown that these effects may modify the current density by orders of magnitude from the widely used Simmons' formula, which is only accurate for a limited parameter space (insulator thickness > 1 nm and barrier height > 3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and material properties (i.e. work function of the electrodes, electron affinity and permittivity of the insulator) are examined in detail in various regimes. Our simple model and the general scaling for tunneling current may provide insights to new regimes of quantum plasmonics.

  4. Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions

    PubMed Central

    Zhang, Peng

    2015-01-01

    When two conductors are separated by a sufficiently thin insulator, electrical current can flow between them by quantum tunneling. This paper presents a self-consistent model of tunneling current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the effects of space charge and exchange correlation potential. It is found that the J-V curve of the junction may be divided into three regimes: direct tunneling, field emission, and space-charge-limited regime. In general, the space charge inside the insulator reduces current transfer across the junction, whereas the exchange-correlation potential promotes current transfer. It is shown that these effects may modify the current density by orders of magnitude from the widely used Simmons’ formula, which is only accurate for a limited parameter space (insulator thickness > 1 nm and barrier height > 3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and material properties (i.e. work function of the electrodes, electron affinity and permittivity of the insulator) are examined in detail in various regimes. Our simple model and the general scaling for tunneling current may provide insights to new regimes of quantum plasmonics. PMID:25988951

  5. Differential photoelectric charging of nonconducting surfaces in space. [on sunlit strip

    NASA Technical Reports Server (NTRS)

    Pelizzari, M. A.; Criswell, D. R.

    1978-01-01

    The photoelectric charging caused by an infinitely long strip of sunlight across a nonconducting plane is studied by use of a model which contains an electrical cutoff radius, and the results of numerical calculations are presented. The model simulates charging of a sunlit area with dimensions equal to the strip's width, exposed to a plasma with a comparatively large Debye length. Uniform potential is quickly established on a uniformly sunlit strip as a result of charge redistribution by low-energy photoelectrons. The results are in accord with a theoretical surface conductivity derived for photoelectron sheaths above highly charged sunlit areas. The surface potential, which drops sharply across the sunlight-shadow boundary, is discussed.

  6. Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilan, Ayelet

    Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at themore » metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions.« less

  7. Studies of dynamic processes related to active experiments in space plasmas

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.; Neubert, Torsten

    1992-01-01

    This is the final report for grant NAGw-2055, 'Studies of Dynamic Processes Related to Active Experiments in Space Plasmas', covering research performed at the University of Michigan. The grant was awarded to study: (1) theoretical and data analysis of data from the CHARGE-2 rocket experiment (1keV; 1-46 mA electron beam ejections) and the Spacelab-2 shuttle experiment (1keV; 100 mA); (2) studies of the interaction of an electron beam, emitted from an ionospheric platform, with the ambient neutral atmosphere and plasma by means of a newly developed computer simulation model, relating model predictions with CHARGE-2 observations of return currents observed during electron beam emissions; and (3) development of a self-consistent model for the charge distribution on a moving conducting tether in a magnetized plasma and for the potential structure in the plasma surrounding the tether. Our main results include: (1) the computer code developed for the interaction of electrons beams with the neutral atmosphere and plasma is able to model observed return fluxes to the CHARGE-2 sounding rocket payload; and (2) a 3-D electromagnetic and relativistic particle simulation code was developed.

  8. Effects of Space Weather on Geosynchronous Electromagnetic Spacecraft Perturbations Using Statistical Fluxes

    NASA Astrophysics Data System (ADS)

    Hughes, J.; Schaub, H.

    2017-12-01

    Spacecraft can charge to very negative voltages at GEO due to interactions with the space plasma. This can cause arcing which can damage spacecraft electronics or solar panels. Recently, it has been suggested that spacecraft charging may lead to orbital perturbations which change the orbits of lightweight uncontrolled debris orbits significantly. The motions of High Area to Mass Ratio objects are not well explained with just perturbations from Solar Radiation Pressure (SRP) and earth, moon, and sun gravity. A charged spacecraft will experience a Lorentz force as the spacecraft moves relative to Earth's magnetic field, as well as a Lorentz torque and eddy current torques if the object is rotating. Prior work assuming a constant "worst case" voltage has shown that Lorentz and eddy torques can cause quite large orbital changes by rotating the object to experience more or less SRP. For some objects, including or neglecting these electromagnetic torques can lead to differences of thousands of kilometers after only two orbits. This paper will further investigate the effects of electromagnetic perturbations by using a charging model that uses measured flux distributions to better simulate natural charging. This differs from prior work which used a constant voltage or Maxwellian distributions. This is done to a calm space weather case of Kp = 2 and a stormy case where Kp = 8. Preliminary analysis suggests that electrostatics will still cause large orbital changes even with the more realistic charging model.

  9. Measuring the Thickness and Potential Profiles of the Space-Charge Layer at Organic/Organic Interfaces under Illumination and in the Dark by Scanning Kelvin Probe Microscopy.

    PubMed

    Rojas, Geoffrey A; Wu, Yanfei; Haugstad, Greg; Frisbie, C Daniel

    2016-03-09

    Scanning Kelvin probe microscopy was used to measure band-bending at the model donor/acceptor heterojunction poly(3-hexylthiophene) (P3HT)/fullerene (C60). Specifically, we measured the variation in the surface potential of C60 films with increasing thicknesses grown on P3HT to produce a surface potential profile normal to the substrate both in the dark and under illumination. The results confirm a space-charge carrier region with a thickness of 10 nm, consistent with previous observations. We discuss the possibility that the domain size in bulk heterojunction organic solar cells, which is comparable to the space-charge layer thickness, is actually partly responsible for less than expected electron/hole recombination rates.

  10. A Numerical Scheme for the Solution of the Space Charge Problem on a Multiply Connected Region

    NASA Astrophysics Data System (ADS)

    Budd, C. J.; Wheeler, A. A.

    1991-11-01

    In this paper we extend the work of Budd and Wheeler ( Proc. R. Soc. London A, 417, 389, 1988) , who described a new numerical scheme for the solution of the space charge equation on a simple connected domain, to multiply connected regions. The space charge equation, ▿ · ( Δ overlineϕ ▽ overlineϕ) = 0 , is a third-order nonlinear partial differential equation for the electric potential overlineϕ which models the electric field in the vicinity of a coronating conductor. Budd and Wheeler described a new way of analysing this equation by constructing an orthogonal coordinate system ( overlineϕ, overlineψ) and recasting the equation in terms of x, y, and ▽ overlineϕ as functions of ( overlineϕ, overlineψ). This transformation is singular on multiply connected regions and in this paper we show how this may be overcome to provide an efficient numerical scheme for the solution of the space charge equation. This scheme also provides a new method for the solution of Laplaces equation and the calculation of orthogonal meshes on multiply connected regions.

  11. Numerical Modeling of Ion Dynamics in a Carbon Nanotube Field-Ionized Thruster

    DTIC Science & Technology

    2011-12-01

    30  Figure 13.  Equipotential plot, Ez as a function of z and r, Jreq=300 kA/m2, space charge off... Equipotential plots, Ez as a function of z and r, Jreq=300 kA/m2, space charge on. Plots are taken at time intervals of 0.05 ns...on the accelerating grids; under-perveance results in crossover, overlap of neighboring beamlets, and impingement on downstream surfaces . Optimum

  12. Validation of ISS Floating Potential Measurement Unit Electron Densities and Temperatures

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Minow, Joseph I.; Parker, Linda N.; Bui, Them; Wright, Kenneth, Jr.; Koontz, Steven L.; Schneider, T.; Vaughn, J.; Craven, P.

    2007-01-01

    Validation of the Floating Potential Measurement Unit (FPMU) electron density and temperature measurements is an important step in the process of evaluating International Space Station spacecraft charging issues .including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on Space Station are due to the combined VxB effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160 V US solar array modules. Ionospheric electron environments are needed for input to the ISS spacecraft charging models used to predict the severity and frequency of occurrence of ISS charging hazards. Validation of these charging models requires comparing their predictions with measured FPMU values. Of course, the FPMU measurements themselves must also be validated independently for use in manned flight safety work. This presentation compares electron density and temperatures derived from the FPMU Langmuir probes and Plasma Impedance Probe against the independent density and temperature measurements from ultraviolet imagers, ground based incoherent scatter radar, and ionosonde sites.

  13. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further details of the instrumentation used for insulator measurements and representative measurements of insulating spacecraft materials are provided in other Spacecraft Charging Conference presentations. The NASA Space Environments and Effects Program, the Air Force Office of Scientific Research, the Boeing Corporation, NASA Graduate Research Fellowships, and the NASA Rocky Mountain Space Grant Consortium have provided support.

  14. A Theory for Rapid Charging Events on the International Space Station

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Craven, Paul D.; Minow, Joseph I.; Wright, Kenneth H., Jr.

    2009-01-01

    The Floating Potential Measurement Unit (FPMU) has detected high negative amplitude rapid charging events (RCEs) on the International Space Station (ISS) at the morning terminator. These events are larger and more rapid than the ISS morning charging events first seen by the Floating Potential Probe (FPP) on ISS in 2001. In this paper, we describe a theory for the RCEs that further elucidates the nature of spacecraft charging in low Earth orbit (LEO) in a non-equilibrium situation. The model accounts for all essential aspects of the newly discovered phenomenon, and is amenable to testing on-orbit. Predictions of the model for the amplitude of the ISS RCEs for the full set of ISS solar arrays and for the coming solar cycle are given, and the results of modeling by the Environments WorkBench (EWB) are compared to the observed events to show that the phenomenon can be explained by solar array driven charging. The situation is unique because the coverglasses have not yet reached equilibrium with the surrounding plasma during the RCEs. Finally, a prescription for further use of the ISS for investigating fundamental plasma physics in LEO is given. Already, plasma and charging monitoring instruments on ISS have taught us much about spacecraft interactions with the dense LEO plasma, and we expect they will continue to yield more valuable science when the Japanese Experiment Module (JEM) is in place.

  15. Three-dimensional relativistic field-electron interaction in a multicavity high-power klystron. 1: Basic theory

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1982-01-01

    A theoretical investigation of three dimensional relativistic klystron action is described. The relativistic axisymmetric equations of motion are derived from the time-dependent Lagrangian function for a charged particle in electromagnetic fields. An analytical expression of the fringing RF electric and magnetic fields within and in the vicinity of the interaction gap and the space-charge forces between axially and radially elastic deformable rings of charges are both included in the formulation. This makes an accurate computation of electron motion through the tunnel of the cavities and the drift tube spaces possible. Method of analysis is based on Lagrangian formulation. Bunching is computed using a disk model of electron stream in which the electron stream is divided into axisymmetric disks of equal charge and each disk is assumed to consist of a number of concentric rings of equal charges. The Individual representative groups of electrons are followed through the interaction gaps and drift tube spaces. Induced currents and voltages in interacting cavities are calculated by invoking the Shockley-Ramo theorem.

  16. Numerical Studies of High-Intensity Injection Painting for Project X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drozhdin, A.I.; Vorobiev, L.G.; Johnson, D.E.

    Injection phase space painting enables the mitigation of space charge and stability issues, and will be indispensable for the Project-X at Fermilab [1], delivering high-intensity proton beams to HEP experiments. Numerical simulations of multi-turn phase space painting have been performed for the FNAL Recycler Ring, including a self-consistent space charge model. The goal of our studies was to study the injection painting with inclusion of 3D space charge, using the ORBIT tracking code. In a current scenario the painting lasts for 110 turns, twice faster, than we considered in this paper. The optimal wave-forms for painting kickers, which ensure themore » flatter phase distributions, should be found. So far we used a simplified model for painting kicker strength (implemented as the 'ideal bump' in ORBIT). We will include a more realistic field map for the chicane magnets. Additional stripping simulations will be combined. We developed a block for longitudinal painting, which works with arbitrary notches in incoming micro-bunch buckets. The appropriate choice of the amplitude of the second harmonic of RF field will help to flatten the RF-bucket contours, as was demonstrated in 1D simulations. Non-linear lattice issue will be also addressed.« less

  17. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure

    NASA Technical Reports Server (NTRS)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.

    2010-01-01

    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine acceptable plasma electron current levels that can be collected by a single or combined fleet of ISS-docked VVs.

  18. Description of a Generalized Analytical Model for the Micro-dosimeter Response

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Xapsos, Michael A.; Shinn, Judy L.; Wilson, John W.; Hunter, Abigail

    2007-01-01

    An analytical prediction capability for space radiation in Low Earth Orbit (LEO), correlated with the Space Transportation System (STS) Shuttle Tissue Equivalent Proportional Counter (TEPC) measurements, is presented. The model takes into consideration the energy loss straggling and chord length distribution of the TEPC detector, and is capable of predicting energy deposition fluctuations in a micro-volume by incoming ions through both direct and indirect ionic events. The charged particle transport calculations correlated with STS 56, 51, 110 and 114 flights are accomplished by utilizing the most recent version (2005) of the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport WZETRN), which has been extensively validated with laboratory beam measurements and available space flight data. The agreement between the TEPC model prediction (response function) and the TEPC measured differential and integral spectra in lineal energy (y) domain is promising.

  19. Thermo-electrochemical evaluation of lithium-ion batteries for space applications

    NASA Astrophysics Data System (ADS)

    Walker, W.; Yayathi, S.; Shaw, J.; Ardebili, H.

    2015-12-01

    Advanced energy storage and power management systems designed through rigorous materials selection, testing and analysis processes are essential to ensuring mission longevity and success for space exploration applications. Comprehensive testing of Boston Power Swing 5300 lithium-ion (Li-ion) cells utilized by the National Aeronautics and Space Administration (NASA) to power humanoid robot Robonaut 2 (R2) is conducted to support the development of a test-correlated Thermal Desktop (TD) Systems Improved Numerical Differencing Analyzer (SINDA) (TD-S) model for evaluation of power system thermal performance. Temperature, current, working voltage and open circuit voltage measurements are taken during nominal charge-discharge operations to provide necessary characterization of the Swing 5300 cells for TD-S model correlation. Building from test data, embedded FORTRAN statements directly simulate Ohmic heat generation of the cells during charge-discharge as a function of surrounding temperature, local cell temperature and state of charge. The unique capability gained by using TD-S is demonstrated by simulating R2 battery thermal performance in example orbital environments for hypothetical extra-vehicular activities (EVA) exterior to a small satellite. Results provide necessary demonstration of this TD-S technique for thermo-electrochemical analysis of Li-ion cells operating in space environments.

  20. Mining CRRES IDM Pulse Data and CRRES Environmental Data to Improve Spacecraft Charging/Discharging Models and Guidelines

    NASA Technical Reports Server (NTRS)

    Brautigam, D. H.; Frederickson, A. R.

    2004-01-01

    One can truly predict the charging and pulsing in space over a year's time using only the physics that worked for periods of an hour and less in prior publications. All portions of the task were achieved, including the optional portion of determining a value for conductivity that best .t the data. Fortran statements were developed that are required for the NUMIT runs to work with this kind of data from space. In addition to developing the Fortran for NUMIT, simple correlations between the IDM pulsing history and the space radiation were observed because we now have a better characterization of the space radiation. The study showed that: (1) the new methods for measurement of charge storage and conduction in insulators provide the correct values to use for prediction of charging and pulsing in space; (2) the methods in NUMIT that worked well for time durations less than hours now work well for durations of months; (3) an average spectrum such as AE8 is probably not a good guide for predicting pulsing in space one must take time dependence into account in order to understand insulator pulsing; and (4) the old method for predicting pulse rates in space that was based on the CRRES data could be improved to include dependencies on material parameters.

  1. Internal Structure of Charged Particles in a GRT Gravitational Model

    NASA Astrophysics Data System (ADS)

    Khlestkov, Yu. A.; Sukhanova, L. A.

    2018-05-01

    With the help of an exact solution of the Einstein and Maxwell equations, the internal structure of a multiply connected space of wormhole type with two unclosed static throats leading out of it into two parallel vacuum spaces or into one space is investigated in GRT for a free electric field and dust-like matter. The given geometry is considered as a particle-antiparticle pair with fundamental constants arising in the form of first integrals in the solution of the Cauchy problem - electric charges ±e of opposite sign in the throats and rest mass m0 - the total gravitational mass of the inner world of the particle in the throat. With the help of the energy conservation law, the unremovable rotation of the internal structure is included and the projection of the angular momentum of which onto the rotation axis is identified with the z-projection of the spin of the charged particle. The radius of 2-Gaussian curvature of the throat R* is identified with the charge radius of the particle, and the z-projection of the magnetic moment and the g-factor are found. The feasibility of the given gravitational model is confirmed by the found condition of independence of the spin quantum number of the electron and the proton s = 1/2 of the charge radius R* and the relativistic rest mass m* of the rotating throat, which is reliably confirmed experimentally, and also by the coincidence with high accuracy of the proton radius calculated in the model R*p = 0.8412·10-13 cm with the value of the proton charge radius obtained experimentally by measuring the Lamb shift on muonic hydrogen. The electron in the given model also turns out to be a structured particle with radius R*e = 3.8617·10-11 cm.

  2. Proceedings of the Spacecraft Charging Technology Conference: Executive Summary

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Whipple, E. C., Jr.; Stevens, N. J.; Minges, M. L.; Lehn, W. L.; Bunn, M. H.

    1977-01-01

    Aerospace environments are reviewed in reference to spacecraft charging. Modelling, a theoretical scheme which can be used to describe the structure of the sheath around the spacecraft and to calculate the charging currents within, is discussed. Materials characterization is considered for experimental determination of the behavior of typical spacecraft materials when exposed to simulated geomagnetic substorm conditions. Materials development is also examined for controlling and minimizing spacecraft charging or at least for distributing the charge in an equipotential manner, using electrical conductive surfaces for materials exposed to space environment.

  3. Hole Scattering in GaSb: Scattering on Space Charge Regions Versus Dipole Scattering

    NASA Astrophysics Data System (ADS)

    Pődör, B.

    2006-11-01

    Hole concentration and mobility were investigated by Hall measurements in nominally undoped p-type GaSb in the temperature range from 77 to 300 K. The dependence of the thermal ionization energy of native acceptors on the acceptor centre concentration and on the compensation degree was determined. The temperature dependence of the hole mobility was analyzed using a heuristic semi-empirical model as well as using a phenomenological two-hole band model. Space charge scattering and/or dipole scattering described with a mobility contribution with a ˜ T-1/2 like temperature dependence dominated the hole mobility in the investigated temperature range.

  4. Relativistic space-charge-limited transport in Dirac semiconductor

    NASA Astrophysics Data System (ADS)

    Ang, Yee Sin; Zubair, M.; Ang, L. K.; Lavoie, Philippe

    The theory of space-charge-limited (SCL) current was first formulated by Mott and Gurney more than 70 years ago based on the semiclassical transport of quasi-free electron in dielectric solids. Its validity for recently fabricated 2D materials, which can host different classes of exotic quasiparticles, remains questionable. Recently, SCL transport measurements in 2D Dirac semiconductor, such as MoS2 and hBN monolayers, revealed anomalous current-voltage scaling of J V 1 . 7 which cannot be satisfactorily explained by conventional theories. In this work, we propose a theory of space-charge-limited transport that takes into account the relativistic quasiparticle dynamics in 2D Dirac semiconductor based on semiclassical Boltzmann transport equation. Our relativistic SCL model reveals an unconventional scaling relation of J Vα with 3 / 2 < α < 2 in the trap-free (or trap-filled) regime, which is in stark contrast to the Mott-Gurney relation of α = 2 and the Mark-Helfrich relation of α > 2 . The α < 2 scaling is a unique manifestation of the massive Dirac quasiparticles and is supported by the experimental data of MoS2. The relativistic SCL model proposed here shall provide a physical basis for the modelling of Dirac-material-based devices

  5. ICF Implosions, Space-Charge Electric Fields, and Their Impact on Mix and Compression

    NASA Astrophysics Data System (ADS)

    Knoll, Dana; Chacon, Luis; Simakov, Andrei

    2013-10-01

    The single-fluid, quasi-neutral, radiation hydrodynamics codes, used to design the NIF targets, predict thermonuclear ignition for the conditions that have been achieved experimentally. A logical conclusion is that the physics model used in these codes is missing one, or more, key phenomena. Two key model-experiment inconsistencies on NIF are: 1) a lower implosion velocity than predicted by the design codes, and 2) transport of pusher material deep into the hot spot. We hypothesize that both of these model-experiment inconsistencies may be a result of a large, space-charge, electric field residing on the distinct interfaces in a NIF target. Large space-charge fields have been experimentally observed in Omega experiments. Given our hypothesis, this presentation will: 1) Develop a more complete physics picture of initiation, sustainment, and dissipation of a current-driven plasma sheath / double-layer at the Fuel-Pusher interface of an ablating plastic shell implosion on Omega, 2) Characterize the mix that can result from a double-layer field at the Fuel-Pusher interface, prior to the onset of fluid instabilities, and 3) Quantify the impact of the double-layer induced surface tension at the Fuel-Pusher interface on the peak observed implosion velocity in Omega.

  6. Orbit-Attitude Changes of Objects in Near Earth Space Induced by Natural Charging

    DTIC Science & Technology

    2017-05-02

    depends upon Earth’s magnetosphere. Typically, magneto-sphere models can be grouped under two classes: statistical and physics -based. The Physics ...models were primarily physics -based due to unavailability of sufficient space-data, but over the last three decades, with the availability of huge...Attitude Determination and Control,” Astrophysics and Space Sci- ence Library, Vol. 73, D. Reidel Publishing Company, London, 1978 [17] Fairfield

  7. Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Johnson, Scott M.

    2010-01-01

    The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging. Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.

  8. Assessment and Control of Spacecraft Charging Risks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Valentine, Mark; Keeping, Thomas; Edeen, Marybeth; Spetch, William; Dalton, Penni

    2004-01-01

    The International Space Station (ISS) operates in the F2 region of Earth's ionosphere, orbiting at altitudes ranging from 350 to 450 km at an inclination of 51.6 degrees. The relatively dense, cool F2 ionospheric plasma suppresses surface charging processes much of the time, and the flux of relativistic electrons is low enough to preclude deep dielectric charging processes. The most important spacecraft charging processes in the ISS orbital environment are: 1) ISS electrical power system interactions with the F2 plasma, 2) magnetic induction processes resulting from flight through the geomagnetic field and, 3) charging processes that result from interaction with auroral electrons at high latitude. Recently, the continuing review and evaluation of putative ISS charging hazards required by the ISS Program Office revealed that ISS charging could produce an electrical shock hazard to the ISS crew during extravehicular activity (EVA). ISS charging risks are being evaluated in an ongoing measurement and analysis campaign. The results of ISS charging measurements are combined with a recently developed model of ISS charging (the Plasma Interaction Model) and an exhaustive analysis of historical ionospheric variability data (ISS Ionospheric Specification) to evaluate ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA combines estimates of the frequency of occurrence and severity of the charging hazards with estimates of the reliability of various hazard controls systems, as required by NASA s safety and risk management programs, to enable design and selection of a hazard control approach that minimizes overall programmatic and personnel risk. The PRA provides a quantitative methodology for incorporating the results of the ISS charging measurement and analysis campaigns into the necessary hazard reports, EVA procedures, and ISS flight rules required for operating ISS in a safe and productive manner.

  9. Revisiting the magnetic structure and charge ordering in La1 /3Sr2 /3FeO3 by neutron powder diffraction and Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, F.; Pomjakushin, V.; Mazet, T.; Sibille, R.; Malaman, B.; Yadav, R.; Keller, L.; Medarde, M.; Conder, K.; Pomjakushina, E.

    2018-05-01

    The magnetic ordering of La1 /3Sr2 /3FeO3 perovskite has been studied by neutron powder diffraction and 57Fe Mössbauer spectroscopy down to 2 K. From symmetry analysis, a chiral helical model and a collinear model are proposed to describe the magnetic structure. Both are commensurate, with propagation vector k =(0 ,0 ,1 ) in R 3 ¯c space group. In the former model, the magnetic moments of Fe adopt the magnetic space group P 3221 and have helical and antiferromagnetic ordering propagating along the c axis. The model allows only a single Fe site, with a magnetic moment of 3.46(2)μB at 2 K. In the latter model, the magnetic moments of iron ions adopt the magnetic space group C 2 /c or C 2'/c' and are aligned collinearly. The model allows the presence of two inequivalent Fe sites with magnetic moments of amplitude 3.26(3)μB and 3.67(2)μB, respectively. The neutron-diffraction pattern is equally well fitted by either model. The Mössbauer spectroscopy study suggests a single charge state Fe3.66 + above the magnetic transition and a charge disproportionation into Fe(3.66 -ζ )+ and Fe(3.66 +2 ζ )+ below the magnetic transition. The compatibility of the magnetic structure models with the Mössbauer spectroscopy results is discussed.

  10. Electrostatic Model Applied to ISS Charged Water Droplet Experiment

    NASA Technical Reports Server (NTRS)

    Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.

    2015-01-01

    The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.

  11. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  12. Systematic Improvement of Potential-Derived Atomic Multipoles and Redundancy of the Electrostatic Parameter Space.

    PubMed

    Jakobsen, Sofie; Jensen, Frank

    2014-12-09

    We assess the accuracy of force field (FF) electrostatics at several levels of approximation from the standard model using fixed partial charges to conformational specific multipole fits including up to quadrupole moments. Potential-derived point charges and multipoles are calculated using least-squares methods for a total of ∼1000 different conformations of the 20 natural amino acids. Opposed to standard charge fitting schemes the procedure presented in the current work employs fitting points placed on a single isodensity surface, since the electrostatic potential (ESP) on such a surface determines the ESP at all points outside this surface. We find that the effect of multipoles beyond partial atomic charges is of the same magnitude as the effect due to neglecting conformational dependency (i.e., polarizability), suggesting that the two effects should be included at the same level in FF development. The redundancy at both the partial charge and multipole levels of approximation is quantified. We present an algorithm which stepwise reduces or increases the dimensionality of the charge or multipole parameter space and provides an upper limit of the ESP error that can be obtained at a given truncation level. Thereby, we can identify a reduced set of multipole moments corresponding to ∼40% of the total number of multipoles. This subset of parameters provides a significant improvement in the representation of the ESP compared to the simple point charge model and close to the accuracy obtained using the complete multipole parameter space. The selection of the ∼40% most important multipole sites is highly transferable among different conformations, and we find that quadrupoles are of high importance for atoms involved in π-bonding, since the anisotropic electric field generated in such regions requires a large degree of flexibility.

  13. A Study of the Nature and Origins of Pyroelectricity and Piezoelectricity in Polyvinylidenefluoride and Its Co-Polymers.

    DTIC Science & Technology

    1980-01-01

    OF THIS PAOE(3tn Dea afm 20. Contd. It is possible that space charges are also present in the’film. However, the distribution of space charges in the...the discontinuities so that space charge effects may cause field perturbations. On the other hand, the corona charging procedure may drive ions into...trapped space charge effects; (iv) tunnelling of charge from the electrodes to empty traps; (v) hopping of charge carriers through localized states. The

  14. 8th Spacecraft Charging Technology Conference

    NASA Technical Reports Server (NTRS)

    Minor, J. L. (Compiler)

    2004-01-01

    The 8th Spacecraft Charging Technology Conference was held in Huntsville, Alabama, October 20-24, 2003. Hosted by NASA s Space Environments and Effects (SEE) Program and co-sponsored by the Air Force Research Laboratory (AFRL) and the European Space Agency (ESA), the 2003 conference saw attendance from eleven countries with over 65 oral papers and 18 poster papers. Presentation topics highlighted the latest in spacecraft charging mitigation techniques and on-orbit investigations, including: Plasma Propulsion and Tethers; Ground Testing Techniques; Interactions of Spacecraft and Systems With the Natural and Induced Plasma Environment; Materials Characterizations; Models and Computer Simulations; Environment Specifications; Current Collection and Plasma Probes in Space Plasmas; On-Orbit Investigations. A round-table discussion of international standards regarding electrostatic discharge (ESD) testing was also held with the promise of continued discussions in the off years and an official continuation at the next conference.

  15. Full dyon excitation spectrum in extended Levin-Wen models

    NASA Astrophysics Data System (ADS)

    Hu, Yuting; Geer, Nathan; Wu, Yong-Shi

    2018-05-01

    In Levin-Wen (LW) models, a wide class of exactly solvable discrete models, for two-dimensional topological phases, it is relatively easy to describe only single-fluxon excitations, but not the charge and dyonic as well as many-fluxon excitations. To incorporate charged and dyonic excitations in (doubled) topological phases, an extension of the LW models is proposed in this paper. We first enlarge the Hilbert space with adding a tail on one of the edges of each trivalent vertex to describe the internal charge degrees of freedom at the vertex. Then, we study the full dyon spectrum of the extended LW models, including both quantum numbers and wave functions for dyonic quasiparticle excitations. The local operators associated with the dyonic excitations are shown to form the so-called tube algebra, whose representations (modules) form the quantum double (categoric center) of the input data (unitary fusion category). In physically relevant cases, the input data are from a finite or quantum group (with braiding R matrices), and we find that the elementary excitations (or dyon species), as well as any localized/isolated excited states, are characterized by three quantum numbers: charge, fluxon type, and twist. They provide a "complete basis" for many-body states in the enlarged Hilbert space. Concrete examples are presented and the relevance of our results to the electric-magnetic duality existing in the models is addressed.

  16. Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring

    NASA Astrophysics Data System (ADS)

    Nakatsugawa, K.; Fujii, T.; Tanda, S.

    2017-09-01

    We show that time translation symmetry of a ring system with a macroscopic quantum ground state is broken by decoherence. In particular, we consider a ring-shaped incommensurate charge density wave (ICDW ring) threaded by a fluctuating magnetic flux: the Caldeira-Leggett model is used to model the fluctuating flux as a bath of harmonic oscillators. We show that the charge density expectation value of a quantized ICDW ring coupled to its environment oscillates periodically. The Hamiltonians considered in this model are time independent unlike "Floquet time crystals" considered recently. Our model forms a metastable quantum time crystal with a finite length in space and in time.

  17. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    PubMed

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  18. Hopf solitons in the Nicole model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillard, Mike; Sutcliffe, Paul

    2010-12-15

    The Nicole model is a conformal field theory in a three-dimensional space. It has topological soliton solutions classified by the integer-valued Hopf charge, and all currently known solitons are axially symmetric. A volume-preserving flow is used to construct soliton solutions numerically for all Hopf charges from 1 to 8. It is found that the known axially symmetric solutions are unstable for Hopf charges greater than 2 and new lower energy solutions are obtained that include knots and links. A comparison with the Skyrme-Faddeev model suggests many universal features, though there are some differences in the link types obtained in themore » two theories.« less

  19. Neutralization of beam-emitting spacecraft by plasma injection

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.

    1987-01-01

    An impulsive plasma injection has been used to study charge neutralization of the Space Shuttle Orbiter while it was emitting an electron beam into space. This investigation was performed by Space Experiments with Particle Accelerators on Spacelab-1. A plasma consisting of 10 to the 19th argon ion-electron pairs was injected into space for 1 ms while an electron beam was also being emitted into space. The electron beam energy and current were as high as 5 keV and 300 mA. While the orbiter potential was positive before the plasma injection and began to decrease during the plasma injection, it was near zero for 6 to 20 ms after the plasma injection. The recovery time to the initial level of charging varied from 10 to 100 ms. In a laboratory test in a large space chamber using the same flight hardware, the neutralization time was 8-17 ms and the recovery time was 11-20 ms. The long duration of the neutralization effect in space can be explained by a model of diffusion of the cold plasma which is produced near the Orbiter by charge exchange between the neutral argon atoms and the energetic argon ions during plasma injection.

  20. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G.; Qiao, Rui

    2014-07-01

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.

  1. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions.

    PubMed

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-07-16

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.

  2. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation.

    PubMed

    Sridharan, D M; Asaithamby, A; Bailey, S M; Costes, S V; Doetsch, P W; Dynan, W S; Kronenberg, A; Rithidech, K N; Saha, J; Snijders, A M; Werner, E; Wiese, C; Cucinotta, F A; Pluth, J M

    2015-01-01

    During space travel astronauts are exposed to a variety of radiations, including galactic cosmic rays composed of high-energy protons and high-energy charged (HZE) nuclei, and solar particle events containing low- to medium-energy protons. Risks from these exposures include carcinogenesis, central nervous system damage and degenerative tissue effects. Currently, career radiation limits are based on estimates of fatal cancer risks calculated using a model that incorporates human epidemiological data from exposed populations, estimates of relative biological effectiveness and dose-response data from relevant mammalian experimental models. A major goal of space radiation risk assessment is to link mechanistic data from biological studies at NASA Space Radiation Laboratory and other particle accelerators with risk models. Early phenotypes of HZE exposure, such as the induction of reactive oxygen species, DNA damage signaling and inflammation, are sensitive to HZE damage complexity. This review summarizes our current understanding of critical areas within the DNA damage and oxidative stress arena and provides insight into their mechanistic interdependence and their usefulness in accurately modeling cancer and other risks in astronauts exposed to space radiation. Our ultimate goals are to examine potential links and crosstalk between early response modules activated by charged particle exposure, to identify critical areas that require further research and to use these data to reduced uncertainties in modeling cancer risk for astronauts. A clearer understanding of the links between early mechanistic aspects of high-LET response and later surrogate cancer end points could reveal key nodes that can be therapeutically targeted to mitigate the health effects from charged particle exposures.

  3. Transfer of electrical space charge from corona between ground and thundercloud: Measurements and modeling

    NASA Technical Reports Server (NTRS)

    Soula, Serge

    1994-01-01

    The evolution of the vertical electric field profile deduced from simultaneous field measurements at several levels below a thundercloud shows the development of a space charge layer at least up to 600 m. The average charge density in the whole layer from 0 m to 600 m can reach about 1 nC m(exp -3). The ions are generated at the ground by corona effect and the production rate is evaluated with a new method from the comparison of field evolutions at the ground and at altitude after a lightning flash. The modeling of the relevant processes shows tht ground corona accounts for the observed field evolutions and that the aerosol particles concentration has a very large effect on the evolution of corona ions. However, with a realistic value for this concentration a large amount of ground corona ions reach the level of 600 m.

  4. Space platform power system hardware testbed

    NASA Technical Reports Server (NTRS)

    Sable, D.; Patil, A.; Sizemore, T.; Deuty, S.; Noon, J.; Cho, B. H.; Lee, F. C.

    1991-01-01

    The scope of the work on the NASA Space Platform includes the design of a multi-module, multi-phase boost regulator, and a voltage-fed, push-pull autotransformer converter for the battery discharger. A buck converter was designed for the charge regulator. Also included is the associated mode control electronics for the charger and discharger, as well as continued development of a comprehensive modeling and simulation tool for the system. The design of the multi-module boost converter is discussed for use as a battery discharger. An alternative battery discharger design is discussed using a voltage-fed, push-pull autotransformer converter. The design of the charge regulator is explained using a simple buck converter. The design of the mode controller and effects of locating the bus filter capacitor bank 20 feet away from the power ORU are discussed. A brief discussion of some alternative topologies for battery charging and discharging is included. The power system modeling is described.

  5. The electro-mechanical effect from charge dynamics on polymeric insulation lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alghamdi, H., E-mail: haalghamdi@nu.edu.sa; Faculty of Engineering, Najran University, Najran, P.O.Box 1988; Chen, G.

    For polymeric material used as electrical insulation, the presence of space charges could be the consequence of material degradations that are thermally activated but increased by the application of an electric field. The dynamics of space charge, therefore, can be potentially used to characterize the material. In this direction, a new aging model in which parameters have clear physical meanings has been developed and applied to the material to extrapolate the lifetime. The kinetic equation has been established based on charge trapping and detrapping of the injected charge from the electrodes. The local electromechanical energy stored in the region surroundingmore » the trap is able to reduce the trap-depth with a value related to the electric field. At a level where the internal electric field exceeds the detrapping field in the material, an electron can be efficiently detrapped and the released energy from detrapping process can cause a weak bond or chain scission i.e. material degradation. The model has been applied to the electro-thermally aged low density polyethylene film samples, showing well fitted result, as well as interesting relationships between parameter estimates and insulation morphology.« less

  6. Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.

    2004-01-01

    Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.

  7. Failures and anomalies attributed to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Leach, R. D.; Alexander, M. B. (Editor)

    1995-01-01

    The effects of spacecraft charging can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are protected against charging is an important engineering function necessary to assure mission success. Spacecraft charging is expected to have a significant role in future space activities and programs. Objectives of this reference publication are to present a brief overview of spacecraft charging, to acquaint the reader with charging history, including illustrative cases of charging anomalies, and to introduce current spacecraft charging prevention activities of the Electromagnetics and Environments Branch, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).

  8. Designing heteropolymers to fold into unique structures via water-mediated interactions.

    PubMed

    Jamadagni, Sumanth N; Bosoy, Christian; Garde, Shekhar

    2010-10-28

    Hydrophobic homopolymers collapse into globular structures in water driven by hydrophobic interactions. Here we employ extensive molecular dynamics simulations to study the collapse of heteropolymers containing one or two pairs of oppositely charged monomers. We show that charging a pair of monomers can dramatically alter the most stable conformations from compact globular to more open hairpin-like. We systematically explore a subset of the sequence space of one- and two-charge-pair polymers, focusing on the locations of the charge pairs. Conformational stability is governed by a balance of hydrophobic interactions, hydration and interactions of charge groups, water-mediated charged-hydrophobic monomer repulsions, and other factors. As a result, placing charge pairs in the middle, away from the hairpin ends, leads to stable hairpin-like structures. Turning off the monomer-water attractions enhances hydrophobic interactions significantly leading to a collapse into compact globular structures even for two-charge-pair heteropolymers. In contrast, the addition of salt leads to open and extended structures, suggesting that solvation of charged monomer sites by salt ions dominates the salt-induced enhancement of hydrophobic interactions. We also test the ability of a predictive scheme based on the additivity of free energy of contact formation. The success of the scheme for symmetric two-charge-pair sequences and the failure for their flipped versions highlight the complexity of the heteropolymer conformation space and of the design problem. Collectively, our results underscore the ability of tuning water-mediated interactions to design stable nonglobular structures in water and present model heteropolymers for further studies in the extended thermodynamic space and in inhomogeneous environments.

  9. Self-Assembling of Tetradecylammonium Chain on Swelling High Charge Micas (Na-Mica-3 and Na-Mica-2): Effect of Alkylammonium Concentration and Mica Layer Charge.

    PubMed

    Pazos, M Carolina; Cota, Agustín; Osuna, Francisco J; Pavón, Esperanza; Alba, María D

    2015-04-21

    A family of tetradecylammonium micas is synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg6F4O20·XH2O, where n = 2 and 3) exchanged with tetradecylammonium cations. The molecular arrangement of the surfactant is elucidated on the basis of XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas is investigated by IR/FT, (13)C, (27)Al, and (29)Si MAS NMR. The structural arrangement of the tetradecylammonium cation in the interlayer space of high-charge micas is more sensitive to the effect of the mica layer charge at high concentration. The surfactant arrangement is found to follow the bilayer-paraffin model for all values of layer charge and surfactant concentration. However, at initial concentration below the mica CEC, a lateral monolayer is also observed. The amount of ordered conformation all-trans is directly proportional to the layer charge and surfactant concentration.

  10. Charge collection properties in an irradiated pixel sensor built in a thick-film HV-SOI process

    NASA Astrophysics Data System (ADS)

    Hiti, B.; Cindro, V.; Gorišek, A.; Hemperek, T.; Kishishita, T.; Kramberger, G.; Krüger, H.; Mandić, I.; Mikuž, M.; Wermes, N.; Zavrtanik, M.

    2017-10-01

    Investigation of HV-CMOS sensors for use as a tracking detector in the ATLAS experiment at the upgraded LHC (HL-LHC) has recently been an active field of research. A potential candidate for a pixel detector built in Silicon-On-Insulator (SOI) technology has already been characterized in terms of radiation hardness to TID (Total Ionizing Dose) and charge collection after a moderate neutron irradiation. In this article we present results of an extensive irradiation hardness study with neutrons up to a fluence of 1× 1016 neq/cm2. Charge collection in a passive pixelated structure was measured by Edge Transient Current Technique (E-TCT). The evolution of the effective space charge concentration was found to be compliant with the acceptor removal model, with the minimum of the space charge concentration being reached after 5× 1014 neq/cm2. An investigation of the in-pixel uniformity of the detector response revealed parasitic charge collection by the epitaxial silicon layer characteristic for the SOI design. The results were backed by a numerical simulation of charge collection in an equivalent detector layout.

  11. Experimental and Theoretical Investigations of Charged Phospholipid Bilayers.

    NASA Astrophysics Data System (ADS)

    Graham, Ian Stanley

    1987-09-01

    Lipid systems containing charged species are examined by both experiment and theory. Experimental studies of the mixing of phosphatidylcholine or phosphatidylethanolamine with phosphatidic acid show that calcium induces fast ( <=q1s) phase separation of these otherwise miscible systems, and that this can occur in an isolated bilayer. Ionogenic behaviour is theoretically investigated using a new electrolyte model which explicitly includes both the solvent and particle sizes, and a binding model which uses Guggenheim combinatorics to treat non 1-1 binding stoichiometries. This work predicts a reduced dielectric constant near charged surfaces and strong repulsive forces between closely spaced (<15A) surfaces. A reanalysis of data from charged monolayers experiments indicates (1) that the new electrolyte model describes double layer behaviour at high surface charge densities better than the traditional Derjaguin - Landau - Verwey - Overbeek (DLVO) theory, (2) that calcium and magnesium bind to phosphatidylserine monolayers with a 1-1 stoichiometry.

  12. A comparison of experimental and computer model results on the charge-exchange plasma flow from a 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Gabriel, S. B.; Kaufman, H. R.

    1982-01-01

    Ion thrusters can be used in a variety of primary and auxiliary space-propulsion applications. A thruster produces a charge-exchange plasma which can interact with various systems on the spacecraft. The propagation of the charge-exchange plasma is crucial in determining the interaction of that plasma with the spacecraft. This paper compares experimental measurements with computer model predictions of the propagation of the charge-exchange plasma from a 30 cm mercury ion thruster. The plasma potentials, and ion densities, and directed energies are discussed. Good agreement is found in a region upstream of, and close to, the ion thruster optics. Outside of this region the agreement is reasonable in view of the modeling difficulties.

  13. Space charge distributions in insulating polymers: A new non-contacting way of measurement.

    PubMed

    Marty-Dessus, D; Ziani, A C; Petre, A; Berquez, L

    2015-04-01

    A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. These predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.

  14. Two-dimensional relativistic space charge limited current flow in the drift space

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.

    2014-04-01

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  15. Charge Sharing and Charge Loss in a Cadmium-Zinc-Telluride Fine-Pixel Detector Array

    NASA Technical Reports Server (NTRS)

    Gaskin, J. A.; Sharma, D. P.; Ramsey, B. D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a Cadmium-Zinc-Telluride (CZT) multi-pixel detector is ideal for hard x-ray astrophysical observation. As part of on-going research at MSFC (Marshall Space Flight Center) to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750micron pitch), lmm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300micron pitch). Future work will enable us to compare the simulated results for the finer array to measured values.

  16. Calculation of total cross sections for charge exchange in molecular collisions

    NASA Technical Reports Server (NTRS)

    Ioup, J.

    1979-01-01

    Areas of investigation summarized include nitrogen ion-nitrogen molecule collisions; molecular collisions with surfaces; molecular identification from analysis of cracking patterns of selected gases; computer modelling of a quadrupole mass spectrometer; study of space charge in a quadrupole; transmission of the 127 deg cylindrical electrostatic analyzer; and mass spectrometer data deconvolution.

  17. Phenomenology of the Higgs sector of a Dimension-7 Neutrino Mass Generation Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Tathagata; Jana, Sudip; Nandi, S.

    In this paper, we revisit the dimension-7 neutrino mass generation mechanism based on the addition of an isospinmore » $3/2$ scalar quadruplet and two vector-like iso-triplet leptons to the standard model. We discuss the LHC phenomenology of the charged scalars of this model, complemented by the electroweak precision and lepton flavor violation constraints. We pay particular attention to the triply charged and doubly charged components. We focus on the same-sign-tri-lepton signatures originating from the triply-charged scalars and find a discovery reach of 600 - 950 GeV at 3 ab$$^{-1}$$ of integrated luminosity at the LHC. On the other hand, doubly charged Higgs has been an object of collider searches for a long time, and we show how the present bounds on its mass depend on the particle spectrum of the theory. Strong constraint on the model parameter space can arise from the measured decay rate of the Standard Model Higgs to a pair of photons as well.« less

  18. Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma

    NASA Technical Reports Server (NTRS)

    Esser, Ruth; Ling, James (Technical Monitor)

    2001-01-01

    Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona where these ion charge states are formed. The goal of the proposed research was to determine solar wind models and coronal observations that are necessary tools for the interpretation of the ion charge state observations made in situ in the solar wind.

  19. Numerical Simulation of Current Artillery Charges Using the TDNOVA Code.

    DTIC Science & Technology

    1986-06-01

    behavior was occasionally observed, particularly near the ends of the charge and particularly at increment-to-increment interfaces . Rather than expanding...between the charge sidewalls and the tube, had been observed at an early date by Kent. 3 The influence of axial ullage. or spaces between the ends of...subsided to within a user -selectable tolerance, the model is converted to a quasi-two-dimensional representation based on coupled regions of coaxial one

  20. Behavior of collisional sheath in electronegative plasma with q-nonextensive electron distribution

    NASA Astrophysics Data System (ADS)

    Borgohain, Dima Rani; Saharia, K.

    2018-03-01

    Electronegative plasma sheath is addressed in a collisional unmagnetized plasma consisting of q-nonextensive electrons, Boltzmann distributed negative ions and cold fluid positive ions. Considering the positive ion-neutral collisions and ignoring the effects of ionization and collisions between negative species and positive ions (neutrals), a modified Bohm sheath criterion and hence floating potential are derived by using multifluid model. Using the modified Bohm sheath criterion, the sheath characteristics such as spatial profiles of density, potential and net space charge density have been numerically investigated. It is found that increasing values of q-nonextensivity, electronegativity and collisionality lead to a decrease of the sheath thickness and an increase of the sheath potential and the net space charge density. With increasing values of the electron temperature to negative ion temperature ratio, the sheath thickness increases and the sheath potential as well as the net space charge density in the sheath region decreases.

  1. Measurement of positive direct current corona pulse in coaxial wire-cylinder gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Han, E-mail: hanyin1986@gmail.com; Zhang, Bo, E-mail: shizbcn@mail.tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn

    In this paper, a system is designed and developed to measure the positive corona current in coaxial wire-cylinder gaps. The characteristic parameters of corona current pulses, such as the amplitude, rise time, half-wave time, and repetition frequency, are statistically analyzed and a new set of empirical formulas are derived by numerical fitting. The influence of space charges on corona currents is tested by using three corona cages with different radii. A numerical method is used to solve a simplified ion-flow model to explain the influence of space charges. Based on the statistical results, a stochastic model is developed to simulatemore » the corona pulse trains. And this model is verified by comparing the simulated frequency-domain responses with the measured ones.« less

  2. Underestimated role of the secondary electron emission in the space

    NASA Astrophysics Data System (ADS)

    Nemecek, Zdenek; Richterova, Ivana; Safrankova, Jana; Pavlu, Jiri; Vaverka, Jakub; Nouzak, Libor

    2016-07-01

    Secondary electron emission (SEE) is one of many processes that charges surfaces of bodies immersed into a plasma. Until present, a majority of considerations in theories and experiments is based on the sixty year old description of an interaction of planar metallic surfaces with electrons, thus the effects of a surface curvature, roughness, presence of clusters as well as an influence of the material conductance on different aspects of this interaction are neglected. Dust grains or their clusters can be frequently found in many space environments - interstellar clouds, atmospheres of planets, tails of comets or planetary rings are only typical examples. The grains are exposed to electrons of different energies and they can acquire positive or negative charge during this interaction. We review the progress in experimental investigations and computer simulations of the SEE from samples relevant to space that was achieved in course of the last decade. We present a systematic study of well-defined systems that starts from spherical grains of various diameters and materials, and it continues with clusters consisting of different numbers of small spherical grains that can be considered as examples of real irregularly shaped space grains. The charges acquired by investigated objects as well as their secondary emission yields are calculated using the SEE model. We show that (1) the charge and surface potential of clusters exposed to the electron beam are influenced by the number of grains and by their geometry within a particular cluster, (2) the model results are in an excellent agreement with the experiment, and (3) there is a large difference between charging of a cluster levitating in the free space and that attached to a planar surface. The calculation provides a reduction of the secondary electron emission yield of the surface covered by dust clusters by a factor up to 1.5 with respect to the yield of a smooth surface. (4) These results are applied on charging of the lunar surface and the dust grains levitating above it, and it is shown that the SEE is more important for isolated dust grains than for the lunar surface covered by them.

  3. On the evolution of the Universe

    NASA Astrophysics Data System (ADS)

    Kondratenko, P. O.

    2014-12-01

    In this paper a model of creation and evolution of the universe in which the laws of physics are performed. The model implies that our Universe is a part of a Super-Universe as a separate layer in the fiber space, and the information communication exists between adjacent layers through the single point. During the formation of Super-Universe it was filled first a one-dimensional World of Field-time, then a two-dimensional (1+1) World was filled with energy and Planck's particles which carry the electric and magnetic charges. Completion of two-dimensional world filling leads to a "transfusion" of energy into the neighboring three-dimensional World which presents a world of known quarks which have the fractional electric charges, color charges, and spins. The next step is a "transfusion" of energy into the four-dimensional (3+1) World and the birth of the particles of this World. Evolution of this World has a completion by the brane creation of five-dimensional World. This evolution is accompanying by the birth of the entire set of stable and unstable heavy nuclei and atoms. A filling of each new layer at the fiber space does not bring the entropy into this space (i.e. cold and completely deterministic start of evolution). The proposed model supports the anthropic principle in the Universe.

  4. Electron cooling of a bunched ion beam in a storage ring

    NASA Astrophysics Data System (ADS)

    Zhao, He; Mao, Lijun; Yang, Jiancheng; Xia, Jiawen; Yang, Xiaodong; Li, Jie; Tang, Meitang; Shen, Guodong; Ma, Xiaoming; Wu, Bo; Wang, Geng; Ruan, Shuang; Wang, Kedong; Dong, Ziqiang

    2018-02-01

    A combination of electron cooling and rf system is an effective method to compress the beam bunch length in storage rings. A simulation code based on multiparticle tracking was developed to calculate the bunched ion beam cooling process, in which the electron cooling, intrabeam scattering (IBS), ion beam space-charge field, transverse and synchrotron motion are considered. Meanwhile, bunched ion beam cooling experiments have been carried out in the main cooling storage ring (CSRm) of the Heavy Ion Research Facility in Lanzhou, to investigate the minimum bunch length obtained by the cooling method, and study the dependence of the minimum bunch length on beam and machine parameters. The experiments show comparable results to those from simulation. Based on these simulations and experiments, we established an analytical model to describe the limitation of the bunch length of the cooled ion beam. It is observed that the IBS effect is dominant for low intensity beams, and the space-charge effect is much more important for high intensity beams. Moreover, the particles will not be bunched for much higher intensity beam. The experimental results in CSRm show a good agreement with the analytical model in the IBS dominated regime. The simulation work offers us comparable results to those from the analytical model both in IBS dominated and space-charge dominated regimes.

  5. A SELF-CONSISTENT DEUTSCHIAN ESP MODEL

    EPA Science Inventory

    The report presents a new version of the EPA I Southern Research Institute electrostatic precipitator (ESP) model. The primary difference between this and the standard (Revision 3) versions is in the treatment of the particulate space charge. Both models apply the Deutsch equatio...

  6. Computer Modeling of Electrostatic Aggregation of Granular Materials in Planetary and Astrophysical Settings

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Sauke, T.

    1999-01-01

    Electrostatic forces strongly influence the behavior of granular materials in both dispersed (cloud) systems and semi-packed systems. These forces can cause aggregation or dispersion of particles and are important in a variety of astrophysical and planetary settings. There are also many industrial and commercial settings where granular matter and electrostatics become partners for both good and bad. This partnership is important for human exploration on Mars where dust adheres to suits, machines, and habitats. Long-range Coulombic (electrostatic) forces, as opposed to contact-induced dipoles and van der Waals attractions, are generally regarded as resulting from net charge. We have proposed that in addition to net charge interactions, randomly distributed charge carriers on grains will result in a dipole moment regardless of any net charge. If grains are unconfined, or fluidized, they will rotate so that the dipole always induces attraction between grains. Aggregates are readily formed, and Coulombic polarity resulting from the dipole produces end-to-end stacking of grains to form filamentary aggregates. This has been demonstrated in USML experiments on Space Shuttle where microgravity facilitated the unmasking of static forces. It has also been demonstrated in a computer model using grains with charge carriers of both sign. Model results very closely resembled micro-g results with actual sand grains. Further computer modeling of the aggregation process has been conducted to improve our understanding of the aggregation process, and to provide a predictive tool for microgravity experiments slated for Space Station. These experiments will attempt to prove the dipole concept as outlined above. We have considerably enhanced the original computer model: refinements to the algorithm have improved the fidelity of grain behavior during grain contact, special attention has been paid to simulation time steps to enable establishment of a meaningful, quantitative time axis, and calibration of rounding accuracies have been conducted to test cumulative numerical influences in the model. The model has been run for larger grain populations, variable initial cloud densities, and we have introduced random net charging to individual grains, as well as a net charge to the cloud as a whole. The model uses 3 positive and 3 negative charges randomly distributed on each grain, with up to 160 grains contained within various size "boxes" that define the initial number densities in the clouds. Each charge represents localized charged region on a grain, but does not necessarily imply single quantized charge carriers. The Coulomb equations are then allowed to interact for each monopole: dipoles and any higher order charge coupling is a natural product of these "free" interactions over which the modeler exerts no influence. The charges are placed on surfaces of grains at random locations. A series of runs was conducted for neutral grains that had a perfect balance of negative and positive char carriers. Runs were also conducted with grains having additional fractional charges ranging between 0 and 1. By adding fractional charges of one sign, the model created grain populations in which all grains had excess charges the same sign, giving the cloud an overall net charge. This simulates clouds subjected to ionizing radiation (e. protoplanetary debris disk around a protosun), or any other process of charge biasing in a grain population (e.g., volcanic plumes). In another run series, random fractional charges of either sign were added to the grains so th some grains had a slight net positive charge while others had a slight net negative charge. This simulates triboelectrically-charged grain populations in which acquisition of an electron by one surface is at the expense creating a hole elsewhere. This dual sign charging was applied in two ways: in one case the cloud remained neutral by ensuring that all grain excess charges added to zero; in the other case, the cloud was permitted slight net char by not imposing a charge-balance condition. Additional information is contained in the original.

  7. Charge transport study in bis{2-(2-hydroxyphenyl) benzoxazolate} zinc [Zn(hpb)2

    NASA Astrophysics Data System (ADS)

    Rai, Virendra Kumar; Srivastava, Ritu; Chauhan, Gayatri; Kumar, Arunandan; Kamalasanan, M. N.

    2008-10-01

    The nature of the electrical transport mechanism for carrier transport in pure bis {2-(2-hydroxyphenyl) benzoxazolate} zinc [Zn(hpb)2] has been studied by current voltage measurements of samples at different thicknesses and at different temperatures. Hole-only devices show ohmic conduction at low voltages and space charge conduction at high voltages. The space charge conduction is clearly identifiable with a square law dependence of current on voltage as well as the scaling of current inversely with the cube of thickness. With a further increase in voltage, the current increases with a Vm dependence with m varying with temperature typical of trap limited conduction with an exponential distribution of trap states. From the square law region the effective charge carrier mobility of holes has been evaluated as 2.5 × 10-11 m2 V-1 s-1. Electron-only devices however show electrode limited conduction, which was found to obey the Scott Malliaras model of charge injection.

  8. 1985 Annual Conference on Nuclear and Space Radiation Effects, 22nd, Monterey, CA, July 22-24, 1985, Proceedings

    NASA Technical Reports Server (NTRS)

    Jones, C. W. (Editor)

    1985-01-01

    Basic mechanisms of radiation effects in structures and materials are discussed, taking into account the time dependence of interface state production, process dependent build-up of interface states in irradiated N-channel MOSFETs, bias annealing of radiation and bias induced positive charges in n- and p-type MOS capacitors, hole removal in thin-gate MOSFETs by tunneling, and activation energies of oxide charge recovery in SOS or SOI structures after an ionizing pulse. Other topics investigated are related to radiation effects in devices, radiation effects in integrated circuits, spacecraft charging and space radiation effects, single-event phenomena, hardness assurance and radiation sources, SGEMP/IEMP phenomena, EMP phenomena, and dosimetry and energy-dependent effects. Attention is given to a model of the plasma wake generated by a large object, gate charge collection and induced drain current in GaAs FETs, simulation of charge collection in a multilayer device, and time dependent dose enhancement effects on integrated circuit transient response mechanisms.

  9. 1985 Annual Conference on Nuclear and Space Radiation Effects, 22nd, Monterey, CA, July 22-24, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Jones, C. W.

    1985-12-01

    Basic mechanisms of radiation effects in structures and materials are discussed, taking into account the time dependence of interface state production, process dependent build-up of interface states in irradiated N-channel MOSFETs, bias annealing of radiation and bias induced positive charges in n- and p-type MOS capacitors, hole removal in thin-gate MOSFETs by tunneling, and activation energies of oxide charge recovery in SOS or SOI structures after an ionizing pulse. Other topics investigated are related to radiation effects in devices, radiation effects in integrated circuits, spacecraft charging and space radiation effects, single-event phenomena, hardness assurance and radiation sources, SGEMP/IEMP phenomena, EMP phenomena, and dosimetry and energy-dependent effects. Attention is given to a model of the plasma wake generated by a large object, gate charge collection and induced drain current in GaAs FETs, simulation of charge collection in a multilayer device, and time dependent dose enhancement effects on integrated circuit transient response mechanisms.

  10. One-dimension modeling on the parallel-plate ion extraction process based on a non-electron-equilibrium fluid model

    NASA Astrophysics Data System (ADS)

    Li, He-Ping; Chen, Jian; Guo, Heng; Jiang, Dong-Jun; Zhou, Ming-Sheng; Department of Engineering Physics Team

    2017-10-01

    Ion extraction from a plasma under an externally applied electric field involve multi-particle and multi-field interactions, and has wide applications in the fields of materials processing, etching, chemical analysis, etc. In order to develop the high-efficiency ion extraction methods, it is indispensable to establish a feasible model to understand the non-equilibrium transportation processes of the charged particles and the evolutions of the space charge sheath during the extraction process. Most of the previous studies on the ion extraction process are mainly based on the electron-equilibrium fluid model, which assumed that the electrons are in the thermodynamic equilibrium state. However, it may lead to some confusions with neglecting the electron movement during the sheath formation process. In this study, a non-electron-equilibrium model is established to describe the transportation of the charged particles in a parallel-plate ion extraction process. The numerical results show that the formation of the Child-Langmuir sheath is mainly caused by the charge separation. And thus, the sheath shielding effect will be significantly weakened if the charge separation is suppressed during the extraction process of the charged particles.

  11. Electrostatically driven fog collection using space charge injection

    PubMed Central

    Damak, Maher; Varanasi, Kripa K.

    2018-01-01

    Fog collection can be a sustainable solution to water scarcity in many regions around the world. Most proposed collectors are meshes that rely on inertial collision for droplet capture and are inherently limited by aerodynamics. We propose a new approach in which we introduce electrical forces that can overcome aerodynamic drag forces. Using an ion emitter, we introduce a space charge into the fog to impart a net charge to the incoming fog droplets and direct them toward a collector using an imposed electric field. We experimentally measure the collection efficiency on single wires, two-wire systems, and meshes and propose a physical model to quantify it. We identify the regimes of optimal collection and provide insights into designing effective fog harvesting systems. PMID:29888324

  12. Fractional-dimensional Child-Langmuir law for a rough cathode

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Ang, L. K.

    2016-07-01

    This work presents a self-consistent model of space charge limited current transport in a gap combined of free-space and fractional-dimensional space (Fα), where α is the fractional dimension in the range 0 < α ≤ 1. In this approach, a closed-form fractional-dimensional generalization of Child-Langmuir (CL) law is derived in classical regime which is then used to model the effect of cathode surface roughness in a vacuum diode by replacing the rough cathode with a smooth cathode placed in a layer of effective fractional-dimensional space. Smooth transition of CL law from the fractional-dimensional to integer-dimensional space is also demonstrated. The model has been validated by comparing results with an experiment.

  13. Space charge induced resonance excitation in high intensity rings

    NASA Astrophysics Data System (ADS)

    Cousineau, S.; Lee, S. Y.; Holmes, J. A.; Danilov, V.; Fedotov, A.

    2003-03-01

    We present a particle core model study of the space charge effect on high intensity synchrotron beams, with specific emphasis on the Proton Storage Ring (PSR) at Los Alamos National Laboratory. Our particle core model formulation includes realistic lattice focusing and dispersion. We transport both matched and mismatched beams through real lattice structure and compare the results with those of an equivalent uniform-focusing approximation. The effects of lattice structure and finite momentum spread on the resonance behavior are specifically targeted. Stroboscopic maps of the mismatched envelope are constructed and show high-order resonances and stochastic effects that dominate at high mismatch or high intensity. We observe the evolution of the envelope phase-space structure during a high intensity PSR beam accumulation. Finally, we examine the envelope-particle parametric resonance condition and discuss the possibility for halo growth in synchrotron beams due to this mechanism.

  14. Three dimensional δf simulations of beams in the SSC

    NASA Astrophysics Data System (ADS)

    Koga, J.; Tajima, T.; Machida, S.

    1993-12-01

    A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.

  15. Electric and magnetic microfields inside and outside space-limited configurations of ions and ionic currents

    NASA Astrophysics Data System (ADS)

    Romanovsky, M. Yu; Ebeling, W.; Schimansky-Geier, L.

    2005-01-01

    The problem of electric and magnetic microfields inside finite spherical systems of stochastically moving ions and outside them is studied. The first possible field of applications is high temperature ion clusters created by laser fields [1]. Other possible applications are nearly spherical liquid systems at room-temperature containing electrolytes. Looking for biological applications we may also think about a cell which is a complicated electrolytic system or even a brain which is a still more complicated system of electrolytic currents. The essential model assumption is the random character of charges motion. We assume in our basic model that we have a finite nearly spherical system of randomly moving charges. Even taking into account that this is at best a caricature of any real system, it might be of interest as a limiting case, which admits a full theoretical treatment. For symmetry reasons, a random configuration of moving charges cannot generate a macroscopic magnetic field, but there will be microscopic fluctuating magnetic fields. Distributions for electric and magnetic microfields inside and outside such space- limited systems are calculated. Spherical systems of randomly distributed moving charges are investigated. Starting from earlier results for infinitely large systems, which lead to Holtsmark- type distributions, we show that the fluctuations in finite charge distributions are larger (in comparison to infinite systems of the same charge density).

  16. Electrical properties of double layer dielectric structures for space technology

    NASA Astrophysics Data System (ADS)

    Lian, Anqing

    1993-04-01

    Polymeric films such as polyimide (PI) and polyethylene terephthalate (PET) are used in space technology as thermal blankets. Thin SiO2 and SiN coatings plasma deposited onto PI and PET surfaces were proposed to protect the blanket materials against the space environment. The electrical properties of this kind of dual layer dielectric structure were investigated to understand the mechanisms for suppressing charge accumulation and flashover. Bulk and surface electrical conductivities of thin single-layer PI and PET samples and of the dual layer SiO2 and SiN combinations with PI and PET were measured in a range of applied electrical fields. The capacitance voltage (CV) technique was used for analyzing charge transport and distribution in the structures. The electric current in the bulk of the SiO2/PI and SiN/PI samples was found to depend on the polarity of the electric field. Other samples did not exhibit any such polarity effect. The polarity dependence is attributed to charge trapping at the PI/plasma deposit interface. The CV characteristics of the Al-PI-SiO2-Si structure confirm that charges which can modify the local electric field can be trapped near the interface. A model is proposed to interpret the properties of the currents in dual layer structures. This model can semi-quantitatively explain all the observed results.

  17. Capabilities of CdTe-Based Detectors With {mathrm {MoO}}_{x} Contacts for Detection of X- and gamma -Radiation

    NASA Astrophysics Data System (ADS)

    Maslyanchuk, O. L.; Solovan, M. M.; Brus, V. V.; Kulchynsky, V. V.; Maryanchuk, P. D.; Fodchuk, I. M.; Gnatyuk, V. A.; Aoki, T.; Potiriadis, C.; Kaissas, Y.

    2017-05-01

    The charge transport mechanism and spectrometric properties of the X-ray and γ-ray detectors, fabricated by the deposition of molybdenum oxide thin films onto semi-insulating p-CdTe crystals were studied. The current transport processes in the Mo-MoOx/p-CdTe/MoOx-Mo structure are well described in the scope of the carrier's generation in the space-charge region and the space-charge-limited current models. The lifetime of charge carriers, the energy of hole traps, and the density of discrete trapping centers were determined from the comparison of the experimental data and calculations. Spectrometric properties of Mo-MoOx/p-CdTe/MoOx-Mo structures were also investigated. It is shown that the investigated heterojunctions have demonstrated promising characteristics for practical application in X-ray and γ-ray detector fabrication.

  18. Optimized shielding for space radiation protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M. H.; Schimmerling, W.

    2001-01-01

    Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  19. Optimized Shielding for Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M.-H. Y.; Schimmerling, W.

    2000-01-01

    Abstract. Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  20. Charming dark matter

    NASA Astrophysics Data System (ADS)

    Jubb, Thomas; Kirk, Matthew; Lenz, Alexander

    2017-12-01

    We have considered a model of Dark Minimal Flavour Violation (DMFV), in which a triplet of dark matter particles couple to right-handed up-type quarks via a heavy colour-charged scalar mediator. By studying a large spectrum of possible constraints, and assessing the entire parameter space using a Markov Chain Monte Carlo (MCMC), we can place strong restrictions on the allowed parameter space for dark matter models of this type.

  1. New methods in WARP, a particle-in-cell code for space-charge dominated beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grote, D., LLNL

    1998-01-12

    The current U.S. approach for a driver for inertial confinement fusion power production is a heavy-ion induction accelerator; high-current beams of heavy ions are focused onto the fusion target. The space-charge of the high-current beams affects the behavior more strongly than does the temperature (the beams are described as being ``space-charge dominated``) and the beams behave like non-neutral plasmas. The particle simulation code WARP has been developed and used to study the transport and acceleration of space-charge dominated ion beams in a wide range of applications, from basic beam physics studies, to ongoing experiments, to fusion driver concepts. WARP combinesmore » aspects of a particle simulation code and an accelerator code; it uses multi-dimensional, electrostatic particle-in-cell (PIC) techniques and has a rich mechanism for specifying the lattice of externally applied fields. There are both two- and three-dimensional versions, the former including axisymmetric (r-z) and transverse slice (x-y) models. WARP includes a number of novel techniques and capabilities that both enhance its performance and make it applicable to a wide range of problems. Some of these have been described elsewhere. Several recent developments will be discussed in this paper. A transverse slice model has been implemented with the novel capability of including bends, allowing more rapid simulation while retaining essential physics. An interface using Python as the interpreter layer instead of Basis has been developed. A parallel version of WARP has been developed using Python.« less

  2. Propagation of optical vortices with fractional topological charge in free space

    NASA Astrophysics Data System (ADS)

    Ali, Tamelia; Kreminska, Liubov; Golovin, Andrii B.; Crouse, David T.

    2014-10-01

    The behavior of the optical vortices with fractional topological charges in the far-field is assessed through numerical modeling and confirmed by experimental results. The generation of fractional topological charge variations of the phase within a Gaussian beam was achieved by using a liquid crystal spatial light modulator (LCoS SLM). It is shown that a laser beam carrying an optical vortex with a fractional topological charge evolves into a beam with a topological charge of integer value, specifically an integer value closer to the fractional number in the far field. A potential application of this work is for data transmission within optical telecommunication systems.

  3. Characteristics of space charge formed in a laminated LDPE/EVA dielectric under DC stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshikatsu; Kisanuki, Osamu; Sakata, Masataka

    1996-12-31

    A laser-induced pressure pulse (LIPP) method was used for measuring the space charge distribution of LDPE/EVA laminate dielectrics under dc stress. The constant voltage up to {+-}20 kV was applied to a side of the laminates of 0.5 mm thickness for 30 minutes. The other side is grounded. When the amount of space charge was measured by LIPP, both sides were virtually grounded. Space charge built up in or near the interface between LDPE and EVA was mainly investigated. Positive and negative voltage was applied to the side of LDPE in the laminates. It was clarified that the space chargemore » was larger in case of LDPE negatively biased than in case of LDPE positively biased. The density of the space charge ranged around 1 nC/mm{sup 3}. The formation of interfacial space charge is analyzed.« less

  4. CPRIT/Johnson Space Center, September, 2011 (Cancer Prevention and Research Institute of Texas)

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey; Lane, Helen; Baker, Tracey; Cucinotta, Francis; Wu, Honglu

    2011-01-01

    JSC researchers study carcinogenesis, cancer prevention and treatment along with epidemiological (primarily retrospective and longitudinal) studies, modeling, and interactions with the environment such as radiation, nutritional, and endocrine changes related to space flight along with behaviors such as smoking. Cancer research is a major focus for human space flight due to the exposure to space radiation which consists of particles of varying charges and energies, and secondary neutrons. The JSC laboratories collaborate with investigators from the U.S. as well as our European and Japanese partners. We use accelerator facilities at the Brookhaven National Laboratory, Loma Linda University and Los Alamos National Laboratory that generate high energy charged particles and neutrons to simulate cosmic radiation and solar particle events. The research using cultured cells and animals concentrates on damage and repair from the level of DNA to organ tissues, due to exposure to simulated space radiation exposure, that contribute to the induction of leukemia and solid tumors in most major tissues such as lung, colon, liver and breast. The goal of the research is to develop a mathematical model that can predict cancer morbidity and mortality risks with sufficient accuracy for a given space mission.

  5. Review of NASA approach to space radiation risk assessments for Mars exploration.

    PubMed

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  6. Crystallochromy of perylene pigments: Influence of an enlarged polyaromatic core region

    NASA Astrophysics Data System (ADS)

    Gisslén, L.; Scholz, R.

    2011-04-01

    As demonstrated in a recent model study of several perylene pigments crystallizing in the monoclinic space group P21/c, the optical properties in the crystalline phase are determined by the interference between neutral molecular excitations and charge transfer states via electron and hole transfer. In the present work, we apply this exciton model to three further perylene compounds crystallizing in the space groups P21/n, P1̲, and P21/c, involving two chromophores with an enlarged polyaromatic core. In all cases, the charge transfer between stack neighbors increases the second moment of the optical response, whereas a larger conjugated core results in a red shift of the neutral excitation energy of each chromophore.

  7. Natural Limits for Currents in Charge Separated Pulsar Magnetospheres

    NASA Astrophysics Data System (ADS)

    Jessner, A.; Lesch, H.; Kunzl, T.

    Rough estimates and upper limits on current and particle densities form the basis of most of the canonical pulsar models. Whereas the surface of the rotating neutron star is capable of supplying sufficient charges to provide a current that, given the polar cap potential, could easily fuel the observed energy loss processes, observational and theoretical constraints provide strict upper limits to the charge densities. The space charge of a current consisting solely of particles having only one sign creates a compensating potential that will make the maximum current dependent on potential and distance. In the non-relativistic case this fact is expressed in the familiar Child-Langmuir law. Its relativistic generalization and subsequent application to the inner pulsar magnetosphere provides clear limits on the strength and radial extension of charged currents originating on the polar cap. Violent Pierce-type oscillations set in, if one attempts to inject more current than the space charge limit into a given volume. These considerations apply wherever there is a significant amount of charged current flow, in particular in the gap regions. There they can be used to derive limits on the size of such gaps and their stability.

  8. Space charge distributions in insulating polymers: A new non-contacting way of measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marty-Dessus, D., E-mail: marty@laplace.univ-tlse.fr; Ziani, A. C.; Berquez, L.

    2015-04-15

    A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. Thesemore » predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.« less

  9. Reformulated space-charge-limited current model and its application to disordered organic systems

    NASA Astrophysics Data System (ADS)

    Woellner, Cristiano F.; Freire, José A.

    2011-02-01

    We have reformulated a traditional model used to describe the current-voltage dependence of low mobility materials sandwiched between planar electrodes by using the quasi-electrochemical potential as the fundamental variable instead of the local electric field or the local charge carrier density. This allows the material density-of-states to enter explicitly in the equations and dispenses with the need to assume a particular type of contact. The diffusion current is included and as a consequence the current-voltage dependence obtained covers, with increasing bias, the diffusion limited current, the space-charge limited current, and the injection limited current regimes. The generalized Einstein relation and the field and density dependent mobility are naturally incorporated into the formalism; these two points being of particular relevance for disordered organic semiconductors. The reformulated model can be applied to any material where the carrier density and the mobility may be written as a function of the quasi-electrochemical potential. We applied it to the textbook example of a nondegenerate, constant mobility material and showed how a single dimensionless parameter determines the form of the I(V) curve. We obtained integral expressions for the carrier density and for the mobility as a function of the quasi-electrochemical potential for a Gaussianly disordered organic material and found the general form of the I(V) curve for such materials over the full range of bias, showing how the energetic disorder alone can give rise, in the space-charge limited current regime, to an I∝Vn dependence with an exponent n larger than 2.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altsybeyev, V.V., E-mail: v.altsybeev@spbu.ru; Ponomarev, V.A.

    The particle tracking method with a so-called gun iteration for modeling the space charge is discussed in the following paper. We suggest to apply the emission model based on the Gauss's law for the calculation of the space charge limited current density distribution using considered method. Based on the presented emission model we have developed a numerical algorithm for this calculations. This approach allows us to perform accurate and low time consumpting numerical simulations for different vacuum sources with the curved emitting surfaces and also in the presence of additional physical effects such as bipolar flows and backscattered electrons. Themore » results of the simulations of the cylindrical diode and diode with elliptical emitter with the use of axysimmetric coordinates are presented. The high efficiency and accuracy of the suggested approach are confirmed by the obtained results and comparisons with the analytical solutions.« less

  11. 14 CFR 1215.113 - User charges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false User charges. 1215.113 Section 1215.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM... shall reimburse NASA the sum of the charges for standard and mission-unique services. Charges will be...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, Xiaoying; Rybarcyk, Larry

    HPSim is a GPU-accelerated online multi-particle beam dynamics simulation tool for ion linacs. It was originally developed for use on the Los Alamos 800-MeV proton linac. It is a “z-code” that contains typical linac beam transport elements. The linac RF-gap transformation utilizes transit-time-factors to calculate the beam acceleration therein. The space-charge effects are computed using the 2D SCHEFF (Space CHarge EFFect) algorithm, which calculates the radial and longitudinal space charge forces for cylindrically symmetric beam distributions. Other space- charge routines to be incorporated include the 3D PICNIC and a 3D Poisson solver. HPSim can simulate beam dynamics in drift tubemore » linacs (DTLs) and coupled cavity linacs (CCLs). Elliptical superconducting cavity (SC) structures will also be incorporated into the code. The computational core of the code is written in C++ and accelerated using the NVIDIA CUDA technology. Users access the core code, which is wrapped in Python/C APIs, via Pythons scripts that enable ease-of-use and automation of the simulations. The overall linac description including the EPICS PV machine control parameters is kept in an SQLite database that also contains calibration and conversion factors required to transform the machine set points into model values used in the simulation.« less

  13. The Equivalent Electrokinetic Circuit Model of Ion Concentration Polarization Layer: Electrical Double Layer, Extended Space Charge and Electro-convection

    NASA Astrophysics Data System (ADS)

    Cho, Inhee; Huh, Keon; Kwak, Rhokyun; Lee, Hyomin; Kim, Sung Jae

    2016-11-01

    The first direct chronopotentiometric measurement was provided to distinguish the potential difference through the extended space charge (ESC) layer which is formed with the electrical double layer (EDL) near a perm-selective membrane. From this experimental result, the linear relationship was obtained between the resistance of ESC and the applied current density. Furthermore, we observed the step-wise distributions of relaxation time at the limiting current regime, confirming the existence of ESC capacitance other than EDL's. In addition, we proposed the equivalent electrokinetic circuit model inside ion concentration polarization (ICP) layer under rigorous consideration of EDL, ESC and electro-convection (EC). In order to elucidate the voltage configuration in chronopotentiometric measurement, the EC component was considered as the "dependent voltage source" which is serially connected to the ESC layer. This model successfully described the charging behavior of the ESC layer with or without EC, where both cases determined each relaxation time, respectively. Finally, we quantitatively verified their values utilizing the Poisson-Nernst-Planck equations. Therefore, this unified circuit model would provide a key insight of ICP system and potential energy-efficient applications.

  14. The Charging of Composites in the Space Environment

    NASA Technical Reports Server (NTRS)

    Czepiela, Steven A.

    1997-01-01

    Deep dielectric charging and subsequent electrostatic discharge in composite materials used on spacecraft have become greater concerns since composite materials are being used more extensively as main structural components. Deep dielectric charging occurs when high energy particles penetrate and deposit themselves in the insulating material of spacecraft components. These deposited particles induce an electric field in the material, which causes the particles to move and thus changes the electric field. The electric field continues to change until a steady state is reached between the incoming particles from the space environment and the particles moving away due to the electric field. An electrostatic discharge occurs when the electric field is greater than the dielectric strength of the composite material. The goal of the current investigation is to investigate deep dielectric charging in composite materials and ascertain what modifications have to be made to the composite properties to alleviate any breakdown issues. A 1-D model was created. The space environment, which is calculated using the Environmental Workbench software, the composite material properties, and the electric field and voltage boundary conditions are input into the model. The output from the model is the charge density, electric field, and voltage distributions as functions of the depth into the material and time. Analysis using the model show that there should be no deep dielectric charging problem with conductive composites such as carbon fiber/epoxy. With insulating materials such as glass fiber/epoxy, Kevlar, and polymers, there is also no concern of deep dielectric charging problems with average day-to-day particle fluxes. However, problems can arise during geomagnetic substorms and solar particle events where particle flux levels increase by several orders of magnitude, and thus increase the electric field in the material by several orders of magnitude. Therefore, the second part of this investigation was an experimental attempt to measure the continuum electrical properties of a carbon fiber/epoxy composite, and to create a composite with tailorable conductivity without affecting its mechanical properties. The measurement of the conductivity and dielectric strength of carbon fiber/epoxy composites showed that these properties are surface layer dominated and difficult to measure. In the second experimental task, the conductivity of a glass fiber/epoxy composite was increased by 3 orders of magnitude, dielectric constant was increased approximately by a factor of 16, with minimal change to the mechanical properties, by adding conductive carbon black to the epoxy.

  15. New battery model considering thermal transport and partial charge stationary effects in photovoltaic off-grid applications

    NASA Astrophysics Data System (ADS)

    Sanz-Gorrachategui, Iván; Bernal, Carlos; Oyarbide, Estanis; Garayalde, Erik; Aizpuru, Iosu; Canales, Jose María; Bono-Nuez, Antonio

    2018-02-01

    The optimization of the battery pack in an off-grid Photovoltaic application must consider the minimum sizing that assures the availability of the system under the worst environmental conditions. Thus, it is necessary to predict the evolution of the state of charge of the battery under incomplete daily charging and discharging processes and fluctuating temperatures over day-night cycles. Much of previous development work has been carried out in order to model the short term evolution of battery variables. Many works focus on the on-line parameter estimation of available charge, using standard or advanced estimators, but they are not focused on the development of a model with predictive capabilities. Moreover, normally stable environmental conditions and standard charge-discharge patterns are considered. As the actual cycle-patterns differ from the manufacturer's tests, batteries fail to perform as expected. This paper proposes a novel methodology to model these issues, with predictive capabilities to estimate the remaining charge in a battery after several solar cycles. A new non-linear state space model is proposed as a basis, and the methodology to feed and train the model is introduced. The new methodology is validated using experimental data, providing only 5% of error at higher temperatures than the nominal one.

  16. The role of volume charging of dielectrics in the occurrence of electrostatic discharges on spacecraft

    NASA Astrophysics Data System (ADS)

    Chirskaia, Natalia; Novikov, Lev; Voronina, Ekaterina

    2016-07-01

    Most recent works consider the occurrence of electrostatic discharges (ESD) on the surface of the spacecraft due to spacecraft charging as a consequence of its surface interaction with the surrounding space plasma and solar radiation [1]. At the same time, low-orbit spacecraft are simultaneously exposed to the hot magnetospheric plasma with the typical energies of the particles ~ 0.1 - 50 keV and to the particles of the Earth radiation belts (ERB) with a typical energy in the range of 0.1-10 MeV. Electrons of ERB with these energies penetrate into spacecraft dielectrics on the order of a few millimeters in depth and create an embedded charge with their own electric field. It has been shown in a number of papers that exactly a volume charge of the electrons of ERB can be the cause of ESD on spacecraft [2,3]. In this work we present the results of calculation of the dose rate and, correspondingly, the radiation conductivity in a typical spacecraft dielectrics, arising under the action of the hot magnetospheric plasma and electrons of ERB. Using software packages based on Monte Carlo methods and on the solution of equations of charge transport in spacecraft dielectrics, it is shown that in a number of areas of the Earth's magnetosphere the ESD can occur under the action of the ERB electrons. The results of present work can provide a basis for creation of the standard, characterizing the emergence of ESR on spacecraft due to volume charging of dielectrics and describing the methods of laboratory tests of spacecraft dielectrics. L.S. Novikov, A.A. Makletsov, and V.V. Sinolits, Comparison of Coulomb-2, NASCAP-2K, MUSCAT and SPIS codes for geosynchronous spacecraft charging, Advances in Space Research, 2016, V. 57, Is. 2, pp. 671-680. Wrenn G.L., Smith R.J.K. The ESD Threat to GEO Satellites: Empirical Models for Observed Effects Due to Both Surface and Internal Charging. Proc. ESA Symp. "Environment Modelling for Space-based Applications", ESTEC Noordwijk, The Netherlands, 1996, pp. 121-124. Paulmier, T., Dirassen, B., Arnaout, M., Payan, D., Balcon, N., Radiation-Induced Conductivity of Space Used Polymers Under High Energy Electron Irradiation, Plasma Science, IEEE Transactions, 2015, V. 43, No. 9, pp.2907-2914.

  17. Efficient Charge Collection in Coplanar-Grid Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Kunc, J.; Praus, P.; Belas, E.; Dědič, V.; Pekárek, J.; Grill, R.

    2018-05-01

    We model laser-induced transient-current waveforms in radiation coplanar-grid detectors. Poisson's equation is solved by the finite-element method and currents induced by a photogenerated charge are obtained using the Shockley-Ramo theorem. The spectral response on a radiation flux is modeled by Monte Carlo simulations. We show a 10 × improved spectral resolution of the coplanar-grid detector using differential signal sensing. We model the current waveform dependence on the doping, depletion width, diffusion, and detector shielding, and their mutual dependence is discussed in terms of detector optimization. The numerical simulations are successfully compared to experimental data, and further model simplifications are proposed. The space charge below electrodes and a nonhomogeneous electric field on a coplanar-grid anode are found to be the dominant contributions to laser-induced transient-current waveforms.

  18. Dual structure in the charge excitation spectrum of electron-doped cuprates

    NASA Astrophysics Data System (ADS)

    Bejas, Matías; Yamase, Hiroyuki; Greco, Andrés

    2017-12-01

    Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS) experiments for electron-doped cuprates, we study the charge excitation spectrum in a layered t -J model with the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge excitations, but by different kinds of charge fluctuations, and is characterized by a dual structure in the energy space. Low-energy charge excitations correspond to various types of bond-charge fluctuations driven by the exchange term (J term), whereas high-energy charge excitations are due to usual on-site charge fluctuations and correspond to plasmon excitations above the particle-hole continuum. The interlayer coupling, which is frequently neglected in many theoretical studies, is particularly important to the high-energy charge excitations.

  19. Space-Charge Waves and Instabilities in Intense Beams

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    1997-11-01

    Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.

  20. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOEpatents

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  1. Electric field mill network products to improve detection of the lightning hazard

    NASA Technical Reports Server (NTRS)

    Maier, Launa M.

    1987-01-01

    An electric field mill network has been used at Kennedy Space Center for over 10 years as part of the thunderstorm detection system. Several algorithms are currently available to improve the informational output of the electric field mill data. The charge distributions of roughly 50 percent of all lightning can be modeled as if they reduced the charged cloud by a point charge or a point dipole. Using these models, the spatial differences in the lightning induced electric field changes, and a least squares algorithm to obtain an optimum solution, the three-dimensional locations of the lightning charge centers can be located. During the lifetime of a thunderstorm, dynamically induced charging, modeled as a current source, can be located spatially with measurements of Maxwell current density. The electric field mills can be used to calculate the Maxwell current density at times when it is equal to the displacement current density. These improvements will produce more accurate assessments of the potential electrical activity, identify active cells, and forecast thunderstorm termination.

  2. Fully Explicit Nonlinear Optics Model in a Particle-in-Cell Framework

    DTIC Science & Technology

    2013-04-19

    brirjrj ] = q m Ei (4) where the subscripts vary over Cartesian coordinates, and q/m is the charge to mass ratio . The anisotropy of the medium is...linear refractive index and η0 is the impedance of free space (see appendix). Note that the charge to mass ratio qs/ms amounts to an extraneous free...parameter that could have been absorbed into qsNs, as, and bs. In this work, the electronic charge to mass ratio is always assumed. As an example

  3. Finite-element 3D simulation tools for high-current relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley; Ekdahl, Carl

    2002-08-01

    The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.

  4. Analytical model of secondary electron emission yield in electron beam irradiated insulators.

    PubMed

    Ghorbel, N; Kallel, A; Damamme, G

    2018-06-12

    The study of secondary electron emission (SEE) yield as a function of the kinetic energy of the incident primary electron beam and its evolution with charge accumulation inside insulators is a source of valuable information (even though an indirect one) on charge transport and trapping phenomena. We will show that this evolution is essentially due, in plane geometry conditions (achieved using a defocused electron beam), to the electric field effect (due to the accumulation of trapped charges in the bulk) in the escape zone of secondary electrons and not to modifications of trapping cross sections, which only have side effects. We propose an analytical model including the main basic phenomena underlying the space charge dynamics. It will be observed that such a model makes it possible to reproduce both qualitatively and quantitatively the measurement of SEE evolution as well as to provide helpful indications concerning charge transport (more precisely, the ratios between the mobility and diffusion coefficient with the thermal velocity of the charge carrier). Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Trapping-charging ability and electrical properties study of amorphous insulator by dielectric spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mekni, Omar, E-mail: omarmekni-lmop@yahoo.fr; Arifa, Hakim; Askri, Besma

    2014-09-14

    Usually, the trapping phenomenon in insulating materials is studied by injecting charges using a Scanning Electron Microscope. In this work, we use the dielectric spectroscopy technique for showing a correlation between the dielectric properties and the trapping-charging ability of insulating materials. The evolution of the complex permittivity (real and imaginary parts) as a function of frequency and temperature reveals different types of relaxation according to the trapping ability of the material. We found that the space charge relaxation at low frequencies affects the real part of the complex permittivity ε{sup ´} and the dissipation factor Tan(δ). We prove that themore » evolution of the imaginary part of the complex permittivity against temperature ε{sup ′′}=f(T) reflects the phenomenon of charge trapping and detrapping as well as trapped charge evolution Q{sub p}(T). We also use the electric modulus formalism to better identify the space charge relaxation. The investigation of trapping or conductive nature of insulating materials was mainly made by studying the activation energy and conductivity. The conduction and trapping parameters are determined using the Correlated Barrier Hopping (CBH) model in order to confirm the relation between electrical properties and charge trapping ability.« less

  6. Accuracy limit of rigid 3-point water models

    NASA Astrophysics Data System (ADS)

    Izadi, Saeed; Onufriev, Alexey V.

    2016-08-01

    Classical 3-point rigid water models are most widely used due to their computational efficiency. Recently, we introduced a new approach to constructing classical rigid water models [S. Izadi et al., J. Phys. Chem. Lett. 5, 3863 (2014)], which permits a virtually exhaustive search for globally optimal model parameters in the sub-space that is most relevant to the electrostatic properties of the water molecule in liquid phase. Here we apply the approach to develop a 3-point Optimal Point Charge (OPC3) water model. OPC3 is significantly more accurate than the commonly used water models of same class (TIP3P and SPCE) in reproducing a comprehensive set of liquid bulk properties, over a wide range of temperatures. Beyond bulk properties, we show that OPC3 predicts the intrinsic charge hydration asymmetry (CHA) of water — a characteristic dependence of hydration free energy on the sign of the solute charge — in very close agreement with experiment. Two other recent 3-point rigid water models, TIP3PFB and H2ODC, each developed by its own, completely different optimization method, approach the global accuracy optimum represented by OPC3 in both the parameter space and accuracy of bulk properties. Thus, we argue that an accuracy limit of practical 3-point rigid non-polarizable models has effectively been reached; remaining accuracy issues are discussed.

  7. Charged Particle Environment Definition for NGST: Model Development

    NASA Technical Reports Server (NTRS)

    Blackwell, William C.; Minow, Joseph I.; Evans, Steven W.; Hardage, Donna M.; Suggs, Robert M.

    2000-01-01

    NGST will operate in a halo orbit about the L2 point, 1.5 million km from the Earth, where the spacecraft will periodically travel through the magnetotail region. There are a number of tools available to calculate the high energy, ionizing radiation particle environment from galactic cosmic rays and from solar disturbances. However, space environment tools are not generally available to provide assessments of charged particle environment and its variations in the solar wind, magnetosheath, and magnetotail at L2 distances. An engineering-level phenomenology code (LRAD) was therefore developed to facilitate the definition of charged particle environments in the vicinity of the L2 point in support of the NGST program. LRAD contains models tied to satellite measurement data of the solar wind and magnetotail regions. The model provides particle flux and fluence calculations necessary to predict spacecraft charging conditions and the degradation of materials used in the construction of NGST. This paper describes the LRAD environment models for the deep magnetotail (XGSE < -100 Re) and solar wind, and presents predictions of the charged particle environment for NGST.

  8. Search for charged Higgs bosons in e+e- collisions at [Formula: see text].

    PubMed

    Abbiendi, G; Ainsley, C; Åkesson, P F; Alexander, G; Anagnostou, G; Anderson, K J; Asai, S; Axen, D; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, R J; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, S; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuffiani, M; Dado, S; Dallavalle, M; De Roeck, A; De Wolf, E A; Desch, K; Dienes, B; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, F; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, J; Gruwé, M; Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, D; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Krämer, T; Krasznahorkay, A; Krieger, P; von Krogh, J; Kuhl, T; Kupper, M; Lafferty, G D; Landsman, H; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lu, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Marchant, T E; Martin, A J; Mashimo, T; Mättig, P; McKenna, J; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; O'Neale, S W; Oh, A; Okpara, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J; Plane, D E; Pooth, O; Przybycień, M; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan, E K G; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R; Söldner-Rembold, S; Spano, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Trigger, I; Trócsányi, Z; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vértesi, R; Verzocchi, M; Voss, H; Vossebeld, J; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    A search is made for charged Higgs bosons predicted by Two-Higgs-Doublet extensions of the Standard Model (2HDM) using electron-positron collision data collected by the OPAL experiment at [Formula: see text], corresponding to an integrated luminosity of approximately 600 pb -1 . Charged Higgs bosons are assumed to be pair-produced and to decay into [Formula: see text], τν τ or AW ± . No signal is observed. Model-independent limits on the charged Higgs-boson production cross section are derived by combining these results with previous searches at lower energies. Under the assumption [Formula: see text], motivated by general 2HDM type II models, excluded areas on the [Formula: see text] plane are presented and charged Higgs bosons are excluded up to a mass of 76.3 GeV at 95 % confidence level, independent of the branching ratio BR(H ± → τν τ ). A scan of the 2HDM type I model parameter space is performed and limits on the Higgs-boson masses [Formula: see text] and m A are presented for different choices of tan β .

  9. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  10. Space Particle Hazard Measurement and Modeling

    DTIC Science & Technology

    2016-09-01

    understand the interactions of the physical processes driving, then specify and ultimately predict the state of the energetic particle populations...Hudson, and B. T. Kress (2013), Direct observation of the CRAND proton radiation belt source, J. Geophys. Res. Space Physics , 118, doi:10.1002...anticritical temperature for spacecraft charging, J. Geophys Res.: Space Physics , 113, 2156-2202, doi: 10.1029/2008JA013161 2010 – Tested basic

  11. A fuzzy structural matching scheme for space robotics vision

    NASA Technical Reports Server (NTRS)

    Naka, Masao; Yamamoto, Hiromichi; Homma, Khozo; Iwata, Yoshitaka

    1994-01-01

    In this paper, we propose a new fuzzy structural matching scheme for space stereo vision which is based on the fuzzy properties of regions of images and effectively reduces the computational burden in the following low level matching process. Three dimensional distance images of a space truss structural model are estimated using this scheme from stereo images sensed by Charge Coupled Device (CCD) TV cameras.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meusel, O., E-mail: o.meusel@iap.uni-frankfurt.de; Droba, M.; Noll, D.

    The transport of intense ion beams is affected by the collective behavior of this kind of multi-particle and multi-species system. The space charge expressed by the generalized perveance dominates the dynamical process of thermalisation, which leads to emittance growth. To prevent changes of intrinsic beam properties and to reduce the intensity dependent focusing forces, space charge compensation seems to be an adequate solution. In the case of positively charged ion beams, electrons produced by residual gas ionization and secondary electrons provide the space charge compensation. The influence of the compensation particles on the beam transport and the local degree ofmore » space charge compensation is given by different beam properties as well as the ion beam optics. Especially for highly charged ion beams, space charge compensation in combination with poor vacuum conditions leads to recombination processes and therefore increased beam losses. Strategies for providing a compensation-electron reservoir at very low residual gas pressures will be discussed.« less

  13. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment

    PubMed Central

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-01-01

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density. PMID:27775627

  14. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    PubMed

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  15. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  16. ac aging and space-charge characteristics in low-density polyethylene polymeric insulation

    NASA Astrophysics Data System (ADS)

    Chen, G.; Fu, M.; Liu, X. Z.; Zhong, L. S.

    2005-04-01

    In the present work efforts have been made to investigate the influence of ac aging on space-charge dynamics in low-density polyethylene (LDPE). LDPE films with 200 μm were aged under various electric stress levels at 50 Hz for various times at ambient temperature. Space-charge dynamics in the samples after aging were monitored using the pulsed electroacoustic technique. It has been revealed that the space charge under ac aging conditions is related to the level of the applied field, duration of the voltage application, as well as the electrode materials. By comparing with the results of unaged sample the results from aged sample provide a direct evidence of changing trapping characteristics after ac aging. Negative space charge is present in the bulk of the material and the total amount of charge increases with the aging time. The amount of charge increases with the applied field. Charge decay test indicates that the charges are captured in deep traps. These deep traps are believed to form during the aging and related to change caused by injected charge. By using different electrode materials such as gold, brass alloy, and polyethylene loaded with carbon black, it was found that the electrode has an important role in the formation of charge, hence subsequent changes caused by charge. The charge dynamics of the aged samples under dc bias differ from the sample without ac aging, indicating changes brought in by ac aging. Chemical analysis by Fourier transform infrared spectroscope and Raman microscope reveals no detectable chemical changes taken place in the bulk of the material after ac aging. Finally, the consequence of the accumulation of space charge under ac conditions on the lifetime of the material has been discussed. The presence of deeply trapped space charge leads to an electric stress enhancement which may shorten the lifetime of the insulation system.

  17. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  18. Prediction, Measurement, and Control of Spacecraft Charging Hazards on the International Space Station(ISS)

    NASA Astrophysics Data System (ADS)

    Koontz, Steve; Alred, John; Ellison, Amy; Patton, Thomas; Minow, Joseph; Spetch, William

    2010-09-01

    Orbital inclination, 51.6 degrees, and altitude range, 300 to 400 km,(low-Earth orbit or LEO) determine the ISS spacecraft charging environment. Specific interactions of the ISS electrical power system and metallic structure with the Earth’s ionospheric plasma and the geomagnetic field dominate spacecraft charging processes for ISS. ISS also flies through auroral electron streams at high latitudes. In this paper, we report the character of ISS spacecraft charging processes in Earth’s ionosphere, the results of measurement and modelling of the subject charging processes, and the safety issues for ISS itself as well as for ISS interoperability with respect to extra vehicular activity(EVA) and visiting vehicle proximity operations.

  19. Predicting the breakdown strength and lifetime of nanocomposites using a multi-scale modeling approach

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Zhao, He; Wang, Yixing; Ratcliff, Tyree; Breneman, Curt; Brinson, L. Catherine; Chen, Wei; Schadler, Linda S.

    2017-08-01

    It has been found that doping dielectric polymers with a small amount of nanofiller or molecular additive can stabilize the material under a high field and lead to increased breakdown strength and lifetime. Choosing appropriate fillers is critical to optimizing the material performance, but current research largely relies on experimental trial and error. The employment of computer simulations for nanodielectric design is rarely reported. In this work, we propose a multi-scale modeling approach that employs ab initio, Monte Carlo, and continuum scales to predict the breakdown strength and lifetime of polymer nanocomposites based on the charge trapping effect of the nanofillers. The charge transfer, charge energy relaxation, and space charge effects are modeled in respective hierarchical scales by distinctive simulation techniques, and these models are connected together for high fidelity and robustness. The preliminary results show good agreement with the experimental data, suggesting its promise for use in the computer aided material design of high performance dielectrics.

  20. Signature of charge migration in modulations of double ionization

    NASA Astrophysics Data System (ADS)

    Mauger, François; Abanador, Paul M.; Bruner, Adam; Sissay, Adonay; Gaarde, Mette B.; Lopata, Kenneth; Schafer, Kenneth J.

    2018-04-01

    We present a theoretical investigation of charge migration following strong-field ionization in a multielectron system. We study a model homonuclear molecule with two electrons, each restricted to one dimension (1 +1 D ), interacting with a strong, static electric field. We show that in this system charge migration results from the interplay between multiple ionization channels that overlap in space, creating a coherent electron-hole wave packet in the cation. We also find that, in our case, charge migration following the first ionization manifests as a modulation of the subsequent double-ionization signal. We derive a parametrized semiclassical model from the full multielectron system and we discuss the importance of the choice of cation electronic-structure basis for the efficacy of the semiclassical representation. We use the ab initio solution of the full 1 +1 D system as a reference for the qualitative and quantitative results of the parametrized semiclassical model. We discuss the extension of our model to long-wavelength time-dependent fields with full-dimension, many-electron targets.

  1. Measurement and modeling of electric field and space-charge distributions in obstructed helium discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendel, Peter; Ganguly, Biswa N.; Bletzinger, Peter

    Axial and radial variations of electric field have been measured in dielectric shielded 0.025 m diameter parallel plate electrode with 0.0065 m gap for 1.6 mA, 2260 V helium dc discharge at 1.75 Torr. The axial and radial electric field profiles have been measured from the Stark splitting of 2{sup 1}S→11 {sup 1}P transition through collision induced fluorescence from 4{sup 3}D→2{sup 3}P. The electric field values showed a strong radial variation peaking to 500 kV/m near the cathode radial boundary, and decreasing to about 100 kV/m near the anode edge, suggesting the formation of an obstructed discharge for this low nd condition, where n is the gasmore » density and d is the gap distance. The off-axis Stark spectra showed that the electric field vector deviates from normal to the cathode surface which permits longer path electron trajectories in the inter-electrode gap. Also, the on-axis electric field gradient was very small and off-axis electric field gradient was large indicating a radially non-uniform current density. In order to obtain information about the space charge distribution in this obstructed discharge, it was modeled using the 2-d axisymmetric Poisson solver with the COMSOL finite element modeling program. The best fit to the measured electric field distribution was obtained with a space charge variation of ρ(r) = ρ{sub 0}(r/r{sub 0}){sup 3}, where ρ(r) is the local space charge density, ρ{sub 0} = 6 × 10{sup −3} Coulomb/m{sup 3}, r is the local radial value, and r{sub 0} is the radius of the electrode.« less

  2. GW/Bethe-Salpeter calculations for charged and model systems from real-space DFT

    NASA Astrophysics Data System (ADS)

    Strubbe, David A.

    GW and Bethe-Salpeter (GW/BSE) calculations use mean-field input from density-functional theory (DFT) calculations to compute excited states of a condensed-matter system. Many parts of a GW/BSE calculation are efficiently performed in a plane-wave basis, and extensive effort has gone into optimizing and parallelizing plane-wave GW/BSE codes for large-scale computations. Most straightforwardly, plane-wave DFT can be used as a starting point, but real-space DFT is also an attractive starting point: it is systematically convergeable like plane waves, can take advantage of efficient domain parallelization for large systems, and is well suited physically for finite and especially charged systems. The flexibility of a real-space grid also allows convenient calculations on non-atomic model systems. I will discuss the interfacing of a real-space (TD)DFT code (Octopus, www.tddft.org/programs/octopus) with a plane-wave GW/BSE code (BerkeleyGW, www.berkeleygw.org), consider performance issues and accuracy, and present some applications to simple and paradigmatic systems that illuminate fundamental properties of these approximations in many-body perturbation theory.

  3. A thundercloud electric field sounding - Charge distribution and lightning

    NASA Technical Reports Server (NTRS)

    Weber, M. E.; Few, A. A.; Stewart, M. F.; Christian, H. J.

    1982-01-01

    An instrumented free balloon measured electric fields and field changes as it rose through a thundercloud above Langmuir Laboratory, New Mexico. The variation of the electric field with altitude implied that the cloud contained negative space charge of density -0.6 to -4 nC/cu m between 5.5 and 8.0 km MSL. The environmental temperature at these levels ranged from -5 to -20 C. The measurements imply that the areal extent of this negative charge center was significantly greater than that of the cloud's intense precipitation shafts. At altitudes greater than 8 km, the instrument ascended past net positive charge. In addition, positive space charge adjacent to the earth's surface (concentration 0.6 nC/cu m and in the lowest portion of the cloud (1.0 nC/cu m) is inferred from the measurements. Electric field changes from intracloud lightning were interpreted by using a simple model for the developing streamer of the initial phase. Thunder source reconstructions provided estimates for the orientation of lightning channels. Seven 'streamers' so analyzed propagated on the average, at 50,000 m/s and carried a current of 390 A. The mean charge dissipated during a flash was 30 C.

  4. Chemical Physics of Charge Mechanisms in Nonmetallic Spacecraft Materials.

    DTIC Science & Technology

    1979-05-01

    techniques may not provide data truly representative of actual in-orbit space - craft charging effects . The results of the discharge characterization...phenomena, commonly referred to collectively as space - !. craft charging effects , can produce undesirable and sometimes serious prob- lems with the...lifetime of future space systems requires a practical understanding of spacecraft charging phenomena and their effects . The laboratory program

  5. Effect of Fe{sub 3}O{sub 4} nanoparticles on space charge distribution in propylene carbonate under impulse voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sima, Wenxia, E-mail: cqsmwx@cqu.edu.cn; Song, He; Yang, Qing

    2015-12-15

    Addition of nanoparticles of the ferromagnetic material Fe{sub 3}O{sub 4} can increase the positive impulse breakdown voltage of propylene carbonate by 11.65%. To further investigate the effect of ferromagnetic nanoparticles on the space charge distribution in the discharge process, the present work set up a Kerr electro-optic field mapping measurement system using an array photodetector to carry out time-continuous measurement of the electric field and space charge distribution in propylene carbonate before and after modification. Test results show that fast electrons can be captured by Fe{sub 3}O{sub 4} nanoparticles and converted into relatively slow, negatively charged particles, inhibiting the generationmore » and transportation of the space charge, especially the negative space charge.« less

  6. The electrostatics of a dusty plasma

    NASA Technical Reports Server (NTRS)

    Whipple, E. C.; Mendis, D. A.; Northrop, T. G.

    1986-01-01

    The potential distribution in a plasma containing dust grains were derived where the Debye length can be larger or smaller than the average intergrain spacing. Three models were treated for the grain-plasma system, with the assumption that the system of dust and plasma is charge-neutral: a permeable grain model, an impermeable grain model, and a capacitor model that does not require the nearest neighbor approximation of the other two models. A gauge-invariant form of Poisson's equation was used which is linearized about the average potential in the system. The charging currents to a grain are functions of the difference between the grain potential and this average potential. Expressions were obtained for the equilibrium potential of the grain and for the gauge-invariant capacitance between the grain and the plasma. The charge on a grain is determined by the product of this capacitance and the grain-plasma potential difference.

  7. Experimental evidence of space charge driven resonances in high intensity linear accelerators

    DOE PAGES

    Jeon, Dong -O

    2016-01-12

    In the construction of high intensity accelerators, it is the utmost goal to minimize the beam loss by avoiding or minimizing contributions of various halo formation mechanisms. As a halo formation mechanism, space charge driven resonances are well known for circular accelerators. However, the recent finding showed that even in linear accelerators the space charge potential can excite the 4σ = 360° fourth order resonance [D. Jeon et al., Phys. Rev. ST Accel. Beams 12, 054204 (2009)]. This study increased the interests in space charge driven resonances of linear accelerators. Experimental studies of the space charge driven resonances of highmore » intensity linear accelerators are rare as opposed to the multitude of simulation studies. This paper presents an experimental evidence of the space charge driven 4σ ¼ 360° resonance and the 2σ x(y) – 2σ z = 0 resonance of a high intensity linear accelerator through beam profile measurements from multiple wire-scanners. Moreover, measured beam profiles agree well with the characteristics of the space charge driven 4σ = 360° resonance and the 2σ x(y) – 2σ z = 0 resonance that are predicted by the simulation.« less

  8. Electrostatic, elastic and hydration-dependent interactions in dermis influencing volume exclusion and macromolecular transport.

    PubMed

    Øien, Alf H; Wiig, Helge

    2016-07-07

    Interstitial exclusion refers to the limitation of space available for plasma proteins and other macromolecules based on collagen and negatively charged glycosaminoglycans (GAGs) in the interstitial space. It is of particular importance to interstitial fluid and plasma volume regulation. Here we present a novel mechanical and mathematical model of the dynamic interactions of structural elements within the interstitium of the dermis at the microscopic level that may explain volume exclusion of charged and neutral macroparticles. At this level, the interstitium is considered to consist of elements called extracellular matrix (ECM) cells, again containing two main interacting structural components on a fluid background including anions and cations setting up osmotic forces: one smaller GAG component, having an intrinsic expansive electric force, and one bigger collagen component, having an intrinsic elastic force. Because of size differences, the GAG component interacts with a fraction of the collagen component only at normal hydration. This fraction, however, increases with rising hydration as a consequence of the modeled form of the interaction force between the GAGs and collagen. Collagen is locally displaced at variable degrees as hydration changes. Two models of GAGs are considered, having largely different geometries which demands different, but related, forms of GAG-collagen interaction forces. The effects of variable fixed charges on GAGs and of GAG density in tissue are evaluated taking into account observed volume exclusion properties of charged macromolecules as a function of tissue hydration. The presented models may improve our biophysical understanding of acting forces influencing tissue fluid dynamics. Such knowledge is significant when evaluating the transport of electrically charged and neutral macromolecules into and through the interstitium, and therefore to drug uptake and the therapeutic effects of macromolecular agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Longitudinal space charge compensation at PSR

    NASA Astrophysics Data System (ADS)

    Neri, Filippo

    1998-11-01

    The longitudinal space-charge force in neutron spallation source compressor ring or other high intensity proton storage rings can be compensated by introducing an insert in the ring. The effect of the inductor is to cancel all or part of the space charge potential, because it is capacitive. The Proton Storage Ring at Los Alamos National Laboratory is a compressor ring used to produce short pulses of spallation neutrons. Inductive inserts design for space charge compensation at the Los Alamos Proton Storage Ring is described.

  10. The Effects of Neutral Gas Release on Vehicle Charging: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Walker, D. N.; Amatucci, W. E.; Bowles, J. H.; Fernsler, R. F.; Siefring, C. L.; Antoniades, J. A.; Keskinen, M. J.

    1998-11-01

    This paper describes an experimental and theoretical research effort related to the mitigation of spacecraft charging by Neutral Gas Release (NGR). The Space Power Experiments Aboard Rockets programs (SPEAR I and III) [Mandel et al., 1998; Berg et al., 1995] and other earlier efforts have demonstrated that NGR is an effective method of controlling discharges in space. The laboratory experimentswere conducted in the large volume Space Physics Simulation Chamber (SPSC) at the Naval Research Laboratory (NRL). A realistic near-earth space environment can be simulated in this device for whichminimumscalingneeds to be performedtorelate the data to space plasma regimes. This environment is similar to that encountered by LEO spacecraft, e.g., the Space Station, Shuttle, and high inclination satellites. The experimental arrangement consists of an aluminum cylinder which can be biased to high negative voltage (0.4 kV

  11. Characterizing Space Environments with Long-Term Space Plasma Archive Resources

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Miller, J. Scott; Diekmann, Anne M.; Parker, Linda N.

    2009-01-01

    A significant scientific benefit of establishing and maintaining long-term space plasma data archives is the ready access the archives afford to resources required for characterizing spacecraft design environments. Space systems must be capable of operating in the mean environments driven by climatology as well as the extremes that occur during individual space weather events. Long- term time series are necessary to obtain quantitative information on environment variability and extremes that characterize the mean and worst case environments that may be encountered during a mission. In addition, analysis of large data sets are important to scientific studies of flux limiting processes that provide a basis for establishing upper limits to environment specifications used in radiation or charging analyses. We present applications using data from existing archives and highlight their contributions to space environment models developed at Marshall Space Flight Center including the Chandra Radiation Model, ionospheric plasma variability models, and plasma models of the L2 space environment.

  12. Scaling relations for a needle-like electron beam plasma from the self-similar behavior in beam propagation

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyan; Chen, Chen; Li, Hong; Liu, Wandong; Chen, Wei

    2017-10-01

    Scaling relations of the main parameters of a needle-like electron beam plasma (EBP) to the initial beam energy, beam current, and discharge pressures are presented. The relations characterize the main features of the plasma in three parameter space and can provide great convenience in plasma design with electron beams. First, starting from the self-similar behavior of electron beam propagation, energy and charge depositions in beam propagation were expressed analytically as functions of the three parameters. Second, according to the complete coupled theoretical model of an EBP and appropriate assumptions, independent equations controlling the density and space charges were derived. Analytical expressions for the density and charges versus functions of energy and charge depositions were obtained. Finally, with the combination of the expressions derived in the above two steps, scaling relations of the density and potential to the three parameters were constructed. Meanwhile, numerical simulations were used to test part of the scaling relations.

  13. Preliminary Experimental Results for Charge Drag in a Simulated Low Earth Orbit Environment

    NASA Astrophysics Data System (ADS)

    Azema-Rovira, Monica

    Interest in the Low Earth Orbit (LEO) environment is growing in the science community as well as in the private sector. The number of spacecraft launched in these altitudes (150 - 700 km) keeps growing, and this region is accumulating space debris. In this scenario, the precise location of all LEO objects is a key factor to avoid catastrophic collisions and to safely perform station-keeping maneuvers. The detailed study of the atmospheric models in LEO can enhance the disturbances forces calculation of an orbiting object. Recent numerical studies indicate that one of the biggest non-conservative forces on a spacecraft is underestimated, the charge drag phenomenon. Validating these numerical models experimentally, will help to improve the numerical models for future spacecraft mission design. For this reason, the motivation of this thesis is to characterize a plasma source to later be used for charged drag measurements. The characterization has been done at the University of Colorado Colorado Springs in the Chamber for Atmospheric and Orbital Space Simulation. In the characterization process, a nano-Newton Thrust Stand has been characterized as a plasma diagnosis tool and compared with Langmuir Probe data.

  14. Determination of Thermal State of Charge in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.

    1996-01-01

    The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.

  15. Modeling solvation effects in real-space and real-time within density functional approaches

    NASA Astrophysics Data System (ADS)

    Delgado, Alain; Corni, Stefano; Pittalis, Stefano; Rozzi, Carlo Andrea

    2015-10-01

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that are close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the Octopus code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.

  16. Modeling solvation effects in real-space and real-time within density functional approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, Alain; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 # 502, 11300 La Habana; Corni, Stefano

    2015-10-14

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that aremore » close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the OCTOPUS code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.« less

  17. Fractional-dimensional Child-Langmuir law for a rough cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubair, M., E-mail: muhammad-zubair@sutd.edu.sg; Ang, L. K., E-mail: ricky-ang@sutd.edu.sg

    This work presents a self-consistent model of space charge limited current transport in a gap combined of free-space and fractional-dimensional space (F{sup α}), where α is the fractional dimension in the range 0 < α ≤ 1. In this approach, a closed-form fractional-dimensional generalization of Child-Langmuir (CL) law is derived in classical regime which is then used to model the effect of cathode surface roughness in a vacuum diode by replacing the rough cathode with a smooth cathode placed in a layer of effective fractional-dimensional space. Smooth transition of CL law from the fractional-dimensional to integer-dimensional space is also demonstrated. The model has beenmore » validated by comparing results with an experiment.« less

  18. Interplanetary charged particle models (1974). [and the effects of cosmic exposure upon spacecraft and spacecraft components

    NASA Technical Reports Server (NTRS)

    Divine, N.

    1975-01-01

    The design of space vehicles for operation in interplanetary space is given, based on descriptions of solar wind, solar particle events, and galactic cosmic rays. A state-of-the-art review is presented and design criteria are developed from experiment findings aboard interplanetary and high-altitude earth-orbiting spacecraft. Solar cells were found to be particularly sensitive. Solar protons may also impact the reliability of electric propulsion systems and spacecraft surfaces, as well as causing interference, detector saturation, and spurious signals. Galactic cosmic-ray impact can lead to similar electronic failure and interference and may register in photographic films and other emulsions. It was concluded that solar wind electron measurements might result from differential charging when shadowed portions of the spacecraft acquired a negative charge from electron impact.

  19. Space-charge behavior of 'Thin-MOS' diodes with MBE-grown silicon films

    NASA Technical Reports Server (NTRS)

    Lieneweg, U.; Bean, J. C.

    1984-01-01

    Basic theoretical and experimental characteristics of a novel 'Thin-MOS' technology, which has promising aspects for integrated high-frequency devices up to several hundred gigahertz are presented. The operation of such devices depends on charge injection into undoped silicon layers of about 1000-A thickness, grown by molecular beam epitaxy on heavily doped substrates, and isolation by thermally grown oxides of about 100-A thickness. Capacitance-voltage characteristics measured at high and low frequencies agree well with theoretical ones derived from uni and ambipolar space-charge models. It is concluded that after oxidation the residual doping in the epilayer is less than approximately 10 to the 16th/cu cm and rises by 3 orders of magnitude at the substrate interface within less than 100 A and that interface states at the oxide interface can be kept low.

  20. NASA charging analyzer program: A computer tool that can evaluate electrostatic contamination

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Roche, J. C.; Mandell, M. J.

    1978-01-01

    A computer code, the NASA Charging Analyzer Program (NASCAP), was developed to study the surface charging of bodies subjected to geomagnetic substorm conditions. This program will treat the material properties of a surface in a self-consistent manner and calculate the electric fields in space due to the surface charge. Trajectories of charged particles in this electric field can be computed to determine if these particles enhance surface contamination. A preliminary model of the Spacecraft Charging At The High Altitudes (SCATHA) satellite was developed in the NASCAP code and subjected to a geomagnetic substorm environment to investigate the possibility of electrostatic contamination. The results indicate that differential voltages will exist between the spacecraft ground surfaces and the insulator surfaces. The electric fields from this differential charging can enhance the contamination of spacecraft surfaces.

  1. Development of circuit model for arcing on solar panels

    NASA Astrophysics Data System (ADS)

    Mehta, Bhoomi K.; Deshpande, S. P.; Mukherjee, S.; Gupta, S. B.; Ranjan, M.; Rane, R.; Vaghela, N.; Acharya, V.; Sudhakar, M.; Sankaran, M.; Suresh, E. P.

    2010-02-01

    The increased requirements of payload capacity of the satellites have resulted in much higher power requirements of the satellites. In order to minimize the energy loss during power transmission due to cable loss, use of high voltage solar panels becomes necessary. When a satellite encounters space plasma it floats negatively with respect to the surrounding space plasma environment. At high voltage, charging and discharging on solar panels causes the power system breakdown. Once a solar panel surface is charged and potential difference between surface insulator and conductor exceeds certain value, electrostatic discharge (ESD) may occur. This ESD may trigger a secondary arc that can destroy the solar panel circuit. ESD is also called as primary or minor arc and secondary is called major arc. The energy of minor arc is supplied by the charge stored in the coverglass of solar array and is a pulse of typically several 100 ns to several 100 μs duration. The damage caused by minor arc is less compared to major arcs, but it is observed that the minor arc is cause of major arc. Therefore it is important to develop an understanding of minor arc and mitigation techniques. In this paper we present a linear circuit analysis for minor arcs on solar panels. To study arcing event, a ground experimental facility to simulate space plasma environment has been developed at Facilitation Centre for Industrial Plasma Technologies (Institute for Plasma Research) in collaboration with Indian Space Research Organization's ISRO Satellite Technology Centre (ISAC). A linear circuit model has been developed to explain the experimental results by representing the coverglass, solar cell interconnect and wiring by an LCR circuit and the primary arc by an equivalent LR circuit. The aim of the circuit analysis is to predict the arc current which flows through the arc plasma. It is established from the model that the current depends on various parameters like potential difference between insulator and conductor, arc resistance, stored charge in the solar cell coverglass and the external capacitor that simulates wire harness. A close correlation between the experiments and circuit model results has been observed.

  2. EBQ code: Transport of space-charge beams in axially symmetric devices

    NASA Astrophysics Data System (ADS)

    Paul, A. C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WODF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.

  3. Multiple Weyl points and the sign change of their topological charges in woodpile photonic crystals

    NASA Astrophysics Data System (ADS)

    Chang, Ming-Li; Xiao, Meng; Chen, Wen-Jie; Chan, C. T.

    2017-03-01

    We show that Weyl points with topological charges 1 and 2 can be found in very simple chiral woodpile photonic crystals and the distribution of the charges can be changed by changing the material parameters without altering space-group symmetry. The underlying physics can be understood through a tight-binding model. Gapless surface states and their backscattering immune properties also are demonstrated in these systems. Obtaining Weyl points in these easily fabricated woodpile photonic crystals will facilitate the realization of Weyl point physics in optical and IR frequencies.

  4. Coordinate space translation technique for simulation of electronic process in the ion-atom collision.

    PubMed

    Wang, Feng; Hong, Xuhai; Wang, Jian; Kim, Kwang S

    2011-04-21

    Recently we developed a theoretical model of ion-atom collisions, which was made on the basis of a time-dependent density functional theory description of the electron dynamics and a classical treatment of the heavy particle motion. Taking advantage of the real-space grid method, we introduce a "coordinate space translation" technique to allow one to focus on a certain space of interest such as the region around the projectile or the target. Benchmark calculations are given for collisions between proton and oxygen over a wide range of impact energy. To extract the probability of charge transfer, the formulation of Lüdde and Dreizler [J. Phys. B 16, 3973 (1983)] has been generalized to ensemble-averaging application in the particular case of O((3)P). Charge transfer total cross sections are calculated, showing fairly good agreements between experimental data and present theoretical results.

  5. Analysis of space charge fields using the Lienard-Wiechert potential and the method of images during the photoemission of the electron beam from the cathode

    NASA Astrophysics Data System (ADS)

    Salah, Wa'el

    2017-01-01

    We present a numerical analysis of the space charge effect and the effect of image charge force on the cathode surface for a laser-driven RF-photocathode gun. In this numerical analysis, in the vicinity of the cathode surface, we used an analytical method based on Lienard-Weichert retarded potentials. The analytical method allows us to calculate longitudinal and radial electric fields, and the azimuth magnetic field due to both space charge effect and the effect of the image charge force. We calculate the electro-magnetic fields in the following two conditions for the "ELSA" photoinjector. The first condition is in the progress of photoemission, which corresponds to the inside of the emitted beam, and the second condition is at the end of the photoemission. The electromagnetic fields due to the space charge effect and the effect of the image charge force, and the sum of them, which corresponds to the global electro-magnetic fields, are shown. Based on these numerical results, we discussed the effects of the space charge and the image charge in the immediate vicinity of the cathode.

  6. Experimental Evidence for Space-Charge Effects between Ions of the Same Mass-to-Charge in Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Wong, Richard L.; Amster, I. Jonathan

    2009-01-01

    It is often stated that ions of the same mass-to-charge do not induce space-charge frequency shifts among themselves in an ion cyclotron resonance mass spectrometry measurement. Here, we demonstrate space-charge induced frequency shifts for ions of a single mass-to-charge. The monoisotopic atomic ion, Cs+, was used for this study. The measured frequency is observed to decrease linearly with an increase in the number of ions, as has been reported previously for space-charge effects between ions of different mass-to-charge. The frequency shift between ions of the same m/z value are compared to that induced between ions of different m/z value, and is found to be 7.5 times smaller. Control experiments were performed to ensure that the observed space-charge effects are not artifacts of the measurement or of experimental design. The results can be rationalized by recognizing that the electric forces between ions in a magnetic field conform to the weak form of the Newton's third law, where the action and reaction forces do not cancel exactly. PMID:19562102

  7. Effect of trap states and microstructure on charge carrier conduction mechanism through semicrystalline poly(vinyl alcohol) granular film

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Bhowmik, R. N.; Meikap, A. K.

    2018-05-01

    We report a comprehensive study on hysteresis behaviour of current-voltage characteristic and impedance spectroscopy of granular semicrystalline poly(vinyl alcohol) (PVA) film. The charge carrier conduction mechanism and charge traps of granular PVA film by measuring and analyzing the temperature dependent current-voltage characteristic indicate a bi-stable electronic state in the film. A sharp transformation of charge carrier conduction mechanism from Poole-Frenkel emission to space charge limited current mechanism has been observed. An anomalous oscillatory behaviour of current has been observed due to electric pulse effect on the molecular chain of the polymer. Effect of microstructure on charge transport mechanism has been investigated from impedance spectroscopy analysis. An equivalent circuit model has been proposed to explain the result.

  8. Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL

    NASA Astrophysics Data System (ADS)

    Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.

    2009-01-01

    We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.

  9. Experimental verification of a gain reduction model for the space charge effect in a wire chamber

    NASA Astrophysics Data System (ADS)

    Nagakura, Naoki; Fujii, Kazuki; Harayama, Isao; Kato, Yu; Sekiba, Daiichiro; Watahiki, Yumi; Yamashita, Satoru

    2018-01-01

    A wire chamber often suffers significant saturation of the multiplication factor when the electric field around its wires is strong. An analytical model of this effect has previously been proposed [Y. Arimoto et al., Nucl. Instrum. Meth. Phys. Res. A 799, 187 (2015)], in which the saturation was described by the multiplication factor, energy deposit density per wire length, and one constant parameter. In order to confirm the validity of this model, a multi-wire drift chamber was developed and irradiated by a MeV-range proton beam at the University of Tsukuba. The saturation effect was compared for energy deposits ranging from 70 keV/cm to 180 keV/cm and multiplication factors 3× 103 to 3× 104. The chamber was rotated with respect to the proton beam in order to vary the space charge density around the wires. The energy deposit distribution corrected for the effect was consistent with the result of a Monte Carlo simulation, thus validating the proposed model.

  10. Analytical Model for Gyro-Phase Drift Arising from Abrupt Inhomogeneity

    NASA Technical Reports Server (NTRS)

    Walker, Jeffrey J.; Koepke, M. E.; Zimmerman, M. I.; Farrell, W. M.; Demidov, V. I.

    2013-01-01

    If a magnetized-orbit-charged grain encounters any abrupt inhomogeneity in plasma conditions during a gyro-orbit, such that the resulting in-situ equilibrium charge is significantly different between these regions (q(sub1)/q(sub 2) approximately 2, where q(sub 1) is the in-situ equilibrium charge on one side of the inhomogeneity, q(sub 2) is the in-situ equilibrium charge on the other side, and q(sub1) less than q(sub 2) less than 0), then the capacitive effects of charging and discharging of the dust grain can result in a modification to the orbit-averaged grain trajectory, i.e. gyro-phase drift. The special case of q(sub 1)/q(sub 2) is notioned for the purpose of illustrating the utility of the method. An analytical expression is derived for the grain velocity, assuming a capacitor approximation to the OML charging model. For cases in which a strong electric field suddenly appears in the wake or at the space-plasma-to-crater interface from solar wind and/or ultraviolet illumination and in which a magnetic field permeates an asteroid, comet, or moon, this model could contribute to the interpretation of the distribution of fields and particles.

  11. Methods of treating complex space vehicle geometry for charged particle radiation transport

    NASA Technical Reports Server (NTRS)

    Hill, C. W.

    1973-01-01

    Current methods of treating complex geometry models for space radiation transport calculations are reviewed. The geometric techniques used in three computer codes are outlined. Evaluations of geometric capability and speed are provided for these codes. Although no code development work is included several suggestions for significantly improving complex geometry codes are offered.

  12. The Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Bourdarie, Sebastien; Xapsos, Michael A.

    2008-01-01

    The effects of the space radiation environment on spacecraft systems and instruments are significant design considerations for space missions. Astronaut exposure is a serious concern for manned missions. In order to meet these challenges and have reliable, cost-effective designs, the radiation environment must be understood and accurately modeled. The nature of the environment varies greatly between low earth orbits, higher earth orbits and interplanetary space. There are both short-term and long-term variations with the phase of the solar cycle. In this paper we concentrate mainly on charged particle radiations. Descriptions of the radiation belts and particles of solar and cosmic origin are reviewed. An overview of the traditional models is presented accompanied by their application areas and limitations. This is followed by discussion of some recent model developments.

  13. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; Parker, L. Neergaard

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun -synchronous) orbits are widely used for remote sensing of the Earth fs land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (approx.10 fs kilovolt) electrons in regions of low background plasma density. Auroral charging conditions are similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from approx.0.6 kV to approx.2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  14. Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Kapusta, Joseph I.; Plumberg, Christopher

    2018-01-01

    We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.

  15. 14 CFR 1215.113 - User charges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false User charges. 1215.113 Section 1215.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS) Use and Reimbursement Policy for Non-U.S. Government Users § 1215.113 User charges. (a) The user...

  16. 14 CFR 1215.113 - User charges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true User charges. 1215.113 Section 1215.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS) Use and Reimbursement Policy for Non-U.S. Government Users § 1215.113 User charges. (a) The user...

  17. 14 CFR § 1215.113 - User charges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false User charges. § 1215.113 Section § 1215.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY.... (a) The user shall reimburse NASA the sum of the charges for standard and mission-unique services...

  18. 41 CFR 102-85.145 - When are customer agencies responsible for Rent charges?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; or (2) All other space: Either GSA's space charges for 4 months plus the cost of tenant improvements or GSA's actual costs, whichever is less. ... PROPERTY 85-PRICING POLICY FOR OCCUPANCY IN GSA SPACE Rent Charges § 102-85.145 When are customer agencies...

  19. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films.

    PubMed

    Hu, Weijin; Wang, Zhihong; Du, Yuanmin; Zhang, Xi-Xiang; Wu, Tom

    2014-11-12

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.

  20. On the tensionless limit of gauged WZW models

    NASA Astrophysics Data System (ADS)

    Bakas, I.; Sourdis, C.

    2004-06-01

    The tensionless limit of gauged WZW models arises when the level of the underlying Kac-Moody algebra assumes its critical value, equal to the dual Coxeter number, in which case the central charge of the Virasoro algebra becomes infinite. We examine this limit from the world-sheet and target space viewpoint and show that gravity decouples naturally from the spectrum. Using the two-dimensional black-hole coset SL(2,Bbb R)k/U(1) as illustrative example, we find for k = 2 that the world-sheet symmetry is described by a truncated version of Winfty generated by chiral fields with integer spin s geq 3, whereas the Virasoro algebra becomes abelian and it can be consistently factored out. The geometry of target space looks like an infinitely curved hyperboloid, which invalidates the effective field theory description and conformal invariance can no longer be used to yield reliable space-time interpretation. We also compare our results with the null gauging of WZW models, which correspond to infinite boost in target space and they describe the Liouville mode that decouples in the tensionless limit. A formal BRST analysis of the world-sheet symmetry suggests that the central charge of all higher spin generators should be fixed to a critical value, which is not seen by the contracted Virasoro symmetry. Generalizations to higher dimensional coset models are also briefly discussed in the tensionless limit, where similar observations are made.

  1. Space charge effects on the third order coupled resonance

    NASA Astrophysics Data System (ADS)

    Franchetti, Giuliano; Gilardoni, Simone; Huschauer, Alexander; Schmidt, Frank; Wasef, Raymond

    2017-08-01

    The effect of space charge on bunched beams has been the subject of numerous numerical and experimental studies in the first decade of 2000. Experimental campaigns performed at the CERN Proton Synchrotron in 2002 and at the GSI SIS18 in 2008 confirmed the existence of an underlying mechanism in the beam dynamics of periodic resonance crossing induced by the synchrotron motion and space charge. In this article we present an extension of the previous studies to describe the effect of space charge on a controlled coupled (2D) third order resonance. The experimental and simulation results of this latest campaign shed a new light on the difficulties of the 2D particle dynamics. We find striking experimental evidence that space charge and the coupled resonance create an unusual coupling in the phase space, leading to the formation of an asymmetric halo. Moreover, this study demonstrates a clear link between halo formation and fixed-lines.

  2. Design and evaluation of a microgrid for PEV charging with flexible distribution of energy sources and storage

    NASA Astrophysics Data System (ADS)

    Pyne, Moinak

    This thesis aspires to model and control, the flow of power in a DC microgrid. Specifically, the energy sources are a photovoltaic system and the utility grid, a lead acid battery based energy storage system and twenty PEV charging stations as the loads. Theoretical principles of large scale state space modeling are applied to model the considerable number of power electronic converters needed for controlling voltage and current thresholds. The energy storage system is developed using principles of neural networks to facilitate a stable and uncomplicated model of the lead acid battery. Power flow control is structured as a hierarchical problem with multiple interactions between individual components of the microgrid. The implementation is done using fuzzy logic with scheduling the maximum use of available solar energy and compensating demand or excess power with the energy storage system, and minimizing utility grid use, while providing multiple speeds of charging the PEVs.

  3. Method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam

    DOEpatents

    Hannon, Fay

    2016-08-02

    A method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam. The method includes 1) determining the bunch charge and the initial kinetic energy of the highly space-charge dominated input beam; 2) applying the bunch charge and initial kinetic energy properties of the highly space-charge dominated input beam to determine the number of accelerator cavities required to accelerate the bunches to relativistic speed; 3) providing the required number of accelerator cavities; and 4) setting the gradient of the radio frequency (RF) cavities; and 5) operating the phase of the accelerator cavities between -90 and zero degrees of the sinusoid of phase to simultaneously accelerate and bunch the charged particles to maximize brightness, and until the beam is relativistic and emittance-dominated.

  4. Sub-fs electron bunch generation with sub-10-fs bunch arrival-time jitter via bunch slicing in a magnetic chicane

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Assmann, R. W.; Dohlus, M.; Dorda, U.; Marchetti, B.

    2016-05-01

    The generation of ultrashort electron bunches with ultrasmall bunch arrival-time jitter is of vital importance for laser-plasma wakefield acceleration with external injection. We study the production of 100-MeV electron bunches with bunch durations of subfemtosecond (fs) and bunch arrival-time jitters of less than 10 fs, in an S-band photoinjector by using a weak magnetic chicane with a slit collimator. The beam dynamics inside the chicane is simulated by using two codes with different self-force models. The first code separates the self-force into a three-dimensional (3D) quasistatic space-charge model and a one-dimensional coherent synchrotron radiation (CSR) model, while the other one starts from the first principle with a so-called 3D sub-bunch method. The simulations indicate that the CSR effect dominates the horizontal emittance growth and the 1D CSR model underestimates the final bunch duration and emittance because of the very large transverse-to-longitudinal aspect ratio of the sub-fs bunch. Particularly, the CSR effect is also strongly affected by the vertical bunch size. Due to the coupling between the horizontal and longitudinal phase spaces, the bunch duration at the entrance of the last dipole magnet of the chicane is still significantly longer than that at the exit of the chicane, which considerably mitigates the impact of space charge and CSR effects on the beam quality. Exploiting this effect, a bunch charge of up to 4.8 pC in a sub-fs bunch could be simulated. In addition, we analytically and numerically investigate the impact of different jitter sources on the bunch arrival-time jitter downstream of the chicane, and define the tolerance budgets assuming realistic values of the stability of the linac for different bunch charges and compression schemes.

  5. Properties of Minor Ions In the Solar Wind and Implications for the Background Solar Wind Plasma

    NASA Technical Reports Server (NTRS)

    Esser, Ruth; Wagner, William (Technical Monitor)

    2002-01-01

    Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona. The goal of the proposal is to determine coronal plasma conditions that produce the in situ observed charge states. This study is carried out using solar wind models, coronal observations, ion fraction calculations and in situ observations.

  6. GPS Radiation Measurements: Instrument Modeling and Simulation (Project w14_gpsradiation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, John P.

    The following topics are covered: electron response simulations and typical calculated response. Monte Carlo calculations of the response of future charged particle instruments (dosimeters) intended to measure the flux of charged particles in space were performed. The electron channels are called E1- E11 – each of which is intended to detect a different range of electron energies. These instruments are on current and future GPS satellites.

  7. Spacecraft Charging Technology Conference (9th) Held in Tsukuba, Japan on 4-8 April 2005. Book of Abstracts

    DTIC Science & Technology

    2005-04-01

    Electron Emission for Modeling Spacecraft Charging(025ole) Adrian Wheelock - AFRL/VSBX Simulations of Current Coupling in Ion Beam...Boxue Du - Tianjin University Discharge Characteristic of Gamma-Ray Irradiated Polybutylene Naphthalatem3-*u) Shana Figueroa - Air Force Research...FAX : (858)826-1653 E-mail : myron.j.mandell @saic.com David L. Cooke, Adrian Wheelock Air Force Research Laboratory, Space Vehicles

  8. Numerical study on electronic and optical properties of organic light emitting diodes.

    PubMed

    Kim, Kwangsik; Hwang, Youngwook; Won, Taeyoung

    2013-08-01

    In this paper, we present a finite element method (FEM) study of space charge effects in organic light emitting diodes. Our model includes a Gaussian density of states to account for the energetic disorder in organic semiconductors and the Fermi-Dirac statistics to account for the charge hopping process between uncorrelated sites. The physical model cover all the key physical processes in OLEDs, namely charge injection, transport and recombination, exciton diffusion, transfer and decay as well as light coupling, and thin-film-optics. The exciton model includes generation, diffusion, and energy transfer as well as annihilation. We assumed that the light emission originates from oscillating and thus embodied as excitons and embedded in a stack of multilayer. The out-coupled emission spectrum has been numerically calculated as a function of viewing angle, polarization, and dipole orientation. We discuss the accumulation of charges at internal interfaces and their signature in the transient response as well as the electric field distribution.

  9. A theory of the n-i-p silicon solar cell

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Weinberg, I.; Baraona, C.

    1981-01-01

    A computer model has been developed, based on an analytical theory of the high base resistivity BSF n(+)(pi)p(+) or p(+)(nu)n(+) silicon solar cell. The model makes very few assumptions and accounts for nonuniform optical generation, generation and recombination in the junction space charge region, and bandgap narrowing in the heavily doped regions. The paper presents calculated results based on this model and compares them to available experimental data. Also discussed is radiation damage in high base resistivity n(+)(pi)p(+) space solar cells.

  10. Vector boson fusion in the inert doublet model

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Palacio, Guillermo; Restrepo, Diego; Ruiz-Álvarez, José D.

    2018-03-01

    In this paper we probe the inert Higgs doublet model at the LHC using vector boson fusion (VBF) search strategy. We optimize the selection cuts and investigate the parameter space of the model and we show that the VBF search has a better reach when compared with the monojet searches. We also investigate the Drell-Yan type cuts and show that they can be important for smaller charged Higgs masses. We determine the 3 σ reach for the parameter space using these optimized cuts for a luminosity of 3000 fb-1 .

  11. From N=4 Galilean superparticle to three-dimensional non-relativistic N=4 superfields

    NASA Astrophysics Data System (ADS)

    Fedoruk, Sergey; Ivanov, Evgeny; Lukierski, Jerzy

    2018-05-01

    We consider the general N=4 , d = 3 Galilean superalgebra with arbitrary central charges and study its dynamical realizations. Using the nonlinear realization techniques, we introduce a class of actions for N=4 three-dimensional non-relativistic superparticle, such that they are linear in the central charge Maurer-Cartan one-forms. As a prerequisite to the quantization, we analyze the phase space constraints structure of our model for various choices of the central charges. The first class constraints generate gauge transformations, involving fermionic κ-gauge transformations. The quantization of the model gives rise to the collection of free N=4 , d = 3 Galilean superfields, which can be further employed, e.g., for description of three-dimensional non-relativistic N=4 supersymmetric theories.

  12. Vacuum Flashover Characteristics of Laminated Polystyrene Insulators

    DTIC Science & Technology

    1999-06-01

    space charge dominated. A minimum wafer thickness and/or the number of wafers required for the application can be calculated. Equation 1 represents...toward the anode. qn is the fraction of charge deposited on that section of the stack. Equation 1 comes from the assumption that a space charge ...Rodriguez, A.E., and Honig, E.M., "Characterization of an Insulated Space Charge Limited Non-Relativistic Electron Beam Diode Operating at 300 kV/cm

  13. Generalized Skyrme model with the loosely bound potential

    NASA Astrophysics Data System (ADS)

    Gudnason, Sven Bjarke; Zhang, Baiyang; Ma, Nana

    2016-12-01

    We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with a sixth-order derivative term—motivated by its fluidlike properties—and the second-order loosely bound potential—motivated by lowering the classical binding energies of higher-charged Skyrmions. We use the rational map approximation for the Skyrmion of topological charge B =4 , calculate the binding energy of the latter, and estimate the systematic error in using this approximation. In the parameter space that we can explore within the rational map approximation, we find classical binding energies as low as 1.8%, and once taking into account the contribution from spin-isospin quantization, we obtain binding energies as low as 5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density and axial coupling.

  14. Advanced space program studies: Overall executive summary

    NASA Technical Reports Server (NTRS)

    Sitney, L. R.

    1974-01-01

    Studies were conducted to provide NASA with advanced planning analyses which relate integrated space program goals and options to credible technical capabilities, applications potential, and funding resources. The studies concentrated on the following subjects: (1) upper stage options for the space transportation system based on payload considerations, (2) space servicing and standardization of payloads, (3) payload operations, and (4) space transportation system economic analyses related to user charges and new space applications. A systems cost/performance model was developed to synthesize automated, unmanned spacecraft configurations based on the system requirements and a list of equipments at the assembly level.

  15. Implementation of polarization processes in a charge transport model applied on poly(ethylene naphthalate) films

    NASA Astrophysics Data System (ADS)

    Hoang, M.-Q.; Le Roy, S.; Boudou, L.; Teyssedre, G.

    2016-06-01

    One of the difficulties in unravelling transport processes in electrically insulating materials is the fact that the response, notably charging current transients, can have mixed contributions from orientation polarization and from space charge processes. This work aims at identifying and characterizing the polarization processes in a polar polymer in the time and frequency-domains and to implement the contribution of the polarization into a charge transport model. To do so, Alternate Polarization Current (APC) and Dielectric Spectroscopy measurements have been performed on poly(ethylene naphthalene 2,6-dicarboxylate) (PEN), an aromatic polar polymer, providing information on polarization mechanisms in the time- and frequency-domain, respectively. In the frequency-domain, PEN exhibits 3 relaxation processes termed β, β* (sub-glass transitions), and α relaxations (glass transition) in increasing order of temperature. Conduction was also detected at high temperatures. Dielectric responses were treated using a simplified version of the Havriliak-Negami model (Cole-Cole (CC) model), using 3 parameters per relaxation process, these parameters being temperature dependent. The time dependent polarization obtained from the CC model is then added to a charge transport model. Simulated currents issued from the transport model implemented with the polarization are compared with the measured APCs, showing a good consistency between experiments and simulations in a situation where the response comes essentially from dipolar processes.

  16. Space charge influence on the angle of conical spikes developing on a liquid-metal anode.

    PubMed

    Boltachev, G Sh; Zubarev, N M; Zubareva, O V

    2008-05-01

    The influence of the space charge of ions emitted from the surface of a conical spike on its shape has been studied. The problem of the calculation of the spatial distributions of the electric field, ion velocity field, and the space charge density near the cone tip has been reduced to the analysis of a system of ordinary differential equations. As a result of numerical solution of these equations, the criterion for the balance of the capillary and electrostatic forces on the conic surface of a liquid-metal anode has been determined. It has allowed us to relate the electrical current flowing through the system, the applied potential difference, and the cone angle. We have compared the results of our calculations with available experimental data concerning emission from the surface of pure liquid gallium, indium, tin, and some liquid alloys, such as Au+Si , Co+Ge , and Au+Ge . On the basis of the proposed model, explanations have been given for a number of specific features of the emissive behavior of different systems.

  17. Resolving Overlimiting Current Mechanisms in Microchannel-Nanochannel Interface Devices

    NASA Astrophysics Data System (ADS)

    Yossifon, Gilad; Leibowitz, Neta; Liel, Uri; Schiffbauer, Jarrod; Park, Sinwook

    2015-11-01

    We present results demonstrating the space charge-mediated transition between classical, diffusion-limited current and surface-conduction dominant over-limiting currents in a shallow micro-nanochannel device. The extended space charge layer develops at the depleted micro-nanochannel entrance at high current and is correlated with a distinctive maximum in the dc resistance. Experimental results for a shallow surface-conduction dominated system are compared with theoretical models, allowing estimates of the effective surface charge at high voltage to be obtained. Further, we extend the study to microchannels of moderate to large depths where the role of various electro-convection mechanisms becomes dominant. In particular, electro-osmotic of the second kind and electro-osmotic instability (EOI) which competes each other at geometrically heterogeneous (e.g. undulated nanoslot interface, array of nanoslots) nanoslot devices. Also, these effects are also shown to be strongly modulated by the non-ideal permselectivity of the nanochannel.

  18. Charge transport in organic semiconductors.

    PubMed

    Bässler, Heinz; Köhler, Anna

    2012-01-01

    Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.

  19. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; NeergaardParker, Linda

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth's land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (10 s kilovolt) electrons in regions of low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from 0.6 kV to 2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  20. The ESA Space Environment Information System (SPENVIS)

    NASA Astrophysics Data System (ADS)

    Heynderickx, D.; Quaghebeur, B.; Evans, H. D. R.

    2002-01-01

    The ESA SPace ENVironment Information System (SPENVIS) provides standardized access to models of the hazardous space environment through a user-friendly WWW interface. The interface includes parameter input with extensive defaulting, definition of user environments, streamlined production of results (both in graphical and textual form), background information, and on-line help. It is available on-line at http://www.spenvis.oma.be/spenvis/. SPENVIS Is designed to help spacecraft engineers perform rapid analyses of environmental problems and, with extensive documentation and tutorial information, allows engineers with relatively little familiarity with the models to produce reliable results. It has been developed in response to the increasing pressure for rapid-response tools for system engineering, especially in low-cost commercial and educational programmes. It is very useful in conjunction with radiation effects and electrostatic charging testing in the context of hardness assurance. SPENVIS is based on internationally recognized standard models and methods in many domains. It uses an ESA-developed orbit generator to produce orbital point files necessary for many different types of problem. It has various reporting and graphical utilities, and extensive help facilities. The SPENVIS radiation module features models of the proton and electron radiation belts, as well as solar energetic particle and cosmic ray models. The particle spectra serve as input to models of ionising dose (SHIELDOSE), Non-Ionising Energy Loss (NIEL), and Single Event Upsets (CREME). Material shielding is taken into account for all these models, either as a set of user-defined shielding thicknesses, or in combination with a sectoring analysis that produces a shielding distribution from a geometric description of the satellite system. A sequence of models, from orbit generator to folding dose curves with a shielding distribution, can be run as one process, which minimizes user interaction and facilitates multiple runs with different orbital or shielding configurations. SPENVIS features a number of models and tools for evaluating spacecraft charging. The DERA DICTAT tool for evaluation of internal charging calculates the electron current that passes through a conductive shield and becomes deposited inside a dielectric, and predicts whether an electrostatic discharge will occur. SPENVIS has implemented the DERA EQUIPOT non-geometrical tool for assessing material susceptibility to charging in typical orbital environments, including polar and GEO environments. SPENVIS Also includes SOLARC, for assessment of the current collection and the floating potential of solar arrays in LEO. Finally, the system features access to data from surface charging events on CRRES and the Russian Gorizont spacecraft, in the form of spectrograms and double Maxwellian fit parameters. SPENVIS also contains an active, integrated version of the ECSS Space Environment Standard, and access to in-flight data. Apart from radiation and plasma environments, SPENVIS includes meteoroid and debris models, atmospheric models (including atomic oxygen), and magnetic field models implemented by means of the UNILIB library for magnetic coordinate evaluation, magnetic field line tracing and drift shell tracing. The UNILIB library is freely accessible from the Web (http://www.magnet.oma.be/unilib/) for downloading in the form of a Fortran object library for different platforms (DecAlpha, SunOS, HPUX and PC/MS-Windows).

  1. Slow test charge response in a dusty plasma with Kappa distributed electrons and ions

    NASA Astrophysics Data System (ADS)

    Ali, S.; Eliasson, B.

    2017-08-01

    The electrostatic potential around a slowly moving test charge is studied in a dusty plasma where the ions and electrons follow a powerlaw Kappa distribution in velocity space. A test charge moving with a speed much smaller than the dust thermal speed gives rise to a short-scale Debye-Hückel potential as well as a long-range far-field potential decreasing as inverse cube of the distance to the test charge along the propagation direction. The potentials are significantly modified in the presence of high-energy tails, modeled by lower spectral indices in the ion and electron Kappa distribution functions. Plasma parameters relevant to laboratory dusty plasmas are discussed.

  2. Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores

    NASA Astrophysics Data System (ADS)

    Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.

    2017-12-01

    When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

  3. Active Space Debris Charging for Contactless Electrostatic Disposal Maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, H.; Sternovsky, Z.

    2013-08-01

    We assess the feasibility of removing large space debris from geosynchronous orbit (GEO) by means of a tug spacecraft that uses electrostatic forces to pull the debris without touching. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. Further, the debris does not have to be detumbled first to engage the re-orbit maneuver. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam and an auxiliary ion bleeder. Our simple charging model takes into account the primary electron beam current, UV induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that by active charging high potentials can be both achieved and maintained. The resulting mN level electrostatic force is sufficient for the safe re-orbiting of debris objects over an acceptable period of a few months. The capability of debris removal is becoming a pressing need as the increasing population of dysfunctional satellites poses a threat to the future of satellite operations at GEO.

  4. Predicting Material Performance in the Space Environment from Laboratory Test Data, Static Design Environments, and Space Weather Models

    NASA Technical Reports Server (NTRS)

    Minow, Josep I.; Edwards, David L.

    2008-01-01

    Qualifying materials for use in the space environment is typically accomplished with laboratory exposures to simulated UV/EUV, atomic oxygen, and charged particle radiation environments with in-situ or subsequent measurements of material properties of interest to the particular application. Choice of environment exposure levels are derived from static design environments intended to represent either mean or extreme conditions that are anticipated to be encountered during a mission. The real space environment however is quite variable. Predictions of the on orbit performance of a material qualified to laboratory environments can be done using information on 'space weather' variations in the real environment. This presentation will first review the variability of space environments of concern for material degradation and then demonstrate techniques for using test data to predict material performance in a variety of space environments from low Earth orbit to interplanetary space using historical measurements and space weather models.

  5. A fluid description of plasma double-layers

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Crawford, F. W.

    1979-01-01

    The space-charge double-layer that forms between two plasmas with different densities and thermal energies was investigated using three progressively realistic models which are treated by fluid theory, and take into account four species of particles: electrons and ions reflected by the double-layer, and electrons and ions transmitted through it. The two plasmas are assumed to be cold, and the self-consistent potential, electric field and space-charge distributions within the double-layer are determined. The effects of thermal velocities are taken into account for the reflected particles, and the modifications to the cold plasma solutions are established. Further modifications due to thermal velocities of the transmitted particles are examined. The applicability of a one dimensional fluid description, rather than plasma kinetic theory, is discussed. Theoretical predictions are compared with double layer potentials and lengths deduced from laboratory and space plasma experiments.

  6. Bunch evolution study in optimization of MeV ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Lu, Xian-Hai; Du, Ying-Chao; Huang, Wen-Hui; Tang, Chuan-Xiang

    2014-12-01

    Megaelectronvolt ultrafast electron diffraction (UED) is a promising detection tool for ultrafast processes. The quality of diffraction image is determined by the transverse evolution of the probe bunch. In this paper, we study the contributing terms of the emittance and space charge effects to the bunch evolution in the MeV UED scheme, employing a mean-field model with an ellipsoidal distribution as well as particle tracking simulation. The small transverse dimension of the drive laser is found to be critical to improve the reciprocal resolution, exploiting both smaller emittance and larger transverse bunch size before the solenoid. The degradation of the reciprocal spatial resolution caused by the space charge effects should be carefully controlled.

  7. Electrical conduction of a XLPE nanocomposite

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  8. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; hide

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the space environment forecast input to the ISS charging model indicates floating potentials (FP) within specified limits. These recommendations were based on the persistence of conditions in the space environment due to the current low solar cycle and belief in the accuracy and completeness of the ISS charging model. Subsequently, a Noncompliance Report (NCR), ISS-NCR-232G, Lack of Two-fault Tolerance to EVA Crew Shock in the Low Earth Orbit Plasma Environment, was signed in September 2013 specifying new guidelines for the use of shock hazard controls based on a forecast of the space environment from ISS plasma measurements taken prior to the EVA [ISS-EVA-312-AC, 2012]. This NESC assessment re-evaluates EVA charging hazards through a process that is based on over 14 years of ISS operations, charging measurements, laboratory tests, EMU studies and modifications, and safety reports. The assessment seeks an objective review of the plasma charging hazards associated with EVA operations to determine if any of the present hazard controls can safely change the PCU utilization plan to allow more flexibility in ISS operations during EVA preparation and execution.

  9. Mechanical and electrochemical response of a LiCoO 2 cathode using reconstructed microstructures

    DOE PAGES

    Mendoza, Hector; Roberts, Scott Alan; Brunini, Victor; ...

    2016-01-01

    As LiCoO 2 cathodes are charged, delithiation of the LiCoO 2 active material leads to an increase in the lattice spacing, causing swelling of the particles. When these particles are packed into a bicontinuous, percolated network, as is the case in a battery electrode, this swelling leads to the generation of significant mechanical stress. In this study we performed coupled electrochemical-mechanical simulations of the charging of a LiCoO 2 cathode in order to elucidate the mechanisms of stress generation and the effect of charge rate and microstructure on these stresses. Energy dispersive spectroscopy combined with scanning electron microscopy imaging wasmore » used to create 3D reconstructions of a LiCoO 2 cathode, and the Conformal Decomposition Finite Element Method is used to automatically generate computational meshes on this reconstructed microstructure. Replacement of the ideal solution Fickian diffusion model, typically used in battery simulations, with a more general non-ideal solution model shows substantially smaller gradients of lithium within particles than is typically observed in the literature. Using this more general model, lithium gradients only appear at states of charge where the open-circuit voltage is relatively constant. While lithium gradients do affect the mechanical stress state in the particles, the maximum stresses are always found in the fully-charged state and are strongly affected by the local details of the microstructure and particle-to-particle contacts. These coupled electrochemical-mechanical simulations begin to yield insight into the partitioning of volume change between reducing pore space and macroscopically swelling the electrode. Lastly, preliminary studies that include the presence of the polymeric binder suggest that it can greatly impact stress generation and that it is an important area for future research.« less

  10. Time dependent charging of layer clouds in the global electric circuit

    NASA Astrophysics Data System (ADS)

    Zhou, Limin; Tinsley, Brian A.

    2012-09-01

    There is much observational data consistent with the hypothesis that the ionosphere-earth current density (Jz) in the global electric circuit, which is modulated by both solar activity and thunderstorm activity, affects atmospheric dynamics and cloud cover. One candidate mechanism involves Jz causing the accumulation of space charge on droplets and aerosol particles, that affects the rate of scavenging of the latter, notably those of Cloud Condensation Nuclei (CCN) and Ice Forming Nuclei (IFN) (Tinsley, 2008, 2010). Space charge is the difference, per unit volume, between total positive and total negative electrical charge that is on droplets, aerosol particles (including the CCN and IFN) and air ions. The cumulative effects of the scavenging in stratiform clouds and aerosol layers in an air mass over the lifetime of the aerosol particles of 1-10 days affects the concentration and size distribution of the CCN, so that in subsequent episodes of cloud formation (including deep convective clouds) there can be effects on droplet size distribution, coagulation, precipitation processes, and even storm dynamics.Because the time scales for charging for some clouds can be long compared to cloud lifetimes, the amount of charge at a given time, and its effect on scavenging, depend more on the charging rate than on the equilibrium charge that would eventually be attained. To evaluate this, a new time-dependent charging model has been developed. The results show that for typical altostratus clouds with typical droplet radii 10 μm and aerosol particles of radius of 0.04 μm, the time constant for charging in response to a change in Jz is about 800 s, which is comparable to cloud formation and dissipation timescales for some cloud situations. The charging timescale is found to be strong functions of altitude and aerosol concentration, with the time constant for droplet charging at 2 km in air with a high concentration of aerosols being about an hour, and for clouds at 10 km in clean air being about a minute. The charging timescale is also a strong function of droplet size, with the rate for 15 μm radii droplets being about 70% longer than that for 10 μm droplets, and the rate for 5 μm radii droplets being about 50% smaller. The equilibrium charges accumulated on droplets ranged from tens to hundreds of elementary charges, which is comparable to observed values, and to vary approximately directly with Jz and inversely with the ion production rate q, which is due to the Galactic Cosmic Ray (GCR) flux and depends strongly on altitude.For the case of Jz varying directly with q, which to some extent is the case during Forbush decreases of the GCR flux, the effects on the equilibrium charge tend to cancel. In one run with the model, both q and Jz were decreased by 30%. There was little change in equilibrium charge, but the timescale for charging increased by about 40%, or equivalently, the rate of charging decreased by about 40%. Thus, for exploring the hypothesis that space charge provides a link between GCR (and other inputs that modulate Jz) and changes in clouds and atmospheric dynamics, it is necessary to consider variations in the rate of charging. The present work is intended to provide illustrative examples of time dependent charging for several different types of layer clouds.

  11. Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David

    2016-02-04

    We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination.

  12. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    NASA Astrophysics Data System (ADS)

    Xavier, Marcelo A.; Trimboli, M. Scott

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models.

  13. Comparison of currents predicted by NASCAP/LEO model simulations with elementary Langmuir-type bare probe models for an insulated cable containing a single pinhole

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.

    1990-01-01

    The behavior of a defect in the insulation of a short biased section of cable in a Low Earth Orbit (LEO) space environment was examined. Such studies are of the utmost importance for large space power systems where great quantities of cabling will be deployed. An insulated probe containing a pinhole was placed into a hypothetical high speed LEO plasma. The NASA Charging Analyzer Program (NASCAP/LEO) was used to explore sheath growth about the probe as a function of applied voltage and to predict I-V behavior. A set of independent current calculations using Langmuir's formulations for concentric spheres and coaxial cylinders were also performed. The case of concentric spheres was here extended to include the case of concentric hemispheres. Several simple Langmuir-type models were then constructed to bracket the current collected by the cable. The space-charge sheath radius and impact parameters were used to determine the proper current regime. I-V curves were plotted for the models and comparisons were made with NASCAP/LEO results. Finally, NASCAP/LEO potential contours and surface cell potential plots were examined to explain interesting features in the NASCAP/LEO I-V curve.

  14. Simulation of Energetic Neutral Atom Images at Venus

    NASA Astrophysics Data System (ADS)

    Gunell, H.; Holmström, M.; Biernat, H. K.; Erkaev, N. V.; Lammer, H.; Lichtenegger, H.; Penz, T.

    2003-12-01

    We present simulated images of energetic neutral atoms (ENAs) produced in charge exchange collisions between solar wind protons and neutral atoms in the exosphere of Venus. The plasma flow around Venus is modelled by a semi-analytical MHD simulation that includes mass-loading (Biernat et al., J. Geophys. Res., vol. 104, 12617--12626, 1999; Biernat,et al., Adv. Space Res., 28, 2001). These results are compared with the results that are obtained when the Spreiter-Stahara flow model (Spreiter and Stahara, Adv Space Res., 14, 5--19, 1994) is used. The ENA images are calculated by combining the proton bulk flow and temperature results of the MHD model with a model of the neutral atmosphere using the energy dependent cross sections for the charge exchange collisions. The ENA production rate is integrated along lines of sight to a virtual instrument, thus simulating what could be measured by a space-craft-carried ENA instrument. The images are found to be dominated by two local maxima. One produced by charge exchange collisions in the solar wind, upstream of the bow shock, and the other close to the dayside ionopause. The main contribution to the ENA flux observed in the ENA images stems from a region of space between the ionopause and the bow shock on the dayside of the planet. The simulated ENA fluxes at Venus are lower than those obtained in similar simulations of ENA images at Mars (Holmström et al., J. Geophys. Res., 107, 1277, doi: 10.1029/2001JA000325, 2002). The reason for the lower ENA flux at Venus is thought to be the smaller extent of Venus' exosphere. The steeper falloff of the neutral gas density with altitude in the exosphere of Venus is caused by Venus' mass, which is 7.5 times greater than the mass of Mars. The dependence of the ENA flux on the altitude of the ionopause is studied numerically, and it is found that the ENA flux decreases as the ionopause altitude is increased.

  15. WSN-Based Space Charge Density Measurement System

    PubMed Central

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density. PMID:28052105

  16. WSN-Based Space Charge Density Measurement System.

    PubMed

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  17. Comparison of graphite, aluminum, and TransHab shielding material characteristics in a high-energy neutron field

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Huff, H.; Wilkins, R.; Thibeault, Sheila

    2002-01-01

    Space radiation transport models clearly show that low atomic weight materials provide a better shielding protection for interplanetary human missions than high atomic weight materials. These model studies have concentrated on shielding properties against charged particles. A light-weight, inflatable habitat module called TransHab was built and shown to provide adequate protection against micrometeoroid impacts and good shielding properties against charged particle radiation in the International Space Station orbits. An experiment using a tissue equivalent proportional counter, to study the changes in dose and lineal energy spectra with graphite, aluminum, and a TransHab build-up as shielding, was carried out at the Los Alamos Nuclear Science Center neutron facility. It is a continuation of a previous study using regolith and doped polyethylene materials. This paper describes the results and their comparison with the previous study. Published by Elsevier Science Ltd.

  18. Longitudinal dynamics of an intense electron beam

    NASA Astrophysics Data System (ADS)

    Harris, John Richardson

    2005-11-01

    The dynamics of charged particle beams are governed by the particles' thermal velocities, external focusing forces, and Coulomb forces. Beams in which Coulomb forces play the dominant role are known as space charge dominated, or intense. Intense beams are of great interest for heavy ion fusion, spallation neutron sources, free-electron lasers, and other applications. In addition, all beams of interest are dominated by space charge forces when they are first created, so an understanding of space charge effects is critical to explain the later evolution of any beam. Historically, more attention has been paid to the transverse dynamics of beams. However, many interesting and important effects in beams occur along their length. These longitudinal effects can be limiting factors in many systems. For example, modulation or structure applied to the beam at low energy will evolve under space charge forces. Depending on the intended use of the beam and the nature of the modulation, this may result in improved or degraded performance. To study longitudinal dynamics in intense beams, experiments were conducted using the University of Maryland Electron Ring, a 10 keV, 100 mA electron transport system. These experiments concentrated on space charge driven changes in beam length in parabolic and rectangular beams, beam density and velocity modulation, and space charge wave propagation. Coupling between the transverse and longitudinal dynamics was also investigated. These experiments involved operating the UMER gun in space charge limited, temperature limited, triode amplification, photon limited, and hybrid modes. Results of these experiments are presented here, along with a theoretical framework for understanding the longitudinal dynamics of intense beams.

  19. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, KiChang; Kim, Jae-Hun; Kim, Young Yun; Kwon, Yongki; Wi, Gwan-sik

    2016-07-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  20. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yafyasov, A. M., E-mail: yafyasov@gmail.com; Bogevolnov, V. B.; Ryumtsev, E. I.

    A semiconductor—organic-insulator system with spatially distributed charge is created with a uniquely low density of fast surface states (N{sub ss}) at the interface. A system with N{sub ss} ≈ 5 × 10{sup 10} cm{sup –2} is obtained for the example of n-Ge and the physical characteristics of the interface are measured for this system with liquid and metal field electrodes. For a system with an organic insulator, the range of variation of the surface potential from enrichment of the space-charge region of the semiconductor to the inversion state is first obtained without changing the mechanism of interaction between the adsorbedmore » layer and the semiconductor surface. The effect of enhanced polarization of the space-charge region of the semiconductor occurs due to a change in the spatial structure of mobile charge in the organic dielectric layer. The system developed in the study opens up technological opportunities for the formation of a new generation of electronic devices based on organic film structures and for experimental modeling of the electronic properties of biological membranes.« less

  2. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy

    PubMed Central

    Held, Kathryn D.; Blakely, Eleanor A.; Story, Michael D.; Lowenstein, Derek I.

    2016-01-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities. PMID:27195609

  3. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy.

    PubMed

    Held, Kathryn D; Blakely, Eleanor A; Story, Michael D; Lowenstein, Derek I

    2016-06-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities.

  4. Measurement of Reconstructed Charged Particle Multiplicities of Neutrino Interactions in MicroBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Aleena

    2017-09-25

    Here, we compare the observed charged particle multiplicity distributions in the MicroBooNE liquid argon time projection chamber from neutrino interactions in a restricted final state phase space to predictions of this distribution from several GENIE models. The measurement uses a data sample consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2015-2016 with the Fermilab Booster Neutrino Beam (BNB), which has an average neutrino energy of 800 MeV, using an exposure corresponding to 5e19 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction andmore » uses a data-driven technique to determine the contribution to each multiplicity bin from neutrino interactions and cosmic-induced backgrounds. The restricted phase space employed makes the measurement most sensitive to the higher-energy charged particles expected from primary neutrino-argon collisions and less sensitive to lower energy protons expected to be produced in final state interactions of collision products with the target argon nucleus.« less

  5. Specification of the near-Earth space environment with SHIELDS

    DOE PAGES

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard; ...

    2017-11-26

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less

  6. Specification of the near-Earth space environment with SHIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less

  7. Addendum to: Modelling duality between bound and resonant meson spectra by means of free quantum motions on the de Sitter space-time dS4

    NASA Astrophysics Data System (ADS)

    Kirchbach, M.; Compean, C. B.

    2017-04-01

    In the article under discussion the analysis of the spectra of the unflavored mesons lead us to some intriguing insights into the possible geometry of space-time outside the causal Minkowski light cone and into the nature of strong interactions. In applying the potential theory concept of geometrization of interactions, we showed that the meson masses are best described by a confining potential composed by the centrifugal barrier on the three-dimensional spherical space, S3, and of a charge-dipole potential constructed from the Green function to the S3 Laplacian. The dipole potential emerged in view of the fact that S3 does not support single-charges without violation of the Gauss theorem and the superposition principle, thus providing a natural stage for the description of the general phenomenon of confined charge-neutral systems. However, in the original article we did not relate the charge-dipoles on S3 to the color neutral mesons, and did not express the magnitude of the confining dipole potential in terms of the strong coupling αS and the number of colors, Nc, the subject of the addendum. To the amount S3 can be thought of as the unique closed space-like geodesic of a four-dimensional de Sitter space-time, dS4, we hypothesized the space-like region outside the causal Einsteinian light cone (it describes virtual processes, among them interactions) as the (1+4)-dimensional subspace of the conformal (2+4) space-time, foliated with dS4 hyperboloids, and in this way assumed relevance of dS4 special relativity for strong interaction processes. The potential designed in this way predicted meson spectra of conformal degeneracy patterns, and in accord with the experimental observations. We now extract the αs values in the infrared from data on meson masses. The results obtained are compatible with the αs estimates provided by other approaches.

  8. Radiation Protection Effectiveness of Polymeric Based Shielding Materials at Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Wilson, John W.; Adams, Daniel O.

    2008-01-01

    Correlations of limited ionizing radiation measurements onboard the Space Transportation System (STS; shuttle) and the International Space Station (ISS) with numerical simulations of charged particle transport through spacecraft structure have indicated that usage of hydrogen rich polymeric materials improves the radiation shielding performance of space structures as compared to the traditionally used aluminum alloys. We discuss herein the radiation shielding correlations between measurements on board STS-81 (Atlantis, 1997) using four polyethylene (PE) spheres of varying radii, and STS-89 (Endeavour, 1998) using aluminum alloy spheres; with numerical simulations of charged particle transport using the Langley Research Center (LaRC)-developed High charge (Z) and Energy TRaNsport (HZETRN) algorithm. In the simulations, the Galactic Cosmic Ray (GCR) component of the ionizing radiation environment at Low Earth Orbit (LEO) covering ions in the 1< or equals Z< or equals 28 range is represented by O'Neill's (2004) model. To compute the transmission coefficient for GCR ions at LEO, O'Neill's model is coupled with the angular dependent LaRC cutoff model. The trapped protons/electrons component of LEO environment is represented by a LaRC-developed time dependent procedure which couples the AP8min/AP8max, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment resulting from interaction of GCR ions with upper atmosphere is modeled through extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. With the validity of numerical simulations through correlation with PE and aluminum spheres measurements established, we further present results from the expansion of the simulations through the selection of high hydrogen content commercially available polymeric constituents such as PE foam core and Spectra fiber(Registered TradeMark) composite face sheet to assess their radiation shield properties as compared to generic PE.

  9. Analytic treatment of charge cloud overlaps: an improvement of the tomographic atom probe efficiency

    NASA Astrophysics Data System (ADS)

    Bas, P.; Bostel, A.; Grancher, G.; Deconihout, B.; Blavette, D.

    1996-03-01

    Although reliable position and composition data are obtained with the Tomographic Atom Probe, the procedure of position calculation by charge centroiding fails when the detector receives two or more ions with close spaced positions and the same mass-to-charge ratio. As the charge clouds of the ions overlap, they form a unique charge pattern on the multianode detector. Only one atom is represented and its position is biased. In order to estimate real positions, we have developed a correction method. The spatial distribution of charges inside a cloud issued from one impact is modelled by a Gaussian law. The particular properties of the Gaussian enable the calculation of exact positions of the two impacts of the overlapped charge patterns and charges of corresponding clouds. The calculation may be generalized for more than two overlapped clouds. The method was tested on a plane-by-plane analysis of a fully ordered Cu 3Au alloy performed on a (100) pole.

  10. The sliding-helix voltage sensor

    PubMed Central

    Peyser, Alexander; Nonner, Wolfgang

    2012-01-01

    The voltage sensor (VS) domain of voltage-gated ion channels underlies electrical excitability of living cells. We simulate a mesoscale model of the VS domain to determine the functional consequences of some of its physical elements. Our mesoscale model is based on VS charges, linear dielectrics and whole-body motion, applied to an S4 ‘sliding helix’. The electrostatics under voltage-clamped boundary conditions are solved consistently using a boundary element method. Based on electrostatic configurational energy, statistical-mechanical expectations of the experimentally observable relation between displaced charge and membrane voltage are predicted. Consequences of the model are investigated for variations of: S4 configuration (α- and 310-helical), countercharge alignment with S4 charges, protein polarizability, geometry of the gating canal, screening of S4 charges by the baths, and fixed charges located at the bath interfaces. The sliding helix VS domain has an inherent electrostatic stability in the explored parameter space: countercharges present in the region of weak dielectric always retain an equivalent S4 charge in that region but allow sliding movements displacing 3 to 4 e0. That movement is sensitive to small energy variations (< 2kT) along the path dependent on a number of electrostatic parameters tested in our simulations. These simulations show how the slope of the relation between displaced charge and voltage could be tuned in a channel. PMID:22907204

  11. Modeling Ni-Cd performance. Planned alterations to the Goddard battery model

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1986-01-01

    The Goddard Space Flight Center (GSFC) currently has a preliminary computer model to simulate a Nickel Cadmium (Ni-Cd) performance. The basic methodology of the model was described in the paper entitled Fundamental Algorithms of the Goddard Battery Model. At present, the model is undergoing alterations to increase its efficiency, accuracy, and generality. A review of the present battery model is given, and the planned charges of the model are described.

  12. Space charge dynamic of irradiated cyanate ester/epoxy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Shaohe; Tu, Youping; Fan, Linzhen; Yi, Chengqian; Wu, Zhixiong; Li, Laifeng

    2018-03-01

    Glass fibre reinforced polymers (GFRPs) have been widely used as one of the main electrical insulating structures for superconducting magnets. A new type of GFRP insulation material using cyanate ester/epoxy resin as a matrix was developed in this study, and the samples were irradiated by Co-60 for 1 MGy and 5 MGy dose. Space charge distributed within the sample were tested using the pulsed electroacoustic method, and charge concentration was found at the interfaces between glass fibre and epoxy resin. Thermally stimulated current (TSC) and dc conduction current were also tested to evaluate the irradiation effect. It was supposed that charge mobility and density were suppressed at the beginning due to the crosslinking reaction, and for a higher irradiation dose, molecular chain degradation dominated and led to more sever space charge accumulation at interfaces which enhance the internal electric field higher than the external field, and transition field for conduction current was also decreased by irradiation. Space charge dynamic at cryogenic temperature was revealed by conduction current and TSC, and space charge injection was observed for the irradiated samples at 225 K, which was more obvious for the irradiated samples.

  13. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOEpatents

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  14. Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices

    NASA Astrophysics Data System (ADS)

    Riminucci, Alberto; Graziosi, Patrizio; Calbucci, Marco; Cecchini, Raimondo; Prezioso, Mirko; Borgatti, Francesco; Bergenti, Ilaria; Dediu, Valentin Alek

    2018-04-01

    The understanding of spin injection and transport in organic spintronic devices is still incomplete, with some experiments showing magnetoresistance and others not detecting it. We have investigated the transport properties of a large number of tris-(8-hydroxyquinoline)aluminum-based organic spintronic devices with an electrical resistance greater than 5 MΩ that did not show magnetoresistance. Their transport properties could be described satisfactorily by known models for organic semiconductors. At high voltages (>2 V), the results followed the model of space charge limited current with a Poole-Frenkel mobility. At low voltages (˜0.1 V), that are those at which the spin valve behavior is usually observed, the charge transport was modelled by nearest neighbor hopping in intra-gap impurity levels, with a charge carrier density of n0 = (1.44 ± 0.21) × 1015 cm-3 at room temperature. Such a low carrier density can explain why no magnetoresistance was observed.

  15. Spacecraft-plasma interaction codes: NASCAP/GEO, NASCAP/LEO, POLAR, DynaPAC, and EPSAT

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Jongeward, G. A.; Cooke, D. L.

    1992-01-01

    Development of a computer code to simulate interactions between the surfaces of a geometrically complex spacecraft and the space plasma environment involves: (1) defining the relevant physical phenomena and formulating them in appropriate levels of approximation; (2) defining a representation for the 3-D space external to the spacecraft and a means for defining the spacecraft surface geometry and embedding it in the surrounding space; (3) packaging the code so that it is easy and practical to use, interpret, and present the results; and (4) validating the code by continual comparison with theoretical models, ground test data, and spaceflight experiments. The physical content, geometrical capabilities, and application of five S-CUBED developed spacecraft plasma interaction codes are discussed. The NASA Charging Analyzer Program/geosynchronous earth orbit (NASCAP/GEO) is used to illustrate the role of electrostatic barrier formation in daylight spacecraft charging. NASCAP/low Earth orbit (LEO) applications to the CHARGE-2 and Space Power Experiment Aboard Rockets (SPEAR)-1 rocket payloads are shown. DynaPAC application to the SPEAR-2 rocket payloads is described. Environment Power System Analysis Tool (EPSAT) is illustrated by application to Tethered Satellite System 1 (TSS-1), SPEAR-3, and Sundance. A detailed description and application of the Potentials of Large Objects in the Auroral Region (POLAR) Code are presented.

  16. Modeling of environmentally induced transients within satellites

    NASA Technical Reports Server (NTRS)

    Stevens, N. John; Barbay, Gordon J.; Jones, Michael R.; Viswanathan, R.

    1987-01-01

    A technique is described that allows an estimation of possible spacecraft charging hazards. This technique, called SCREENS (spacecraft response to environments of space), utilizes the NASA charging analyzer program (NASCAP) to estimate the electrical stress locations and the charge stored in the dielectric coatings due to spacecraft encounter with a geomagnetic substorm environment. This information can then be used to determine the response of the spacecraft electrical system to a surface discharge by means of lumped element models. The coupling into the electronics is assumed to be due to magnetic linkage from the transient currents flowing as a result of the discharge transient. The behavior of a spinning spacecraft encountering a severe substorm is predicted using this technique. It is found that systems are potentially vulnerable to upset if transient signals enter through the ground lines.

  17. State of Charge estimation of lithium ion battery based on extended Kalman filtering algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Feng, Yiming; Pan, Binbiao; Wan, Renzhuo; Wang, Jun

    2017-08-01

    Accurate estimation of state-of-charge (SOC) for lithium ion battery is crucial for real-time diagnosis and prognosis in green energy vehicles. In this paper, a state space model of the battery based on Thevenin model is adopted. The strategy of estimating state of charge (SOC) based on extended Kalman fil-ter is presented, as well as to combine with ampere-hour counting (AH) and open circuit voltage (OCV) methods. The comparison between simulation and experiments indicates that the model’s performance matches well with that of lithium ion battery. The algorithm of extended Kalman filter keeps a good accura-cy precision and less dependent on its initial value in full range of SOC, which is proved to be suitable for online SOC estimation.

  18. Thickness dependence of the poling and current-voltage characteristics of paint films made up of lead zirconate titanate ceramic powder and epoxy resin

    NASA Astrophysics Data System (ADS)

    Egusa, Shigenori; Iwasawa, Naozumi

    1995-11-01

    A specially prepared paint made up of lead zirconate titanate (PZT) ceramic powder and epoxy resin was coated on an aluminum plate and was cured at room temperature, thus forming the paint film of 25-300 μm thickness with a PZT volume fraction of 53%. The paint film was then poled at room temperature, and the poling behavior was determined by measuring the piezoelectric activity as a function of poling field. The poling behavior shows that the piezoelectric activity obtained at a given poling field increases with an increase in the film thickness from 25 to 300 μm. The current-voltage characteristic of the paint film, on the other hand, shows that the increase in the film thickness leads not only to an increase in the magnitude of the current density at a given electric field but also to an increase in the critical electric field at which the transition from the ohmic to space-charge-limited conduction takes place. This fact indicates that the amount of the space charge of electrons injected into the paint film decreases as the film thickness increases. Furthermore, comparison of the current-voltage characteristic of the paint film with that of a pure epoxy film reveals that the space charge is accumulated largely at the interface between the PZT and epoxy phases in the paint film. On the basis of this finding, a model is developed for the poling behavior of the paint film by taking into account a possible effect of the space-charge accumulation and a broad distribution of the electric field in the PZT phase. This model is shown to give an excellent fit to the experimental data of the piezoelectric activity obtained here as a function of poling field and film thickness.

  19. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by amore » Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.« less

  20. Exploring the Model Design Space for Battery Health Management

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Quach, Cuong Chi; Goebel, Kai Frank

    2011-01-01

    Battery Health Management (BHM) is a core enabling technology for the success and widespread adoption of the emerging electric vehicles of today. Although battery chemistries have been studied in detail in literature, an accurate run-time battery life prediction algorithm has eluded us. Current reliability-based techniques are insufficient to manage the use of such batteries when they are an active power source with frequently varying loads in uncertain environments. The amount of usable charge of a battery for a given discharge profile is not only dependent on the starting state-of-charge (SOC), but also other factors like battery health and the discharge or load profile imposed. This paper presents a Particle Filter (PF) based BHM framework with plug-and-play modules for battery models and uncertainty management. The batteries are modeled at three different levels of granularity with associated uncertainty distributions, encoding the basic electrochemical processes of a Lithium-polymer battery. The effects of different choices in the model design space are explored in the context of prediction performance in an electric unmanned aerial vehicle (UAV) application with emulated flight profiles.

  1. Effect of Layer Charge on CO2 and H2O Intercalations in Swelling Clays.

    PubMed

    Rao, Qi; Leng, Yongsheng

    2016-11-08

    The effect of layer charge on the intercalation of supercritical carbon dioxide (scCO 2 )-H 2 O mixture in Na-montmorillonite clay interlayers under T = 323 K and P = 90 bar geologic sequestration conditions has been further investigated. This effect includes the charge amount and its location (within either octahedral or tetrahedral layers due to isomorphic substitutions). Two clay models with different layer charges are used in this study. Simulation results show that the increase of charge amount shifts the monolayer-to-bilayer (1W-to-2W) hydration transition toward the lower relative humidity (RH), increasing water sorption at the expense of reducing the overall sorption amount of CO 2 in the clay interlayer. However, the combination of the influence of charge amount and charge location leads to insignificant changes in equilibrium basal spacings of the high- and low-charge clays. Molecular dynamics simulations show that the CO 2 dimers, which are frequently seen in low-charge clay interlayers, vanish in high-charge clay interlayers even at low RH of 30%.

  2. Space and surface charge behavior analysis of charge-eliminated polymer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Tetsuji; Takashima, Kazunori; Ichiyama, Shinichiro

    1995-12-31

    Charge behavior of corona-charged or charge eliminated polymer films being dipped in the city water were studied. They were polytetrafluoroethylene (PTFE teflon{trademark}), polypropylene (PP), low density or high density polyethylene (LDPE or HDPE) thin films which are as grown (native) or plasma-processed. The plasma processing at low pressure was tested as antistatic processing. Charge elimination was done by being dipped in alcohol or city water. TSDC analysis and surface charge profile measurement were done for both charged and charge eliminated polymer films. Surface charge density of plasma processed polymer films just after corona charging is roughly the same as thatmore » of an original film. There is little difference between surface charge density profile of a native film and that of a plasma processed film. A large hetero current peak of TSDC was observed at room temperature for a processed film. It was found that the hetero peak disappears after charge elimination process. A pressure pulse wave method by using a pulse-driven piezoelectric PVDF polymer film as a piezoelectric actuator was newly developed to observe real space charge distribution. A little difference of internal space charge distribution between the plasma processed film and the native one after corona charging is found.« less

  3. Self-consistent modeling of laminar electrohydrodynamic plumes from ultra-sharp needles in cyclohexane

    NASA Astrophysics Data System (ADS)

    Becerra, Marley; Frid, Henrik; Vázquez, Pedro A.

    2017-12-01

    This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. ["Dynamics of electrohydrodynamic laminar plumes: Scaling analysis and integral model," Phys. Fluids 12, 2809 (2000)] when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a high-density charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the finite element method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.

  4. 1987 Annual Conference on Nuclear and Space Radiation Effects, Snowmass Village, CO, July 28-31, 1987, Proceedings

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.

  5. Space charge characteristics of fluorinated polyethylene: Different effects of fluorine and oxygen

    NASA Astrophysics Data System (ADS)

    Zhao, Ni; Nie, Yongjie; Li, Shengtao

    2018-04-01

    Direct fluorination are proved having obvious effect on space charge characteristics of polyethylene. It is believed that fluorine has a positive effect on suppressing space charge injection while oxygen impurity has a negative effect. However, the mechanism for the opposite effect of fluorine and oxygen is still not clear. In this paper, the different effects of fluorine and oxygen on space charge characteristics of fluorinated low density polyethylene (LDPE) are investigated on the basis of dielectric property, chemical constitutes and trap performance of surface fluorinated layers. The results show that direct fluorination has obvious effect on chemical constitutes and dielectric properties of surface fluorinated layer. Introduced fluorine is the main factor for suppressing charge injection from the electrodes, because it seriously changes the chemical constitutes and further the trap properties of the surface fluorinated layer. While introduction of oxygen results in heterocharges and makes space charge distribution complex, due to the ionization of generated small groups like C=O containing groups. Moreover, direct fluorination will result in cleavage of some LDPE molecules whatever there is oxygen impurity or not.

  6. Direct determination of energy level alignment and charge transport at metal-Alq3 interfaces via ballistic-electron-emission spectroscopy.

    PubMed

    Jiang, J S; Pearson, J E; Bader, S D

    2011-04-15

    Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq(3) with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier.

  7. Direct determination of energy level alignment and charge transport at metal/Alq{sub 3} interfaces via ballistic-electron-emission spectroscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J. S.; Pearson, J. E.; Bader, S. D.

    2011-04-15

    Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq{sub 3} with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier.

  8. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  9. The 1982 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Halpert, G. (Editor)

    1983-01-01

    Various topics concerned with advanced battery technology are addressed including lithium cell and battery safety developments, mathematical modelling, charge control of aerospace power systems, and the application of nickel hydrogen cells/batteries vis-a-vis nickel cadmium cells/batteries.

  10. Lepton flavor violating radiative decays in EW-scale ν R model: an update

    DOE PAGES

    Hung, P. Q.; Le, Trinh; Tran, Van Que; ...

    2015-12-28

    Here, we perform an updated analysis for the one-loop induced charged lepton flavor violating radiative decays l i → l j γ in an extended mirror model. Mixing effects of the neutrinos and charged leptons constructed with a horizontal A 4 symmetry are also taken into account. Current experimental limit and projected sensitivity on the branching ratio of μ → eγ are used to constrain the parameter space of the model. Calculations of two related observables, the electric and magnetic dipole moments of the leptons, are included. Implications concerning the possible detection of mirror leptons at the LHC and themore » ILC are also discussed.« less

  11. Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple theoretical model for the transient of the spacecraft potential

    DOE PAGES

    Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.; ...

    2018-05-29

    A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less

  12. Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple theoretical model for the transient of the spacecraft potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.

    A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less

  13. The standard model on non-commutative space-time

    NASA Astrophysics Data System (ADS)

    Calmet, X.; Jurčo, B.; Schupp, P.; Wess, J.; Wohlgenannt, M.

    2002-03-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter θ^{μ ν}. No new particles are introduced; the structure group is SU(3)× SU(2)× U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in θ^{μν} we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered.

  14. The University of Maryland Electron Ring: A Model Recirculator for Intense Beam Physics Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernal, S.; Li, H.; Cui, Y.

    2004-12-07

    The University of Maryland Electron Ring (UMER), designed for transport studies of space-charge dominated beams in a strong focusing lattice, is nearing completion. Low energy, high intensity electron beams provide an excellent model system for experimental studies with relevance to all areas that require high quality, intense charged-particle beams. In addition, UMER constitutes an important tool for benchmarking of computer codes. When completed, the UMER lattice will consist of 36 alternating-focusing (FODO) periods over an 11.5-m circumference. Current studies in UMER over about 2/3 of the ring include beam-envelope matching, halo formation, asymmetrical focusing, and longitudinal dynamics (beam bunch erosionmore » and wave propagation.) Near future, multi-turn operation of the ring will allow us to address important additional issues such as resonance-traversal, energy spread and others. The main diagnostics are phosphor screens and capacitive beam position monitors placed at the center of each 200 bending section. In addition, pepper-pot and slit-wire emittance meters are in operation. The range of beam currents used corresponds to space charge tune depressions from 0.2 to 0.8, which is unprecedented for a circular machine.« less

  15. Ground-Based High-Power Microwave Decoy Discrimination System.

    DTIC Science & Technology

    1987-12-23

    understanding of plasma instabilities, self-induced magnetic effects , space - charge considerations, production of ion currents, etc. 3.3.4 Cross-Field...breakdown, due to small potential differences. Interaction volumes can therefore be large, avoiding breakdown and space - charge effects (at the price...the interference of the incident and reflected wave, and by the electrostatic forces of the surface (positive) and space charge (negative) trapped in

  16. Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Stevens, N. J.

    1980-01-01

    A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.

  17. Efficient isoparametric integration over arbitrary space-filling Voronoi polyhedra for electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Aftab; Khan, S. N.; Wilson, Brian G.

    2011-07-06

    A numerically efficient, accurate, and easily implemented integration scheme over convex Voronoi polyhedra (VP) is presented for use in ab initio electronic-structure calculations. We combine a weighted Voronoi tessellation with isoparametric integration via Gauss-Legendre quadratures to provide rapidly convergent VP integrals for a variety of integrands, including those with a Coulomb singularity. We showcase the capability of our approach by first applying it to an analytic charge-density model achieving machine-precision accuracy with expected convergence properties in milliseconds. For contrast, we compare our results to those using shape-functions and show our approach is greater than 10 5 times faster and 10more » 7 times more accurate. Furthermore, a weighted Voronoi tessellation also allows for a physics-based partitioning of space that guarantees convex, space-filling VP while reflecting accurate atomic size and site charges, as we show within KKR methods applied to Fe-Pd alloys.« less

  18. Design guidelines for assessing and controlling spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Garrett, H. B.; Whittlesey, A. C.; Stevens, N. J.

    1984-01-01

    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined.

  19. Design guidelines for assessing and controlling spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Garrett, H. B.; Whittlesey, A.; Stevens, N. J.

    1985-01-01

    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined.

  20. The influence of pre-conditioning on space charge formation in LDPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, R.J.; Henriksen, M.; Holboell, J.T.

    1996-12-31

    In this paper the authors present space charge accumulation data for planar low density polyethylene samples subjected to 20kV/mm dc fields at room temperature. The data were obtained using the laser-induced-pressure-pulse (LIPP) technique. Some of the samples were conditioned by holding them at 40 C in short-circuit at rotary pump pressure for 48hr prior to measurement. Such conditioning had no consistent effect on the space charge. The extent of charge injection/extraction at the semicon electrodes appeared to vary considerably between samples.

  1. Dust environment of an airless object: A phase space study with kinetic models

    NASA Astrophysics Data System (ADS)

    Kallio, E.; Dyadechkin, S.; Fatemi, S.; Holmström, M.; Futaana, Y.; Wurz, P.; Fernandes, V. A.; Álvarez, F.; Heilimo, J.; Jarvinen, R.; Schmidt, W.; Harri, A.-M.; Barabash, S.; Mäkelä, J.; Porjo, N.; Alho, M.

    2016-01-01

    The study of dust above the lunar surface is important for both science and technology. Dust particles are electrically charged due to impact of the solar radiation and the solar wind plasma and, therefore, they affect the plasma above the lunar surface. Dust is also a health hazard for crewed missions because micron and sub-micron sized dust particles can be toxic and harmful to the human body. Dust also causes malfunctions in mechanical devices and is therefore a risk for spacecraft and instruments on the lunar surface. Properties of dust particles above the lunar surface are not fully known. However, it can be stated that their large surface area to volume ratio due to their irregular shape, broken chemical bonds on the surface of each dust particle, together with the reduced lunar environment cause the dust particles to be chemically very reactive. One critical unknown factor is the electric field and the electric potential near the lunar surface. We have developed a modelling suite, Dusty Plasma Environments: near-surface characterisation and Modelling (DPEM), to study globally and locally dust environments of the Moon and other airless bodies. The DPEM model combines three independent kinetic models: (1) a 3D hybrid model, where ions are modelled as particles and electrons are modelled as a charged neutralising fluid, (2) a 2D electrostatic Particle-in-Cell (PIC) model where both ions and electrons are treated as particles, and (3) a 3D Monte Carlo (MC) model where dust particles are modelled as test particles. The three models are linked to each other unidirectionally; the hybrid model provides upstream plasma parameters to be used as boundary conditions for the PIC model which generates the surface potential for the MC model. We have used the DPEM model to study properties of dust particles injected from the surface of airless objects such as the Moon, the Martian moon Phobos and the asteroid RQ36. We have performed a (v0, m/q)-phase space study where the property of dust particles at different initial velocity (v0) and initial mass per charge (m/q) ratio were analysed. The study especially identifies regions in the phase space where the electric field within a non-quasineutral plasma region above the surface of the object, the Debye layer, becomes important compared with the gravitational force. Properties of the dust particles in the phase space region where the electric field plays an important role are studied by a 3D Monte Carlo model. The current DPEM modelling suite does not include models of how dust particles are initially injected from the surface. Therefore, the presented phase space study cannot give absolute 3D dust density distributions around the analysed airless objects. For that, an additional emission model is necessary, which determines how many dust particles are emitted at various places on the analysed (v0, m/q)-phase space. However, this study identifies phase space regions where the electric field within the Debye layer plays an important role for dust particles. Overall, the initial results indicate that when a realistic dust emission model is available, the unified lunar based DPEM modelling suite is a powerful tool to study globally and locally the dust environments of airless bodies such as planetary moons, Mercury, asteroids and non-active comets far from the Sun.

  2. Trapping effect of metal nanoparticle mono- and multilayer in the organic field-effect transistor

    NASA Astrophysics Data System (ADS)

    Lee, Keanchuan; Weis, Martin; Lin, Jack; Taguchi, Dai; Majková, Eva; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-03-01

    The effect of silver nanoparticles self-assembled monolayer (Ag NPs SAM) on charge transport in pentacene organic field-effect transistors (OFET) was investigated by both steady-state and transient-state methods, which are current-voltage measurements in steady-state and time-resolved microscopic (TRM) second harmonic generation (SHG) in transient-state, respectively. The analysis of electronic properties revealed that OFET with SAM exhibited significant charge trapping effect due to the space-charge field formed by immobile charges. Lower transient-state mobility was verified by the direct probing of carrier motion by TRM-SHG technique. It was shown that the trapping effect rises together with increase of SAM layers suggesting the presence of traps in the bulk of NP films. The model based on the electrostatic charge barrier is suggested to explain the phenomenon.

  3. Analyzing Power Supply and Demand on the ISS

    NASA Technical Reports Server (NTRS)

    Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve

    2006-01-01

    Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.

  4. Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas

    2016-10-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).

  5. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGES

    Dell'Angela, M.; Anniyev, T.; Beye, M.; ...

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  6. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    PubMed

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  7. The first radial-mode Lorentzian Landau damping of dust acoustic space-charge waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    2016-05-15

    The dispersion properties and the first radial-mode Lorentzian Landau damping of a dust acoustic space-charge wave propagating in a cylindrical waveguide dusty plasma which contains nonthermal electrons and ions are investigated by employing the normal mode analysis and the method of separation of variables. It is found that the frequency of dust acoustic space-charge wave increases as the wave number increases as well as the radius of cylindrical plasma does. However, the nonthermal property of the Lorentzian plasma is found to suppress the wave frequency of the dust acoustic space-charge wave. The Landau damping rate of the dust acoustic space-chargemore » wave is derived in a cylindrical waveguide dusty plasma. The damping of the space-charge wave is found to be enhanced as the radius of cylindrical plasma and the nonthermal property increase. The maximum Lorentzian Landau damping rate is also found in a cylindrical waveguide dusty plasma. The variation of the wave frequency and the Landau damping rate due to the nonthermal character and geometric effects are also discussed.« less

  8. Internal electric fields of electrolytic solutions induced by space-charge polarization

    NASA Astrophysics Data System (ADS)

    Sawada, Atsushi

    2006-10-01

    The dielectric dispersion of electrolytic solutions prepared using chlorobenzene as a solvent and tetrabutylammonium tetraphenylborate as a solute is analyzed in terms of space-charge polarization in order to derive the ionic constants, and the Stokes radius obtained is discussed in comparison with the values that have been measured by conductometry. A homogeneous internal electric field is assumed for simplicity in the analysis of the space-charge polarization. The justification of the approximation by the homogeneous field is discussed from two points of view: one is the accuracy of the Stokes radius value observed and the other is the effect of bound charges on electrodes in which they level the highly inhomogeneous field, which has been believed in the past. In order to investigate the actual electric field, numerical calculations based on the Poisson equation are carried out by considering the influence of the bound charges. The variation of the number of bound charges with time is clarified by determining the relaxation function of the dielectric constant attributed to the space-charge polarization. Finally, a technique based on a two-field approximation, where homogeneous and hyperbolic fields are independently applied in relevant frequency ranges, is introduced to analyze the space-charge polarization of the electrolytic solutions, and further improvement of the accuracy in the determination of the Stokes radius is achieved.

  9. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xavier, MA; Trimboli, MS

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggestmore » significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.« less

  10. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model.more » The code is guilt atop the Python interpreter language.« less

  11. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.

    PubMed

    Kim, Deok-Soo; Heo, Jinhwa; Ahn, Sung-Hyun; Han, Sang Woo; Yun, Wan Soo; Kim, Zee Hwan

    2009-10-01

    We carried out the near-field optical imaging of isolated and dimerized gold nanocubes to directly investigate the strong coupling between two adjacent nanoparticles. The high-resolution (approximately 10 nm) local field maps (intensities and phases) of self-assembled nanocube dimers reveal antisymmetric plasmon modes that are starkly different from a simple superposition of two monomeric dipole plasmons, which is fully reproduced by the electrodynamics simulations. The result decisively proves that, for the closely spaced pair of nanoparticles (interparticle distance/particle size approximately 0.04), the strong Coulombic attraction between the charges at the interparticle gap dominates over the intraparticle charge oscillations, resulting in a hybridized dimer plasmon mode that is qualitatively different from those expected from a simple dipole-dipole coupling model.

  12. Specification of electron radiation environment at GEO and MEO for surface charging estimates

    NASA Astrophysics Data System (ADS)

    Ganushkina, N.; Dubyagin, S.; Mateo Velez, J. C.; Liemohn, M. W.

    2017-12-01

    A series of anomalies at GEO have been attributed to electrons of energy below 100 keV, responsible for surface charging. The process at play is charge deposition on covering insulating surfaces and is directly linked to the space environment at a time scale of a few tens of seconds. Even though modern satellites benefited from the analysis of past flight anomalies and losses, it appears that surface charging remains a source of problems. Accurate specification of the space environment at different orbits is of a key importance. We present the operational model for low energy (< 200 keV) electrons in the inner magnetosphere, Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM). This model has been operating online since March 2013 (http://fp7-spacecast.eu and imptam.fmi.fi) and it is driven by the real time solar wind and IMF parameters and by the real time Dst index. The presented model provides the low energy electron flux at all L-shells and at all satellite orbits, when necessary. IMPTAM is used to simulate the fluxes of low energy electrons inside the Earth's magnetosphere at the time of severe events measured on LANL satellites at GEO. There is no easy way to say what will be the flux of keV electrons at MEO when surface charging events are detected at GEO than to use a model. The maximal electron fluxes obtained at MEO (L = 4.6) within a few tens of minutes hours following the LANL events at GEO have been extracted to feed a database of theoretical/numerical worst-case environments for surface charging at MEO. All IMPTAM results are instantaneous, data have not been average. In order to validate the IMPTAM output at MEO, we conduct the statistical analysis of measured electron fluxes onboard Van Allen Probes (ECT HOPE (20 eV-45 keV) and ECT MagEIS (30 - 300 keV) at distances of 4.6 Re. IMPTAM e- flux at MEO is used as input to SPIS, the Spacecraft Plasma Interaction System Software toolkit for spacecraft-plasma interactions and spacecraft charging modelling (http://dev.spis.org/projects/spine/home/spis). The research leading to these results was funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No 606716 SPACESTORM and by the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302 PROGRESS.

  13. Structure, stability, and thermodynamics of lamellar DNA-lipid complexes.

    PubMed Central

    Harries, D; May, S; Gelbart, W M; Ben-Shaul, A

    1998-01-01

    We develop a statistical thermodynamic model for the phase evolution of DNA-cationic lipid complexes in aqueous solution, as a function of the ratios of charged to neutral lipid and charged lipid to DNA. The complexes consist of parallel strands of DNA intercalated in the water layers of lamellar stacks of mixed lipid bilayers, as determined by recent synchrotron x-ray measurements. Elastic deformations of the DNA and the lipid bilayers are neglected, but DNA-induced spatial inhomogeneities in the bilayer charge densities are included. The relevant nonlinear Poisson-Boltzmann equation is solved numerically, including self-consistent treatment of the boundary conditions at the polarized membrane surfaces. For a wide range of lipid compositions, the phase evolution is characterized by three regions of lipid to DNA charge ratio, rho: 1) for low rho, the complexes coexist with excess DNA, and the DNA-DNA spacing in the complex, d, is constant; 2) for intermediate rho, including the isoelectric point rho = 1, all of the lipid and DNA in solution is incorporated into the complex, whose inter-DNA distance d increases linearly with rho; and 3) for high rho, the complexes coexist with excess liposomes (whose lipid composition is different from that in the complex), and their spacing d is nearly, but not completely, independent of rho. These results can be understood in terms of a simple charging model that reflects the competition between counterion entropy and inter-DNA (rho < 1) and interbilayer (rho > 1) repulsions. Finally, our approach and conclusions are compared with theoretical work by others, and with relevant experiments. PMID:9649376

  14. Compact Q-balls and Q-shells in a scalar electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arodz, H.; Lis, J.

    2009-02-15

    We investigate spherically symmetric nontopological solitons in electrodynamics with a scalar field self-interaction U{approx}|{psi}| taken from the complex signum-Gordon model. We find Q-balls for small absolute values of the total electric charge Q, and Q-shells when |Q| is large enough. In both cases the charge density exactly vanishes outside certain compact regions in the three-dimensional space. The dependence of the total energy E of small Q-balls on the total electric charge has the form E{approx}|Q|{sup 5/6}, while in the case of very large Q-shells, E{approx}|Q|{sup 7/6}.

  15. Study of charge transport in composite blend of P3HT and PCBM

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Kumar, Sunil; Upadhyaya, Aditi; Yadav, Anjali; Gupta, Saral K.; Singh, Amarjeet

    2018-05-01

    Poly (3-hexylthiophene-2,5diyl) (P3HT) as donor and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as acceptor are mostly used as active medium in polymeric electronic device. In this paper we have prepare the P3HT - PCBM based bulk hetero junction thin films by spin coating technique. The charge transport properties of P3HT:PCBM blends are investigated by the current-voltage measurements using Ag as an electron injecting electrode and ITO as a hole injecting contact. The current density v/s voltage relationships are analyzed in the backdrop of Schottky and Space charge limited current model.

  16. Supervised chaos genetic algorithm based state of charge determination for LiFePO4 batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Yanqing

    2018-04-01

    LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.

  17. Anomalously high potentials observed on ISEE

    NASA Technical Reports Server (NTRS)

    Whipple, E. C.; Krinsky, I. S.; Torbert, R. B.; Olsen, R. C.

    1985-01-01

    Data from two electric field experiments and from the plasma composition experiment on ISEE-1 are used to show that the spacecraft charged to close to -70 V in sunlight at 0700 UT on March 17, 1978. Data from the electron spectrometer experiment show that there was a potential barrier of -10 to -20 V about the spacecraft during this event. The potential barrier was effective in turning back emitted photoelectrons to the spacecraft. The stringent electrostatic cleanliness specifications imposed on ISEE make the presence of differential charging unlikely. Modeling of this event is required to determine if the barrier was produced by the presence of space charge.

  18. Process of breaking and rendering permeable a subterranean rock mass

    DOEpatents

    Lekas, Mitchell A.

    1980-01-01

    The process of the present invention involves the following steps: producing, as by hydrofracing, a substantially horizontal fracture in the subterranean rock mass to be processed; emplacing an explosive charge in the mass in spaced juxtaposed position to the fracture; enlarging the fracture to create a void space thereat, an initial lifting of the overburden, and to provide a free face juxtaposed to and arranged to cooperate with the emplaced explosive charge; and exploding the charge against the free face for fragmenting the rock and to distribute the space, thus providing fractured, pervious, rubble-ized rock in an enclosed subterranean chamber. Firing of the charge provides a further lifting of the overburden, an enlargement of the chamber and a larger void space to distribute throughout the rubble-ized rock within the chamber. In some forms of the invention an explosive charge is used to produce a transitory enlargement of the fracture, and the juxtaposed emplaced charge is fired during the critical period of enlargement of the fracture.

  19. Space Weather Impacts on Spacecraft Design and Operations in Auroral Charging Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda N.

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth s land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems are episodically exposed to environments characterized by a high flux of energetic (approx.1 to 10 s kilovolt) electrons in regions of very low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. While it is well established that charging conditions in geostationary orbit are responsible for many anomalies and even spacecraft failures, to date there have been relatively few such reports due to charging in auroral environments. This presentation first reviews the physics of the space environment and its interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments and discuss how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  20. Charge mobility retrieval approach from apparent charge packet movements based on the negative differential resistance theory.

    PubMed

    Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian

    2018-04-12

    Space charge migration characteristics play an important role in the evaluation of polymer insulation performance. However, an accurate description of charge carrier mobility in several typical insulating polymers such as polyethylene, polypropylene is currently not available. Recently, with the observation of a series of negative charge packet movements associated with the negative differential resistance characteristic of charge mobility in LDPE films, the extraction of charge mobility from the apparent charge packet movement has been attempted using appropriate methods. Based on the previous report of the successful derivation of charge mobility from experimental results using numerical methods, the present research improves the derivation accuracy and describes the details of the charge mobility derivation procedure. Back simulation results under several typical polarizing fields using the derived charge mobility are exhibited. The results indicate that both the NDR theory and the simulation models for the polyethylene materials are reasonable. A significant migration velocity difference between the charge carrier and the charge packet is observed. Back simulations of the charge packet under several typical polarizing fields using the obtained E-v curve show good agreement with the experimental results. The charge packet shapes during the migrations were also found to vary with the polarizing field.

  1. The effect of plasma density and emitter geometry on space charge limits for field emitter array electron charge emission into a space plasma

    NASA Astrophysics Data System (ADS)

    Morris, Dave; Gilchrist, Brian; Gallimore, Alec

    2001-02-01

    Field Emitter Array Cathodes (FEACs) are a new technology being developed for several potential spacecraft electron emission and charge control applications. Instead of a single hot (i.e., high powered) emitter, or a gas dependant plasma contactor, FEAC systems consist of many (hundreds or thousands) of small (micron level) cathode/gate pairs printed on a semiconductor wafer that effect cold field emission at relatively low voltages. Each individual cathode emits only micro-amp level currents, but a functional array is capable of amp/cm2 current densities. It is hoped that thus FEAC offers the possibility of a relatively low-power, simple to integrate, and inexpensive technique for the high level of current emissions that are required for an electrodynamic tether (EDT) propulsion mission. Space charge limits are a significant concern for the EDT application. Vacuum chamber tests and PIC simulations are being performed at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory and Space Physics Research Laboratory to determine the effect of plasma density and emitter geometry on space charge limitations. The results of this work and conclusions to date of how to best mitigate space charge limits will be presented. .

  2. Thermo-electronic solar power conversion with a parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Olukunle, Olawole C.; De, Dilip K.

    2016-02-01

    We consider the energy dynamics of the power generation from the sun when the solar energy is concentrated on to the emitter of a thermo-electronic converter with the help of a parabolic mirror. We use the modified Richardson-Dushman equation. The emitter cross section is assumed to be exactly equal to the focused area at a height h from the base of the mirror to prevent loss of efficiency. We report the variation of output power with solar insolation, height h, reflectivity of the mirror, and anode temperature, initially assuming that there is no space charge effect. Our methodology allows us to predict the temperature at which the anode must be cooled in order to prevent loss of efficiency of power conversion. Novel ways of tackling the space charge problem have been discussed. The space charge effect is modeled through the introduction of a parameter f (0 < f < 1) in the thermos-electron emission equation. We find that the efficiency of the power conversion depends on solar insolation, height h, apart from radii R of the concentrator aperture and emitter, and the collector material properties. We have also considered solar thermos electronic power conversion by using single atom-layer graphene as an emitter.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oloff, L.-P., E-mail: oloff@physik.uni-kiel.de; Hanff, K.; Stange, A.

    With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet.more » Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.« less

  4. Vacuum structure and gravitational bags produced by metric-independent space-time volume-form dynamics

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana

    2015-07-01

    We propose a new class of gravity-matter theories, describing R + R2 gravity interacting with a nonstandard nonlinear gauge field system and a scalar “dilaton,” formulated in terms of two different non-Riemannian volume-forms (generally covariant integration measure densities) on the underlying space-time manifold, which are independent of the Riemannian metric. The nonlinear gauge field system contains a square-root -F2 of the standard Maxwell Lagrangian which is known to describe charge confinement in flat space-time. The initial new gravity-matter model is invariant under global Weyl-scale symmetry which undergoes a spontaneous breakdown upon integration of the non-Riemannian volume-form degrees of freedom. In the physical Einstein frame we obtain an effective matter-gauge-field Lagrangian of “k-essence” type with quadratic dependence on the scalar “dilaton” field kinetic term X, with a remarkable effective scalar potential possessing two infinitely large flat regions as well as with nontrivial effective gauge coupling constants running with the “dilaton” φ. Corresponding to each of the two flat regions we find “vacuum” configurations of the following types: (i) φ = const and a nonzero gauge field vacuum -F2≠0, which corresponds to a charge confining phase; (ii) X = const (“kinetic vacuum”) and ordinary gauge field vacuum -F2 = 0 which supports confinement-free charge dynamics. In one of the flat regions of the effective scalar potential we also find: (iii) X = const (“kinetic vacuum”) and a nonzero gauge field vacuum -F2≠0, which again corresponds to a charge confining phase. In all three cases, the space-time metric is de Sitter or Schwarzschild-de Sitter. Both “kinetic vacuums” (ii) and (iii) can exist only within a finite-volume space region below a de Sitter horizon. Extension to the whole space requires matching the latter with the exterior region with a nonstandard Reissner-Nordström-de Sitter geometry carrying an additional constant radial background electric field. As a result, we obtain two classes of gravitational bag-like configurations with properties, which on one hand partially parallel some of the properties of the solitonic “constituent quark” model and, on the other hand, partially mimic some of the properties of MIT bags in QCD phenomenology.

  5. Current Flow and Pair Creation at Low Altitude in Rotation-Powered Pulsars' Force-Free Magnetospheres: Space Charge Limited Flow

    NASA Technical Reports Server (NTRS)

    Timokhin, A. N.; Arons, J.

    2013-01-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs.We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/j(sub GJ) < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc(sup 2)/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/j(sub GJ) > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/j(sub GJ) < 0, the system develops similar bursts of pair creation. These discharges are similar to those encountered in previous calculations by Timokhin of pair creation when the surface has a high work function and cannot freely emit charge. In cases (b) and (c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady (stationary with small fluctuations in the rotating frame), finding that such steady flows can occupy only a small fraction of the current density parameter space exhibited by the force-free magnetospheric model. The generic polar flow dynamics and pair creation are strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage (with pair creation, when the voltage drops are sufficiently large; without, when they are small) as a function of the applied current.

  6. Nonlinear dust-acoustic structures in space plasmas with superthermal electrons, positrons, and ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saberian, E., E-mail: e.saberian@neyshabur.ac.ir; Esfandyari-Kalejahi, A.; Afsari-Ghazi, M.

    Some features of nonlinear dust-acoustic (DA) structures are investigated in a space plasma consisting of superthermal electrons, positrons, and positive ions in the presence of negatively charged dust grains with finite-temperature by employing a pseudo-potential technique in a hydrodynamic model. For this purpose, it is assumed that the electrons, positrons, and ions obey a kappa-like (κ) distribution in the background of adiabatic dust population. In the linear analysis, it is found that the dispersion relation yield two positive DA branches, i.e., the slow and fast DA waves. The upper branch (fast DA waves) corresponds to the case in which bothmore » (negatively charged) dust particles and (positively charged) ion species oscillate in phase with electrons and positrons. On the other hand, the lower branch (slow DA waves) corresponds to the case in which only dust particles oscillate in phase with electrons and positrons, while ion species are in antiphase with them. On the other hand, the fully nonlinear analysis shows that the existence domain of solitons and their characteristics depend strongly on the dust charge, ion charge, dust temperature, and the spectral index κ. It is found that the minimum/maximum Mach number increases as the spectral index κ increases. Also, it is found that only solitons with negative polarity can propagate and that their amplitudes increase as the parameter κ increases. Furthermore, the domain of Mach number shifts to the lower values, when the value of the dust charge Z{sub d} increases. Moreover, it is found that the Mach number increases with an increase in the dust temperature. Our analysis confirms that, in space plasmas with highly charged dusts, the presence of superthermal particles (electrons, positrons, and ions) may facilitate the formation of DA solitary waves. Particularly, in two cases of hydrogen ions H{sup +} (Z{sub i} = 1) and doubly ionized Helium atoms He{sup 2+} (Z{sub i} = 2), the mentioned results are the same. Additionally, the mentioned dusty plasma does not support DA solitons with positive polarity (compressive solitons). Furthermore, our analysis confirms that DA double layers cannot exist in such a system. Moreover, the positron density has not a considerable effect on the behavior of DA solitons in our model.« less

  7. Space Particle Hazard Measurement and Modeling

    DTIC Science & Technology

    2007-11-30

    the spacecraft and perturbations of the environment generated by the spacecraft. Koons et al. (1999) compiled and studied all spacecraft anomalies...unrealistic for D12 than for Dα0p). However, unlike the stability problems associated with the original cross diffusion terms, they are quite manageable ...E), to mono-energetic beams of charged particles of known energies which enables one, in principle , to unfold the space environment spectrum, j(E

  8. Nature of Molecular Interactions of Peptides with Gold, Palladium, and Pd-Au Bimetal Surfaces in Aqueous Solution

    DTIC Science & Technology

    2009-06-24

    bimetallic surfaces also possess additional polarity, approximated by atomic charges of +0.3e and -0.3e at the Pd and Au sides of the interface , which...as well as polarization and charge transfer at the metal interface (only qualitatively considered here). A hexagonal spacing of ∼1.6 Å between...as results from quantum-mechanical calculations on small peptide and surface fragments. Interfaces were modeled using the consistent valence force

  9. Electron-beam-ion-source (EBIS) modeling progress at FAR-TECH, Inc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J. S., E-mail: kim@far-tech.com; Zhao, L., E-mail: kim@far-tech.com; Spencer, J. A., E-mail: kim@far-tech.com

    FAR-TECH, Inc. has been developing a numerical modeling tool for Electron-Beam-Ion-Sources (EBISs). The tool consists of two codes. One is the Particle-Beam-Gun-Simulation (PBGUNS) code to simulate a steady state electron beam and the other is the EBIS-Particle-In-Cell (EBIS-PIC) code to simulate ion charge breeding with the electron beam. PBGUNS, a 2D (r,z) electron gun and ion source simulation code, has been extended for efficient modeling of EBISs and the work was presented previously. EBIS-PIC is a space charge self-consistent PIC code and is written to simulate charge breeding in an axisymmetric 2D (r,z) device allowing for full three-dimensional ion dynamics.more » This 2D code has been successfully benchmarked with Test-EBIS measurements at Brookhaven National Laboratory. For long timescale (< tens of ms) ion charge breeding, the 2D EBIS-PIC simulations take a long computational time making the simulation less practical. Most of the EBIS charge breeding, however, may be modeled in 1D (r) as the axial dependence of the ion dynamics may be ignored in the trap. Where 1D approximations are valid, simulations of charge breeding in an EBIS over long time scales become possible, using EBIS-PIC together with PBGUNS. Initial 1D results are presented. The significance of the magnetic field to ion dynamics, ion cooling effects due to collisions with neutral gas, and the role of Coulomb collisions are presented.« less

  10. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  11. Exact solutions in 3D gravity with torsion

    NASA Astrophysics Data System (ADS)

    González, P. A.; Vásquez, Yerko

    2011-08-01

    We study the three-dimensional gravity with torsion given by the Mielke-Baekler (MB) model coupled to gravitational Chern-Simons term, and that possess electric charge described by Maxwell-Chern-Simons electrodynamics. We find and discuss this theory's charged black holes solutions and uncharged solutions. We find that for vanishing torsion our solutions by means of a coordinate transformation can be written as three-dimensional Chern-Simons black holes. We also discuss a special case of this theory, Topologically Massive Gravity (TMG) at chiral point, and we show that the logarithmic solution of TMG is also a solution of the MB model at a fixed point in the space of parameters. Furthermore, we show that our solutions generalize Gödel type solutions in a particular case. Also, we recover BTZ black hole in Riemann-Cartan spacetime for vanishing charge.

  12. Predictions for the Dirac C P -violating phase from sum rules

    NASA Astrophysics Data System (ADS)

    Delgadillo, Luis A.; Everett, Lisa L.; Ramos, Raymundo; Stuart, Alexander J.

    2018-05-01

    We explore the implications of recent results relating the Dirac C P -violating phase to predicted and measured leptonic mixing angles within a standard set of theoretical scenarios in which charged lepton corrections are responsible for generating a nonzero value of the reactor mixing angle. We employ a full set of leptonic sum rules as required by the unitarity of the lepton mixing matrix, which can be reduced to predictions for the observable mixing angles and the Dirac C P -violating phase in terms of model parameters. These sum rules are investigated within a given set of theoretical scenarios for the neutrino sector diagonalization matrix for several known classes of charged lepton corrections. The results provide explicit maps of the allowed model parameter space within each given scenario and assumed form of charged lepton perturbations.

  13. Absence of Disorder-Driven Metal-Insulator Transitions in Simple Holographic Models

    NASA Astrophysics Data System (ADS)

    Grozdanov, Sašo; Lucas, Andrew; Sachdev, Subir; Schalm, Koenraad

    2015-11-01

    We study electrical transport in a strongly coupled strange metal in two spatial dimensions at finite temperature and charge density, holographically dual to the Einstein-Maxwell theory in an asymptotically four-dimensional anti-de Sitter space spacetime, with arbitrary spatial inhomogeneity, up to mild assumptions including emergent isotropy. In condensed matter, these are candidate models for exotic strange metals without long-lived quasiparticles. We prove that the electrical conductivity is bounded from below by a universal minimal conductance: the quantum critical conductivity of a clean, charge-neutral plasma. Beyond nonperturbatively justifying mean-field approximations to disorder, our work demonstrates the practicality of new hydrodynamic insight into holographic transport.

  14. Aiding Design of Wave Energy Converters via Computational Simulations

    NASA Astrophysics Data System (ADS)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  15. Lévy-Student distributions for halos in accelerator beams.

    PubMed

    Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio

    2005-12-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schrödinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonic (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Lévy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Lévy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Lévy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

  16. Levy-Student distributions for halos in accelerator beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio

    2005-12-15

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schroedinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonicmore » (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.« less

  17. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    PubMed

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  18. Optical measurements for interfacial conduction and breakdown

    NASA Astrophysics Data System (ADS)

    Hebner, R. E., Jr.; Kelley, E. F.; Hagler, J. N.

    1983-01-01

    Measurements and calculations contributing to the understanding of space and surface charges in practical insulation systems are given. Calculations are presented which indicate the size of charge densities necessary to appreciably modify the electric field from what would be calculated from geometrical considerations alone. Experimental data is also presented which locates the breakdown in an electrode system with a paper sample bridging the gap between the electrodes. It is found that with careful handling, the breakdown does not necessarily occur along the interface even if heavily contaminated oil is used. The effects of space charge in the bulk liquid are electro-optically examined in nitrobenzene and transformer oil. Several levels of contamination in transformer oil are investigated. Whereas much space charge can be observed in nitrobenzene, very little space charge, if any, can be observed in the transformer oil samples even at temperatures near 100 degrees C.

  19. Neutrino mass matrices with two vanishing cofactors and Fritzsch texture for charged lepton mass matrix

    NASA Astrophysics Data System (ADS)

    Wang, Weijian; Guo, Shu-Yuan; Wang, Zhi-Gang

    2016-04-01

    In this paper, we study the cofactor 2 zero neutrino mass matrices with the Fritzsch-type structure in charged lepton mass matrix (CLMM). In the numerical analysis, we perform a scan over the parameter space of all the 15 possible patterns to get a large sample of viable scattering points. Among the 15 possible patterns, three of them can accommodate the latest lepton mixing and neutrino mass data. We compare the predictions of the allowed patterns with their counterparts with diagonal CLMM. In this case, the severe cosmology bound on the neutrino mass set a strong constraint on the parameter space, rendering two patterns only marginally allowed. The Fritzsch-type CLMM will have impact on the viable parameter space and give rise to different phenomenological predictions. Each allowed pattern predicts the strong correlations between physical variables, which is essential for model selection and can be probed in future experiments. It is found that under the no-diagonal CLMM, the cofactor zeros structure in neutrino mass matrix is unstable as the running of renormalization group (RG) from seesaw scale to the electroweak scale. A way out of the problem is to propose the flavor symmetry under the models with a TeV seesaw scale. The inverse seesaw model and a loop-induced model are given as two examples.

  20. The Crossroads between the Galactic Disk and Interstellar Space, Ablaze in 3/4 keV Light

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    2016-04-01

    The halo is the crossroads between the Galactic disk and intergalactic space. This region is inhabited by hot gas that has risen from the disk, gas heated in situ, and hot material that has fallen in from intergalactic space. Owing to high spectral resolution observations made by by XMM-Newton, Suzaku, and Chandra of the hot plasma's 3/4 keV emission and absorption, increasingly sophisticated and CPU intensive computer modeling, and an awareness that charge exchange can contaminate 3/4 keV observations, we are now better able to understand the hot halo gas than ever before.Spectral analyses indicate that the 3/4 keV emission comes from T ~ 2.2 million Kelvin gas. Although observations suggest that the gas may be convectively unstable and the spectra's temperature is similar to that predicted by recent sophisticated models of the galactic fountain, the observed emission measure is significantly brighter than that predicted by fountain models. This brightness disparity presents us with another type of crossroads: should we continue down the road of adding physics to already sophisticated modeling or should we seek out other sources? In this presentation, I will discuss the galactic fountain crossroads, note the latitudinal and longitudinal distribution of the hot halo gas, provide an update on charge exchange, and explain how shadowing observations have helped to fine tune our understanding of the hot gas.

  1. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction.

    PubMed

    van Oudheusden, T; Pasmans, P L E M; van der Geer, S B; de Loos, M J; van der Wiel, M J; Luiten, O J

    2010-12-31

    We demonstrate the compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching by inverting the positive space-charge-induced velocity chirp. This inversion is induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs.

  2. Vector calculus in non-integer dimensional space and its applications to fractal media

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  3. Space Charge Effect in the Sheet and Solid Electron Beam

    NASA Astrophysics Data System (ADS)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  4. High Power Klystrons for Efficient Reliable High Power Amplifiers.

    DTIC Science & Technology

    1980-11-01

    techniques to obtain high overall efficiency. One is second harmonic space charge bunching. This is a process whereby the fundamental and second harmonic...components of the space charge waves in the electron beam of a microwave tube are combined to produce more highly concentrated electron bunches raising the...the drift lengths to enhance the 2nd harmonic component in the space charge waves. The latter method was utilized in the VKC-7790. Computer

  5. Numerical Investigation of a Cascaded Longitudinal Space-Charge Amplifier at the Fermilab's Advanced Superconducting Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-06-01

    In a cascaded longitudinal space-charge amplifier (LSCA), initial density noise in a relativistic e-beam is amplified via the interplay of longitudinal space charge forces and properly located dispersive sections. This type of amplification process was shown to potentially result in large final density modulations [1] compatible with the production of broadband electromagnetic radiation. The technique was recently demonstrated in the optical domain [2]. In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab’s Advanced Superconducting Test Accelerator (ASTA). We especially explore the properties of the produced broadband radiation. Our studies have beenmore » conducted with a grid-less three-dimensional space-charge algorithm.« less

  6. Electric field and space charge distribution measurement in transformer oil struck by impulsive high voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Guo, Hongda; Yang, Qing; Song, He; Yang, Ming; Yu, Fei

    2015-08-01

    Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.

  7. Plasma Flowfields Around Low Earth Orbit Objects: Aerodynamics to Underpin Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Capon, Christopher; Boyce, Russell; Brown, Melrose

    2016-07-01

    Interactions between orbiting bodies and the charged space environment are complex. The large variation in passive body parameters e.g. size, geometry and materials, makes the plasma-body interaction in Low Earth Orbit (LEO) a region rich in fundamental physical phenomena. The aerodynamic interaction of LEO orbiting bodies with the neutral environment constitutes the largest non-conservative force on the body. However in general, study of the LEO plasma-body interaction has not been concerned with external flow physics, but rather with the effects on surface charging. The impact of ionospheric flow physics on the forces on space debris (and active objects) is not well understood. The work presented here investigates the contribution that plasma-body interactions have on the flow structure and hence on the total atmospheric force vector experienced by a polar orbiting LEO body. This work applies a hybrid Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFoam, to self-consistently model the electrostatic flowfield about a cylinder with a uniform, fixed surface potential. Flow conditions are representative of the mean conditions experienced by the Earth Observing Satellite (EOS) based on the International Reference Ionosphere model (IRI-86). The electron distribution function is represented by a non-linear Boltzmann electron fluid and ion gas-surface interactions are assumed to be that of a neutralising, conducting, thermally accommodating solid wall with diffuse reflections. The variation in flowfield and aerodynamic properties with surface potential at a fixed flow condition is investigated, and insight into the relative contributions of charged and neutral species to the flow physics experienced by a LEO orbiting body is provided. This in turn is intended to help improve the fidelity of physics-based orbit predictions for space debris and other near-Earth space objects.

  8. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.

    PubMed

    Bonthuis, Douwe Jan; Netz, Roland R

    2013-10-03

    Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.

  9. 14 CFR 389.12 - Payment of fees and charges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payment of fees and charges. 389.12 Section 389.12 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Fees for Special Services § 389.12 Payment of...

  10. 14 CFR 389.12 - Payment of fees and charges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Payment of fees and charges. 389.12 Section 389.12 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Fees for Special Services § 389.12 Payment of...

  11. Analytical modeling of relative luminescence efficiency of Al2O3:C optically stimulated luminescence detectors exposed to high-energy heavy charged particles.

    PubMed

    Sawakuchi, Gabriel O; Yukihara, Eduardo G

    2012-01-21

    The objective of this work is to test analytical models to calculate the luminescence efficiency of Al(2)O(3):C optically stimulated luminescence detectors (OSLDs) exposed to heavy charged particles with energies relevant to space dosimetry and particle therapy. We used the track structure model to obtain an analytical expression for the relative luminescence efficiency based on the average radial dose distribution produced by the heavy charged particle. We compared the relative luminescence efficiency calculated using seven different radial dose distribution models, including a modified model introduced in this work, with experimental data. The results obtained using the modified radial dose distribution function agreed within 20% with experimental data from Al(2)O(3):C OSLDs relative luminescence efficiency for particles with atomic number ranging from 1 to 54 and linear energy transfer in water from 0.2 up to 1368 keV µm(-1). In spite of the significant improvement over other radial dose distribution models, understanding of the underlying physical processes associated with these radial dose distribution models remain elusive and may represent a limitation of the track structure model.

  12. A three dimensional dynamic study of electrostatic charging in materials

    NASA Technical Reports Server (NTRS)

    Katz, I.; Parks, D. E.; Mandell, M. J.; Harvey, J. M.; Brownell, D. H., Jr.; Wang, S. S.; Rotenberg, M.

    1977-01-01

    A description is given of the physical models employed in the NASCAP (NASA Charging Analyzer Program) code, and several test cases are presented. NASCAP dynamically simulates the charging of an object made of conducting segments which may be entirely or partially covered with thin dielectric films. The object may be subject to either ground test or space user-specified environments. The simulation alternately treats (1) the tendency of materials to accumulate and emit charge when subject to plasma environment, and (2) the consequent response of the charged particle environment to an object's electrostatic field. Parameterized formulations of the emission properties of materials subject to bombardment by electrons, protons, and sunlight are presented. Values of the parameters are suggested for clean aluminum, Al2O3, clean magnesium, MgO, SiO2 kapton, and teflon. A discussion of conductivity in thin dielectrics subject to radiation and high fields is given, together with a sample calculation.

  13. Floating potential of emitting surfaces in plasmas with respect to the space potential

    DOE PAGES

    Kraus, B. F.; Raitses, Y.

    2018-03-19

    The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less

  14. Floating potential of emitting surfaces in plasmas with respect to the space potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, B. F.; Raitses, Y.

    The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less

  15. Methodology and Data Sources for Assessing Extreme Charging Events within the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Minow, J. I.; Talaat, E. R.

    2016-12-01

    Spacecraft surface and internal charging is a potential threat to space technologies because electrostatic discharges on, or within, charged spacecraft materials can result in a number of adverse impacts to spacecraft systems. The Space Weather Action Plan (SWAP) ionizing radiation benchmark team recognized that spacecraft charging will need to be considered to complete the ionizing radiation benchmarks in order to evaluate the threat of charging to critical space infrastructure operating within the near-Earth ionizing radiation environments. However, the team chose to defer work on the lower energy charging environments and focus the initial benchmark efforts on the higher energy galactic cosmic ray, solar energetic particle, and trapped radiation belt particle environments of concern for radiation dose and single event effects in humans and hardware. Therefore, an initial set of 1 in 100 year spacecraft charging environment benchmarks remains to be defined to meet the SWAP goals. This presentation will discuss the available data sources and a methodology to assess the 1 in 100 year extreme space weather events that drive surface and internal charging threats to spacecraft. Environments to be considered are the hot plasmas in the outer magnetosphere during geomagnetic storms, relativistic electrons in the outer radiation belt, and energetic auroral electrons in low Earth orbit at high latitudes.

  16. Turbulent particulate transportation during electrostatic precipitation

    NASA Astrophysics Data System (ADS)

    Choi, Bum Seog

    The generation of secondary flows and turbulence by a corona discharge influences particle transport in an electrostatic precipitator (ESP), and is known to play an important role in the particle collection process. However, it is difficult to characterise theoretically and experimentally the ``turbulent'' fluctuations of the gas flow produced by negative tuft corona. Because of this difficulty, only limited studies have been undertaken previously to understand the structure of corona-induced turbulence and its influence on particle transport in ESPs. The present study is aimed at modelling electrohydrodynamic turbulent flows and particle transport, and at establishing an unproved understanding of them. For a multiply interactive coupling of electrostatics, fluid dynamics and particle dynamics, a strongly coupled system of the governing equations has been solved. The present computer model has considered the most important interaction mechanisms including an ionic wind, corona- induced turbulence and the particle space charge effect. Numerical simulations have been performed for the extensive validation of the numerical and physical models. To account for electrically excited turbulence associated with the inhomogeneous and unsteady characteristics of negative corona discharges, a new turbulence model (called the electrostatic turbulence model) has been developed. In this, an additional production or destruction term is included into the turbulent kinetic energy and dissipation rate equations. It employs a gradient type model of the current density and an electrostatic diffusivity concept. The results of the computation show that the electrostatic turbulence model gives much better agreement with the experimental data than the conventional RNG k-ɛ turbulence model when predicting turbulent gas flows and particle distributions in an ESP. Computations of turbulent particulate two-phase flows for both mono-dispersed and poly-dispersed particles have been performed. The effects of coriona-induced turbulence and the particle space charge on particle transport and the collection process have been investigated. The calculated results for the poly-dispersed particulate flow were compared with those of the mono-dispersed particulate flow, and significant differences were demonstrated. It is established that effective particle- particle interaction occurs, due to the influence of the particle space charge, even for dilute gas-particle flows that occur in ESPs.

  17. Effect of ion compensation of the beam space charge on gyrotron operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ionmore » compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.« less

  18. Space charge enhanced plasma gradient effects on satellite electric field measurements

    NASA Technical Reports Server (NTRS)

    Diebold, Dan; Hershkowitz, Noah; Dekock, J.; Intrator, T.; Hsieh, M-K.

    1991-01-01

    It has been recognized that plasma gradients can cause error in magnetospheric electric field measurements made by double probes. Space charge enhanced Plasma Gradient Induced Error (PGIE) is discussed in general terms, presenting the results of a laboratory experiment designed to demonstrate this error, and deriving a simple expression that quantifies this error. Experimental conditions were not identical to magnetospheric conditions, although efforts were made to insure the relevant physics applied to both cases. The experimental data demonstrate some of the possible errors in electric field measurements made by strongly emitting probes due to space charge effects in the presence of plasma gradients. Probe errors in space and laboratory conditions are discussed, as well as experimental error. In the final section, theoretical aspects are examined and an expression is derived for the maximum steady state space charge enhanced PGIE taken by two identical current biased probes.

  19. Virtual Laboratory Environment for High Voltage Radiation Source Experiments

    DTIC Science & Technology

    2005-05-01

    Dielectric ," Phys. Rev. Lett. 80, 103 (1998). 26.A. Valfells, J. P. Verboncoeur and Y. Y. Lau, " Space charge effects on multipactor on a dielec... effects at the edges of the surface, or due to space charge effects if a plasma is formed at the surface. High density multipactor can result in... multipactors , which can cause significant reflection and absorption of microwave power as well as space charge effects . X-rays can also

  20. The NRL (Naval Research Laboratory) Phase-Locked Gyrotron Oscillator Program for SDIO/IST

    DTIC Science & Technology

    1988-07-11

    are neglected as are space - charge effects . The cold cavity eigenfrequency for the TE6 2 1 mode is 35.08 GHz. The calculated efficiency, output power...improved beam quality on the gyrotron operation, and to eliminate the unknown space charge effects present in the original experiment, in which a...substantial fraction of the diode current is reflected before reaching the gyrotron cavity and may cause space charge problems before being collected on

  1. Induction Linacs and Free Electron Laser Amplifiers

    DTIC Science & Technology

    1986-03-20

    accelerated and the effects of space - charge force is minimized. EMnTANCE-PRESERVING BEAMLINE The beamline (Fig. 5) is designed to preserve the good beam...electrons and pushes them right out of the way leaving a bare ion cloud. With relativistic beams in vacuum, their space charge defocusing is offset by the...suspect, on why charged particle beams cannot be used in space . Now it is a fairly straight- forward extrapolation, already mentioned in Lou Marguet’s

  2. Development of an Annular Electron Beam HPM Amplifier

    DTIC Science & Technology

    1994-09-01

    34, Phys.Rev.Lett., 64(19), ppgs 2320-2323, 7 May 1990 9. Lau, Y.Y. and Chernin, D., "A review of the ac space - charge effect in electron-circuit interactions...the Child-Lanamuir, space - charge limiting current in the beam line. This removes the potential of torming a virtual cathode (Ref. 19). The...propagates the electron beam through a single modulating gap, with a specified voltage, frequency, and gap extent. The beam space charge is an input

  3. Charge and spin in low-dimensional cuprates

    NASA Astrophysics Data System (ADS)

    Maekawa, Sadamichi; Tohyama, Takami

    2001-03-01

    One of the central issues in the study of high-temperature superconducting cuprates which are composed of two-dimensional (2D) CuO2 planes is whether the 2D systems with strong electron correlation behave as a Fermi liquid or a non-Fermi-liquid-like one-dimensional (1D) system with electron correlation. In this article, we start with the detailed examination of the electronic structure in cuprates and study theoretically the spin and charge dynamics in 1D and 2D cuprates. The theoretical background of spin-charge separation in the 1D model systems including the Hubbard and t-J models is presented. The first direct observation of collective modes of spin and charge excitations in a 1D cuprate, which are called spinons and holons respectively, in angle-resolved photoemission spectroscopy (ARPES) experiments is reviewed in the light of the theoretical results based on the numerically exact-diagonalization method. The charge and spin dynamics in 1D insulating cuprates is also discussed in connection with the spin-charge separation. The arguments are extended to the 2D cuprates, and the unique aspects of the electronic properties of high-temperature superconductors are discussed. Special emphasis is placed on the d-wave-like excitations in insulating 2D cuprates observed in ARPES experiments. We explain how the excitations are caused by the spin-charge separation. The charge stripes observed in the underdoped cuprates are examined in connection with spin-charge separation in real space.

  4. New upper limit on strange quark matter abundance in cosmic rays with the PAMELA space experiment.

    PubMed

    Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carlson, P; Casolino, M; Castellini, G; De Donato, C; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergè, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N

    2015-09-11

    In this work we present results of a direct search for strange quark matter (SQM) in cosmic rays with the PAMELA space spectrometer. If this state of matter exists it may be present in cosmic rays as particles, called strangelets, having a high density and an anomalously high mass-to-charge (A/Z) ratio. A direct search in space is complementary to those from ground-based spectrometers. Furthermore, it has the advantage of being potentially capable of directly identifying these particles, without any assumption on their interaction model with Earth's atmosphere and the long-term stability in terrestrial and lunar rocks. In the rigidity range from 1.0 to ∼1.0×10^{3}  GV, no such particles were found in the data collected by PAMELA between 2006 and 2009. An upper limit on the strangelet flux in cosmic rays was therefore set for particles with charge 1≤Z≤8 and mass 4≤A≤1.2×10^{5}. This limit as a function of mass and as a function of magnetic rigidity allows us to constrain models of SQM production and propagation in the Galaxy.

  5. Study of electric field distorted by space charges under positive lightning impulse voltage

    NASA Astrophysics Data System (ADS)

    Wang, Zezhong; Geng, Yinan

    2018-03-01

    Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.

  6. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    ERIC Educational Resources Information Center

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-01-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…

  7. Asymptotic symmetries of Rindler space at the horizon and null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Hyeyoun

    2010-08-15

    We investigate the asymptotic symmetries of Rindler space at null infinity and at the event horizon using both systematic and ad hoc methods. We find that the approaches that yield infinite-dimensional asymptotic symmetry algebras in the case of anti-de Sitter and flat spaces only give a finite-dimensional algebra for Rindler space at null infinity. We calculate the charges corresponding to these symmetries and confirm that they are finite, conserved, and integrable, and that the algebra of charges gives a representation of the asymptotic symmetry algebra. We also use relaxed boundary conditions to find infinite-dimensional asymptotic symmetry algebras for Rindler spacemore » at null infinity and at the event horizon. We compute the charges corresponding to these symmetries and confirm that they are finite and integrable. We also determine sufficient conditions for the charges to be conserved on-shell, and for the charge algebra to give a representation of the asymptotic symmetry algebra. In all cases, we find that the central extension of the charge algebra is trivial.« less

  8. Three-Dimensional Simulations of Electron Beams Focused by Periodic Permanent Magnets

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    A fully three-dimensional (3D) model of an electron beam focused by a periodic permanent magnet (PPM) stack has been developed. First, the simulation code MAFIA was used to model a PPM stack using the magnetostatic solver. The exact geometry of the magnetic focusing structure was modeled; thus, no approximations were made regarding the off-axis fields. The fields from the static solver were loaded into the 3D particle-in-cell (PIC) solver of MAFIA where fully 3D behavior of the beam was simulated in the magnetic focusing field. The PIC solver computes the time-integration of electromagnetic fields simultaneously with the time integration of the equations of motion of charged particles that move under the influence of those fields. Fields caused by those moving charges are also taken into account; thus, effects like space charge and magnetic forces between particles are fully simulated. The electron beam is simulated by a number of macro-particles. These macro-particles represent a given charge Q amounting to that of several million electrons in order to conserve computational time and memory. Particle motion is unrestricted, so particle trajectories can cross paths and move in three dimensions under the influence of 3D electric and magnetic fields. Correspondingly, there is no limit on the initial current density distribution of the electron beam, nor its density distribution at any time during the simulation. Simulation results including beam current density, percent ripple and percent transmission will be presented, and the effects current, magnetic focusing strength and thermal velocities have on beam behavior will be demonstrated using 3D movies showing the evolution of beam characteristics in time and space. Unlike typical beam optics models, this 3D model allows simulation of asymmetric designs such as non- circularly symmetric electrostatic or magnetic focusing as well as the inclusion of input/output couplers.

  9. Annual Conference on Nuclear and Space Radiation Effects, Gatlinburg, TN, July 18-21, 1983, Proceedings

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Topics discussed include radiation effects in devices; the basic mechanisms of radiation effects in structures and materials; radiation effects in integrated circuits; spacecraft charging and space radiation effects; hardness assurance for devices and systems; and radiation transport, energy deposition and charge collection. Papers are presented on the mechanisms of small instabilities in irradiated MOS transistors, on the radiation effects on oxynitride gate dielectrics, on the discharge characteristics of a simulated solar cell array, and on latchup in CMOS devices from heavy ions. Attention is also given to proton upsets in orbit, to the modeling of single-event upset in bipolar integrated circuits, to high-resolution studies of the electrical breakdown of soil, and to a finite-difference solution of Maxwell's equations in generalized nonorthogonal coordinates.

  10. Annual Conference on Nuclear and Space Radiation Effects, 15th, University of New Mexico, Albuquerque, N. Mex., July 18-21, 1978, Proceedings

    NASA Technical Reports Server (NTRS)

    Simons, M.

    1978-01-01

    Radiation effects in MOS devices and circuits are considered along with radiation effects in materials, space radiation effects and spacecraft charging, SGEMP, IEMP, EMP, fabrication of radiation-hardened devices, radiation effects in bipolar devices and circuits, simulation, energy deposition, and dosimetry. Attention is given to the rapid anneal of radiation-induced silicon-sapphire interface charge trapping, cosmic ray induced errors in MOS memory cells, a simple model for predicting radiation effects in MOS devices, the response of MNOS capacitors to ionizing radiation at 80 K, trapping effects in irradiated and avalanche-injected MOS capacitors, inelastic interactions of electrons with polystyrene, the photoelectron spectral yields generated by monochromatic soft X radiation, and electron transport in reactor materials.

  11. Dynamics of a lightning corona sheath—A constant field approach using the generalized traveling current source return stroke model

    NASA Astrophysics Data System (ADS)

    Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Radosavljevic, Radovan; Osmokrovic, Predrag

    2012-11-01

    A generalized lightning traveling current source return stroke model has been used to examine the characteristics of the lightning channel corona sheath surrounding a thin channel core. A model of the lightning channel consisting of a charged corona sheath and a narrow, highly conducting central core that conducts the main current flow is assumed. Strong electric field, with a predominant radial direction, has been created during the return stroke between the channel core and the outer channel sheath containing the negative charge. The return stroke process is modeled with the positive charge coming from the channel core discharging the negative leader charge in the corona sheath. The corona sheath model that predicts the charge motion in the sheath is used to derive the expressions of the sheath radius vs. time during the return stroke. According to the corona sheath model proposed earlier by Maslowski and Rakov (2006) and Maslowski et al. (2009), it consists of three zones, zone 1 (surrounding channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (outer zone representing the virgin air without charges). We adopted the assumption of a constant electric field inside zone 1 of the corona sheath observed in the experimental research of corona discharges in a coaxial geometry by Cooray (2000). This assumption seems to be more realistic than the assumption of a uniform corona space charge density used previously in the study of Maslowski and Rakov (2006), Marjanovic and Cvetic (2009), and Tausanovic et al. (2010). Applying the Gauss' law on the infinitesimally small cylindrical section of the channel the expressions for time-dependence of the radii of zones 1 and 2 during the return stroke are derived. The calculations have shown that the overall channel dynamics concerning electrical discharge is roughly 50% slower and the maximum radius of zone 1 is about 33% smaller compared to the corresponding values calculated in the study of Tausanovic et al. (2010).

  12. Electrostatic Studies for the 2008 Hubble Service Repair Mission

    NASA Technical Reports Server (NTRS)

    Buhler, C. R.; Clements, J. S.; Calle, C. I.

    2012-01-01

    High vacuum triboelectric testing of space materials was required to identify possible Electrostatic Discharge (ESD) concerns for the astronauts in space during electronics board replacement on the Hubble Space Telescope. Testing under high vacuum conditions with common materials resulted in some interesting results. Many materials were able to charge to high levels which did not dissipate quickly even when grounded. Certain materials were able to charge up in contact with grounded metals while others were not. An interesting result was that like materials did not exchange electrostatic charge under high vacuum conditions. The most surprising experimental result is the lack of brush discharges from charged insulators under high vacuum conditions.

  13. Quantum Model of a Charged Black Hole

    NASA Astrophysics Data System (ADS)

    Gladush, V. D.

    A canonical approach for constructing of the classical and quantum description spherically-symmetric con guration gravitational and electromagnetic elds is considered. According to the sign of the square of the Kodama vector, space-time is divided into R-and T-regions. By virtue of the generalized Birkho theorem, one can choose coordinate systems such that the desired metric functions in the T-region depend on the time, and in the R-domain on the space coordinate. Then, the initial action for the con guration breaks up into terms describing the elds in the T- and R-regions with the time and space evolutionary variable, respectively. For these regions, Lagrangians of the con guration are constructed, which contain dynamic and non-dynamic degrees of freedom, leading to constrains. We concentrate our attention on dynamic T-regions. There are two additional conserved physical quantities: the charge and the total mass of the system. The Poisson bracket of the total mass with the Hamiltonian function vanishes in the weak sense. A classical solution of the eld equations in the con guration space (minisuperspace) is constructed without xing non-dynamic variable. In the framework of the canonical approach to the quantum mechanics of the system under consideration, physical states are found by solving the Hamiltonian constraint in the operator form (the DeWitt equation) for the system wave function Ψ. It also requires that Ψ is an eigenfunction of the operators of charge and total mass. For the symmetric of the mass operator the corresponding ordering of operators is carried out. Since the total mass operator commutes with the Hamiltonian in the weak sense, its eigenfunctions must be constructed in conjunction with the solution of the DeWitt equation. The consistency condition leads to the ansatz, with the help of which the solution of the DeWitt equation for the state Ψem with a defined total mass and charge is constructed, taking into account the regularity condition on the horizon. The mass and charge spectra of the con guration in this approach turn out to be continuous. It is interesting that formal quantization in the R-region with a space evolutionary coordinate leads to a similar result.

  14. Improving radiation hardness in space-based Charge-Coupled Devices through the narrowing of the charge transfer channel

    NASA Astrophysics Data System (ADS)

    Hall, D. J.; Skottfelt, J.; Soman, M. R.; Bush, N.; Holland, A.

    2017-12-01

    Charge-Coupled Devices (CCDs) have been the detector of choice for imaging and spectroscopy in space missions for several decades, such as those being used for the Euclid VIS instrument and baselined for the SMILE SXI. Despite the many positive properties of CCDs, such as the high quantum efficiency and low noise, when used in a space environment the detectors suffer damage from the often-harsh radiation environment. High energy particles can create defects in the silicon lattice which act to trap the signal electrons being transferred through the device, reducing the signal measured and effectively increasing the noise. We can reduce the impact of radiation on the devices through four key methods: increased radiation shielding, device design considerations, optimisation of operating conditions, and image correction. Here, we concentrate on device design operations, investigating the impact of narrowing the charge-transfer channel in the device with the aim of minimising the impact of traps during readout. Previous studies for the Euclid VIS instrument considered two devices, the e2v CCD204 and CCD273, the serial register of the former having a 50 μm channel and the latter having a 20 μm channel. The reduction in channel width was previously modelled to give an approximate 1.6× reduction in charge storage volume, verified experimentally to have a reduction in charge transfer inefficiency of 1.7×. The methods used to simulate the reduction approximated the charge cloud to a sharp-edged volume within which the probability of capture by traps was 100%. For high signals and slow readout speeds, this is a reasonable approximation. However, for low signals and higher readout speeds, the approximation falls short. Here we discuss a new method of simulating and calculating charge storage variations with device design changes, considering the absolute probability of capture across the pixel, bringing validity to all signal sizes and readout speeds. Using this method, we can optimise the device design to suffer minimum impact from radiation damage effects, here using detector development for the SMILE mission to demonstrate the process.

  15. Space charge neutralization by electron-transparent suspended graphene

    PubMed Central

    Srisonphan, Siwapon; Kim, Myungji; Kim, Hong Koo

    2014-01-01

    Graphene possesses many fascinating properties originating from the manifold potential for interactions at electronic, atomic, or molecular levels. Here we report measurement of electron transparency and hole charge induction response of a suspended graphene anode on top of a void channel formed in a SiO2/Si substrate. A two-dimensional (2D) electron gas induced at the oxide interface emits into air and makes a ballistic transport toward the suspended graphene. A small fraction (>~0.1%) of impinging electrons are captured at the edge of 2D hole system in graphene, demonstrating good transparency to very low energy (<3 eV) electrons. The hole charges induced in the suspended graphene anode have the effect of neutralizing the electron space charge in the void channel. This charge compensation dramatically enhances 2D electron gas emission at cathode to the level far surpassing the Child-Langmuir's space-charge-limited emission. PMID:24441774

  16. Modélisation des charges d'espace dans les isolants solides par une analyse spectrale

    NASA Astrophysics Data System (ADS)

    Haas, V.; Scouarnec, Ch.; Franceschi, J. L.

    1998-01-01

    A mathematical method based on spectral algebra is developped for the thermal modulation method. These methods permit to measure the space charge distribution in solid insulators. The modelling presented permits to evaluate the performances and the limitations of the measurement method. Une linéarisation par l'algèbre spectrale a été développée dans une méthode de modulation thermique pour mesurer la distribution des charges électriques dans les isolants solides. La modélisation présentée permet d'évaluer les performances et les limites tant numériques que physiques de la méthode de mesure.

  17. A Monte Carlo (N,V,T) study of the stability of charged interfaces: A simulation on a hypersphere

    NASA Astrophysics Data System (ADS)

    Delville, A.; Pellenq, R. J.-M.; Caillol, J. M.

    1997-05-01

    We have used an exact expression of the Coulombic interactions derived on a hypersphere of an Euclidian space of dimension four to determine the swelling behavior of two infinite charged plates neutralized by exchangeable counterions. Monte Carlo simulations in the (N,V,T) ensemble allows for a derivation of short-ranged hard core repulsions and long-ranged electrostatic forces, which are the two components of the interionic forces in the context of the primitive model. Comparison with numerical results obtained by a classical Euclidian method illustrates the efficiency of the hyperspherical approach, especially at strong coupling between the charged particles, i.e., for divalent counterions and small plate separation.

  18. Charged chiral fermions from M5-branes

    NASA Astrophysics Data System (ADS)

    Lambert, Neil; Owen, Miles

    2018-04-01

    We study M5-branes wrapped on a multi-centred Taub-NUT space. Reducing to String Theory on the S 1 fibration leads to D4-branes intersecting with D6-branes. D-braneology shows that there are additional charged chiral fermions from the open strings which stretch between the D4-branes and D6-branes. From the M-theory point of view the appearance of these charged states is mysterious as the M5-branes are wrapped on a smooth manifold. In this paper we show how these states arise in the M5-brane worldvolume theory and argue that are governed by a WZWN-like model where the topological term is five-dimensional.

  19. Initial Results from the Floating Potential Measurement Unit aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Swenson, Charles; Thompson, Don; Barjatya, Aroh; Koontz, Steven L.; Schneider, Todd; Vaughn, Jason; Minow, Joseph; Craven, Paul; Coffey, Victoria; hide

    2007-01-01

    The Floating Potential Measurement Unit (FPMU) is a multi-probe package designed to measure the floating potential of the 1nternational Space Station (ISS) as well as the density and temperature of the local ionospheric plasma environment. The role oj the FPMU is to provide direct measurements of ISS spacecraft charging as continuing construction leads to dramatic changes in ISS size and configuration. FPMU data are used for refinement and validation of the ISS spacecraft charging models used to evaluate the severity and frequency of occurrence of ISS charging hazards. The FPMU data and the models are also used to evaluate the effectiveness of proposed hazard controls. The FPMU consists of four probes: a floating potential probe, two Langmuir probes. and a plasma impedance probe. These probes measure the floating potential of the ISS, plasma density, and electron temperature. Redundant measurements using different probes support data validation by inter-probe comparisons. The FPMU was installed by ISS crewmembers, during an ExtraVehicular Activity, on the starboard (Sl) truss of the ISS in early August 2006, when the ISS incorporated only one 160V US photovoltaic (PV) array module. The first data campaign began a few hours after installation and continued for over five days. Additional data campaigns were completed in 2007 after a second 160V US PV array module was added to the ISS. This paper discusses the general performance characteristics of the FPMU as integrated on ISS, the functional performance of each probe, the charging behavior of the ISS before and after the addition of a second 160V US PV array module, and initial results from model comparisons.

  20. The Origin of the Local 1/4-KeV X-Ray Flux in Both Charge Exhange and a Hot Bubble

    NASA Technical Reports Server (NTRS)

    Galeazzi, M.; Chiao, M.; Collier, M. R.; Cravens, T.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; McCammon, D.; Morgan, K.; hide

    2014-01-01

    The solar neighbourhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily absorbed 1/4-kiloelectronvolt X-rays coupled with the discovery that interstellar space within about a hundred parsecs of the Sun is almost completely devoid of cool absorbing gas, led to a picture of a 'local cavity' filled with X-ray-emitting hot gas, dubbed the local hot bubble. This model was recently challenged by suggestions that the emission could instead be readily produced within the Solar System by heavy solar-wind ions exchanging electrons with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the local existence of million-degree gas within the Galactic disk. Here we report observations showing that the total solar wind charge-exchange contribution is approximately 40 percent of the 1/4-keV flux in the Galactic plane. The fact that the measured flux is not dominated by charge exchange supports the notion of a million-degree hot bubble extending about a hundred parsecs from the Sun.

  1. The origin of the local 1/4-keV X-ray flux in both charge exchange and a hot bubble.

    PubMed

    Galeazzi, M; Chiao, M; Collier, M R; Cravens, T; Koutroumpa, D; Kuntz, K D; Lallement, R; Lepri, S T; McCammon, D; Morgan, K; Porter, F S; Robertson, I P; Snowden, S L; Thomas, N E; Uprety, Y; Ursino, E; Walsh, B M

    2014-08-14

    The solar neighbourhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily absorbed 1/4-kiloelectronvolt X-rays, coupled with the discovery that interstellar space within about a hundred parsecs of the Sun is almost completely devoid of cool absorbing gas, led to a picture of a 'local cavity' filled with X-ray-emitting hot gas, dubbed the local hot bubble. This model was recently challenged by suggestions that the emission could instead be readily produced within the Solar System by heavy solar-wind ions exchanging electrons with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the local existence of million-degree gas within the Galactic disk. Here we report observations showing that the total solar-wind charge-exchange contribution is approximately 40 per cent of the 1/4-keV flux in the Galactic plane. The fact that the measured flux is not dominated by charge exchange supports the notion of a million-degree hot bubble extending about a hundred parsecs from the Sun.

  2. Interstellar Chemistry Gets More Complex With New Charged-Molecule Discovery

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Astronomers using data from the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) have found the largest negatively-charged molecule yet seen in space. The discovery of the third negatively-charged molecule, called an anion, in less than a year and the size of the latest anion will force a drastic revision of theoretical models of interstellar chemistry, the astronomers say. Molecule formation Formation Process of Large, Negatively-Charged Molecule in Interstellar Space CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for page of graphics and detailed information "This discovery continues to add to the diversity and complexity that is already seen in the chemistry of interstellar space," said Anthony J. Remijan of the National Radio Astronomy Observatory (NRAO). "It also adds to the number of paths available for making the complex organic molecules and other large molecular species that may be precursors to life in the giant clouds from which stars and planets are formed," he added. Two teams of scientists found negatively-charged octatetraynyl, a chain of eight carbon atoms and one hydrogen atom, in the envelope of gas around an old, evolved star and in a cold, dark cloud of molecular gas. In both cases, the molecule had an extra electron, giving it a negative charge. About 130 neutral and about a dozen positively-charged molecules have been discovered in space, but the first negatively-charged molecule was not discovered until late last year. The largest previously-discovered negative ion found in space has six carbon atoms and one hydrogen atom. "Until recently, many theoretical models of how chemical reactions evolve in interstellar space have largely neglected the presence of anions. This can no longer be the case, and this means that there are many more ways to build large organic molecules in cosmic environments than have been explored," said Jan M. Hollis of NASA's Goddard Space Flight Center (GSFC). Ultraviolet light from stars can knock an electron off a molecule, creating a positively-charged ion. Astronomers had thought that molecules would not be able to retain an extra electron, and thus a negative charge, in interstellar space for a significant time. "That obviously is not the case," said Mike McCarthy of the Harvard-Smithsonian Center for Astrophysics. "Anions are surprisingly abundant in these regions." Remijan and his colleagues found the octatetraynyl anions in the envelope of the evolved giant star IRC +10 216, about 550 light-years from Earth in the constellation Leo. They found radio waves emitted at specific frequencies characteristic of the charged molecule by searching archival data from the GBT, the largest fully-steerable radio telescope in the world. Another team from the Harvard-Smithsonian Center for Astrophysics (CfA) found the same characteristic emission when they observed a cold cloud of molecular gas called TMC-1 in the constellation Taurus. These observations also were done with the GBT. In both cases, preceding laboratory experiments by the CfA team showed which radio frequencies actually are emitted by the molecule, and thus told the astronomers what to look for. "It is essential that likely interstellar molecule candidates are first studied in laboratory experiments so that the radio frequencies they can emit are known in advance of an astronomical observation," said Frank Lovas of the National Institute of Standards and Technology (NIST). Both teams announced their results in the July 20 edition of the Astrophysical Journal Letters. "With three negatively-charged molecules now found in a short period of time, and in very different environments, it appears that many more probably exist. We believe that we can discover more new species using very sensitive and advanced radio telescopes such as the GBT, once they have been characterized in the laboratory," said Sandra Bruenken of the CfA. "Further detailed studies of anions, including astronomical observations, laboratory studies, and theoretical calculations, will allow us to use them to reveal new information about the physical and chemical processes going on in interstellar space," said Martin Cordiner, of Queen's University in Belfast, Northern Ireland. "The GBT continues to take a leading role in discovering, identifying and mapping the distribution of the largest molecules ever found in astronomical environments and will continue to do so for the next several decades," said Phil Jewell of NRAO. In addition to Hollis, Lovas, Cordiner and Jewell, Remijan worked with Tom Millar of Queen's University in Belfast, Northern Ireland, and Andrew Markwick-Kemper of the University of Manchester in the UK. Bruenken worked with McCarthy, Harshal Gupta, Carl Gottlieb, and Patrick Thaddeus, all of the Harvard-Smithsonian Center for Astrophysics. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

  3. An Analysis of High-Power Radar TR-Limited with Very Short Recovery Time,

    DTIC Science & Technology

    1981-05-07

    field in the gap will continuously grow stronger, until the space charge field cancels the accelerating effect of 19 the high frequency field on the...weak in the middle. 29 .,.a1 ,-t *’:.--’ ’ - - Clearly the space charge field has a repelling effect on the secondary electrons emitted by electrode...homogeneous. Therefore, the bias value in the space charge field induces an effect on the kinetic state of the electronic dissipation process. This is small

  4. Validation of International Space Station Electrical Performance Model via On-orbit Telemetry

    NASA Technical Reports Server (NTRS)

    Jannette, Anthony G.; Hojnicki, Jeffrey S.; McKissock, David B.; Fincannon, James; Kerslake, Thomas W.; Rodriguez, Carlos D.

    2002-01-01

    The first U.S. power module on International Space Station (ISS) was activated in December 2000. Comprised of solar arrays, nickel-hydrogen (NiH2) batteries, and a direct current power management and distribution (PMAD) system, the electric power system (EPS) supplies power to housekeeping and user electrical loads. Modeling EPS performance is needed for several reasons, but primarily to assess near-term planned and off-nominal operations and because the EPS configuration changes over the life of the ISS. The System Power Analysis for Capability Evaluation (SPACE) computer code is used to assess the ISS EPS performance. This paper describes the process of validating the SPACE EPS model via ISS on-orbit telemetry. To accomplish this goal, telemetry was first used to correct assumptions and component models in SPACE. Then on-orbit data was directly input to SPACE to facilitate comparing model predictions to telemetry. It will be shown that SPACE accurately predicts on-orbit component and system performance. For example, battery state-of-charge was predicted to within 0.6 percentage points over a 0 to 100 percent scale and solar array current was predicted to within a root mean square (RMS) error of 5.1 Amps out of a typical maximum of 220 Amps. First, SPACE model predictions are compared to telemetry for the ISS EPS components: solar arrays, NiH2 batteries, and the PMAD system. Second, SPACE predictions for the overall performance of the ISS EPS are compared to telemetry and again demonstrate model accuracy.

  5. Novel Physical Model for DC Partial Discharge in Polymeric Insulators

    NASA Astrophysics Data System (ADS)

    Andersen, Allen; Dennison, J. R.

    The physics of DC partial discharge (DCPD) continues to pose a challenge to researchers. We present a new physically-motivated model of DCPD in amorphous polymers based on our dual-defect model of dielectric breakdown. The dual-defect model is an extension of standard static mean field theories, such as the Crine model, that describe avalanche breakdown of charge carriers trapped on uniformly distributed defect sites. It assumes the presence of both high-energy chemical defects and low-energy thermally-recoverable physical defects. We present our measurements of breakdown and DCPD for several common polymeric materials in the context of this model. Improved understanding of DCPD and how it relates to eventual dielectric breakdown is critical to the fields of spacecraft charging, high voltage DC power distribution, high density capacitors, and microelectronics. This work was supported by a NASA Space Technology Research Fellowship.

  6. Specification of ISS Plasma Environment Variability

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Neergaard, Linda F.; Bui, Them H.; Mikatarian, Ronald R.; Barsamian, H.; Koontz, Steven L.

    2004-01-01

    Quantifying spacecraft charging risks and associated hazards for the International Space Station (ISS) requires a plasma environment specification for the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IRI) model typically only provide long term (seasonal) mean Te and Ne values for the low Earth orbit environment. This paper describes a statistical analysis of historical ionospheric low Earth orbit plasma measurements from the AE-C, AE-D, and DE-2 satellites used to derive a model of deviations of observed data values from IRI-2001 estimates of Ne, Te parameters for each data point to provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output. Application of the deviation model with the IRI-2001 output yields a method for estimating extreme environments for the ISS spacecraft charging analysis.

  7. Charge state distribution and emission characteristics in a table top reflex discharge - Effect of ion confinement and electrons accelerated across the sheath

    DOE PAGES

    Kumar, Deepak; Englesbe, Alexander; Parman, Matthew; ...

    2015-11-05

    Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ~10 18mmore » –3 with a significant fraction >0.01 of fast primary electrons. As a result, the implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.« less

  8. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope ’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yifan; Apai, Dániel; Schneider, Glenn

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium . We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this processmore » that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam ) may also benefit from the extension of this model if similar systematic profiles are observed.« less

  9. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Apai, Dániel; Lew, Ben W. P.; Schneider, Glenn

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.

  10. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individualmore » micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.« less

  11. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  12. Studies of Surface Charging of Polymers by Indirect Triboelectrification

    NASA Astrophysics Data System (ADS)

    Mantovani, James; Calle, Carlos; Groop, Ellen; Buehler, Martin

    2001-03-01

    Charge is known to develop on the surface of an insulating polymer by frictional charging through direct physical contact with another material. We will present results of recent triboelectrification studies of polymer surfaces that utilized an indirect method of frictional charging. This method first involves placing a grounded thin metal foil in stationary contact over the polymer surface. The exposed metal foil is then rubbed with the surface of the material that generates the triboelectric charge. Data is presented for five types of polymers: fiberglass/epoxy, polycarbonate (Lexan), polytetraflouroethylene (Teflon), Rulon J, and polymethylmethacrylate (PMMA, Lucite). The amount of charge that develops on an insulator's surface is measured using the MECA Electrometer, which was developed jointly by NASA Kennedy Space Center and the Jet Propulsion Laboratory to study the electrostatic properties of soil on the surface of Mars. Even though the insulator's surface is electrically shielded from the rubbing material by the grounded metal foil, charge measurements obtained by the MECA Electrometer after the metal foil is separated from the insulator's surface reveal that the insulator's surface does accumulate charge by indirect frictional charging. A possible explanation of the observations will be presented based on a simple contact barrier model.

  13. Dichromatic dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yang; Su, Meng; Zhao, Yue

    2013-02-01

    Both the robust INTEGRAL 511 keV gamma-ray line and the recent tentative hint of the 135 GeV gamma-ray line from Fermi-LAT have similar signal morphologies, and may be produced from the same dark matter annihilation. Motivated by this observation, we construct a dark matter model to explain both signals and to accommodate the two required annihilation cross sections that are different by more than six orders of magnitude. In our model, to generate the low-energy positrons for INTEGRAL, dark matter particles annihilate into a complex scalar that couples to photon via a charge-radius operator. The complex scalar contains an excitedmore » state decaying into the ground state plus an off-shell photon to generate a pair of positron and electron. Two charged particles with non-degenerate masses are necessary for generating this charge-radius operator. One charged particle is predicted to be long-lived and have a mass around 3.8 TeV to explain the dark matter thermal relic abundance from its late decay. The other charged particle is predicted to have a mass below 1 TeV given the ratio of the two signal cross sections. The 14 TeV LHC will concretely test the main parameter space of this lighter charged particle.« less

  14. Understanding the Thickness-Dependent Performance of Organic Bulk Heterojunction Solar Cells: The Influence of Mobility, Lifetime, and Space Charge.

    PubMed

    Kirchartz, Thomas; Agostinelli, Tiziano; Campoy-Quiles, Mariano; Gong, Wei; Nelson, Jenny

    2012-12-06

    We investigate the reasons for the dependence of photovoltaic performance on the absorber thickness of organic solar cells using experiments and drift-diffusion simulations. The main trend in photocurrent and fill factor versus thickness is determined by mobility and lifetime of the charge carriers. In addition, space charge becomes more and more important the thicker the device is because it creates field free regions with low collection efficiency. The two main sources of space-charge effects are doping and asymmetric mobilities. We show that for our experimental results on Si-PCPDTBT:PC71BM (poly[(4,40-bis(2-ethylhexyl)dithieno[3,2-b:20,30-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,50-diyl]:[6,6]-phenyl C71-butyric acid methyl ester) solar cells, the influence of doping is most likely the dominant influence on the space charge and has an important effect on the thickness dependence of performance.

  15. Longitudinal bunch shaping of picosecond high-charge MeV electron beams

    DOE PAGES

    Beaudoin, B. L.; Thangaraj, J. C. T.; Edstrom, Jr., D.; ...

    2016-10-20

    With ever increasing demands for intensities in modern accelerators, the understanding of space-charge effects becomes crucial. Herein are presented measurements of optically shaped picosecond-long electron beams in a superconducting L-band linac over a wide range of charges, from 0.2 nC to 3.4 nC. At low charges, the shape of the electron beam is preserved, while at higher charge densities, modulations on the beam convert to energy modulations. Here, energy profile measurements using a spectrometer and time profile measurements using a streak camera reveal the dynamics of longitudinal space-charge on MeV-scale electron beams.

  16. Over-injection and self-oscillations in an electron vacuum diode

    NASA Astrophysics Data System (ADS)

    Leopold, J. G.; Siman-Tov, M.; Goldman, A.; Krasik, Ya. E.

    2017-07-01

    We demonstrate a practical means by which one can inject more than the space-charge limiting current into a vacuum diode. This over-injection causes self-oscillations of the space-charge resulting in an electron beam current modulation at a fixed frequency, a reaction of the system to the Coulomb repulsive forces due to charge accumulation.

  17. Single event upset vulnerability of selected 4K and 16K CMOS static RAM's

    NASA Technical Reports Server (NTRS)

    Kolasinski, W. A.; Koga, R.; Blake, J. B.; Brucker, G.; Pandya, P.; Petersen, E.; Price, W.

    1982-01-01

    Upset thresholds for bulk CMOS and CMOS/SOS RAMS were deduced after bombardment of the devices with 140 MeV Kr, 160 MeV Ar, and 33 MeV O beams in a cyclotron. The trials were performed to test prototype devices intended for space applications, to relate feature size to the critical upset charge, and to check the validity of computer simulation models. The tests were run on 4 and 1 K memory cells with 6 transistors, in either hardened or unhardened configurations. The upset cross sections were calculated to determine the critical charge for upset from the soft errors observed in the irradiated cells. Computer simulations of the critical charge were found to deviate from the experimentally observed variation of the critical charge as the square of the feature size. Modeled values of series resistors decoupling the inverter pairs of memory cells showed that above some minimum resistance value a small increase in resistance produces a large increase in the critical charge, which the experimental data showed to be of questionable validity unless the value is made dependent on the maximum allowed read-write time.

  18. Modeling electron fractionalization with unconventional Fock spaces.

    PubMed

    Cobanera, Emilio

    2017-08-02

    It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.

  19. Particle orbits in model current sheet with a nonzero B(y) component

    NASA Technical Reports Server (NTRS)

    Zhu, Zhongwei; Parks, George

    1993-01-01

    The problem of charged particle motions in magnetotaillike model current sheets is revisited with the inclusion of a nonzero dawn-dusk magnetic field component. Three cases are examined considering both trapped and escaped orbits. The results show that a nonzero B(y) component disturbs the particle orbits by destroying orbit symmetry in the phase space about the z = 0 plane. It also changes the bounce frequency of particle orbits. The presence of B(y) thus modifies the Speiser orbits, particularly near the ejection phase. The process of ejected particle such as ejection direction, ejection velocity, and pitch angles are shown to depend on the sign of the charge.

  20. Dark cosmic rays

    DOE PAGES

    Hu, Ping-Kai; Kusenko, Alexander; Takhistov, Volodymyr

    2017-02-22

    If dark matter particles have an electric charge, as in models of millicharged dark matter, such particles should be accelerated in the same astrophysical accelerators that produce ordinary cosmic rays, and their spectra should have a predictable rigidity dependence. Depending on the charge, the resulting “dark cosmic rays” can be detected as muon-like or neutrino-like events in Super-Kamiokande, IceCube, and other detectors. We present new limits and propose several new analyses, in particular, for the Super-Kamiokande experiment, which can probe a previously unexplored portion of the millicharged dark matter parameter space. Here, most of our results are fairly general andmore » apply to a broad class of dark matter models.« less

  1. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics.

    PubMed

    Buschmann, M D; Grodzinsky, A J

    1995-05-01

    Measured values of the swelling pressure of charged proteoglycans (PG) in solution (Williams RPW, and Comper WD; Biophysical Chemistry 36:223, 1990) and the ionic strength dependence of the equilibrium modulus of PG-rich articular cartilage (Eisenberg SR, and Grodzinsky AJ; J Orthop Res 3: 148, 1985) are compared to the predictions of two models. Each model is a representation of electrostatic forces arising from charge present on spatially fixed macromolecules and spatially mobile micro-ions. The first is a macroscopic continuum model based on Donnan equilibrium that includes no molecular-level structure and assumes that the electrical potential is spatially invariant within the polyelectrolyte medium (i.e. zero electric field). The second model is based on a microstructural, molecular-level solution of the Poisson-Boltzmann (PB) equation within a unit cell containing a charged glycosaminoglycan (GAG) molecule and its surrounding atmosphere of mobile ions. This latter approach accounts for the space-varying electrical potential and electrical field between the GAG constituents of the PG. In computations involving no adjustable parameters, the PB-cell model agrees with the measured pressure of PG solutions to within experimental error (10%), whereas the ideal Donnan model overestimates the pressure by up to 3-fold. In computations involving one adjustable parameter for each model, the PB-cell model predicts the ionic strength dependence of the equilibrium modulus of articular cartilage. Near physiological ionic strength, the Donnan model overpredicts the modulus data by 2-fold, but the two models coincide for low ionic strengths (C0 < 0.025M) where the spatially invariant Donnan potential is a closer approximation to the PB potential distribution. The PB-cell model result indicates that electrostatic forces between adjacent GAGs predominate in determining the swelling pressure of PG in the concentration range found in articular cartilage (20-80 mg/ml). The PB-cell model is also consistent with data (Eisenberg and Grodzinsky, 1985, Lai WM, Hou JS, and Mow VC; J Biomech Eng 113: 245, 1991) showing that these electrostatic forces account for approximately 1/2 (290kPa) the equilibrium modulus of cartilage at physiological ionic strength while absolute swelling pressures may be as low as approximately 25-100kPa. This important property of electrostatic repulsion between GAGs that are highly charged but spaced a few Debye lengths apart allows cartilage to resist compression (high modulus) without generating excessive intratissue swelling pressures.

  2. Improving Charging-Breeding Simulations with Space-Charge Effects

    NASA Astrophysics Data System (ADS)

    Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René

    2016-09-01

    Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.

  3. Particle accelerator employing transient space charge potentials

    DOEpatents

    Post, Richard F.

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  4. The Situational Awareness Sensor Suite for the ISS (SASSI): A Mission Concept to Investigate ISS Charging and Wake Effects

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Minow, J. I.; Coffey, V. N.; Gilchrist, Brian E.; Hoegy, W. R.

    2014-01-01

    The complex interaction between the International Space Station (ISS) and the surrounding plasma environment often generates unpredictable environmental situations that affect operations. Examples of affected systems include extravehicular activity (EVA) safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, especially those driven by space weather, there is no substitute for real-time monitoring. Space environment data collected in real-time (or near-real time) can be used operationally for both real-time alarms and data sources in assimilative models to predict environmental conditions important for operational planning. Fixed space weather instruments mounted to the ISS can be used for monitoring the ambient space environment, but knowing whether or not (or to what extent) the ISS affects the measurements themselves requires adequate space situational awareness (SSA) local to the ISS. This paper presents a mission concept to use a suite of plasma instruments mounted at the end of the ISS robotic arm to systematically explore the interaction between the Space Station structure and its surrounding environment. The Situational Awareness Sensor Suite for the ISS (SASSI) would be deployed and operated on the ISS Express Logistics Carrier (ELC) for long-term "survey mode" observations and the Space Station Remote Manipulator System (SSRMS) for short-term "campaign mode" observations. Specific areas of investigation include: 1) ISS frame and surface charging during perturbations of the local ISS space environment, 2) calibration of the ISS Floating Point Measurement Unit (FPMU), 3) long baseline measurements of ambient ionospheric electric potential structures, 4) electromotive force-induced currents within large structures moving through a magnetized plasma, and 5) wake-induced ion waves in both electrostatic (i.e. particles) and electromagnetic modes. SASSI will advance the understanding of plasma-boundary interaction phenomena, demonstrate a suite a sensors acting in concert to provide effective SSA, and validate and/or calibrate existing ISS space environment instruments and models.

  5. Numerical simulations of the charged-particle flow dynamics for sources with a curved emission surface

    NASA Astrophysics Data System (ADS)

    Altsybeyev, V. V.

    2016-12-01

    The implementation of numerical methods for studying the dynamics of particle flows produced by pulsed sources is discussed. A particle tracking method with so-called gun iteration for simulations of beam dynamics is used. For the space charge limited emission problem, we suggest a Gauss law emission model for precise current-density calculation in the case of a curvilinear emitter. The results of numerical simulations of particle-flow formation for cylindrical bipolar diode and for diode with elliptical emitter are presented.

  6. Emission current from a single micropoint of explosive emission cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun

    Explosive emission cathodes (EECs) are widely used due to their large current. There has been much research on the explosive electron emission mechanism demonstrating that a current density of 10{sup 8}–10{sup 9 }A/cm{sup 2} is necessary for a micropoint to explode in several nanoseconds and the micropoint size is in micron-scale according to the observation of the cathode surface. This paper, however, makes an effort to research the current density and the micropoint size in another way which considers the space charge screening effect. Our model demonstrates that the relativistic effect is insignificant for the micropoint emission due to the smallmore » size of the micropoint and uncovers that the micron-scale size is an intrinsic demand for the micropoint to reach a space charge limited current density of 10{sup 8}–10{sup 9 }A/cm{sup 2}. Meanwhile, our analysis shows that as the voltage increases, the micropoint emission will turn from a field limited state to a space charge limited state, which makes the steady-state micropoint current density independent of the cathode work function and much less dependent on the electric field and the field enhancement factor than that predicted by the Fowler-Nordheim formula.« less

  7. Active Radiation Detectors for Use in Space Beyond Low Earth Orbit: Spatial and Energy Resolution Requirements and Methods for Heavy Ion Charge Classification

    NASA Astrophysics Data System (ADS)

    McBeth, Rafe A.

    Space radiation exposure to astronauts will need to be carefully monitored on future missions beyond low earth orbit. NASA has proposed an updated radiation risk framework that takes into account a significant amount of radiobiological and heavy ion track structure information. These models require active radiation detection systems to measure the energy and ion charge Z. However, current radiation detection systems cannot meet these demands. The aim of this study was to investigate several topics that will help next generation detection systems meet the NASA objectives. Specifically, this work investigates the required spatial resolution to avoid coincident events in a detector, the effects of energy straggling and conversion of dose from silicon to water, and methods for ion identification (Z) using machine learning. The main results of this dissertation are as follows: 1. Spatial resolution on the order of 0.1 cm is required for active space radiation detectors to have high confidence in identifying individual particles, i.e., to eliminate coincident events. 2. Energy resolution of a detector system will be limited by energy straggling effects and the conversion of dose in silicon to dose in biological tissue (water). 3. Machine learning methods show strong promise for identification of ion charge (Z) with simple detector designs.

  8. Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices

    NASA Astrophysics Data System (ADS)

    Park, Nayoung; Kwon, Yongwoo; Choi, Jaeho; Jang, Ho Won; Cha, Pil-Ryung

    2018-04-01

    We demonstrate thermally assisted hopping (TAH) as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC) model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.

  9. I-V-T analysis of radiation damage in high efficiency Si solar cells

    NASA Technical Reports Server (NTRS)

    Banerjee, S.; Anderson, W. A.; Rao, B. B.

    1985-01-01

    A detailed analysis of current-voltage characteristics of N(+)-P/P solar cells indicate that there is a combination of different mechanisms which results in an enhancement in the dark current and in turn deteriorates the photovoltaic performance of the solar cells after 1 MeV e(-) irradiation. The increase in the dark current is due to three effects, i.e., bulk recombination, space charge recombination by deep traps and space charge recombination through shallow traps. It is shown that the increase in bulk recombination current is about 2 to 3 orders of magnitude whereas space charge recombination current due to shallow traps increases only by an order or so and no space charge recombination through deep traps was observed after irradiation. Thus, in order to improve the radiation hardness of these devices, bulk properties should be preserved.

  10. Geospace monitoring for space weather research and operation

    NASA Astrophysics Data System (ADS)

    Nagatsuma, Tsutomu

    2017-10-01

    Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  11. Image charge models for accurate construction of the electrostatic self-energy of 3D layered nanostructure devices.

    PubMed

    Barker, John R; Martinez, Antonio

    2018-04-04

    Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.

  12. Image charge models for accurate construction of the electrostatic self-energy of 3D layered nanostructure devices

    NASA Astrophysics Data System (ADS)

    Barker, John R.; Martinez, Antonio

    2018-04-01

    Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.

  13. Assessment and Control of Spacecraft Charging Risks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Edeen, Marybeth; Spetch, William; Dalton, Penni; Keening, Thomas

    2003-01-01

    Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on the ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies

  14. Assessment and Control of International Space Station Spacecraft Charging Risks

    NASA Astrophysics Data System (ADS)

    Koontz, S.; Edeen, M.; Spetch, W.; Dalton, P.; Keeping, T.; Minow, J.

    2003-12-01

    Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging, albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies.

  15. Calculation of the electric field resulting from human body rotation in a magnetic field

    NASA Astrophysics Data System (ADS)

    Cobos Sánchez, Clemente; Glover, Paul; Power, Henry; Bowtell, Richard

    2012-08-01

    A number of recent studies have shown that the electric field and current density induced in the human body by movement in and around magnetic resonance imaging installations can exceed regulatory levels. Although it is possible to measure the induced electric fields at the surface of the body, it is usually more convenient to use numerical models to predict likely exposure under well-defined movement conditions. Whilst the accuracy of these models is not in doubt, this paper shows that modelling of particular rotational movements should be treated with care. In particular, we show that v  ×  B rather than -(v  ·  ∇)A should be used as the driving term in potential-based modelling of induced fields. Although for translational motion the two driving terms are equivalent, specific examples of rotational rigid-body motion are given where incorrect results are obtained when -(v  ·  ∇)A is employed. In addition, we show that it is important to take into account the space charge which can be generated by rotations and we also consider particular cases where neglecting the space charge generates erroneous results. Along with analytic calculations based on simple models, boundary-element-based numerical calculations are used to illustrate these findings.

  16. A holographic model of the Kondo effect

    NASA Astrophysics Data System (ADS)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Wu, Jackson

    2013-12-01

    We propose a model of the Kondo effect based on the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, also known as holography. The Kondo effect is the screening of a magnetic impurity coupled anti-ferromagnetically to a bath of conduction electrons at low temperatures. In a (1+1)-dimensional CFT description, the Kondo effect is a renormalization group flow triggered by a marginally relevant (0+1)-dimensional operator between two fixed points with the same Kac-Moody current algebra. In the large- N limit, with spin SU( N) and charge U(1) symmetries, the Kondo effect appears as a (0+1)-dimensional second-order mean-field transition in which the U(1) charge symmetry is spontaneously broken. Our holographic model, which combines the CFT and large- N descriptions, is a Chern-Simons gauge field in (2+1)-dimensional AdS space, AdS 3, dual to the Kac-Moody current, coupled to a holographic superconductor along an AdS 2 sub-space. Our model exhibits several characteristic features of the Kondo effect, including a dynamically generated scale, a resistivity with power-law behavior in temperature at low temperatures, and a spectral flow producing a phase shift. Our holographic Kondo model may be useful for studying many open problems involving impurities, including for example the Kondo lattice problem.

  17. Heavy ion charge-state distribution effects on energy loss in plasmas.

    PubMed

    Barriga-Carrasco, Manuel D

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its mean charge state [Q]. This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating [Q] inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Q(eff), which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Q(eff) is greater than the mean charge state [Q], which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  18. Particle-in-cell simulations of Hall plasma thrusters

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  19. Probing lepton flavor violation signal via γ γ →l¯ilj in the left-right twin Higgs model at the ILC

    NASA Astrophysics Data System (ADS)

    Liu, Guo-Li; Wang, Fei; Xie, Kuan; Guo, Xiao-Fei

    2017-08-01

    To explain the small neutrino masses, heavy Majorana neutrinos are introduced in the left-right twin Higgs model. The heavy neutrinos—together with the charged scalars and the heavy gauge bosons—may contribute large mixings between the neutrinos and the charged leptons, which may induce some distinct lepton-flavor-violating processes. We check ℓ¯iℓj (i ,j =e ,μ ,τ ,i ≠j ) production in γ γ collisions in the left-right twin Higgs model, and find that the production rates may be large in some specific parameter space. In optimal cases, it is even possible to detect them with reasonable kinematical cuts. We also show that these collisions can effectively constrain the model parameters—such as the Higgs vacuum expectation value, the right-handed neutrino mass, etc.—and may serve as a sensitive probe of this new physics model.

  20. The End of Free Space

    ERIC Educational Resources Information Center

    Carlson, Scott

    2012-01-01

    The author reports on the reigning economic calculus that helps to drive constant expansion and poor utilization of space on many campuses. The author states that colleges could charge for utilities, which might encourage departments to save energy. Most American colleges do not charge for space--in part because doing so would raise the hackles of…

Top