Sample records for space communications program

  1. Communications

    NASA Technical Reports Server (NTRS)

    Stouffer, Donald D.

    1990-01-01

    Communication in its many forms is a critical component for an effective Space Grant Program. Good communication is needed within individual Space Grant College/Consortia, for example between consortium affiliates and the consortium program office. Effective communication between the several programs, NASA Headquarters, and NASA field centers also is required. Further, communication among the above program elements, industry, local and state government, and the public also are necessary for meeting program objectives.

  2. The Politics of Canadian Space Communication Programs.

    ERIC Educational Resources Information Center

    Singh, Indu B.; McDaniel, Drew O.

    In 1968, the Science Council of Canada recommended that Canada focus its scientific and technological effort on the creation of major programs designed to help solve some of the country's social and economic problems and, specifically, that a space program be initiated. The Canadian decision to become involved in space communication activities was…

  3. Space station interior noise analysis program

    NASA Technical Reports Server (NTRS)

    Stusnick, E.; Burn, M.

    1987-01-01

    Documentation is provided for a microcomputer program which was developed to evaluate the effect of the vibroacoustic environment on speech communication inside a space station. The program, entitled Space Station Interior Noise Analysis Program (SSINAP), combines a Statistical Energy Analysis (SEA) prediction of sound and vibration levels within the space station with a speech intelligibility model based on the Modulation Transfer Function and the Speech Transmission Index (MTF/STI). The SEA model provides an effective analysis tool for predicting the acoustic environment based on proposed space station design. The MTF/STI model provides a method for evaluating speech communication in the relatively reverberant and potentially noisy environments that are likely to occur in space stations. The combinations of these two models provides a powerful analysis tool for optimizing the acoustic design of space stations from the point of view of speech communications. The mathematical algorithms used in SSINAP are presented to implement the SEA and MTF/STI models. An appendix provides an explanation of the operation of the program along with details of the program structure and code.

  4. Electronics systems test laboratory testing of shuttle communications systems

    NASA Technical Reports Server (NTRS)

    Stoker, C. J.; Bromley, L. K.

    1985-01-01

    Shuttle communications and tracking systems space to space and space to ground compatibility and performance evaluations are conducted in the NASA Johnson Space Center Electronics Systems Test Laboratory (ESTL). This evaluation is accomplished through systems verification/certification tests using orbiter communications hardware in conjunction with other shuttle communications and tracking external elements to evaluate end to end system compatibility and to verify/certify that overall system performance meets program requirements before manned flight usage. In this role, the ESTL serves as a multielement major ground test facility. The ESTL capability and program concept are discussed. The system test philosophy for the complex communications channels is described in terms of the major phases. Results of space to space and space to ground systems tests are presented. Several examples of the ESTL's unique capabilities to locate and help resolve potential problems are discussed in detail.

  5. Free-Space Optical Communications Program at JPL

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1999-01-01

    Conceptual design of a multi-functional optical instrument is underway for the X2000-Second Delivery Program. The transceiver will perform both free-space optical-communication and science imaging by sharing a common 10-cm aperture telescope.

  6. Medium Brigade 2003: Can Space-Based Communications Ensure Information Dominance?

    DTIC Science & Technology

    2000-01-01

    MEDIUM BRIGADE 2003: CAN SPACE-BASED COMMUNICATIONS ENSURE INFORMATION DOMINANCE ? A thesis presented to the Faculty of the U.S. Army Command and...Medium Brigade 2003: Can Space-Based Communications Ensure Information Dominance ? Unclassified 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK...Space-Based Communications Ensure Information Dominance ? Approved by: _____________________________________, Thesis Committee Chairman LTC Heather

  7. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    NASA Technical Reports Server (NTRS)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  8. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    NASA Astrophysics Data System (ADS)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-09-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  9. Re-engineering NASA's space communications to remain viable in a constrained fiscal environment

    NASA Astrophysics Data System (ADS)

    Hornstein, Rhoda Shaller; Hei, Donald J., Jr.; Kelly, Angelita C.; Lightfoot, Patricia C.; Bell, Holland T.; Cureton-Snead, Izeller E.; Hurd, William J.; Scales, Charles H.

    1994-11-01

    Along with the Red and Blue Teams commissioned by the NASA Administrator in 1992, NASA's Associate Administrator for Space Communications commissioned a Blue Team to review the Office of Space Communications (Code O) Core Program and determine how the program could be conducted faster, better, and cheaper. Since there was no corresponding Red Team for the Code O Blue Team, the Blue Team assumed a Red Team independent attitude and challenged the status quo, including current work processes, functional distinctions, interfaces, and information flow, as well as traditional management and system development practices. The Blue Team's unconstrained, non-parochial, and imaginative look at NASA's space communications program produced a simplified representation of the space communications infrastructure that transcends organizational and functional boundaries, in addition to existing systems and facilities. Further, the Blue Team adapted the 'faster, better, cheaper' charter to be relevant to the multi-mission, continuous nature of the space communications program and to serve as a gauge for improving customer services concurrent with achieving more efficient operations and infrastructure life cycle economies. This simplified representation, together with the adapted metrics, offers a future view and process model for reengineering NASA's space communications to remain viable in a constrained fiscal environment. Code O remains firm in its commitment to improve productivity, effectiveness, and efficiency. In October 1992, the Associate Administrator reconstituted the Blue Team as the Code O Success Team (COST) to serve as a catalyst for change. In this paper, the COST presents the chronicle and significance of the simplified representation and adapted metrics, and their application during the FY 1993-1994 activities.

  10. Re-engineering NASA's space communications to remain viable in a constrained fiscal environment

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda Shaller; Hei, Donald J., Jr.; Kelly, Angelita C.; Lightfoot, Patricia C.; Bell, Holland T.; Cureton-Snead, Izeller E.; Hurd, William J.; Scales, Charles H.

    1994-01-01

    Along with the Red and Blue Teams commissioned by the NASA Administrator in 1992, NASA's Associate Administrator for Space Communications commissioned a Blue Team to review the Office of Space Communications (Code O) Core Program and determine how the program could be conducted faster, better, and cheaper. Since there was no corresponding Red Team for the Code O Blue Team, the Blue Team assumed a Red Team independent attitude and challenged the status quo, including current work processes, functional distinctions, interfaces, and information flow, as well as traditional management and system development practices. The Blue Team's unconstrained, non-parochial, and imaginative look at NASA's space communications program produced a simplified representation of the space communications infrastructure that transcends organizational and functional boundaries, in addition to existing systems and facilities. Further, the Blue Team adapted the 'faster, better, cheaper' charter to be relevant to the multi-mission, continuous nature of the space communications program and to serve as a gauge for improving customer services concurrent with achieving more efficient operations and infrastructure life cycle economies. This simplified representation, together with the adapted metrics, offers a future view and process model for reengineering NASA's space communications to remain viable in a constrained fiscal environment. Code O remains firm in its commitment to improve productivity, effectiveness, and efficiency. In October 1992, the Associate Administrator reconstituted the Blue Team as the Code O Success Team (COST) to serve as a catalyst for change. In this paper, the COST presents the chronicle and significance of the simplified representation and adapted metrics, and their application during the FY 1993-1994 activities.

  11. The Space Communications Protocol Standards Program

    NASA Technical Reports Server (NTRS)

    Jeffries, Alan; Hooke, Adrian J.

    1994-01-01

    In the fall of 1992 NASA and the Department of Defense chartered a technical team to explore the possibility of developing a common set of space data communications standards for potential dual-use across the U.S. national space mission support infrastructure. The team focused on the data communications needs of those activities associated with on-lined control of civil and military aircraft. A two-pronged approach was adopted: a top-down survey of representative civil and military space data communications requirements was conducted; and a bottom-up analysis of available standard data communications protocols was performed. A striking intersection of civil and military space mission requirements emerged, and an equally striking consensus on the approach towards joint civil and military space protocol development was reached. The team concluded that wide segments of the U.S. civil and military space communities have common needs for: (1) an efficient file transfer protocol; (2) various flavors of underlying data transport service; (3) an optional data protection mechanism to assure end-to-end security of message exchange; and (4) an efficient internetworking protocol. These recommendations led to initiating a program to develop a suite of protocols based on these findings. This paper describes the current status of this program.

  12. Partnering to Change the Way NASA and the Nation Communicate Through Space

    NASA Technical Reports Server (NTRS)

    Vrotsos, Pete A.; Budinger, James M.; Bhasin, Kul; Ponchak, Denise S.

    2000-01-01

    For at least 20 years, the Space Communications Program at NASA Glenn Research Center (GRC) has focused on enhancing the capability and competitiveness of the U.S. commercial communications satellite industry. GRC has partnered with the industry on the development of enabling technologies to help maintain U.S. preeminence in the worldwide communications satellite marketplace. The Advanced Communications Technology Satellite (ACTS) has been the most significant space communications technology endeavor ever performed at GRC, and the centerpiece of GRC's communication technology program for the last decade. Under new sponsorship from NASA's Human Exploration and Development of Space Enterprise, GRC has transitioned the focus and direction of its program, from commercial relevance to NASA mission relevance. Instead of one major experimental spacecraft and one headquarters sponsor, GRC is now exploring opportunities for all of NASA's Enterprises to benefit from advances in space communications technologies, and accomplish their missions through the use of existing and emerging commercially provided services. A growing vision within NASA is to leverage the best commercial standards, technologies, and services as a starting point to satisfy NASA's unique needs. GRC's heritage of industry partnerships is closely aligned with this vision. NASA intends to leverage the explosive growth of the telecommunications industry through its impressive technology advancements and potential new commercial satellite systems. GRC's partnerships with the industry, academia, and other government agencies will directly support all four NASA's future mission needs, while advancing the state of the art of commercial practice. GRC now conducts applied research and develops and demonstrates advanced communications and network technologies in support of all four NASA Enterprises (Human Exploration and Development of Space, Space Science, Earth Science, and Aero-Space Technologies).

  13. Developing Tools and Techniques to Increase Communication Effectiveness

    NASA Technical Reports Server (NTRS)

    Hayes, Linda A.; Peterson, Doug

    1997-01-01

    The Public Affairs Office (PAO) of the Johnson Space Center (JSC) is responsible for communicating current JSC Space Program activities as well as goals and objectives to the American Public. As part of the 1996 Strategic Communications Plan, a review of PAO' s current communication procedures was conducted. The 1996 Summer Faculty Fellow performed research activities to support this effort by reviewing current research concerning NASA/JSC's customers' perceptions and interests, developing communications tools which enable PAO to more effectively inform JSC customers about the Space Program, and proposing a process for developing and using consistent messages throughout PAO. Note that this research does not attempt to change or influence customer perceptions or interests but, instead, incorporates current customer interests into PAO's communication process.

  14. European space programme

    NASA Astrophysics Data System (ADS)

    Luton, J.-M.

    1992-02-01

    Successful European Space Agency (ESA) programs include the Ariane launcher development, the Meteosat meteorological satellites and the Intelsat 6, ECS (European Communications Satellite) series of communications satellites. The ESA's policy of placing contracts with industrial companies in its 13 member countries has contributed to the strategic development of European high technology in the world market. The ESA's long-term programs, in addition to the Ariane launcher and Columbus/Hermes space-station/spaceplane programs, include participation in the International Space Station program, the Data Relay Satellite system and a variety of space applications programs. Two high-performance satellites to be placed in polar orbits will contribute to European environmental and climate variation studies and, together with the Polar Platform sector of the Columbus program, will drive the establishment and development of new institutions, industrial structures and infrastructure.

  15. A systems engineering initiative for NASA's space communications

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Hei, Donald J., Jr.; Kelly, Angelita C.; Lightfoot, Patricia C.; Bell, Holland T.; Cureton-Snead, Izeller E.; Hurd, William J.; Scales, Charles H.

    1993-01-01

    In addition to but separate from the Red and Blue Teams commissioned by the NASA Administrator, NASA's Associate Administrator for Space Communications commissioned a Blue Team to review the Office of Space Communications (Code O) Core Program and determine how the program could be conducted faster, better, and cheaper, without compromising safety. Since there was no corresponding Red Team for the Code O Blue Team, the Blue Team assumed a Red Team independent attitude and challenged the status quo. The Blue Team process and results are summarized. The Associate Administrator for Space Communications subsequently convened a special management session to discuss the significance and implications of the Blue Team's report and to lay the groundwork and teamwork for the next steps, including the transition from engineering systems to systems engineering. The methodology and progress toward realizing the Code O Family vision and accomplishing the systems engineering initiative for NASA's space communications are presented.

  16. Advanced Optical Technologies in NASA's Space Communication Program: Status, Challenges, and Future Plans

    NASA Technical Reports Server (NTRS)

    Pouch, John

    2004-01-01

    A goal of the NASA Space Communications Project is to enable broad coverage for high-data-rate delivery to the users by means of ground, air, and space-based assets. The NASA Enterprise need will be reviewed. A number of optical space communications technologies being developed by NASA will be described, and the prospective applications will be discussed.

  17. 77 FR 6949 - Tracking and Data Relay Satellite System (TDRSS) Rates for Non-U.S. Government Customers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... Space Telescope. A principal advantage of TDRSS is providing communications services, which previously... instead be placed on the Space Communications and Navigation Program (SCaN) Web site and updated... satellites and ground stations used by NASA for space communications near the Earth. The system was designed...

  18. The Indian Space Program

    NASA Technical Reports Server (NTRS)

    Talapatra, Dipak C.

    1993-01-01

    The Indian Space program aimed at providing operation space services in communications and remote sensing and using state-of-the-art space technologies is reviewed. Emphasis is placed on the development and operation of satellites and launch vehicles for providing these space services.

  19. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmel, James

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speedmore » and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.« less

  20. Ultramicrowave communications system, phase 3

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The ultramicrowave communications system program investigated the feasibility of a solid state system that meets the projected space to space requirements, while using the advantages of the 100 to 200 GHz band. The program successfully demonstrated a laboratory model of a high frequency communications system operating between 100 to 200 GHz. In the process, vendor claims for performance specifications of discrete components were evaluated, and a window was provided into system design and integration problems.

  1. NASA's Use of Commercial Satellite Systems: Concepts and Challenges

    NASA Technical Reports Server (NTRS)

    Budinger, James M.

    1998-01-01

    Lewis Research Center's Space Communications Program has a responsibility to investigate, plan for, and demonstrate how NASA Enterprises can use advanced commercial communications services and technologies to satisfy their missions' space communications needs. This presentation looks at the features and challenges of alternative hardware system architecture concepts for providing specific categories of communications services.

  2. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) in the following areas: space communications, radio navigation, radio science, and ground-based radio and radar astronomy. This document also reports on the activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). The TDA Office also performs work funded by another NASA program office through and with the cooperation of OSC. This is the Orbital Debris Radar Program with the Office of Space Systems Development.

  3. Orbital ATK CRS-7 Launch Coverage

    NASA Image and Video Library

    2017-04-18

    NASA Television conducted a live broadcast from Kennedy Space Center as Orbital ATK’s CRS-7 lifted off atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Orbital ATK’s Cygnus spacecraft carried more than 7,600 pounds of science research, crew supplies, and hardware to the orbiting laboratory as Orbital ATK’s seventh commercial resupply services mission to the International Space Station. Launch commentary conducted by: -George Diller, NASA Communications Special guests included: -Frank DeMauro, VP & GM, Advanced Programs Division, Space Systems Group, Orbital ATK -Tori McLendon, NASA Communications -Robert Cabana, Kennedy Space Center Director -Tara Ruttley, Associate Program Scientist, International Space Station -Vern Thorp, Program Manager for Commercial Missions, United Launch Alliance

  4. NASA's Optical Communications Program for 2015 and Beyond

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M.

    2015-01-01

    NASA's Space Communications and Navigation (SCaN) program at NASA headquarters is pursuing a vibrant and wide-ranging optical communications program for further planetary and near-Earth missions following the spectacular success of NASA's Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft orbiting the moon in 2013. This invited paper will discuss NASA's new laser communication missions, key scenarios and details, and the plans to infuse this new technology into NASA's existing communications networks.

  5. Free-space laser communication technologies II; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990

    NASA Technical Reports Server (NTRS)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1990-01-01

    Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.

  6. 76 FR 22924 - Re-Establishment of the National Space-Based Positioning, Navigation, and Timing (PNT) Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Government is necessary and in the public interest. Accordingly, NASA is re-establishing the National Space... and Deputy Director of Policy and Strategic Communications, Office of Space Communications and... advice on U.S. space-based PNT policy, planning, program management, and funding profiles in relation to...

  7. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  8. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    NASA Astrophysics Data System (ADS)

    1989-02-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  9. Computing, Information, and Communications Technology (CICT) Program Overview

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.

    2003-01-01

    The Computing, Information and Communications Technology (CICT) Program's goal is to enable NASA's Scientific Research, Space Exploration, and Aerospace Technology Missions with greater mission assurance, for less cost, with increased science return through the development and use of advanced computing, information and communication technologies

  10. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Operations (OSO). The TDA Office also performs work funded by two other NASA program offices through and with the cooperation of the OSO. These are the Orbital Debris Radar Program and 21st Century Communication Studies.

  11. Space industrialization - Education. [via communication satellites

    NASA Technical Reports Server (NTRS)

    Joels, K. M.

    1978-01-01

    The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.

  12. Optoelectronics research for communication programs at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1991-01-01

    Current optoelectronics research and development of high-power, high-bandwidth laser transmitters, high-bandwidth, high-sensitivity optical receivers, pointing, acquisition and tracking components, and experimental and theoretical system modeling at the NASA Goddard Space Flight Center is reviewed. Program hardware and space flight milestones are presented. It is believed that these experiments will pave the way for intersatellite optical communications links for both the NASA Advanced Tracking and Data Relay Satellite System and commercial users in the 21st century.

  13. KSC-20170817-CDC01_0001-TDRS_M_Prelaunch_News_Conference-3166840

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, NASA and industry leaders speak to members of the media at a prelaunch news conference for NASA's Tracking and Data Relay Satellite, TDRS-M. Participants from left are: Kathryn Hambleton of NASA Communications, Tim Dunn, launch director at NASA Kennedy, Badri Younes, deputy associate administrator for Space Communications and Navigation at NASA Headquarters in Washington, Dave Littmann, project manager for TDRS-M at NASAâs Goddard Space Flight Center in Greenbelt, Maryland, James Wilson III, Boeing program manager for NASA/Civil Space Programs, Scott Messer, United Launch Alliance program manager for NASA missions, and Clay Flinn, launch weather officer with the 45th Space Wing at Cape Canaveral Air Force Station. TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  14. Applications notice. [application of space techniques to earth resources, environment management, and space processing

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The discipline programs of the Space and Terrestrial (S&T) Applications Program are described and examples of research areas of current interest are given. Application of space techniques to improve conditions on earth are summarized. Discipline programs discussed include: resource observations; environmental observations; communications; materials processing in space; and applications systems/information systems. Format information on submission of unsolicited proposals for research related to the S&T Applications Program are given.

  15. Use of IPsec by Manned Space Missions

    NASA Technical Reports Server (NTRS)

    Pajevski, Michael J.

    2009-01-01

    NASA's Constellation Program is developing its next generation manned space systems for missions to the International Space Station (ISS) and the Moon. The Program is embarking on a path towards standards based Internet Protocol (IP) networking for space systems communication. The IP based communications will be paired with industry standard security mechanisms such as Internet Protocol Security (IPsec) to ensure the integrity of information exchanges and prevent unauthorized release of sensitive information in-transit. IPsec has been tested in simulations on the ground and on at least one Earth orbiting satellite, but the technology is still unproven in manned space mission situations and significant obstacles remain.

  16. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    NASA Astrophysics Data System (ADS)

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  17. Solid state laser communications in space (SOLACOS) position, acquisition, and tracking (PAT) subsystem implementation

    NASA Astrophysics Data System (ADS)

    Flemmig, Joerg; Pribil, Klaus

    1994-09-01

    This paper presents the concept and implementation aspects of the Pointing, Acquisition and Tracking Subsystem (PAT) which is developed in the frame of the SOLACOS (Solid State Laser Communications in Space) program.

  18. Selected Technical Spin Offs from the Space Program

    NASA Technical Reports Server (NTRS)

    Gilmore, H. L.

    1970-01-01

    The report describes some of the problems which the National Aeronautics and Space Administration has encountered in getting people to understand how the general public has profited from the technical discoveries of the space program. Next, it describes NASA's Technology Utilization Program and comments on it. It then describes some of the many spin-offs from the space program. These include examples from management technology, communications, aeronautics, medicine, fabrics highway safety, and weather forecasting.

  19. Overview of NASA communications infrastructure

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.; Fuechsel, Charles

    1991-01-01

    The infrastructure of NASA communications systems for effecting coordination across NASA offices and with the national and international research and technological communities is discussed. The offices and networks of the communication system include the Office of Space Science and Applications (OSSA), which manages all NASA missions, and the Office of Space Operations, which furnishes communication support through the NASCOM, the mission critical communications support network, and the Program Support Communications network. The NASA Science Internet was established by OSSA to centrally manage, develop, and operate an integrated computer network service dedicated to NASA's space science and application research. Planned for the future is the National Research and Education Network, which will provide communications infrastructure to enhance science resources at a national level.

  20. Information sciences and human factors overview

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee B.

    1988-01-01

    An overview of program objectives of the Information Sciences and Human Factors Division of NASA's Office of Aeronautics and Space Technology is given in viewgraph form. Information is given on the organizational structure, goals, the research and technology base, telerobotics, systems autonomy in space operations, space sensors, humans in space, space communications, space data systems, transportation vehicle guidance and control, spacecraft control, and major program directions in space.

  1. Analysis of Defense Products Contract Trends, 1990-2014

    DTIC Science & Technology

    2015-04-30

    contract obligations) are not properly classified under their parent programs. Electronics & Communications Contract obligations for Electronics...Electronics & Communications , Engines & Power Plants, Fuels, Ground Vehicles, Launchers & Munitions, Missiles & Space, Ships, and “Other.”3 This...mostly comprised of platforms and programs related to MDAPs (Clothing & Subsistence, Electronics & Communications , Fuels, Launchers & Munitions, and

  2. Spacecraft Will Communicate "on the Fly"

    NASA Technical Reports Server (NTRS)

    Laufenberg, Lawrence

    2003-01-01

    As NASA probes deeper into space, the distance between sensor and scientist increases, as does the time delay. NASA needs to close that gap, while integrating more spacecraft types and missions-from near-Earth orbit to deep space. To speed and integrate communications from space missions to scientists on Earth and back again. NASA needs a comprehensive, high-performance communications network. To this end, the CICT Programs Space Communications (SC) Project is providing technologies for building the Space Internet which will consist of large backbone network, mid-size access networks linked to the backbones, and smaller, ad-hoc network linked to the access network. A key component will be mobile, wireless networks for spacecraft flying in different configurations.

  3. Deep Space Network equipment performance, reliability, and operations management information system

    NASA Technical Reports Server (NTRS)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  4. Evaluation of components, subsystems, and networks for high rate, high frequency space communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.

    1991-01-01

    The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.

  5. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The papers included in this document cover satellite tracking and ground-based navigation, spacecraft-ground communications, and optical communication systems for the Deep Space Network.

  6. Preparing the Communication Specialist: Some Implications of an Ongoing "Train the Trainer" Program in One Industry.

    ERIC Educational Resources Information Center

    Shaw, Mark R.; Caplette, Michele

    Interviews with six managers trained to teach the Interpersonal Managing Skills (IMS) program at the Lockheed Missiles and Space Company provided insights into three aspects of communication training programs: training skills, the trainer role, and methods of training the trainer. A highly structured, packaged program, IMS teaches five…

  7. Aeronautics and space report of the President: 1981 activities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Achievements in the aeronautics and space program by function are summarized. Activities in communications, Earth's resources and environment, space science, space transportation, international activities, and aeronautics are included.

  8. Advances in MMIC technology for communications satellites

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1992-01-01

    This paper discusses NASA Lewis Research Center's program for development of monolithic microwave integrated circuits (MMIC) for application in space communications. Emphasis will be on the improved performance in power amplifiers and low noise receivers which has been made possible by the development of new semiconductor materials and devices. Possible applications of high temperature superconductivity for space communications will also be presented.

  9. ACTS propagation experiment discussion: Ka-band propagation measurements using the ACTS propagation terminal and the CSU-CHILL and Space Communications Technology Center Florida propagation program

    NASA Technical Reports Server (NTRS)

    Bringi, V. N.; Chandrasekar, V.; Mueller, Eugene A.; Turk, Joseph; Beaver, John; Helmken, Henry F.; Henning, Rudy

    1993-01-01

    Papers on Ka-band propagation measurements using the ACTS propagation terminal and the Colorado State University CHILL multiparameter radar and on Space Communications Technology Center Florida Propagation Program are discussed. Topics covered include: microwave radiative transfer and propagation models; NASA propagation terminal status; ACTS channel characteristics; FAU receive only terminal; FAU terminal status; and propagation testbed.

  10. 14 CFR 1310.7 - Communications with the Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Communications with the Board. 1310.7 Section 1310.7 Aeronautics and Space AIR TRANSPORTATION SYSTEM STABILIZATION AIR TRANSPORTATION STABILIZATION BOARD AIR CARRIER GUARANTEE LOAN PROGRAM ADMINISTRATIVE REGULATIONS AND AMENDMENT OR WAIVER OF A...

  11. Cost benefit analysis of space communications technology: Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Sassone, P. G.; Gallagher, J. J.; Robinette, S. L.; Vogler, F. H.; Zimmer, R. P.

    1976-01-01

    The questions of (1) whether or not NASA should support the further development of space communications technology, and, if so, (2) which technology's support should be given the highest priority are addressed. Insofar as the issues deal principally with resource allocation, an economics perspective is adopted. The resultant cost benefit methodology utilizes the net present value concept in three distinct analysis stages to evaluate and rank those technologies which pass a qualification test based upon probable (private sector) market failure. User-preference and technology state-of-the-art surveys were conducted (in 1975) to form a data base for the technology evaluation. The program encompassed near-future technologies in space communications earth stations and satellites, including the noncommunication subsystems of the satellite (station keeping, electrical power system, etc.). Results of the research program include confirmation of the applicability of the methodology as well as a list of space communications technologies ranked according to the estimated net present value of their support (development) by NASA.

  12. Technology, Data Bases and System Analysis for Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Lesh, James

    1995-01-01

    Optical communications is becoming an ever-increasingly important option for designers of space-to- ground communications links, whether it be for government or commercial applications. In this paper the technology being developed by NASA for use in space-to-ground optical communications is presented. Next, a program which is collecting a long term data base of atmospheric visibility statistics for optical propagation through the atmosphere will be described. Finally, a methodology for utilizing the statistics of the atmospheric data base in the analysis of space-to-ground links will be presented. This methodology takes into account the effects of station availability, is useful when comparing optical communications with microwave systems, and provides a rationale establishing the recommended link margin.

  13. Legacy of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Sullivan, Steven J.

    2010-01-01

    This slide presentation reviews many of the innovations from Kennedy Space Center engineering for ground operations that were made during the shuttle program. The innovations are in the areas of detection, image analysis, protective equipment, software development and communications.

  14. The NASA Space Communications Data Networking Architecture

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Hooke, Adrian J.; Freeman, Kenneth; Rush, John J.

    2006-01-01

    The NASA Space Communications Architecture Working Group (SCAWG) has recently been developing an integrated agency-wide space communications architecture in order to provide the necessary communication and navigation capabilities to support NASA's new Exploration and Science Programs. A critical element of the space communications architecture is the end-to-end Data Networking Architecture, which must provide a wide range of services required for missions ranging from planetary rovers to human spaceflight, and from sub-orbital space to deep space. Requirements for a higher degree of user autonomy and interoperability between a variety of elements must be accommodated within an architecture that necessarily features minimum operational complexity. The architecture must also be scalable and evolvable to meet mission needs for the next 25 years. This paper will describe the recommended NASA Data Networking Architecture, present some of the rationale for the recommendations, and will illustrate an application of the architecture to example NASA missions.

  15. A Wideband Autonomous Cognitive Radio Development and Prototyping System

    DTIC Science & Technology

    2017-11-14

    Gain, High Frequency , Circularly Polarized Planar Antenna Arrays for Space Applications”, NASA. 3. C. G. Christodoulou (Co-Principal Investigator...Investigator), “Cognitive Communications for SATCOM”, Space Vehicles (RV) University Grants Program, 04/26/16-04/25/17 ($150K), Air Force Research...Aerospace (Prime Contractor). 2. S. K. Jayaweera (Principal Investigator), “Cognitive Communications for SATCOM”, Space Vehicles (RV) University Grants

  16. GaAs MMIC elements in phased-array antennas

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1988-01-01

    Over the last six years NASA Lewis Research Center has carried out a program aimed at the development of advanced monolithic microwave integrated circuit technology, principally for use in phased-array antenna applications. Arising out of the Advanced Communications Technology Satellite (ACTS) program, the initial targets of the program were chips which operated at 30 and 20 GHz. Included in this group of activities were monolithic power modules with an output of 2 watts at GHz, variable phase shifters at both 20 and 30 GHz, low noise technology at 30 GHz, and a fully integrated (phase shifter, variable gain amplifier, power amplifier) transmit module at 20 GHz. Subsequent developments are centered on NASA mission requirements, particularly Space Station communications systems and deep space data communications.

  17. 14 CFR § 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Establishment of NASA Program Identifiers... THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified Visual Communications...

  18. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  19. Implementation and Testing of the JANUS Standard with SSC Pacific’s Software-Defined Acoustic Modem

    DTIC Science & Technology

    2017-12-01

    Communications Outpost (FDECO) Innovative Naval Prototype (INP) Program by the Advanced Photonic Technologies Branch (Code 55360), Space and Naval Warfare... Communications and Networks Division iii EXECUTIVE SUMMARY This report presents Space and Naval Warfare (SPAWAR) Systems Center Pacific’s (SSC... Frequency -Hopped Binary Frequency Shift Keying Office of Naval Research Innovative Naval Prototype Forward Deployed Energy and Communications Outpost

  20. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1995-01-01

    This quarterly publiction provides archival reports on developments in programs managed by JPL Telecommunications and Mission Operations Directorate (TMOD), which now includes the former communications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The Orbital Debris Radar Program, funded by the Office of Space Systems Development, makes use of the planetary radar capability when the antennas are configured at science instruments making direct observations of planets, their satellites, and asteroids of our solar system.

  1. Latino/a Bilinguals and Their Teachers Developing a Shared Communicative Space

    ERIC Educational Resources Information Center

    Turner, Erin Elizabeth; Dominguez, Higinio; Empson, Susan; Maldonado, Luz Angelica

    2013-01-01

    In this study, a temporal analysis and the analytical category of intersubjectivity are used to investigate how teachers and Latino/a bilingual students constructed shared communicative spaces in group mathematical discussions in an after school mathematics program in a culturally, linguistically, and economically diverse primary school.…

  2. Evolving the NASA Near Earth Network for the Next Generation of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher J.; Carter, David L.; Hudiburg, John J.; Tye, Robert N.; Celeste, Peter B.

    2014-01-01

    The purpose of this paper is to present the planned development and evolution of the NASA Near Earth Network (NEN) launch communications services in support of the next generation of human space flight programs. Following the final space shuttle mission in 2011, the two NEN launch communications stations were decommissioned. Today, NASA is developing the next generation of human space flight systems focused on exploration missions beyond low-earth orbit, and supporting the emerging market for commercial crew and cargo human space flight services. The NEN is leading a major initiative to develop a modern high data rate launch communications ground architecture with support from the Kennedy Space Center Ground Systems Development and Operations Program and in partnership with the U.S. Air Force (USAF) Eastern Range. This initiative, the NEN Launch Communications Stations (LCS) development project, successfully completed its System Requirements Review in November 2013. This paper provides an overview of the LCS project and a summary of its progress. The LCS ground architecture, concept of operations, and driving requirements to support the new heavy-lift Space Launch System and Orion Multi-Purpose Crew Vehicle for Exploration Mission-1 are presented. Finally, potential future extensions to the ground architecture beyond EM-1 are discussed.

  3. The Telecommunications and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  4. Space Shuttle program communication and tracking systems interface analysis

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Holmes, J. K.; Huth, G. K.; Iwasaki, R. S.; Nilsen, P. W.; Polydoros, A.; Sampaio, D. R.; Udalov, S.

    1984-01-01

    The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis.

  5. ISSPO Educational Outreach through Educational Program Cooperation

    NASA Technical Reports Server (NTRS)

    Conley, Carolynn

    2004-01-01

    The International Space Station Program Office (ISSPO) has organized a consolidated program to provide communication, education, and outreach to the general public. Existing space station education programs, including amateur radio activities on ISS done voluntarily by the crew members, can be linked to additional classroom and field activities, multiplying the impact of this very scarce and valuable Station resource. Linkages could be created between programs such as Starshine, Space Camp Turkey, MISSES/PCSAT2, and Amateur Radio on ISS. In addition, Amateur radio provides a means of introducing school children to technical hardware and concepts while being fun for the youthful mind. Amateur radio can reach the worldwide community while remaining within very affordable budgets of schools and individuals. When the radio communication is coupled with the Internet, the effect is even greater. People in many diverse areas of the world have access to the internet or radio.

  6. Evaluation of components, subsystems, and networks for high rate, high frequency space communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.

    1991-01-01

    The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.

  7. Remotely Powered Reconfigurable Receiver for Extreme Sensing Platforms

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J. (Inventor)

    2017-01-01

    Unmanned space programs are currently used to enable scientists to explore and research the furthest reaches of outer space. Systems and methods for low power communication devices in accordance with embodiments of the invention are disclosed, describing a wide variety of low power communication devices capable of remotely collecting, processing, and transmitting data from outer space in order to further mankind's goal of exploring the cosmos. Many embodiments of the invention include a Flash-based FPGA, an energy-harvesting power supply module, a sensor module, and a radio module. By utilizing technologies that withstand the harsh environment of outer space, more reliable low power communication devices can be deployed, enhancing the quality and longevity of the low power communication devices, enabling more data to be gathered and aiding in the exploration of outer space.

  8. The Italian Optical Telecommunications Payload: Breadboard Results

    NASA Astrophysics Data System (ADS)

    Bonino, L.; Caramia, M.; Catalano, V.; Ferrero, V.; Mata Calvo, R.

    2008-08-01

    The interest in satellite optical communication link has grown in the last years driven by the increasing demand in data downlink for scientific, planetary exploration and earth observation missions; in addition particular interest is also demonstrated by military market. In this context, the Italian Space Agency (ASI) is developing a program for feasibility demonstration of optical communication system with the goal of a prototype flight mission in the next future. The Paper intends to present the overall program plan and it is particularly focused on the activities performed during the Phase A2, relevant to stratospheric mission design and test campaign with an open field demonstrator of free space communications.

  9. Space Power

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Appropriate directions for the applied research and technology programs that will develop space power systems for U.S. future space missions beyond 1995 are explored. Spacecraft power supplies; space stations, space power reactors, solar arrays, thermoelectric generators, energy storage, and communication satellites are among the topics discussed.

  10. 75 FR 60145 - PNT Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... J. Miller, Space Communications and Navigation Program, Space Operations Mission Directorate... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-114)] PNT Advisory Board; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY: In accordance with the...

  11. Communications technology

    NASA Astrophysics Data System (ADS)

    Sokoloski, Martin M.

    1988-09-01

    The objective of the Communications Technology Program is to enable data transmission to and from low Earth orbit, geostationary orbit, and solar and deep space missions. This can be achieved by maintaining an effective, balances effort in basic, applied, and demonstration prototype communications technology through work in theory, experimentation, and components. The program consists of three major research and development discipline areas which are: microwave and millimeter wave tube components; solid state monolithic integrated circuit; and free space laser communications components and devices. The research ranges from basic research in surface physics (to study the mechanisms of surface degradation from under high temperature and voltage operating conditions which impacts cathode tube reliability and lifetime) to generic research on the dynamics of electron beams and circuits (for exploitation in various micro- and millimeter wave tube devices). Work is also performed on advanced III-V semiconductor materials and devices for use in monolithic integrated analog circuits (used in adaptive, programmable phased arrays for microwave antenna feeds and receivers) - on the use of electromagnetic theory in antennas and on technology necessary for eventual employment of lasers for free space communications for future low earth, geostationary, and deep space missions requiring high data rates with corresponding directivity and reliability.

  12. Communications technology

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.

    1988-01-01

    The objective of the Communications Technology Program is to enable data transmission to and from low Earth orbit, geostationary orbit, and solar and deep space missions. This can be achieved by maintaining an effective, balances effort in basic, applied, and demonstration prototype communications technology through work in theory, experimentation, and components. The program consists of three major research and development discipline areas which are: microwave and millimeter wave tube components; solid state monolithic integrated circuit; and free space laser communications components and devices. The research ranges from basic research in surface physics (to study the mechanisms of surface degradation from under high temperature and voltage operating conditions which impacts cathode tube reliability and lifetime) to generic research on the dynamics of electron beams and circuits (for exploitation in various micro- and millimeter wave tube devices). Work is also performed on advanced III-V semiconductor materials and devices for use in monolithic integrated analog circuits (used in adaptive, programmable phased arrays for microwave antenna feeds and receivers) - on the use of electromagnetic theory in antennas and on technology necessary for eventual employment of lasers for free space communications for future low earth, geostationary, and deep space missions requiring high data rates with corresponding directivity and reliability.

  13. Implementation and Testing of the JANUS Standard with SSC Pacific’s Software-Defined Acoustic Modem

    DTIC Science & Technology

    2017-10-01

    Communications Outpost (FDECO) Innovative Naval Prototype (INP) Program by the Advanced Photonic Technologies Branch (Code 55360), Space and Naval Warfare...underwater acoustic communication operations with NATO and non-NATO military and civilian maritime assets. iv ACRONYMS SPAWAR Space and Naval Warfare...the center frequency [1]. The ease of implementation and proven robustness in harsh underwater acoustic communication channels paved the way for

  14. Cognitive Networking With Regards to NASA's Space Communication and Navigation Program

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.; Vaden, Karl R.; Ponchak, Denise S.

    2013-01-01

    This report describes cognitive networking (CN) and its application to NASA's Space Communication and Networking (SCaN) Program. This report clarifies the terminology and framework of CN and provides some examples of cognitive systems. It then provides a methodology for developing and deploying CN techniques and technologies. Finally, the report attempts to answer specific questions regarding how CN could benefit SCaN. It also describes SCaN's current and target networks and proposes places where cognition could be deployed.

  15. 14 CFR § 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of the NASA Program Identifiers. Â... NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified Visual Communications System...

  16. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation satellite systems and space economy components. We also discuss the cooperative framework among space organizations or countries who are APRSAF members, with relevance to space exploration and research. The aspect of communications satellites may involve collaboration between Ministry of Science and Technology (MOST) and Ministry of Information and Communication Technology (ICT). In short, NSP is the first coherent and comprehensive effort covering all aspects of Thailand's space technology.

  17. Infrared Free Space Communication - The Autonomous Testing of Free Space Infrared Communication

    NASA Technical Reports Server (NTRS)

    Heldman, Christopher

    2017-01-01

    Fiber optics has been a winning player in the game of high-speed communication and data transfer in cable connections. Yet, in free space RF has been the repeated choice of communication medium of the space industry. Investigating the benefits of free space optical communication over radio frequency is worthwhile. An increase in science data rate return capabilities could occur if optical communication is implemented. Optical communication systems also provide efficiencies in power, mass, and volume over RF systems1. Optical communication systems have been demonstrated from a satellite in orbit with the moon to earth, and resulted in the highest data rates ever seen through space (622Mbps)2. Because of these benefits, optical communication is far superior to RF. The HiDRA (High Data Rate Architecture) project is researching Passive Misalignment Mitigation of Dynamic Free Apace Optical Communication Links. The goal of this effort is to enable gigabit per second transmission of data in short range dynamic links (less than 100 meters). In practice this would enhance data rates between sites on the International Space Station with minimal size, weight, and power requirements. This paper will focus on an autonomous code and a hardware setup that will be used to fulfill the next step in the research being conducted. The free space optical communications pointing downfalls will be investigated. This was achieved by creating 5 python programs and a top-level code to automate this test.

  18. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1989-01-01

    Developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. Activities of the Deep Space Network and its associated Ground Communications Facility in planning, in supporting research and technology, in implementation, and in operations are reported in space communications, radio navigation, radio science, and ground-based radio and radar astronomy.

  19. The Telecommunications and Data Acquisition Progress Report 42-123

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1995-01-01

    The progress of research programs monitored by the Jet Propulsion Laboratory's Telecommunications and Mission Operations Directorate (TMOD) are presented in this quarterly document. Areas monitored include space communications, radio navigation, radio science, ground-based radio and radar astronomy, information systems, and all other communication and research technology activities for the Deep Space Network (DSN).

  20. Technology Development for High Efficiency Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  1. Rad-hard computer elements for space applications

    NASA Technical Reports Server (NTRS)

    Krishnan, G. S.; Longerot, Carl D.; Treece, R. Keith

    1993-01-01

    Space Hardened CMOS computer elements emulating a commercial microcontroller and microprocessor family have been designed, fabricated, qualified, and delivered for a variety of space programs including NASA's multiple launch International Solar-Terrestrial Physics (ISTP) program, Mars Observer, and government and commercial communication satellites. Design techniques and radiation performance of the 1.25 micron feature size products are described.

  2. Science, society and the space program.

    NASA Technical Reports Server (NTRS)

    Stafford, T. P.

    1972-01-01

    Exposition of the contributions the space program can make toward improving the quality of life. The contribution involves both short-range application of space technology and the long-range search for knowledge. Large land areas can be surveyed from spacecraft to determine not only whether land is tillable, but what kind of crops will flourish. The space communications program can reach many millions of people more economically than other methods. The long-range aspects are concerned with the effect of modification of the environment.

  3. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). The TDA Office also performs work funded by other NASA program offices through and with the cooperation of OSC. Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech President's Fund that involve the TDA Office are included.

  4. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.

    2012-01-01

    We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.

  5. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Technical Reports Server (NTRS)

    Aller, R. O.

    1985-01-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  6. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1987-01-01

    This quarterly publication (July-September 1987) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the Search for Extraterrestrial Intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).

  7. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    This quarterly publication (July-Sept. 1986) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).

  8. Apollo 11: A good ending to a bad decade

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Gemini program and the Apollo program which culminated in landing a man on the moon and safely returning him to earth are highlighted. The space program in the aftermath of Apollo 11 is briefly summarized, including: Skylab, Apollo Soyuz, Mars and Venus probes, improved world communications, remote sensing of world resources, and finally, space shuttle.

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL) Office of Telecommunications and Data Acquisition (TDA) are given. Space communications, radio navigation, radio science, and ground-based radio and radar astronomy, activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations are reported. Also included is TDA-funded activity at JPL on data and information systems and reimbursable Deep Space Network (DSN) work performed for other space agencies through NASA.

  10. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    Archival reports on developments in programs managed by JPL's office of Telecommunications and Data Acquisition (TDA) are presented. In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations.

  11. KSC-20170217-VP_DNG03-0001_SpaceX_CRS-10_Prelaunch_News_Conference-3146081

    NASA Image and Video Library

    2017-02-17

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media at a prelaunch news conference for the SpaceX CRS-10 commercial resupply services mission to the International Space Station. From left are: George Diller of NASA Communications; Dan Hartman, deputy manager for the International Space Station Program at NASA's Johnson Space Center in Texas; Jessica Jensen, director of Dragon mission management for SpaceX; and Tara Ruttley, associate scientist for the International Space Station Program at Johnson.

  12. SpaceX CRS-12 Prelaunch News Conference

    NASA Image and Video Library

    2017-08-13

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-12 commercial resupply services mission to the International Space Station. Josh Finch of NASA Communications; Dan Hartman, NASA deputy manager of the International Space Station Program, Hans Koenigsmann, vice president of Build and Flight Reliability for SpaceX, and Pete Hasbrook, associate program scientist for the International Space Station Program. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  13. High data rate modem simulation for the space station multiple-access communications system

    NASA Technical Reports Server (NTRS)

    Horan, Stephen

    1987-01-01

    The communications system for the space station will require a space based multiple access component to provide communications between the space based program elements and the station. A study was undertaken to investigate two of the concerns of this multiple access system, namely, the issues related to the frequency spectrum utilization and the possibilities for higher order (than QPSK) modulation schemes for use in possible modulators and demodulators (modems). As a result of the investigation, many key questions about the frequency spectrum utilization were raised. At this point, frequency spectrum utilization is seen as an area requiring further work. Simulations were conducted using a computer aided communications system design package to provide a straw man modem structure to be used for both QPSK and 8-PSK channels.

  14. A Martian Chronicle.

    ERIC Educational Resources Information Center

    Craig, Doug

    1990-01-01

    The development of a spaceflight simulation program as part of a research and development course is described. Topics such as space exploration, design, propulsion, aerodynamics of space craft, robotics, communication, construction, medicine, lasers, hydroponics, geology, chemistry, and space physiology are emphasized. (KR)

  15. SpaceX CRS-11 Launch Coverage

    NASA Image and Video Library

    2017-06-03

    NASA Television conducted a live broadcast from Kennedy Space Center as SpaceX’s CRS-11 launched atop a Falcon 9 rocket from Space Launch Complex 39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. SpaceX’s Dragon spacecraft will deliver almost 6,000 pounds of cargo to the orbiting laboratory as SpaceX’s eleventh commercial resupply services mission to the International Space Station. The crucial materials will directly support dozens of the more than 250 science and research investigations that will occur during Expeditions 52 and 53. Launch commentary conducted by: -Mike Curie, NASA Launch Commentator -Tori McLendon, NASA Communications Special guests included: -Derrick Matthews, NASA Communications -Kirk Shireman, ISS Program -Amanda Griffin, NASA Communications -Karen Ocorr, Co-investigator, Fruit Fly Lab-02 -Robert Lightfoot, NASA Acting Administrator -Jeremy Banik, Principal Investigator, ROSA -Hans Koenigsmann, Vice President of Flight Reliability, SpaceX

  16. ATS-6 and the Future

    ERIC Educational Resources Information Center

    von Braun, Wernher

    1975-01-01

    Emphasizes the beneficial application of tools developed as a result of the space program in communications and education. Explains the use of a communication satelite, the ATS-6, in telemedicine and individualized instruction. (GS)

  17. Federal research and development for satellite communications

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A Committee on Satellite Communication (COSC) was formed under the auspices of the Space Applications Board (SAB) in order to study Federal research and development on satellite communications (SC). Discussion on whether to continue the research and development and the proper role of the Federal Government are addressed. Discussion focussed on six possible options for a Federal role in SC research and development: (1) the current NASA SC program; (2) an expanded NASA SC technology program; (3) a SC technology flight test support program; (4) an experimental SC technology flight program; (5) an experimental public service SC system program; and (6) an operational public service SC system program. Decision criteria and recommendations are presented.

  18. User Needs and Advances in Space Wireless Sensing and Communications

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions to other planets.

  19. Space Transportation Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Stewart, Mark E.; Suresh, Ambady; Owen, A. Karl

    2001-01-01

    This report outlines the Space Transportation Propulsion Systems for the NPSS (Numerical Propulsion System Simulation) program. Topics include: 1) a review of Engine/Inlet Coupling Work; 2) Background/Organization of Space Transportation Initiative; 3) Synergy between High Performance Computing and Communications Program (HPCCP) and Advanced Space Transportation Program (ASTP); 4) Status of Space Transportation Effort, including planned deliverables for FY01-FY06, FY00 accomplishments (HPCCP Funded) and FY01 Major Milestones (HPCCP and ASTP); and 5) a review current technical efforts, including a review of the Rocket-Based Combined-Cycle (RBCC), Scope of Work, RBCC Concept Aerodynamic Analysis and RBCC Concept Multidisciplinary Analysis.

  20. Application of Mobile-ip to Space and Aeronautical Networks

    NASA Technical Reports Server (NTRS)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  1. Overview and Status of the Lunar Laser Communication Demonstration

    NASA Technical Reports Server (NTRS)

    Boroson, D. M.; Robinson, B. S.; Burianek, D. A.; Murphy, D. V.; Biswas, A.

    2012-01-01

    The Lunar Laser Communication Demonstration (LLCD), a project being undertaken by MIT Lincoln Laboratory, NASA's Goddard Space Flight Center, and the Jet Propulsion Laboratory, will be NASA's first attempt to demonstrate optical communications between a lunar orbiting spacecraft and Earth-based ground receivers. The LLCD space terminal will be flown on the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft, presently scheduled to launch in 2013. LLCD will demonstrate downlink optical communications at rates up to 620 Mbps, uplink optical communications at rates up to 20 Mbps, and two-way time-of-flight measurements with the potential to perform ranging with sub-centimeter accuracy. We describe the objectives of the LLCD program, key technologies employed in the space and ground terminals, and show the status of development of the several systems.

  2. CCSDS Overview

    NASA Technical Reports Server (NTRS)

    Kearney, Mike

    2013-01-01

    The primary goal of Consultative Committee for Space Data Systems (CCSDS) is interoperability between communications and data systems of space agencies' vehicles, facilities, missions and programs. Of all of the technologies used in spaceflight, standardization of communications and data systems brings the most benefit to multi-agency interoperability. CCSDS Started in 1982 developing standards at the lower layers of the protocol stack. The CCSDS scope has grown to cover standards throughout the entire ISO communications stack, plus other Data Systems areas (architecture, archive, security, XML exchange formats, etc.

  3. A guide to onboard checkout. Volume 7: RF communications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The radio frequency communications subsystem for a space station is considered, with respect to onboard checkout requirements. The subsystem comprises all equipment necessary for transmitting and receiving, tracking and ranging, command, multiple voice and television information, and broadband experiment data. The communications subsystem provides a radio frequency interface between the space station and ground stations, either directly or indirectly, through a data relay satellite system, independent free-flying experiment modules, and logistics vehicles. Reliability, maintenance, and failure analyses are discussed, and computer programming techniques are presented.

  4. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Gallagher, D. L.; Koczor, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Science Directorate at Marshall Space Flight Center (MSFC) conducts a diverse program of Internet-based science communication through a Science Roundtable process. The Roundtable includes active researchers, writers, NASA public relations staff, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news to inform, involve, and inspire students and the public about science. We describe here the process of producing stories, results from research to understand the science communication process, and we highlight each member of our Web family.

  5. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DS) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  6. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1995-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  7. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Davila, Joseph M.

    2010-01-01

    The International Space Weather Initiative (ISWI) is an international scientific program to understand the external drivers of space weather. The science and applications of space weather has been brought to prominence because of the rapid development of space based technology that is useful for all human beings. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This talk outlines the ISWI program including its organization and proposed activities.

  8. Power efficient optical communications for space applications

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1982-01-01

    Optical communications technology promises substantial size, weight and power consumption savings for space to space high data rate communications over presently used microwave technology. These benefits are further increased by making the most efficient use of the available optical signal energy. This presentation will describe the progress to date on a project to design, build and demonstrate in the laboratory an optical communication system capable of conveying 2.5 bits of information per effective received photon. Such high power efficiencies will reduce the need for photon collection at the receiver and will greatly reduce the requirements for optical pointing accuracy, both at the transmitter as well as the receiver. A longer range program to demonstrate even higher photon efficiencies will also be described.

  9. An operations management system for the Space Station

    NASA Astrophysics Data System (ADS)

    Savage, Terry R.

    A description is provided of an Operations Management System (OMS) for the planned NASA Space Station. The OMS would be distributed both in space and on the ground, and provide a transparent interface to the communications and data processing facilities of the Space Station Program. The allocation of OMS responsibilities has, in the most current Space Station design, been fragmented among the Communications and Tracking Subsystem (CTS), the Data Management System (DMS), and a redefined OMS. In this current view, OMS is less of a participant in the real-time processing, and more an overseer of the health and management of the Space Station operations.

  10. SDR/STRS Flight Experiment and the Role of SDR-Based Communication and Navigation Systems

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2008-01-01

    This presentation describes an open architecture SDR (software defined radio) infrastructure, suitable for space-based radios and operations, entitled Space Telecommunications Radio System (STRS). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, minimizing the impact of parts obsolescence, improved interoperability, and software re-use. To advance the SDR architecture technology and demonstrate its applicability in space, NASA is developing a space experiment of multiple SDRs each with various waveforms to communicate with NASA s TDRSS satellite and ground networks, and the GPS constellation. An experiments program will investigate S-band and Ka-band communications, navigation, and networking technologies and operations.

  11. Industry-university cooperation/research

    NASA Technical Reports Server (NTRS)

    Whitten, Raymond P.

    1991-01-01

    The paper concentrates on the commercial development of space programs through cooperative research with the U.S. universities and industry. The origins of the programs are discussed, beginning with the Communication Satellite Act of 1963. The National Space Policy is outlined, and the creation of NASA's Office of Commercial Programs is emphasized, along with its Centers for the Commercial Development of Space. It is noted that the centers are consortia of university, industry, and government involved in commercial-space-technology database development and research and testing of potentially valuable products and services. The center titles, locations, and brief descriptions for such area of research as remote sensing, life sciences, materials processing, space power, space propulsion, materials and space structures, and automation and robotics centers are listed, along with some results of the programs.

  12. SPACE: Enhancing Life on Earth. Proceedings Report

    NASA Technical Reports Server (NTRS)

    Hobden, Alan (Editor); Hobden, Beverly (Editor); Bagley, Larry E. (Editor); Bolton, Ed (Editor); Campaigne, Len O. (Editor); Cole, Ron (Editor); France, Marty (Editor); Hand, Rich (Editor); McKinley, Cynthia (Editor); Zimkas, Chuck (Editor)

    1996-01-01

    The proceedings of the 12th National Space Symposium on Enhancing Life on Earth is presented. Technological areas discussed include: Space applications and cooperation; Earth sensing, communication, and navigation applications; Global security interests in space; and International space station and space launch capabilities. An appendices that include featured speakers, program participants, and abbreviation & acronyms glossary is also attached.

  13. Un Projet d'actions educatives binational? Une pratique de communication interculturelle liee a l'amenagement de nouveaux espaces educatifs (A Binational Educational Action Project? An Exercise in Intercultural Communication Tied to the Preparation of New Educational Spaces).

    ERIC Educational Resources Information Center

    Alix, Christian; Petit, Rene

    1983-01-01

    A program involving one French and two German secondary schools in an interdisciplinary program featuring a bicultural teaching team is described and a project focusing on habitat and lifestyle is used for illustration. Issues of program administration and coordination are also discussed. (MSE)

  14. High Performance Computing and Communications Act of 1991. Hearing Before the Subcommittee on Science, Technology, and Space of the Committee on Commerce, Science, and Transportation. One Hundred Second Congress, First Session on S. 272 To Provide for a Coordinated Federal Research Program To Ensure Continued United States Leadership in High-Performance Computing.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.

    This hearing before the Senate Subcommittee on Science, Technology, and Space focuses on S. 272, the High-Performance Computing and Communications Act of 1991, a bill that provides for a coordinated federal research and development program to ensure continued U.S. leadership in this area. Performance computing is defined as representing the…

  15. Space Programs Summary 37-33. Volume 3. The Deep Space Network for the period 1 March-30 April 1965

    DTIC Science & Technology

    1965-05-31

    designed to communicate To improve the data rate and distance capability, a 210-ft with, and permit control of, spacecraft designed for deep antenna is...51 experienced doppler problems. It was neces- tracking momentarily to make this change. It was de - sary to determine the bias oscillator frequencies...is being designed and constructed for the Mars site of the Gold- stone space communications station. The operating fre- quency of the AAS will be at

  16. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1992-01-01

    Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. Topics covered include tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for new projects; network upgrade and sustaining; network operations and operations support; and TDA program management and analysis.

  17. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The facilities, programming system, and monitor and control system for the deep space network are described. Ongoing planetary and interplanetary flight projects are reviewed, along with tracking and ground-based navigation, communications, and network and facility engineering.

  18. Computing, Information and Communications Technology (CICT) Website

    NASA Technical Reports Server (NTRS)

    Hardman, John; Tu, Eugene (Technical Monitor)

    2002-01-01

    The Computing, Information and Communications Technology Program (CICT) was established in 2001 to ensure NASA's Continuing leadership in emerging technologies. It is a coordinated, Agency-wide effort to develop and deploy key enabling technologies for a broad range of mission-critical tasks. The NASA CICT program is designed to address Agency-specific computing, information, and communications technology requirements beyond the projected capabilities of commercially available solutions. The areas of technical focus have been chosen for their impact on NASA's missions, their national importance, and the technical challenge they provide to the Program. In order to meet its objectives, the CICT Program is organized into the following four technology focused projects: 1) Computing, Networking and Information Systems (CNIS); 2) Intelligent Systems (IS); 3) Space Communications (SC); 4) Information Technology Strategic Research (ITSR).

  19. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. Stephanie Schierholz of NASA Communications; Joel Montalbano, NASA Deputy Manager of the International Space Station Program; Jessica Jensen, Director of Dragon Mission Management for SpaceX; Pete Hasbrook, Associate Program Scientist for the ISS Program Science Office; and Mike McAleenan the Launch Weather Officer from the U.S. Air Force 45th Weather Squadron. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 14th Commercial Resupply Services mission to the space station.

  20. Commercial Use of Space: a New Economic Strength for America

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space commerce is composed of diverse activities which fall into four broad areas: satellite communications, earth and ocean observations, materials research and processing, and space transportation and industrial services. Space has become an industrial laboratory for materials research and processing. NASA's role in the commercial use of space is discussed through its commercial development program.

  1. Research and Development in Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith

    2004-01-01

    A report in the form of lecture slides summarizes the optical-communications program of NASA s Jet Propulsion Laboratory (JPL) and describes the JPL Optical Communications Telescope Laboratory (OCTL) and its role in the program. The purpose of the program is to develop equipment and techniques for laser communication between (1) ground stations and (2) spacecraft (both near Earth and in deep space) and aircraft. The OCTL is an astronomical- style telescope facility that includes a 1-m-diameter, 75.8-m-focal length telescope in an elevation/azimuth mount, plus optical and electronic subsystems for tracking spacecraft and aircraft, receiving laser signals from such moving targets, and transmitting high-power laser signals to such targets. Near-term research at the OCTL is expected to focus on mitigating the effects of atmospheric scintillation on uplinks and on beacon-assisted tracking of ground stations by stations in deep space. Near-term experiments are expected to be performed with retroreflector-equipped aircraft and Earth-orbiting spacecraft techniques to test mathematical models of propagation of laser beams, multiple-beam strategies to mitigate uplink scintillation, and pointing and tracking accuracy of the telescope.

  2. TDRS-L Pre-Launch Press Conference

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. –During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed preparations for the launch of NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Participating in the briefing, from the left, are Badri Younes, deputy associate administrator, Space Communications and Navigation SCaN NASA Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington D.C., Tim Dunn, NASA launch director at Kennedy, Vernon Thorp, program manager for NASA Missions with United Launch Alliance in Denver, Colo., Jeffrey Gramling, NASA's TDRS-L project manager at the Goddard Space Flight Center in Greenbelt, Md., Andy Kopito, Civil Space Programs director for Boeing Space & Intelligence Systems in El Segundo, Calif., and Clay Flinn, launch weather officer for the 45th Weather Squadron at Cape Canaveral Air Force Station, Fla. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Frankie Martin

  3. TDRS-L Pre-Launch Press Conference

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. –During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed preparations for the launch of NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Participating in the briefing, from the left, are George Diller of NASA Public Affairs, Badri Younes, deputy associate administrator, Space Communications and Navigation SCaN NASA Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington D.C., Tim Dunn, NASA launch director at Kennedy, Vernon Thorp, program manager for NASA Missions with United Launch Alliance in Denver, Colo., Jeffrey Gramling, NASA's TDRS-L project manager at the Goddard Space Flight Center in Greenbelt, Md., Andy Kopito, Civil Space Programs director for Boeing Space & Intelligence Systems in El Segundo, Calif., and Clay Flinn, launch weather officer for the 45th Weather Squadron at Cape Canaveral Air Force Station, Fla. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Frankie Martin

  4. Final Report from The University of Texas at Austin for DEGAS: Dynamic Global Address Space programming environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erez, Mattan; Yelick, Katherine; Sarkar, Vivek

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. Our approach is to provide an efficient and scalable programming model that can be adapted to application needs through the use of dynamic runtime features and domain-specific languages for computational kernels. We address the following technical challenges: Programmability: Rich set of programming constructs based on a Hierarchical Partitioned Global Address Space (HPGAS) model, demonstrated in UPC++. Scalability: Hierarchical locality control, lightweight communication (extended GASNet), and ef- ficient synchronization mechanisms (Phasers). Performance Portability:more » Just-in-time specialization (SEJITS) for generating hardware-specific code and scheduling libraries for domain-specific adaptive runtimes (Habanero). Energy Efficiency: Communication-optimal code generation to optimize energy efficiency by re- ducing data movement. Resilience: Containment Domains for flexible, domain-specific resilience, using state capture mechanisms and lightweight, asynchronous recovery mechanisms. Interoperability: Runtime and language interoperability with MPI and OpenMP to encourage broad adoption.« less

  5. SMC: SCENIC Model Control

    NASA Technical Reports Server (NTRS)

    Srivastava, Priyaka; Kraus, Jeff; Murawski, Robert; Golden, Bertsel, Jr.

    2015-01-01

    NASAs Space Communications and Navigation (SCaN) program manages three active networks: the Near Earth Network, the Space Network, and the Deep Space Network. These networks simultaneously support NASA missions and provide communications services to customers worldwide. To efficiently manage these resources and their capabilities, a team of student interns at the NASA Glenn Research Center is developing a distributed system to model the SCaN networks. Once complete, the system shall provide a platform that enables users to perform capacity modeling of current and prospective missions with finer-grained control of information between several simulation and modeling tools. This will enable the SCaN program to access a holistic view of its networks and simulate the effects of modifications in order to provide NASA with decisional information. The development of this capacity modeling system is managed by NASAs Strategic Center for Education, Networking, Integration, and Communication (SCENIC). Three primary third-party software tools offer their unique abilities in different stages of the simulation process. MagicDraw provides UMLSysML modeling, AGIs Systems Tool Kit simulates the physical transmission parameters and de-conflicts scheduled communication, and Riverbed Modeler (formerly OPNET) simulates communication protocols and packet-based networking. SCENIC developers are building custom software extensions to integrate these components in an end-to-end space communications modeling platform. A central control module acts as the hub for report-based messaging between client wrappers. Backend databases provide information related to mission parameters and ground station configurations, while the end user defines scenario-specific attributes for the model. The eight SCENIC interns are working under the direction of their mentors to complete an initial version of this capacity modeling system during the summer of 2015. The intern team is composed of four students in Computer Science, two in Computer Engineering, one in Electrical Engineering, and one studying Space Systems Engineering.

  6. NASA Pathways Co-op Tour Johnson Space Center Fall 2013

    NASA Technical Reports Server (NTRS)

    Masood, Amir; Osborne-Lee, Irwin W.

    2013-01-01

    This report outlines the tasks and objectives completed during a co-operative education tour with National Aeronautics and Space Association (NASA) at the Johnson Space Center in Houston, Texas. I worked for the Attitude & Pointing group of the Flight Dynamics Division within the Mission Operations Directorate at Johnson Space Center. NASA's primary mission is to support and expand the various ongoing space exploration programs and any research and development activities associated with it. My primary project required me to develop and a SharePoint web application for my group. My secondary objective was to become familiar with the role of my group which was primarily to provide spacecraft attitude and line of sight determination, including Tracking and Data Relay Satellite (TDRS) communications coverage for various NASA, International, and commercial partner spacecraft. My projects required me to become acquainted with different software systems, fundamentals of aerospace engineering, project management, and develop essential interpersonal communication skills. Overall, I accomplished multiple goals which included laying the foundations for an updated SharePoint which will allow for an organized platform to communicate and share data for group members and external partners. I also successfully learned about the operations of the Attitude & Pointing Group and how it contributes to the Missions Operations Directorate and NASA's Space Program as a whole

  7. Aeronautics and space report of the President, 1982 activities

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Achievements of the space program are summerized in the area of communication, Earth resources, environment, space sciences, transportation, aeronautics, and space energy. Space program activities of the various deprtments and agencies of the Federal Government are discussed in relation to the agencies' goals and policies. Records of U.S. and world spacecraft launchings, successful U.S. launches for 1982, U.S. launched applications and scientific satellites and space probes since 1975, U.S. and Soviet manned spaceflights since 1961, data on U.S. space launch vehicles, and budget summaries are provided. The national space policy and the aeronautical research and technology policy statements are included.

  8. Method of Enhancing On-Board State Estimation Using Communication Signals

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan J. (Inventor); Chuang, Jason C. H. (Inventor)

    2015-01-01

    A method of enhancing on-board state estimation for a spacecraft utilizes a network of assets to include planetary-based assets and space-based assets. Communication signals transmitted from each of the assets into space are defined by a common protocol. Data is embedded in each communication signal transmitted by the assets. The data includes a time-of-transmission for a corresponding one of the communication signals and a position of a corresponding one of the assets at the time-of-transmission. A spacecraft is equipped to receive the communication signals, has a clock synchronized to the space-wide time reference frame, and has a processor programmed to generate state estimates of the spacecraft. Using its processor, the spacecraft determines a one-dimensional range from itself to at least one of the assets and then updates its state estimates using each one-dimensional range.

  9. The International Space Weather Initiative

    NASA Technical Reports Server (NTRS)

    Nat, Gopalswamy; Joseph, Davila; Barbara, Thompson

    2010-01-01

    The International Space Weather Initiative (ISWI) is a program of international cooperation aimed at understanding the external drivers of space weather. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009 and will continue with those aspects that directly affect life on Earth. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This presentation outlines the ISWI program including its organizational aspects and proposed activities. The ISWI observatory deployment and outreach activities are highly complementary to the CAWSES II activities of SCOSTEP.

  10. SpaceX CRS-13 "What's on Board?" Mission Science Briefing

    NASA Image and Video Library

    2017-12-11

    Cheryl Warner of NASA Communications, left, Kirt Costello, deputy chief scientist for the International Space Station Program at NASA’s Johnson Space Center in Houston, center, and Patrick O'Neill, Marketing and Communications manager at the Center of Advancement of Science in Space (CASIS), speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 11:46 a.m. EST, on Dec. 12, 2017. The SpaceX Falcon 9 rocket will launch the company's 13th Commercial Resupply Services mission to the space station.

  11. Compiling global name-space programs for distributed execution

    NASA Technical Reports Server (NTRS)

    Koelbel, Charles; Mehrotra, Piyush

    1990-01-01

    Distributed memory machines do not provide hardware support for a global address space. Thus programmers are forced to partition the data across the memories of the architecture and use explicit message passing to communicate data between processors. The compiler support required to allow programmers to express their algorithms using a global name-space is examined. A general method is presented for analysis of a high level source program and along with its translation to a set of independently executing tasks communicating via messages. If the compiler has enough information, this translation can be carried out at compile-time. Otherwise run-time code is generated to implement the required data movement. The analysis required in both situations is described and the performance of the generated code on the Intel iPSC/2 is presented.

  12. Cygnus Orbtial ATK OA-6 Prelaunch Press Conference

    NASA Image and Video Library

    2016-03-21

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media at a prelaunch news conference for Orbital ATK CRS-6 commercial resupply services mission to the International Space Station. From left are: George Diller of NASA Communications; Kenneth Todd, NASA ISS Operations Integration manager; Frank Culbertson, president of Orbital ATK's Space System Group; Vern Thorp, United Space Alliance's program manager for NASA missions; Pete Hasbrook, NASA associate program scientist for the ISS Program at the Johnson Space Center in Houston; Dr. Michael Roberts deputy chief scientist for the Center for the Advancement for Science in Space, or CASIS; and Capt. Laura Godoy, launch weather officer of the U.S. Air Force 45th Weather Squadron.

  13. KSC-2013-3517

    NASA Image and Video Library

    2013-09-09

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, officials pose at the site where a Shuttle Program time capsule has been secured vault within the walls of the Space Shuttle Atlantis home at the Kennedy Space Center Visitor Complex. From the left are: Pete Nickolenko, deputy director of NASA Ground Processing at Kennedy, Patty Stratton of Abacus Technology, currently program manager for the Information Management Communications Support Contract. During the Shuttle Program she was deputy director of Ground Operations for NASA's Space Program Operations Contractor, United Space Alliance, Rita Wilcoxon, NASA's now retired director of Shuttle Processing, Bob Cabana, director of the Kennedy Space Center and George Jacobs, deputy director of Center Operations, who was manager of the agency's Shuttle Transition and Retirement Project Office. The time capsule, containing artifacts and other memorabilia associated with the history of the program is designated to be opened on the 50th anniversary of the shuttle's final landing, STS-135. The new $100 million "Space Shuttle Atlantis" facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. Photo credit: NASA/Jim Grossmann

  14. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  15. China’s Space Program: A New Tool for PRC Soft Power in International Relations?

    DTIC Science & Technology

    2009-03-01

    programs important and what is China doing to leverage them? A growing number of nations recognize the advantages of space applications. From the...as others far outside of its Asian backyard to market these services to and what it hopes to gain from them. Second, is America’s comparative...Freese, “Strategic Communication with China: What Message About Space?,” China Security, World Security Institute, 2:2 (2006): 45. 4 for

  16. New horizons. [assessment of technology developed and utilized under various NASA programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The contribution of space exploration and space related research to the future of man and the accomplishments of the space program are assessed. Topics discussed include: the role of applications satellites in crop surveillance, land use surveys, weather forecasting, education, communications, and pollution monitoring; planetary studies which examine the origin and evolution of the solar system, including dynamic processes that bear directly on earth's environment; and fuel conservation and development of new energy sources.

  17. SpaceX CRS-11 Pre-Launch News Conference

    NASA Image and Video Library

    2017-05-31

    In the NASA Kennedy Space Center's Press Site auditorium, agency and industry leaders informed the media about the upcoming launch of SpaceX’s eleventh commercial resupply services mission to the International Space Station. A Falcon 9 rocket will lift off from Space Launch Complex-39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. SpaceX’s Dragon capsule will deliver almost 6,000 pounds of cargo to the orbiting laboratory. Briefing participants: -Mike Curie, NASA Communications -Kirk Shireman, Manager, International Space Station Program -Hans Koenigsmann, Vice President of Flight Reliability, SpaceX -Camille Alleyne, Associate Program Scientist, ISS -Mike McAleenan, Launch Weather Officer, 45th Weather Squadron

  18. Intersatellite communications optoelectronics research at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1992-01-01

    A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.

  19. The evolution of space mechanisms in the ESA R and D program

    NASA Technical Reports Server (NTRS)

    Wyn-Roberts, D.

    1989-01-01

    The status of recently completed and already ongoing technology developments, as well as some of the most important future developments of the European Space Agency are discussed. Among the subjects considered are Scientific Satellites, Columbus space station development, applications spacecraft for communications, Earth observation and meteorology, and the Ariane V and Hermes space transportation systems.

  20. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    Developments in programs in telecommunication and data acquisition in space communications, radio navigation, radio science, and ground based radio astronomy are reported. Activities of the deep space network (DSN) and its associated ground communication facility (GCF) in planning, supporting research and technology, implementation, and in operations are outlined. The publication of reports on the application of radio interferometry at microwave frequencies for geodynamic measurements are presented. Implementation and operation for searching the microwave spectrum is reported.

  1. FameLab: A Communication Skills-Building Program Disguised as an International Competition

    NASA Astrophysics Data System (ADS)

    Scalice, D.

    2015-12-01

    One of the key pieces of training missing from most graduate studies in science is skills-building in communication. Beyond the responsibility to share their work with the public, good communication skills enhance a scientist's career path, facilitating comprehension of their work by stakeholders and funders, as well as increasing the ability to collaborate interdisciplinarily. FameLab, an American Idol-style communication competition for early career scientists, helps fill this void, and provides an opportunity to pratice communication skills, with the coaching of professionals, in a safe space. The focus is on training and networking with like-minded scientists. NASA's Astrobiology Program has been implementing FameLab in the US since 2011, but over 25 countries take part globally. Come learn about this innovative program, what impact it's had on participants, and how you can get involved.

  2. NASA high performance computing and communications program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Smith, Paul; Hunter, Paul

    1993-01-01

    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project.

  3. Direct Broadcast Satellite: Radio Program

    NASA Astrophysics Data System (ADS)

    Hollansworth, James E.

    1992-10-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  4. Performance analysis of wideband data and television channels. [space shuttle communications

    NASA Technical Reports Server (NTRS)

    Geist, J. M.

    1975-01-01

    Several aspects are discussed of space shuttle communications, including the return link (shuttle-to-ground) relayed through a satellite repeater (TDRS). The repeater exhibits nonlinear amplification and an amplitude-dependent phase shift. Models were developed for various link configurations, and computer simulation programs based on these models are described. Certain analytical results on system performance were also obtained. For the system parameters assumed, the results indicate approximately 1 db degradation relative to a link employing a linear repeater. While this degradation is dependent upon the repeater, filter bandwidths, and modulation parameters used, the programs can accommodate changes to any of these quantities. Thus the programs can be applied to determine the performance with any given set of parameters, or used as an aid in link design.

  5. Solid state laser communications in space (SOLACOS) high data rate satellite communication system verification program

    NASA Astrophysics Data System (ADS)

    Pribil, Klaus; Flemmig, Joerg

    1994-09-01

    This paper gives an overview on the current development status of the SOLACOS program and presents the highlights of the program. SOLACOS (Solid State Laser Communications in Space) is the national German program to develop a high performance laser communication system for high data rate transmission between LEO and GEO satellites (Inter Orbit Link, IOL). Two experimental demonstrator terminals are designed and developed in the SOLACOS program. The main development objectives are the Pointing Acquisition and Tracking subsystem (PAT) and the high data rate communication system. All key subsystems and components are straightway developed to be upgraded in follow- on projects to full space qualification. The main design objective for the system is a high degree of modularity which allows to easily upgrade the system with new upcoming technologies. Therefore, all main subsystems are interconnected via fibers to ease replacement of subsystems. The system implements an asymmetric data link with a 650 MBit/s return channel and a 10 MBit/s forward channel. The 650 MBit/s channel is based on a diode pumped Nd:YAG, Integrated Optics Modulator and uses the syncbit transmission scheme. In the syncbit system synchronization information which is necessary to maintain phase lock of the local oscillator of the coherent receiver is transmitted time multiplexed into the data stream. The PAT system comprises two beam detection sensors and three beam steering elements. For initial acquisition and tracking of the remote satellite a high speed CCD camera with an integrated image processing unit, the Acquisition and Tracking Sensor (ATS) is used. In the tacking mode the beam position is sensed via the Fibernutator sensor which is also used to couple the incoming signal into the receiver fiber. Incoming and outgoing beams are routed through the telescopes which are positioned with a 2 axis gimbal mechanism and a high speed beam steering mirror. The PAT system is controlled by a digital signal processor. For beam control advanced PAT algorithms are under development.

  6. HAL/SM language specification. [programming languages and computer programming for space shuttles

    NASA Technical Reports Server (NTRS)

    Williams, G. P. W., Jr.; Ross, C.

    1975-01-01

    A programming language is presented for the flight software of the NASA Space Shuttle program. It is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, it incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. It is a higher order language designed to allow programmers, analysts, and engineers to communicate with the computer in a form approximating natural mathematical expression. Parts of the English language are combined with standard notation to provide a tool that readily encourages programming without demanding computer hardware expertise. Block diagrams and flow charts are included. The semantics of the language is discussed.

  7. Microgravity science and applications projects and payloads

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.

    1987-01-01

    An overview of work conducted by the Microgravity Science and Applications Division of NASA is presented. The goals of the program are the development and implementation of a reduced-gravity research, science and applications program, exploitation of space for human benefits, and the application of reduced gravity research for the development of advanced technologies. Space research of fluid dynamics and mass transport phenomena is discussed and the facilities available for reduced gravity experiments are presented. A program for improving communication with the science and applications communities and the potential use of the Space Station for microgravity research are also examined.

  8. Channel coding in the space station data system network

    NASA Technical Reports Server (NTRS)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1989-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's Office of Telecommunications and Data Acquisition are provided. Space communications, radio navigation, radio science, and ground based radio and radio astronomy are discussed. Deep Space Network projects are also discussed.

  10. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1985-01-01

    Developments in programs managed by the Jet Propulsion Laboratory's Office of Telecommunications and Data acquisition are discussed. Space communications, radio antennas, the Deep Space Network, antenna design, Project SETI, seismology, coding, very large scale integration, downlinking, and demodulation are among the topics covered.

  11. Optical Communications Study for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Ceniceros, Juan M.

    2000-01-01

    The Next Generation Space Telescope (NGST), part of NASA's Origins program, is a follow on to the Hubble Space Telescope expected to provide timely new science along with answering fundamental questions. NGST is a large diameter, infrared optimized telescope with imaging and spectrographic detectors which will be used to help study the origin of galaxies. Due to the large data NGST will collect, Goddard Space Flight Center has considered the use of optical communications for data downlink. The Optical Communications Group at the Jet Propulsion Laboratory has performed a study on optical communications systems for NGST. The objective of the study was to evaluate the benefits gained through the use of optical communication technologies. Studies were performed for each of four proposed NGST orbits. The orbits considered were an elliptical orbit about the semi stable second Lagrangian point, a 1 by 3 AU elliptic orbit around the sun, a 1 AU drift orbit, and a 1 AU drift orbit at a 15 degree incline to the ecliptic plane. An appropriate optical communications system was determined for each orbit. Systems were evaluated in terms of mass, power consumption, size, and cost for each of the four proposed orbits.

  12. Advanced 3-V semiconductor technology assessment. [space communications

    NASA Technical Reports Server (NTRS)

    Nowogrodzki, M.

    1983-01-01

    Against a background of an extensive survey of the present state of the art in the field of III-V semiconductors for operation at microwave frequencies (or gigabit rate speeds), likely requirements of future space communications systems are identified, competing technologies and physical device limitations are discussed, and difficulties in implementing emerging technologies are projected. On the basis of these analyses, specific research and development programs required for the development of future systems components are recommended.

  13. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. From left, are Stephanie Schierholz, of NASA Communications; Jessica Jensen, director, Dragon Mission Management, SpaceX; Pete Hasbrook, associate program scientist, ISS Program Science Office at NASA's Johnson Space Center in Houston; and Mike McAleenan, weather officer, 45th Weather Squadron. Joining on the phone is Joel Montalbano, deputy manager, ISS Program at Johnson. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will lift off on the company's 14th Commercial Resupply Services mission to the space station.

  14. Developing Systems Engineering Skills Through NASA Summer Intern Project

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe

    2010-01-01

    During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.

  15. Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon

    2013-01-01

    As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.

  16. Mission Risk Reduction Regulatory Change Management

    NASA Technical Reports Server (NTRS)

    Scroggins, Sharon

    2007-01-01

    NASA Headquarters Environmental Management Division supports NASA's mission to pioneer the future in space exploration, scientific discovery, and aeronautics research by integrating environmental considerations into programs and projects early-on, thereby proactively reducing NASA's exposure to institutional, programmatic and operational risk. As part of this effort, NASA established the Principal Center for Regulatory Risk Analysis and Communication (RRAC PC) as a resource for detecting, analyzing, and communicating environmental regulatory risks to the NASA stakeholder community. The RRAC PC focuses on detecting emerging environmental regulations and other operational change drivers that may pose risks to NASA programs and facilities, and effectively communicating the potential risks. For example, regulatory change may restrict how and where certain activities or operations may be conducted. Regulatory change can also directly affect the ability to use certain materials by mandating a production phase-out or restricting usage applications of certain materials. Regulatory change can result in significant adverse impacts to NASA programs and facilities due to NASA's stringent performance requirements for materials and components related to human-rated space vehicles. Even if a regulation does not directly affect NASA operations, U.S. and international regulations can pose program risks indirectly through requirements levied on manufacturers and vendors of components and materials. For example, manufacturers can change their formulations to comply with new regulatory requirements. Such changes can require time-consuming and costly requalification certification for use in human spaceflight programs. The RRAC PC has implemented a system for proactively managing regulatory change to minimize potential adverse impacts to NASA programs and facilities. This presentation highlights the process utilized by the RRACPC to communicate regulatory change and the associated potential risks within NASA, as well as the process for communicating and cooperating with other government agencies and industry partners, both domestic and international, to ensure mission success.

  17. The Role of Universities in a Vigorous National Space Weather Program

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.

    2011-05-01

    It is increasingly clear that U.S. economic vitality and development, as well as global competitiveness, have strong and enduring ties to the space segment. Remote sensing, communications, surveillance, and a host of other areas of U.S. leadership are underpinned by space technology. Moreover, our national pursuit of robotic and human space exploration remains a cornerstone of U.S. aspirations. As was made clear in the U.S. National Space Policy (NSP) issued by President Barack Obama on 28 June 2010, a central overlay of the U.S. space program is that we must understand, be able to forecast, and, if possible, mitigate the effects of the space environment on technological systems.

  18. Technology programs and related policies - Impacts on communications satellite business ventures

    NASA Technical Reports Server (NTRS)

    Greenberg, J. S.

    1985-01-01

    The DOMSAT II stochastic communication satellite business venture financial planning simulation model is described. The specification of business scenarios and the results of several analyses are presented. In particular, the impacts of NASA on-orbit propulsion and power technology programs are described. The effects of insurance rates and self-insurance and of the use of the Space Shuttle and Ariane transportation systems on a typical fixed satellite service business venture are discussed.

  19. High Performance Computing and Communications Program. Hearing before the Subcommittee on Science of the Committee on Science, Space, and Technology. U.S. House of Representatives, One Hundred Third Congress, First Session (October 26, 1993).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.

    This hearing explores how the High Performance Computing and Communications Program (HPCC) relates to the technology needs of industry. Testimony and prepared statements from the following witnesses on future effects of computing and networking technologies on their companies are included: (1) F. Brett Berlin, president, Brett Berlin Associates,…

  20. 14 CFR 1251.560 - Communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National... an individual with handicaps an equal opportunity to participate in, and enjoy the benefits of, a...

  1. 14 CFR 1251.560 - Communications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National... an individual with handicaps an equal opportunity to participate in, and enjoy the benefits of, a...

  2. Wonderful Walls

    ERIC Educational Resources Information Center

    Greenman, Jim

    2006-01-01

    In this article, the author emphasizes the importance of "working" walls in children's programs. Children's programs need "working" walls (and ceilings and floors) which can be put to use for communication, display, storage, and activity space. The furnishings also work, or don't work, for the program in another sense: in aggregate, they serve as…

  3. Repeater in the sky. [public service communications satellite program

    NASA Technical Reports Server (NTRS)

    Cote, C. E.; Brown, J. P.

    1977-01-01

    The Public Service Communications Satellite (PSCS) program is intended to develop and demonstrate a space system aimed at stimulating future commercial markets in fixed and mobile applications. The services are envisioned for rural areas, regions beyond access to terrestrial systems, or for continuous cross-country applications. The system incorporates a UHF repeater for mobile voice and data experiments; 8 MHz of spectrum is specified for serving 70 channels. This paper describes the PSCS program and discusses some demonstration experiments. A future concept based on large structure multibeam antennas is also discussed.

  4. Retrievable payload carrier, next generation Long Duration Exposure Facility: Update 1992

    NASA Technical Reports Server (NTRS)

    Perry, A. T.; Cagle, J. A.; Newman, S. C.

    1993-01-01

    Access to space and cost have been two major inhibitors of low Earth orbit research. The Retrievable Payload Carrier (RPC) Program is a commercial space program which strives to overcome these two barriers to space experimentation. The RPC Program's fleet of spacecraft, ground communications station, payload processing facility, and experienced integration and operations team will provide a convenient 'one-stop shop' for investigators seeking to use the unique vantage point and environment of low Earth orbit for research. The RPC is a regularly launched and retrieved, free-flying spacecraft providing resources adequate to meet modest payload/experiment requirements, and presenting ample surface area, volume, mass, and growth capacity for investigator usage. Enhanced capabilities of ground communications, solar-array-supplied electrical power, central computing, and on-board data storage pick up on the path where NASA's Long Duration Exposure Facility (LDEF) blazed the original technology trail. Mission lengths of 6-18 months, or longer, are envisioned. The year 1992 was designated as the 'International Space Year' and coincides with the 500th anniversary of Christopher Columbus's voyage to the New World. This is a fitting year in which to launch the full scale development of our unique shop of discovery whose intent is to facilitate retrieving technological rewards from another new world: space. Presented is an update on progress made on the RPC Program's development since the November 1991 LDEF Materials Workshop.

  5. Space communications scheduler: A rule-based approach to adaptive deadline scheduling

    NASA Technical Reports Server (NTRS)

    Straguzzi, Nicholas

    1990-01-01

    Job scheduling is a deceptively complex subfield of computer science. The highly combinatorial nature of the problem, which is NP-complete in nearly all cases, requires a scheduling program to intelligently transverse an immense search tree to create the best possible schedule in a minimal amount of time. In addition, the program must continually make adjustments to the initial schedule when faced with last-minute user requests, cancellations, unexpected device failures, quests, cancellations, unexpected device failures, etc. A good scheduler must be quick, flexible, and efficient, even at the expense of generating slightly less-than-optimal schedules. The Space Communication Scheduler (SCS) is an intelligent rule-based scheduling system. SCS is an adaptive deadline scheduler which allocates modular communications resources to meet an ordered set of user-specified job requests on board the NASA Space Station. SCS uses pattern matching techniques to detect potential conflicts through algorithmic and heuristic means. As a result, the system generates and maintains high density schedules without relying heavily on backtracking or blind search techniques. SCS is suitable for many common real-world applications.

  6. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    From left, Pete Hasbrook, associate program scientist, International Space Station Program at NASA's Johnson Space Center in Houston; Craig Kundrot, director, NASA's Space Life and Physical Science Research and Applications; Marie Lewis, moderator, Kennedy Space Center; and Patrick O'Neill, Marketing and Communications Manager, Center for the Advancement of Science in Space, speak to members of the media in the Kennedy Space Center Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.

  7. Space information systems in the Space Station era; Proceedings of the AIAA/NASA International Symposium on Space Information Systems, Washington, DC and Greenbelt, MD, June 22, 23, 1987

    NASA Technical Reports Server (NTRS)

    Gerard, Mireille (Editor); Edwards, Pamela W. (Editor)

    1988-01-01

    Technological and planning issues for data management, processing, and communication on Space Station Freedom are discussed in reviews and reports by U.S., European, and Japanese experts. The space-information-system strategies of NASA, ESA, and NASDA are discussed; customer needs are analyzed; and particular attention is given to communication and data systems, standards and protocols, integrated system architectures, software and automation, and plans and approaches being developed on the basis of experience from past programs. Also included are the reports from workshop sessions on design to meet customer needs, the accommodation of growth and new technologies, and system interoperability.

  8. NASA's Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.

    1983-01-01

    NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described.

  9. Science Information Systems Newsletter, issue 28

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose of the Information Systems Newsletter is to inform the space science and applications research community about information systems development and to promote coordination and collaboration by providing a forum for communication. This quarterly publication focuses on programs sponsored by the Information Systems Branch in support of NASA's Office of Space Science. Articles of interest for other programs and agencies are presented as well. The April 1993 issue is presented.

  10. NASA'S second decade in space.

    NASA Technical Reports Server (NTRS)

    Manganiello, E. J.

    1972-01-01

    Advances in space science during the last decade are reviewed. The basic scientific goals of NASA's Planetary Program are to increase man's understanding of the origin and evolution of the solar system, the origin and evolution of life, and the earth, through a comparative study of the other planets. Studies of the planets will be continued during the second decade. Aspects of manned space flights are discussed, giving attention to the Skylab workshop, and the Space Shuttle. The applications program is divided into four major areas including meteorology, communications and navigation, geodesy, and earth resources. Areas of aeronautical research are also examined.

  11. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    This publication reports on developments in programs managed by JPL's office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation and in operations. In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. This publication also reports on implementation and operations for searching the microwave spectrum.

  12. Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory technology development activities. 1: Introduction

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.

    1983-01-01

    The Jet Propulsion Laboratory and the Langley Research Center have been developing technology related to large space antennas (LSA) during the past several years. The need for a communication system research program became apparent during the recent studies for the Land Mobile Satellite System. This study indicated the need for additional research in (1) electromagnetic analysis methods, (2) design and development of multiple beam feed systems, and (3) the measurement methods for LSA reflectors.

  13. Space Station Freedom Data Assessment Study

    NASA Technical Reports Server (NTRS)

    Johnson, Anngienetta R.; Deskevich, Joseph

    1990-01-01

    The SSF Data Assessment Study was initiated to identify payload and operations data requirements to be supported in the Space Station era. To initiate the study payload requirements from the projected SSF user community were obtained utilizing an electronic questionnaire. The results of the questionnaire were incorporated in a personal computer compatible database used for mission scheduling and end-to-end communications analyses. This paper discusses data flow paths and associated latencies, communications bottlenecks, resource needs versus availability, payload scheduling 'warning flags' and payload data loading requirements for each major milestone in the Space Station buildup sequence. This paper also presents the statistical and analytical assessments produced using the data base, an experiment scheduling program, and a Space Station unique end-to-end simulation model. The modeling concepts and simulation methodologies presented in this paper provide a foundation for forecasting communication requirements and identifying modeling tools to be used in the SSF Tactical Operations Planning (TOP) process.

  14. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    This quarterly publication provides archival reports on developments in programs in space communications, radio navigation, radio science, and ground-based radio and radar astronomy. It reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standardization activities at the Jet Propulsion Laboratory for space data and information systems.

  15. Adaption of Space Station technology for lunar operations

    NASA Technical Reports Server (NTRS)

    Garvey, J. M.

    1988-01-01

    The possible use of Space Station technology in a lunar base program is discussed, focusing on the lunar lander/ascent vehicles and surface modules. The application of the Space Station data management system, software, and communications, tracking, guidance, navigation, control, and power technologies is examined. The benefits of utilizing this technology for lunar operations are considered.

  16. Orbital ATK CRS-7 Post-Launch News Conference

    NASA Image and Video Library

    2016-04-18

    NASA Television held a post launch news conference from Kennedy Space Center’s Press Site recapping the successful launch of Orbital ATK’s CRS-7 atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Orbital ATK’s Cygnus spacecraft carried more than 7,600 pounds of science research, crew supplies, and hardware to the orbiting laboratory as Orbital ATK’s seventh commercial resupply services mission to the International Space Station. Participants included: -George Diller, NASA Communications -Joel Montalbano, Deputy Manager, International Space Station Program, NASA Johnson Space Center -Frank Culbertson, President, Orbital ATK Space Systems Group -Vern Thorp, Program Manager, Commercial Missions, United Launch Alliance

  17. Orbital ATK CRS-7 Post Launch News Conference

    NASA Image and Video Library

    2017-04-18

    Members of the news media attend a press conference at NASA's Kennedy Space Center in Florida, after the launch of the Orbital ATK Cygnus pressurized cargo module atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station. It was Orbital ATK's seventh commercial resupply services mission to the International Space Station. Liftoff was at 11:11 a.m. EDT. Speaking to the media are, from left, George Diller, NASA Kennedy Communications; Joel Montalbano, deputy manager, International Space Station Program, NASA Johnson Space Center in Houston; Frank Culbertson, president, Orbital ATK Space Systems Group; and Vern Thorp, program manager, commercial missions, United Launch Alliance.

  18. SpaceX CRS-11 Prelaunch News Conference

    NASA Image and Video Library

    2017-05-31

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-11 commercial resupply services mission to the International Space Station. From left are: Mike Curie of NASA Communications, Kirk Shireman, NASA's International Space Station Program manager, Hans Koenigsmann, vice president of Flight Reliability for SpaceX, Camille Alleyne, associate program scientist for the International Space Station at NASA’s Johnson Space Center, and Mike McAleenan, launch weather officer for the U.S. Air Force 45th Weather Squadron. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on June 1 atop a SpaceX Falcon 9 rocket on the company's 11th Commercial Resupply Services mission to the space station.

  19. Report of the Advisory Committee on the Future of the US Space Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The United States' civil space program was rather hurriedly formulated some three decades ago on the heels of the successful launch of the Soviet Sputnik. A dozen humans have been placed on the Moon and safely returned to Earth, seven of the other eight planets have been viewed at close range, including the soft landing of two robot spacecraft on Mars, and a variety of significant astronomical and other scientific observations have been accomplished. Closer to Earth, a network of communications satellites has been established, weather and ocean conditions are now monitored and reported as they occur, and the Earth's surface is observed from space to study natural resources and detect sources of pollution. Problems and perspectives of the program are given as seen by the committee. The committee finds that there are nine concerns about the space program which are deserving of attention. The responsibilities of the agency are given. The space agenda becomes one of what can and should the U.S. afford for its space program. Also given is a concept of what the committee believes is a balanced space program. The programs international role is defined and some final observations and recommendations are made.

  20. NASA High Performance Computing and Communications program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Smith, Paul; Hunter, Paul

    1994-01-01

    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 1(X)-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientists' abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project, exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects, as well as summaries of early accomplishments and the significance, status, and plans for individual research and development programs within each project. Areas of emphasis include benchmarking, testbeds, software and simulation methods.

  1. Panel discussion: Roles of space program in the Asia Pacific region

    NASA Astrophysics Data System (ADS)

    Nomura, Tamiya

    1992-03-01

    A panel discussion on the subject 'Roles played by space development in Asia Pacific region' was held chaired by Space Activities Commission member and attended by the representatives of the participating countries, special attendance and observers. Opinions were expressed by each representative on three subjects, that is, social effects and benefits obtained by remote sensing data, observation data desired to augment the effect, and expectation for developed countries in space development. President of NASDA (National Space Development Agency of Japan) expressed his intension to promote international cooperation for the Japanese Earth Resources Satellite-1 (JERS-1) verification program, utilization augmentation of Japanese earth observing satellites and human resource training and education. Deputy Director-General for Science and Technology Agency (STA) outlined ASCA (Association for Science Cooperation in Asia) seminar and STA fellowship in relation to human resource development. Chairman of the Japan International Space Year (ISY) Association cited the necessity of closer and extensive communication networks free from the existing commercial communication. Deputy-Minister for Posts and Telecommunications outlined the PARTNERS project (Post-operational utilization of the Engineering Test Satellite-5 (ETS-5)) for international cooperation in space activities in Asia Pacific region. President of the Institute of Space and Astronautical Science (ISAS) outlined Japan's present status of and international cooperation in space science.

  2. Innovative Methods for the Benefit of Public Health Using Space Technologies for Disaster Response.

    PubMed

    Dinas, Petros C; Mueller, Christian; Clark, Nathan; Elgin, Tim; Nasseri, S Ali; Yaffe, Etai; Madry, Scott; Clark, Jonathan B; Asrar, Farhan

    2015-06-01

    Space applications have evolved to play a significant role in disaster relief by providing services including remote sensing imagery for mitigation and disaster damage assessments; satellite communication to provide access to medical services; positioning, navigation, and timing services; and data sharing. Common issues identified in past disaster response and relief efforts include lack of communication, delayed ordering of actions (eg, evacuations), and low levels of preparedness by authorities during and after disasters. We briefly summarize the Space for Health (S4H) Team Project, which was prepared during the Space Studies Program 2014 within the International Space University. The S4H Project aimed to improve the way space assets and experiences are used in support of public health during disaster relief efforts. We recommend an integrated solution based on nano-satellites or a balloon communication system, mobile self-contained relief units, portable medical scanning devices, and micro-unmanned vehicles that could revolutionize disaster relief and disrupt different markets. The recommended new system of coordination and communication using space assets to support public health during disaster relief efforts is feasible. Nevertheless, further actions should be taken by governments and organizations in collaboration with the private sector to design, test, and implement this system.

  3. Tuning collective communication for Partitioned Global Address Space programming models

    DOE PAGES

    Nishtala, Rajesh; Zheng, Yili; Hargrove, Paul H.; ...

    2011-06-12

    Partitioned Global Address Space (PGAS) languages offer programmers the convenience of a shared memory programming style combined with locality control necessary to run on large-scale distributed memory systems. Even within a PGAS language programmers often need to perform global communication operations such as broadcasts or reductions, which are best performed as collective operations in which a group of threads work together to perform the operation. In this study we consider the problem of implementing collective communication within PGAS languages and explore some of the design trade-offs in both the interface and implementation. In particular, PGAS collectives have semantic issues thatmore » are different than in send–receive style message passing programs, and different implementation approaches that take advantage of the one-sided communication style in these languages. We present an implementation framework for PGAS collectives as part of the GASNet communication layer, which supports shared memory, distributed memory and hybrids. The framework supports a broad set of algorithms for each collective, over which the implementation may be automatically tuned. In conclusion, we demonstrate the benefit of optimized GASNet collectives using application benchmarks written in UPC, and demonstrate that the GASNet collectives can deliver scalable performance on a variety of state-of-the-art parallel machines including a Cray XT4, an IBM BlueGene/P, and a Sun Constellation system with InfiniBand interconnect.« less

  4. Design of stabilized platforms for deep space optical communications (DSOC)

    NASA Astrophysics Data System (ADS)

    Jacka, N.; Walter, R.; Laughlin, D.; McNally, J.

    2017-02-01

    Numerous Deep Space Optical Communications (DSOC) demonstrations are planned by NASA to provide the basis for future implementation of optical communications links in planetary science missions and eventually manned missions to Mars. There is a need for a simple, robust precision optical stabilization concept for long-range free space optical communications applications suitable for optical apertures and masses larger than the current state of the art. We developed a stabilization concept by exploiting the ultra-low noise and wide bandwidth of ATA-proprietary Magnetohydrodynamic (MHD) angular rate sensors and building on prior practices of flexure-based isolation. We detail a stabilization approach tailored for deep space optical communications, and present an innovative prototype design and test results. Our prototype system provides sub-micro radian stabilization for a deep space optical link such as NASA's integrated Radio frequency and Optical Communications (iROC) and NASA's DSOC programs. Initial test results and simulations suggest that >40 dB broadband jitter rejection is possible without placing unrealistic expectations on the control loop bandwidth and flexure isolation frequency. This approach offers a simple, robust method for platform stabilization without requiring a gravity offload apparatus for ground testing or launch locks to survive a typical launch environment. This paper reviews alternative stabilization concepts, their advantages and disadvantages, as well as, their applicability to various optical communications applications. We present results from testing that subjected the prototype system to realistic spacecraft base motion and confirmed predicted sub-micro radian stabilization performance with a realistic 20-cm aperture.

  5. NASA's mobile satellite communications program; ground and space segment technologies

    NASA Technical Reports Server (NTRS)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-01-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  6. SpaceX CRS-13 Prelaunch News Conference

    NASA Image and Video Library

    2017-12-11

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-13 commercial resupply services mission to the International Space Station. Cheryl Warner of NASA Communications; Kirk Shireman, NASA Manager of the International Space Station Program; Jessica Jensen, Director of Dragon Mission Management for SpaceX; Kirt Costello, Deputy Chief Scientist for the ISS Program Science Office; and David Myers the Launch Weather Officer from the U.S. Air Force 45th Weather Squadron. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 13th Commercial Resupply Services mission to the space station.

  7. Managing External Relations: The Lifeblood of Mission Success

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2007-01-01

    The slide presentation examines the role of customer and stakeholder relations in the success of space missions. Topics include agency transformation; an overview of project and program experience with a discussion of positions, technical accomplishments, and management lessons learned; and approaches to project success with emphasis on communication. Projects and programs discussed include the Space Shuttle Main Engine System, DC-XA Flight Demonstrator, X-33 Flight Demonstrator, Space Launch Initiative/2nd Generation Reusable Launch Vehicle, X-37 Flight Demonstrator, Constellation (pre Dr. Griffin), Safety and Mission Assurance, and Exploration Launch Projects.

  8. Intuitive Tools for the Design and Analysis of Communication Payloads for Satellites

    NASA Technical Reports Server (NTRS)

    Culver, Michael R.; Soong, Christine; Warner, Joseph D.

    2014-01-01

    In an effort to make future communications satellite payload design more efficient and accessible, two tools were created with intuitive graphical user interfaces (GUIs). The first tool allows payload designers to graphically design their payload by using simple drag and drop of payload components onto a design area within the program. Information about each picked component is pulled from a database of common space-qualified communication components sold by commerical companies. Once a design is completed, various reports can be generated, such as the Master Equipment List. The second tool is a link budget calculator designed specifically for ease of use. Other features of this tool include being able to access a database of NASA ground based apertures for near Earth and Deep Space communication, the Tracking and Data Relay Satellite System (TDRSS) base apertures, and information about the solar system relevant to link budget calculations. The link budget tool allows for over 50 different combinations of user inputs, eliminating the need for multiple spreadsheets and the user errors associated with using them. Both of the aforementioned tools increase the productivity of space communication systems designers, and have the colloquial latitude to allow non-communication experts to design preliminary communication payloads.

  9. The NASA GOLD Mission: Exploring the Interface between Earth and Space

    NASA Astrophysics Data System (ADS)

    Mason, T.; Costanza, B.

    2017-12-01

    NASA's Global-scale Observations of the Limb and Disk, or GOLD, mission will explore a little understood area close to home, but historically hard to observe: the interface between Earth and space, a dynamic area of near-Earth space that responds both to space weather above, and the lower atmosphere below. GOLD, scheduled to launch into geostationary orbit in early 2018, will collect observations with a 30-minute cadence, much higher than any mission that has come before it. This will enable GOLD to be the first mission to study the day-to-day weather of a region of space—the thermosphere and ionosphere—rather than its long-term climate. GOLD will explore the near-Earth space environment, which is home to astronauts, radio signals used to guide airplanes and ships, and satellites that provide our communications and GPS systems. GOLD's unprecedented images and data will enable research that can improve situational awareness to help protect astronauts, spacecraft, and humans on the ground. As part of the GOLD communications and outreach program, the Office of Communications & Outreach at the Laboratory for Atmospheric and Space Physics (LASP) is developing a suite of products and programs to introduce the science of the GOLD mission to a broad range of public audiences, including students, teachers, journalists, social media practitioners, and the wider planetary and Earth science communities. We plan to showcase with this poster some of the tools we are developing to achieve this goal.

  10. Antenna Technology and other Radio Frequency (RF) Communications Activities at the Glenn Research Center in Support of NASA's Exploration Vision

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2007-01-01

    NASA s Vision for Space Exploration outlines a very ambitious program for the next several decades of the Space Agency endeavors. Ahead is the completion of the International Space Station (ISS); safely flight the shuttle (STS) until 2010; develop and fly the Crew Exploration Vehicle (Orion) by no later than 2014; return to the moon by no later than 2020; extend human presence across the solar system and beyond; implement a sustainable and affordable human and robotic program; develop supporting innovative technologies, knowledge and infrastructure; and promote international and commercial participation in exploration. To achieve these goals, a series of enabling technologies must be developed or matured in a timely manner. Some of these technologies are: spacecraft RF technology (e.g., high power sources and large antennas which using surface receive arrays can get up to 1 Gbps from Mars), uplink arraying (reduce reliance on large ground-based antennas and high operation costs; single point of failure; enable greater data-rates or greater effective distance; scalable, evolvable, flexible scheduling), software define radio (i.e., reconfigurable, flexible interoperability allows for in flight updates open architecture; reduces mass, power, volume), and optical communications (high capacity communications with low mass/power required; significantly increases data rates for deep space). This presentation will discuss some of the work being performed at the NASA Glenn Research Center, Cleveland, Ohio, in antenna technology as well as other on-going RF communications efforts.

  11. The rocky Soviet road to Mars

    NASA Astrophysics Data System (ADS)

    Klaes, Larry

    1990-08-01

    The history of the Soviet space program is reviewed with particular attention given to the Soviet Mars exploration program. Missions of the Mars and Zond series and their exploration of Mars are described in detail, and the progress of the Soviet Mars exploration program is compared and contrasted with that of U.S. programs. Soviet space exploration in the 1980s is reviewed, noting that changes in political climate enabled more open discussion of the Phobos mission, which facilitated both international cooperation in assembling the craft and extensive U.S.-Soviet cooperation in the communications aspect of the probe through use of NASA's Deep Space Network of radio telescopes. The Phobos 1 and Phobos 2 missions are discussed and reasons for difficulties are analyzed; the future of the Soviet Mars program is reviewed.

  12. MMIC technology for advanced space communications systems

    NASA Astrophysics Data System (ADS)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  13. MMIC technology for advanced space communications systems

    NASA Technical Reports Server (NTRS)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    1984-01-01

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  14. NASA communications technology research and development

    NASA Technical Reports Server (NTRS)

    Durham, A. F.; Stankiewicz, N.

    1979-01-01

    The development of a 1978 NASA study to identify technology requirements is surveyed, and its principal conclusions, recommendations, and priorities are summarized. In addition, antenna, traveling wave tube, and solid state amplifier developments representing selected items from the current communications technology development programs at the NASA Lewis Research and Goddard Space Flight Centers are described.

  15. Research in space commercialization, technology transfer, and communications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  16. Technology for space station

    NASA Astrophysics Data System (ADS)

    Colladay, R. S.; Carlisle, R. F.

    1984-10-01

    Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.

  17. Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS)

    NASA Technical Reports Server (NTRS)

    Rush, John; Israel, David; Harlacher, Marc; Haas, Lin

    2003-01-01

    The Low Power Transceiver (LPT) is an advanced signal processing platform that offers a configurable and reprogrammable capability for supporting communications, navigation and sensor functions for mission applications ranging from spacecraft TT&C and autonomous orbit determination to sophisticated networks that use crosslinks to support communications and real-time relative navigation for formation flying. The LPT is the result of extensive collaborative research under NASNGSFC s Advanced Technology Program and ITT Industries internal research and development efforts. Its modular, multi-channel design currently enables transmitting and receiving communication signals on L- or S-band frequencies and processing GPS L-band signals for precision navigation. The LPT flew as a part of the GSFC Hitchhiker payload named Fast Reaction Experiments Enabling Science Technology And Research (FREESTAR) on-board Space Shuttle Columbia s final mission. The experiment demonstrated functionality in GPS-based navigation and orbit determination, NASA STDN Ground Network communications, space relay communications via the NASA TDRSS, on-orbit reconfiguration of the software radio, the use of the Internet Protocol (IP) for TT&C, and communication concepts for space based range safety. All data from the experiment was recovered and, as a result, all primary and secondary objectives of the experiment were successful. This paper presents the results of the LPTs maiden space flight as a part of STS- 107.

  18. Supporting Data for Fiscal Year 1994. Budget Estimate Submission

    DTIC Science & Technology

    1993-04-01

    0603401F 405 36 Space Systems Environmental Interactions Technology 0603410F 416 38 Conventional Weapons Technology 0603601F 423 39 Advanced Radiation...Transfer Pilot Program (SBIR/STTR) 0603302F Space and Missile Rocket Propulsion 31 392 060341OF Space Systems Environmental Interactions Technology 36...Deliver Interactive Decode (Rapid Message Processing) capability in Communications Element. - (U) Conduct maintainability demonstration. - (U) Begin Initial

  19. Space exploration and world peace

    NASA Technical Reports Server (NTRS)

    Mercieca, C.

    1972-01-01

    The possibility of using space exploration as an instrument in procuring world peace is studied. Suggestions for obtaining such a peace, utilizing space programs, include removal of worldwide educational and communication barriers, building of an emotionally and socially stable society, creation of a unit or whole world rather than the mine and yours concept, and reevaluation and reorientation of human relations and values.

  20. Oversight Hearing on the High Performance Computing and Communications Program and Uses of the Information Highway. Hearing before the Subcommittee on Science, Technology, and Space of the Committee on Commerce, Science, and Transportation. United States Senate, One Hundred Fourth Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.

    This document presents witness testimony and supplemental materials from a Congressional hearing called to evaluate the progress of the High Performance Computing and Communications program in light of budget requests, to examine the appropriate role for the government in such a project, and to see demonstrations of the World Wide Web and related…

  1. IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.

    PubMed

    Ha, Vi Q; Lykotrafitis, George

    2016-12-08

    We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  3. Increasing postpartum contraception in rural India: evaluation of a community-based behavior change communication intervention.

    PubMed

    Sebastian, Mary Philip; Khan, Mohammed Ejazduin; Kumari, Kaushal; Idnani, Rukma

    2012-06-01

    The Indian family planning program, though successful in increasing contraceptive use among couples who have achieved their desired family size, has not been equally successful in educating couples about the use of contraceptive methods for birth spacing. An evaluation was conducted of a behavior change communication intervention integrated into the existing government program to increase knowledge and use of the lactational amenorrhea method and postpartum contraception through counseling by community workers. The intervention, which ran between September 2006 and January 2007, was conducted among 959 pregnant women aged 15-24 who lived in Uttar Pradesh, India. The evaluation used logistic regression analyses to measure differences in knowledge and contraceptive use between baseline and the four- and nine-month postpartum follow-up surveys within and between the intervention and comparison groups. The follow-up data show increases in knowledge of the lactational amenorrhea method and spacing methods and in use of spacing methods. At four months postpartum, women in the intervention group were more likely to know the healthy spacing messages than those in the comparison group (odds ratio, 2.1). At nine months postpartum, women in the intervention group, those with higher knowledge of healthy spacing practices and those with correct knowledge of two or more spacing methods were more likely than others to be using a contraceptive method (1.5-3.5). Use of modern contraceptives for spacing at nine months postpartum was 57% in the intervention group versus 30% in the comparison group. Targeted behavior change communication using community workers is an effective and feasible strategy for promoting postpartum contraception.

  4. Educational benefits of ISY - NASA's perspective

    NASA Technical Reports Server (NTRS)

    Owens, Frank C.; Mcgee, A. S.

    1992-01-01

    Education is a key component of the International Space Year (ISY) and NASA has taken on several roles in the development of ISY educational activities. ISY presents a unique opportunity for international cooperation in education and the global importance of science, math and technology across the educational spectrum has been emphasized. NASA monitors the progress of educational projects, develops educational activities and facilitates the development of such activities in both the public and private sectors. The Space Agency Forum on ISY (SAFISY), the international space and education program, space science and space communications in education are discussed and several educational programs are described. Current activities, distribution of products and future evaluation plans are discussed.

  5. Orbital ATK CRS-7 Post Launch News Conference

    NASA Image and Video Library

    2017-04-18

    At the conclusion of the Orbital ATK CRS-7 post-launch press conference, moderator George Diller, second from left, NASA Kennedy Communications; shakes hands with Joel Montalbano, deputy manager, International Space Station Program, NASA Johnson Space Center in Houston. Also with them are Frank Culbertson, president, Orbital ATK Space Systems Group; and Vern Thorp, program manager, commercial missions, United Launch Alliance. A United Launch Alliance Atlas V rocket lifted off from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, carrying Orbital ATK's Cygnus pressurized cargo module. It is Orbital ATK's seventh commercial resupply services mission to the International Space Station. Liftoff was at 11:11 a.m. EDT.

  6. Hungarian space research 1981-1985: Lectures and review articles

    NASA Technical Reports Server (NTRS)

    Benko, G. (Editor)

    1986-01-01

    This monograph presents an overview of Hungarian space research from 1981 to 1985. Topics discussed in the original report include the development of space research centers, the flight of the first Hungarian astronaut, Hungarian participation in international space programs such as the Vega/Halley's Comet mission and the BEALUCA materials science experiment, advances in astronomical research, and activities of the Cosmic Geodetic Observatory. Other topics discussed incude space biomedical studies, meteorological applications of space research, satellite communications, and satellite power supply systems.

  7. Astrophysics space systems critical technology needs

    NASA Technical Reports Server (NTRS)

    Gartrell, C. F.

    1982-01-01

    This paper addresses an independent assessment of space system technology needs for future astrophysics flight programs contained within the NASA Space Systems Technology Model. The critical examination of the system needs for the approximately 30 flight programs in the model are compared to independent technology forecasts and possible technology deficits are discussed. These deficits impact the developments needed for spacecraft propulsion, power, materials, structures, navigation, guidance and control, sensors, communications and data processing. There are also associated impacts upon in-orbit assembly technology and space transportation systems. A number of under-utilized technologies are highlighted which could be exploited to reduce cost and enhance scientific return.

  8. Teaching, Learning, and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    2002-01-01

    This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

  9. Proceedings of the Twenty-First NASA Propagation Experimenters Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry.

  10. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  11. Pathways to space: A mission to foster the next generation of scientists and engineers

    NASA Astrophysics Data System (ADS)

    Dougherty, Kerrie; Oliver, Carol; Fergusson, Jennifer

    2014-06-01

    The first education project funded under the Australian Government's Australian Space Research Program (ASRP), Pathways to Space was a unique project combining education, science communication research and research in astrobiology and robotics. It drew upon the challenges of space exploration to inspire students to consider study and careers in science and engineering. A multi-faceted program, Pathways to Space provided hands-on opportunities for high school and university students to participate in realistic simulations of a robotic Mars exploration mission for astrobiology. Its development was a collaboration between the Australian Centre for Astrobiology (University of New South Wales), the Australian Centre for Field Robotics (University of Sydney), the Powerhouse Museum and industry partner, Cisco. Focused on students in Years 9-10 (15-16 years of age), this program provided them with the opportunity to engage directly with space engineers and astrobiologists, while carrying out a simulated Mars mission using the digital learning facilities available at the Powerhouse Museum. As a part of their program, the students operated robotic mini-rovers in the Powerhouse Museum's “Mars Yard”, a highly accurate simulation of the Martian surface, where university students also carry out the development and testing of experimental Mars roving vehicles. This aspect of the program has brought real science and engineering research into the public space of the museum. As they undertook the education program, the students participated in a research study aimed at understanding the effectiveness of the project in achieving its key objective - encouraging students to consider space related courses and careers. This paper outlines the development and operation of the Pathways to Space project over its 3-year funding period, during which it met and exceeded all the requirements of its ASRP grant. It will look at the goals of the project, the rationale behind the education and science communications research, the challenges of developing such a multi-faceted education project in collaboration with several partners and the results that have already been achieved within the study.

  12. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1987-01-01

    Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. Activities of the Deep Space Network (DSN) in space communications, radio navigation, radio science, and ground-based radio astronomy are reported. Also included are the plans, supporting research and technology, implementation and operations for the Ground Communications Facility (GCF). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum.

  13. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1996-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). TMOD also performs work funded by other NASA program offices through and with the cooperation of OSC. The first of these is the Orbital Debris Radar Program funded by the Office of Space Systems Development. It exists at Goldstone only and makes use of the planetary radar capability when the antennas are configured as science instruments making direct observations of the planets, their satellites, and asteroids of our solar system. The Office of Space Sciences funds the data reduction and science analyses of data obtained by the Goldstone Solar System Radar. The antennas at all three complexes are also configured for radio astronomy research and, as such, conduct experiments funded by the National Science Foundation in the U.S. and other agencies at the overseas complexes. These experiments are either in microwave spectroscopy or very long baseline interferometry. Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech President's Fund that involve TMOD are included. This and each succeeding issue of 'The Telecommunications and Data Acquisition Progress Report' will present material in some, but not necessarily all, of the aforementioned programs.

  14. Augmenting the SCaN Link Budget Tool with Validated Atmospheric Propagation

    NASA Technical Reports Server (NTRS)

    Steinkerchner, Leo; Welch, Bryan

    2017-01-01

    In any Earth-Space or Space-Earth communications link, atmospheric effects cause significant signal attenuation. In order to develop a communications system that is cost effective while meeting appropriate performance requirements, it is important to accurately predict these effects for the given link parameters. This project aimed to develop a Matlab(TradeMark) (The MathWorks, Inc.) program that could augment the existing Space Communications and Navigation (SCaN) Link Budget Tool with accurate predictions of atmospheric attenuation of both optical and radio-frequency signals according to the SCaN Optical Link Assessment Model Version 5 and the International Telecommunications Union, Radiocommunications Sector (ITU-R) atmospheric propagation loss model, respectively. When compared to data collected from the Advance Communications Technology Satellite (ACTS), the radio-frequency model predicted attenuation to within 1.3 dB of loss for 95 of measurements. Ultimately, this tool will be integrated into the SCaN Center for Engineering, Networks, Integration, and Communications (SCENIC) user interface in order to support analysis of existing SCaN systems and planning capabilities for future NASA missions.

  15. Living in space, book 2, levels D, E, F

    NASA Technical Reports Server (NTRS)

    Andrews, Sheila Briskin; Kirschenbaum, Audrey

    1987-01-01

    In June 1984, President Reagan announced a new NASA program, Operation Liftoff. For more than 25 years NASA has pioneered on the cutting edge of science and technology and has stimulated our young people to strive for excellence in all they do. This program is designed to encourage pupils in the nation's elementary schools to take a greater interest in mathematics and science. Areas addressed include: food, clothing, health, housing, communication, and working in space.

  16. Satellites at work (Space in the seventies)

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1971-01-01

    The use of satellites in the areas of communications, meteorology, geodesy, navigation, air traffic control, and earth resources technology is discussed. NASA contributions to various programs are reviewed.

  17. Space Station program status and research capabilities

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1995-01-01

    Space Station will be a permanent orbiting laboratory in space which will provide researchers with unprecedented opportunities for access to the space environment. Space Station is designed to provide essential resources of volume, crew, power, data handling and communications to accommodate experiments for long-duration studies in technology, materials and the life sciences. Materials and coatings for exposure research will be supported by Space Station, providing new knowledge for applications in Earthbased technology and future space missions. Space Station has been redesigned at the direction of the President. The redesign was performed to significantly reduce development, operations and utilization costs while achieving many of the original goals for long duration scientific research. An overview of the Space Station Program and capabilities for research following the redesign is presented below. Accommodations for pressurized and external payloads are described.

  18. Message Passing and Shared Address Space Parallelism on an SMP Cluster

    NASA Technical Reports Server (NTRS)

    Shan, Hongzhang; Singh, Jaswinder P.; Oliker, Leonid; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Currently, message passing (MP) and shared address space (SAS) are the two leading parallel programming paradigms. MP has been standardized with MPI, and is the more common and mature approach; however, code development can be extremely difficult, especially for irregularly structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality and high protocol overhead. In this paper, we compare the performance of and the programming effort required for six applications under both programming models on a 32-processor PC-SMP cluster, a platform that is becoming increasingly attractive for high-end scientific computing. Our application suite consists of codes that typically do not exhibit scalable performance under shared-memory programming due to their high communication-to-computation ratios and/or complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of our applications, while being competitive for the others. A hybrid MPI+SAS strategy shows only a small performance advantage over pure MPI in some cases. Finally, improved implementations of two MPI collective operations on PC-SMP clusters are presented.

  19. Business in orbit - The commercial use of space

    NASA Technical Reports Server (NTRS)

    Gillam, I. T., IV

    1985-01-01

    Current and proposed business opportunities in space are discussed. The advantages offered by the zero gravity environment of space are examined. The roles of the Space Shuttle and the Space Station in space commercialization are described. International development and use of the Space Station is proposed. It is observed that the communications satellite industry is a successful space venture, and opportunities for materials processing and pharmaceuticals production in space are considered. The relationship between NASA's Office of Commercial Programs, which assists businesses in space commercialization, and industry is studied. The impact of space commercialization on the national economy and international trade is analyzed.

  20. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA.

  1. TDRS-L Pre-Launch Press Conference

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed preparations for the launch of NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Participants included Andy Kopito, Civil Space Programs director for Boeing Space & Intelligence Systems in El Segundo, Calif. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Frankie Martin

  2. Space Product Development: Bringing the Benefits of Space Down to Earth

    NASA Technical Reports Server (NTRS)

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  3. National Directory of NASA Space Grant Contacts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Congress enacted the National Space Grant College and Fellowship Program (also known as Space Grant). NASA's Space Grant Program funds education, research, and public service programs in all 50 States, the District of Columbia, and the Commonwealth of Puerto Rico through 52 university-based Space Grant consortia. These consortia form a network of colleges and universities, industry partners, State and local Government agencies, other Federal agencies, museum and science centers, and nonprofit organizations, all with interests in aerospace education, research, and training. Space Grant programs emphasize the diversity of human resources, the participation of students in research, and the communication of the benefits of science and technology to the general public. Each year approximately one-third of the NASA Space Grant funds support scholarships and fellowships for United States students at the undergraduate and graduate levels. Typically, at least 20 percent of these awards go to students from underrepresented groups, and at least 40 percent go to women. Most Space Grant student awards include a mentored research experience with university faculty or NASA scientists or engineers. Space Grant consortia also fund curriculum enhancement and faculty development programs. Consortia members administer precollege and public service education programs in their States. The 52 consortia typically leverage NASA funds with matching contributions from State, local, and other university sources, which more than double the NASA funding. For more information, consult the Space Grant Web site at http://education.nasa.gov/spacegrant/

  4. A Sustainable, Reliable Mission-Systems Architecture that Supports a System of Systems Approach to Space Exploration

    NASA Technical Reports Server (NTRS)

    Watson, Steve; Orr, Jim; O'Neil, Graham

    2004-01-01

    A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.

  5. Costs and benefits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Two models of cost benefit analysis are illustrated and the application of these models to assessing the economic scope of space applications programs was discussed. Four major areas cited as improvable through space derived information - food supply and distribution, energy sources, mineral reserves, and communication and navigation were - discussed. Specific illustrations are given for agriculture and maritime traffic.

  6. Space power tubes - very much alive

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1983-01-01

    The application of the traveling wave tubes (TWT), the backbone of all civilian and military space communication programs, to past, present and future satellites is discussed. Performance characteristics and the trends and challenges in the future are reviewed. Finally, a comparison with Solid State devices, as derived from fundamental laws, is made and limitations discussed.

  7. 14 CFR 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Unified Visual... ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified Visual...

  8. 14 CFR § 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Establishment of the NASA Unified Visual... ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified Visual...

  9. 14 CFR 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Unified Visual... ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified Visual...

  10. Investigating the Activities of Children toward a Smart Storytelling Toy

    ERIC Educational Resources Information Center

    Kara, Nuri; Aydin, Cansu Cigdem; Cagiltay, Kursat

    2013-01-01

    This paper introduces StoryTech, a smart storytelling toy that features a virtual space, which includes computer-based graphics and characters, and a real space, which includes plush toys, background cards, and a communication interface. When children put real objects on the receiver panel, the computer program shows related backgrounds and…

  11. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports are given on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA), including space communications, radio navigation, radio science, ground-based radio and radar astronomy, and the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations. Also included is TDA-funded activity at JPL on data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations for searching the microwave spectrum are reported. Use of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets are discussed.

  12. 14 CFR 1216.301 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... fall within any of the four NASA budget categories: Research and Development (R&D), Construction of Facilities (CoF), Research and Program Management (R&PM), and Space Flight Control and Data Communications...

  13. Apollo experience report: Lunar module communications system

    NASA Technical Reports Server (NTRS)

    Dietz, R. H.; Rhoades, D. E.; Davidson, L. J.

    1972-01-01

    The development of the lunar module communications system is traced from the initial concept to the operational system used on manned lunar missions. The problems encountered during the development, the corrective actions taken, and recommendations for similar equipment in future programs are included. The system was designed to provide communications between the lunar module and the manned space flight network, between the lunar module and the command and service module, and between the lunar module and the extravehicular crewmen. The system provided the equipment necessary for voice, telemetry, and television communications; ranging information; and various communications links.

  14. Architectural Methodology Report

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    The establishment of conventions between two communicating entities in the end systems is essential for communications. Examples of the kind of decisions that need to be made in establishing a protocol convention include the nature of the data representation, the for-mat and the speed of the date representation over the communications path, and the sequence of control messages (if any) which are sent. One of the main functions of a protocol is to establish a standard path between the communicating entities. This is necessary to create a virtual communications medium with certain desirable characteristics. In essence, it is the function of the protocol to transform the characteristics of the physical communications environment into a more useful virtual communications model. The final function of a protocol is to establish standard data elements for communications over the path; that is, the protocol serves to create a virtual data element for exchange. Other systems may be constructed in which the transferred element is a program or a job. Finally, there are special purpose applications in which the element to be transferred may be a complex structure such as all or part of a graphic display. NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to describe the methodologies used in developing a protocol architecture for an in-space Internet node. The node would support NASA:s four mission areas: Earth Science; Space Science; Human Exploration and Development of Space (HEDS); Aerospace Technology. This report presents the methodology for developing the protocol architecture. The methodology addresses the architecture for a computer communications environment. It does not address an analog voice architecture.

  15. An integral equation formulation for predicting radiation patterns of a space shuttle annular slot antenna

    NASA Technical Reports Server (NTRS)

    Jones, J. E.; Richmond, J. H.

    1974-01-01

    An integral equation formulation is applied to predict pitch- and roll-plane radiation patterns of a thin VHF/UHF (very high frequency/ultra high frequency) annular slot communications antenna operating at several locations in the nose region of the space shuttle orbiter. Digital computer programs used to compute radiation patterns are given and the use of the programs is illustrated. Experimental verification of computed patterns is given from measurements made on 1/35-scale models of the orbiter.

  16. NASA and Orbital ATK CRS-7 Prelaunch News Conference

    NASA Image and Video Library

    2017-04-17

    In the NASA Kennedy Space Center's Press Site auditorium, agency and industry leaders brief the media about the upcoming launch of Orbital ATK’s seventh commercial resupply services mission to the International Space Station. Orbital ATK has contracted with United Launch Alliance for its Atlas V rocket for the launch service which will lift off from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Under NASA’s first Commercial Resupply Services contract, more than 7,600 pounds of science research, crew supplies and hardware will be delivered to the orbiting laboratory in support of the crew members. Briefing participants: -George Diller, NASA Communications -Joel Montalbano, Deputy Manager, NASA International Space Station Program -Vern Thorp, Program Manager for Commercial Missions, United Launch Alliance -Frank Culbertson, President, Space Systems Group, Orbital ATK -Tara Ruttley, Associate Program Scientist, JSC -David Craft, Weather Officer, 45th Weather Squadron

  17. Analysis and critical assessment of the current and near future plans of the Brazilian satellite applications program and its role in the global space program

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator)

    1983-01-01

    Brazilian programs using satellites for remote sensing, meteorology and communications are analyzed including their current status and near future plans. The experience gained and available information are used to critically discuss some aspects of great importance for the existing and prospective user countries.

  18. Message Passing vs. Shared Address Space on a Cluster of SMPs

    NASA Technical Reports Server (NTRS)

    Shan, Hongzhang; Singh, Jaswinder Pal; Oliker, Leonid; Biswas, Rupak

    2000-01-01

    The convergence of scalable computer architectures using clusters of PCs (or PC-SMPs) with commodity networking has become an attractive platform for high end scientific computing. Currently, message-passing and shared address space (SAS) are the two leading programming paradigms for these systems. Message-passing has been standardized with MPI, and is the most common and mature programming approach. However message-passing code development can be extremely difficult, especially for irregular structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality, and high protocol overhead. In this paper, we compare the performance of and programming effort, required for six applications under both programming models on a 32 CPU PC-SMP cluster. Our application suite consists of codes that typically do not exhibit high efficiency under shared memory programming. due to their high communication to computation ratios and complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of our applications: however, on certain classes of problems SAS performance is competitive with MPI. We also present new algorithms for improving the PC cluster performance of MPI collective operations.

  19. The issue is leadership. [Space Station program

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.

    1985-01-01

    Four NASA Phase B centers (NASA-Johnson, NASA-Marshall, NASA-Goddard, and NASA-Lewis) are responsible for construction, assembly, servicing, habitat, and other particular tasks and functions of the Space Station. The project has been joined by the aerospace programs of Canada, Japan, and the European Space Agency, ensuring technological and financial support, and cooperative use by the participants. Some of the future uses of the Space Station include biomedical research and applications; experiments in solar-terrestrial physics and astronomy; building, maintenance, and launching of space instruments and planetary missions; manufacturing and processing of materials that call for the conditions of microgravity and weightlessness; supporting communication operations; and improving earth and atmospheric observations. The political significance of the Space Station as a symbol of leadership and of friendly cooperation is noted.

  20. CICT Computing, Information, and Communications Technology Program

    NASA Technical Reports Server (NTRS)

    Laufenberg, Lawrence; Tu, Eugene (Technical Monitor)

    2002-01-01

    The CICT Program is part of the NASA Aerospace Technology Enterprise's fundamental technology thrust to develop tools. processes, and technologies that enable new aerospace system capabilities and missions. The CICT Program's four key objectives are: Provide seamless access to NASA resources- including ground-, air-, and space-based distributed information technology resources-so that NASA scientists and engineers can more easily control missions, make new scientific discoveries, and design the next-generation space vehicles, provide high-data delivery from these assets directly to users for missions, develop goal-oriented human-centered systems, and research, develop and evaluate revolutionary technology.

  1. Development of a computer program to generate typical measurement values for various systems on a space station

    NASA Technical Reports Server (NTRS)

    Deacetis, Louis A.

    1987-01-01

    The elements of a simulation program written in Ada were developed. The program will eventually serve as a data generator of typical readings from various space station equipment involved with Communications and Tracking, and will simulate various scenarios that may arise due to equipment malfunction or failure, power failure, etc. In addition, an evaluation of the Ada language was made from the viewpoint of a FORTRAN programmer learning Ada for the first time. Various strengths and difficulties associated with the learning and use of Ada are considered.

  2. Environmental projects. Volume 1: Polychlorinated biphenyl (PCB) abatement program

    NASA Technical Reports Server (NTRS)

    Kushner, L.

    1987-01-01

    Six large parabolic dish antennas are located at the Goldstone Deep Space Communications Complex north of Barstow, California. Some of the ancillary electrical equipment of thes Deep Space Stations, particularly transformers and power capicitors, were filled with stable, fire-retardant, dielectric fluids containing substances called polychlorobiphenyls (PCBs). Because the Environmental Protection Agency has determined that PCBs are environmental pollutants toxic to humans, all NASA centers have been asked to participate in a PCB-abatement program. Under the supervision of JPL's Office of Telecommunications and Data Acquisition, a two-year long PCB-abatement program has eliminated PCBs from the Goldstone Complex.

  3. Apollo 13 - Mission Control Console

    NASA Image and Video Library

    1970-04-15

    S70-35096 (16 April 1970) --- As the problem-plagued Apollo 13 crewmen entered their final 24 hours in space, several persons important to the mission remained attentive at consoles in the Mission Operations Control Room of the Mission Control Center at Manned Spacecraft Center. Among those monitoring communications and serving in supervisory capacities were these four officials from National Aeronautics and Space Administration Headquarters, Washington, D.C.: (from left) Thomas H. McMullen, Office of Manned Space Flight, who served as Shift 1 mission director; Dale Myers, associate administrator, Manned Space Flight; Chester M. Lee of the Apollo Program Directorate, OMSF, Apollo 13 mission director; and Dr. Rocco A. Petrone, Apollo program director, OMSF.

  4. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  5. Program Support Communications Network (PSCN) facsimile system directory

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This directory provides a system description, a station listing, and operating procedures for the Program Support Communications Network (PSCN) NASA Facsimile System. The NASA Facsimile System is a convenient and efficient means of spanning the distance, time, and cost of transmitting documents from one person to another. In the spectrum of communication techniques, facsimile bridges the gap between mail and data transmission. Facsimile can transmit in a matter of minutes or seconds what would take a day or more by mail delivery. The NASA Facsimile System is composed of several makes and models of facsimile machines. The system also supports the 3M FaxXchange network controllers located at Marshall Space Flight Center (MSFC).

  6. A simple modern correctness condition for a space-based high-performance multiprocessor

    NASA Technical Reports Server (NTRS)

    Probst, David K.; Li, Hon F.

    1992-01-01

    A number of U.S. national programs, including space-based detection of ballistic missile launches, envisage putting significant computing power into space. Given sufficient progress in low-power VLSI, multichip-module packaging and liquid-cooling technologies, we will see design of high-performance multiprocessors for individual satellites. In very high speed implementations, performance depends critically on tolerating large latencies in interprocessor communication; without latency tolerance, performance is limited by the vastly differing time scales in processor and data-memory modules, including interconnect times. The modern approach to tolerating remote-communication cost in scalable, shared-memory multiprocessors is to use a multithreaded architecture, and alter the semantics of shared memory slightly, at the price of forcing the programmer either to reason about program correctness in a relaxed consistency model or to agree to program in a constrained style. The literature on multiprocessor correctness conditions has become increasingly complex, and sometimes confusing, which may hinder its practical application. We propose a simple modern correctness condition for a high-performance, shared-memory multiprocessor; the correctness condition is based on a simple interface between the multiprocessor architecture and a high-performance, shared-memory multiprocessor; the correctness condition is based on a simple interface between the multiprocessor architecture and the parallel programming system.

  7. CRS-12 Post-Launch News Conference

    NASA Image and Video Library

    2017-08-14

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the liftoff of SpaceX CRS-12, a commercial resupply services mission to the International Space Station. Stephanie Martin of NASA Communications, Dan Hartman, NASA deputy manager of the International Space Station Program, and Hans Koenigsmann, SpaceX vice president of Flight and Build Reliability. SpaceX CRS-12 lifted off atop a Falcon 9 rocket from Kennedy's Launch Complex 39A at 12:31 p.m. EDT.

  8. System Specification for ADA Integrated Environment Type A AIE(1).

    DTIC Science & Technology

    1982-11-12

    includes program library support tools and the linker. The program library is the means by which the AIE supports independent, modular program development...KAPSE TUOL COMMUNICATION Package KAPSE-KAPS ECOMMUNICATION (KAPSE.RTS) (Most of it, except the "Language-Defined Packages" CPC) The overall...including classification of errors by severity; 5. perform optimizations for timing and/or space, without changing the functional meaning of a program by the

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1993-01-01

    Reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other agencies through NASA.

  10. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    Reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other agencies through NASA.

  11. Defense Advanced Research Projects Agency Technology Transition

    DTIC Science & Technology

    1997-01-01

    detection of nuclear testing in space , navigation, meteo- rological monitoring, and communication. These early activities were transferred to the Military...used to detect nuclear tests in space and in the atmosphere as part of the overall basis for verification of a future nuclear test ban treaty. The first...background data to detect nuclear explosions taking place in space , and eventually also in the earth’s atmosphere. The program developed x-ray, neutron

  12. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.

  13. Strategic Studies Quarterly. Volume 10, Number 2, Summer 2016

    DTIC Science & Technology

    2016-01-01

    munitions, and networked command, control, communications , com- puters, intelligence, surveillance, and reconnaissance (C4ISR) has been a vital... communications , space capabilities, and networked intelligence, surveillance, and recon- naissance (ISR). The rapid pace of this proliferation is...intensity akin to that of the Manhattan Project or the Apollo Program. Building upon recent actions by Congress and DOD leadership, the next secretary of

  14. ESA's satellite communications programme

    NASA Astrophysics Data System (ADS)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  15. SpaceX CRS-14 Post Launch Conference

    NASA Image and Video Library

    2018-04-02

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the successful liftoff of SpaceX CRS-14, a commercial resupply services mission to the International Space Station. Participants included Josh Finch of NASA Communications, Joel Montalbano, deputy manager of the International Space Station Program, and Jessica Jensen, director of Dragon Mission Management at SpaceX. SpaceX CRS-14 lifted off atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 4:30 p.m. EDT.

  16. A Concept of Constructing a Common Information Space for High Tech Programs Using Information Analytical Systems

    NASA Astrophysics Data System (ADS)

    Zakharova, Alexandra A.; Kolegova, Olga A.; Nekrasova, Maria E.

    2016-04-01

    The paper deals with the issues in program management used for engineering innovative products. The existing project management tools were analyzed. The aim is to develop a decision support system that takes into account the features of program management used for high-tech products: research intensity, a high level of technical risks, unpredictable results due to the impact of various external factors, availability of several implementing agencies. The need for involving experts and using intelligent techniques for information processing is demonstrated. A conceptual model of common information space to support communication between members of the collaboration on high-tech programs has been developed. The structure and objectives of the information analysis system “Geokhod” were formulated with the purpose to implement the conceptual model of common information space in the program “Development and production of new class mining equipment - “Geokhod”.

  17. Space Communications and Navigation (SCaN) Integrated Network Architecture Definition Document (ADD). Volume 1; Executive Summary; Revision 1

    NASA Technical Reports Server (NTRS)

    Younes, Badri A.; Schier, James S.

    2010-01-01

    The SCaN Program has defined an integrated network architecture that fully meets the Administrator s mandate to the Program, and will result in a NASA infrastructure capable of providing the needed and enabling communications services to future space missions. The integrated network architecture will increase SCaN operational efficiency and interoperability through standardization, commonality and technology infusion. It will enable NASA missions requiring advanced communication and tracking capabilities such as: a. Optical communication b. Antenna arraying c. Lunar and Mars Relays d. Integrated network management (service management and network control) and integrated service execution e. Enhanced tracking for navigation f. Space internetworking with DTN and IP g. End-to-end security h. Enhanced security services Moreover, the SCaN Program has created an Integrated Network Roadmap that depicts an orchestrated and coherent evolution path toward the target architecture, encompassing all aspects that concern network assets (i.e., operations and maintenance, sustaining engineering, upgrade efforts, and major development). This roadmap identifies major NASA ADPs, and shows dependencies and drivers among the various planned undertakings and timelines. The roadmap is scalable to accommodate timely adjustments in response to Agency needs, goals, objectives and funding. Future challenges to implementing this architecture include balancing user mission needs, technology development, and the availability of funding within NASA s priorities. Strategies for addressing these challenges are to: define a flexible architecture, update the architecture periodically, use ADPs to evaluate options and determine when to make decisions, and to engage the stakeholders in these evaluations. In addition, the SCaN Program will evaluate and respond to mission need dates for technical and operational capabilities to be provided by the SCaN integrated network. In that regard, the architecture defined in this ADD is scalable to accommodate programmatic and technical changes.

  18. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space communication. The DRTS setup thus developed serves as an important and inexpensive test bench for trying out remote controlled applications on the rover, for example, from an earth station. The simulation is modular and the system is composable. Each of the processes can be aug-mented with relevant simulation modules that handle the events to simulate specific function-alities. With stringent energy saving requirements on most rovers, such a simulation set up, for example, can be used to design optimal rover movement control strategies from the orbiter in conjunction with autonomous systems on the rover itself. References 1. Lunar and Planetary Department, Moscow University, Lunokhod 1, "http://selena.sai.msu.ru/Home/Spa 2. NASA History Office, Guidelines for Advanced Manned Space Vehicle Program, "http://history.nasa.gov 35ann/AMSVPguidelines/top.htm" 3. Consultative Committee For Space Data Systems, "Proximity-1 Space Link Protocol" CCSDS 211.0-B-1 Blue Book. October 2002. 4. Segui, J. and Jennings, E., "Delay Tolerant Networking-Bundle Protocol Simulation", in Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Infor-mation Technology, 2006.

  19. THE ACTIVITY/SPACE, A LEAST COMMON DENOMINATOR FOR ARCHITECTURAL PROGRAMMING.

    ERIC Educational Resources Information Center

    HAVILAND, DAVID S.

    TWO INTERRELATED PROBLEM AREAS OF ARCHITECTURAL PROGRAMING ARE DISCUSSED--(1) "NEEDS DEFINITION," AND (2) "NEEDS DOCUMENTATION AND COMMUNICATION". FUNDAMENTAL ISSUES AND WORK OF THE CENTER FOR ARCHITECTURAL RESEARCH ARE PRESENTED. ISSUES ARE THE FAILURE TO RECOGNIZE HOW, WHEN, AND IN WHAT FORM THE NEED WILL BE USED. CRITERIA FORMULATION MUST BE…

  20. The University of Alabama's Integrated Science Program.

    ERIC Educational Resources Information Center

    Rainey, Larry; Mitrook, Kim

    This program, supported by the Center for Communication and Educational Technology at the University of Alabama, incorporates the perspectives of biology, earth/space science, chemistry, and physics into an innovative science curriculum for the middle grades. Students are engaged for 20 minutes 3 times a week by an on-air instructor who is doing…

  1. NASA NDE Program

    NASA Technical Reports Server (NTRS)

    Generazio, Ed; Burke, Eric

    2015-01-01

    The current activities in the National Aeronautics and Space Administration Nondestructive Evaluation (NDE) Program are presented. The topics covered include organizational communications, orbital weld inspection, electric field imaging, fracture critical probability of detection validation, monitoring of thermal protection systems, physical and document standards, image quality indicators, integrity of composite pressure vessels, and NDE for additively manufactured components.

  2. Early Program Development

    NASA Image and Video Library

    1960-01-01

    This 1960 artist's concept shows a 24-hour communication satellite design incorporating an arc engine with a nuclear power source. The concept was one of many missions proposed by the Marshall Space Flight Center for electrically-propelled spacecraft.

  3. Chinese space and aviation industries score major breakthroughs

    NASA Technical Reports Server (NTRS)

    Hu, R.

    1986-01-01

    An overview of the current status of China's aviation and aerospace industries is presented, as well as planned future development and areas of importance for China's future space programs. The development of China's CZ-1, CZ-2 and CZ-3 rocket program is discussed, as well as China's satellite launch capabilities. China's first geostationary communications satellite STW-1 is also mentioned, and further development of the second and third communications satellites to be launched in 1987 are shown. Other developments include a seventh low Earth orbiting photographic reconnaissance satellite, plans for an image transmitting remote sensing satellite to be launched in 1988 to 1990, and other satellite developments. The Chinese-designed Y-10 transport aircraft is discussed, as well as the TU-16 bomber aircraft and the co-production agreement with McDonnell Douglas for the MD-82 passenger aircraft.

  4. Korea Earth Observation Satellite Program

    NASA Astrophysics Data System (ADS)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real- time environmental observation for meteorological mission on the geosynchronous orbit for public services. The CBMS is expected to weigh about 2 ~ 2.5 tons, and 6 channels of Ka-band and S- band transponder are equipped for communications service and observation payloads such as meteorological and ocean sensors. To increase the reliability of the first CBMS, a cooperative development with advanced foreign companies of the space business is being considered.

  5. SpaceX CRS-11 Post-Launch News Conference

    NASA Image and Video Library

    2017-06-03

    NASA Television held a post launch news conference from Kennedy Space Center’s Press Site recapping the successful launch of SpaceX CRS-11 atop a Falcon 9 rocket from Space Launch Complex 39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. SpaceX’s Dragon spacecraft carried almost 6,000 pounds of cargo to the orbiting laboratory as SpaceX’s eleventh commercial resupply services mission to the International Space Station. The Falcon 9 rocket returned successfully to the pad about eight minutes after launching. Participants included: -Mike Curie, NASA Communications -Kirk Shireman, Manager, International Space Station Program -Hans Koenigsmann, Vice President of Flight Reliability, SpaceX

  6. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    This quarterly publication provides archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on the activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data, information systems, and reimbursable DSN work performed for other space agencies through NASA.

  7. The Chronicles Wall

    NASA Image and Video Library

    2017-05-03

    Brass plaques engraved with the names of "The Chroniclers" create a roll of honor on the wall at the NASA News Center at Kennedy Space Center in Florida. In this facility reporters from television, radio, print and online media outlets have monitored countless launches, landings and other space events in order to deliver the news to the world. The Chroniclers program recognizes retirees of the news and communications business who helped spread news of American space exploration from Kennedy Space Center for ten years or more.

  8. The Chronicles Wall

    NASA Image and Video Library

    2017-05-03

    Brass plaques engraved with the names of "The Chroniclers" adorn the wall at the NASA News Center at Kennedy Space Center in Florida. In the foreground are rows of stations where reporters from television, radio, print and online media outlets have monitored countless launches, landings and other space events in order to deliver the news to the world. The Chroniclers program recognizes retirees of the news and communications business who helped spread news of American space exploration from Kennedy Space Center for ten years or more.

  9. Aerospace century XXI: Space sciences, applications, and commercial developments; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgenthaler, G.W.; Koster, J.N.

    1987-01-01

    Papers are presented on rocket UV observations of Comet Halley, a space system for microgravity research, transitioning from Spacelab to Space Station science, and assemblers and future space hardware. Also considered are spatial and temporal scales of atmospheric disturbances, Doppler radar for prediction and warning, data management for the Columbus program, communications satellites of the future, and commercial launch vehicles. Other topics include space geodesy and earthquake predictions, inverted cellular radio satellite systems, material processing in space, and potential for earth observations from the manned Space Station.

  10. Proceedings of the Twenty-First NASA Propagation Experiments Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry. NAPEX XXI took place in El Segundo, California on June 11-12, 1997 and consisted of three sessions. Session 1, entitled "ACTS Propagation Study Results & Outcome " covered the results of 20 station-years of Ka-band radio-wave propagation experiments. Session 11, 'Ka-band Propagation Studies and Models,' provided the latest developments in modeling, and analysis of experimental results about radio wave propagation phenomena for design of Ka-band satellite communications systems. Session 111, 'Propagation Research Topics,' covered a diverse range of propagation topics of interest to the space community, including overviews of handbooks and databases on radio wave propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997 and consisted of a technical session in the morning and a plenary session in the afternoon. The morning session covered updates on the status of the ACTS Project & Propagation Program, engineering support for ACTS Propagation Terminals, and the Data Center. The plenary session made specific recommendations for the future direction of the program.

  11. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  12. Integration of communications and tracking data processing simulation for space station

    NASA Technical Reports Server (NTRS)

    Lacovara, Robert C.

    1987-01-01

    A simplified model of the communications network for the Communications and Tracking Data Processing System (CTDP) was developed. It was simulated by use of programs running on several on-site computers. These programs communicate with one another by means of both local area networks and direct serial connections. The domain of the model and its simulation is from Orbital Replaceable Unit (ORU) interface to Data Management Systems (DMS). The simulation was designed to allow status queries from remote entities across the DMS networks to be propagated through the model to several simulated ORU's. The ORU response is then propagated back to the remote entity which originated the request. Response times at the various levels were investigated in a multi-tasking, multi-user operating system environment. Results indicate that the effective bandwidth of the system may be too low to support expected data volume requirements under conventional operating systems. Instead, some form of embedded process control program may be required on the node computers.

  13. The development of composite materials for spacecraft precision reflector panels

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.

    1990-01-01

    One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.

  14. Habitability issues in long duration undersea and space missions

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Every, M. G.

    1972-01-01

    The report reviews a number of studies in the area of habitability. Emphasis was placed on extracting from these studies that information most relevant to any long-term mission in confinement. It is concluded that, whereas the basic laws of habitability are known, there is much yet to be learned concerning development of social structures in small groups in relative isolation, planning for necessary hygiene needs, development of proper work spaces, and construction of internal and external communications systems. With respect to testing for habitability and the documentation of habitability principles, the space program was found to be considerably more advanced than was the program for undersea missions.

  15. Summer graduate research program for interns in science and engineering

    NASA Technical Reports Server (NTRS)

    Lee, Clinton B.

    1992-01-01

    The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; prediction of atmospheric ozone content; and applications of industrial engineering.

  16. Summer graduate research program for interns in science and engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.B.

    1992-03-01

    The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; predictionmore » of atmospheric ozone content; and applications of industrial engineering.« less

  17. The potential impact of microgravity science and technology on education

    NASA Technical Reports Server (NTRS)

    Wargo, M. J.

    1992-01-01

    The development of educational support materials by NASA's Microgravity Science and Applications Division is discussed in the light of two programs. Descriptions of the inception and application possibilities are given for the Microgravity-Science Teacher's Guide and the program of Undergraduate Research Opportunities in Microgravity Science and Technology. The guide is intended to introduce students to the principles and research efforts related to microgravity, and the undergraduate program is intended to reinforce interest in the space program. The use of computers and electronic communications is shown to be an important catalyst for the educational efforts. It is suggested that student and teacher access to these programs be enhanced so that they can have a broader impact on the educational development of space-related knowledge.

  18. TDRS-L Pre-Launch Press Conference

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed preparations for the launch of NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Participants included Clay Flinn, launch weather officer for the 45th Weather Squadron at Cape Canaveral Air Force Station, Fla. Seated behind Flinn is Andy Kopito, Civil Space Programs director for Boeing Space & Intelligence Systems in El Segundo, Calif. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Frankie Martin

  19. Research-to-operations (R2O) for the Space Environmental Effects Fusion System (SEEFS) system-impact products

    NASA Astrophysics Data System (ADS)

    Quigley, Stephen

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Branch of the Space and Missile Systems Center (SMC SLG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command's (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems. Jointly developed projects that have been completed as prototypes and are undergoing development for real-time operations include a SEEFS architecture and database, five system-impact products, and a high-level decision aid product. This first round of SEEFS products includes the Solar Radio Burst Effects (SoRBE) on radar and satellite communications, Radar Auroral Clutter (RAC), Scintillation Effects on radar and satellite communications (RadScint and SatScint), and Satellite Surface and Deep Charge/Discharge (Char/D) products. This presentation will provide overviews of the current system impact products, along with plans and potentials for future products expected for the SEEFS program. The overviews will include information on applicable research-to-operations (R2O) issues, to include input data coverage and quality control, output confidence levels, modeling standards, and validation efforts.

  20. Orbital ATK CRS-7 What's on Board Science Briefing

    NASA Image and Video Library

    2017-04-17

    NASA Television held two “What’s on Board” science mission briefings from Kennedy Space Center's Press Site to discuss some of the science headed to the International Space Station on Orbital ATK’s seventh commercial resupply services mission, CRS-7. Orbital ATK’s Cygnus spacecraft will carry more than 7,600 pounds of science research, crew supplies, and hardware to the orbiting laboratory. CRS-7 will lift off atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Part I Briefing participants were: -Cheryl Warner, NASA Communications -Tara Ruttley, Associate Program Scientist, JSC -Michael Roberts, Deputy Chief Scientist, CASIS -Bryan Onate, Project Manager, Advanced Plant Habitat, Kennedy Space Center -Howard Levine, Project Scientist, Advanced Plant Habitat, Kennedy Space Center -Sourav Sinha, Principle Investigator for ADCs in Microgravity, Oncolinx -Julian Rubinfien, Genes in Space II winner -Sebastian Kraves, Co-founder, Genes in Space -Henry Martin, External Payloads Coordinator, NanoRacks -Davide Massutti, QB50 CubeSats, Von Karman Institute Part II Briefing participants were: -Jason Townsend, NASA Communications -Joe Fust, Mission Integrator, United Launch Alliance -Paul Escalera, Orbital ATK Staff Systems Engineer Part II Briefing participants were: -Jason Townsend, NASA Communications -Joe Fust, Mission Integrator, United Launch Alliance -Paul Escalera, Orbital ATK Staff Systems Engineer

  1. The Laser Communications Relay Demonstration Experiment Program

    NASA Technical Reports Server (NTRS)

    Israel, Dave

    2017-01-01

    This paper elaborates on the Laser Communications Relay Demonstration (LCRD) Experiment Program, which will engage in a number of pre-determined experiments and also call upon a wide variety of experimenters to test new laser communications technology and techniques, and to gather valuable data. LCRD is a joint project between NASAs Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will test the functionality in various settings and scenarios of optical communications links from a GEO payload to ground stations in Southern California and Hawaii over a two-year period following launch in 2019. The LCRD investigator team will execute numerous experiments to test critical aspects of laser communications activities over real links and systems, collecting data on the effects of atmospheric turbulence and weather on performance and communications availability. LCRD will also incorporate emulations of target scenarios, including direct-to-Earth (DTE) links from user spacecraft and optical relay providers supporting user spacecraft. To supplement and expand upon the results of these experiments, the project also includes a Guest Experimenters Program, which encourages individuals and groups from government agencies, academia and industry to propose diverse experiment ideas.

  2. The Laser Communications Relay Demonstration Experiment Program

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Edwards, Bernard L.; Moores, John D.; Piazzolla, Sabino; Merritt, Scott

    2017-01-01

    This paper elaborates on the Laser Communications Relay Demonstration (LCRD) Experiment Program, which will engage in a number of pre-determined experiments and also call upon a wide variety of experimenters to test new laser communications technology and techniques, and to gather valuable data. LCRD is a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will test the functionality in various settings and scenarios of optical communications links from a GEO (Geosynchronous Earth Orbit) payload to ground stations in Southern California and Hawaii over a two-year period following launch in 2019. The LCRD investigator team will execute numerous experiments to test critical aspects of laser communications activities over real links and systems, collecting data on the effects of atmospheric turbulence and weather on performance and communications availability. LCRD will also incorporate emulations of target scenarios, including direct-to-Earth (DTE) links from user spacecraft and optical relay providers supporting user spacecraft. To supplement and expand upon the results of these experiments, the project also includes a Guest Experimenters Program, which encourages individuals and groups from government agencies, academia and industry to propose diverse experiment ideas.

  3. Advanced Communications Technology Satellite (ACTS): Four-Year System Performance

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Bauer, Robert; Krawczyk, Richard J.; Reinhart, Richard C.; Zernic, Michael J.; Gargione, Frank

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) was conceived at the National Aeronautics and Space Administration (NASA) in the late 1970's as a follow-on program to ATS and CTS to continue NASA's long history of satellite communications projects. The ACTS project set the stage for the C-band satellites that started the industry, and later the ACTS project established the use of Ku-band for video distribution and direct-to-home broadcasting. ACTS, launched in September 1993 from the space shuttle, created a revolution in satellite system architecture by using digital communications techniques employing key technologies such as a fast hopping multibeam antenna, an on-board baseband processor, a wide-band microwave switch matrix, adaptive rain fade compensation, and the use of 900 MHz transponders operating at Ka-band frequencies. This paper describes the lessons learned in each of the key ACTS technology areas, as well as in the propagation investigations.

  4. The telecommunications and data acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1980-01-01

    Radio astronomy and radio interferometry at microwave frequencies are discussed. Other topics concerning the Deep Space Network include program planning, planetary and interplanetary mission support, tracking and ground based navigation, communications, and station control and system technology.

  5. Shuttle user analysis (study 2.2): Volume 3. Business Risk And Value of Operations in space (BRAVO). Part 4: Computer programs and data look-up

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Computer program listings as well as graphical and tabulated data needed by the analyst to perform a BRAVO analysis were examined. Graphical aid which can be used to determine the earth coverage of satellites in synchronous equatorial orbits was described. A listing for satellite synthesis computer program as well as a sample printout for the DSCS-11 satellite program and a listing of the symbols used in the program were included. The APL language listing for the payload program cost estimating computer program was given. This language is compatible with many of the time sharing remote terminals computers used in the United States. Data on the intelsat communications network was studied. Costs for telecommunications systems leasing, line of sight microwave relay communications systems, submarine telephone cables, and terrestrial power generation systems were also described.

  6. TDRS-L Tribute Decal to Arthur "Skip" Mackey, Jr.

    NASA Image and Video Library

    2014-01-22

    CAPE CANAVERAL, Fla. – This memorial message was added to the Atlas V rocket for NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft being prepared for launch from Cape Canaveral Air Force Station's Launch Complex 41. Arthur J. "Skip" Mackey Jr. was the “Voice of NASA” during the 1960s, 1970s and early 1980s for flight commentary after liftoff for expendable vehicles launched from Cape Canaveral. Mackey served as branch chief for Telemetry and Communications at Hangar AE in the agency’s Expendable Launch Vehicle Program and then the Launch Services Program for 39 years. He died in Fort Lauderdale, Fla., on Nov. 19, 2013. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan For more on "Skip" Mackey go to: http://www.nasa.gov/content/skip-mackey-remembered-by-colleagues-as-voice-of-nasa/ Image credit: United Launch Alliance

  7. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  8. A new era of space transportation. [Space Shuttle system utilization

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.

    1976-01-01

    It is pointed out that founded on the experiences of Apollo, Skylab, and the Apollo/Soyuz mission an era is entered which will be characterized by a displacement of the interface between the experimenter and his experiment from the control center on the ground to the laboratory in orbit. A new world has been opened by going into space. Economic applications are related to the achievement of an enormous efficiency in world communications at a much lower cost. However, programs of space exploration and usage are under severe economic constraints. A primary tool to lower the cost of programs is to be the Space Transportation System using the Space Shuttle. It is emphasized that the Shuttle system is an international enterprise. Attention is also given to the results of the Viking missions, the Landsat satellites, and applications of space technology for science and commerce.

  9. Commercial biotechnology processing on International Space Station

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Hardin, Juanita R.; Lewis, Marian L.

    1998-01-01

    Commercial biotechnology processing in space has the potential to eventually exceed the $35 billion annual worldwide market generated by the current satellite communications industry (Parone 1997). The International Space Station provides the opportunity to conduct long-term, crew-tended biotechnology research in microgravity to establish the foundation for this new commercial biotechnology market. Industry, government, and academia are collaborating to establish the infrastructure needed to catalyze this biotechnology revolution that could eventually lead to production of medical and pharmaceutical products in space. The biotechnology program discussed herein is evidence of this collaborative effort, with industry involvement from Space Hardware Optimization Technology, Inc., government participation through the NASA Commercial Space program, and academic guidance from the Consortium for Materials Development in Space at the University of Alabama in Huntsville. Blending the strengths and resources of each collaborator creates a strong partnership, that offers enormous research and commercial opportunities.

  10. Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    NASA Technical Reports Server (NTRS)

    Cutts, James (Editor); Ng, Edward (Editor)

    1991-01-01

    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization.

  11. Examination of Communication Delays on Team Performance: Utilizing the International Space Station (ISS) as a Test Bed for Analog Research

    NASA Technical Reports Server (NTRS)

    Keeton, K. E.; Slack, K, J.; Schmidt, L. L.; Ploutz-Snyder, R.; Baskin, P.; Leveton, L. B.

    2011-01-01

    Operational conjectures about space exploration missions of the future indicate that space crews will need to be more autonomous from mission control and operate independently. This is in part due to the expectation that communication quality between the ground and exploration crews will be more limited and delayed. Because of potential adverse effects on communication quality, both researchers and operational training and engineering experts have suggested that communication delays and the impact these delays have on the quality of communications to the crew will create performance decrements if crews are not given adequate training and tools to support more autonomous operations. This presentation will provide an overview of a research study led by the Behavioral Health and Performance Element (BHP) of the NASA Human Research Program that examines the impact of implementing a communication delay on ISS on individual and team factors and outcomes, including performance and related perceptions of autonomy. The methodological design, data collection efforts, and initial results of this study to date will be discussed . The results will focus on completed missions, DRATS and NEEMO15. Lessons learned from implementing this study within analog environments will also be discussed. One lesson learned is that the complexities of garnishing a successful data collection campaign from these high fidelity analogs requires perseverance and a strong relationship with operational experts. Results of this study will provide a preliminary understanding of the impact of communication delays on individual and team performance as well as an insight into how teams perform and interact in a space-like environment . This will help prepare for implementation of communication delay tests on the ISS, targeted for Increment 35/36.

  12. Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.

  13. Improving science literacy and education through space life sciences

    NASA Astrophysics Data System (ADS)

    MacLeish, Marlene Y.; Moreno, Nancy P.; Tharp, Barbara Z.; Denton, Jon J.; Jessup, George; Clipper, Milton C.

    2001-08-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institutions—Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University—are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students—especially those from underrepresented groups—to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families.

  14. SPace weather applications in a technology-dependent society

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.

    2017-12-01

    Space weather can adversely key technology assets, such as, high-voltage electric power transmission grids, oil and gas pipelines, and communications systems that are critical to national security and economy. However, the term of "space weather" is not well known in our society. This presentation will introduce key concepts related to the space weather problem and show how space weather impacts our everyday life. The goal is to promote awareness among the general public. Also, this presentation will highlight how space weather is being used to promote STEM education for community college students through the NASA internship program.

  15. Orbital ATK CRS-7 Post Launch News Conference

    NASA Image and Video Library

    2017-04-18

    Members of the news media attend a press conference at NASA's Kennedy Space Center in Florida, after the launch of the Orbital ATK Cygnus pressurized cargo module atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station. It was Orbital ATK's seventh commercial resupply services mission to the International Space Station. Liftoff was at 11:11 a.m. EDT. Speaking to the media are, from left, George Diller, NASA Kennedy Communications; Joel Montalbano, deputy manager, International Space Station Program, NASA Johnson Space Center in Houston; and Frank Culbertson, president, Orbital ATK Space Systems Group.

  16. NASA Near Earth Network (NEN) and Space Network (SN) CubeSat Communications

    NASA Technical Reports Server (NTRS)

    Schaire, Scott H.; Shaw, Harry; Altunc, Serhat; Bussey, George; Celeste, Peter; Kegege, Obadiah; Wong, Yen; Zhang, Yuwen; Patel, Chitra; Raphael, David; hide

    2016-01-01

    There has been a recent trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites. NASA scientists and engineers across many of NASA's Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a "Telemetry, Tracking and Command (TT&C) Systems and Flight Operations for Small Satellites" point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Program's Near Earth Network (NEN) and Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a mission's orbiting satellite and its Mission Operations Center (MOC). This paper presents how well the SCaN networks, SN and NEN, are currently positioned to support the emerging small small satellite and CubeSat market as well as planned enhancements for future support.

  17. NASA Near Earth Network (NEN) and Space Network (SN) Support of CubeSat Communications

    NASA Technical Reports Server (NTRS)

    Schaire, Scott H.; Shaw, Harry C.; Altunc, Serhat; Bussey, George; Celeste, Peter; Kegege, Obadiah; Wong, Yen; Zhang, Yuwen; Patel, Chitra; Raphael, David; hide

    2016-01-01

    There has been a historical trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites and that trend continues today. NASA scientists and engineers across many of NASAs Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a Telemetry, Tracking and Command (TTC) Systems and Flight Operations for Small Satellites point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Programs Near Earth Network (NEN) and Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a missions orbiting satellite and its Mission Operations Center (MOC). This paper presents how well the SCaN networks, SN and NEN, are currently positioned to support the emerging small small satellite and CubeSat market as well as planned enhancements for future support.

  18. SpaceX CRS-13 Post Launch News Conference

    NASA Image and Video Library

    2017-12-15

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the successful liftoff of SpaceX CRS-13, a commercial resupply services mission to the International Space Station. Participants included Stephanie Martin of NASA Communications, Ven Feng, NASA manager of the Transportation Integration Office with the International Space Station Program, and Jessica Jensen, director of Dragon Mission Management at SpaceX. SpaceX CRS-13 lifted off atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:36 a.m. EST.

  19. Key Issues for Navigation and Time Dissemination in NASA's Space Exploration Program

    NASA Technical Reports Server (NTRS)

    Nelson, R. A.; Brodsky, B.; Oria, A. J.; Connolly, J. W.; Sands, O. S.; Welch, B. W.; Ely T.; Orr, R.; Schuchman, L.

    2006-01-01

    The renewed emphasis on robotic and human missions within NASA's space exploration program warrants a detailed consideration of how the positions of objects in space will be determined and tracked, whether they be spacecraft, human explorers, robots, surface vehicles, or science instrumentation. The Navigation Team within the NASA Space Communications Architecture Working Group (SCAWG) has addressed several key technical issues in this area and the principle findings are reported here. For navigation in the vicinity of the Moon, a variety of satellite constellations have been investigated that provide global or regional surface position determination and timely services analogous to those offered by GPS at Earth. In the vicinity of Mars, there are options for satellite constellations not available at the Moon due to the gravitational perturbations from Earth, such as two satellites in an aerostationary orbit. Alternate methods of radiometric navigation as considered, including one- and two-way signals, as well as autonomous navigation. The use of a software radio capable of receiving all available signal sources, such as GPS, pseudolites, and communication channels, is discussed. Methods of time transfer and dissemination are also considered in this paper.

  20. Improving the Effectiveness of Program Managers

    DTIC Science & Technology

    2006-05-03

    Improving the Effectiveness of Program Managers Systems and Software Technology Conference Salt Lake City, Utah May 3, 2006 Presented by GAO’s...Companies’ best practices Motorola Caterpillar Toyota FedEx NCR Teradata Boeing Hughes Space and Communications Disciplined software and management...and total ownership costs Collection of metrics data to improve software reliability Technology readiness levels and design maturity Statistical

  1. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Social media gather in Kennedy Space Center’s Press Site auditorium for a briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18. NASA Social Media Team includes: Emily Furfaro and Amber Jacobson. Guest speakers include: Badri Younes, Deputy Associate Administrator for Space Communications and Navigation at NASA Headquarters in Washington; Dave Littmann, Project Manager for TDRS-M at NASA’s Goddard Space Flight Center; Neil Mallik, NASA Deputy Network Director for Human Spaceflight; Nicole Mann, NASA Astronaut; Steve Bowen, NASA Astronaut; Skip Owen, NASA Launch Services; Scott Messer, United Launch Alliance Program Manager for NASA Missions.

  2. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX 20) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom) industry, academia, and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at these meetings by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satcom industry.

  3. The X-33 Extended Flight Test Range

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Sakahara, Robert; Kremer, Steven E.

    1998-01-01

    Development of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.

  4. The NASA Space Grant College and Fellowship Program

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Ward, E. B.; Detroye, D.

    1998-09-01

    National Aeronautics and Space Administration in 1989, the National Space Grant College and Fellowship Program (also known as Space Grant) contributes to the nation's science enterprise by funding research, education, and public service projects through a national network of 52 university-based Space Grant consortia. These consortia administer programs in all 50 states, the District of Columbia, and Puerto Rico. In 1998, the consortia's 703 affiliates include 493 academic institutions and 62 businesses. Other partners include state and local government agencies, other federal agencies, and nonprofit organizations. Space Grant celebrates its tenth year of service in 1999. Since its inception, Space Grant has awarded over 12,000 U.S. citizens with tuition assistance in science, engineering, and related fields of study. Approximately twenty percent of these awards were to students from underrepresented groups and approximately thirty-five percent were to women. The majority of Space Grant student awards include a mentored research experience with university faculty or NASA scientists. Space Grant funds curriculum enhancement and faculty development as well. Space Grant colleges and universities also administer precollege and public service education programs that help to meet the education needs of their states. The Space Grant consortia have leveraged federal funds to more than double the Space Grant budget with matching contributions from state and local sources. Space Grant encourages collaboration among departments, across institutions, and with business and industry. All Space Grant programs emphasize the diversity of human resources, the participation of students in research, and the communication of the benefits of science and technology to the general public.

  5. Wireless infrared communications for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Crimmins, James W.

    1993-01-01

    Voice and data communications via wireless (and fiberless) optical means has been commonplace for many years. However, continuous advances in optoelectronics and microelectronics have resulted in significant advances in wireless optical communications over the last decade. Wilton has specialized in diffuse infrared voice and data communications since 1979. In 1986, NASA Johnson Space Center invited Wilton to apply its wireless telecommunications and factory floor technology to astronaut voice communications aboard the shuttle. In September, 1988 a special infrared voice communications system flew aboard a 'Discovery' Shuttle mission as a flight experiment. Since then the technology has been further developed, resulting in a general purpose of 2Mbs wireless voice/data LAN which has been tested for a variety of applications including use aboard Spacelab. Funds for Wilton's wireless IR development were provided in part by NASA's Technology Utilization Office and by the NASA Small Business Innovative Research Program. As a consequence, Wilton's commercial product capability has been significantly enhanced to include diffuse infrared wireless LAN's as well as wireless infrared telecommunication systems for voice and data.

  6. Strategic plan, 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Lewis Strategic Plan was updated for 1985 and beyond. Major programs for the space station, the advanced turboprop, the Advanced Communications Technology Satellite (ACTS), and the Altitude Wind Tunnel were begun or greatly expanded during 1984. In parallel, The Lewis aeropropulsion research and technology program was extensively evaluated and reviewed; a reduced and reoriented program emerged. The thrusts and implementation plans for these programs are described as they pertain to the individual directorates. Other key accomplishments and plans are summarized.

  7. The SDO Social Media Program: Walking the cat back into the bag

    NASA Astrophysics Data System (ADS)

    Wawro, Martha; Van Norden, Wendy; Young, C. Alex; Durscher, Romeo

    2013-03-01

    As social media continues to grow as a way to communicate with the public about science missions, data and other STEM related topics, there has become a need for more organized and regimented Social Media programs and plans. In the Heliophysics science division at Goddard Space Flight Center we have been working on creating a template for social media programs which incorporates not just the goals for the program, as well as identifying an audience, but also deals with concerns about messaging, collaboration with other organizations, controversial topics, and evaluation. We hope that through creating a more unified approach we can develop a social media program that not only meets the needs of the audience but incorporates the needs of all of the different entities including the scientists, EPO Professionals and Office of Communications.

  8. Information management advanced development. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The information management systems designed for the modular space station are discussed. Subjects presented are: (1) communications terminal breadboard configuration, (2) digital data bus breadboard configuration, (3) data processing assembly definition, and (4) computer program (software) assembly definition.

  9. Space station systems analysis study. Part 2, Volume 3: Appendixes, Book 1. Program requirements documentation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The objective elements representative of the kinds of space activities that will be supported by the space construction base (SCB) are discussed in (1) a brief mission overview including the primary purpose and general objectives; (2) descriptions of the processes involved (where applicable), the mission hardware, the principal activities to be undertaken, the test requirements, and the principal tests; and (3) the SCB requirements including such items as special devices (e.g., fabrication modules, assembly or construction fixtures, cranes, and airlocks), power, data management and communications, waste management, environmental control, safety, and logistics. Each program option is then described in terms of the objective elements it supports, its orbit, the general makeup of the SCB, the transportation approach, and the program schedule goals. The specific requirements that are imposed on the SCB in order to support program option L are given.

  10. Performance Analysis of an Actor-Based Distributed Simulation

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1998-01-01

    Object-oriented design of simulation programs appears to be very attractive because of the natural association of components in the simulated system with objects. There is great potential in distributing the simulation across several computers for the purpose of parallel computation and its consequent handling of larger problems in less elapsed time. One approach to such a design is to use "actors", that is, active objects with their own thread of control. Because these objects execute concurrently, communication is via messages. This is in contrast to an object-oriented design using passive objects where communication between objects is via method calls (direct calls when they are in the same address space and remote procedure calls when they are in different address spaces or different machines). This paper describes a performance analysis program for the evaluation of a design for distributed simulations based upon actors.

  11. Space station dynamics, attitude control and momentum management

    NASA Technical Reports Server (NTRS)

    Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi

    1989-01-01

    The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.

  12. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-12

    David Steitz, from NASA's Office of Communications, kicks off the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Tuesday, July 13, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Bill Ingalls)

  13. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    NASA Astrophysics Data System (ADS)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati- n networks. It then presents the generalities of possible architectures for future space communication and navigation networks. Finally, it describes the tools and methods being developed, clearly indicating the architectural decisions that have been taken into account as well as the systematic approach followed to model them. The purpose of this study is to explore the SCaN architectural tradespace by means of a computational tool. This paper describes the tool, while the tradespace exploration is underway.

  14. Programmable Pacemaker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Released in 1995, the Trilogy cardiac pacemaker is the fourth generation of a unit developed in the 1970s by NASA, Johns Hopkins Applied Physics Laboratory and St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.). The new system incorporates the company's PDx diagnostic and programming software and a powerful microprocessor that allows more functions to be fully automatic and gives more detailed information on the patient's health and the performance of the pacing systems. The pacemaker incorporates bidirectional telemetry used for space communications for noninvasive communication with the implanted pacemaker, smaller implantable pulse generators from space microminiaturization, and longer-life batteries from technology for spacecraft electrical power systems.

  15. The first and second generation Aussat systems

    NASA Astrophysics Data System (ADS)

    Hope, W.

    1988-12-01

    The present three-spacecraft Aussat satellite communication system is described and illustrated with extensive drawings, diagrams, and photographs; and plans for the second-generation system (Aussat-B, to begin replacing the current spacecraft in 1992) are discussed. Consideration is given to the legal status, structure, and staff of the Aussat organization; the first-generation space segment; satellite launch and orbital transfer procedures; the Aussat communication payload; the ground segment; and the current market for satellite services in Australia. For the second-generation system, topics addressed include additional and improved services, the Aussat-B procurement program, mobile satellite services, and the impact on the Australian space industry.

  16. Possible communication scheme for closely-spaced multi-spacecraft missions

    NASA Astrophysics Data System (ADS)

    Dikareva, J.; Veselov, M.; Lesina, T.; Prokhorenko, V.; Nikolaeva, N.

    2003-04-01

    The progress in space instrumentation causes the rising number of the instrument modes, adjustments and other features. The work of the different instrument groups (field, wave, particle complexes) needs in more precise coordination. Furthermore, several spacecraft carry out the measurements simultaneously. All of that requires new approaches for the s/c control and data synchronization. The positive experience of the use of on-board program libraries correlated with different magnetospheric domains crossing prediction applied in INTERBALL project is analyzed. For the case of satellite-several subsatellites the original communication scheme is suggested. Taking into account strict weight and energy limitations it is difficult to establish a direct high bitrate subsatellite-graundstation radio-link. However such a radio-link seems possible for subsatellite-satellite due to the much shorter distance and therefore less power needed. The advantage of the use of main satellite as a communication mediator between a graundstation and subsatellites is considered. The scheme can be useful for multi-spacecraft planetary and deep space missions. The work is supported by INTAS 2000-465.

  17. Back to the future: SETI before the space age

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    1995-02-01

    In the late 1890s and early 1900s, before the advent of formalized search for extraterrestrial intelligence (SETI) programs, scientists such as Nikola Tesla and Gulielmo Marconi reported evidence of extraterrestrial radio signals. This paper reviews the history of 'interstellar/interplanetary radio communication'. The investigations of David P. Todd and Donald Menzel are discussed, and the fields of radio communication and radio astronomy are mentioned briefly.

  18. SpaceX CRS-10 "What's On Board" Science Briefing

    NASA Image and Video Library

    2017-02-17

    Tara Ruttley, NASA associate scientist for the International Space Station Program, left, and Patrick O'Nell, Marketing and Communications manager for the Center for the Advancement of Science in Space (CASIS), speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Feb. 18 atop a SpaceX Falcon 9 rocket on the company's 10th Commercial Resupply Services mission to the space station.

  19. Burst Mode ASIC-Based Modem

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center is sponsoring the Advanced Communication Technology Insertion (ACTION) for Commercial Space Applications program. The goal of the program is to expedite the development of new technology with a clear path towards productization and enhancing the competitiveness of U.S. manufacturers. The industry has made significant investment in developing ASIC-based modem technology for continuous-mode applications and has made investigations into East, reliable acquisition of burst-mode digital communication signals. With rapid advances in analog and digital communications ICs, it is expected that more functions will be integrated onto these parts in the near future. In addition custom ASIC's can also be developed to address the areas not covered by the other IC's. Using the commercial chips and custom ASIC's, lower-cost, compact, reliable, and high-performance modems can be built for demanding satellite communication application. This report outlines a frequency-hop burst modem design based on commercially available chips.

  20. RATANA MEEKHAM, AN ELECTRICAL INTEGRATION TECHNICIAN FOR QUALIS CORP. OF HUNTSVILLE, ALABAMA, HELPS TEST AVIONICS -- COMPLEX VEHICLE SYSTEMS ENABLING NAVIGATION, COMMUNICATIONS AND OTHER FUNCTIONS CRITICAL TO HUMAN SPACEFLIGHT

    NASA Image and Video Library

    2015-01-08

    RATANA MEEKHAM, AN ELECTRICAL INTEGRATION TECHNICIAN FOR QUALIS CORP. OF HUNTSVILLE, ALABAMA, HELPS TEST AVIONICS -- COMPLEX VEHICLE SYSTEMS ENABLING NAVIGATION, COMMUNICATIONS AND OTHER FUNCTIONS CRITICAL TO HUMAN SPACEFLIGHT -- FOR THE SPACE LAUNCH SYSTEM PROGRAM AT NASA’S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA. HER WORK SUPPORTS THE NASA ENGINEERING & SCIENCE SERVICES AND SKILLS AUGMENTATION CONTRACT LED BY JACOBS ENGINEERING OF HUNTSVILLE. MEEKHAM WORKS FULL-TIME AT MARSHALL WHILE FINISHING HER ASSOCIATE'S DEGREE IN MACHINE TOOL TECHNOLOGY AT CALHOUN COMMUNITY COLLEGE IN DECATUR, ALABAMA. THE SPACE LAUNCH SYSTEM, NASA’S NEXT HEAVY-LIFT LAUNCH VEHICLE, IS THE WORLD’S MOST POWERFUL ROCKET, SET TO FLY ITS FIRST UNCREWED LUNAR ORBITAL MISSION IN 2018. ITS FIRST.

  1. Defense Planning and Programming Categories: A Special Tool for Special Needs. Volume 3. Appendix E. Proposed Expanded DPPC Structure

    DTIC Science & Technology

    1990-04-01

    SURVEILLANCE & WARNING SYTEMS A2C COMMAND & CONTROL ACTIVITIES A2D SPACE ACTIVITIES (STRATEGIC CONTROL & SURV) A2E STRAT CONTROL & SURV: COMMUNICATIONS A2F...STRATEGIC AIR DEFENSE 0501802A NIKE-AJAX (ARNS) (H) AID STRATEGIC AIR DEFENSE AIC SPACE DEFENSE OI02115N F-6 Squadrons (H) AIC SPACE DEFENSE 0102215N ABM ...WARNING SYTEMS 0102310F NCHC - TW/AA Systems A2B SURVEILLANCE & WARNIIIG SYTEMS 0102311F NCMC - Space Defense Systems A21 SURVEILLANCE & WARNING SYTEMS

  2. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    A compilation is presented of articles on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition. In space communications, radio navigation, radio science, and ground based radio and radar astronomy, activities of the Deep Space Network are reported in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations are reported for searching the microwave spectrum.

  3. Building an intellectual infrastructure for space commerce

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Struthers, Jeffrey L.

    1992-01-01

    Competition in commerce requires an 'intellectual infrastructure', that is, a work force with extensive scientific and technical knowledge and a thorough understanding of the business world. This paper focuses on the development of such intellectual infrastructure for space commerce. Special consideration is given to the contributions to this development by the 17 Centers for the Commercial Development of Space Program conducting commercially oriented research in eight specialized areas: automation and robotics, remote sensing, life sciences, materials processing in space, space power, space propulsion, space structures and materials, and advanced satellite communications. Attention is also given to the Space Business Development Center concept aimed at addressing a variety of barriers common to the development of space commerce.

  4. Asymmetric Cooperative Communications Based Spectrum Leasing via Auctions in Cognitive Radio Networks

    DTIC Science & Technology

    2011-08-01

    level of responsibility for design activities and program management. He has authored or co-authored numerous papers on designs for space and radiation effects. Mr. Avery is a member of IEEE/ NPSS and AIAA.

  5. The Value Proposition for Fractionated Space Architectures

    DTIC Science & Technology

    2006-09-01

    transmission relying on electrostatic forces has been proposed for use in GEO by Parker et al.37 Demonstration Program The Defense Advanced...capability of the original monolithic system.6 One can envision the fractionation trade space to be defined by three high-level metrics. First, the ... by deploying additional modules. Thus, for instance, one could envision deploying an initial communications capability in the form of a power

  6. America in Space: The First Decade. Putting Satellites to Work

    NASA Technical Reports Server (NTRS)

    Corliss, William R.

    1968-01-01

    This pamphlet series reviews NASA's first decade of exploration of space. This volume reviews the importance of satellites in weather forecasting, relaying television programs and other commercial and military communication from distant places, studying the shape and gravitational fields of the Earth, assisting in aircraft and naval navigation and more applications that can be assisted by studying the Earth from 100 miles or more.

  7. Space station needs, attributes, and architectural options study. Volume 2: Program options, architecture, and technology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Mission scenarios and space station architectures are discussed. Electrical power subsystems (EPS), environmental control and life support, subsystems (ECLSS), and reaction control subsystem (RCS) architectures are addressed. Thermal control subsystems, (TCS), guidance/navigation and control (GN and C), information management systems IMS), communications and tracking (C and T), and propellant transfer and storage systems architectures are discussed.

  8. Users' manual for computer program for three-dimensional analysis of coupler-cavity traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Omalley, T. A.

    1984-01-01

    The use of the coupled cavity traveling wave tube for space communications has led to an increased interest in improving the efficiency of the basic interaction process in these devices through velocity resynchronization and other methods. A flexible, three dimensional, axially symmetric, large signal computer program was developed for use on the IBM 370 time sharing system. A users' manual for this program is included.

  9. Criteria for Evaluating Alternative Network and Link Layer Protocols for the NASA Constellation Program Communication Architecture

    NASA Technical Reports Server (NTRS)

    Benbenek, Daniel; Soloff, Jason; Lieb, Erica

    2010-01-01

    Selecting a communications and network architecture for future manned space flight requires an evaluation of the varying goals and objectives of the program, development of communications and network architecture evaluation criteria, and assessment of critical architecture trades. This paper uses Cx Program proposed exploration activities as a guideline; lunar sortie, outpost, Mars, and flexible path options are described. A set of proposed communications network architecture criteria are proposed and described. They include: interoperability, security, reliability, and ease of automating topology changes. Finally a key set of architecture options are traded including (1) multiplexing data at a common network layer vs. at the data link layer, (2) implementing multiple network layers vs. a single network layer, and (3) the use of a particular network layer protocol, primarily IPv6 vs. Delay Tolerant Networking (DTN). In summary, the protocol options are evaluated against the proposed exploration activities and their relative performance with respect to the criteria are assessed. An architectural approach which includes (a) the capability of multiplexing at both the network layer and the data link layer and (b) a single network layer for operations at each program phase, as these solutions are best suited to respond to the widest array of program needs and meet each of the evaluation criteria.

  10. Space education in developing countries in the information era, regional reality and new educational material tendencies: example, South America

    NASA Astrophysics Data System (ADS)

    Sausen, Tania Maria

    The initial activities on space education began right after World War II, in the early 1950s, when USA and USSR started the Space Race. At that time, Space education was only and exclusively available to researchers and technicians working directly in space programs. This new area was restricted only to post-graduate programs (basically master and doctoral degree) or to very specific training programs dedicated for beginners. In South America, at that time there was no kind of activity on space education, simply because there was no activity in space research. In the beginning of the 1970s, Brazil, through INPE, had created masteral and doctoral courses on several space areas such as remote sensing and meteorology. Only in the mid-1980s did Brazil, after a UN request, create its specialisation course on remote sensing dedicated to Latin American professionals. At the same period, the Agustin Codazzi Institute (Bogota, Colombia) began to offer specialisation courses in remote sensing. In South America, educational space programs are currently being created for elementary and high schools and universities, but the author personally estimates that 90% of these educational programs still make use of traditional educational materials — such as books, tutorials, maps and graphics. There is little educational material that uses multimedia resources, advanced computing or communication methods and, basically, these are the materials that are best suited to conduct instructions in remote sensing, GIS, meteorology and astronomy.

  11. A Simulation Base Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO mission provides ideal conditions for this study with crew in the loop, an active control center, and real-time flow of high latency communications and data. NEEMO crew and ground support will work through procedures including activation of the transit vehicle power system, opening the hatch between the transit vehicle and a Mars ascent vehicle, transferring simulated crewmembers between vehicles, overcoming subsystem malfunctions, sending simulated crewmember on extra-vehicular activities, and other housekeeping activities. This study is enhancing the understanding of high latency operations and the advantages and disadvantages of different communication methods. It is also providing results that will help improve the design of simulation interfaces and inform the design of Mars transit vehicles.

  12. A NASA/University Joint Venture in Space Science (JOVE)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Most aspects of the JOVE program at Harding University were very successful. The number and quality of students interested in space science areas was increased due to the availability of support funds for JOVE scholars. Both physics faculty associated with the program have continued work in areas associated with the JOVE program. Several additional research grants for student research and scholarship support have been received from the Arkansas Space Grant Consortium since the termination of the JOVE program. The network connection established has been used extensively for educational and research purposes in connection with awarded grants and with science education at Harding University. The major unsuccessful area was in obtaining external funding in the area of solar physics in which Harding's JOVE program was working and in not more aggressively pursuing communication and cooperative effort with our JOVE mentor. This has resulted in all of the associated JOVE faculty no longer working in the solar physics area. The JOVE program has contributed significantly to the success of faculty programs in other areas that were fundable.

  13. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Whitt, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Panel participation will be used to communicate the problems and lessons learned from these activities over the last three years.

  14. Planning an Effective Speakers Outreach Program

    NASA Technical Reports Server (NTRS)

    McDonald, Malcolm W.

    1996-01-01

    The National Aeronautics and Space Administration (NASA) and, in particular, the Marshall Space Flight Center (MSFC) have played pivotal roles in the advancement of space exploration and space-related science and discovery since the early 1960's. Many of the extraordinary accomplishments and advancements of NASA and MSFC have gone largely unheralded to the general public, though they often border on the miraculous. This lack of suitable and deserved announcement of these "miracles" seems to have occurred because NASA engineers and scientists are inclined to regard extraordinary accomplishment as a normal course of events. The goal in this project has been to determine an effective structure and mechanism for communicating to the general public the extent to which our investment in our US civilian space program, NASA, is, in fact, a very wise investment. The project has involved discerning important messages of truth which beg to be conveyed to the public. It also sought to identify MSFC personnel who are particularly effective as messengers or communicators. A third aspect of the project was to identify particular target audiences who would appreciate knowing the facts about their NASA investment. The intent is to incorporate the results into the formation of an effective, proactive MSFC speakers bureau. A corollary accomplishment for the summer was participation in the formation of an educational outreach program known as Nasa Ambassadors. Nasa Ambassadors are chosen from the participants in the various MSFC summer programs including: Summer Faculty Fellowship Program (SFFP), Science Teacher Enrichment Program (STEP), Community College Enrichment Program (CCEP), Joint Venture (JOVE) program, and the NASA Academy program. NASA Ambassadors agree to make pre-packaged NASA-related presentations to non-academic audiences in their home communities. The packaged presentations were created by a small cadre of participants from the 1996 MSFC summer programs, volunteering their time beyond their normal NASA summer research commitment. A total of eight presentations were created and made available for use by NASA Ambassadors. A major segment of the research effort during the summer has been devoted to verifying and documenting certain "spinoff' contributions of NASA technology and in determining their relevance and impact to our society and our nation's economy. The purpose behind the verification/documentation research has been to shed light on the question of whether or not our NASA investment is a wise investment. It has revealed that NASA is a wise investment.

  15. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Christensen, Carissa Bryce

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The suggested subtopics for the panel were as follows: (1) transfer from non-NASA U.S. government technology developers to NASA space missions/programs; and (2) transfer from NASA to other U.S. government civil space mission programs. Two presentations were made to the panel: Roles/Value of Early Strategic Planning Within the Space Exploration Initiative (SEI) to Facilitate Later Technology Transfer To and From Industry; and NOAA Satellite Programs and Technology Requirements. The panel discussion addresses the following major issues: DOD/NASA cooperation; alternative mechanisms for interagency communication and interactions; current technology transfer relationships among federal research agencies, and strategies for improving this transfer; technology transfer mechanisms appropriate to intragovernment transfer; the importance of industry as a technology transfer conduit; and measures of merit.

  16. A Sustained Proximity Network for Multi-Mission Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Soloff, Jason A.; Noreen, Gary; Deutsch, Leslie; Israel, David

    2005-01-01

    Tbe Vision for Space Exploration calls for an aggressive sequence of robotic missions beginning in 2008 to prepare for a human return to the Moon by 2020, with the goal of establishing a sustained human presence beyond low Earth orbit. A key enabler of exploration is reliable, available communication and navigation capabilities to support both human and robotic missions. An adaptable, sustainable communication and navigation architecture has been developed by Goddard Space Flight Center and the Jet Propulsion Laboratory to support human and robotic lunar exploration through the next two decades. A key component of the architecture is scalable deployment, with the infrastructure evolving as needs emerge, allowing NASA and its partner agencies to deploy an interoperable communication and navigation system in an evolutionary way, enabling cost effective, highly adaptable systems throughout the lunar exploration program.

  17. KSC-2012-4218

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. -- Dr. Liz Warren, communications coordinator for the International Space Station program Science Office, speaks to about 45 of NASA’s social media followers for two days of presentations on the Kennedy Space Center's past, present and future. The social media participants gathered at the Florida spaceport on Aug. 2 and 3, 2012 to hear from key former and current leaders who related stories of the space agency's efforts to explore the unknown. It was the first social media event totally run by Kennedy. Photo credit: NASA/ Gianni Woods

  18. KSC-2012-4217

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. -- Dr. Liz Warren, communications coordinator for the International Space Station program Science office, speaks to about 45 of NASA’s social media followers for two days of presentations on the Kennedy Space Center's past, present and future. The social media participants gathered at the Florida spaceport on Aug. 2 and 3, 2012 to hear from key former and current leaders who related stories of the space agency's efforts to explore the unknown. It was the first social media event totally run by Kennedy. Photo credit: NASA/ Gianni Woods

  19. STS-3 MISSION OPERATIONS CONTROL ROOM (MOCR) - JSC

    NASA Image and Video Library

    1982-03-26

    Mission Control Activities during the STS-3 Mission, Day-4 with: Maj. Gen. James A. Abrahamson, Associate Administrator of the Space Transportation System (STS), NASA Hdqs., conversing with Dr. Kraft; Glynn S. Lunney, Manager, Space Shuttle Program Office, JSC, Aaron Cohen, Manager, Space Shuttle Orbiter Project Office; and, J. E. Conner, Ford Aerospace Engineer at the Instrumentation and Communications Officer (INCO) Console position. 1. Glynn S. Lunney 2. Major General James A. Abrahamson 3. Aaron Cohen 4. J. E. Conner 5. Dr. Christopher Kraft JSC, Houston, TX

  20. A soft actuation system for segmented reflector articulation and isolation

    NASA Technical Reports Server (NTRS)

    Agronin, Michael L.; Jandura, Louise

    1990-01-01

    Segmented reflectors have been proposed for space based applications such as optical communication and large diameter telescopes. An actuation system for mirrors in a space based segmented mirror array was developed as part of NASA's Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), provides 3 degrees of freedom mirror articulation, gives isolation from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM was built and is described.

  1. Qualification testing of fiber-based laser transmitters and on-orbit validation of a commercial laser system

    NASA Astrophysics Data System (ADS)

    Wright, M. W.; Wilkerson, M. W.; Tang, R. R.

    2017-11-01

    Qualification testing of fiber based laser transmitters is required for NASA's Deep Space Optical Communications program to mature the technology for space applications. In the absence of fully space qualified systems, commercial systems have been investigated in order to demonstrate the robustness of the technology. To this end, a 2.5 W fiber based laser source was developed as the transmitter for an optical communications experiment flown aboard the ISS as a part of a technology demonstration mission. The low cost system leveraged Mil Standard design principles and Telcordia certified components to the extent possible and was operated in a pressure vessel with active cooling. The laser was capable of high rate modulation but was limited by the mission requirements to 50 Mbps for downlinking stored video from the OPALS payload, externally mounted on the ISS. Environmental testing and space qualification of this unit will be discussed along with plans for a fully space qualified laser transmitter.

  2. Millimeter wave satellite concepts, volume 1

    NASA Technical Reports Server (NTRS)

    Hilsen, N. B.; Holland, L. D.; Thomas, R. E.; Wallace, R. W.; Gallagher, J. G.

    1977-01-01

    The identification of technologies necessary for development of millimeter spectrum communication satellites was examined from a system point of view. Development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and testing of this methodology with selected user applications and services were the goals of the program. The entire communications network, both ground and space subsystems was studied. Cost, weight, and performance models for the subsystems, conceptual design for point-to-point and broadcast communications satellites, and analytic relationships between subsystem parameters and an overall link performance are discussed along with baseline conceptual systems, sensitivity studies, model adjustment analyses, identification of critical technologies and their risks, and brief research and development program scenarios for the technologies judged to be moderate or extensive risks. Identification of technologies for millimeter satellite communication systems, and assessment of the relative risks of these technologies, was accomplished through subsystem modeling and link optimization for both point-to-point and broadcast applications.

  3. Science--A Process Approach, Product Development Report No. 8.

    ERIC Educational Resources Information Center

    Sanderson, Barbara A.; Kratochvil, Daniel W.

    Science - A Process Approach, a science program for grades kindergarten through sixth, mainly focuses on scientific processes: observing, classifying, using numbers, measuring, space/time relationships, communicating, predicting, inferring, defining operationally, formulating hypotheses, interpreting data, controlling variables, and experimenting.…

  4. Student Affairs and Alumni Relations

    ERIC Educational Resources Information Center

    Rissmeyer, Patricia A.

    2010-01-01

    Current realities and practices in higher education have resulted in greater collaboration among campus units. Limited resources have forced departments to share programs, activities, space, and personnel. Branding efforts have prompted consistency in communication and even in practice. Institutional strategic plans reflect increased collaboration…

  5. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2005-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is essential for affordable md sustainable space exploration programs. This mission-systems architecture requires (8) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, end verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered systems are applied to define the model. Technology projections reaching out 5 years are made to refine model details.

  6. The epistemic integrity of NASA practices in the Space Shuttle Program.

    PubMed

    De Winter, Jan; Kosolosky, Laszlo

    2013-01-01

    This article presents an account of epistemic integrity and uses it to demonstrate that the epistemic integrity of different kinds of practices in NASA's Space Shuttle Program was limited. We focus on the following kinds of practices: (1) research by working engineers, (2) review by middle-level managers, and (3) communication with the public. We argue that the epistemic integrity of these practices was undermined by production pressure at NASA, i.e., the pressure to launch an unreasonable amount of flights per year. Finally, our findings are used to develop some potential strategies to protect epistemic integrity in aerospace science.

  7. Telescience testbed pilot program, volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, is the executive summary.

  8. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  9. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    NASA Technical Reports Server (NTRS)

    Adams, M.; Gallagher, D. L.; Whitt, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    For the past four years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of science communication through the web resources on the Internet. The program includes extended stories about NAS.4 science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. We give here, examples of events, problems, and lessons learned from these activities.

  10. The SDO Social Media Planning Process: Walking the cat back into the bag

    NASA Astrophysics Data System (ADS)

    Wawro, M.; Young, C.; Van Norden, W. M.; Durscher, R.

    2012-12-01

    As social media continues to grow as a way to communicate with the public about science missions, data and other STEM related topics, there has become a need for more organized and regimented Social Media programs and plans. In the Heliophysics science division at Goddard Space Flight Center we have been working on creating a template for social media programs which incorporates not just the goals for the program, as well as identifying an audience, but also deals with concerns about messaging, collaboration with other organizations, controversial topics, and evaluation. We hope that through creating a more unified approach we can develop a social media program that not only meets the needs of the audience but incorporates the needs of all of the different entities including the scientists, EPO Professionals and Office of Communications.

  11. Space-based Networking Technology Developments in the Interplanetary Network Directorate Information Technology Program

    NASA Technical Reports Server (NTRS)

    Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.

    2006-01-01

    Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.

  12. Space strategy for Europe and the International Lunar Decade

    NASA Astrophysics Data System (ADS)

    Beldavs, VZ

    2017-09-01

    The 2020-2030 decade offers extraordinary opportunity for the European space sector that is largely not recognized in present space strategy which does not recognize commercial space activities beyond communications satellites, launchers, and earth observation and navigation and downstream activities. Lunar and cislunar development can draw on the extensive experience of Europe in mining, clean energy, ecological systems as well as deep experience in managing the development of technologies through TRL1 through commercial sale via Horizon 2020 and previous Framework programs. The EU has unrivalled experience in coordinating research and advanced technology development from research centers, major firms and SMEs across multiple sovereign states. This capacity to coordinate across national boundaries can be a significant contribution to a global cooperative program like the International Lunar Decade. This paper will present a European space strategy for beyond 2020 and how this can mesh with the International Lunar Decade.

  13. Space processing of crystals for opto-electronic devices: The case for solution growth

    NASA Technical Reports Server (NTRS)

    Hayden, S. C.; Cross, L. E.

    1975-01-01

    The results obtained during a six month program aimed at determining the viability of space processing in the 1980's of dielectric-elastic-magnetic single crystals were described. The results of this program included: identification of some important emerging technologies dependent on dielectric-elastic-magnetic crystals, identification of the impact of intrinsic properties and defects in the single crystals on system performance, determination of a sensible common basis for the many crystals of this class, and identification of the benefits of micro-gravity and some initial experimental evidence that these benefits can be realized in space. It is concluded that advanced computers and optical communications are at a development stage for high demand of dielectric-elastic-magnetic single crystals in the mid-1980's. Their high unit cost and promise for significantly increased perfection by growth in space justified pursuit of space processing.

  14. SpaceX CRS-11 What's On Board Briefing

    NASA Image and Video Library

    2017-05-31

    NASA Television held a “What’s on Board” science mission briefing from Kennedy Space Center's Press Site to discuss some of the science headed to the International Space Station on SpaceX’s eleventh commercial resupply services mission, CRS-11. SpaceX’s Dragon spacecraft will carry almost 6,000 pounds of supplies and payloads including crucial materials to support dozens of the more than 250 science and research investigations that will occur during Expeditions 52 and 53. CRS-11 will lift off atop a Falcon 9 rocket from Space Launch Complex 39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. Briefing participants were: -Kathryn Hambleton, NASA Communications -Camille Alleyne, Associate Program Scientist, ISS -Ken Shields, Director of Operations, CASIS/ISS National Lab -Keith Gendreau, Principle Investigator, NICER -Jason W. Mitchell, Project Manager, SEXTANT -Jeremy Banik, Principle Investigator, ROSA -Karen Ocorr, Co-investigator, Fruit Fly Lab-02 -Miriam Sargusingh, Project Lead, CSELS -Dr. Chia Soo, Principle Investigator, Systemic Therapy of NELL-1 for Osteoporosis -Paul Galloway, Program Manager, MUSES

  15. [Development of fixed-base full task space flight training simulator].

    PubMed

    Xue, Liang; Chen, Shan-quang; Chang, Tian-chun; Yang, Hong; Chao, Jian-gang; Li, Zhi-peng

    2003-01-01

    Fixed-base full task flight training simulator is a very critical and important integrated training facility. It is mostly used in training of integrated skills and tasks, such as running the flight program of manned space flight, dealing with faults, operating and controlling spacecraft flight, communicating information between spacecraft and ground. This simulator was made up of several subentries including spacecraft simulation, simulating cabin, sight image, acoustics, main controlling computer, instructor and assistant support. It has implemented many simulation functions, such as spacecraft environment, spacecraft movement, communicating information between spacecraft and ground, typical faults, manual control and operating training, training control, training monitor, training database management, training data recording, system detecting and so on.

  16. Generation Y Perspectives

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Garret; Painting, Kristen; Barrera, Aaron; Skytland, Nick

    2008-01-01

    Are you familiar with the famed Generation Y, or "Gen Yers?" Generation Y is projected to be 47 percent of the workforce by 2014. They were born roughly between 1977 and 2000, but that is definitely not their only defining factor. But who is this group, and what do they have to do with the future of the space program and the Johnson Space Center (JSC)? During 2007, a group of Gen Yers at JSC participated on a committee to address the NASA Headquarters strategic communications plan. Fitzpatrick, along with his co-authors, created a presentation to share the Gen Yers' perspective on their generation in conjunction with the strategic communications strategy released. This knowledge capture (KC) event is that presentation.

  17. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  18. Attracting Students to Space Science Fields: Mission to Mars

    NASA Astrophysics Data System (ADS)

    Congdon, Donald R.; Lovegrove, William P.; Samec, Ronald G.

    Attracting high school students to space science is one of the main goals of Bob Jones University's annual Mission to Mars (MTM). MTM develops interest in space exploration through a highly realistic simulated trip to Mars. Students study and learn to appreciate the challenges of space travel including propulsion life support medicine planetary astronomy psychology robotics and communication. Broken into teams (Management Spacecraft Design Communications Life Support Navigation Robotics and Science) they address the problems specific to each aspect of the mission. Teams also learn to interact and recognize that a successful mission requires cooperation. Coordinated by the Management Team the students build a spacecraft and associated apparatus connect computers and communications equipment train astronauts on the mission simulator and program a Pathfinder-type robot. On the big day the astronauts enter the spacecraft as Mission Control gets ready to support them through the expected and unexpected of their mission. Aided by teamwork the astronauts must land on Mars perform their scientific mission on a simulated surface of mars and return home. We see the success of MTM not only in successful missions but in the students who come back year after year for another MTM.

  19. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel on the space shuttle program. Part 1: Observations and conclusions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The panel reviewed the following areas of major significance for the Approach and Landing Test program: mission planning and crew training, flight-readiness of the Carrier Aircraft and the Orbiter, including its flight control and avionics system, facilities, and communications and ground support equipment. The management system for risk assessment was investigated. The Orbital Flight Test Program was also reviewed. Observations and recommendations are presented.

  20. Users' manual for computer program for one-dimensional analysis of coupled-cavity traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Omalley, T. A.; Connolly, D. J.

    1977-01-01

    The use of the coupled cavity traveling wave tube for space communications has led to an increased interest in improving the efficiency of the basic interaction process in these devices through velocity resynchronization and other methods. To analyze these methods, a flexible, large signal computer program for use on the IBM 360/67 time-sharing system has been developed. The present report is a users' manual for this program.

  1. MSFC April 2016 Resource Reel

    NASA Image and Video Library

    2016-04-27

    Name/Title of Video: Marshall Space Flight Center Media Resource Reel 2016 Description: Edited b-roll video of NASA's Marshall Space Flight Center in Huntsville, Ala., and of various projects and programs located at or associated with the center. For more information and more detailed footage, please contact the center's Public & Employee Communications Office. Graphic Information: PAO Name:Jennifer Stanfield Phone Number:256-544-0034 Email Address: jennifer.stanfield@nasa.gov

  2. Space Industry Study Industrial College of the Armed Forces National Defense University

    DTIC Science & Technology

    2002-06-01

    information technologies , especially fiber, cable, and cellular communications, which forced space systems away from old market roles and denied entry to... technologies fill market niches. As technology matures, small satellites have been viewed a partial solution to this cycle, enabling faster programs...years, the largely unforeseen growth in the internet has proven a valuable new market for satellite service providers. And over the past few years

  3. High Bandwidth Communications: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes optical and high-frequency microwave systems to enhance data transmission rates. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  4. Acquisition of Space Systems. Volume 7. Past Problems and Future Challenges

    DTIC Science & Technology

    2015-01-01

    Mbps megabits per second MDAP Major Defense Acquisition Program MILSATCOM military satellite communications MOU memorandum of understanding NASA ...Although the National Aeronautics and Space Administration ( NASA ) and the National Reconnaissance Office (NRO) also buy sat- ellites, both buy systems...has gotten to any given TRL does not guar- antee that it will ever get to a higher TRL. 7 GAO, 2009b. Several NASA satellites were experiencing

  5. Space Projects and Research by Kids (SPARK): A Web Based Research Journal for Middle School Students

    NASA Astrophysics Data System (ADS)

    Limaye, S. S.; Pertzborn, R. A.

    1999-05-01

    Project SPARK is designed to facilitate opportunities for upper elementary and middle school students to develop the necessary skills to conduct investigations that focus on the subjects of astronomy, space exploration, and earth remote sensing. This program actively engages students in conducting their own research project to acquire increased understanding and content knowledge in the space sciences. While the development of scientific inquiry skills and content literacy is the primary focus, students also enhance their critical thinking, analytical, technological and communications skills. As in the professional science community, the web based SPARK Journal presents an avenue for students to effectively communicate the results of their investigations and work to classmates as well as the "global learning community" via the world wide web. Educational outreach staff at the Sapce Science and Engineering Center have developed active partnerships with teachers and schools throughout Wisconsin to facilitate the development of standards based curriculum and research projects focusing on current topics in the space sciences. Student research projects and activities arising from these initiatives were submitted in the Spring and Fall of 1998 for inclusion in SPARK, Volume 1. The second volume of SPARK will be published in Spring, 1999. Support for the development of this journal was provided by the NASA/IDEAS Program.

  6. Houston, We Have A Problem: A History of Air-to-Ground Voice Transmissions from the U.S. Manned Space Program

    NASA Astrophysics Data System (ADS)

    Swanson, Glen E.

    2002-01-01

    America's manned civil space program unfolded before the public through a vast array of sights and sounds. Beginning with Alan Shepard's first flight into space and continuing through the early Space Shuttle Program, nearly every word spoken between Earth and astronaut was recorded, transcribed and published for the world to see. Engineers installed onboard tape recorders which, as part of their data-saving function, recorded astronaut intercom communications. Some of these recordings were made during critical phases of each flight when the preservation of all data was essential. These tapes along with hundreds of others that gathered on the ground from each mission became the focused attention of legions of typists whose single job was converting voice to paper. Armed with reel-to-reel tape players, electric typewriters and reams of paper, these folks hammered out thousands of pages of transcripts. The results are a permanent written record that reveal a different side to America's manned space program; one in which its astronauts are both professional and profane, calm and excited, confident and unsure, healthy and sick - in a word, "human."

  7. Autonomous Mission Manager for Rendezvous, Inspection and Mating

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas J.

    2003-01-01

    To meet cost and safety objectives, space missions that involve proximity operations between two vehicles require a high level of autonomy to successfully complete their missions. The need for autonomy is primarily driven by the need to conduct complex operations outside of communication windows, and the communication time delays inherent in space missions. Autonomy also supports the goals of both NASA and the DOD to make space operations more routine, and lower operational costs by reducing the requirement for ground personnel. NASA and the DoD have several programs underway that require a much higher level of autonomy for space vehicles. NASA's Space Launch Initiative (SLI) program has ambitious goals of reducing costs by a factor or 10 and improving safety by a factor of 100. DARPA has recently begun its Orbital Express to demonstrate key technologies to make satellite servicing routine. The Air Force's XSS-ll program is developing a protoflight demonstration of an autonomous satellite inspector. A common element in space operations for many NASA and DOD missions is the ability to rendezvous, inspect anclJor dock with another spacecraft. For DARPA, this is required to service or refuel military satellites. For the Air Force, this is required to inspect un-cooperative resident space objects. For NASA, this is needed to meet the primary SLI design reference mission of International Space Station re-supply. A common aspect for each of these programs is an Autonomous Mission Manager that provides highly autonomous planning, execution and monitoring of the rendezvous, inspection and docking operations. This paper provides an overview of the Autonomous Mission Manager (AMM) design being incorporated into many of these technology programs. This AMM provides a highly scalable level of autonomous operations, ranging from automatic execution of ground-derived plans to highly autonomous onboard planning to meet ground developed mission goals. The AMM provides the capability to automatically execute the plans and monitor the system performance. In the event of system dispersions or failures the AMM can modify plans or abort to assure overall system safety. This paper describes the design and functionality of Draper's AMM framework, presents concept of operations associated with the use of the AMM, and outlines the relevant features of the flight demonstrations.

  8. Phased project planning and development in anticipation of operational programs

    NASA Technical Reports Server (NTRS)

    Stroud, W. G.

    1973-01-01

    The impact of future operational status on the planning and execution of the research and development activities for major space flight projects is assessed. These projects, within NASA, are part of the Applications Program involving communications and meteorology. The NASA management approach to these projects is determined by national policies governing the responsibilities and relationships among the various government agencies and private industries.

  9. JTEC/WTEC annual report and program summary: 1993/94

    NASA Technical Reports Server (NTRS)

    Holdridge, Geoffrey M. (Editor)

    1994-01-01

    The JTEC/WTEC (Japanese Technology Evaluation Center/World Technology Evaluation Center) Program at Loyola College is overviewed. A review of activities for 1993 and early 1994 is discussed along with plans for the following year. The bulk of the report consists of the summaries of completed projects in Information and Communication Technology; Materials; Manufacturing and Construction; Aeronautics, Space, and Ocean Technology; Energy; and Biotechnology.

  10. International Space Station Utilization: Tracking Investigations from Objectives to Results

    NASA Technical Reports Server (NTRS)

    Ruttley, T. M.; Mayo, Susan; Robinson, J. A.

    2011-01-01

    Since the first module was assembled on the International Space Station (ISS), on-orbit investigations have been underway across all scientific disciplines. The facilities dedicated to research on ISS have supported over 1100 investigations from over 900 scientists representing over 60 countries. Relatively few of these investigations are tracked through the traditional NASA grants monitoring process and with ISS National Laboratory use growing, the ISS Program Scientist s Office has been tasked with tracking all ISS investigations from objectives to results. Detailed information regarding each investigation is now collected once, at the first point it is proposed for flight, and is kept in an online database that serves as a single source of information on the core objectives of each investigation. Different fields are used to provide the appropriate level of detail for research planning, astronaut training, and public communications. http://www.nasa.gov/iss-science/. With each successive year, publications of ISS scientific results, which are used to measure success of the research program, have shown steady increases in all scientific research areas on the ISS. Accurately identifying, collecting, and assessing the research results publications is a challenge and a priority for the ISS research program, and we will discuss the approaches that the ISS Program Science Office employs to meet this challenge. We will also address the online resources available to support outreach and communication of ISS research to the public. Keywords: International Space Station, Database, Tracking, Methods

  11. The principle of commonality and its application to the Space Station Freedom Program

    NASA Technical Reports Server (NTRS)

    Hopson, George D.; Thomas, L. Dale; Daniel, Charles C.

    1989-01-01

    The principle of commonality has achieved wide application in the communication, automotive, and aircraft industries. By the use of commonality, component development costs are minimized, logistics are simplified, and the investment costs of spares inventory are reduced. With space systems, which must be maintained and repaired in orbit, the advantages of commonality are compounded. Transportation of spares is expensive, on-board storage volume for spares is limited, and crew training and special tools needed for maintenance and repair are significant considerations. This paper addresses the techniques being formulated to realize the benefits of commonality in the design of the systems and elements of the Space Station Freedom Program, and include the criteria for determining the extent of commonality to be implemented.

  12. Chicago Meets Outer Space program

    NASA Technical Reports Server (NTRS)

    Allen, H., Jr.

    1978-01-01

    The symposium included personal appearances by NASA astronauts, NASA exhibits, souvenir photos for each student attending the symposium, live demonstrations of how the Communication Technology Satellite links the U. S. with people around the world, and talks on job opportunities in aerospace and on the benefits of space. Monday through Friday, the program was directed mainly at (public, parochial and private) student groups, each of which spent a half day on the CSU campus to participate in the symposium activities. On Saturday and Sunday, the symposium was open to the general public and consisted of the NASA exhibits, films, a shorter version of the lectures and a special demonstration and tasting opportunity of space food meal systems. These quick meal systems that were designed for senior citizens.

  13. The Ten Outstanding Engineering Achievements of the Past 50 Years.

    ERIC Educational Resources Information Center

    Hightower, George

    1984-01-01

    Describes the outstanding achievement in each of 10 major engineering categories. These categories include synthetic fibers, nuclear energy, computers, solid state electronics, jet aircraft, biomedical engineering, lasers, communications satellites, the United States space program, and automation and control systems. (JN)

  14. Improving science literacy and education through space life sciences.

    PubMed

    MacLeish, M Y; Moreno, N P; Tharp, B Z; Denton, J J; Jessup, G; Clipper, M C

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  15. Improving science literacy and education through space life sciences

    NASA Technical Reports Server (NTRS)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  16. SCL: An off-the-shelf system for spacecraft control

    NASA Astrophysics Data System (ADS)

    Buckley, Brian; Vangaasbeck, James

    1994-11-01

    In this age of shrinking military, civil, and commercial space budgets, an off-the-shelf solution is needed to provide a multimission approach to spacecraft control. A standard operational interface which can be applied to multiple spacecraft allows a common approach to ground and space operations. A trend for many space programs has been to reduce operational staff by applying autonomy to the spacecraft and to the ground stations. The Spacecraft Command Language (SCL) system developed by Interface and Control Systems, Inc. (ICS) provides an off-the-shelf solution for spacecraft operations. The SCL system is designed to provide a hyper-scripting interface which remains standard from program to program. The spacecraft and ground station hardware specifics are isolated to provide the maximum amount of portability from system to system. Uplink and downlink interfaces are also isolated to allow the system to perform independent of the communications protocols chosen. The SCL system can be used for both the ground stations and the spacecraft, or as a value added package for existing ground station environments. The SCL system provides an expanded stored commanding capability as well as a rule-based expert system on-board. The expert system allows reactive control on-board the spacecraft for functions such as electrical power systems (EPS), thermal control, etc. which have traditionally been performed on the ground. The SCL rule and scripting capability share a common syntax allowing control of scripts from rules and rules from scripts. Rather than telemeter over sampled data to the ground, the SCL system maintains a database on-board which is available for interrogation by the scripts and rules. The SCL knowledge base is constructed on the ground and uploaded to the spacecraft. The SCL system follows an open-systems approach allowing other tasks to communicate with SCL on the ground and in space. The SCL system was used on the Clementine program (launched January 25, 1994) and is required to have bidirectional communications with the guidance, navigation, and control (GNC) algorithms which were written as another task. Sequencing of the spacecraft maneuvers are handled by SCL, but the low-level thruster pulse commands are handled by the GNC software. Attitude information is reported back as telemetry, allowing the SCL expert system to inference on the changing data. The Clementine SCL flight software was largely reused from another Naval Center for Space Technology (NCST) satellite program.

  17. SCL: An off-the-shelf system for spacecraft control

    NASA Technical Reports Server (NTRS)

    Buckley, Brian; Vangaasbeck, James

    1994-01-01

    In this age of shrinking military, civil, and commercial space budgets, an off-the-shelf solution is needed to provide a multimission approach to spacecraft control. A standard operational interface which can be applied to multiple spacecraft allows a common approach to ground and space operations. A trend for many space programs has been to reduce operational staff by applying autonomy to the spacecraft and to the ground stations. The Spacecraft Command Language (SCL) system developed by Interface and Control Systems, Inc. (ICS) provides an off-the-shelf solution for spacecraft operations. The SCL system is designed to provide a hyper-scripting interface which remains standard from program to program. The spacecraft and ground station hardware specifics are isolated to provide the maximum amount of portability from system to system. Uplink and downlink interfaces are also isolated to allow the system to perform independent of the communications protocols chosen. The SCL system can be used for both the ground stations and the spacecraft, or as a value added package for existing ground station environments. The SCL system provides an expanded stored commanding capability as well as a rule-based expert system on-board. The expert system allows reactive control on-board the spacecraft for functions such as electrical power systems (EPS), thermal control, etc. which have traditionally been performed on the ground. The SCL rule and scripting capability share a common syntax allowing control of scripts from rules and rules from scripts. Rather than telemeter over sampled data to the ground, the SCL system maintains a database on-board which is available for interrogation by the scripts and rules. The SCL knowledge base is constructed on the ground and uploaded to the spacecraft. The SCL system follows an open-systems approach allowing other tasks to communicate with SCL on the ground and in space. The SCL system was used on the Clementine program (launched January 25, 1994) and is required to have bidirectional communications with the guidance, navigation, and control (GNC) algorithms which were written as another task. Sequencing of the spacecraft maneuvers are handled by SCL, but the low-level thruster pulse commands are handled by the GNC software. Attitude information is reported back as telemetry, allowing the SCL expert system to inference on the changing data. The Clementine SCL flight software was largely reused from another Naval Center for Space Technology (NCST) satellite program. This paper details the SCL architecture and how an off-the-shelf solution makes sense for multimission spacecraft programs. The Clementine mission will be used as a case study in the application of the SCL to a 'fast track' program. The benefits of such a system in a 'better, cheaper, faster' climate will be discussed.

  18. Space Transportation Materials and Structures Technology Workshop. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr. (Compiler); Gardner, J. E. (Compiler)

    1992-01-01

    The workshop was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems; Propulsion Systems; and Entry Systems. The goals accomplished were (1) to develop important strategic planning information necessary to transition materials and structures technologies from lab research programs into robust and affordable operational systems; (2) to provide a forum for the exchange of information and ideas between technology developers and users; and (3) to provide senior NASA management with a review of current space transportation programs, related subjects, and specific technology needs. The workshop thus provided a foundation on which a NASA and industry effort to address space transportation materials and structures technologies can grow.

  19. Microwave integrated circuits for space applications

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  20. Ground based simulation of life sciences Spacelab experiments

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.; Alexander, W. C.; Bush, W. H.; Johnston, R. S.

    1978-01-01

    The third in a series of Spacelab Mission Development tests was a joint effort of the Ames Research and Johnson Space Centers to evaluate planned operational concepts of the Space Shuttle life sciences program. A three-man crew conducted 26 experiments and 12 operational tests, utilizing both human and animal subjects. The crew lived aboard an Orbiter/Spacelab mockup for the seven-day simulation. The Spacelab was identical in geometry to the European Space Agency design, complete with removable rack sections and stowage provisions. Communications were controlled as currently planned for operational Shuttle flights. A Science Operations Remote Center at the Ames Research Center was managed by simulated Mission Control and Payload Operation Control Centers at the Johnson Space Center. This paper presents the test objectives, describes the facilities and test program, and outlines the results of this test.

  1. Wireless Telemetry and Command (T and C) Program

    NASA Technical Reports Server (NTRS)

    Jiang, Hui; Horan, Stephen

    2000-01-01

    The Wireless Telemetry and Command (T&C) program is to investigate methods of using commercial telecommunications service providers to support command and telemetry services between a remote user and a base station. While the initial development is based on ground networks, the development is being done with an eye towards future space communications needs. Both NASA and the Air Force have indicated a plan to consider the use of commercial telecommunications providers to support their space missions. To do this, there will need to be an understanding of the requirements and limitations of interfacing with the commercial providers. The eventual payoff will be the reduced operations cost and the ability to tap into commercial services being developed by the commercial networks. This should enable easier realization of EP services to the end points, commercial routing of data, and quicker integration of new services into the space mission operations. Therefore, the ultimate goal of this program is not just to provide wireless radio communications for T&C services but to enhance those services through wireless networking and provider enhancements that come with the networks. In the following chapters, the detailed technical procedure will be showed step by step. Chapter 2 will talk about the general idea of simulation as well as the implementation of data acquisition including sensor array data and GPS data. Chapter 3 will talk about how to use LabVEEW and Component Works to do wireless communication simulation and how to distribute the real-time information over the Internet by using Visual Basic and ActiveX controls. Also talk about the test configuration and validation. Chapter 4 will show the test results both from In-Lab test and Networking Test. Chapter 5 will summarize the whole procedure and give the perspective for the future consideration.

  2. (CICT) Computing, Information, and Communications Technology Overview

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.

    2003-01-01

    The goal of the Computing, Information, and Communications Technology (CICT) program is to enable NASA's Scientific Research, Space Exploration, and Aerospace Technology Missions with greater mission assurance, for less cost, with increased science return through the development and use of advanced computing, information and communications technologies. This viewgraph presentation includes diagrams of how the political guidance behind CICT is structured. The presentation profiles each part of the NASA Mission in detail, and relates the Mission to the activities of CICT. CICT's Integrated Capability Goal is illustrated, and hypothetical missions which could be enabled by CICT are profiled. CICT technology development is profiled.

  3. NASA's current activities in free space optical communications

    NASA Astrophysics Data System (ADS)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  4. Space Transportation Propulsion Technology Symposium. Volume 2: Symposium proceedings

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transportation Propulsion Symposium was held to provide a forum for communication within the propulsion technology developer and user communities. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps, and other programmatic deficiencies. Key space transportation propulsion issues were addressed through four panels with government, industry, and academia membership. The panels focused on systems engineering and integration; development, manufacturing and certification; operational efficiency; and program development and cultural issues.

  5. Chronicler's Induction Ceremony

    NASA Image and Video Library

    2017-05-05

    A poster in the NASA News Center at Kennedy Space Center in Florida bears the names and photos of the six new honorees added to the facility's "Chroniclers" roll of honor. The Chroniclers program recognizes retirees of the news and communications business who helped spread news of American space exploration from Kennedy Space Center for ten years or more. From top left to bottom right are Phillip Sandlin, Associated Press photographer; Bill Johnson, NASA Public Affairs; Bruce Hall, CBS News and NBC News; Scott Harris, WESH, WKMG and Central Florida News 13; Warren Leary, The New York Times; and Bob Murray, WDBO-TV, RCA and United Space Alliance.

  6. The Chronicles Wall

    NASA Image and Video Library

    2017-05-03

    Brass plaques engraved with the names of Gatha Cottee of NASA Public Affairs, Walter Cronkite of CBS News and Bill Cummins of WEZY Radio are among the list of "The Chroniclers," a roll of honor on the wall at the NASA News Center at Kennedy Space Center in Florida. In this facility reporters from television, radio, print and online media outlets have monitored countless launches, landings and other space events in order to deliver the news to the world. The Chroniclers program recognizes retirees of the news and communications business who helped spread news of American space exploration from Kennedy Space Center for ten years or more.

  7. KSC-20170505-PH_CSH01_0003

    NASA Image and Video Library

    2017-05-05

    Brass strips bear the names and photos of the six new honorees added to the "Chroniclers" roll of honor in the NASA News Center at Kennedy Space Center in Florida. The Chroniclers program recognizes retirees of the news and communications business who helped spread news of American space exploration from Kennedy Space Center for ten years or more. The 2017 Chroniclers are Bruce Hall, CBS News and NBC News; Scott Harris, WESH, WKMG and Central Florida News 13; Bill Johnson, NASA Public Affairs; Warren Leary, The New York Times; Bob Murray, WDBO-TV, RCA and United Space Alliance; and Phillip Sandlin, Associated Press photographer.

  8. Cygnus Orbital ATK OA-6 Post Launch Press Conference

    NASA Image and Video Library

    2016-03-23

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to members of the news media at a post-launch news conference following the liftoff of Orbital ATK CRS-6, a commercial resupply services mission to the International Space Station, or ISS. From left are: Kathryn Hambleton of NASA Communications; Kenneth Todd, NASA ISS Operations Integration manager; Frank Culbertson, president of Orbital ATK's Space System Group; Vern Thorp, United Space Alliance's program manager for NASA missions. The Cygnus spacecraft lifted off atop an Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station at 11:05 p.m. EDT.

  9. KSC-98pc1370

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- Attached to the second stage of a Boeing Delta II at Pad 17A, Cape Canaveral Air Station, is the Students for the Exploration and Development of Space Satellite-1 (SEDSat-1). An international project, SEDSat-1 is a secondary payload on the Deep Space 1 mission and will be deployed 88 minutes after launch over Hawaii. The satellite includes cameras for imaging Earth, a unique attitude determination system, and amateur radio communication capabilities. Deep Space 1, targeted for launch on Oct. 24, is the first flight in NASA's New Millennium Program and is designed to validate 12 new technologies for scientific space missions of the next century

  10. KSC-98pc1369

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- Attached to the second stage of a Boeing Delta II at Pad 17A, Cape Canaveral Air Station, is the Students for the Exploration and Development of Space Satellite-1 (SEDSat-1). An international project, SEDSat-1 is a secondary payload on the Deep Space 1 mission and will be deployed 88 minutes after launch over Hawaii. The satellite includes cameras for imaging Earth, a unique attitude determination system, and amateur radio communication capabilities. Deep Space 1, targeted for launch on Oct. 24, is the first flight in NASA's New Millennium Program and is designed to validate 12 new technologies for scientific space missions of the next century

  11. Trans-Pacific HDR Satellite Communications Experiment Phase-2: Experimental Network and Demonstration Plan

    NASA Technical Reports Server (NTRS)

    Kadowaki, Naoto; Yoshimura, Naoko; Takahashi, Takashi; Yoshikawa, Makoto; Hsu, Eddie; Bergman, Larry; Bhasin, Kul; Gary, Pat

    1998-01-01

    The trans-Pacific high data rate (TP-HDR) satellite communications experiment was proposed at the Japan-U.S. Cooperation in Space (JUCS) Program Workshop held in Hawaii in 1993 and remote high definition video post-production was demonstrated as the first phase trial. Following the first phase, the second phase experiment is currently prepared. This paper describes the experimental network configuration, application demonstration, and performance evaluation plan of the second phase experiment.

  12. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 4: Programmatics

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Details are provided for scheduling, cost estimates, and support research and technology requirements for a space shuttle supported manned research laboratory to conduct selected communication and navigation experiments. A summary of the candidate program and its time phasing is included, as well as photographs of the 1/20 scale model of the shuttle supported Early Comm/Nav Research Lab showing the baseline, in-bay arrangement and the out-of-bay configuration.

  13. Remote Maneuver of Space Debris Using Photon Pressure for Active Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Smith, C.

    2014-09-01

    The Space Environment Research Corporation (SERC) is a consortium of companies and research institutions that have joined together to pursue research and development of technologies and capabilities that will help to preserve the orbital space environment. The consortium includes, Electro Optics Systems (Australia), Lockheed Martin Australia, Optus Satellite Systems (Australia), The Australian national University, RMIT University, National Institute of Information and Communications Technology (NICT, Japan) as well as affiliates from NASA Ames and ESA. SERC is also the recipient of and Australian Government Cooperative Research Centre grant. SERC will pursue a wide ranging research program including technologies to improve tracking capability and capacity, orbit determination and propagation algorithms, conjunction analysis and collision avoidance. All of these technologies will contribute to the flagship program to demonstrate active collision avoidance using photon pressure to provide remote maneuver of space debris. This project joins of the proposed NASA Lightforce concept with infrastructure and capabilities provided by SERC. This paper will describe the proposed research and development program to provide an on-orbit demonstration within the next five years for remote maneuver of space debris.

  14. NASA Communications Augmentation network

    NASA Technical Reports Server (NTRS)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.

    1990-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  15. Reconfigurable Transceiver and Software-Defined Radio Architecture and Technology Evaluated for NASA Space Communications

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    The NASA Glenn Research Center is investigating the development and suitability of a software-based open-architecture for space-based reconfigurable transceivers (RTs) and software-defined radios (SDRs). The main objectives of this project are to enable advanced operations and reduce mission costs. SDRs are becoming more common because of the capabilities of reconfigurable digital signal processing technologies such as field programmable gate arrays and digital signal processors, which place radio functions in firmware and software that were traditionally performed with analog hardware components. Features of interest of this communications architecture include nonproprietary open standards and application programming interfaces to enable software reuse and portability, independent hardware and software development, and hardware and software functional separation. The goals for RT and SDR technologies for NASA space missions include prelaunch and on-orbit frequency and waveform reconfigurability and programmability, high data rate capability, and overall communications and processing flexibility. These operational advances over current state-of-art transceivers will be provided to reduce the power, mass, and cost of RTs and SDRs for space communications. The open architecture for NASA communications will support existing (legacy) communications needs and capabilities while providing a path to more capable, advanced waveform development and mission concepts (e.g., ad hoc constellations with self-healing networks and high-rate science data return). A study was completed to assess the state of the art in RT architectures, implementations, and technologies. In-house researchers conducted literature searches and analysis, interviewed Government and industry contacts, and solicited information and white papers from industry on space-qualifiable RTs and SDRs and their associated technologies for space-based NASA applications. The white papers were evaluated, compiled, and used to assess RT and SDR system architectures and core technology elements to determine an appropriate investment strategy to advance these technologies to meet future mission needs. The use of these radios in the space environment represents a challenge because of the space radiation suitability of the components, which drastically reduces the processing capability. The radios available for space are considered to be RTs (as opposed to SDRs), which are digitally programmable radios with selectable changes from an architecture combining analog and digital components. The limited flexibility of this design contrasts against the desire to have a power-efficient solution and open architecture.

  16. Mars mission program for primary students: Building student and teacher skills in science, technology, engineering and mathematics

    NASA Astrophysics Data System (ADS)

    Mathers, Naomi; Pakakis, Michael; Christie, Ian

    2011-09-01

    The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive environment promotes high order thinking skills such as problem solving, team work, communication skills and leadership. To promote the teaching of science in the classroom, and prepare the students for their mission, the program includes a pre-visit program. These classroom-based lessons model best practice in effective science teaching and learning to support the development of confident primary science teachers.

  17. A study of System Interface Sets (SIS) for the host, target and integration environments of the Space Station Program (SSP)

    NASA Technical Reports Server (NTRS)

    Mckay, Charles; Auty, David; Rogers, Kathy

    1987-01-01

    System interface sets (SIS) for large, complex, non-stop, distributed systems are examined. The SIS of the Space Station Program (SSP) was selected as the focus of this study because an appropriate virtual interface specification of the SIS is believed to have the most potential to free the project from four life cycle tyrannies which are rooted in a dependance on either a proprietary or particular instance of: operating systems, data management systems, communications systems, and instruction set architectures. The static perspective of the common Ada programming support environment interface set (CAIS) and the portable common execution environment (PCEE) activities are discussed. Also, the dynamic perspective of the PCEE is addressed.

  18. The American mobile satellite system

    NASA Technical Reports Server (NTRS)

    Garner, William B.

    1990-01-01

    During 1989, the American Mobile Satellite Corporation (AMSC) was authorized to construct, launch, and operate satellites to provide mobile satellite services (MSS) to the U.S. and Puerto Rico. The AMSC has undertaken three major development programs to bring a full range of MSS services to the U.S. The first program is the space segment program that will result in the construction and launch of the satellites as well as the construction and installation of the supporting ground telemetry and command system. The second segment will result in the specification, design, development, construction, and installation of the Network Control System necessary for managing communications access to the satellites, and the specification and development of ground equipment for standard circuit switched and packet switched communications services. The third program is the Phase 1 program to provide low speed data services within the U.S. prior to availability of the AMSC satellites and ground segment. Described here are the present status and plans for these three programs as well as an update on related business arrangements and regulatory matters.

  19. Emerging, Photonic Based Technologies for NASA Space Communications Applications

    NASA Technical Reports Server (NTRS)

    Pouch, John; Nguyen, Hung; Lee, Richard; Levi, Anthony; Bos, Philip; Titus, Charles; Lavrentovich, Oleg

    2002-01-01

    An objective of NASA's Computing, Information, and Communications Technology program is to support the development of technologies that could potentially lower the cost of the Earth science and space exploration missions, and result in greater scientific returns. NASA-supported photonic activities which will impact space communications will be described. The objective of the RF microphotonic research is to develop a Ka-band receiver that will enable the microwaves detected by an antenna to modulate a 1.55- micron optical carrier. A key element is the high-Q, microphotonic modulator that employs a lithium niobate microdisk. The technical approach could lead to new receivers that utilize ultra-fast, photonic signal processing techniques, and are low cost, compact, low weight and power efficient. The progress in the liquid crystal (LC) beam steering research will also be reported. The predicted benefits of an LC-based device on board a spacecraft include non-mechanical, submicroradian laser-beam pointing, milliradian scanning ranges, and wave-front correction. The potential applications of these emerging technologies to the various NASA missions will be presented.

  20. Free-space laser communication technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 11, 12, 1988

    NASA Astrophysics Data System (ADS)

    Koepf, Gerhard A.; Begley, David L.

    1988-01-01

    The present conference discusses topics in free-space laser communications, laser link characteristics, satellite laser communication systems, optoelectronic components for laser communications, and space laser subsystem technologies. Attention is given to Space Station-based deep-space communication experiments, the application of intersatellite links to operational satellite systems, high-power 0.87 micron channel substrate planar lasers for spaceborne communications, a ground experiment using a CO2 laser transceiver for free-space communications, studies of laser ranging to the TOPEX satellite, diffraction-limited tracking for space communications, and the compact implementation of a real-time, acoustooptic SAR processor.

  1. Space station, 1959 to . .

    NASA Astrophysics Data System (ADS)

    Butler, G. V.

    1981-04-01

    Early space station designs are considered, taking into account Herman Oberth's first space station, the London Daily Mail Study, the first major space station design developed during the moon mission, and the Manned Orbiting Laboratory Program of DOD. Attention is given to Skylab, new space station studies, the Shuttle and Spacelab, communication satellites, solar power satellites, a 30 meter diameter radiometer for geological measurements and agricultural assessments, the mining of the moons, and questions of international cooperation. It is thought to be very probable that there will be very large space stations at some time in the future. However, for the more immediate future a step-by-step development that will start with Spacelab stations of 3-4 men is envisaged.

  2. Utilization of Internet Protocol-Based Voice Systems in Remote Payload Operations

    NASA Technical Reports Server (NTRS)

    Chamberlain, jim; Bradford, Bob; Best, Susan; Nichols, Kelvin

    2002-01-01

    Due to limited crew availability to support science and the large number of experiments to be operated simultaneously, telescience is key to a successful International Space Station (ISS) science program. Crew, operations personnel at NASA centers, and researchers at universities and companies around the world must work closely together to per orm scientific experiments on-board ISS. The deployment of reliable high-speed Internet Protocol (IP)-based networks promises to greatly enhance telescience capabilities. These networks are now being used to cost-effectively extend the reach of remote mission support systems. They reduce the need for dedicated leased lines and travel while improving distributed workgroup collaboration capabilities. NASA has initiated use of Voice over Internet Protocol (VoIP) to supplement the existing mission voice communications system used by researchers at their remote sites. The Internet Voice Distribution System (IVoDS) connects remote researchers to mission support "loopsll or conferences via NASA networks and Internet 2. Researchers use NODS software on personal computers to talk with operations personnel at NASA centers. IVoDS also has the ;capability, if authorized, to allow researchers to communicate with the ISS crew during experiment operations. NODS was developed by Marshall Space Flight Center with contractors & Technology, First Virtual Communications, Lockheed-Martin, and VoIP Group. NODS is currently undergoing field-testing with full deployment for up to 50 simultaneous users expected in 2002. Research is being performed in parallel with IVoDS deployment for a next-generation system to qualitatively enhance communications among ISS operations personnel. In addition to the current voice capability, video and data/application-sharing capabilities are being investigated. IVoDS technology is also being considered for mission support systems for programs such as Space Launch Initiative and Homeland Defense.

  3. Low-Temperature Power Electronics Program

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott

    1997-01-01

    Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.

  4. Twenty-Five Years of Progress. Part 1: Birth of NASA. Part 2: The Moon-A Goal

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Historical footage (1958 - 1983) concerning NASA's Space Program, is reviewed in this two-part video. Host, Lynn Bondurant describes the birth of NASA and its accomplishments through the years. Part one contains: the launch of Russian satellite Sputnik on October 4,1957; the first dog (Soviet) in space; NACA Space Research, Explorer-6; and still photographs of various Space projects. Tiros 1 experimental weather satellite, Microgravity simulators, Echo 1 passive communications satellite, and the first U.S. manned spaceflight Mercury are included in part two. The seven Mercury astronauts are: Captain Donald Slayton, Lt. Commander Alan Shepard, Lt. Commander Walter Schirra, Captain Virgil Grissom, Lt. Col. John Glenn Jr., Captain Leroy Cooper Jr, and Lt. Malcolm Scott Carpenter. Also included are an ongoing interview (throughout the video) with NASA's first Administrator Keith Glennan, the first flight in 1961 with Enos, a chimpanzee, President Kennedy's speech in Washington about the Space Program, Project Gemini - the 2-manned space flights, and the recovery of Virgil Grissom from splash down.

  5. Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A. (Editor); Beymer, Mark A. (Editor)

    1990-01-01

    A collection of technical reports on research conducted by the participants in this program is presented. The topics covered include: human-computer interface software, multimode fiber optic communication links, electrochemical impedance spectroscopy, rocket-triggered lightning, robotics, a flammability study of thin polymeric film materials, a vortex shedding flowmeter, modeling of flow systems, monomethyl hydrazine vapor detection, a rocket noise filter system using digital filters, computer programs, lower body negative pressure, closed ecological systems, and others. Several reports with respect to space shuttle orbiters are presented.

  6. The Geostationary Operational Satellite R Series SpaceWire Based Data System Architecture

    NASA Technical Reports Server (NTRS)

    Krimchansky, Alexander; Anderson, William H.; Bearer, Craig

    2010-01-01

    The GOES-R program selected SpaceWire as the best solution to satisfy the desire for simple and flexible instrument to spacecraft command and telemetry communications. Data generated by GOES-R instruments is critical for meteorological forecasting, public safety, space weather, and other key applications. In addition, GOES-R instrument data is provided to ground stations on a 24/7 basis. GOES-R requires data errors be detected and corrected from origin to final destination. This paper describes GOES-R developed strategy to satisfy this requirement

  7. Use of low orbital satellite communications systems for humanitarian programs

    NASA Technical Reports Server (NTRS)

    Vlasov, Vladimir N.; Gorkovoy, Vladimir

    1991-01-01

    Communication and information exchange play a decisive role in progress and social development. However, in many parts of the world the communication infrastructure is inadequate and the capacity for on-line exchange of information may not exist. This is true of underdeveloped countries, remote and relatively inaccessible regions, sites of natural disasters, and of all cases where the resources needed to create complex communication systems are limited. The creation of an inexpensive space communications system to service such areas is therefore a high priority task. In addition to a relatively low-cost space segment, an inexpensive space communications systems requires a large number of ground terminals, which must be relatively inexpensive, energy efficient (using power generated by storage batteries, or solar arrays, etc.), small in size, and must not require highly expert maintenance. The ground terminals must be portable, and readily deployable. Communications satellites in geostationary orbit at altitudes of about 36,000 km are very expensive and require complex and expensive ground stations and launch vehicles. Given current technology, it is categorically impossible to develop inexpensive satellite systems with portable ground terminals using such satellites. To solve the problem of developing an inexpensive satellite communications system that can operate with relatively small ground stations, including portable terminals, we propose to use a system with satellites in low Earth orbit, at an altitude of 900-1500 km. Because low orbital satellites are much closer to the Earth than geostationary ones and require vastly less energy expenditure by the satellite and ground terminals for transmission of messages, a system using them is relatively inexpensive. Such a system could use portable ground terminals no more complex than ordinary mobile police radios.

  8. Sustaining a Mature Risk Management Process: Ensuring the International Space Station for a Vibrant Future

    NASA Technical Reports Server (NTRS)

    Raftery, Michael; Carter-Journet, Katrina

    2013-01-01

    The International Space Station (ISS) risk management methodology is an example of a mature and sustainable process. Risk management is a systematic approach used to proactively identify, analyze, plan, track, control, communicate, and document risks to help management make risk-informed decisions that increase the likelihood of achieving program objectives. The ISS has been operating in space for over 14 years and permanently crewed for over 12 years. It is the longest surviving habitable vehicle in low Earth orbit history. Without a mature and proven risk management plan, it would be increasingly difficult to achieve mission success throughout the life of the ISS Program. A successful risk management process must be able to adapt to a dynamic program. As ISS program-level decision processes have evolved, so too has the ISS risk management process continued to innovate, improve, and adapt. Constant adaptation of risk management tools and an ever-improving process is essential to the continued success of the ISS Program. Above all, sustained support from program management is vital to risk management continued effectiveness. Risk management is valued and stressed as an important process by the ISS Program.

  9. Telescience testbed pilot program, volume 2: Program results

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, contains the integrated results. Background is provided of the program and highlights of the program results. The various testbed experiments and the programmatic approach is summarized. The results are summarized on a discipline by discipline basis, highlighting the lessons learned for each discipline. Then the results are integrated across each discipline, summarizing the lessons learned overall.

  10. GOES-S Prelaunch News Conference

    NASA Image and Video Library

    2018-02-27

    GOES-S Prelaunch News Conference hosted by NASA Communications' Tori Mclendon, with Stephen Volz, Director for Satellite and Information Services, NOAA; Tim Walsh, GOES-R system program director (acting), NOAA; Sandra Smalley, Director, NASA Joint Agency Satellite Division; Tim Dunn, NASA Launch Director, Kennedy Space Center, Florida; Scott Messer, Program Manager, NASA Missions, United Launch Alliance; and Kathy Winters, Launch Weather Officer, 45th Weather Squadron, Cape Canaveral Air Force Station, Florida.

  11. The community satellite 1. [social implications of ATS 6

    NASA Technical Reports Server (NTRS)

    1974-01-01

    NASA's Applications Technology Satellite-6 is being used to test a variety of new space communications concepts requiring the use of a geosynchronous-orbit spacecraft. These include broadcast of health and education television programs to small, low-cost ground receiving units in remote regions. Other studies to be conducted are related to aeronautical and maritime communications, position-location, and traffic-control techniques. Questions concerning spacecraft tracking and data relay are also investigated. The 1,402 kg spacecraft consists essentially of an Earth Viewing Module connected to a deployable reflector antenna. Details regarding the planned experiments and the spacecraft design are discussed and a brief history of the ATS program is presented.

  12. NASA Space Engineering Research Center for VLSI systems design

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  13. Networks consolidation program: Maintenance and Operations (M&O) staffing estimates

    NASA Technical Reports Server (NTRS)

    Goodwin, J. P.

    1981-01-01

    The Mark IV-A consolidate deep space and high elliptical Earth orbiter (HEEO) missions tracking and implements centralized control and monitoring at the deep space communications complexes (DSCC). One of the objectives of the network design is to reduce maintenance and operations (M&O) costs. To determine if the system design meets this objective an M&O staffing model for Goldstone was developed which was used to estimate the staffing levels required to support the Mark IV-A configuration. The study was performed for the Goldstone complex and the program office translated these estimates for the overseas complexes to derive the network estimates.

  14. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

  15. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In addition, the performance of DSIL under different traffic loads with different mix of data and priorities are evaluated.

  16. Spot: A Programming Language for Verified Flight Software

    NASA Technical Reports Server (NTRS)

    Bocchino, Robert L., Jr.; Gamble, Edward; Gostelow, Kim P.; Some, Raphael R.

    2014-01-01

    The C programming language is widely used for programming space flight software and other safety-critical real time systems. C, however, is far from ideal for this purpose: as is well known, it is both low-level and unsafe. This paper describes Spot, a language derived from C for programming space flight systems. Spot aims to maintain compatibility with existing C code while improving the language and supporting verification with the SPIN model checker. The major features of Spot include actor-based concurrency, distributed state with message passing and transactional updates, and annotations for testing and verification. Spot also supports domain-specific annotations for managing spacecraft state, e.g., communicating telemetry information to the ground. We describe the motivation and design rationale for Spot, give an overview of the design, provide examples of Spot's capabilities, and discuss the current status of the implementation.

  17. Space Studies Board Annual Report 2012

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The Space Studies Board (SSB) was established in 1958 to serve as the focus of the interests and responsibilities in space research for the National Academies. The SSB provides an independent, authoritative forum for information and advice on all aspects of space science and applications, and it serves as the focal point within the National Academies for activities on space research. It oversees advisory studies and program assessments, facilitates international research coordination, and promotes communications on space science and science policy between the research community, the federal government, and the interested public. The SSB also serves as the U.S. National Committee for the International Council for Science Committee on Space Research (COSPAR). The present volume reviews the organization, activities, and reports of the SSB for the year 2012.

  18. Space Technology Research Vehicle (STRV)-2 program

    NASA Astrophysics Data System (ADS)

    Shoemaker, James; Brooks, Paul; Korevaar, Eric J.; Arnold, Graham S.; Das, Alok; Stubstad, John; Hay, R. G.

    2000-11-01

    The STRV-2 program is the second in a series of three collaborative flight test programs between the U.S. Ballistic Missile Defense Organization (BMDO) and the United Kingdom (UK) Minstry of Defence (MoD). The STRV-2 Experiment Module contains five major experiments to provide proof-of-concept data on system design, data on the mid-earth orbit (MEO) space environment, and data on durability of materials and components operating in the MEO environment. The UK Defence Evaluation and Research Agency (DERA) has provided a mid- wavelength infrared (MWIF) imager to evaluate passive detection of aircraft from space. BMDO, in conjunction with the US Air Force Research Laboratory (AFRL) and the National Aeronautics and Space Administration (NASA), have provided experiments to evaluate use of adaptive structures for vibration suppression, to investigate the use of high bandwidth laser communications to transmit data from space to ground or airborne receivers, to study the durability of materials and components in the MEO space environment, and to measure radiation and micrometeoroid/debris fluence. These experiments are mounted on all- composite structure. This structure provides a significant reduction in weight and cost over comparable aluminum designs while maintaining the high stiffness required by optical payloads. In 1994, STRV-2 was manifested for launch by the DOD Space Test Program. STRV-2, the primary payload on the Tri-Service eXperiment (TSX)-5 spacecraft, was successfully launched on 7 June 2000 on a Pegasus XL from Vandenbery AFB, CA. The STRV-2 program, like the companion STRV-1 program, validates the viability of multi-national, multi-agency collaborations to provide cost effective acquisition of space test data. The experimental data to be obtained will reduce future satellite risk and provide guidelines for further system development.

  19. Challenges of Integrating NASA's Space Communications Networks

    NASA Technical Reports Server (NTRS)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a significant obstacle for integration. Over the past few decades of use, user missions and network personnel alike have grown accustomed to the processes by which services are provided by the NASA communications and navigation networks. The culture established by each network has created several challenges that need to be overcome in order to effectively integrate the networks. As with any change, there has been resistance, an apprehension to explore automation of existing processes, and a working environment that attempts to indirectly influence change without mandating compliance. Overcoming technical and cultural challenges is essential to successfully integrating the networks and although the challenges are numerous, the integration of the networks promises a more efficient space communications network for NASA and its customers, as well as potential long-term cost savings to the agency. This paper, Challenges of Integrating NASA Legacy Communications Networks, will provide a brief overview of the current NASA space communications networks as well as the an overview of the process implemented while performing the SCaN Trade Studies and an introduction to the requirements driving integration of the SCaN Networks. This paper will describe in detail the challenges experienced, both technical and cultural, while working with NASA space communications network-specific personnel. The paper will also cover lessons learned during the performance of architecture trade studies and provide recommendations for ways to improve the process.

  20. Challenges of Integrating NASAs Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a significant obstacle for integration. Over the past few decades of use, user missions and network personnel alike have grown accustomed to the processes by which services are provided by the NASA communications and navigation networks. The culture established by each network has created several challenges that need to be overcome in order to effectively integrate the networks. As with any change, there has been resistance, an apprehension to explore automation of existing processes, and a working environment that attempts to indirectly influence change without mandating compliance. Overcoming technical and cultural challenges is essential to successfully integrating the networks and although the challenges are numerous, the integration of the networks promises a more efficient space communications network for NASA and its customers, as well as potential long-term cost savings to the agency. This paper, Challenges of Integrating NASA Legacy Communications Networks, will provide a brief overview of the current NASA space communications networks as well as the an overview of the process implemented while performing the SCaN Trade Studies and an introduction to the requirements driving integration of the SCaN Networks. This paper will describe in detail the challenges experienced, both technical and cultural, while working with NASA space communications network-specific personnel. The paper will also cover lessons learned during the performance of architecture trade studies and provide recommendations for ways to improve the process.

  1. The Way Robert Sees It

    ERIC Educational Resources Information Center

    Freado, Mark D.; Wille, A. Katherine

    2007-01-01

    Robert, a fifteen-year-old resident in a residential treatment program, was diagnosed with significant hearing impairment. He communicates primarily through American Sign Language, although he speaks relatively well and has some hearing ability. Katie, a youth worker who has participated in Life Space Crisis Intervention (LSCI) training, worked…

  2. Commericial Involvement in Intramurals.

    ERIC Educational Resources Information Center

    Maas, Gerry

    Sport in general has long had ties with commercial interests, the most popular and widespread involving publicity. Intramural sports programs, however, have not cultivated many commercial involvements in publicity. The approach in intramural sports advertising is simple. A commercial interest pays for space or time in a given communication media…

  3. A spaceborne receiver for measuring electromagnetic field intensity

    NASA Technical Reports Server (NTRS)

    Reich, B. W.; Van Dusen, M. R.; Habib, E. J.

    1973-01-01

    Description of a very accurately controlled receiver for monitoring the electromagnetic radiations in both existing and projected space communication bands. Based on analysis of the existing and projected space communication bands, 108 to 174 MHz, 240 to 478 MHz, and 1535 to 1665 MHz were covered. The receiver achieves accurate control via a digitally tuned synthesizer and a wide range of digital control including frequency band coverage and gain control selection. Digital memory was provided to store 16 separate digital command instructions which can be programmed via a command data link. The receiver provides for transmission to the ground of both a predetection signal and signals in digital format, which in turn, were provided by sampling and analog-to-digital conversions.

  4. [Breaking bad news in the emergency room: Suggestions and future challenges].

    PubMed

    Landa-Ramírez, Edgar; López-Gómez, Antonio; Jiménez-Escobar, Irma; Sánchez-Sosa, Juan José

    2017-01-01

    The aim of this paper is to describe educational programs that reportedly teach how to break bad news in the emergency department. We also suggest some recommendations on how to communicate bad news based on the research of evidence available in the field. The examined evidence points toward six major components with which physicians should familiarize when communicating bad news: 1) doctor-patient empathic communication, 2) establishing a proper space to give the news, 3) identifying characteristics of the person who receives the news, 4) essential aspects for communicating the news; 5) emotional support, and 6) medical and administrative aspects of the encounter. Finally, we point out several limitations in the studies in the field and future challenges identified in the communication of bad news in emergency room facilities.

  5. Multiple-body simulation with emphasis on integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau

    1993-01-01

    The program to obtain intergrid communications - Pegasus - was enhanced to make better use of computing resources. Periodic block tridiagonal and penta-diagonal diagonal routines in OVERFLOW were modified to use a better algorithm to speed up the calculation for grids with periodic boundary conditions. Several programs were added to collar grid tools and a user friendly shell script was developed to help users generate collar grids. User interface for HYPGEN was modified to cope with the changes in HYPGEN. ET/SRB attach hardware grids were added to the computational model for the space shuttle and is currently incorporated into the refined shuttle model jointly developed at Johnson Space Center and Ames Research Center. Flow simulation for the integrated space shuttle vehicle at flight Reynolds number was carried out and compared with flight data as well as the earlier simulation for wind tunnel Reynolds number.

  6. Constellation Program Electrical Ground Support Equipment Research and Development

    NASA Technical Reports Server (NTRS)

    McCoy, Keegan S.

    2010-01-01

    At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.

  7. 10 Gbps Shuttle-to-Ground Adjunct Communication Link Capability Experiment

    NASA Technical Reports Server (NTRS)

    Ceniceros, J. M.; Sandusky, J. V.; Hemmati, H.

    1999-01-01

    A 1.2 Gbps space-to-ground laser communication experiment being developed for use on an EXpedite the PRocessing of Experiments to the Space Station (EXPRESS) Pallet Adapter can be adapted to fit the Hitchhiker cross-bay-carrier pallet and upgraded to data rates exceeding 1O Gbps. So modified, this instrument would enable both real-time data delivery and increased data volume for payloads using the Space Shuttle. Applications such as synthetic aperture radar and multispectral imaging collect large data volumes at a high rate and would benefit from the capability for real-time data delivery and from increased data downlink volume. Current shuttle downlink capability is limited to 50 Mbps, forcing such instruments to store large amounts of data for later analysis. While the technology is not yet sufficiently proven to be relied on as the primary communication link, when in view of the ground station it would increase the shuttle downlink rate capability 200 times, with typical total daily downlinks of 200 GB - as much data as the shuttle could downlink if it were able to maintain its maximum data rate continuously for one day. The lasercomm experiment, the Optical Communication Demonstration and High-Rate Link Facility (OCDHRLF), is being developed by the Jet Propulsion Laboratory's (JPL) Optical Communication Group through support from the International Space Station Engineering Research and Technology Development program. It is designed to work in conjunction with the Optical Communication Telescope Laboratory (OCTL) NASA's first optical communication ground station, which is under construction at JPL's Table Mountain Facility near Wrightwood, California. This paper discusses the modifications to the preliminary design of the flight system that would be necessary to adapt it to fit the Hitchhiker Cross-Bay Carrier. It also discusses orbit geometries which are favorable to the OCTL and potential non-NASA ground stations, anticipated burst-error-rates and bit-error-rates, and requirements for data collection on the ground.

  8. Comparison of Communication Architectures for Spacecraft Modular Avionics Systems

    NASA Technical Reports Server (NTRS)

    Gwaltney, D. A.; Briscoe, J. M.

    2006-01-01

    This document is a survey of publicly available information concerning serial communication architectures used, or proposed to be used, in aeronautic and aerospace applications. It focuses on serial communication architectures that are suitable for low-latency or real-time communication between physically distributed nodes in a system. Candidates for the study have either extensive deployment in the field, or appear to be viable for near-term deployment. Eleven different serial communication architectures are considered, and a brief description of each is given with the salient features summarized in a table in appendix A. This survey is a product of the Propulsion High Impact Avionics Technology (PHIAT) Project at NASA Marshall Space Flight Center (MSFC). PHIAT was originally funded under the Next Generation Launch Technology (NGLT) Program to develop avionics technologies for control of next generation reusable rocket engines. After the announcement of the Space Exploration Initiative, the scope of the project was expanded to include vehicle systems control for human and robotics missions. As such, a section is included presenting the rationale used for selection of a time-triggered architecture for implementation of the avionics demonstration hardware developed by the project team

  9. Chronicler's Induction Ceremony

    NASA Image and Video Library

    2017-05-05

    Friends, family members and colleagues of former NASA Public Affairs team members and space journalists gather in the NASA News Center at Kennedy Space Center in Florida for a ceremony in which six new honorees were added to the "Chroniclers" roll of honor. The Chroniclers program recognizes retirees of the news and communications business who helped spread news of American space exploration from Kennedy Space Center for ten years or more. The 2017 Chroniclers are Bruce Hall, CBS News and NBC News; Scott Harris, WESH, WKMG and Central Florida News 13; Bill Johnson, NASA Public Affairs; Warren Leary, The New York Times; Bob Murray, WDBO-TV, RCA and United Space Alliance; and Phillip Sandlin, Associated Press photographer.

  10. How the science and engineering of spaceflight contribute to understanding the plasticity of spinal cord injury

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.; Hodgson, J. A.; Day, M. K.; Weiss, J.; Harkema, S. J.; Dobkin, B.; Garfinkel, A.; Konigsberg, E.; Koslovskaya, I.

    2000-01-01

    Space programs support experimental investigations related to the unique environment of space and to the technological developments from many disciplines of both science and engineering that contribute to space studies. Furthermore, interactions between scientists, engineers and administrators, that are necessary for the success of any science mission in space, promote interdiscipline communication, understanding and interests which extend well beyond a specific mission. NASA-catalyzed collaborations have benefited the spinal cord rehabilitation program at UCLA in fundamental science and in the application of expertise and technologies originally developed for the space program. Examples of these benefits include: (1) better understanding of the role of load in maintaining healthy muscle and motor function, resulting in a spinal cord injury (SCI) rehabilitation program based on muscle/limb loading; (2) investigation of a potentially novel growth factor affected by spaceflight which may help regulate muscle mass; (3) development of implantable sensors, electronics and software to monitor and analyze long-term muscle activity in unrestrained subjects; (4) development of hardware to assist therapies applied to SCI patients; and (5) development of computer models to simulate stepping which will be used to investigate the effects of neurological deficits (muscle weakness or inappropriate activation) and to evaluate therapies to correct these deficiencies.

  11. Continuity and Change in Family's Role in Long-Duration Space Missions

    NASA Astrophysics Data System (ADS)

    Johnson, Phyllis

    As long-duration missions become commonplace, it will be important to consider the effect of the astronaut's career on his/her family, and the role of family in supporting that career. In the short history of the space program, archival information about three long-duration programs- Skylab, Shuttle-Mir, and the International Space Station—-provides valuable information about the astronauts' adjustment to increasingly longer times in space. These sources potentially include the astronaut's views about the role of family in that adjustment. The purpose of this paper is to present a qualitative analysis of the astronauts' views about the role family played in his/her career, as well as the effect of the astronaut career on his/her family. Specifically, what roles did family play, e.g., being there at important events, accepting the importance of the astronaut career? How did astronauts view the effects of separation, risks, and publicity on their family? How much did astronauts emphasize dealing with separation through communication with family? How consistent have astronauts' views remained over the three types of missions which have spanned from 1973 to today? The data base for this qualitative study is the Johnson Space Center oral histories for astronauts who participated in Skylab or Shuttle-Mir, and the Johnson Space Center archives of ISS mission journals and logs, and pre-flight interviews with ISS astronauts. Male astronauts are the main focus of the change-over-time information as only one woman participated in Shuttle- Mir and no women were in the Skylab program. However, qualitative data will be presented about female astronauts on ISS and on Shuttle-Mir for some comparative information by sex for those programs. Skylab preliminary findings: Having a wife and parents who were supportive made all of the difference in the astronaut career. It would not have been possible to maintain some semblance of family life without the wife's managing it. Private communication with family twice a week helped astronauts to feel involved in the daily life of their families. Shuttle-Mir preliminary findings: The amount of time spent in talking with family varied given the couple's prior communication patterns, other demands on their time, or choices the astronaut had to make for using his short leisure time in space. Some aspect of family life (missing milestones of child's life or wife's pregnancy, and seeing his wife) was mentioned when they were asked what they had missed. Astronauts were pleased their families were with them in Russia during their training, launch, and landing. ISS preliminary findings:Care packages from home were highly valued. Weekend video visits and phone chats helped get them through the separation—couldn't have done the trip without their family's support. Getting back home to familiar family life was important.

  12. Operational System-Impact Products for the Space Situational Awareness Environmental Effects Fusion System (SEEFS)

    NASA Astrophysics Data System (ADS)

    Quigley, S.; Scro, K.

    2006-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/VSBX) and the Technology Applications Division of the Space and Missile Systems Center (SMC/WXT) have combined efforts under the Rapid Prototyping Center (RPC) to design, develop, test, implement, and validate numerical and graphical products for the Air Force Space Command (AFSPC) Space Situational Awareness Environmental Effects Fusion System (SEEFS). These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems. Jointly developed projects that have been completed as prototypes and are undergoing development for real-time operations include a SEEFS architecture and database, five system-impact products, and a high-level decision aid product. This first round of SEEFS products includes Solar Radio Burst Effects (SoRBE) on radar and satellite communications, Radar Auroral Clutter (RAC), Scintillation Effects on radar and satellite communications (RadScint and SatScint), and Satellite Surface and Deep Charge/Discharge (Char/D). The SEEFS architecture and database enable modular use and execution of SEEFS products, and the high-level Decision Aid shows the combined effects of all SEEFS product output on a given asset and on multi-asset missions. This presentation provides a general overview of the SEEFS program, along with details of the first round of products expected to be operational for use in exercises and/or real-time operations in 2007-2008.

  13. Historics of the Space Tracking And Data Acquisition Network (STADAN), the Manned Space Flight Network (MSFN), and the NASA Communications Network (NASCOM)

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1974-01-01

    The historical and technical aspects of the major networks which comprise the NASA tracking and data acquisition system are considered in a complete reference work which traces the origin and growth of STADAN, MSFN, and NASCOM up to mid-1971. The roles of these networks in both the Gemini and Apollo programs are discussed, and the separate developmental trends are identified for each network.

  14. Advanced orbiting systems test-bedding and protocol verification

    NASA Technical Reports Server (NTRS)

    Noles, James; De Gree, Melvin

    1989-01-01

    The Consultative Committee for Space Data Systems (CCSDS) has begun the development of a set of protocol recommendations for Advanced Orbiting Systems (SOS). The AOS validation program and formal definition of AOS protocols are reviewed, and the configuration control of the AOS formal specifications is summarized. Independent implementations of the AOS protocols by NASA and ESA are discussed, and cross-support/interoperability tests which will allow the space agencies of various countries to share AOS communication facilities are addressed.

  15. Telerobot local-remote control architecture for space flight program applications

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John

    1993-01-01

    The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.

  16. Space Transportation Propulsion Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transportation Propulsion Technology Symposium was held to provide a forum for communication within the propulsion within the propulsion technology developer and user communities. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps, and other programmatic deficiencies. Key space transportation propulsion issues were addressed through four panels with government, industry, and academia membership. The panels focused on systems engineering and integration; development, manufacturing and certification; operational efficiency; and program development and cultural issues.

  17. Chronicler's Induction Ceremony

    NASA Image and Video Library

    2017-05-05

    Posters in the NASA News Center at Kennedy Space Center in Florida bear the names and photos of five of the six new honorees added to the facility's "Chroniclers" roll of honor. From left to right are posters featuring Scott Harris, WESH, WKMG and Central Florida News 13; Bill Johnson, NASA Public Affairs; Warren Leary, The New York Times; Bob Murray, WDBO-TV, RCA and United Space Alliance; and Phillip Sandlin, Associated Press photographer. Not pictured is the poster for Bruce Hall, CBS News and NBC News. The Chroniclers program recognizes retirees of the news and communications business who helped spread news of American space exploration from Kennedy Space Center for ten years or more.

  18. The Chronicles Wall

    NASA Image and Video Library

    2017-05-03

    A brass plaque engraved with the name of Bruce Hall of CBS News is among the list of "The Chroniclers," a roll of honor on the wall at the NASA News Center at Kennedy Space Center in Florida. Hall, one of six new inductees in 2017, died after a lengthy illness on May 2, 2017. In this facility reporters from television, radio, print and online media outlets have monitored countless launches, landings and other space events in order to deliver the news to the world. The Chroniclers program recognizes retirees of the news and communications business who helped spread news of American space exploration from Kennedy Space Center for ten years or more.

  19. Test devices for aeronautical research and technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The objectives of the DFVLR in six areas are described: (1) transportation and communication systems; (2) aircraft, space technology, (4) remote sensing, (5) energy and propulsion technology; and (6) research and development. A detailed description of testing devices and other facilities required to carry out the research program is given.

  20. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George

    1998-01-01

    The NASA Ambassadors Program is designed to present the excitement and importance of NASA's programs to its customers, the general public. Those customers, which are identified in the "Science Communications Strategy" developed by the Space Sciences Laboratory at the MSFC, are divided into three categories: (1) Not interested and not knowledgeable; (2) Interested but not knowledgeable; and (3) Science attentive. In it they recognize that it makes the most sense to attempt to communicate with those described in the last two categories. However, their plan suggests that the media and the educational institutions are the only means of outreach. The NASA Ambassadors Program allows NASA to reach its target audience directly. Steps to be taken in order for the program to commence: (1) MSFC chooses to support the NASA Ambassadors Program - decision point; (2) Designate an "Office In Charge". (3) Assign the "Operation" phase to in-house MSFC personnel or to a contractor - decision point; (4) Name a point of contact; (5) Identify partners in the program and enlist their assistance; (6) Process an unsolicited proposal from an outside source to accomplish those tasks which MSFC chooses to out-source.

  1. ACTS of Education

    NASA Technical Reports Server (NTRS)

    Bauer, Robert; Krawczyk, Richard; Gargione, Frank; Kruse, Hans; Vrotsos, Pete (Technical Monitor)

    2002-01-01

    Now in its ninth year of operations, the Advanced Communications Technology Satellite (ACTS) program has continued, although since May 2000 in a new operations arrangement involving a university based consortium, the Ohio Consortium for Advanced Communications Technology (OCACT), While NASA has concluded its experimental intentions of ACTS, the spacecraft's ongoing viability has permitted its further operations to provide educational opportunities to engineering and communications students interested in satellite operations, as well as a Ka-band test bed for commercial interests in utilizing Kaband space communications. The consortium has reached its first year of operations. This generous opportunity by NASA has already resulted in unique educational opportunities for students in obtaining "hands-on" experience, such as, in satellite attitude control. An update is presented on the spacecraft and consortium operations.

  2. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    NASA Technical Reports Server (NTRS)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  3. Innovations in Medicine

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASA is planning now toward the day of long-duration flight-manned interplanetary missions for example-wherein routine health care and emergency treatment must be accomplished on-board the spacecraft over periods of months or perhaps even years. Since spacecraft design limits crew size, the medical assignment may be handled by a single astronaut-physician or by a crew member trained as a physician's assistant. In a space emergency demanding surgery, for instance, sophisticated communications equipment, backed by a computerized data processing system, would make it possible for a surgeon on Earth to "examine" the patient. He could study X-rays and other data, specify an in-flight surgical procedure, and guide the astronaut-medic step-by-step through the operation. Such a system is being evaluated now. It is called STARPAHC (Space Technology Applied to Rural Papago Health Care). NASA technology in space communications and data processing is being applied to remote health services for the Papago tribe. STARPAHC is administered by the NASA Life Sciences Directorate in the Office of Space Sciences. It is a joint program involving NASA's Johnson Space Center, the Indian Health Service of the Department of Health, Education & Welfare, and the Papago's Executive Health Council. Lockheed Missiles & Space Co. is NASA's systems support contractor.

  4. Contractor and Government: Teamwork and Commitment

    NASA Technical Reports Server (NTRS)

    Griffin, Gerald D.

    1984-01-01

    The assigned topic, "Contractor and Government: Teamwork and Commitment," is a subject about vitally interested. The successes of the U.S. space program were built on such teamwork and commitment. It seems only a short time ago that man's role in space was an unknown quantity. In rapid succession, however, the flights of Shepard, Glenn, and Armstrong demonstrated man's capability to live and travel in space. Consequently, we no longer live with the same awe of space. The success of these joint industry-NASA efforts in achieving our Nation's space goals testifies to the validity of our team's past commitment, management expertise, communications techniques, and teamwork over a period of 25 years. Today, however, We are at the beginning of a new era in space.

  5. Simulation Modeling and Performance Evaluation of Space Networks

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Segui, John

    2006-01-01

    In space exploration missions, the coordinated use of spacecraft as communication relays increases the efficiency of the endeavors. To conduct trade-off studies of the performance and resource usage of different communication protocols and network designs, JPL designed a comprehensive extendable tool, the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE). The design and development of MACHETE began in 2000 and is constantly evolving. Currently, MACHETE contains Consultative Committee for Space Data Systems (CCSDS) protocol standards such as Proximity-1, Advanced Orbiting Systems (AOS), Packet Telemetry/Telecommand, Space Communications Protocol Specification (SCPS), and the CCSDS File Delivery Protocol (CFDP). MACHETE uses the Aerospace Corporation s Satellite Orbital Analysis Program (SOAP) to generate the orbital geometry information and contact opportunities. Matlab scripts provide the link characteristics. At the core of MACHETE is a discrete event simulator, QualNet. Delay Tolerant Networking (DTN) is an end-to-end architecture providing communication in and/or through highly stressed networking environments. Stressed networking environments include those with intermittent connectivity, large and/or variable delays, and high bit error rates. To provide its services, the DTN protocols reside at the application layer of the constituent internets, forming a store-and-forward overlay network. The key capabilities of the bundling protocols include custody-based reliability, ability to cope with intermittent connectivity, ability to take advantage of scheduled and opportunistic connectivity, and late binding of names to addresses. In this presentation, we report on the addition of MACHETE models needed to support DTN, namely: the Bundle Protocol (BP) model. To illustrate the use of MACHETE with the additional DTN model, we provide an example simulation to benchmark its performance. We demonstrate the use of the DTN protocol and discuss statistics gathered concerning the total time needed to simulate numerous bundle transmissions

  6. Irreducible Tests for Space Mission Sequencing Software

    NASA Technical Reports Server (NTRS)

    Ferguson, Lisa

    2012-01-01

    As missions extend further into space, the modeling and simulation of their every action and instruction becomes critical. The greater the distance between Earth and the spacecraft, the smaller the window for communication becomes. Therefore, through modeling and simulating the planned operations, the most efficient sequence of commands can be sent to the spacecraft. The Space Mission Sequencing Software is being developed as the next generation of sequencing software to ensure the most efficient communication to interplanetary and deep space mission spacecraft. Aside from efficiency, the software also checks to make sure that communication during a specified time is even possible, meaning that there is not a planet or moon preventing reception of a signal from Earth or that two opposing commands are being given simultaneously. In this way, the software not only models the proposed instructions to the spacecraft, but also validates the commands as well.To ensure that all spacecraft communications are sequenced properly, a timeline is used to structure the data. The created timelines are immutable and once data is as-signed to a timeline, it shall never be deleted nor renamed. This is to prevent the need for storing and filing the timelines for use by other programs. Several types of timelines can be created to accommodate different types of communications (activities, measurements, commands, states, events). Each of these timeline types requires specific parameters and all have options for additional parameters if needed. With so many combinations of parameters available, the robustness and stability of the software is a necessity. Therefore a baseline must be established to ensure the full functionality of the software and it is here where the irreducible tests come into use.

  7. Youth for Astronomy & Engineering Program: Engaging Local Families and Partners

    NASA Astrophysics Data System (ADS)

    Anderson, Tania

    2017-01-01

    Youth for Astronomy and Engineering (YAE) is a program in the Space Telescope Science Institute's Office of Communication and Public Outreach designed to engage the local community in science, technology, engineering, and mathematics (STEM). This is accomplished through a series of yearly events such as astronomy and engineering clubs for students, family nights, and star parties. These events leverage our mission science to expose participants to the latest science discoveries (Hubble), new developments in space technology (James Webb), STEM career information, and activities that are representative of the work done by individuals in the astronomical and engineering fields. The YAE program helps provide a progression of opportunities for audiences by attracting and identifying highly-engaged individuals for participation in more intensive experiences. It also helps increase our impact by creating a network for piloting educational outreach initiatives at the local level before nationwide release. This poster will highlight the YAE program.

  8. Laser space communication experiment: Modulator technology

    NASA Technical Reports Server (NTRS)

    Goodwin, F. E.

    1973-01-01

    Results are presented of a contractual program to develop the modulator technology necessary for a 10.6 micron laser communication system using cadmium telluride as the modulator material. The program consisted of the following tasks: (1) The growth of cadmium telluride crystals of sufficient size and purity and with the necessary optical properties for use as laser modulator rods. (2) Develop a low loss antireflection coating for the cadmium telluride rods. (3) Design and build a modulator capable of 300 MHz modulation. (4) Develop a modulator driver capable of a data rate of 300 MBits/sec, 12 W rms output power, and 40 percent efficiency. (5) Assemble and test the modulator system. All design goals were met and the system was built and tested.

  9. Efficient implementation of real-time programs under the VAX/VMS operating system

    NASA Technical Reports Server (NTRS)

    Johnson, S. C.

    1985-01-01

    Techniques for writing efficient real-time programs under the VAX/VMS oprating system are presented. Basic operations are presented for executing at real-time priority and for avoiding needlless processing delays. A highly efficient technique for accessing physical devices by mapping to the input/output space and accessing the device registrs directly is described. To illustrate the application of the technique, examples are included of different uses of the technique on three devices in the Langley Avionics Integration Research Lab (AIRLAB): the KW11-K dual programmable real-time clock, the Parallel Communications Link (PCL11-B) communication system, and the Datacom Synchronization Network. Timing data are included to demonstrate the performance improvements realized with these applications of the technique.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1988-01-01

    This artist's concept drawing depicts the Tracking and Data Relay Satellite-C (TDRS-C), which was the primary payload of the Space Shuttle Discovery on the STS-26 mission, launched on September 29, 1988. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The deployment of TDRS-G on the STS-70 mission being the latest in the series, NASA has successfully launched six TDRSs.

  11. Going Paperless

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Sentel Corporation has commercialized NASA's Electronic Portable Information Collection (EPIC) System, which stemmed from a NASA Kennedy Space Center SBIR contract. NASA and Sentel designed, built, and tested work authorization procedures used as a paperless procedures system for Space Shuttle and International Space Station payload processing operations. EPIC is now being applied to various markets including; airplane maintenance, aerospace system data management, shipbuilding industries, shipping industries, law enforcement agencies, and public utilities. KSC is planning a pilot program to use EPIC at the Hypergol Maintenance Facility. In addition, Ames Research Center and KSC are working together to apply EPIC to the area of wireless communication.

  12. Kennedy Space Center (KSC) Launch Complex 39 (LC-39) Gaseous Hydrogen (GH2) Vent Arm Behavior Prediction Model Review Technical Assessment Report

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.; Beech, Geoffrey; Johnston, Ian

    2009-01-01

    The NESC Assessment Team reviewed a computer simulation of the LC-39 External Tank (ET) GH2 Vent Umbilical system developed by United Space Alliance (USA) for the Space Shuttle Program (SSP) and designated KSC Analytical Tool ID 451 (KSC AT-451). The team verified that the vent arm kinematics were correctly modeled, but noted that there were relevant system sensitivities. Also, the structural stiffness used in the math model varied somewhat from the analytic calculations. Results of the NESC assessment were communicated to the model developers.

  13. Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.

    1982-01-01

    The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.

  14. Technical Excellence and Communication: The Cornerstones for Successful Safety and Mission Assurance Programs

    NASA Technical Reports Server (NTRS)

    Malone, Roy W.; Livingston, John M.

    2010-01-01

    The paper describes the role of technical excellence and communication in the development and maintenance of safety and mission assurance programs. The Marshall Space Flight Center (MSFC) Safety and Mission Assurance (S&MA) organization is used to illustrate philosophies and techniques that strengthen safety and mission assurance efforts and that contribute to healthy and effective organizational cultures. The events and conditions leading to the development of the MSFC S&MA organization are reviewed. Historic issues and concerns are identified. The adverse effects of resource limitations and risk assessment roles are discussed. The structure and functions of the core safety, reliability, and quality assurance functions are presented. The current organization s mission and vision commitments serve as the starting points for the description of the current organization. The goals and objectives are presented that address the criticisms of the predecessor organizations. Additional improvements are presented that address the development of technical excellence and the steps taken to improve communication within the Center, with program customers, and with other Agency S&MA organizations.

  15. Developing tools and strategies for communicating climate change

    NASA Astrophysics Data System (ADS)

    Bader, D.; Yam, E. M.; Perkins, L.

    2011-12-01

    Research indicates that the public views zoos and aquariums as reliable and trusted sources for information on conservation. Additionally, visiting zoos and aquariums helps people reconsider their connections to conservation issues and solutions. The Aquarium of the Pacific, an AZA-accredited institution that serves the most ethnically diverse population of all aquariums in the nation, is using exhibit space, technology, public programming, and staff professional development to present a model for how aquariums can promote climate literacy. Our newest galleries and programs are designed to immerse our visitors in experiences that connect our live animal collection to larger themes on ocean change. The Aquarium is supporting our new programming with a multifaceted staff professional development that exposes our interpretive staff to current climate science and researchers as well as current social science on public perception of climate science. Our staff also leads workshops for scientists; these sessions allow us to examine learning theory and develop tools to communicate science and controversial subjects effectively. Through our partnerships in the science, social science, and informal science education communities, we are working to innovate and develop best practices in climate communication.

  16. Viewing ISS Data in Real Time via the Internet

    NASA Technical Reports Server (NTRS)

    Myers, Gerry; Chamberlain, Jim

    2004-01-01

    EZStream is a computer program that enables authorized users at diverse terrestrial locations to view, in real time, data generated by scientific payloads aboard the International Space Station (ISS). The only computation/communication resource needed for use of EZStream is a computer equipped with standard Web-browser software and a connection to the Internet. EZStream runs in conjunction with the TReK software, described in a prior NASA Tech Briefs article, that coordinates multiple streams of data for the ground communication system of the ISS. EZStream includes server components that interact with TReK within the ISS ground communication system and client components that reside in the users' remote computers. Once an authorized client has logged in, a server component of EZStream pulls the requested data from a TReK application-program interface and sends the data to the client. Future EZStream enhancements will include (1) extensions that enable the server to receive and process arbitrary data streams on its own and (2) a Web-based graphical-user-interface-building subprogram that enables a client who lacks programming expertise to create customized display Web pages.

  17. Technical Excellence and Communication, the Cornerstones for Successful Safety and Mission Assurance Programs

    NASA Astrophysics Data System (ADS)

    Malone, Roy W.; Livingston, John M.

    2010-09-01

    The paper describes the role of technical excellence and communication in the development and maintenance of safety and mission assurance programs. The Marshall Space Flight Center(MSFC) Safety and Mission Assurance(S&MA) organization is used to illustrate philosophies and techniques that strengthen safety and mission assurance efforts and that contribute to healthy and effective organizational cultures. The events and conditions leading to the development of the MSFC S&MA organization are reviewed. Historic issues and concerns are identified. The adverse effects of resource limitations and risk assessment roles are discussed. The structure and functions of the core safety, reliability, and quality assurance functions are presented. The current organization’s mission and vision commitments serve as the starting points for the description of the current organization. The goals and objectives are presented that address the criticisms of the predecessor organizations. Additional improvements are presented that address the development of technical excellence and the steps taken to improve communication within the Center, with program customers, and with other Agency S&MA organizations.

  18. Free Space Optical Communication for Tactical Operations

    DTIC Science & Technology

    2016-09-01

    communications. Military communications further require secure connections for data transfer . The Free Space Optical (FSO) communication system, with its...communications. Military communications further require secure connections for data transfer . The Free Space Optical (FSO) communication system...13. Percentage of Frame Loss at Location 1A .................................... 34 Figure 14. Received Power at Location 1A

  19. Bringing Space Scientists, Teachers, and Students Together With The CINDI E/PO Program

    NASA Astrophysics Data System (ADS)

    Urquhart, M.; Hairston, M.

    2007-12-01

    We will report on the activities, challenges, and successes of the ongoing collaboration between the William B. Hanson Center for Space Sciences (CSS) and the Department of Science/Mathematics Education (SME) at the University of Texas at Dallas. At the core of our partnership is the Education and Public Outreach program for the Coupled Ion / Neutral Dynamics Investigation (CINDI) instrument. CINDI is a NASA-funded program on the Air Force's Communication / Navigation Outage Forecast Satellite (C/NOFS) which will be launched in summer 2008. The CSS faculty and research scientists and the SME faculty and students have created a dynamic program that brings scientists and K-12 teachers together. Our activities include middle and high school curriculum development, teachers workshops, graduate course work for teachers, creation of the popular "Cindi in Space" educational comic book, and bringing K-12 teachers and students to work and/or visit with the CINDI scientists. We will present the outcomes of this collaborative effort as well as our recent experience of having a physics teacher from a local high school as our Teacher in Residence at CSS in summer 2007.

  20. NASA Near Earth Network (NEN), Deep Space Network (DSN) and Space Network (SN) Support of CubeSat Communications

    NASA Technical Reports Server (NTRS)

    Schaire, Scott H.; Altunc, Serhat; Bussey, George; Shaw, Harry; Horne, Bill; Schier, Jim

    2015-01-01

    There has been a historical trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites and that trend continues today. Small satellites, including systems conforming to the CubeSat specification, because of their low launch and development costs, are enabling new concepts and capabilities for science investigations across multiple fields of interest to NASA. NASA scientists and engineers across many of NASAs Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a communications and tracking point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, low power, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Programs Near Earth Network (NEN), Deep Space Network (DSN) and the Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a missions orbiting satellite and its Mission Operations Center (MOC). The NASA NEN consists of multiple ground antennas. The SN consists of a constellation of geosynchronous (Earth orbiting) relay satellites, named the Tracking and Data Relay Satellite System (TDRSS). The DSN currently makes available 13 antennas at its three tracking stations located around the world for interplanetary communication. The presentation will analyze how well these space communication networks are positioned to support the emerging small satellite and CubeSat market. Recognizing the potential support, the presentation will review the basic capabilities of the NEN, DSN and SN in the context of small satellites and will present information about NEN, DSN and SN-compatible flight radios and antenna development activities at the Goddard Space Flight Center (GSFC) and across industry. The presentation will review concepts on how the SN multiple access capability could help locate CubeSats and provide a low-latency early warning system. The presentation will also present how the DSN is evolving to maximize use of its assets for interplanetary CubeSats. The critical spectrum-related topics of available and appropriate frequency bands, licensing, and coordination will be reviewed. Other key considerations, such as standardization of radio frequency interfaces and flight and ground communications hardware systems, will be addressed as such standardization may reduce the amount of time and cost required to obtain frequency authorization and perform compatibility and end-to-end testing. Examples of standardization that exist today are the NASA NEN, DSN and SN systems which have published users guides and defined frequency bands for high data rate communication, as well as conformance to CCSDS standards. The workshop session will also seek input from the workshop participants to better understand the needs of small satellite systems and to identify key development activities and operational approaches necessary to enhance communication and navigation support using NASA's NEN, DSN and SN.

  1. Real time data acquisition for expert systems in Unix workstations at Space Shuttle Mission Control

    NASA Technical Reports Server (NTRS)

    Muratore, John F.; Heindel, Troy A.; Murphy, Terri B.; Rasmussen, Arthur N.; Gnabasik, Mark; Mcfarland, Robert Z.; Bailey, Samuel A.

    1990-01-01

    A distributed system of proprietary engineering-class workstations is incorporated into NASA's Space Shuttle Mission-Control Center to increase the automation of mission control. The Real-Time Data System (RTDS) allows the operator to utilize expert knowledge in the display program for system modeling and evaluation. RTDS applications are reviewed including: (1) telemetry-animated communications schematics; (2) workstation displays of systems such as the Space Shuttle remote manipulator; and (3) a workstation emulation of shuttle flight instrumentation. The hard and soft real-time constraints are described including computer data acquisition, and the support techniques for the real-time expert systems include major frame buffers for logging and distribution as well as noise filtering. The incorporation of the workstations allows smaller programming teams to implement real-time telemetry systems that can improve operations and flight testing.

  2. Advanced ground station architecture

    NASA Technical Reports Server (NTRS)

    Zillig, David; Benjamin, Ted

    1994-01-01

    This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.

  3. Developments in Space Research in Nigeria

    NASA Astrophysics Data System (ADS)

    Oke, O.

    2006-08-01

    Nigeria's desire to venture into space technology was first made known to ECA/ OAU member countries at an inter-governmental meeting in Addis Ababa, 1976. The Nigerian space research is highly rated in Africa in terms of reputation and scientific results. The National Space Research and Development Agency (NASRDA), Nigeria's space research coordinating body; has taken a more active role to help Nigeria's space research community to succeed internationally. The paper presents recent examples of Nigeria's successes in space and its detailed applications in areas such as remote sensing, meteorology, communication and Information Technology. and many more. It gave an analysis of the statistics of Nigerian born space scientists working in the other space-faring nations. The analysis have been used to develop a model for increasing Nigerian scientist's involvement in the development of space research in Nigeria. It concluded with some thoughts on the current and future of Nigeria's space borne scientific experiments, policies and programs.

  4. USU Center of Excellence in Theory and Analysis of the Geo-Plasma Environment

    DTIC Science & Technology

    1992-05-25

    AFM CN AOR9002 B. ADORE=S ICRYi. Stei md ZIP Codej 10. SOURCE OF FUNOING NOS. BuildPng 410 PROGRAM PROJECT TASK WORK UNIT.- Buling 410D..203 ELEMENT ...OTH radars, communications, and orbiting space structures. The overall goal of the research is to obtain a better understanding of the basic chemical...and orbiting space structures. The overall goal of the research is to obtain a better understanding of the basic chemical and physical processes

  5. USU Center of Excellence in Theory and Analysis of the Geo-Plasma Environment

    DTIC Science & Technology

    1993-02-01

    h4cgt) 4 V 5,’/c OJi- o PROGRAM PRO............ .. Bolling AFB, D.C. 20332-0o0/ ELEMENT NO. NO. N NO. 11. TITLE (Incad. Security Cla"aificaai-USU...and orbiting space structures. The overall goal of tht. research was to obtain a better understanding of the basic chemical and physical processes...Force systems, including OTH radars, communications, and orbiting space structures. The overall goal of the research was to obtain a better

  6. MSFC Historic Resource Reel

    NASA Image and Video Library

    2013-12-11

    Name/Title of Video: Marshall Space Flight Center Historic Resource Reel Description: A brief collection of film and video b-roll of historic events and programs associated with NASA's Marshall Space Flight Center in Huntsville, Ala. For more information and/or more footage of these events, please contact the Marshall Center Public & Employee Communications Office. Graphic Information:file footage PAO Name:News Chief Jennifer Stanfield or MSFC Historian Mike Wright Phone Number:256-544-0034 Email Address: jennifer.stanfield@nasa.gov or mike.d.wright@nasa.gov

  7. KSC-2012-1862

    NASA Image and Video Library

    2012-02-17

    Satellites: The principal objectives of the Launch Services Program are to provide safe, reliable, cost-effective and on schedule launch services for NASA and NASA-sponsored payloads seeking launch on expendable vehicles. These payloads have a number of purposes. Scientific satellites obtain information about the space environment and transmit it to stations on Earth. Applications satellites designed to perform experiments that have everyday usefulness for people on Earth, such as weather forecasting and communications. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  8. JUNO Employee Event

    NASA Image and Video Library

    2016-09-20

    George Diller of Kennedy Space Center’s Communication and Public Engagement Directorate welcomes Kennedy employees to a briefing on the progress of the Juno mission to Jupiter. NASA’s Launch Services Program, which is based at Kennedy, led the successful launch of the Juno spacecraft aboard a United Launch Alliance Atlas V rocket Aug. 5, 2011 from nearby Space Launch Complex 41. Juno arrived at Jupiter on July 4, 2016, and will study our solar system’s largest planet until February 2018. Photo credit: NASA/Cory Huston

  9. The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Stelzried, C. T.; Noreen, G. K.; Slobin, S. D.; Petty, S. M.; Trowbridge, D. L.; Donnelly, H.; Kinman, P. W.; Armstrong, J. W.; Burow, N. A.

    1983-01-01

    The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data.

  10. System and Propagation Availability Analysis for NASA's Advanced Air Transportation Technologies

    NASA Technical Reports Server (NTRS)

    Ugweje, Okechukwu C.

    2000-01-01

    This report summarizes the research on the System and Propagation Availability Analysis for NASA's project on Advanced Air Transportation Technologies (AATT). The objectives of the project were to determine the communication systems requirements and architecture, and to investigate the effect of propagation on the transmission of space information. In this report, results from the first year investigation are presented and limitations are highlighted. To study the propagation links, an understanding of the total system architecture is necessary since the links form the major component of the overall architecture. This study was conducted by way of analysis, modeling and simulation on the system communication links. The overall goals was to develop an understanding of the space communication requirements relevant to the AATT project, and then analyze the links taking into consideration system availability under adverse atmospheric weather conditions. This project began with a preliminary study of the end-to-end system architecture by modeling a representative communication system in MATLAB SIMULINK. Based on the defining concepts, the possibility of computer modeling was determined. The investigations continue with the parametric studies of the communication system architecture. These studies were also carried out with SIMULINK modeling and simulation. After a series of modifications, two end-to-end communication links were identified as the most probable models for the communication architecture. Link budget calculations were then performed in MATHCAD and MATLAB for the identified communication scenarios. A remarkable outcome of this project is the development of a graphic user interface (GUI) program for the computation of the link budget parameters in real time. Using this program, one can interactively compute the link budget requirements after supplying a few necessary parameters. It provides a framework for the eventual automation of several computations required in many experimental NASA missions. For the first year of this project, most of the stated objectives were accomplished. We were able to identify probable communication systems architectures, model and analyze several communication links, perform numerous simulation on different system models, and then develop a program for the link budget analysis. However, most of the work is still unfinished. The effect of propagation on the transmission of information in the identified communication channels has not been performed. Propagation effects cannot be studied until the system under consideration is identified and characterized. To study the propagation links, an understanding of the total communications architecture is necessary. It is important to mention that the original project was intended for two years and the results presented here are only for the first year of research. It is prudent therefore that these efforts be continued in order to obtain a complete picture of the system and propagation availability requirements.

  11. Optical-communication systems for deep-space applications

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Gagliardi, R. M.

    1980-01-01

    The feasibility of using optical communication systems for data telemetry from deep space vehicles to Earth based receivers is evaluated. Performance analysis shows that practical, photon counting optical systems can transmit data reliably at 30 to 40 dB high rates than existing RF systems, or can be used to extend the communication range by 15 to 20 dB. The advantages of pulse-position modulation (PPM) formats are discussed, and photon counting receiver structures designed for PPM decoding are described. The effects of background interference and weather on receiver performance are evaluated. Some consideration is given to tracking and beam pointing operations, since system performance ultimately depends on the accuracy to which these operations can be carried out. An example of a tracking and pointing system utilizing an optical uplink beacon is presented, and it is shown that microradian beam pointing is within the capabilities of state-of-the-art technology. Recommendations for future theoretical studies and component development programs are presented.

  12. Electronics for Low Temperature Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2007-01-01

    Exploration missions to outer planets and deep space require spacecraft, probes, and on-board data and communication systems to operate reliably and efficiently under severe harsh conditions. On-board electronics, in particular those in direct exposures to the space environment without any shielding or protection, will encounter extreme low temperature and thermal cycling in their service cycle in most of NASA s upcoming exploration missions. For example, Venus atmosphere, Jupiter atmosphere, Moon surface, Pluto orbiter, Mars, comets, Titan, Europa, and James Webb Space Telescope all involve low-temperature surroundings. Therefore, electronics for space exploration missions need to be designed for operation under such environmental conditions. There are ongoing efforts at the NASA Glenn Research Center (GRC) to establish a database on the operation and reliability of electronic devices and circuits under extreme temperature operation for space applications. This work is being performed under the Extreme Temperature Electronics Program with collaboration and support of the NASA Electronic Parts and Packaging (NEPP) Program. The results of these investigations will be used to establish safe operating areas and to identify degradation and failure modes, and the information will be disseminated to mission planners and system designers for use as tools for proper part selection and in risk mitigation. An overview of this program along with experimental data will be presented.

  13. Review of Issues Associated with Safe Operation and Management of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Johnstone, Paul M.; Blomberg, Richard D.; Gleghorn, George J.; Krone, Norris J.; Voltz, Richard A.; Dunn, Robert F.; Donlan, Charles J.; Kauderer, Bernard M.; Brill, Yvonne C.; Englar, Kenneth G.; hide

    1996-01-01

    At the request of the President of the United States through the Office of Science and Technology Policy (OSTP), the NASA Administrator tasked the Aerospace Safety Advisory Panel with the responsibility to identify and review issues associated with the safe operation and management of the Space Shuttle program arising from ongoing efforts to improve and streamline operations. These efforts include the consolidation of operations under a single Space Flight Operations Contract (SFOC), downsizing the Space Shuttle workforce and reducing costs of operations and management. The Panel formed five teams to address the potentially significant safety impacts of the seven specific topic areas listed in the study Terms of Reference. These areas were (in the order in which they are presented in this report): Maintenance of independent safety oversight; implementation plan for the transition of Shuttle program management to the Lead Center; communications among NASA Centers and Headquarters; transition plan for downsizing to anticipated workforce levels; implementation of a phased transition to a prime contractor for operations; Shuttle flight rate for Space Station assembly; and planned safety and performance upgrades for Space Station assembly. The study teams collected information through briefings, interviews, telephone conversations and from reviewing applicable documentation. These inputs were distilled by each team into observations and recommendations which were then reviewed by the entire Panel.

  14. Free-space optical communications in support of future manned space flight

    NASA Technical Reports Server (NTRS)

    Stephens, Elaine M.

    1990-01-01

    Four areas of research in optical communications in support of future manned space missions being carried out at Johnson Space Center are discussed. These are the Space Station Freedom proximity operations, direct LEO-to-ground communications, IR voice communications inside manned spacecraft, and deep space and lunar satellite operations. The background, requirements, and scenario for each of these areas of research are briefly described.

  15. A Service Portal for the Integrated SCaN Network

    NASA Technical Reports Server (NTRS)

    Marx, Sarah R.

    2012-01-01

    The Space Communication and Navigation (SCaN) program office owns the assets and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and Space Network (SN). At present, these individual networks are operated by different NASA centers--JPL for DSN--and Goddard Space Flight Center (GSFC) for NEN and SN--with separate commitments offices for each center. In the near future, SCaN's program office would like to deploy an integrated service portal which would merge the two commitments offices with the goal of easing the task of user planning for space missions requiring services of two or more of these networks. Following interviews with subject matter experts in this field, use cases were created to include the services and functionality mission users would like to see in this new integrated service portal. These use cases provide a guideline for a mock-up of the design of the user interface for the portal. The benefit of this work will ease the time required and streamline/standardize the process for planning and scheduling SCAN's services for future space missions.

  16. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its results and impact. We will highlight the insights gained by applying the Model Based System Engineering and provide recommendations for its applications and improvements.

  17. Electric Propulsion Applications and Impacts

    NASA Technical Reports Server (NTRS)

    Curran, Frank M.; Wickenheiser, Timothy J.

    1996-01-01

    Most space missions require on-board propulsion systems and these systems are often dominant spacecraft mass drivers. Presently, on-board systems account for more than half the injected mass for commercial communications systems and even greater mass fractions for ambitious planetary missions. Anticipated trends toward the use of both smaller spacecraft and launch vehicles will likely increase pressure on the performance of on-board propulsion systems. The acceptance of arcjet thrusters for operational use on commercial communications satellites ushered in a new era in on-board propulsion and exponential growth of electric propulsion across a broad spectrum of missions is anticipated. NASA recognizes the benefits of advanced propulsion and NASA's Office of Space Access and Technology supports an aggressive On-Board Propulsion program, including a strong electric propulsion element, to assure the availability of high performance propulsion systems to meet the goals of the ambitious missions envisioned in the next two decades. The program scope ranges from fundamental research for future generation systems through specific insertion efforts aimed at near term technology transfer. The On-Board propulsion program is committed to carrying technologies to levels required for customer acceptance and emphasizes direct interactions with the user community and the development of commercial sources. This paper provides a discussion of anticipated missions, propulsion functions, and electric propulsion impacts followed by an overview of the electric propulsion element of the NASA On-Board Propulsion program.

  18. 40 Years Young: Social Media for the World's Longest-Running Earth-Observation Satellite Program

    NASA Astrophysics Data System (ADS)

    Riebeek, H.; Rocchio, L. E.; Taylor, M.; Owen, T.; Allen, J. E.; Keck, A.

    2012-12-01

    With social media becoming a communication juggernaut it is essential to harness the medium's power to foster better science communication. On July 23, 2012, the Landsat Earth-observing satellite program celebrated the 40th anniversary of the first Landsat launch. To more effectively communicate the impact and importance of Landsat's four-decade long data record a carefully planned social media event was designed to supplement the day's traditional media communications. The social media event, dubbed the "Landsat Social," was modeled on and supported by the NASA Social methodology. The Landsat Social was the first such event for NASA Earth science not associated with a launch. For the Landsat Social, 23 social media-savvy participants were selected to attend a joint NASA/U.S. Geological Survey Landsat anniversary press event at the Newseum in Washington, D.C. The participants subsequently toured the NASA Goddard Space Flight Facility in Greenbelt, Maryland where they had the opportunity to learn about the latest Landsat satellite; visit the Landsat mission control; download and work with Landsat data; and meet Landsat scientists and engineers. All Landsat Social participants had Twitter accounts and used the #Landsat and #NASASocial hashtags to unify their commentary throughout the day. A few key Landsat messages were communicated to the Landsat Social participants at the event's onset. Propagation of this messaging was witnessed for the duration of the Landsat Social; and a spike in online Landsat interest followed. Here, we examine the Landsat 40th anniversary social event, explain impacts made, and report lessons learned.; Landsat Social attendees are busy tweeting, texting, and blogging as Project Scientist Dr. Jim Irons talks about the Landsat Data Continuity Mission in front of the Hyperwall at NASA Goddard Space Flight Center. Photo courtesy Bill Hrybyk.

  19. US development and commercialization of a North American mobile satellite service

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.; Gray, Valerie; Freibaum, Jerry

    1990-01-01

    U.S. policies promoting applications and commercialization of space technology for the 'benefit of mankind,' and emphasis on international competitiveness, formed the basis of NASA's Mobile Satellite (MSAT) R&D and user experiments program to develop a commercial U.S. Mobile Satellite Service. Exemplifying this philosophy, the MSAT program targets the reduction of technical, regulatory, market, and financial risks that inhibit commercialization. The program strategy includes industry and user involvement in developing and demonstrating advanced technologies, regulatory advocacy, and financial incentives to industry. Approximately two decades of NASA's satellite communications development and demonstrations have contributed to the emergence of a new multi-billion dollar industry for land, aeronautical, and maritime mobile communications via satellite. NASA's R&D efforts are now evolving from the development of 'enabling' ground technologies for VHF, UHF, and L-Band mobile terminals, to Ka-Band terminals offering additional mobility and user convenience.

  20. Fostering Students' Engagement with Topical Issues through Different Modes of Online Exchange

    ERIC Educational Resources Information Center

    Batardière, Marie-Thérèse; Helm, Francesca

    2016-01-01

    This paper reports on two distinct models of telecollaboration--the Soliya Connect Program, a synchronous Computer Mediated Communication (CMC) project, and the Intercultural Franco-Irish Exchange, an asynchronous CMC project--which seek to provide students with a learning space to promote a more politically engaged and reflective pedagogy…

  1. Designing Effective Spaces, Tasks and Metrics for Communication in Second Life within the Context of Programming LEGO NXT Mindstorms™ Robots

    ERIC Educational Resources Information Center

    Vallance, Michael; Martin, Stewart; Wiz, Charles; van Schaik, Paul

    2010-01-01

    Science education is concerned with the meaningful pursuit of comprehension, knowledge and understanding of scientific concepts and processes. In Vygotskian social constructivist learning, personal interpretation, decision-making and community cooperation fosters long-term understanding and transference of learned concepts. The construction of…

  2. Ham Radio is Mir Magic.

    ERIC Educational Resources Information Center

    Evans, Gary

    1997-01-01

    Presents a classroom activity in which students communicated with U.S. and Russian astronauts via ham radio while they were in orbit on the space station Mir. Gives suggestions for other ham radio classroom activities as well as names of organizations, publications, and grant programs that teachers can access to help in bring ham radio into their…

  3. Multiple-Feed Design For DSN/SETI Antenna

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Bathker, D. A.

    1988-01-01

    Frequency bands changed with little interruption of operation. Modification of feedhorn mounting on existing 34-m-diameter antenna in Deep Space Network (DSN) enables antenna to be shared by Search for Extra-Terrestrial Intelligence (SET) program with minimal interruption of DSN spacecraft tracking. Modified antenna useful in terrestrial communication systems requiring frequent changes of operating frequencies.

  4. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Levis, C. A.; Mount-Campbell, C.; Gonsalvez, D. J.; Wang, C. W.; Yamamura, Y.

    1985-01-01

    Computer-based techniques for optimizing communications-satellite orbit and frequency assignments are discussed. A gradient-search code was tested against a BSS scenario derived from the RARC-83 data. Improvement was obtained, but each iteration requires about 50 minutes of IBM-3081 CPU time. Gradient-search experiments on a small FSS test problem, consisting of a single service area served by 8 satellites, showed quickest convergence when the satellites were all initially placed near the center of the available orbital arc with moderate spacing. A transformation technique is proposed for investigating the surface topography of the objective function used in the gradient-search method. A new synthesis approach is based on transforming single-entry interference constraints into corresponding constraints on satellite spacings. These constraints are used with linear objective functions to formulate the co-channel orbital assignment task as a linear-programming (LP) problem or mixed integer programming (MIP) problem. Globally optimal solutions are always found with the MIP problems, but not necessarily with the LP problems. The MIP solutions can be used to evaluate the quality of the LP solutions. The initial results are very encouraging.

  5. A Risk Communication Success Story

    NASA Technical Reports Server (NTRS)

    Peecook, Keith

    2010-01-01

    A key success of the decommissioning effort at the National Aeronautics and Space Administration's (NASA's) Plum Brook Reactor Facility (PBRF) has been the public outreach program. The approach has been based on risk communications rather than a public relations approach. As a result it has kept the public feeling more involved in the process. It ensures they have the information needed to understand the project and its goals, and to make recommendations. All this is done so that NASA can better plan and execute the necessary work without delays or suprises.

  6. Efficient management of cardiovascular risk screening programs

    NASA Technical Reports Server (NTRS)

    Roth, Carol

    1993-01-01

    The Environmental Health Unit, located on-site at the the Goddard Space Flight Center (GSFC), is responsible for the implementation of the Center's Employee Environmental and Occupational Health Program. The Health Unit, Health Physics (HP), and Industrial Hygiene (IH) staffs collaborate to provide quality service to the employees at GSFC. The Health Unit staff identifies, evaluates, and ensures the control of occupational hazards on the Center. In the past, components of the Industrial Hygiene Program have included the Industrial Hygiene Health Hazard Identification Program (IHHIP), the Hearing Conservation Program (HCP), the Hazard Communication Program, and the bi-annual fume hood survey. More recently, the Environmental Health Unit has expanded its services by adding the Ergonomics Program. Various aspects of the Ergonomics Program are discussed.

  7. Space Station Technology, 1983

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor); Mays, C. R. (Editor)

    1984-01-01

    This publication is a compilation of the panel summaries presented in the following areas: systems/operations technology; crew and life support; EVA; crew and life support: ECLSS; attitude, control, and stabilization; human capabilities; auxillary propulsion; fluid management; communications; structures and mechanisms; data management; power; and thermal control. The objective of the workshop was to aid the Space Station Technology Steering Committee in defining and implementing a technology development program to support the establishment of a permanent human presence in space. This compilation will provide the participants and their organizations with the information presented at this workshop in a referenceable format. This information will establish a stepping stone for users of space station technology to develop new technology and plan future tasks.

  8. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Skip Owen of NASA Launch Services, left and Scott Messer, United Launch Alliance program manager for NASA missions speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  9. Analysis and testing of a soft actuation system for segmented reflector articulation and isolation

    NASA Technical Reports Server (NTRS)

    Jandura, Louise; Agronin, Michael L.

    1991-01-01

    Segmented reflectors have been proposed for space-based applications such as optical communication and large-diameter telescopes. An actuation system for mirrors in a space-based segmented mirror array has been developed as part of the National Aeronautics and Space Administration-sponsored Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), articulates a mirror panel in 3 degrees of freedom in the submicron regime, isolates the panel from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM has been built and is described. Three-axis modeling, analysis, and testing of the breadboard is discussed.

  10. Integration of the Belarusian Space Research Potential Into International University Nanosatellite Programm

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir; Ablameyko, Sergey; Ponariadov, Vladimir

    Belarus has inherited a significant space research potential created back in the Soviet era. It is one of the countries in the world capable of research, engineering and production across a wide range of space technologies, such as remote sensing systems, satellite telecommunication systems and positioning systems etc. Despite these strengths, the participation of Belarusian space organizations in the UN space activity and International research programs is very low. Belarusian State University (BSU) is the leading research and high school education organization of Belarus in several fields of research and development. It was deeply involved into various space research projects, including Soviet Lunar Program, Space Station “Mir”, Space Shuttle “Buran”. From 2004, when the national space programs were restarted, branches of BSU like Institute of Physics and Aerospace Technologies (IPAT), Center for aerospace education, Research laboratory of applied space technologies are leading the research and development works in the field of space communication systems, Earth observation tools and technologies, electronic and optic sensors, etc. The mail fields of activity are: • Hard and software development for small satellites and university satellites in particular. • Development of sensor satellite systems. • Small satellite research experiments (biological and medical in particular). • Earth, airplane and satellite remote monitoring systems including hard and software. • Early warning ecological and industrial Systems. • Geographic information systems of several natural and industrial areas. • Climate change investigation. We have partners from several universities and research institutes from Russian Federation, Ukraine, Kazakhstan and Germany etc. We have a ground station to receive satellite data in RF L and X bands and are very interested to be incorporated into international remote monitoring network. This activity can be combined with astrometry and ballistic data processing. Next point is university satellite. We are developing now several modules for education: data acquisition, telemetry, communication systems and also are very interested to cooperate in this field with international partners. Space Research is certainly a “high end” of any science system such as material sciences and engineering, applied mathematics, cybernetics, ICT, radio physics, electronics, etc. Moreover, space research capacities enable cutting edge research works in such areas as Environment (e.g. Earth observation), Biotechnologies, Health, New Materials, etc. Progress in integrating Belarusian Space Research potential into international society will serve as a catalyst and enabler for all critically important scientific and technological fields to advance on the way of development and global integration.

  11. Integrated digital flight-control system for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The integrated digital flight control system is presented which provides rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN&C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described along with the input and output. The specific estimation and control algorithms used in the various mission phases are given.

  12. A near term space demonstration program for large structures

    NASA Technical Reports Server (NTRS)

    Nathan, C. A.

    1978-01-01

    For applications involving an employment of ultralarge structures in space, it would be necessary to have some form of space fabrication and assembly in connection with launch vehicle payload and volume limitations. The findings of a recently completed NASA sponsored study related to an orbital construction demonstration are reported. It is shown how a relatively small construction facility which is assembled in three shuttle flights can substantially advance space construction know-how and provide the nation with a permanent shuttle tended facility that can further advance large structures technologies and provide a construction capability for deployment of large structural systems envisioned for the late 1980s. The large structures applications identified are related to communications, navigation, earth observation, energy systems, radio astronomy, illumination, space colonization, and space construction.

  13. High-Capacity Ground Communications to Support Future Space Missions: A Forecast of Ground Communications Challenges in the 2010-2020 Period

    NASA Technical Reports Server (NTRS)

    Markley, Richard W.

    2003-01-01

    The purpose of this presentation is to identify major challenges involved in space ground communications networks to support space flight missions over the next 20 years. The presentation focus is on the Deep Space Network and its customers, but the forecast is applicable to all space ground communications networks.

  14. 76 FR 26620 - A National Broadband Plan for Our Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... communications space on utility poles. For wireless attachments above the communications space, we adopt a...-authorized by the utilities to complete survey and make-ready work in the communications space, subject to a... and wireless attachments either in or above the communications space. This required response is...

  15. Research on Retro-reflecting Modulation in Space Optical Communication System

    NASA Astrophysics Data System (ADS)

    Zhu, Yifeng; Wang, Guannan

    2018-01-01

    Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.

  16. Supervisory autonomous local-remote control system design: Near-term and far-term applications

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Backes, Paul

    1993-01-01

    The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.

  17. Pointing and Tracking Concepts for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Alexander, J. W.; Lee, S.; Chen, C.

    2000-01-01

    This paper summarizes part of a FY1998 effort on the design and development of an optical communications (Opcomm) subsystem for the Advanced Deep Space System Development (ADSSD) Project. This study was funded by the JPL X2000 program to develop an optical communications (Opcomm) subsystem for use in future planetary missions. The goal of this development effort was aimed at providing prototype hardware with the capability of performing uplink, downlink, and ranging functions from deep space distances. Such a system was envisioned to support future deep space missions in the Outer Planets/Solar Probe (OPSP) mission set such as the Pluto express and Europa orbiter by providing a significant enhancement of data return capability. A study effort was initiated to develop a flyable engineering model optical terminal to support the proposed Europa Orbiter mission - as either the prime telecom subsystem or for mission augmentation. The design concept was to extend the prototype lasercom terminal development effort currently conducted by JPL's Optical Communications Group. The subsystem would track the sun illuminated Earth at Europa and farther distances for pointing reference. During the course of the study, a number of challenging issues were found. These included thermo-mechanical distortion, straylight control, and pointing. This paper focuses on the pointing aspects required to locate and direct a laser beam from a spacecraft (S/C) near Jupiter to a receiving station on Earth.

  18. The Interplanetary Internet: A Communications Infrastructure for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Burleigh, S.; Cerf, V.; Durst, R.; Fall, K.; Hooke, A.; Scott, K.; Weiss, H.

    2002-01-01

    A successful program of Mars Exploration will depend heavily on a robust and dependable space communications infrastructure that is well integrated with the terrestrial Internet. In the same way that the underpinnings of the Internet are the standardized "TCP/IP" suite of protocols, an "Interplanetary Internet" will need a similar set of capabilities that can support reliable communications across vast distances and highly stressed communications environments. For the past twenty years, the Consultative Committee for Space Data Systems (CCSDS) has been developing standardized long- haul space link communications techniques that are now in use by over two hundred missions within the international space community. New CCSDS developments, shortly to be infused into Mars missions, include a proximity link standard and a store-and- forward file transfer protocol. As part of its `Next Generation Internet' initiative, the U.S. Defense Advanced Projects Agency (DARPA) recently supported an architectural study of a future "InterPlaNetary Internet" (IPN). The IPN architecture assumes that in short-delay environments - such as on and around Mars - standard Internet technologies will be adapted to the locally harsh environment and deployed within surface vehicles and orbiting relays. A long-haul interplanetary backbone network that includes Deep Space Network (DSN) gateways into the terrestrial Internet will interconnect these distributed internets that are scattered across the Solar System. Just as TCP/IP unites the Earth's "network of networks" to become the Internet, a new suite of protocols known as "Bundling" will enable the IPN to become a "network of internets" to support true interplanetary dialog. An InterPlaNetary Internet Research Group has been established within the Internet community to coordinate this research and NASA has begun to support the further development of the IPN architecture and the Bundling protocols. A strategy is being developed whereby the current set of standard CCSDS data communications protocols can be incrementally evolved so that true InterPlaNetary Internet operations are feasible by the end of the decade. The strategy - which is already in progress via the deployment of Mars relay links - needs individual missions to each contribute increments of capability so that a standard communications infrastructure can rapidly accrete. This paper will describe the IPN architectural concepts, discuss the current set of standard data communications capabilities that exist to support Mars exploration and review the proposed new developments. We will also postulate that the concept is scalable and can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog among planets is routine. 1 2 3 4 5

  19. The Humans in Space Art Program - Engaging the Mind, and the Heart, in Science

    NASA Astrophysics Data System (ADS)

    McPhee, J. C.

    2017-12-01

    How can we do a better job communicating about space, science and technology, getting more people engaged, understanding the impact that future space exploration will have on their lives, and thinking about how they can contribute? Humans naturally express their visions and interests through various forms of artistic expression because art is inherently capable of expressing not only the "what and how" but also the "why" of ideas. Offering opportunities that integrate space, science and technology with art allows more people to learn about space, relay their visions of the future, and discuss why exploration and research are important. The Humans in Space Art Program, managed by the nonprofit SciArt Exchange, offers a science-integrated-with-art opportunity. Through international online competitions, we invite participants to share their visions of the future using visual, literary, musical and video art. We then use their artwork in multi-media displays and live performances online, locally worldwide, and in space to engage listeners and viewers. The Program has three projects, targeting different types of participants: the Youth Competition (ages 10-18), the Challenge (college and early career) and Celebrity Artist-Fed Engagement (CAFÉ: professional artists). To date, the Program has received 3400 artworks from over 52 countries and displayed the artwork in 110 multi-media events worldwide, on the International Space Station and bounced off the Moon. 100,000's have thus viewed artwork considering topics such as: why we explore; where and how we will go and when; and what we will do when we arrive. The Humans in Space Art Program is a flexible public engagement model applicable to multiple settings, including classrooms, art and entertainment events, and scientific conferences. It provides a system to accessibly inspire all ages about space, science and technology, making them hungry to learn more and to take a personal role.

  20. Habitability and Human Factors: Lessons Learned in Long Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Baggerman, Susan D.; Rando, Cynthia M.; Duvall, Laura E.

    2006-01-01

    This study documents the investigation of qualitative habitability and human factors feedback provided by scientists, engineers, and crewmembers on lessons learned from the ISS Program. A thorough review and understanding of this data is critical in charting NASA's future path in space exploration. NASA has been involved in ensuring that the needs of crewmembers to live and work safely and effectively in space have been met throughout the ISS Program. Human factors and habitability data has been collected from every U.S. crewmember that has resided on the ISS. The knowledge gained from both the developers and inhabitants of the ISS have provided a significant resource of information for NASA and will be used in future space exploration. The recurring issues have been tracked and documented; the top 5 most critical issues have been identified from this data. The top 5 identified problems were: excessive onsrbit stowage; environment; communication; procedures; and inadequate design of systems and equipment. Lessons learned from these issues will be used to aid in future improvements and developments to the space program. Full analysis of the habitability and human factors data has led to the following recommendations. It is critical for human factors to be involved early in the design of space vehicles and hardware. Human factors requirements need to be readdressed and redefined given the knowledge gained during previous ISS and long-duration space flight programs. These requirements must be integrated into vehicle and hardware technical documentation and consistently enforced. Lastly, space vehicles and hardware must be designed with primary focus on the user/operator to successfully complete missions and maintain a safe working environment. Implementation of these lessons learned will significantly improve NASA's likelihood of success in future space endeavors.

Top