Sample records for space dimension increases

  1. Fractal dimension of spatially extended systems

    NASA Astrophysics Data System (ADS)

    Torcini, A.; Politi, A.; Puccioni, G. P.; D'Alessandro, G.

    1991-10-01

    Properties of the invariant measure are numerically investigated in 1D chains of diffusively coupled maps. The coarse-grained fractal dimension is carefully computed in various embedding spaces, observing an extremely slow convergence towards the asymptotic value. This is in contrast with previous simulations, where the analysis of an insufficient number of points led the authors to underestimate the increase of fractal dimension with increasing the dimension of the embedding space. Orthogonal decomposition is also performed confirming that the slow convergence is intrinsically related to local nonlinear properties of the invariant measure. Finally, the Kaplan-Yorke conjecture is tested for short chains, showing that, despite the noninvertibility of the dynamical system, a good agreement is found between Lyapunov dimension and information dimension.

  2. Naked singularities in higher dimensional Vaidya space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S. G.; Dadhich, Naresh

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension.

  3. How category learning affects object representations: Not all morphspaces stretch alike

    PubMed Central

    Folstein, Jonathan R.; Gauthier, Isabel; Palmeri, Thomas J.

    2012-01-01

    How does learning to categorize objects affect how we visually perceive them? Behavioral, neurophysiological, and neuroimaging studies have tested the degree to which category learning influences object representations, with conflicting results. Some studies find that objects become more visually discriminable along dimensions relevant to previously learned categories, while others find no such effect. One critical factor we explore here lies in the structure of the morphspaces used in different studies. Studies finding no increase in discriminability often use “blended” morphspaces, with morphparents lying at corners of the space. By contrast, studies finding increases in discriminability use “factorial” morphspaces, defined by separate morphlines forming axes of the space. Using the same four morphparents, we created both factorial and blended morphspaces matched in pairwise discriminability. Category learning caused a selective increase in discriminability along the relevant dimension of the factorial space, but not in the blended space, and led to the creation of functional dimensions in the factorial space, but not in the blended space. These findings demonstrate that not all morphspaces stretch alike: Only some morphspaces support enhanced discriminability to relevant object dimensions following category learning. Our results have important implications for interpreting neuroimaging studies reporting little or no effect of category learning on object representations in the visual system: Those studies may have been limited by their use of blended morphspaces. PMID:22746950

  4. A qualitative numerical study of high dimensional dynamical systems

    NASA Astrophysics Data System (ADS)

    Albers, David James

    Since Poincare, the father of modern mathematical dynamical systems, much effort has been exerted to achieve a qualitative understanding of the physical world via a qualitative understanding of the functions we use to model the physical world. In this thesis, we construct a numerical framework suitable for a qualitative, statistical study of dynamical systems using the space of artificial neural networks. We analyze the dynamics along intervals in parameter space, separating the set of neural networks into roughly four regions: the fixed point to the first bifurcation; the route to chaos; the chaotic region; and a transition region between chaos and finite-state neural networks. The study is primarily with respect to high-dimensional dynamical systems. We make the following general conclusions as the dimension of the dynamical system is increased: the probability of the first bifurcation being of type Neimark-Sacker is greater than ninety-percent; the most probable route to chaos is via a cascade of bifurcations of high-period periodic orbits, quasi-periodic orbits, and 2-tori; there exists an interval of parameter space such that hyperbolicity is violated on a countable, Lebesgue measure 0, "increasingly dense" subset; chaos is much more likely to persist with respect to parameter perturbation in the chaotic region of parameter space as the dimension is increased; moreover, as the number of positive Lyapunov exponents is increased, the likelihood that any significant portion of these positive exponents can be perturbed away decreases with increasing dimension. The maximum Kaplan-Yorke dimension and the maximum number of positive Lyapunov exponents increases linearly with dimension. The probability of a dynamical system being chaotic increases exponentially with dimension. The results with respect to the first bifurcation and the route to chaos comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss. Moreover, results regarding the high-dimensional chaotic region of parameter space is interpreted and related to the closing lemma of Pugh, the windows conjecture of Barreto, the stable ergodicity theorem of Pugh and Shub, and structural stability theorem of Robbin, Robinson, and Mane.

  5. Dimension- and space-based intertrial effects in visual pop-out search: modulation by task demands for focal-attentional processing.

    PubMed

    Krummenacher, Joseph; Müller, Hermann J; Zehetleitner, Michael; Geyer, Thomas

    2009-03-01

    Two experiments compared reaction times (RTs) in visual search for singleton feature targets defined, variably across trials, in either the color or the orientation dimension. Experiment 1 required observers to simply discern target presence versus absence (simple-detection task); Experiment 2 required them to respond to a detection-irrelevant form attribute of the target (compound-search task). Experiment 1 revealed a marked dimensional intertrial effect of 34 ms for an target defined in a changed versus a repeated dimension, and an intertrial target distance effect, with an 4-ms increase in RTs (per unit of distance) as the separation of the current relative to the preceding target increased. Conversely, in Experiment 2, the dimension change effect was markedly reduced (11 ms), while the intertrial target distance effect was markedly increased (11 ms per unit of distance). The results suggest that dimension change/repetition effects are modulated by the amount of attentional focusing required by the task, with space-based attention altering the integration of dimension-specific feature contrast signals at the level of the overall-saliency map.

  6. Fractal dimension of interfaces in Edwards-Anderson spin glasses for up to six space dimensions.

    PubMed

    Wang, Wenlong; Moore, M A; Katzgraber, Helmut G

    2018-03-01

    The fractal dimension of domain walls produced by changing the boundary conditions from periodic to antiperiodic in one spatial direction is studied using both the strong-disorder renormalization group algorithm and the greedy algorithm for the Edwards-Anderson Ising spin-glass model for up to six space dimensions. We find that for five or fewer space dimensions, the fractal dimension is lower than the space dimension. This means that interfaces are not space filling, thus implying that replica symmetry breaking is absent in space dimensions fewer than six. However, the fractal dimension approaches the space dimension in six dimensions, indicating that replica symmetry breaking occurs above six dimensions. In two space dimensions, the strong-disorder renormalization group results for the fractal dimension are in good agreement with essentially exact numerical results, but the small difference is significant. We discuss the origin of this close agreement. For the greedy algorithm there is analytical expectation that the fractal dimension is equal to the space dimension in six dimensions and our numerical results are consistent with this expectation.

  7. Entropy of Movement Outcome in Space-Time.

    PubMed

    Lai, Shih-Chiung; Hsieh, Tsung-Yu; Newell, Karl M

    2015-07-01

    Information entropy of the joint spatial and temporal (space-time) probability of discrete movement outcome was investigated in two experiments as a function of different movement strategies (space-time, space, and time instructional emphases), task goals (point-aiming and target-aiming) and movement speed-accuracy constraints. The variance of the movement spatial and temporal errors was reduced by instructional emphasis on the respective spatial or temporal dimension, but increased on the other dimension. The space-time entropy was lower in targetaiming task than the point aiming task but did not differ between instructional emphases. However, the joint probabilistic measure of spatial and temporal entropy showed that spatial error is traded for timing error in tasks with space-time criteria and that the pattern of movement error depends on the dimension of the measurement process. The unified entropy measure of movement outcome in space-time reveals a new relation for the speed-accuracy.

  8. Compactified Vacuum in Ten Dimensions.

    NASA Astrophysics Data System (ADS)

    Wurmser, Daniel

    1987-09-01

    Since the 1920's, theories which unify gravity with the other fundamental forces have called for more than the four observed dimensions of space-time. According to such a theory, the vacuum consists of flat four-dimensional space-time described by the Minkowski metric M ^4 and a "compactified" space B. The dimensions of B are small, and the space can only be observed at distance scales smaller than the present experimental limit. These theories have had serious difficulties. The equations of gravity severely restrict the possible choices for the space B. The allowed spaces are complicated and difficult to study. The vacuum is furthermore unstable in the sense that a small perturbation causes the compactified dimensions to expand indefinitely. There is an addition a semi-classical argument which implies that the compactified vacuum be annihilated by virtual black holes. It follows that a universe with compactified extra dimensions could not have survived to the present. These results were derived by applying the equations of general relativity to spaces of more than four dimensions. The form of these equations was assumed to be unchanged by an increase in the number of dimensions. Recently, it has been proposed that gravity in more than four dimensions may involve terms of higher order in the curvature as well as the linear terms present in ordinary general relativity. I illustrate the effect of such terms by considering the example B = S^6 where S ^6 is the six-dimensional sphere. Only when the extra terms are included is this choice of the compactified space allowed. I explore the effect of a small perturbation on such a vacuum. The ten-dimensional spherically symmetric potential is examined, and I determine conditions under which the formation of virtual black holes is forbidden. The example M^4 times S^6 is still plagued by the semi -classical instability, but this result does not hold in general. The requirement that virtual black holes be forbidden provides a test for any theory which predicts a compactified vacuum.

  9. Anabolic steroid abuse and tooth size-arch dimensions in the rat.

    PubMed

    Barrett, R L; Harris, E F; Tolley, E A; Nutting, D F

    1993-01-01

    Anabolic steroids are misused by adolescents and adults to increase muscle mass and improve appearance and athletic performance. Since anabolics strongly enhance protein synthesis, it was speculated that alterations in tooth size and arch length could occur. This study quantified the effects of the anabolic steroid nandrolone phenpropionate on these parameters in a rat model. The steroid significantly increased mandibular arch length. No difference in mesiodistal dimensions of the molars occurred. In consequence, the increased arch dimensions combined with unaltered tooth size may result in dental spacing and/or other malocclusions.

  10. Optimal linear and nonlinear feature extraction based on the minimization of the increased risk of misclassification. [Bayes theorem - statistical analysis/data processing

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.

    1974-01-01

    General classes of nonlinear and linear transformations were investigated for the reduction of the dimensionality of the classification (feature) space so that, for a prescribed dimension m of this space, the increase of the misclassification risk is minimized.

  11. Laser Remediation of Threats Posed by Small Orbital Debris

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.

    2012-01-01

    The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.

  12. Optimizing working space in laparoscopy: CT measurement of the effect of pre-stretching of the abdominal wall in a porcine model.

    PubMed

    Vlot, John; Wijnen, René; Stolker, Robert Jan; Bax, Klaas N

    2014-03-01

    Determinants of working space in minimal access surgery have not been well studied. Using computed tomography (CT) to measure volumes and linear dimensions, we are studying the effect of a number of determinants of CO2 working space in a porcine laparoscopy model. Here we report the effects of pre-stretching of the abdominal wall. Earlier we had noted an increase in CO2 pneumoperitoneum volume at repeat insufflation with an intra-abdominal pressure (IAP) of 5 mmHg after previous stepwise insufflation up to an IAP of 15 mmHg. We reviewed the data of this serendipity group; data of 16 pigs were available. In a new group of eight pigs, we also explored this effect at repeat IAPs of 10 and 15 mmHg. Volumes and linear dimensions of the CO2 pneumoperitoneum were measured on reconstructed CT images and compared between the initial and repeat insufflation runs. Previous stepwise insufflation of the abdomen with CO2 up to 15 mmHg significantly (p < 0.01) increased subsequent working-space volume at a repeat IAP of 5 mmHg by 21 %, 7 % at a repeat IAP of 10 mmHg and 3 % at a repeat IAP of 15 mmHg. The external anteroposterior diameter significantly (p < 0.01) increased by 0.5 cm (14 %) at repeat 5 mmHg. Other linear dimensions showed a much smaller change. There was no statistically significant correlation between the duration of the insufflation run and the volume increase after pre-stretching at all IAP levels. Pre-stretching of the abdominal wall allows for the same surgical-field exposure at lower IAPs, reducing the negative effects of prolonged high-pressure CO2 pneumoperitoneum on the cardiorespiratory system and microcirculation. Pre-stretching has important scientific consequences in studies addressing ways of increasing working space in that its effect may confound the possible effects of other interventions aimed at increasing working space.

  13. Method of creating additional parking spaces in the “Tudor Vladimirescu” University Campus

    NASA Astrophysics Data System (ADS)

    Maftei, A.; Dontu, A. I.; Sachelarie, A.; Budeanu, B.

    2016-08-01

    The increasing number of vehicles in recent years has yielded a lot of problems regarding road vehicle infrastructure in residential areas, especially in towns. The problem is that roads dimensioning and especially parking spaces are under dimensioned for the current number of vehicles in use. The current paper addresses the problem of the lack of parking spaces in the “Tudor Vladimirescu” University Campus. The Campus infrastructure was build in the early 1970's and has received only a slight upgrade regarding access roads width, the access roads that were enlarged were Prof. Vasile Petrescu Street and Prof. Gheorghe Alexa Street. On the first specified road, parking spaces at 45 degrees were created, but this does not cover the number of needed parking spaces.

  14. Testing the Dimension of Hilbert Spaces

    NASA Astrophysics Data System (ADS)

    Brunner, Nicolas; Pironio, Stefano; Acin, Antonio; Gisin, Nicolas; Méthot, André Allan; Scarani, Valerio

    2008-05-01

    Given a set of correlations originating from measurements on a quantum state of unknown Hilbert space dimension, what is the minimal dimension d necessary to describe such correlations? We introduce the concept of dimension witness to put lower bounds on d. This work represents a first step in a broader research program aiming to characterize Hilbert space dimension in various contexts related to fundamental questions and quantum information applications.

  15. Characterization of branch complexity by fractal analyses

    USGS Publications Warehouse

    Alados, C.L.; Escos, J.; Emlen, J.M.; Freeman, D.C.

    1999-01-01

    The comparison between complexity in the sense of space occupancy (box-counting fractal dimension D(c) and information dimension D1) and heterogeneity in the sense of space distribution (average evenness index f and evenness variation coefficient J(cv)) were investigated in mathematical fractal objects and natural branch structures. In general, increased fractal dimension was paired with low heterogeneity. Comparisons between branch architecture in Anthyllis cytisoides under different slope exposure and grazing impact revealed that branches were more complex and more homogeneously distributed for plants on northern exposures than southern, while grazing had no impact during a wet year. Developmental instability was also investigated by the statistical noise of the allometric relation between internode length and node order. In conclusion, our study demonstrated that fractal dimension of branch structure can be used to analyze the structural organization of plants, especially if we consider not only fractal dimension but also shoot distribution within the canopy (lacunarity). These indexes together with developmental instability analyses are good indicators of growth responses to the environment.

  16. Characterization of branch complexity by fractal analyses and detect plant functional adaptations

    USGS Publications Warehouse

    Alados, C.L.; Escos, J.; Emlen, J.M.; Freeman, D.C.

    1999-01-01

    The comparison between complexity in the sense of space occupancy (box-counting fractal dimension Dc and information dimension DI ) and heterogeneity in the sense of space distribution (average evenness index and evenness variation coefficient JCV) were investigated in mathematical fractal objects and natural branch ¯ J structures. In general, increased fractal dimension was paired with low heterogeneity. Comparisons between branch architecture in Anthyllis cytisoides under different slope exposure and grazing impact revealed that branches were more complex and more homogeneously distributed for plants on northern exposures than southern, while grazing had no impact during a wet year. Developmental instability was also investigated by the statistical noise of the allometric relation between internode length and node order. In conclusion, our study demonstrated that fractal dimension of branch structure can be used to analyze the structural organization of plants, especially if we consider not only fractal dimension but also shoot distribution within the canopy (lacunarity). These indexes together with developmental instability analyses are good indicators of growth responses to the environment.

  17. A retrospective cephalometric study on pharyngeal airway space changes after rapid palatal expansion and Herbst appliance with or without skeletal anchorage.

    PubMed

    Manni, Antonio; Pasini, Marco; Giuca, Maria Rita; Morganti, Riccardo; Cozzani, Mauro

    2016-12-01

    The aim of this study is to investigate the pharyngeal airway space changes in patients treated with rapid palatal expansion (RPE) and Herbst appliance with or without skeletal anchorage. A 40-patient study group treated with the Herbst RME combination was included; moreover, a comparison between two subgroups based on whether miniscrews were used was evaluated. A subgroup 1 included 20 patients who were treated with RPE and an acrylic splint Herbst with miniscrews, and subgroup 2 included 20 patients who were treated with RPE and an acrylic splint Herbst. A cephalometric analysis was performed before (T1) and after (T2) treatment. The skeletal parameters of the sagittal occlusion analysis of Pancherz were utilized together with some extra measurements to evaluate the airways. An increased nasopharyngeal airway space was observed in group 1 (p < 0.05) from T1 to T2. Furthermore, the increase in nasopharyngeal airway space was significantly higher in subgroup 1 (p < 0.05) in comparison to the subgroup 2. Oropharyngeal (OA) and laryngopharyngeal (LA) dimensions were significantly increased in the subgroup 1 at the end of the treatment. In the subgroup 1, a significant decrease in SNA, a significant increase in SNB, and a significant decrease in ANB were observed from T1 to T2. In the subgroup 2, the treatment resulted in a significant decrease in ANB. In both groups, Pogonion increased significantly from T1 to T2. The results suggest that the RPE and the Herbst appliance allow a slight improvement of the sagittal dimensions of the airways. The oropharyngeal dimension increased significantly more in the skeletal anchorage group.

  18. Cephalometric Evaluation of the Effect of Complete Dentures on Retropharyngeal Space and Its Effect on Spirometric Values in Altered Vertical Dimension

    PubMed Central

    Gupta, Prachi; Thombare, Ram; Pakhan, A. J.; Singhal, Sameer

    2011-01-01

    Role of complete dentures in reducing apnea-hypoapnea index in edentulous obstructive sleep apnea patient has shown promising results in previous studies. This study was undertaken to ascertain the role of complete denture and complete denture with slight increase in vertical dimension using custom made occlussal jig, on retropharyngeal space, posterior airway space, pharyngeal depth, and spirometric readings in comparison with those in edentulous group. Significant changes were observed in both intervention groups and thus, paving the way for doing further research for the consideration of using complete denture with modifications as an oral appliance in edentulous obstructive sleep apnea patient. PMID:21991477

  19. Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones

    PubMed Central

    Elliott, Taffeta M.; Hamilton, Liberty S.; Theunissen, Frédéric E.

    2013-01-01

    Attempts to relate the perceptual dimensions of timbre to quantitative acoustical dimensions have been tenuous, leading to claims that timbre is an emergent property, if measurable at all. Here, a three-pronged analysis shows that the timbre space of sustained instrument tones occupies 5 dimensions and that a specific combination of acoustic properties uniquely determines gestalt perception of timbre. Firstly, multidimensional scaling (MDS) of dissimilarity judgments generated a perceptual timbre space in which 5 dimensions were cross-validated and selected by traditional model comparisons. Secondly, subjects rated tones on semantic scales. A discriminant function analysis (DFA) accounting for variance of these semantic ratings across instruments and between subjects also yielded 5 significant dimensions with similar stimulus ordination. The dimensions of timbre space were then interpreted semantically by rotational and reflectional projection of the MDS solution into two DFA dimensions. Thirdly, to relate this final space to acoustical structure, the perceptual MDS coordinates of each sound were regressed with its joint spectrotemporal modulation power spectrum. Sound structures correlated significantly with distances in perceptual timbre space. Contrary to previous studies, most perceptual timbre dimensions are not the result of purely temporal or spectral features but instead depend on signature spectrotemporal patterns. PMID:23297911

  20. Evolution Of The Concept Of Dimension

    NASA Astrophysics Data System (ADS)

    Journeau, Philippe F.

    2007-04-01

    Concepts of time elapsing `in' a space measuring the real emerge over the centuries. But Kant refutes absolute time and defines it, with space, as forms reacting to Newtonian mechanics. Einstein and Minkowski open a 20th century where time is a dimension, a substratum of reality `with' space rather than `in' it. Kaluza-Klein and String theories then develop a trend of additional spatial dimensions while de Broglie and Bohm open the possiblity that form, to begin with wave, be a reality together `with' a space-time particle. Other recent theories, such as spin networks, causal sets and twistor theory, even head to the idea of other "systems of dimensions." On the basis of such progresses and recent experiments the paper then considers a background independent fourfold time-form-action-space system of dimensions.

  1. Extra Dimensions of Space: Are They Going to be Found Soon?

    ScienceCinema

    Rubakov, Valery [Institute for Nuclear Research, Moscow, Russia

    2017-12-09

    Our space may well have more than 3 dimensions. Indeed, theories that pretend to be most fundamental choose to live in higher dimensions: a natural area for superstring/Mtheory is 9- or 10-dimensional space. Extra dimensions have been hidden so far, but they would open up above a certain energy threshold. A fascinating possibility is that this happens within reach of particle colliders. This lecture will address the motivation for such a viewpoint and implications of accessible extra dimensions for our understanding of nature.

  2. High-Order Central WENO Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present new third- and fifth-order Godunov-type central schemes for approximating solutions of the Hamilton-Jacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greater than two. In two space dimensions we present two versions for the third-order scheme: one scheme that is based on a genuinely two-dimensional Central WENO reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruction. The simpler dimension-by-dimension variant is then extended to a multi-dimensional fifth-order scheme. Our numerical examples in one, two and three space dimensions verify the expected order of accuracy of the schemes.

  3. Changes in airway dimensions following functional appliances in growing patients with skeletal class II malocclusion: A systematic review and meta-analysis.

    PubMed

    Xiang, MingLi; Hu, Bo; Liu, Yang; Sun, Jicheng; Song, Jinlin

    2017-06-01

    The purpose of the study was to evaluate the treatment effects of functional appliances (FAs) on upper airway dimensions in growing Class II patients with mandibular retrognathism. Five databases and the references of identified articles were electronically searched for relevant studies that met our eligibility criteria. The quality of the included studies was assessed using the Newcastle-Ottawa Scale. The effects of FAs on airway dimensions were combined by meta-analysis using the RevMan and STATA software. Seven studies (177 treated patients with mean age: 11.48 years and 153 untreated controls with mean age: 11.20 years) were included in this review. Compared to the control group, the oropharyngeal dimensions in the treatment group subjects were significantly increased at the superior pharyngeal space (MD = 1.73 mm/year, 95% CI, 1.13-2.32 mm, P < 0.00001), middle pharyngeal space (MD = 1.68 mm/year, 95% CI, 1.13-2.23 mm, P < 0.00001) and inferior pharyngeal space (MD = 1.21 mm/year, 95% CI, 0.48-1.95 mm, P = 0.001). No significant differences were found in nasopharyngeal and hypopharyngeal dimensions and the position of hyoid bone (P > 0.05). Soft palate length and soft palate inclination were improved significantly in the treatment group (P < 0.05). The results showed that FAs can enlarge the upper airway dimensions, specifically in the oropharyngeal region, in growing subjects with skeletal Class II malocclusion. The early intervention for mandibular retrognathism with FAs may help enlarge the airway dimensions and decrease potential risk of obstructive sleep apnea syndrome for growing patients in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Dimension of the Pore Space in Sponges

    ERIC Educational Resources Information Center

    Silva, L. H. F.; Yamashita, M. T.

    2009-01-01

    A simple experiment to reveal the dimension of the pore space in sponges is proposed. This experiment is suitable for the first year of a physics or engineering course. The calculated dimension of the void space in a sponge of density 16 mg cm[superscript -3] was 2.948 [plus or minus] 0.008. (Contains 2 figures.)

  5. The rationale for fundamental research in space biology - Introduction and background

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Krauss, R. W.

    1992-01-01

    An overview is presented of the concept and development of SSF and the unique opportunities offered by SSF to take advantage of the greater space, the increased power, and especially the long duration of the station for a cascade of innovative experiments in fundamental science. It is emphasized that this space environment will provide new dimensions for approaching some of the most challenging problems still facing modern biology.

  6. Hyoid expansion with titanium plate and screw: a human cadaveric study using computer-assisted airway measurement.

    PubMed

    Toh, Song-Tar; Hsu, Pon-Poh; Tan, Kah Leong Alvin; Lu, Kuo-Sun Peter; Han, Hong-Juan

    2013-08-01

    Hyoid expansion with suspension can potentially increase the upper airway at the hypopharyngeal level, benefitting patients with sleep-related breathing disorder. To document the effect of hyoid expansion using titanium plate and screw on retrolingual hypopharyngeal airway dimension and to compare the airway dimension after isolated hyoid expansion with hyoid expansion + hyomandibular suspension. Anatomical cadaveric dissection study. This study was performed in a laboratory setting using human cadavers. This is an anatomical feasibility study of hyoid expansion using titanium plate and screw on 10 cadaveric human heads and necks. The hyoid bone is trifractured with bony cuts made just medial to the lesser cornu. The freed hyoid body and lateral segments are expanded and stabilized to a titanium adaptation plate. Computer-assisted airway measurement (CAM) was used to measure the airway dimension at the hypopharynx at the level of the tongue base before and after the hyoid expansion. The expanded hyoid bone was then suspended to the mandible, and the airway dimension was measured again with CAM. Airway dimension after isolated hyoid expansion with hyoid expansion with hyomandibular suspension. RESULTS Hyoid expansion with titanium plate and screw resulted in statistical significant increase in the retrolingual hypopharyngeal airway space in all of the 10 human cadavers. The mean (SD) increase in retroglossal area was 33.4 (13.2) mm² (P < .005) (range, 6.0-58.7 mm²). Hyoid expansion with hyomandibular suspension resulted in a greater degree of airway enlargement. The mean (SD) increase in retroglossal area was 99.4 (15.0) mm² (P < .005) (range, 81.9-127.5 mm²). The retrolingual hypopharyngeal airway space increased with hyoid expansion using titanium plate and screw in our human cadaveric study, measured using CAM. The degree of increase is further augmented with hyomandibular suspension.

  7. An approach to the development of numerical algorithms for first order linear hyperbolic systems in multiple space dimensions: The constant coefficient case

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1995-01-01

    Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.

  8. Effect of occlusal vertical dimension on lip positions at smile.

    PubMed

    Chou, Jang-Ching; Thompson, Geoffrey A; Aggarwal, Harshit A; Bosio, Jose A; Irelan, Jon P

    2014-09-01

    In complete mouth reconstructive dentistry, the occlusal vertical dimension may be increased to provide adequate restorative space or to improve esthetics. The effect of increasing the occlusal vertical dimension on the smile is not well understood. The purpose of this study was to evaluate the effect of increasing the occlusal vertical dimension on the dimensions of the smile. Thirty dental students, 12 men and 18 women between the ages of 21 and 30 years old, participated in this study. Polyvinyl siloxane occlusal registrations 2, 4, 6, and 8 mm in thickness were fabricated from articulated stone casts. Posed smile images at occlusal vertical dimension +0, +2, +4, +6, and +8 mm were made with a digital single lens reflex camera mounted on a tripod. A wall-mounted head-positioning device, modified from a cephalometric unit, was used to stabilize the head position. Interlabial gap height, intercommissural width, incisal edge to upper lip, and incisal edge-to-lower lip measurements were made with computer software. The smile index was obtained by dividing width by height. The display zone area was measured by using computer software tracing. One-way repeated measures ANOVA (α=.05) was used for statistical analysis. With an increase in the occlusal vertical dimension, the interlabial gap height, incisal edge to lower lip distance, and display zone area increased significantly (P<.001), whereas the smile index decreased significantly (P<.001). No significant changes were observed in the intercommissural width and incisal edge to upper lip distance. The interlabial gap height, incisal edge-to-lower lip distance, and display zone area increase with increased occlusal vertical dimension. The smile index decreases with increased occlusal vertical dimension. However, the width of the smile and the length of the upper lip tend to remain unchanged. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Computation of the soft anomalous dimension matrix in coordinate space

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Sterman, George; Sung, Ilmo

    2010-08-01

    We complete the coordinate space calculation of the three-parton correlation in the two-loop massive soft anomalous dimension matrix. The full answer agrees with the result found previously by a different approach. The coordinate space treatment of renormalized two-loop gluon exchange diagrams exhibits their color symmetries in a transparent fashion. We compare coordinate space calculations of the soft anomalous dimension matrix with massive and massless eikonal lines and examine its nonuniform limit at absolute threshold.

  10. ψ-Epistemic Models are Exponentially Bad at Explaining the Distinguishability of Quantum States

    NASA Astrophysics Data System (ADS)

    Leifer, M. S.

    2014-04-01

    The status of the quantum state is perhaps the most controversial issue in the foundations of quantum theory. Is it an epistemic state (state of knowledge) or an ontic state (state of reality)? In realist models of quantum theory, the epistemic view asserts that nonorthogonal quantum states correspond to overlapping probability measures over the true ontic states. This naturally accounts for a large number of otherwise puzzling quantum phenomena. For example, the indistinguishability of nonorthogonal states is explained by the fact that the ontic state sometimes lies in the overlap region, in which case there is nothing in reality that could distinguish the two states. For this to work, the amount of overlap of the probability measures should be comparable to the indistinguishability of the quantum states. In this Letter, I exhibit a family of states for which the ratio of these two quantities must be ≤2de-cd in Hilbert spaces of dimension d that are divisible by 4. This implies that, for large Hilbert space dimension, the epistemic explanation of indistinguishability becomes implausible at an exponential rate as the Hilbert space dimension increases.

  11. Use of shift gradient in the second dimension to improve the separation space in comprehensive two-dimensional liquid chromatography.

    PubMed

    Li, Duxin; Schmitz, Oliver J

    2013-08-01

    Comprehensive two-dimensional liquid chromatography (LC × LC) has received much attention because it offers much higher peak capacities than separation in a single dimension. The advantageous peak capacity makes it attractive for the separation of complex samples. Various gradient methods have been used in LC × LC systems. The use of continuous shift gradient is advantageous because it combines the peak compression effect of full gradient mode and the tailed gradient program in parallel gradient mode. Here, a comparison of LC × LC analysis of Chinese herbal medicine with full gradient mode and shift gradient mode in the second dimension was performed. A correlation between the first and second dimensions was found in full gradient mode, and this was significantly reduced with shift gradient mode. The orthogonality increased by 43.7%. The effective peak distribution area increased significantly, which produced better separation.

  12. Emergent space-time via a geometric renormalization method

    NASA Astrophysics Data System (ADS)

    Rastgoo, Saeed; Requardt, Manfred

    2016-12-01

    We present a purely geometric renormalization scheme for metric spaces (including uncolored graphs), which consists of a coarse graining and a rescaling operation on such spaces. The coarse graining is based on the concept of quasi-isometry, which yields a sequence of discrete coarse grained spaces each having a continuum limit under the rescaling operation. We provide criteria under which such sequences do converge within a superspace of metric spaces, or may constitute the basin of attraction of a common continuum limit, which hopefully may represent our space-time continuum. We discuss some of the properties of these coarse grained spaces as well as their continuum limits, such as scale invariance and metric similarity, and show that different layers of space-time can carry different distance functions while being homeomorphic. Important tools in this analysis are the Gromov-Hausdorff distance functional for general metric spaces and the growth degree of graphs or networks. The whole construction is in the spirit of the Wilsonian renormalization group (RG). Furthermore, we introduce a physically relevant notion of dimension on the spaces of interest in our analysis, which, e.g., for regular lattices reduces to the ordinary lattice dimension. We show that this dimension is stable under the proposed coarse graining procedure as long as the latter is sufficiently local, i.e., quasi-isometric, and discuss the conditions under which this dimension is an integer. We comment on the possibility that the limit space may turn out to be fractal in case the dimension is noninteger. At the end of the paper we briefly mention the possibility that our network carries a translocal far order that leads to the concept of wormhole spaces and a scale dependent dimension if the coarse graining procedure is no longer local.

  13. Projective mappings and dimensions of vector spaces of three types of Killing-Yano tensors on pseudo Riemannian manifolds of constant curvature

    NASA Astrophysics Data System (ADS)

    Mikeš, Josef; Stepanov, Sergey; Hinterleitner, Irena

    2012-07-01

    In our paper we have determined the dimension of the space of conformal Killing-Yano tensors and the dimensions of its two subspaces of closed conformal Killing-Yano and Killing-Yano tensors on pseudo Riemannian manifolds of constant curvature. This result is a generalization of well known results on sharp upper bounds of the dimensions of the vector spaces of conformal Killing-Yano, Killing-Yano and concircular vector fields on pseudo Riemannian manifolds of constant curvature.

  14. Effect of functional appliances on the airway dimensions in patients with skeletal class II malocclusion: A systematic review.

    PubMed

    Kannan, Annapurna; Sathyanarayana, Haritha Pottipalli; Padmanabhan, Sridevi

    2017-01-01

    The aim of the present systematic review was to assess the effect of functional appliances on the airway dimensions in patients with skeletal Class II malocclusion. Articles were identified through a literature survey carried out through the following databases: (1) PUBMED, (2) Google Scholar, (3) The Cochrane Library, (4) Embase, (5) Lilac, and (6) Web of Scholars. The systematic review analyzed 12 articles comprising removable functional appliances, 3 articles with fixed functional appliances, and 2 articles having both fixed and removable functional appliances. Qualitative assessment was done for all the 17 studies. The effect of functional appliances in the dimensions of three airway spaces - nasopharynx, oropharynx, and hypopharynx were analyzed. Significant increase in the dimensions of nasopharynx and oropharynx was observed with Activator. Significant increase in the nasopharynx and hypopharynx (male patients) was observed with Bionator. Insignificant increase in the oropharynx was observed with the same. Significant increase in the oropharynx and hypopharynx was observed with Twin Block. Insignificant increase in the nasopharynx was observed with the same. Significant increase was observed only in the hypopharynx for Frankel II. Decreased or insignificant change was observed with FMA, MPA IV, and Herbst appliances.

  15. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation

    NASA Astrophysics Data System (ADS)

    Yuan, Luqi; Xiao, Meng; Lin, Qian; Fan, Shanhui

    2018-03-01

    We show that a single ring resonator undergoing dynamic modulation can be used to create a synthetic space with an arbitrary dimension. In such a system, the phases of the modulation can be used to create a photonic gauge potential in high dimensions. As an illustration of the implication of this concept, we show that the Haldane model, which exhibits nontrivial topology in two dimensions, can be implemented in the synthetic space using three rings. Our results point to a route toward exploring higher-dimensional topological physics in low-dimensional physical structures. The dynamics of photons in such synthetic spaces also provides a mechanism to control the spectrum of light.

  16. Random-Walk Model of Diffusion in Three Dimensions in Brain Extracellular Space: Comparison with Microfiberoptic Photobleaching Measurements

    PubMed Central

    Jin, Songwan; Zador, Zsolt; Verkman, A. S.

    2008-01-01

    Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises ∼20% of brain parenchymal volume and contains cell-cell gaps ∼50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (α), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (Do/D). Experimental Do/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. Do/D for the small solute calcein in different regions of brain was in the range 3.0–4.1, and increased with brain cell swelling after water intoxication. Do/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured Do/D using realistic α, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted Do/D for different solute sizes. Also, the modeling showed unanticipated effects on Do/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS. PMID:18469079

  17. Random-walk model of diffusion in three dimensions in brain extracellular space: comparison with microfiberoptic photobleaching measurements.

    PubMed

    Jin, Songwan; Zador, Zsolt; Verkman, A S

    2008-08-01

    Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises approximately 20% of brain parenchymal volume and contains cell-cell gaps approximately 50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (alpha), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (D(o)/D). Experimental D(o)/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. D(o)/D for the small solute calcein in different regions of brain was in the range 3.0-4.1, and increased with brain cell swelling after water intoxication. D(o)/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured D(o)/D using realistic alpha, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted D(o)/D for different solute sizes. Also, the modeling showed unanticipated effects on D(o)/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS.

  18. Scalable direct Vlasov solver with discontinuous Galerkin method on unstructured mesh.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, J.; Ostroumov, P. N.; Mustapha, B.

    2010-12-01

    This paper presents the development of parallel direct Vlasov solvers with discontinuous Galerkin (DG) method for beam and plasma simulations in four dimensions. Both physical and velocity spaces are in two dimesions (2P2V) with unstructured mesh. Contrary to the standard particle-in-cell (PIC) approach for kinetic space plasma simulations, i.e., solving Vlasov-Maxwell equations, direct method has been used in this paper. There are several benefits to solving a Vlasov equation directly, such as avoiding noise associated with a finite number of particles and the capability to capture fine structure in the plasma. The most challanging part of a direct Vlasov solvermore » comes from higher dimensions, as the computational cost increases as N{sup 2d}, where d is the dimension of the physical space. Recently, due to the fast development of supercomputers, the possibility has become more realistic. Many efforts have been made to solve Vlasov equations in low dimensions before; now more interest has focused on higher dimensions. Different numerical methods have been tried so far, such as the finite difference method, Fourier Spectral method, finite volume method, and spectral element method. This paper is based on our previous efforts to use the DG method. The DG method has been proven to be very successful in solving Maxwell equations, and this paper is our first effort in applying the DG method to Vlasov equations. DG has shown several advantages, such as local mass matrix, strong stability, and easy parallelization. These are particularly suitable for Vlasov equations. Domain decomposition in high dimensions has been used for parallelization; these include a highly scalable parallel two-dimensional Poisson solver. Benchmark results have been shown and simulation results will be reported.« less

  19. ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions

    NASA Astrophysics Data System (ADS)

    Toro, E. F.; Titarev, V. A.

    2005-01-01

    In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation laws in one-, two- and three-space dimensions. Numerical results of schemes of up to fifth order of accuracy in both time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant number and essentially non-oscillatory results are obtained for solutions with discontinuities. We also present preliminary results for two-dimensional non-linear systems.

  20. Space science/space station attached payload pointing accommodation study: Technology assessment white paper

    NASA Technical Reports Server (NTRS)

    Lin, Richard Y.; Mann, Kenneth E.; Laskin, Robert A.; Sirlin, Samuel W.

    1987-01-01

    Technology assessment is performed for pointing systems that accommodate payloads of large mass and large dimensions. Related technology areas are also examined. These related areas include active thermal lines or power cables across gimbals, new materials for increased passive damping, tethered pointing, and inertially reacting pointing systems. Conclusions, issues and concerns, and recommendations regarding the status and development of large pointing systems for space applications are made based on the performed assessments.

  1. Quantum gravity as an information network self-organization of a 4D universe

    NASA Astrophysics Data System (ADS)

    Trugenberger, Carlo A.

    2015-10-01

    I propose a quantum gravity model in which the fundamental degrees of freedom are information bits for both discrete space-time points and links connecting them. The Hamiltonian is a very simple network model consisting of a ferromagnetic Ising model for space-time vertices and an antiferromagnetic Ising model for the links. As a result of the frustration between these two terms, the ground state self-organizes as a new type of low-clustering graph with finite Hausdorff dimension 4. The spectral dimension is lower than the Hausdorff dimension: it coincides with the Hausdorff dimension 4 at a first quantum phase transition corresponding to an IR fixed point, while at a second quantum phase transition describing small scales space-time dissolves into disordered information bits. The large-scale dimension 4 of the universe is related to the upper critical dimension 4 of the Ising model. At finite temperatures the universe graph emerges without a big bang and without singularities from a ferromagnetic phase transition in which space-time itself forms out of a hot soup of information bits. When the temperature is lowered the universe graph unfolds and expands by lowering its connectivity, a mechanism I have called topological expansion. The model admits topological black hole excitations corresponding to graphs containing holes with no space-time inside and with "Schwarzschild-like" horizons with a lower spectral dimension.

  2. Self-similar crack-generation effects in the fracture process in brittle materials

    NASA Astrophysics Data System (ADS)

    Hilarov, V. L.

    1998-07-01

    Using acoustic-emission data banks we have computed time and space correlation functions for the purpose of investigation of crack-propagation self-similarity during the fracture process in brittle materials. It is shown that the whole fracture process may be represented as a two-stage process. In the first stage, the crack propagation is uniform and uncorrelated in space, having a time spectral density of the white-noise type and a correlation fractal dimension approximately equal to that of 3D Euclidean space. In the second stage, this fractal dimension decreases significantly, reaching the value of 2.2-2.4, characteristic for the fracture surfaces, while the time spectral density exhibits a significant low-frequency increase becoming of 0965-0393/6/4/002/img1-noise type. The resulting fractal shows no multifractal behaviour, appearing to be a single fractal.

  3. [Development of a glaucoma microstent with drainage into the suprachoroidal space: fluid mechanical model approach].

    PubMed

    Guthoff, R F; Schmidt, W; Buss, D; Schultze, C; Ruppin, U; Stachs, O; Sternberg, K; Klee, D; Chichkov, B; Schmitz, K-P

    2009-09-01

    The purpose of this study was to develop a microstent with valve function, which normalizes the intraocular pressure (IOP) and drains into the suprachoroidal space. In comparison to the subconjunctival space the suprachoroidal space is attributed with less fibroblast colonization and activity. Different glaucoma drainage devices were idealized as tubes and the flow rates were calculated according to Hagen-Poiseuille. The dimensions of the ideal glaucoma implant were modified with respect to an aqueous humor production of 2 microl/min and the different outflow pathways. Specific components of glaucoma drainage devices at the inlet and outlet were not included. The volume flow calculation of the tested glaucoma implants showed that the dimensions of all lumina were too large to prevent postoperative hypotension. A maximum inner tube diameter of 53 microm was calculated for drainage into the suprachoroidal space based on an intra-ocular pressure (IOP) of 20 mmHg. The glaucoma microstent has to guarantee an aqueous humor flow for physiological IOP. An increase of IOP has to be regulated to physiological pressure conditions by the microvalve.

  4. Interior volume of (1 + D)-dimensional Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Bhaumik, Nilanjandev; Majhi, Bibhas Ranjan

    2018-01-01

    We calculate the maximum interior volume, enclosed by the event horizon, of a (1 + D)-dimensional Schwarzschild black hole. Taking into account the mass change due to Hawking radiation, we show that the volume increases towards the end of the evaporation. This fact is not new as it has been observed earlier for four-dimensional case. The interesting point we observe is that this increase rate decreases towards the higher value of space dimensions D; i.e. it is a decelerated expansion of volume with the increase of spatial dimensions. This implies that for a sufficiently large D, the maximum interior volume does not change. The possible implications of these results are also discussed.

  5. Topological Vulnerability Evaluation Model Based on Fractal Dimension of Complex Networks.

    PubMed

    Gou, Li; Wei, Bo; Sadiq, Rehan; Sadiq, Yong; Deng, Yong

    2016-01-01

    With an increasing emphasis on network security, much more attentions have been attracted to the vulnerability of complex networks. In this paper, the fractal dimension, which can reflect space-filling capacity of networks, is redefined as the origin moment of the edge betweenness to obtain a more reasonable evaluation of vulnerability. The proposed model combining multiple evaluation indexes not only overcomes the shortage of average edge betweenness's failing to evaluate vulnerability of some special networks, but also characterizes the topological structure and highlights the space-filling capacity of networks. The applications to six US airline networks illustrate the practicality and effectiveness of our proposed method, and the comparisons with three other commonly used methods further validate the superiority of our proposed method.

  6. An Efficient Multiparty Quantum Secret Sharing Protocol Based on Bell States in the High Dimension Hilbert Space

    NASA Astrophysics Data System (ADS)

    Gao, Gan; Wang, Li-Ping

    2010-11-01

    We propose a quantum secret sharing protocol, in which Bell states in the high dimension Hilbert space are employed. The biggest advantage of our protocol is the high source capacity. Compared with the previous secret sharing protocol, ours has the higher controlling efficiency. In addition, as decoy states in the high dimension Hilbert space are used, we needn’t destroy quantum entanglement for achieving the goal to check the channel security.

  7. The influence of varying maxillary incisal edge embrasure space and interproximal contact area dimensions on perceived smile aesthetics.

    PubMed

    Foulger, T E; Tredwin, C J; Gill, D S; Moles, D R

    2010-08-14

    The aim of this study was to determine the influence of incisal edge embrasure space and interproximal contact area dimensions on perceived smile aesthetics. Cross-sectional study. Postgraduate dental teaching hospital. A photograph of a smiling female, displaying only the lips and maxillary teeth was digitally altered. First, the proportions of the incisal edge embrasure spaces were modified to produce five different images. Secondly, the lengths of the interproximal contact areas were altered to produce five different images. The two sets of photographs were ranked from 'most attractive' to 'least attractive' by 35 dentists, 35 dental technicians and 35 patients. An embrasure space arrangement where the size of the embrasures increases progressively distally from the midline was deemed most attractive; absence of embrasure spaces was deemed least attractive. In assessing the interproximal contact areas, all groups assessed an arrangement where the areas between the teeth were equal (and 50% the length of the central incisor) as most attractive, and where the contact areas increased in length progressively distally from the midline as least attractive. There were few statistically significant differences between the groups in these perceptions. Whilst there is broad agreement in what the participant groups deem to be aesthetic, our findings do not wholly correspond to the 'ideals' that have been previously suggested in the dental literature.

  8. [Adoption of the condyle position of patients with extensive tooth wear during occlusal rehabilitation].

    PubMed

    Li, Ping; Feng, Hai-lan; Zhou, Chong-yang

    2011-05-01

    To evaluate the adoption of the condyle position of patients with extensive tooth wear during occlusal rehabilitation, and the correlation between increased vertical dimensions and the changes of joint spaces. Twenty-seven patients (five from Beifang hospital, others from Peking University School and Hospital of Stomatology) with extensive tooth wear were selected and received occlusal rehabilitation treatment. The radiographs of standard Schüllers position were taken before treatment (stage 1), 1 month following delivery of temporary restoration (stage 2), and 1 month following delivery of permanent restoration (stage 3). The superior, anterior and posterior joint spaces were (3.24 ± 0.16), (2.06 ± 0.11), (1.89 ± 0.13) mm at stage 1; (3.61 ± 0.15), (1.94 ± 0.10), (2.52 ± 0.11) mm at stage 2; (3.49 ± 0.19), (1.93 ± 0.10), (2.40 ± 0.13) mm at stage 3. The posterior joint spaces at stage 2 and stage 3 were significantly larger than that at stage 1(P < 0.01). The superior spaces at stage 2 were significantly larger than that at stage 1 (P < 0.05). No correlations between the increased vertical dimensions and the changes of joint spaces were found in the three stages (P > 0.05). The condyle positions in the patients with extensive tooth wear changed after occlusal rehabilitation.

  9. Space-division multiplexing in optical fibres

    NASA Astrophysics Data System (ADS)

    Richardson, D. J.; Fini, J. M.; Nelson, L. E.

    2013-05-01

    Optical communication technology has been advancing rapidly for several decades, supporting our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data-carrying capacity of a single optical fibre. To achieve this, researchers have explored and attempted to optimize multiplexing in time, wavelength, polarization and phase. Commercial systems now utilize all four dimensions to send more information through a single fibre than ever before. The spatial dimension has, however, remained untapped in single fibres, despite it being possible to manufacture fibres supporting hundreds of spatial modes or containing multiple cores, which could be exploited as parallel channels for independent signals.

  10. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A.

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo ismore » significantly reduced to 6%. This value reasonably agrees with the experimental result.« less

  11. Experimentation in Institutions: Ethics, Creativity, and Existential Competence

    ERIC Educational Resources Information Center

    O'Donnell, Aislinn

    2018-01-01

    The existential, experiential, ethical, pathic and pre-pathic dimensions of education are essential for the creative composition of subjectivities in institutional spaces, yet educational research and policy tend increasingly to privilege technical discourses and prescriptive approaches both when evaluating "what is effective in…

  12. Does Monitoring Event Changes Improve Comprehension?

    ERIC Educational Resources Information Center

    Bohn-Gettler, Catherine M.

    2014-01-01

    During narrative comprehension, reading times increase for changes in time, space, characters, goals, and causation. This study examined the extent to which instructional manipulations modify dimension monitoring during reading and whether this affects comprehension. Sixty-seven participants read three narratives (pretest). Half of the…

  13. Limits on the Time Evolution of Space Dimensions from Newton's Constant

    NASA Astrophysics Data System (ADS)

    Nasseri, Forough

    Limits are imposed upon the possible rate of change of extra spatial dimensions in a decrumpling model Universe with time variable spatial dimensions (TVSD) by considering the time variation of (1+3)-dimensional Newton's constant. Previous studies on the time variation of (1+3)-dimensional Newton's constant in TVSD theory had not include the effects of the volume of the extra dimensions and the effects of the surface area of the unit sphere in D-space dimensions. Our main result is that the absolute value of the present rate of change of spatial dimensions to be less than about 10-14 yr-1. Our results would appear to provide a prima facie case for ruling the TVSD model out. We show that based on observational bounds on the present variation of Newton's constant, one would have to conclude that the spatial dimension of the Universe when the Universe was "at the Planck scale" to be less than or equal to 3.09. If the dimension of space when the Universe was "at the Planck scale" is constrained to be fractional and very close to 3, then the whole edifice of TVSD model loses credibility.

  14. The (Im)Materiality of Educational Space: Interactions between Material, Connected and Textual Dimensions of Networked Technology Use in Schools

    ERIC Educational Resources Information Center

    Burnett, Cathy

    2011-01-01

    In contributing to understanding about the barriers and opportunities associated with new technologies in educational settings, this article explores dimensions of the educational spaces associated with using networked technologies in contemporary classrooms. After considering how educational spaces may be "produced" (to use Lefebvre's…

  15. Why Nature has made a choice of one time and three space coordinates?

    NASA Astrophysics Data System (ADS)

    Mankoc Borstnik, N.; Nielsen, H. B.

    2002-12-01

    We propose a possible answer to one of the most exciting open questions in physics and cosmology, that is, the question why we seem to experience four-dimensional spacetime with three ordinary and one time dimensions. Making assumptions (such as particles being in first approximation massless) about the equations of motion, we argue for restrictions on the number of space and time dimensions. Accepting our explanation of the spacetime signature and the number of dimensions would be a point supporting (further) the importance of the 'internal space'.

  16. One-dimensional transport equation models for sound energy propagation in long spaces: theory.

    PubMed

    Jing, Yun; Larsen, Edward W; Xiang, Ning

    2010-04-01

    In this paper, a three-dimensional transport equation model is developed to describe the sound energy propagation in a long space. Then this model is reduced to a one-dimensional model by approximating the solution using the method of weighted residuals. The one-dimensional transport equation model directly describes the sound energy propagation in the "long" dimension and deals with the sound energy in the "short" dimensions by prescribed functions. Also, the one-dimensional model consists of a coupled set of N transport equations. Only N=1 and N=2 are discussed in this paper. For larger N, although the accuracy could be improved, the calculation time is expected to significantly increase, which diminishes the advantage of the model in terms of its computational efficiency.

  17. Compactification on phase space

    NASA Astrophysics Data System (ADS)

    Lovelady, Benjamin; Wheeler, James

    2016-03-01

    A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.

  18. Three-Dimensional Quantification of Pore Space in Flocculated Sediments

    NASA Astrophysics Data System (ADS)

    Lawrence, Tom; Spencer, Kate; Bushby, Andy; Manning, Andrew

    2017-04-01

    Flocculated sediment structure plays a vital role in determining sediment dynamics within the water column in fresh and saline water bodies. The porosity of flocs contributes to their specific density and therefore their settling characteristics, and can also affect settling characteristics via through-flow. The process of settling and resuspension of flocculated material causes the formation of larger and more complex individual flocs, about which little is known quantitatively of the internal micro-structure and therefore porosity. Hydrological and sedimentological modelling software currently uses estimations of porosity, because it is difficult to capture and analyse flocs. To combat this, we use a novel microscopy method usually performed on biological material to scan the flocs, the output of which can be used to quantify the dimensions and arrangement of pores. This involves capturing flocculated sediment, staining the sample with heavy metal elements to highlight organic content in the Scanning Electron Microscope later, and finally setting the sample in resin. The overall research aim is to quantitatively characterise the dimensions and distribution of pore space in flocs in three dimensions. In order to gather data, Scanning Electron Microscopy and micro-Computed Tomography have been utilised to produce the necessary images to identify and quantify the pore space. The first objective is to determine the dimensional limits of pores in the structure (i.e. what area do they encapsulate? Are they interconnected or discreet?). This requires a repeatable definition to be established, so that all floc pore spaces can be quantified using the same parameters. The LabSFLOC settling column and dyes will be used as one possible method of determining the outer limits of the discreet pore space. LabSFLOC is a sediment settling column that uses a camera to record the flocs, enabling analysis of settling characteristics. The second objective is to develop a reliable method for quantifying the dimensions of the pores. The dimensions to be quantified are the long- and short-axis lengths, measured using ImageJ. The third objective will be to quantify the distribution of the pore space within the structure, utilising point-to-point measurements and distance from centre of the floc, again utilising software capable of providing accurate measurements between the centres of each pore within the structure. Preliminary data demonstrating pore dimensional limits and quantification will be presented. This will establish a definition of pore space based on limits of interaction between pore water and the water column, including experimental data from LabSFLOC, and visual representations of pore outer limits. Further to this, I will include some investigational data from ImageJ relating to the dimensions being measured for sub-aim 2. This information is vital in providing accurate and reliable information for hydrological and sedimentological model input, ultimately increasing the value of the outputs.

  19. Effect of occlusal appliances and clenching on the internally deranged TMJ space.

    PubMed

    Kuboki, T; Takenami, Y; Orsini, M G; Maekawa, K; Yamashita, A; Azuma, Y; Clark, G T

    1999-01-01

    Stabilization appliances and mandibular anterior repositioning appliances have been used to treat patients with internal derangement of the temporomandibular joint (TMJ) based on the assumption that these appliances work by decompressing the TMJ. The purpose of this study was to indirectly test this assumption. Bilateral TMJ tomograms of 7 subjects with unilateral anterior disc displacement without reduction (ADDwor) were taken during comfortable closure and during maximum clenching in maximum intercuspation; tomograms were also taken with the 2 types of occlusal appliances in use. Outlines of the condyle and the temporal fossa were automatically determined by an edge-detection protocol, and the minimum joint space dimension of the joints with and without ADDwor was automatically measured for each experimental condition as the outcome variable. Upon comfortable closure and maximum clenching, the minimum joint space dimensions of the ipsilateral and contralateral joints with the use of stabilization appliances and mandibular anterior repositioning appliances were not significantly different from those seen in maximum intercuspation. These findings do not indicate that these appliances induce an increase in joint space during closing and clenching in joints with ADDwor.

  20. Gravity, the third dimension of life support in space

    NASA Technical Reports Server (NTRS)

    Burton, Russell R.

    1994-01-01

    The ascent of the human into high altitudes required a 2-D life support system that supplied: oxygen, and heat. At lower altitudes, increased oxygen concentration in the inhaled gases was useful, but at higher altitudes for longer durations, this 'clever' life support approach was no longer adequate--physiologic requirements had to provide a natural pressure-based environment. In space, the life support system requires a third dimension, gravity. Although substituting for gravity has been successful on a limited number of physiologic functions for short-duration stays in space, long durations will require the effects of the real thing for critical physiologic functions. It has been known for over a hundred years that the forces of acceleration (G) and gravity are equivalent. Therefore, gravitational stimulation in space can be achieved with centrifugation. However, for this stimulation to be effective, the dosage of G required to maintain normal physiologic function must be determined. An approximation of this dosage of G for the human can be determined with 3-day bed-rest studies including periodic centrifuge exposure. Recent research on this topic is reviewed.

  1. Correlation dimension and phase space contraction via extreme value theory

    NASA Astrophysics Data System (ADS)

    Faranda, Davide; Vaienti, Sandro

    2018-04-01

    We show how to obtain theoretical and numerical estimates of correlation dimension and phase space contraction by using the extreme value theory. The maxima of suitable observables sampled along the trajectory of a chaotic dynamical system converge asymptotically to classical extreme value laws where: (i) the inverse of the scale parameter gives the correlation dimension and (ii) the extremal index is associated with the rate of phase space contraction for backward iteration, which in dimension 1 and 2, is closely related to the positive Lyapunov exponent and in higher dimensions is related to the metric entropy. We call it the Dynamical Extremal Index. Numerical estimates are straightforward to obtain as they imply just a simple fit to a univariate distribution. Numerical tests range from low dimensional maps, to generalized Henon maps and climate data. The estimates of the indicators are particularly robust even with relatively short time series.

  2. Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space

    NASA Astrophysics Data System (ADS)

    Ruggeri, Michele; Moroni, Saverio; Holzmann, Markus

    2018-05-01

    We show that the recently introduced iterative backflow wave function can be interpreted as a general neural network in continuum space with nonlinear functions in the hidden units. Using this wave function in variational Monte Carlo simulations of liquid 4He in two and three dimensions, we typically find a tenfold increase in accuracy over currently used wave functions. Furthermore, subsequent stages of the iteration procedure define a set of increasingly good wave functions, each with its own variational energy and variance of the local energy: extrapolation to zero variance gives energies in close agreement with the exact values. For two dimensional 4He, we also show that the iterative backflow wave function can describe both the liquid and the solid phase with the same functional form—a feature shared with the shadow wave function, but now joined by much higher accuracy. We also achieve significant progress for liquid 3He in three dimensions, improving previous variational and fixed-node energies.

  3. High variability impairs motor learning regardless of whether it affects task performance.

    PubMed

    Cardis, Marco; Casadio, Maura; Ranganathan, Rajiv

    2018-01-01

    Motor variability plays an important role in motor learning, although the exact mechanisms of how variability affects learning are not well understood. Recent evidence suggests that motor variability may have different effects on learning in redundant tasks, depending on whether it is present in the task space (where it affects task performance) or in the null space (where it has no effect on task performance). We examined the effect of directly introducing null and task space variability using a manipulandum during the learning of a motor task. Participants learned a bimanual shuffleboard task for 2 days, where their goal was to slide a virtual puck as close as possible toward a target. Critically, the distance traveled by the puck was determined by the sum of the left- and right-hand velocities, which meant that there was redundancy in the task. Participants were divided into five groups, based on both the dimension in which the variability was introduced and the amount of variability that was introduced during training. Results showed that although all groups were able to reduce error with practice, learning was affected more by the amount of variability introduced rather than the dimension in which variability was introduced. Specifically, groups with higher movement variability during practice showed larger errors at the end of practice compared with groups that had low variability during learning. These results suggest that although introducing variability can increase exploration of new solutions, this may adversely affect the ability to retain the learned solution. NEW & NOTEWORTHY We examined the role of introducing variability during motor learning in a redundant task. The presence of redundancy allows variability to be introduced in different dimensions: the task space (where it affects task performance) or the null space (where it does not affect task performance). We found that introducing variability affected learning adversely, but the amount of variability was more critical than the dimension in which variability was introduced.

  4. Embedding of the brane into six dimensions

    NASA Astrophysics Data System (ADS)

    Gogberashvili, Merab

    2002-10-01

    Embedding of the brane metric into Euclidean (2+4)-space is found. Brane geometry can be visualized as the surface of the hypersphere in six dimensions which ``radius'' is governed by the cosmological constant. Minkowski space in this picture is placed on the intersection of this surface with the plane formed by the extra space-like and time-like coordinates.

  5. Exploring Lovelock theory moduli space for Schrödinger solutions

    NASA Astrophysics Data System (ADS)

    Jatkar, Dileep P.; Kundu, Nilay

    2016-09-01

    We look for Schrödinger solutions in Lovelock gravity in D > 4. We span the entire parameter space and determine parametric relations under which the Schrödinger solution exists. We find that in arbitrary dimensions pure Lovelock theories have Schrödinger solutions of arbitrary radius, on a co-dimension one locus in the Lovelock parameter space. This co-dimension one locus contains the subspace over which the Lovelock gravity can be written in the Chern-Simons form. Schrödinger solutions do not exist outside this locus and on this locus they exist for arbitrary dynamical exponent z. This freedom in z is due to the degeneracy in the configuration space. We show that this degeneracy survives certain deformation away from the Lovelock moduli space.

  6. 1+1 dimensional compactifications of string theory.

    PubMed

    Goheer, Naureen; Kleban, Matthew; Susskind, Leonard

    2004-05-14

    We argue that stable, maximally symmetric compactifications of string theory to 1+1 dimensions are in conflict with holography. In particular, the finite horizon entropies of the Rindler wedge in 1+1 dimensional Minkowski and anti-de Sitter space, and of the de Sitter horizon in any dimension, are inconsistent with the symmetries of these spaces. The argument parallels one made recently by the same authors, in which we demonstrated the incompatibility of the finiteness of the entropy and the symmetries of de Sitter space in any dimension. If the horizon entropy is either infinite or zero, the conflict is resolved.

  7. Extinction-Induced Variability in Human Behavior

    ERIC Educational Resources Information Center

    Kinloch, Jennifer M.; Foster, T. Mary; McEwan, James S. A.

    2009-01-01

    Participants earned points by pressing a computer space bar (Experiment 1) or forming rectangles on the screen with the mouse (Experiment 2) under differential-reinforcement-of-low-rate schedules, followed by extinction. Variability in interresponse time (the contingent dimension) increased during extinction, as for Morgan and Lee (1996);…

  8. Exact dimension estimation of interacting qubit systems assisted by a single quantum probe

    NASA Astrophysics Data System (ADS)

    Sone, Akira; Cappellaro, Paola

    2017-12-01

    Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine, e.g., the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics, and observables. Here we propose a more practical strategy that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the system dimension can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.

  9. Optimizing working space in porcine laparoscopy: CT measurement of the effects of intra-abdominal pressure.

    PubMed

    Vlot, John; Wijnen, Rene; Stolker, Robert Jan; Bax, Klaas

    2013-05-01

    Several factors may affect volume and dimensions of the working space in laparoscopic surgery. The precise impact of these factors has not been well studied. In a porcine model, we used computed tomographic (CT) scanning for measuring working space volume and distances. In a first series of experiments, we studied the relationship between intra-abdominal pressure (IAP) and working space. Eleven 20 kg pigs were studied under standardized anesthesia and volume-controlled ventilation. Cardiorespiratory parameters were monitored continuously, and blood gas samples were taken at different IAP levels. Respiratory rate was increased when ETCO₂ exceeded 7 kPa. Breath-hold CT scans were made at IAP levels of 0, 5, 10, and 15 mmHg. Insufflator volumes were compared to CT-measured volumes. Maximum dimensions of pneumoperitoneum were measured on reconstructed CT images. Respiratory rate had to be increased in three animals. Mild hypercapnia and acidosis occurred at 15 mmHg IAP. Peak inspiratory pressure rose significantly at 10 and 15 mmHg. CT-measured volume increased relatively by 93 % from 5 to 10 mmHg IAP and by 19 % from 10 to 15 mmHg IAP. Comparing CT volumes to insufflator volumes gave a bias of 76 mL. The limits of agreement were -0.31 to +0.47, a range of 790 mL. The internal anteroposterior diameter increased by 18 % by increasing IAP from 5 to 10 mmHg and by 5 % by increasing IAP from 10 to 15 mmHg. At 15 mmHg, the total relative increase of the pubis-diaphragm distance was only 6 %. Abdominal width did not increase. CT allows for precise calculation of the actual CO₂ pneumoperitoneum volume, whereas the volume of CO₂ released by the insufflator does not. Increasing IAP up to 10 mmHg achieved most gain in volume and in internal anteroposterior diameter. At an IAP of 10 mmHg, higher peak inspiratory pressure was significantly elevated.

  10. Structural features of biomass in a hybrid MBBR reactor.

    PubMed

    Xiao, G Y; Ganczarczyk, J

    2006-03-01

    The structural features of biomass present in the hybrid MBBR (Moving Bed Biofilm Reactor) aeration tank were studied in two subsequent periods, which differed in hydraulic and substrate loads. The physical characteristics of attached-growth biomass, such as, biofilm thickness, density, porosity, inner and surface fractal dimensions, and those of suspended-growth biomass, such as, floc size distribution, density, porosity, inner and surface fractal dimensions, were investigated in each study period and then compared. The results indicated that biofilm always had a higher density, geometric porosity, and a larger boundary fractal dimension than flocs. Both types of biomass were found to exhibit at least two distinct Sierpinski fractal dimensions, indicating two major different pore space populations. With the increasing wastewater flow, both types of biomass were found to shift their structural properties to larger values, except porosity and surface roughness, which decreased. Floc density and biomass Sierpinski fractals were not affected much by the system loadings.

  11. Entrepreneurship, Professionalism, Leadership: A Framework and Measure for Understanding Boundaryless Careers

    ERIC Educational Resources Information Center

    Chan, Kim Yin; Ho, Moon-ho R.; Chernyshenko, Oleksandr S.; Bedford, Olwen; Uy, Marilyn A.; Gomulya, David; Sam, Y. L.; Phan, Wei Ming J.

    2012-01-01

    We propose a person-centered framework for conceptualizing subjective careers in an increasingly boundaryless work context. Specifically, we argue that entrepreneurship, professionalism, and leadership (EPL) can serve as three key dimensions of subjective career space. We relate this framework to earlier macro-level national and organizational…

  12. Effective dimension reduction for sparse functional data

    PubMed Central

    YAO, F.; LEI, E.; WU, Y.

    2015-01-01

    Summary We propose a method of effective dimension reduction for functional data, emphasizing the sparse design where one observes only a few noisy and irregular measurements for some or all of the subjects. The proposed method borrows strength across the entire sample and provides a way to characterize the effective dimension reduction space, via functional cumulative slicing. Our theoretical study reveals a bias-variance trade-off associated with the regularizing truncation and decaying structures of the predictor process and the effective dimension reduction space. A simulation study and an application illustrate the superior finite-sample performance of the method. PMID:26566293

  13. Upper limits to submillimetre-range forces from extra space-time dimensions.

    PubMed

    Long, Joshua C; Chan, Hilton W; Churnside, Allison B; Gulbis, Eric A; Varney, Michael C M; Price, John C

    2003-02-27

    String theory is the most promising approach to the long-sought unified description of the four forces of nature and the elementary particles, but direct evidence supporting it is lacking. The theory requires six extra spatial dimensions beyond the three that we observe; it is usually supposed that these extra dimensions are curled up into small spaces. This 'compactification' induces 'moduli' fields, which describe the size and shape of the compact dimensions at each point in space-time. These moduli fields generate forces with strengths comparable to gravity, which according to some recent predictions might be detected on length scales of about 100 microm. Here we report a search for gravitational-strength forces using planar oscillators separated by a gap of 108 micro m. No new forces are observed, ruling out a substantial portion of the previously allowed parameter space for the strange and gluon moduli forces, and setting a new upper limit on the range of the string dilaton and radion forces.

  14. Effects of milking stall dimensions on behavior of dairy cows during milking in different milking parlor types.

    PubMed

    Gómez, Y; Terranova, M; Zähner, M; Hillmann, E; Savary, P

    2017-02-01

    Dairy cow body size has increased over time because of breeding selection for higher milk yield, but milking stall dimensions have never been adjusted and are based on the practical experience of milking-machine manufacturers and advisory institutions. Narrow, limited milking stall dimensions might lead to behavioral changes during milking due to lack of comfort. The aim of this study was to examine the current space allowance in milking stalls on dairy farms and assess the effect of space allowance on cow behavior during milking. On 15 Swiss dairy farms, we measured clear milking stall dimensions and cow body dimensions. We calculated space ratios for length (SR length ) and width (SR width ) by dividing the milking stall length or width by cow body length or belly width, respectively. When the space ratio was >1, we assumed that the body length or width of cow was smaller than the milking stall length or width. On each farm, 10 healthy cows were chosen for behavioral observation during 1 evening milking. We recorded rumination, elimination, and latency to enter the milking stall by direct observation. Hind leg activity was recorded using acceleration loggers. Data were analyzed using general linear mixed-effects models with farm as a random effect. Due to a strong collinearity between SR width and SR length , we chose SR length for further analysis, because it is based on skeletal characteristics. The SR length was smallest in side-by-side parlors (1.07 ± 0.01) and largest in tandem parlors (1.18 ± 0.01). More cows had a tendency to ruminate with increasing SR length (odds ratio: 1.8). None of hind leg activity, maximum peaks of hind leg accelerations, or latency to enter the milking stall were significantly affected by SR length . Latency to enter the milking stall was longer for group milking parlors (side-by-side: 44.0 ± 3.2 s; herringbone: 34.3 ± 2.9 s) than for tandem parlors (19.0 ± 2.7 s). Milking parlor type had no effect on hind leg activity, maximum peaks of hind leg accelerations or rumination. The SR length affected rumination behavior to some extent, indicating that cow comfort was positively affected by larger milking stall length. Because cow comfort is important for good milking performance, further investigations of milking stall dimensions for cow comfort and thus welfare are needed. Furthermore, the results showed that parlor type affected cow behavior, irrespective of SR length , making future research necessary to identify the factors leading to this effect of parlor type. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. What Bed Size Does a Patient Need? The Relationship Between Body Mass Index and Space Required to Turn in Bed.

    PubMed

    Wiggermann, Neal; Smith, Kathryn; Kumpar, Dee

    A bed that is too small to allow patients to turn from supine to side lying increases the difficulty of mobilizing patients, which can increase risk of musculoskeletal injury to caregivers, increase risk of pressure injuries to patients, and reduce patient comfort. Currently, no guidance is available for what patient sizes are accommodated by the standard 91cm (36 in.)-wide hospital bed, and no studies have evaluated the relationship between anthropometric attributes and space required to turn in bed. The purpose of this research was to determine how much space individuals occupy when turning from supine to side lying as predicted by their anthropometry (i.e., body dimensions) to establish guidance on selecting the appropriate bed size. Forty-seven adult participants (24 female) with body mass index (BMI) from 20 to 76 kg/m participated in a laboratory study. Body dimensions were measured, and the envelope of space required to turn was determined using motion capture. Linear regressions estimated the relationship between anthropometric attributes and space occupied when turning. BMI was strongly correlated (R = .88) with the space required to turn. Based on the linear regressions, individuals with BMI up to 35 kg/m could turn left and right within 91 cm and individuals with BMI up to 45 kg/m could turn one direction within 91 cm. BMI is a good predictor of the space required to turn from supine to lateral. Nurses should consider placing patients that are unable to laterally reposition themselves on a wider bed when BMI is greater than 35 kg/m and should consider placing all patients greater than 45 kg/m on a wider bed regardless of mobility. Hospital administrators can use historical demographic information about the BMI of their patient populations to plan facility-level equipment procurement for equipment that accommodates their patients.

  16. What Bed Size Does a Patient Need? The Relationship Between Body Mass Index and Space Required to Turn in Bed

    PubMed Central

    Wiggermann, Neal; Smith, Kathryn; Kumpar, Dee

    2017-01-01

    Background A bed that is too small to allow patients to turn from supine to side lying increases the difficulty of mobilizing patients, which can increase risk of musculoskeletal injury to caregivers, increase risk of pressure injuries to patients, and reduce patient comfort. Currently, no guidance is available for what patient sizes are accommodated by the standard 91cm (36 in.)-wide hospital bed, and no studies have evaluated the relationship between anthropometric attributes and space required to turn in bed. Objective The purpose of this research was to determine how much space individuals occupy when turning from supine to side lying as predicted by their anthropometry (i.e., body dimensions) to establish guidance on selecting the appropriate bed size. Methods Forty-seven adult participants (24 female) with body mass index (BMI) from 20 to 76 kg/m2 participated in a laboratory study. Body dimensions were measured, and the envelope of space required to turn was determined using motion capture. Linear regressions estimated the relationship between anthropometric attributes and space occupied when turning. Results BMI was strongly correlated (R2 = .88) with the space required to turn. Based on the linear regressions, individuals with BMI up to 35 kg/m2 could turn left and right within 91 cm and individuals with BMI up to 45 kg/m2 could turn one direction within 91 cm. Discussion BMI is a good predictor of the space required to turn from supine to lateral. Nurses should consider placing patients that are unable to laterally reposition themselves on a wider bed when BMI is greater than 35 kg/m2 and should consider placing all patients greater than 45 kg/m2 on a wider bed regardless of mobility. Hospital administrators can use historical demographic information about the BMI of their patient populations to plan facility-level equipment procurement for equipment that accommodates their patients. PMID:28968285

  17. Statistical mechanics and thermodynamic limit of self-gravitating fermions in D dimensions.

    PubMed

    Chavanis, Pierre-Henri

    2004-06-01

    We discuss the statistical mechanics of a system of self-gravitating fermions in a space of dimension D. We plot the caloric curves of the self-gravitating Fermi gas giving the temperature as a function of energy and investigate the nature of phase transitions as a function of the dimension of space. We consider stable states (global entropy maxima) as well as metastable states (local entropy maxima). We show that for D> or =4, there exists a critical temperature (for sufficiently large systems) and a critical energy below which the system cannot be found in statistical equilibrium. Therefore, for D> or =4, quantum mechanics cannot stabilize matter against gravitational collapse. This is similar to a result found by Ehrenfest (1917) at the atomic level for Coulomb forces. This makes the dimension D=3 of our Universe very particular with possible implications regarding the anthropic principle. Our study joins a long tradition of scientific and philosophical papers that examined how the dimension of space affects the laws of physics.

  18. Anderson localization in sigma models

    NASA Astrophysics Data System (ADS)

    Bruckmann, Falk; Wellnhofer, Jacob

    2018-03-01

    In QCD above the chiral restoration temperature there exists an Anderson transition in the fermion spectrum from localized to delocalized modes. We investigate whether the same holds for nonlinear sigma models which share properties like dynamical mass generation and asymptotic freedom with QCD. In particular we study the spectra of fermions coupled to (quenched) CP(N-1) configurations at high temperatures. We compare results in two and three space-time dimensions: in two dimensions the Anderson transition is absent, since all fermion modes are localized, while in three dimensions it is present. Our measurements include a more recent observable characterizing level spacings: the distribution of ratios of consecutive level spacings.

  19. Assessment of Cabin Dimensions to Accommodate Infantry Soldiers for the Future Vertical Lift/Joint Multi-Role Medium-Class Aircraft

    DTIC Science & Technology

    2014-07-01

    an official Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does...The dimensions assessed included seat space widths, cabin ceiling heights, aisle widths, seating configurations, and cabin door widths. Emergency... seat spacing, 66-in. cabin ceiling height, 72-in. floor width, and 32-in. door width. These dimensions will help ensure that Soldiers have adequate

  20. AdS/CFT, Black Holes, And Fuzzballs

    NASA Astrophysics Data System (ADS)

    Zadeh, Ida G.

    In this thesis we investigate two different aspects of the AdS/CFT correspondence. We first investigate the holographic AdS/CMT correspondence. Gravitational backgrounds in d + 2 dimensions have been proposed as holographic duals to Lifshitz-like theories describing critical phenomena in d + 1 dimensions with critical exponent z ≥ 1. We numerically explore a dilaton-Einstein-Maxwell model admitting such backgrounds as solutions. We show how to embed these solutions into AdS space for a range of values of z and d. We next investigate the AdS3/CFT2 correspondence and focus on the microscopic CFT description of the D1--D5 system on T4 x S1. In the context of the fuzzball programme, we investigate deforming the CFT away from the orbifold point and study lifting of the low-lying string states. We start by considering general 2D orbifold CFTs of the form M N/SN, with M a target space manifold and SN the symmetric group. The Lunin-Mathur covering space technique provides a way to compute correlators in these orbifold theories, and we generalize this technique in two ways. First, we consider excitations of twist operators by modes of fields that are not twisted by that operator, and show how to account for these excitations when computing correlation functions in the covering space. Second, we consider non-twist sector operators and show how to include the effects of these insertions in the covering space. Using the generalization of the Lunin-Mathur symmetric orbifold technology and conformal perturbation theory, we initiate a program to compute the anomalous dimensions of low-lying string states in the D1--D5 superconformal field theory. Our method entails finding four-point functions involving a string operator O of interest and the deformation operator, taking coincidence limits to identify which other operators mix with O, subtracting conformal families of these operators, and computing their mixing coefficients. We find evidence of operator mixing at first order in the deformation parameter, which means that the string state acquires an anomalous dimension. After diagonalization this will mean that anomalous dimensions of some string states in the D1--D5 SCFT must decrease away from the orbifold point while others increase. Finally, we summarize our results and discuss some future directions of research.

  1. Demonstration of a Nano-Enabled Space Power System

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    The Nano-Enabled Space Power System will demonstrate power systems with nanomaterial-enhanced components as are placement for CubeSat power generation, transmission, and storage. Successful flights of these nano-power systems will accelerate the use of this revolutionary technology in the aerospace industry. The use of nano materials in solar cells, wire harnesses,and lithium ion batteries can increase the device performance without significantly altering the devices physical dimensions or the devices operating range (temperature,voltage, current). In many cases, the use of nanomaterials widens the viable range of operating conditions, such as increased depth of discharge of lithium ion batteries, tunable bandgaps in solar cells, and increased flexure tolerance of wire harnesses.

  2. High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation

    NASA Astrophysics Data System (ADS)

    Anderson, R.; Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Quezada de Luna, M.; Rieben, R.; Tomov, V.

    2017-04-01

    In this work we present a FCT-like Maximum-Principle Preserving (MPP) method to solve the transport equation. We use high-order polynomial spaces; in particular, we consider up to 5th order spaces in two and three dimensions and 23rd order spaces in one dimension. The method combines the concepts of positive basis functions for discontinuous Galerkin finite element spatial discretization, locally defined solution bounds, element-based flux correction, and non-linear local mass redistribution. We consider a simple 1D problem with non-smooth initial data to explain and understand the behavior of different parts of the method. Convergence tests in space indicate that high-order accuracy is achieved. Numerical results from several benchmarks in two and three dimensions are also reported.

  3. Shuttle's 160 hour ground turnaround - A design driver

    NASA Technical Reports Server (NTRS)

    Widick, F.

    1977-01-01

    Turnaround analysis added a new dimension to the Space Program with the advent of the Space Shuttle. The requirement to turn the flight hardware around in 160 working hours from landing to launch was a significant design driver and a useful tool in forcing the integration of flight and ground systems design to permit an efficient ground operation. Although there was concern that time constraints might increase program costs, the result of the analysis was to minimize facility requirements and simplify operations with resultant cost savings.

  4. Statistical Evaluation of Causal Factors Associated with Astronaut Shoulder Injury in Space Suits.

    PubMed

    Anderson, Allison P; Newman, Dava J; Welsch, Roy E

    2015-07-01

    Shoulder injuries due to working inside the space suit are some of the most serious and debilitating injuries astronauts encounter. Space suit injuries occur primarily in the Neutral Buoyancy Laboratory (NBL) underwater training facility due to accumulated musculoskeletal stress. We quantitatively explored the underlying causal mechanisms of injury. Logistic regression was used to identify relevant space suit components, training environment variables, and anthropometric dimensions related to an increased propensity for space-suited injury. Two groups of subjects were analyzed: those whose reported shoulder incident is attributable to the NBL or working in the space suit, and those whose shoulder incidence began in active duty, meaning working in the suit could be a contributing factor. For both groups, percent of training performed in the space suit planar hard upper torso (HUT) was the most important predictor variable for injury. Frequency of training and recovery between training were also significant metrics. The most relevant anthropometric dimensions were bideltoid breadth, expanded chest depth, and shoulder circumference. Finally, record of previous injury was found to be a relevant predictor for subsequent injury. The first statistical model correctly identifies 39% of injured subjects, while the second model correctly identifies 68% of injured subjects. A review of the literature suggests this is the first work to quantitatively evaluate the hypothesized causal mechanisms of all space-suited shoulder injuries. Although limited in predictive capability, each of the identified variables can be monitored and modified operationally to reduce future impacts on an astronaut's health.

  5. Convergence of an hp-Adaptive Finite Element Strategy in Two and Three Space-Dimensions

    NASA Astrophysics Data System (ADS)

    Bürg, Markus; Dörfler, Willy

    2010-09-01

    We show convergence of an automatic hp-adaptive refinement strategy for the finite element method on the elliptic boundary value problem. The strategy is a generalization of a refinement strategy proposed for one-dimensional situations to problems in two and three space-dimensions.

  6. The isentropic quantum drift-diffusion model in two or three space dimensions

    NASA Astrophysics Data System (ADS)

    Chen, Xiuqing

    2009-05-01

    We investigate the isentropic quantum drift-diffusion model, a fourth order parabolic system, in space dimensions d = 2, 3. First, we establish the global weak solutions with large initial value and periodic boundary conditions. Then we show the semiclassical limit by delicate interpolation estimates and compactness argument.

  7. Dispersal of sticky particles

    NASA Astrophysics Data System (ADS)

    Reddy, Ramana; Kumar, Sanjeev

    2007-12-01

    In this paper, we show through simulations that when sticky particles are broken continually, particles are dispersed into fine dust only if they are present in a narrow range of volume fractions. The upper limit of this range is 0.20 in the 2D and 0.10 in the 3D space. An increase in the dimensionality of space reduces the upper limit nearly by a factor of two. This scaling holds for dispersal of particles in hyperdimensional space of dimensions up to ten, the maximum dimension studied in this work. The maximum values of volume fractions obtained are significantly lower than those required for close packing and random packing of discs in 2D and spheres in 3D space. These values are also smaller than those required for critical phenomena of cluster percolation. The results obtained are attributed to merger cascades of sticky particles, triggered by breakup events. A simple theory that incorporates this cascade is developed to quantitatively explain the observed scaling of the upper limit with the dimensionality of space. The theory also captures the dynamics of the dispersal process in the corresponding range of particle volume fractions. The theory suggests that cascades of order one and two predominantly decide the upper limit for complete dispersal of particles.

  8. Strange attractors in weakly turbulent Couette-Taylor flow

    NASA Technical Reports Server (NTRS)

    Brandstater, A.; Swinney, Harry L.

    1987-01-01

    An experiment is conducted on the transition from quasi-periodic to weakly turbulent flow of a fluid contained between concentric cylinders with the inner cylinder rotating and the outer cylinder at rest. Power spectra, phase-space portraits, and circle maps obtained from velocity time-series data indicate that the nonperiodic behavior observed is deterministic, that is, it is described by strange attractors. Various problems that arise in computing the dimension of strange attractors constructed from experimental data are discussed and it is shown that these problems impose severe requirements on the quantity and accuracy of data necessary for determining dimensions greater than about 5. In the present experiment the attractor dimension increases from 2 at the onset of turbulence to about 4 at a Reynolds number 50-percent above the onset of turbulence.

  9. Investigating the feasibility of Visualising Complex Space Weather Data in a CAVE

    NASA Astrophysics Data System (ADS)

    Loughlin, S.; Habash Krause, L.

    2013-12-01

    The purpose of this study was to investigate the feasibility of visualising complex space weather data in a Cave Automatic Virtual Environment (CAVE). Space weather is increasingly causing disruptions on Earth, such as power outages and disrupting communication to satellites. We wanted to display this space weather data within the CAVE since the data from instruments, models and simulations are typically too complex to understand on their own, especially when they are of 7 dimensions. To accomplish this, I created a VTK to NetCDF converter. NetCDF is a science data format, which stores array oriented scientific data. The format is maintained by the University Corporation for Atmospheric Research, and is used extensively by the atmospheric and space communities.

  10. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    PubMed

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  11. Gluon fragmentation into quarkonium at next-to-leading order

    DOE PAGES

    Artoisenet, Pierre; Braaten, Eric

    2015-04-22

    Here, we present the first calculation at next-to-leading order (NLO) in α s of a fragmentation function into quarkonium whose form at leading order is a nontrivial function of z, namely the fragmentation function for a gluon into a spin-singlet S-wave state at leading order in the relative velocity. To calculate the real NLO corrections, we introduce a new subtraction scheme that allows the phase-space integrals to be evaluated in 4 dimensions. We extract all ultraviolet and infrared divergences in the real NLO corrections analytically by calculating the phase-space integrals of the subtraction terms in 4 – 2ϵ dimensions. Wemore » also extract the divergences in the virtual NLO corrections analytically, and detail the cancellation of all divergences after renormalization. The NLO corrections have a dramatic effect on the shape of the fragmentation function, and they significantly increase the fragmentation probability.« less

  12. Wider stall space affects behavior, lesion scores, and productivity of gestating sows.

    PubMed

    Salak-Johnson, J L; DeDecker, A E; Levitin, H A; McGarry, B M

    2015-10-01

    Limited space allowance within the standard gestation stall is an important welfare concern because it restricts the ability of the sow to make postural adjustments and hinders her ability to perform natural behaviors. Therefore, we evaluated the impacts of increasing stall space and/or providing sows the freedom to access a small pen area on sow well-being using multiple welfare metrics. A total of 96 primi- and multiparous crossbred sows were randomly assigned in groups of 4 sows/treatment across 8 replicates to 1 of 3 stall treatments (TRT): standard stall (CTL; dimensions: 61 by 216 cm), width-adjustable stall (flex stall [FLX]; dimensions: adjustable width of 56 to 79 cm by 216 cm), or an individual walk-in/lock-in stall with access to a small communal open-pen area at the rear of the stall (free-access stall [FAS]; dimensions: 69 by 226 cm). Lesion scores, behavior, and immune and productivity traits were measured at various gestational days throughout the study. Total lesion scores were greatest for sows in FAS and least for sows in FLX ( < 0.001). Higher-parity sows in FAS had the most severe lesion scores (TRT × parity, < 0.0001) and scores were greatest at all gestational days (TRT × day, < 0.05). Regardless of parity, sows in FLX had the least severe scores ( < 0.0001). As pregnancy progressed, lesion scores increased among sows in CTL ( < 0.05). Sow BW and backfat (BF) were greater for sows in FLX and FAS ( < 0.05), and BCS and BF were greater for parity 1 and 2 sows in FAS than the same parity sows in CTL (TRT × parity, < 0.05). Duration and frequency of some postural behaviors and sham chew behavior were affected by TRT ( < 0.05) and time of day (TRT × day, < 0.05). These data indicate that adequate stall space, especially late in gestation, may improve the well-being of higher-parity and heavier-bodied gestating sows as assessed by changes in postural behaviors, lesion severity scores, and other sow traits. Moreover, compromised welfare measures found among sows in various stall environments may be partly attributed to the specific constraints of each stall system such as restricted stall space in CTL, insufficient floor space in the open-pen area of the FAS system, and gate design of the FLX (e.g., direction of bars and feeder space). These results also indicate that parity and gestational day are additional factors that may exacerbate the effects of restricted stall space or insufficient pen space, further compromising sow well-being.

  13. A new approach to increase the two-dimensional detection probability of CSI algorithm for WAS-GMTI mode

    NASA Astrophysics Data System (ADS)

    Yan, H.; Zheng, M. J.; Zhu, D. Y.; Wang, H. T.; Chang, W. S.

    2015-07-01

    When using clutter suppression interferometry (CSI) algorithm to perform signal processing in a three-channel wide-area surveillance radar system, the primary concern is to effectively suppress the ground clutter. However, a portion of moving target's energy is also lost in the process of channel cancellation, which is often neglected in conventional applications. In this paper, we firstly investigate the two-dimensional (radial velocity dimension and squint angle dimension) residual amplitude of moving targets after channel cancellation with CSI algorithm. Then, a new approach is proposed to increase the two-dimensional detection probability of moving targets by reserving the maximum value of the three channel cancellation results in non-uniformly spaced channel system. Besides, theoretical expression of the false alarm probability with the proposed approach is derived in the paper. Compared with the conventional approaches in uniformly spaced channel system, simulation results validate the effectiveness of the proposed approach. To our knowledge, it is the first time that the two-dimensional detection probability of CSI algorithm is studied.

  14. The Effect of Furnishing on Perceived Spatial Dimensions and Spaciousness of Interior Space

    PubMed Central

    von Castell, Christoph; Oberfeld, Daniel; Hecht, Heiko

    2014-01-01

    Despite the ubiquity of interior space design, there is virtually no scientific research on the influence of furnishing on the perception of interior space. We conducted two experiments in which observers were asked to estimate the spatial dimensions (size of the room dimensions in meters and centimeters) and to judge subjective spaciousness of various rooms. Experiment 1 used true-to-scale model rooms with a square surface area. Furnishing affected both the perceived height and the spaciousness judgments. The furnished room was perceived as higher but less spacious. In Experiment 2, rooms with different square surface areas and constant physical height were presented in virtual reality. Furnishing affected neither the perceived spatial dimensions nor the perceived spaciousness. Possible reasons for this discrepancy, such as the influence of the presentation medium, are discussed. Moreover, our results suggest a compression of perceived height and depth with decreasing surface area of the room. PMID:25409456

  15. The effect of furnishing on perceived spatial dimensions and spaciousness of interior space.

    PubMed

    von Castell, Christoph; Oberfeld, Daniel; Hecht, Heiko

    2014-01-01

    Despite the ubiquity of interior space design, there is virtually no scientific research on the influence of furnishing on the perception of interior space. We conducted two experiments in which observers were asked to estimate the spatial dimensions (size of the room dimensions in meters and centimeters) and to judge subjective spaciousness of various rooms. Experiment 1 used true-to-scale model rooms with a square surface area. Furnishing affected both the perceived height and the spaciousness judgments. The furnished room was perceived as higher but less spacious. In Experiment 2, rooms with different square surface areas and constant physical height were presented in virtual reality. Furnishing affected neither the perceived spatial dimensions nor the perceived spaciousness. Possible reasons for this discrepancy, such as the influence of the presentation medium, are discussed. Moreover, our results suggest a compression of perceived height and depth with decreasing surface area of the room.

  16. Asymptotic behavior for systems of nonlinear wave equations with multiple propagation speeds in three space dimensions

    NASA Astrophysics Data System (ADS)

    Katayama, Soichiro

    We consider the Cauchy problem for systems of nonlinear wave equations with multiple propagation speeds in three space dimensions. Under the null condition for such systems, the global existence of small amplitude solutions is known. In this paper, we will show that the global solution is asymptotically free in the energy sense, by obtaining the asymptotic pointwise behavior of the derivatives of the solution. Nonetheless we can also show that the pointwise behavior of the solution itself may be quite different from that of the free solution. In connection with the above results, a theorem is also developed to characterize asymptotically free solutions for wave equations in arbitrary space dimensions.

  17. Pharyngeal airway space and frontal and sphenoid sinus changes after maxillomandibular advancement with counterclockwise rotation for class II anterior open bite malocclusions

    PubMed Central

    Prado, FB; Rossi, AC; Freire, AR; Groppo, FC; De Moraes, M; Caria, PHF

    2012-01-01

    Objectives The purpose of this study was to cephalometrically evaluate the pharyngeal airway space and frontal and sphenoid sinus changes after maxillomandibular advancement counterclockwise rotation for class II anterior open bite malocclusion. Methods The study included 49 patients (98 lateral teleradiographs; 36 females and 13 males) who were analysed in the pre-operative (1 week before surgery) and post-operative (6 months after surgery) periods. In each lateral teleradiography, the dimensions of the inferior and superior pharyngeal airway space, TB-PhW1 [the point between the posterior aspect of the tongue to the dorsal pharyngeal wall (oropharynx) (TB) and the point on the dorsal pharyngeal wall closest to TB (PhW1)] and UP-PhW2 [and the point between the posterior aspect of the soft palate to the dorsal pharyngeal wall (nasopharynx) (UP) (PhW2)] measurements were evaluated, as well as the dimensions of the frontal and sphenoid sinuses. The differences between the two operative times were evaluated by Student's t-test. Results All measurements showed excellent reproducibility for the intraclass correlation coefficient (ICC > 0.9; p < 0.0001). There was an increase in the measurements TB-PhW1 and UP-PhW2 and a decrease in the dimensions of the frontal and sphenoid sinuses after orthognathic surgery. Conclusions The morphology of the superior and inferior pharyngeal airway space and frontal and sphenoid sinuses changes after 6 months of maxillomandibular advancement counterclockwise rotation for class II anterior open bite malocclusion. PMID:22116128

  18. Launch and Functional Considerations Guiding the Scaling and Design of Rigid Inflatable Habitat Modules

    NASA Astrophysics Data System (ADS)

    Bell, L.

    2002-01-01

    The Sasakawa International Center for Space Architecture (SICSA) has a long history of projects that involve design of space structures, including habitats for low-Earth orbit (LEO) and planetary applications. Most of these facilities and component systems are planned to comply with size, geometry and mass restrictions imposed by the Space Shuttle Orbiter's payload and lift/landing abort restrictions. These constraints limit launch elements to approximately 15 ft. diameter, 40 ft. long cylindrical dimensions weighing no more than approximately 25 metric tons. It is clear that future success of commercial space programs such as tourism will hinge upon the availability of bigger and more efficient Earth to LEO launch vehicles which can greatly reduce transportation and operational costs. This will enable development and utilization of larger habitat modules and other infrastructure elements which can be deployed with fewer launches and on-orbit assembly procedures. The sizing of these new heavy lift launchers should be scaled to optimize habitat functionality and efficiency, just as the habitat designs must consider optimization of launch vehicle economy. SICSA's planning studies address these vehicle and habitat optimization priorities as parallel and interdependent considerations. The allowable diameter of habitat modules established by launch vehicle capacity dictates functionally acceptable internal configuration options. Analyses of these options relative to practical dimensions for Earth-to-orbit launch vehicle scaling were conducted for two general schemes. The "bologna slice" configuration stacks the floors within a predominately cylindrical or spherical envelope, producing circular areas. The "banana split" approach divides a cylindrical module longitudinally, creating floors that are generally rectangular in shape. The assessments established minimum sizes for reasonable utility and efficiency. The bologna slice option. This configuration is only acceptable for modules with diameters of approximately 45 ft. or more. Smaller dimensions will severely limit maximum sight lines, creating claustrophobic conditions. Equipment racks and other elements typically located around internal parameters will further reduce open areas, and vertical circulation access ways between floor levels will diminish usable space even more. However this scheme can work very well for larger diameter habitats, particularly for surface applications where a relatively wide-based/low height module is to be landed vertically. The banana split option. A longitudinal floor orientation can serve very satisfactorily for modules with diameters of 15 ft. or more. Unlike the bologna slice's circular floors, the rectangular spaces offer considerable versatility to accommodate diverse equipment and functional arrangements. Modules smaller than 15 ft. in diameter (the International Space Station standard) will be incompatible with efficient equipment rack design and layouts due to tight-radius wall curvatures. Beyond the 15 ft. diameters, it is logical to scale the modules at dimensional increments based upon the number of desired floors, allowing approximately 8-9 ft. of height/level. Current SICSA Mars mission planning advocates development of new launchers with payload accommodations for 45 ft. diameter, 200 metric ton cargo elements. This large booster will offer launch economies along with habitat scaling advantages. Launch system design efficiencies are influenced by the amount of functional drag that results as the vehicle passes through the Earth's atmosphere. These drag losses are subject to a "cubed-squared law". As the launchcraft's external dimensions increase, its surface area increases with the square of the dimension, while the volume increases with the cube. Since drag is a function of surface, not volume, increasing the vehicle size will reduce proportional drag losses. For this reason, the huge Saturn V Moon rocket experienced relatively low drag. Module pressure envelope geometries also influence internal layout versatility and functionality. SICSA examined cylindrical and spherical envelope approaches for habitat module application, exploring special advantages and disadvantages each presented. The 45 ft. diameter sphere constrained functional volumes and layouts around the upper level perimeter. A modified scheme was selected which reshaped and expanded the height of that area. SICSA's final plan proposes 45 ft. diameter modules of modified spherical form.

  19. Crane cabins' interior space multivariate anthropometric modeling.

    PubMed

    Essdai, Ahmed; Spasojević Brkić, Vesna K; Golubović, Tamara; Brkić, Aleksandar; Popović, Vladimir

    2018-01-01

    Previous research has shown that today's crane cabins fail to meet the needs of a large proportion of operators. Performance and financial losses and effects on safety should not be overlooked as well. The first aim of this survey is to model the crane cabin interior space using up-to-date crane operator anthropometric data and to compare the multivariate and univariate method anthropometric models. The second aim of the paper is to define the crane cabin interior space dimensions that enable anthropometric convenience. To facilitate the cabin design, the anthropometric dimensions of 64 crane operators in the first sample and 19 more in the second sample were collected in Serbia. The multivariate anthropometric models, spanning 95% of the population on the basis of a set of 8 anthropometric dimensions, have been developed. The percentile method was also used on the same set of data. The dimensions of the interior space, necessary for the accommodation of the crane operator, are 1174×1080×1865 mm. The percentiles results for the 5th and 95th model are within the obtained dimensions. The results of this study may prove useful to crane cabin designers in eliminating anthropometric inconsistencies and improving the health of operators, but can also aid in improving the safety, performance and financial results of the companies where crane cabins operate.

  20. Algorithms for Brownian first-passage-time estimation

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2009-09-01

    A class of algorithms in discrete space and continuous time for Brownian first-passage-time estimation is considered. A simple algorithm is derived that yields exact mean first-passage times (MFPTs) for linear potentials in one dimension, regardless of the lattice spacing. When applied to nonlinear potentials and/or higher spatial dimensions, numerical evidence suggests that this algorithm yields MFPT estimates that either outperform or rival Langevin-based (discrete time and continuous space) estimates.

  1. Standpoints: Researching and Teaching English in the Digital Dimension

    ERIC Educational Resources Information Center

    Kirkland, David E.

    2009-01-01

    David E. Kirkland argues that our understanding of literate practice in relation to space needs to be radically reworked to account for new digital dimensions that are dispersed, discontinuous, and yet deeply woven into everyday and institutional worlds. His account highlights the way these digital spaces pepper the official landscape of…

  2. Dissociations and Interactions between Time, Numerosity and Space Processing

    ERIC Educational Resources Information Center

    Cappelletti, Marinella; Freeman, Elliot D.; Cipolotti, Lisa

    2009-01-01

    This study investigated time, numerosity and space processing in a patient (CB) with a right hemisphere lesion. We tested whether these magnitude dimensions share a common magnitude system or whether they are processed by dimension-specific magnitude systems. Five experimental tasks were used: Tasks 1-3 assessed time and numerosity independently…

  3. Diagonalizing the Hamiltonian of λϕ4 theory in 2 space-time dimensions

    NASA Astrophysics Data System (ADS)

    Christensen, Neil

    2018-01-01

    We propose a new non-perturbative technique for calculating the scattering amplitudes of field-theory directly from the eigenstates of the Hamiltonian. Our method involves a discretized momentum space and a momentum cutoff, thereby truncating the Hilbert space and making numerical diagonalization of the Hamiltonian achievable. We show how to do this in the context of a simplified λϕ4 theory in two space-time dimensions. We present the results of our diagonalization, its dependence on time, its dependence on the parameters of the theory and its renormalization.

  4. Unbounded Violations of Bipartite Bell Inequalities via Operator Space Theory

    NASA Astrophysics Data System (ADS)

    Junge, M.; Palazuelos, C.; Pérez-García, D.; Villanueva, I.; Wolf, M. M.

    2010-12-01

    In this work we show that bipartite quantum states with local Hilbert space dimension n can violate a Bell inequality by a factor of order {Ω left(sqrt{n}/log^2n right)} when observables with n possible outcomes are used. A central tool in the analysis is a close relation between this problem and operator space theory and, in particular, the very recent noncommutative L p embedding theory. As a consequence of this result, we obtain better Hilbert space dimension witnesses and quantum violations of Bell inequalities with better resistance to noise.

  5. The Influence of Urbanism and Information Consumption on Political Dimensions of Social Capital: Exploratory Study of the Localities Adjacent to the Core City from Brașov Metropolitan Area, Romania.

    PubMed

    Rezeanu, Cătălina-Ionela; Briciu, Arabela; Briciu, Victor; Repanovici, Angela; Coman, Claudiu

    2016-01-01

    The last two decades have seen a growing trend towards the research of voting behavior in post-communist countries. Urban sociology theorists state that not only space structures influence political participation, but also space structures are changing under the influence of global, local, and individual factors. The growing role played by information in the globalised world has accelerated the paradigm shift in urban sociology: from central place model (based on urban-rural distinction and on monocentric metropolitan areas) to network society (based on space of flows and polycentric metropolitan areas). However, recent studies have mainly focused on countries with solid democracies, rather than on former communist countries. The present study aims to analyze the extent to which a new emerging spatial structure can be envisaged within a metropolitan area of Romania and its consequences for the political dimensions of social capital. The Transilvania University Ethics Commission approved this study (S1 Aprouval). The research is based upon individual and aggregate empirical data, collected from the areas adjacent to the core city in Brașov metropolitan area. Individual data has been collected during October 2012, using the oral survey technique (S1 Survey), based on a standardized questionnaire (stratified simple random sample, N = 600). The National Institute of Statistics and the Electoral Register provided the aggregate data per locality. Unvaried and multivariate analyses (hierarchical regression method) were conducted based on these data. Some dimensions of urbanism, identified as predictors of the political dimensions of social capital, suggest that the area under analysis has a predominantly monocentric character, where the rural-urban distinction continues to remain relevant. There are also arguments favoring the dissolution of the rural-urban distinction and the emergence of polycentric spatial structures. The presence of some influences related to the information consumption on all six indicators of the political dimensions of social capital under analysis suggests the occurrence of emerging forms of a space of flows. The identified effects of social problems associated with transport infrastructure and of migration experience on the political dimensions of social capital, also support the emergence of space of flows. We recommend that, in the urban studies in former communist countries, conceptualization of urbanism as predictor of the political dimensions of social capital should consider both the material dimensions of space, as well as the dimensions of information consumption and migration experience.

  6. The Influence of Urbanism and Information Consumption on Political Dimensions of Social Capital: Exploratory Study of the Localities Adjacent to the Core City from Brașov Metropolitan Area, Romania

    PubMed Central

    Rezeanu, Cătălina-Ionela; Briciu, Arabela; Briciu, Victor; Repanovici, Angela; Coman, Claudiu

    2016-01-01

    Background The last two decades have seen a growing trend towards the research of voting behavior in post-communist countries. Urban sociology theorists state that not only space structures influence political participation, but also space structures are changing under the influence of global, local, and individual factors. The growing role played by information in the globalised world has accelerated the paradigm shift in urban sociology: from central place model (based on urban-rural distinction and on monocentric metropolitan areas) to network society (based on space of flows and polycentric metropolitan areas). However, recent studies have mainly focused on countries with solid democracies, rather than on former communist countries. The present study aims to analyze the extent to which a new emerging spatial structure can be envisaged within a metropolitan area of Romania and its consequences for the political dimensions of social capital. Methods The Transilvania University Ethics Commission approved this study (S1 Aprouval). The research is based upon individual and aggregate empirical data, collected from the areas adjacent to the core city in Brașov metropolitan area. Individual data has been collected during October 2012, using the oral survey technique (S1 Survey), based on a standardized questionnaire (stratified simple random sample, N = 600). The National Institute of Statistics and the Electoral Register provided the aggregate data per locality. Unvaried and multivariate analyses (hierarchical regression method) were conducted based on these data. Results Some dimensions of urbanism, identified as predictors of the political dimensions of social capital, suggest that the area under analysis has a predominantly monocentric character, where the rural-urban distinction continues to remain relevant. There are also arguments favoring the dissolution of the rural-urban distinction and the emergence of polycentric spatial structures. The presence of some influences related to the information consumption on all six indicators of the political dimensions of social capital under analysis suggests the occurrence of emerging forms of a space of flows. The identified effects of social problems associated with transport infrastructure and of migration experience on the political dimensions of social capital, also support the emergence of space of flows. Conclusions We recommend that, in the urban studies in former communist countries, conceptualization of urbanism as predictor of the political dimensions of social capital should consider both the material dimensions of space, as well as the dimensions of information consumption and migration experience. PMID:26807882

  7. Health sector decentralization and local decision-making: Decision space, institutional capacities and accountability in Pakistan.

    PubMed

    Bossert, Thomas John; Mitchell, Andrew David

    2011-01-01

    Health sector decentralization has been widely adopted to improve delivery of health services. While many argue that institutional capacities and mechanisms of accountability required to transform decentralized decision-making into improvements in local health systems are lacking, few empirical studies exist which measure or relate together these concepts. Based on research instruments administered to a sample of 91 health sector decision-makers in 17 districts of Pakistan, this study analyzes relationships between three dimensions of decentralization: decentralized authority (referred to as "decision space"), institutional capacities, and accountability to local officials. Composite quantitative indicators of these three dimensions were constructed within four broad health functions (strategic and operational planning, budgeting, human resources management, and service organization/delivery) and on an overall/cross-function basis. Three main findings emerged. First, district-level respondents report varying degrees of each dimension despite being under a single decentralization regime and facing similar rules across provinces. Second, within dimensions of decentralization-particularly decision space and capacities-synergies exist between levels reported by respondents in one function and those reported in other functions (statistically significant coefficients of correlation ranging from ρ=0.22 to ρ=0.43). Third, synergies exist across dimensions of decentralization, particularly in terms of an overall indicator of institutional capacities (significantly correlated with both overall decision space (ρ=0.39) and accountability (ρ=0.23)). This study demonstrates that decentralization is a varied experience-with some district-level officials making greater use of decision space than others and that those who do so also tend to have more capacity to make decisions and are held more accountable to elected local officials for such choices. These findings suggest that Pakistan's decentralization policy should focus on synergies among dimensions of decentralization to encouraging more use of de jure decision space, work toward more uniform institutional capacity, and encourage greater accountability to local elected officials. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Measure and dimension functions: measurability and densities

    NASA Astrophysics Data System (ADS)

    Mattila, Pertti; Mauldin, R. Daniel

    1997-01-01

    During the past several years, new types of geometric measure and dimension have been introduced; the packing measure and dimension, see [Su], [Tr] and [TT1]. These notions are playing an increasingly prevalent role in various aspects of dynamics and measure theory. Packing measure is a sort of dual of Hausdorff measure in that it is defined in terms of packings rather than coverings. However, in contrast to Hausdorff measure, the usual definition of packing measure requires two limiting procedures, first the construction of a premeasure and then a second standard limiting process to obtain the measure. This makes packing measure somewhat delicate to deal with. The question arises as to whether there is some simpler method for defining packing measure and dimension. In this paper, we find a basic limitation on this possibility. We do this by determining the descriptive set-theoretic complexity of the packing functions. Whereas the Hausdorff dimension function on the space of compact sets is Borel measurable, the packing dimension function is not. On the other hand, we show that the packing dimension functions are measurable with respect to the [sigma]-algebra generated by the analytic sets. Thus, the usual sorts of measurability properties used in connection with Hausdorff measure, for example measures of sections and projections, remain true for packing measure.

  9. Local box-counting dimensions of discrete quantum eigenvalue spectra: Analytical connection to quantum spectral statistics

    NASA Astrophysics Data System (ADS)

    Sakhr, Jamal; Nieminen, John M.

    2018-03-01

    Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)], 10.1103/PhysRevA.55.1522 hypothesized that the local box-counting dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution (NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases, we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent agreement between their data and our theory. We also study numerically the local box-counting dimensions of the Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical formula is found to accurately describe the numerically computed local box-counting dimension.

  10. Bell - Kochen - Specker theorem for any finite dimension ?

    NASA Astrophysics Data System (ADS)

    Cabello, Adán; García-Alcaine, Guillermo

    1996-03-01

    The Bell - Kochen - Specker theorem against non-contextual hidden variables can be proved by constructing a finite set of `totally non-colourable' directions, as Kochen and Specker did in a Hilbert space of dimension n = 3. We generalize Kochen and Specker's set to Hilbert spaces of any finite dimension 0305-4470/29/5/016/img2, in a three-step process that shows the relationship between different kinds of proofs (`continuum', `probabilistic', `state-specific' and `state-independent') of the Bell - Kochen - Specker theorem. At the same time, this construction of a totally non-colourable set of directions in any dimension explicitly solves the question raised by Zimba and Penrose about the existence of such a set for n = 5.

  11. Changing the personality of a face: Perceived Big Two and Big Five personality factors modeled in real photographs.

    PubMed

    Walker, Mirella; Vetter, Thomas

    2016-04-01

    General, spontaneous evaluations of strangers based on their faces have been shown to reflect judgments of these persons' intention and ability to harm. These evaluations can be mapped onto a 2D space defined by the dimensions trustworthiness (intention) and dominance (ability). Here we go beyond general evaluations and focus on more specific personality judgments derived from the Big Two and Big Five personality concepts. In particular, we investigate whether Big Two/Big Five personality judgments can be mapped onto the 2D space defined by the dimensions trustworthiness and dominance. Results indicate that judgments of the Big Two personality dimensions almost perfectly map onto the 2D space. In contrast, at least 3 of the Big Five dimensions (i.e., neuroticism, extraversion, and conscientiousness) go beyond the 2D space, indicating that additional dimensions are necessary to describe more specific face-based personality judgments accurately. Building on this evidence, we model the Big Two/Big Five personality dimensions in real facial photographs. Results from 2 validation studies show that the Big Two/Big Five are perceived reliably across different samples of faces and participants. Moreover, results reveal that participants differentiate reliably between the different Big Two/Big Five dimensions. Importantly, this high level of agreement and differentiation in personality judgments from faces likely creates a subjective reality which may have serious consequences for those being perceived-notably, these consequences ensue because the subjective reality is socially shared, irrespective of the judgments' validity. The methodological approach introduced here might prove useful in various psychological disciplines. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Size and shape of Brain may be such as to take advantage of two Dimensions of Time

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2014-03-01

    This author had previously Theorized that there are two non-commuting Dimensions of time. One is Clock Time and the other is Information Time (which we generally refer to as Information, like Spin Up or Spin Down). When time does not commute with another Dimension of Time, one takes the Clock Time at one point in space and the Information time is not known; that is different than if one takes the Information time at that point and the Clock time is not known--This is not explicitly about time but rather space. An example of this non-commutation is that if one knows the Spin at one point and the Time at one point of space then simultaneosly, one knows the Spin at another point of Space and the Time there (It is the same time), it is a restatement of the EPR paradox. As a matter of fact two Dimensions of Time would prove the EPR paradox. It is obvious from that argument that if one needed to take advantage of Information, then a fairly large space needs to be used, a large amount of Energy needs to be Generated and a symmetry needs to be established in Space-like the lobes of a Brain in order to detect the fact that the Tclock and Tinfo are not Commuting. This Non-Commuting deposits a large amount of Information simultaneously in that space, and synchronizes the time there.

  13. Entropy of space-time outcome in a movement speed-accuracy task.

    PubMed

    Hsieh, Tsung-Yu; Pacheco, Matheus Maia; Newell, Karl M

    2015-12-01

    The experiment reported was set-up to investigate the space-time entropy of movement outcome as a function of a range of spatial (10, 20 and 30 cm) and temporal (250-2500 ms) criteria in a discrete aiming task. The variability and information entropy of the movement spatial and temporal errors considered separately increased and decreased on the respective dimension as a function of an increment of movement velocity. However, the joint space-time entropy was lowest when the relative contribution of spatial and temporal task criteria was comparable (i.e., mid-range of space-time constraints), and it increased with a greater trade-off between spatial or temporal task demands, revealing a U-shaped function across space-time task criteria. The traditional speed-accuracy functions of spatial error and temporal error considered independently mapped to this joint space-time U-shaped entropy function. The trade-off in movement tasks with joint space-time criteria is between spatial error and timing error, rather than movement speed and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Creating Body Shapes From Verbal Descriptions by Linking Similarity Spaces.

    PubMed

    Hill, Matthew Q; Streuber, Stephan; Hahn, Carina A; Black, Michael J; O'Toole, Alice J

    2016-11-01

    Brief verbal descriptions of people's bodies (e.g., "curvy," "long-legged") can elicit vivid mental images. The ease with which these mental images are created belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and showed that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body-shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2,094 bodies. This relationship allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape that captures perceptually salient global and local body features. © The Author(s) 2016.

  15. Extra Dimensions of Space

    ERIC Educational Resources Information Center

    Lincoln, Don

    2013-01-01

    They say that there is no such thing as a stupid question. In a pedagogically pure sense, that's probably true. But some questions do seem to flirt dangerously close to being really quite ridiculous. One such question might well be, "How many dimensions of space are there?" I mean, it's pretty obvious that there are three:…

  16. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds.

    PubMed

    Pigot, Alex L; Trisos, Christopher H; Tobias, Joseph A

    2016-01-13

    Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics. © 2016 The Author(s).

  17. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds

    PubMed Central

    Pigot, Alex L.; Trisos, Christopher H.; Tobias, Joseph A.

    2016-01-01

    Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics. PMID:26740616

  18. Annihilation cross section of Kaluza Klien dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rakesh, E-mail: rakesh-sharma-ujn@yahoo.co.in; Upadhyaya, G. K., E-mail: gopalujjain@yahoo.co.in; Sharma, S.

    2015-07-31

    The question as to how this universe came into being and as to how it has evolved to its present stage, is an old question. The answer to this question unfolds many secrets regarding fundamental particles and forces between them. Theodor Kaluza proposed the concept that the universe is composed of more than four space-time dimensions. In his work, electromagnetism is united with gravity. Various extra dimension formulations have been proposed to solve a variety of problems. Recently, the idea of more than four space time dimensions is applied to the search for particle identity of dark matter (DM). Signaturemore » of dark matter can be revealed by analysis of very high energy electrons which are coming from outer space. We investigate recent advancement in the field of dark matter search with reference to very high energy electrons from outer space [1-8].« less

  19. Exploration of the Medicinal Peptide Space.

    PubMed

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs.

  20. Photoacoustic effect generated by moving optical sources: Motion in one dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Wenyu; Diebold, Gerald J.

    2016-03-28

    Although the photoacoustic effect is typically generated by pulsed or amplitude modulated optical beams, it is clear from examination of the wave equation for pressure that motion of an optical source in space will result in the production of sound as well. Here, the properties of the photoacoustic effect generated by moving sources in one dimension are investigated. The cases of a moving Gaussian beam, an oscillating delta function source, and an accelerating Gaussian optical sources are reported. The salient feature of one-dimensional sources in the linear acoustic limit is that the amplitude of the beam increases in time withoutmore » bound.« less

  1. Holography in Rindler Space

    NASA Astrophysics Data System (ADS)

    Samantray, Prasant

    This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space which is the part of Minkowski space seen by an observer with a constant proper acceleration. Because it has an event horizon, Rindler space has been studied in great detail within the context of quantum field theory. However, a quantum gravitational treatment of Rindler space is handicapped by the fact that quantum gravity in flat space is poorly understood. By contrast, quantum gravity in anti-de Sitter space (AdS), is relatively well understood via the AdS/CFT correspondence. Taking this cue, we construct Rindler coordinates for AdS (Rindler-AdS space) in d + 1 spacetime dimensions. In three spacetime dimensions, we find novel one-parameter families of stationary vacua labeled by a rotation parameter β. The interesting thing about these rotating Rindler-AdS spaces is that they possess an observer-dependent ergoregion in addition to having an event horizon. Turning next to the application of AdS/CFT correspondence to Rindler-AdS space, we posit that the two Rindler wedges in AdSd +1 are dual to an entangled conformal field theory (CFT) that lives on two boundaries with geometry R × Hd-1. Specializing to three spacetime dimensions, we derive the thermodynamics of Rindler-AdS space using the boundary CFT. We then probe the causal structure of the spacetime by sending in a time-like source and observe that the CFT “knows” when the source has fallen past the Rindler horizon. We conclude by proposing an alternate foliation of Rindler-AdS which is dual to a CFT living in de Sitter space. Towards the end, we consider the concept of weak measurements in quantum mechanics, wherein the measuring instrument is weakly coupled to the system being measured. We consider such measurements in the context of two examples, viz. the decay of an excited atom, and the tunneling of a particle trapped in a well, and discuss the salient features of such measurements.

  2. A new dimension in space experimentation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space experimentation, cosmic origins, the long-term effects of the space environment on living things, the long-term effects of space environment on materials and hardware, seeds in space, power generation in space, experimentation with crystals, and thermal control are discussed.

  3. Relativistic bound states in three space-time dimensions in Minkowski space

    NASA Astrophysics Data System (ADS)

    Gutierrez, C.; Gigante, V.; Frederico, T.; Tomio, Lauro

    2016-01-01

    With the aim to derive a workable framework for bound states in Minkowski space, we have investigated the Nakanishi perturbative integral representation of the Bethe-Salpeter (BS) amplitude in two-dimensions (2D) in space and time (2+1). The homogeneous BS amplitude, projected onto the light-front plane, is used to derive an equation for the Nakanishi weight function. The formal development is illustrated in detail and applied to the bound system composed by two scalar particles interacting through the exchange of a massive scalar. The explicit forms of the integral equations are obtained in ladder approximation.

  4. Editorial: Focus on Extra Space Dimensions

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Pomarol, Alex

    2010-07-01

    Experiments at the Large Hadron Collider (LHC) have just started. In addition to verifying the Standard Model (SM) of particle physics, these experiments will probe a new energy frontier and test extensions of the SM. The existence of extra dimensions is one of the most attractive possibilities for physics beyond the SM. This focus issue contains a collection of articles addressing both theoretical and phenomenological aspects of extra-dimensional models. Focus on Extra Space Dimensions Contents Minimal universal extra dimensions in CalcHEP/CompHEP AseshKrishna Datta, Kyoungchul Kong and Konstantin T Matchev Disordered extra dimensions Karim Benakli Codimension-2 brane-bulk matching: examples from six and ten dimensions Allan Bayntun, C P Burgess and Leo van Nierop Gauge threshold corrections in warped geometry Kiwoon Choi, Ian-Woo Kim and Chang Sub Shin Holographic methods and gauge-Higgs unification in flat extra dimensions Marco Serone Soft-wall stabilization Joan A Cabrer, Gero von Gersdorff and Mariano Quirós Warped five-dimensional models: phenomenological status and experimental prospects Hooman Davoudiasl, Shrihari Gopalakrishna, Eduardo Pontón and José Santiago

  5. Revisiting special relativity: a natural algebraic alternative to Minkowski spacetime.

    PubMed

    Chappell, James M; Iqbal, Azhar; Iannella, Nicolangelo; Abbott, Derek

    2012-01-01

    Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension [Formula: see text], with the unit imaginary producing the correct spacetime distance [Formula: see text], and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary [Formula: see text], with the Clifford bivector [Formula: see text] for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis [Formula: see text] and [Formula: see text]. We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.

  6. Revisiting Special Relativity: A Natural Algebraic Alternative to Minkowski Spacetime

    PubMed Central

    Chappell, James M.; Iqbal, Azhar; Iannella, Nicolangelo; Abbott, Derek

    2012-01-01

    Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension , with the unit imaginary producing the correct spacetime distance , and the results of Einstein’s then recently developed theory of special relativity, thus providing an explanation for Einstein’s theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary , with the Clifford bivector for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis and . We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton’s scattering formula, and a simple formulation of Dirac’s and Maxwell’s equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane. PMID:23300566

  7. On the complexity and approximability of some Euclidean optimal summing problems

    NASA Astrophysics Data System (ADS)

    Eremeev, A. V.; Kel'manov, A. V.; Pyatkin, A. V.

    2016-10-01

    The complexity status of several well-known discrete optimization problems with the direction of optimization switching from maximum to minimum is analyzed. The task is to find a subset of a finite set of Euclidean points (vectors). In these problems, the objective functions depend either only on the norm of the sum of the elements from the subset or on this norm and the cardinality of the subset. It is proved that, if the dimension of the space is a part of the input, then all these problems are strongly NP-hard. Additionally, it is shown that, if the space dimension is fixed, then all the problems are NP-hard even for dimension 2 (on a plane) and there are no approximation algorithms with a guaranteed accuracy bound for them unless P = NP. It is shown that, if the coordinates of the input points are integer, then all the problems can be solved in pseudopolynomial time in the case of a fixed space dimension.

  8. Multidimensional kinetic simulations using dissipative closures and other reduced Vlasov methods for differing particle magnetizations

    NASA Astrophysics Data System (ADS)

    Newman, David L.

    2006-10-01

    Kinetic plasma simulations in which the phase-space distribution functions are advanced directly via the coupled Vlasov and Poisson (or Maxwell) equations---better known simply as Vlasov simulations---provide a valuable low-noise complement to the more commonly employed Particle-in-Cell (PIC) simulations. However, in more than one spatial dimension Vlasov simulations become numerically demanding due to the high dimensionality of x--v phase-space. Methods that can reduce this computational demand are therefore highly desirable. Several such methods will be presented, which treat the phase-space dynamics along a dominant dimension (e.g., parallel to a beam or current) with the full Vlasov propagator, while employing a reduced description, such as moment equations, for the evolution perpendicular to the dominant dimension. A key difference between the moment-based (and other reduced) methods considered here and standard fluid methods is that the moments are now functions of a phase-space coordinate (e.g. moments of vy in z--vz--y phase space, where z is the dominant dimension), rather than functions of spatial coordinates alone. Of course, moment-based methods require closure. For effectively unmagnetized species, new dissipative closure methods inspired by those of Hammett and Perkins [PRL, 64, 3019 (1990)] have been developed, which exactly reproduce the linear electrostatic response for a broad class of distributions with power-law tails, as are commonly measured in space plasmas. The nonlinear response, which requires more care, will also be discussed. For weakly magnetized species (i.e., φs<φs) an alternative algorithm has been developed in which the distributions are assumed to gyrate about the magnetic field with a fixed nominal perpendicular ``thermal'' velocity, thereby reducing the required phase-space dimension by one. These reduced algorithms have been incorporated into 2-D codes used to study the evolution of nonlinear structures such as double layers and electron holes in Earth's auroral zone.

  9. Organization aesthetics in nursing homes.

    PubMed

    Hujala, Anneli; Rissanen, Sari

    2011-05-01

    The aim of this study was to make visible the material dimensions of nursing management.   Management theories have mainly ignored the material dimensions, namely the physical spaces in which management actually takes place as well as the physical bodies of organization members. The perspective of organization aesthetics enhances our understanding of the role of materiality in nursing management. The data were collected in 2009 using observation and interviews in eight nursing homes. Qualitative content analysis with critical interpretations was used. Three main issues of organizational aesthetics related to nursing management were identified: (1) the functionality of working spaces and equipment; (2) the relevance of 'organizational' space; and (3) the emotional-aesthetic dimension of daily work. Materiality is closely related to management topics, such as decision-making, values and identity formation of organizational members. Aesthetic dimensions of care are constructed by management practices which, in their turn, influence the nature of management. Implications for nursing management  Nurse managers need to be aware of the unintended and unnoticed consequences of materiality and aesthetics. Space and body issues may have considerable effects, for example, on the identity of care workers and on the attractiveness of the care branch. © 2011 The Authors. Journal compilation © 2011 Blackwell Publishing Ltd.

  10. Association Between Vascular Density and Loss of Protective RAS During Early NPDR by Fractal Dimension

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krisnan; Vyas, Ruchi J.; Murray, Matthew; Predovic, Marina; Lim, Shiyin; Bryant, Douglas; Yaqian, Duan; Grant, Maria B.; Chalam, K. V.; Parsons-Wingerter, Patricia

    2017-01-01

    Purpose: Our hypothesis predicts that blood vessels within the retina increase in density during early-stage nonproliferative diabetic retinopathy (NPDR), based on previous results of a small retrospective study. For the current prospective study, the remodeling of arteries and veins during progression of early NPDR is assessed by a repertoire of parameters that includes the fractal dimension (D(sub f) ). In complex structures such as branching vascular trees, D(sub f) is a sensitive measure of space-filing capacity. The renin-angiotensin system (RAS) is implicated in DR pathogenesis and the function of circulating angiogenic cells (CACs), a critical bone marrow-derived population instrumental in vascular repair. Methods: Arterial and venous branching patterns were extracted from images of 6 normal controls and 3 early NPDR subjects (2 moderate, 1 mild) acquired by Heidelberg Spectralis (Registered Trademark) OCT following fluorescein angiography (FA). The vascular branching patterns were analyzed by NASAs VESsel GENeration Analysis (VESGEN) software, in which skeletonized representations were generated automatically to yield D(sub f) by the box-counting method. For binary 2D images, D(sub f) varies between limiting Euclidean dimensions of 1 and 2. Peripheral blood of diabetics and controls was collected for CD34+ CAC isolation. The gene expression of RAS in CACs was assessed by qPCR for Mas receptor to Ang-(1-7). The vasoreparative function of the CACs was measured by migration ability toward CXCL12 (SDF-1). Results: By D(sub f), venous and arterial densities were 1.370 +/- 0.006 and 1.329 +/- 0.016 for early NPDR, compared to 1.318 +/- 0.012 and 1.320 +/- 0.036 for control. The space filling capacity in early NPDR measured by D(sub f), a sensitive parameter, therefore demonstrated a pronounced increase for veins, but not for arteries. Mas receptor mRNA in CACs was increased in diabetics without DR but reduced with onset of NPDR, indicating possible loss of compensation of protective RAS during early DR. Migratory dysfunction of CD34+ cells was further associated with DR. Conclusions: As assessed by the fractal dimension in our preliminary study, the space-filling capacity of veins, but not arteries, was greater in early NPDR than in control. Larger patient populations will be examined as we complete our ongoing longitudinal study. Results further suggest the protective RAS axis within diabetic CACs is lost early in DR and is associated with increased vascular remodeling as evidenced by VESGEN analysis.

  11. Paradoxical psychometric functions (“swan functions”) are explained by dilution masking in four stimulus dimensions

    PubMed Central

    Baker, Daniel H.; Meese, Tim S.; Georgeson, Mark A.

    2013-01-01

    The visual system dissects the retinal image into millions of local analyses along numerous visual dimensions. However, our perceptions of the world are not fragmentary, so further processes must be involved in stitching it all back together. Simply summing up the responses would not work because this would convey an increase in image contrast with an increase in the number of mechanisms stimulated. Here, we consider a generic model of signal combination and counter-suppression designed to address this problem. The model is derived and tested for simple stimulus pairings (e.g. A + B), but is readily extended over multiple analysers. The model can account for nonlinear contrast transduction, dilution masking, and signal combination at threshold and above. It also predicts nonmonotonic psychometric functions where sensitivity to signal A in the presence of pedestal B first declines with increasing signal strength (paradoxically dropping below 50% correct in two-interval forced choice), but then rises back up again, producing a contour that follows the wings and neck of a swan. We looked for and found these “swan” functions in four different stimulus dimensions (ocularity, space, orientation, and time), providing some support for our proposal. PMID:23799185

  12. Tooth wear treated with direct composite restorations at an increased vertical dimension: results at 30 months.

    PubMed

    Hemmings, K W; Darbar, U R; Vaughan, S

    2000-03-01

    Severe tooth wear localized to the anterior maxillary or mandibular teeth with loss of interocclusal space is difficult to manage. This study evaluated the outcome of composite restorations placed at an increased vertical dimension of occlusion in such patients. Sixteen patients were restored with 104 restorations in 2 groups. In group A, Durafill composite and Scotchbond Multipurpose dentine adhesive system were used to place direct anterior restorations (N = 52). In group B, Herculite XRV composite and Optibond dentine bonding agent was used (N = 52). The restorations were placed at an increased vertical dimension of occlusion creating a posterior disclusion of 1 to 4 mm. Clinical follow-up showed that the posterior occlusion remained satisfactorily restored after a mean duration of 4.6 months (range 1 to 11 months). Mean follow-up of 30 months has shown a combined success rate of 89.4% for both groups with 93 of the restorations remaining in service. Maintenance in group A was high with 33 failures, but low in group B with 6 failures. Patient satisfaction was reported as good. Direct composite restorations may be a treatment option for localized anterior tooth wear.

  13. Temporal BYY encoding, Markovian state spaces, and space dimension determination.

    PubMed

    Xu, Lei

    2004-09-01

    As a complementary to those temporal coding approaches of the current major stream, this paper aims at the Markovian state space temporal models from the perspective of the temporal Bayesian Ying-Yang (BYY) learning with both new insights and new results on not only the discrete state featured Hidden Markov model and extensions but also the continuous state featured linear state spaces and extensions, especially with a new learning mechanism that makes selection of the state number or the dimension of state space either automatically during adaptive learning or subsequently after learning via model selection criteria obtained from this mechanism. Experiments are demonstrated to show how the proposed approach works.

  14. Four Essential Dimensions of Workplace Learning

    ERIC Educational Resources Information Center

    Hopwood, Nick

    2014-01-01

    Purpose: This conceptual paper aims to argue that times, spaces, bodies and things constitute four essential dimensions of workplace learning. It examines how practices relate or hang together, taking Gherardi's texture of practices or connectedness in action as the foundation for making visible essential but often overlooked dimensions of…

  15. Generalized Kustaanheimo-Stiefel transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komarov, L.I.; Van Hoang, L.

    1994-10-01

    A theory is given for the construction of generalized Kustaanheimo-Stiefel (KS) transformations for dimensions q+1 (q=2{sup h}, h=0, 1, 2,...) of the Kepler problem, and the following proposition is proved: A connection between the Kepler problem in a real space of dimension q+1 and the problem of an isotropic harmonic oscillator in a real space dimension N exists and can be established by means of generalized KS transformations in the cases in which N=2q and q=2{sup h} (h=0, 1, 2,...). A simple graphical prescription for constructing generalized KS transformations that realize this connection is proposed.

  16. Mutually unbiased bases and semi-definite programming

    NASA Astrophysics Data System (ADS)

    Brierley, Stephen; Weigert, Stefan

    2010-11-01

    A complex Hilbert space of dimension six supports at least three but not more than seven mutually unbiased bases. Two computer-aided analytical methods to tighten these bounds are reviewed, based on a discretization of parameter space and on Gröbner bases. A third algorithmic approach is presented: the non-existence of more than three mutually unbiased bases in composite dimensions can be decided by a global optimization method known as semidefinite programming. The method is used to confirm that the spectral matrix cannot be part of a complete set of seven mutually unbiased bases in dimension six.

  17. Subjective and objective evaluation of sense of space for vehicle occupants based on anthropometric data.

    PubMed

    Hiamtoe, Pitarn; Steinhardt, Florian; Köhler, Uwe; Bengler, Klaus

    2012-01-01

    At present, the number of the vehicle requirements has been continuously increasing. These requirements can be related to the customer as well as the technical requirements. Among these, the "feeling of space" of the occupants inside the vehicles can be regarded as one of the most important factors. In this respect, the driver and passengers should be able to experience positive feeling of space inside the vehicle. There are numerous factors that can influence the sense of space inside the vehicle. These include geometry (vehicle dimensions), light exposure, ambient lights, colors, material selection and material surface. Depending on the selection, the sense of space can be dramatically influenced by these factors. In general, human feeling is subjective and cannot be measured by any instrument. The measure can nevertheless be carried out by utilizing the method of subjective evaluation. Throughout the experiments, the method of evaluation is developed and the factors which can influence the interior feeling are analyzed. In this process, psychological perception, architectural aspects and anthropometry are considered and knowledge from the other domains is transferred in the form of a multidisciplinary approach. The experiments with an aim to evaluate the overall sense of space in the vehicle are carried out based on the physical mock up of BMW 1 series (E87). The space perception with different interior dimensions and anthropometric data of test persons are also analyzed. The use of Computer Aided Technology was shown by CATIA V5, PCMAN and RAMSIS. The results show a good correlation between the subjective evaluation and the geometric values.

  18. Application of Semi-Definite Programming for Many-Fermion Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Zhengji; Braams, Bastiaan; Fukuda, Mituhiro; Overton, Michael

    2003-03-01

    The ground state energy and other important observables of a many-fermion system with one- and two-body interactions only can all be obtained from the first order and second order Reduced Density Matrices (RDM's) of the system. Using these density matrices and a family of associated representability conditions one may obtain an approximation method for electronic structure theory that is in the mathematical form of Semi-Definite Programming (SDP): minimize a linear matrix functional over a space of positive semidefinite matrices subject to linear constraints. The representability conditions are some known necessary conditions, starting with the well-known P, Q, and G conditions [Claude Garrod and Jerome K. Percus, Reducation of the N-Particle Variational Problem, J. Math. Phys. 5 (1964) 1756-1776]. The RDM method with SDP has great potential advantages over the wave function method when the particle number N is large. The dimension of the full configuration space increases exponentially with N, but in RDM method with SDP the dimension of the objective matrix (which includes RDM's) increases only polynomially with N. We will report on the effect of adding the generalized three-index conditions proposed in [R. M. Erdahl, Representability, Int. J. Quantum Chem. 13 (1978) 697-718].

  19. Development Prospects of Railroad Complex “Belarussky Railway Station” in Moscow with Accessible Environment Device for Disabled People and Other Groups with Limited Mobility

    NASA Astrophysics Data System (ADS)

    Kulakov, A. I.; Krakovtseva, J. V.

    2017-11-01

    The development and modernization of existing stations is conducted under very cramped conditions. The requirements to space-planning solutions are increasing. The list of premises that must necessarily be in place is enlarging. Transit zones are being adapted to barrier-free access for people with disabilities, the environment is becoming more comfortable. But along with this, the arrangement of vertical communications (lifting devices, elevators, stairs, ramps) is complicated because the existing transit zones overall dimensions are not designed for increased passenger traffic and any restriction is not permissible. The article proposes the concept for the development of the railroad complex “Belorussky Railway Station” in Moscow by increasing the number of storeys and the above tracks space development.

  20. On the coplanar eccentric non-restricted co-orbital dynamics

    NASA Astrophysics Data System (ADS)

    Leleu, A.; Robutel, P.; Correia, A. C. M.

    2018-03-01

    We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the L_4 and L_5 eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.

  1. Identifying Network Structure, Influencers and Social Mood in Digital Spheres: A Sentiment and Content Analysis of Down Syndrome Awareness

    ERIC Educational Resources Information Center

    Sani-Bozkurt, Sunagul

    2018-01-01

    Down syndrome is a sensitive subject and one that requires efforts being made to improve conditions for individuals with Down syndrome across multiple dimensions. Social awareness is one of the important dimensions for the inclusion of individuals with Down syndrome. Online spaces, as well as offline spaces, are an important part of our daily…

  2. Phase-space representations of symmetric informationally complete positive-operator-valued-measure fiducial states

    NASA Astrophysics Data System (ADS)

    Saraceno, Marcos; Ermann, Leonardo; Cormick, Cecilia

    2017-03-01

    The problem of finding symmetric informationally complete positive-operator-valued-measures (SIC-POVMs) has been solved numerically for all dimensions d up to 67 [A. J. Scott and M. Grassl, J. Math. Phys. 51, 042203 (2010), 10.1063/1.3374022], but a general proof of existence is still lacking. For each dimension, it was shown that it is possible to find a SIC-POVM that is generated from a fiducial state upon application of the operators of the Heisenberg-Weyl group. We draw on the numerically determined fiducial states to study their phase-space features, as displayed by the characteristic function and the Wigner, Bargmann, and Husimi representations, adapted to a Hilbert space of finite dimension. We analyze the phase-space localization of fiducial states, and observe that the SIC-POVM condition is equivalent to a maximal delocalization property. Finally, we explore the consequences in phase space of the conjectured Zauner symmetry. In particular, we construct a Hermitian operator commuting with this symmetry that leads to a representation of fiducial states in terms of eigenfunctions with definite semiclassical features.

  3. Inhomogeneous compact extra dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronnikov, K.A.; Budaev, R.I.; Grobov, A.V.

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure fmore » ( R ) gravity.« less

  4. The use of multidimensional scaling for facilities layout - An application to the design of the Space Station

    NASA Technical Reports Server (NTRS)

    Tullis, Thomas S.; Bied Sperling, Barbra; Steinberg, A. L.

    1986-01-01

    Before an optimum layout of the facilities for the proposed Space Station can be designed, it is necessary to understand the functions that will be performed by the Space Station crew and the relationships among those functions. Five criteria for assessing functional relationships were identified. For each of these criteria, a matrix representing the degree of association of all pairs of functions was developed. The key to making inferences about the layout of the Space Station from these matrices was the use of multidimensional scaling (MDS). Applying MDS to these matrices resulted in spatial configurations of the crew functions in which smaller distances in the MDS configuration reflected closer associations. An MDS analysis of a composite matrix formed by combining the five individual matrices resulted in two dimensions that describe the configuration: a 'private-public' dimension and a 'group-individual' dimension. Seven specific recommendations for Space Station layout were derived from analyses of the MDS configurations. Although these techniques have been applied to the design of the Space Station, they can be applied to the design of any facility where people live or work.

  5. Crystallization of Chicken Egg-White Lysozyme from Ammonium Sulfate

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Pusey, Marc L.

    1997-01-01

    Chicken egg-white lysozyme was crystallized from ammonium sulfate over the pH range 4.0-7.8, with protein concentrations from 100 to 150 mg/ml. Crystals were obtained by vapor-diffusion or batch-crystallization methods. The protein crystallized in two morphologies with an apparent morphology dependence on temperature and protein concentration. In general, tetragonal crystals could be grown by lowering the protein concentration or temperature. Increasing the temperature or protein concentration resulted in the growth of orthorhombic crystals. Representative crystals of each morphology were selected for X-ray analysis. The tetragonal crystals belonged to the P4(sub 3)2(sub 1)2 space group with crystals grown at ph 4.4 having unit-cell dimensions of a = b = 78.7 1, c=38.6 A and diffracting to beyond 2.0 A. The orthorhombic crystals, grown at pH 4.8, were of space group P2(sub 1)2(sub 1)2 and had unit-cell dimensions of a = 30.51, b = 56.51 and c = 73.62 A.

  6. Ocean rogue waves and their phase space dynamics in the limit of a linear interference model.

    PubMed

    Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter

    2016-10-12

    We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability.

  7. Ocean rogue waves and their phase space dynamics in the limit of a linear interference model

    PubMed Central

    Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter

    2016-01-01

    We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability. PMID:27731411

  8. The Sequential Implementation of Array Processors when there is Directional Uncertainty

    DTIC Science & Technology

    1975-08-01

    University of Washington kindly supplied office space and ccputing facilities. -The author hat, benefited greatly from discussions with several other...if i Q- inverse of Q I L general observation space R general vector of observation _KR general observation vector of dimension K Exiv] "Tf -- ’ -"-T’T...7" i ’i ’:"’ - ’ ; ’ ’ ’ ’ ’ ’" ’"- Glossary of Symbols (continued) R. ith observation 1 Rm real vector space of dimension m R(T) autocorrelation

  9. Nonlinear Prediction As A Tool For Determining Parameters For Phase Space Reconstruction In Meteorology

    NASA Astrophysics Data System (ADS)

    Miksovsky, J.; Raidl, A.

    Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.

  10. Nonlinear Analyses of Elicited Modal, Raised, and Pressed Rabbit Phonation

    PubMed Central

    Awan, Shaheen N.; Novaleski, Carolyn K.; Rousseau, Bernard

    2014-01-01

    Objectives/Hypothesis The purpose of this study was to use nonlinear dynamic analysis methods such as phase space portraits and correlation dimension (D2) as well as descriptive spectrographic analyses to characterize acoustic signals produced during evoked rabbit phonation. Methods Seventeen New Zealand white breeder rabbits were used to perform the study. A Grass S-88 stimulator (SA Instrumentation, Encinitas, CA) and constant current isolation unit (Grass Telefactor, model PSIU6; West Warwick, RI) were used to provide electrical stimulation to laryngeal musculature, and transglottal airflow rate and stimulation current (mA) were manipulated to elicit modal, raised intensity, and pressed phonations. Central 1 second portions of the most stable portion of the acoustic waveform for modal, raised intensity, and pressed phonations were edited, and then analyzed via phase space portraits, Poincaré sections, and the estimation of the correlation dimension (D2). In an attempt to limit the effects of the highly variable and nonstationary characteristics of some of the signals being analyzed, D2 analysis was also performed on the most stable central 200 ms portion of the acoustic waveform. Descriptive analysis of each phonation was also conducted using sound spectrograms. Results Results showed that the complexity of phonation and the subsequent acoustic waveform is increased as transglottal airflow rate and degree of glottal adduction is manipulated in the evoked rabbit phonation model. In particular, phonatory complexity, as quantified via correlation dimension analyses and demonstrated via spectrographic characteristics, increases from “modal” (i.e., phonation elicited at just above the phonation threshold pressure) to raised intensity (phonation elicited by increasing transglottal airflow rate) to pressed (phonation elicited by increasing the stimulation current delivered to the larynx). Variations in a single dynamic dimension (airflow rate or adductory force) resulted in significantly increased productions of nonlinear phenomenon, including bifurcations from periodicity to regions of subharmonic content, F0 and harmonic jumps, and evidence of periodicity within aperiodic regions (“chaos”). Conclusions The evoked rabbit phonation model described in this study allows for the elicitation of various types of phonations under controlled conditions and therefore, has the potential to provide insight regarding important variables that may elicit examples of nonlinear phenomena such as subharmonics and deterministic chaos. PMID:24836360

  11. Instability of standing waves for Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions

    NASA Astrophysics Data System (ADS)

    Gan, Zaihui; Zhang, Jian

    2005-07-01

    This paper is concerned with the standing wave for Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions. The existence of standing wave with the ground state is established by applying an intricate variational argument and the instability of the standing wave is shown by applying Pagne and Sattinger's potential well argument and Levine's concavity method.

  12. A k-space method for acoustic propagation using coupled first-order equations in three dimensions.

    PubMed

    Tillett, Jason C; Daoud, Mohammad I; Lacefield, James C; Waag, Robert C

    2009-09-01

    A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths.

  13. Stability and chaos in Kustaanheimo-Stiefel space induced by the Hopf fibration

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Urrutxua, Hodei; Peláez, Jesús

    2016-07-01

    The need for the extra dimension in Kustaanheimo-Stiefel (KS) regularization is explained by the topology of the Hopf fibration, which defines the geometry and structure of KS space. A trajectory in Cartesian space is represented by a four-dimensional manifold called the fundamental manifold. Based on geometric and topological aspects classical concepts of stability are translated to KS language. The separation between manifolds of solutions generalizes the concept of Lyapunov stability. The dimension-raising nature of the fibration transforms fixed points, limit cycles, attractive sets, and Poincaré sections to higher dimensional subspaces. From these concepts chaotic systems are studied. In strongly perturbed problems, the numerical error can break the topological structure of KS space: points in a fibre are no longer transformed to the same point in Cartesian space. An observer in three dimensions will see orbits departing from the same initial conditions but diverging in time. This apparent randomness of the integration can only be understood in four dimensions. The concept of topological stability results in a simple method for estimating the time-scale in which numerical simulations can be trusted. Ideally, all trajectories departing from the same fibre should be KS transformed to a unique trajectory in three-dimensional space, because the fundamental manifold that they constitute is unique. By monitoring how trajectories departing from one fibre separate from the fundamental manifold a critical time, equivalent to the Lyapunov time, is estimated. These concepts are tested on N-body examples: the Pythagorean problem, and an example of field stars interacting with a binary.

  14. Learning redundant motor tasks with and without overlapping dimensions: facilitation and interference effects.

    PubMed

    Ranganathan, Rajiv; Wieser, Jon; Mosier, Kristine M; Mussa-Ivaldi, Ferdinando A; Scheidt, Robert A

    2014-06-11

    Prior learning of a motor skill creates motor memories that can facilitate or interfere with learning of new, but related, motor skills. One hypothesis of motor learning posits that for a sensorimotor task with redundant degrees of freedom, the nervous system learns the geometric structure of the task and improves performance by selectively operating within that task space. We tested this hypothesis by examining if transfer of learning between two tasks depends on shared dimensionality between their respective task spaces. Human participants wore a data glove and learned to manipulate a computer cursor by moving their fingers. Separate groups of participants learned two tasks: a prior task that was unique to each group and a criterion task that was common to all groups. We manipulated the mapping between finger motions and cursor positions in the prior task to define task spaces that either shared or did not share the task space dimensions (x-y axes) of the criterion task. We found that if the prior task shared task dimensions with the criterion task, there was an initial facilitation in criterion task performance. However, if the prior task did not share task dimensions with the criterion task, there was prolonged interference in learning the criterion task due to participants finding inefficient task solutions. These results show that the nervous system learns the task space through practice, and that the degree of shared task space dimensionality influences the extent to which prior experience transfers to subsequent learning of related motor skills. Copyright © 2014 the authors 0270-6474/14/348289-11$15.00/0.

  15. Time Is Not Space: Core Computations and Domain-Specific Networks for Mental Travels.

    PubMed

    Gauthier, Baptiste; van Wassenhove, Virginie

    2016-11-23

    Humans can consciously project themselves in the future and imagine themselves at different places. Do mental time travel and mental space navigation abilities share common cognitive and neural mechanisms? To test this, we recorded fMRI while participants mentally projected themselves in time or in space (e.g., 9 years ago, in Paris) and ordered historical events from their mental perspective. Behavioral patterns were comparable for mental time and space and shaped by self-projection and by the distance of historical events to the mental position of the self, suggesting the existence of egocentric mapping in both dimensions. Nonetheless, self-projection in space engaged the medial and lateral parietal cortices, whereas self-projection in time engaged a widespread parietofrontal network. Moreover, while a large distributed network was found for spatial distances, temporal distances specifically engaged the right inferior parietal cortex and the anterior insula. Across these networks, a robust overlap was only found in a small region of the inferior parietal lobe, adding evidence for its role in domain-general egocentric mapping. Our findings suggest that mental travel in time or space capitalizes on egocentric remapping and on distance computation, which are implemented in distinct dimension-specific cortical networks converging in inferior parietal lobe. As humans, we can consciously imagine ourselves at a different time (mental time travel) or at a different place (mental space navigation). Are such abilities domain-general, or are the temporal and spatial dimensions of our conscious experience separable? Here, we tested the hypothesis that mental time travel and mental space navigation required the egocentric remapping of events, including the estimation of their distances to the self. We report that, although both remapping and distance computation are foundational for the processing of the temporal and spatial dimensions of our conscious experience, their neuroanatomical implementations were clearly dissociable and engaged distinct parietal and parietofrontal networks for mental space navigation and mental time travel, respectively. Copyright © 2016 the authors 0270-6474/16/3611891-13$15.00/0.

  16. Exploring Tactile Perceptual Dimensions Using Materials Associated with Sensory Vocabulary.

    PubMed

    Sakamoto, Maki; Watanabe, Junji

    2017-01-01

    Considering tactile sensation when designing products is important because the decision to purchase often depends on how products feel. Numerous psychophysical studies have attempted to identify important factors that describe tactile perceptions. However, the numbers and types of major tactile dimensions reported in previous studies have varied because of differences in materials used across experiments. To obtain a more complete picture of perceptual space with regard to touch, our study focuses on using vocabulary that expresses tactile sensations as a guiding principle for collecting material samples because these types of words are expected to cover all the basic categories within tactile perceptual space. We collected 120 materials based on a variety of Japanese sound-symbolic words for tactile sensations, and used the materials to examine tactile perceptual dimensions and their associations with affective evaluations. Analysis revealed six major dimensions: "Affective evaluation and Friction," "Compliance," "Surface," "Volume," "Temperature," and "Naturalness." These dimensions include four factors that previous studies have regarded as fundamental, as well as two new factors: "Volume" and "Naturalness." Additionally, we showed that "Affective evaluation" is more closely related to the "Friction" component (slipperiness and dryness) than to other tactile perceptual features. Our study demonstrates that using vocabulary could be an effective method for selecting material samples to explore tactile perceptual space.

  17. The Applicability of Nonlinear Systems Dynamics Chaos Measures to Cardiovascular Physiology Variables

    NASA Technical Reports Server (NTRS)

    Hooker, John C.

    1991-01-01

    Three measures of nonlinear chaos (fractal dimension, Approximate Entropy (ApEn), and Lyapunov exponents) were studied as potential measures of cardiovascular condition. It is suggested that these measures have potential in the assessment of cardiovascular condition in environments of normal cardiovascular stress (normal gravity on the Earth surface), cardiovascular deconditioning (microgravity of space), and increased cardiovascular stress (lower body negative pressure (LBNP) treatments).

  18. Dissociations and interactions between time, numerosity and space processing

    PubMed Central

    Cappelletti, Marinella; Freeman, Elliot D.; Cipolotti, Lisa

    2009-01-01

    This study investigated time, numerosity and space processing in a patient (CB) with a right hemisphere lesion. We tested whether these magnitude dimensions share a common magnitude system or whether they are processed by dimension-specific magnitude systems. Five experimental tasks were used: Tasks 1–3 assessed time and numerosity independently and time and numerosity jointly. Tasks 4 and 5 investigated space processing independently and space and numbers jointly. Patient CB was impaired at estimating time and at discriminating between temporal intervals, his errors being underestimations. In contrast, his ability to process numbers and space was normal. A unidirectional interaction between numbers and time was found in both the patient and the control subjects. Strikingly, small numbers were perceived as lasting shorter and large numbers as lasting longer. In contrast, number processing was not affected by time, i.e. short durations did not result in perceiving fewer numbers and long durations in perceiving more numbers. Numbers and space also interacted, with small numbers answered faster when presented on the left side of space, and the reverse for large numbers. Our results demonstrate that time processing can be selectively impaired. This suggests that mechanisms specific for time processing may be partially independent from those involved in processing numbers and space. However, the interaction between numbers and time and between numbers and space also suggests that although independent, there maybe some overlap between time, numbers and space. These data suggest a partly shared mechanism between time, numbers and space which may be involved in magnitude processing or may be recruited to perform cognitive operations on magnitude dimensions. PMID:19501604

  19. Robust numerical simulation of porosity evolution in chemical vapor infiltration III: three space dimension

    NASA Astrophysics Data System (ADS)

    Jin, Shi; Wang, Xuelei

    2003-04-01

    Chemical vapor infiltration (CVI) process is an important technology to fabricate ceramic matrix composites (CMC's). In this paper, a three-dimension numerical model is presented to describe pore microstructure evolution during the CVI process. We extend the two-dimension model proposed in [S. Jin, X.L. Wang, T.L. Starr, J. Mater. Res. 14 (1999) 3829; S. Jin. X.L. Wang, T.L. Starr, X.F. Chen, J. Comp. Phys. 162 (2000) 467], where the fiber surface is modeled as an evolving interface, to the three space dimension. The 3D method keeps all the virtue of the 2D model: robust numerical capturing of topological changes of the interface such as the merging, and fast detection of the inaccessible pores. For models in the kinetic limit, where the moving speed of the interface is constant, some numerical examples are presented to show that this three-dimension model will effectively track the change of porosity, close-off time, location and shape of all pores.

  20. Effects of exchanged cation on the microporosity of montmorillonite

    USGS Publications Warehouse

    Rutherford, David W.; Chiou, Cary T.; Eberl, Dennis D.

    1997-01-01

    The micropore volumes of 2 montmorillonites (SAz-1 and SWy-1), each exchanged with Ca, Na, K, Cs and tetramethylammonium (TMA) ions, were calculated from the measured vapor adsorption data of N2 and neo-hexane by use of t- and αs-plots. The corresponding surface areas of the exchanged clays were determined from Brunauer-Emmett-Teller (BET) plots of N2 adsorption data. Micropore volumes and surface areas of the samples increased with the size of exchanged cation: TMA > Cs > K > Ca > Na. The SAz-1 exchanged clays showed generally greater micropore volumes and surface areas than the corresponding SWy-1 clays. The vapor adsorption data and d(001) measurements for dry clay samples were used together to evaluate the likely locations and accessibility of clay micropores, especially the relative accessibility of their interlayer spacing. For both source clays exchanged with Na, Ca and K ions, the interlayer spacing appeared to be too small to admit nonpolar gases and the accessible micropores appeared to have dimensions greater than 5.0 Å, the limiting molecular dimension of neo-hexane. In these systems, there was a good consistency of micropore volumes detected by N2 and neo-hexane. When the clays were intercalated with relatively large cations (TMA and possibly Cs), the large layer expansion created additional microporosity, which was more readily accessible to small N2 than to relatively large neo-hexane. Hence, the micropore volume as detected by N2 was greater than that detected by neo-hexane. The micropore volumes with pore dimensions greater than 5 Å determined for clays exchanged with Na, Ca and K likely resulted from the pores on particle edges and void created by overlap regions of layers. The increase in micropore volumes with pore dimensions less than 5 Å determined for clays exchanged with TMA and possibly Cs could be caused by opening of the interlayer region by the intercalation of these large cations.

  1. On the dimension of complex responses in nonlinear structural vibrations

    NASA Astrophysics Data System (ADS)

    Wiebe, R.; Spottswood, S. M.

    2016-07-01

    The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to model.

  2. Transition amplitude for two-time physics

    NASA Astrophysics Data System (ADS)

    Frederico, João E.; Rivelles, Victor O.

    2010-07-01

    We present the transition amplitude for a particle moving in a space with two times and D space dimensions having an Sp(2,R) local symmetry and an SO(D,2) rigid symmetry. It was obtained from the BRST-BFV quantization with a unique gauge choice. We show that by constraining the initial and final points of this amplitude to lie on some hypersurface of the D+2 space the resulting amplitude reproduces well-known systems in lower dimensions. This work provides an alternative way to derive the effects of two-time physics where all the results come from a single transition amplitude.

  3. Transition amplitude for two-time physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederico, Joao E.; Rivelles, Victor O.; Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05314-970, Sao Paulo, SP

    2010-07-15

    We present the transition amplitude for a particle moving in a space with two times and D space dimensions having an Sp(2,R) local symmetry and an SO(D,2) rigid symmetry. It was obtained from the BRST-BFV quantization with a unique gauge choice. We show that by constraining the initial and final points of this amplitude to lie on some hypersurface of the D+2 space the resulting amplitude reproduces well-known systems in lower dimensions. This work provides an alternative way to derive the effects of two-time physics where all the results come from a single transition amplitude.

  4. Preface to the special issue on ;Optical Communications Exploiting the Space Domain;

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Yu, Siyuan; Li, Guifang

    2018-02-01

    The demand for high capacity optical communications will continue to be driven by the exponential growth of global internet traffic. Optical communications are about the exploitation of different physical dimensions of light waves, including complex amplitude, frequency (or wavelength), time, polarization, etc. Conventional techniques such as wavelength-division multiplexing (WDM), time-division multiplexing (TDM) and polarization-division multiplexing (PDM) have almost reached their scalability limits. Space domain is the only known physical dimension left and space-division multiplexing (SDM) seems the only option to further scale the transmission capacity and spectral efficiency of optical communications. In recent years, few-mode fiber (FMF), multi-mode fiber (MMF), multi-core fiber (MCF) and few-mode multi-core fiber (FM-MCF) have been widely explored as promising candidates for fiber-based SDM. The challenges for SDM include efficient (de)multiplexer, amplifiers, and multiple-input multiple-output (MIMO) digital signal processing (DSP) techniques. Photonic integration will also be a key technology to SDM. Meanwhile, free-space and underwater optical communications have also exploited the space domain to increase the transmission capacity and spectral efficiency. The challenges include long-distance transmission limited by propagation loss, divergence, scattering and turbulence. Very recently, helically phased light beams carrying orbital angular momentum (OAM) have also seen potential applications both in free-space, underwater and fiber-based optical communications. Actually, different mode bases such as linearly polarized (LP) modes and OAM modes can be employed for SDM. Additionally, SDM could be used in chip-scale photonic interconnects and data center optical interconnects. Quantum processing exploiting the space domain is of great interest. The information capacity limit and physical layer security in SDM optical communications systems are important issues to be addressed.

  5. The Ethical Dimension of Teacher Practical Knowledge: A Narrative Inquiry into Chinese Teachers' Thinking and Actions in Dilemmatic Spaces

    ERIC Educational Resources Information Center

    Chen, Xiangming; Wei, Ge; Jiang, Shuling

    2017-01-01

    Previous research concerning teacher practical knowledge has revealed its epistemological foundations, content structure and research methodology, but little research examines its ethical dimension. Based on a four-year project in China, this study probes the ethical dimension of an experienced teacher's practical knowledge, explicated in a…

  6. Asymptotic Charges at Null Infinity in Any Dimension

    NASA Astrophysics Data System (ADS)

    Campoleoni, Andrea; Francia, Dario; Heissenberg, Carlo

    2018-03-01

    We analyse the conservation laws associated with large gauge transformations of massless fields in Minkowski space. Our aim is to highlight the interplay between boundary conditions and finiteness of the asymptotically conserved charges in any space-time dimension, both even and odd, greater than or equal to three. After discussing non-linear Yang-Mills theory and revisiting linearised gravity, our investigation extends to cover the infrared behaviour of bosonic massless quanta of any spin.

  7. Sampling strategies for subsampled segmented EPI PRF thermometry in MR guided high intensity focused ultrasound

    PubMed Central

    Odéen, Henrik; Todd, Nick; Diakite, Mahamadou; Minalga, Emilee; Payne, Allison; Parker, Dennis L.

    2014-01-01

    Purpose: To investigate k-space subsampling strategies to achieve fast, large field-of-view (FOV) temperature monitoring using segmented echo planar imaging (EPI) proton resonance frequency shift thermometry for MR guided high intensity focused ultrasound (MRgHIFU) applications. Methods: Five different k-space sampling approaches were investigated, varying sample spacing (equally vs nonequally spaced within the echo train), sampling density (variable sampling density in zero, one, and two dimensions), and utilizing sequential or centric sampling. Three of the schemes utilized sequential sampling with the sampling density varied in zero, one, and two dimensions, to investigate sampling the k-space center more frequently. Two of the schemes utilized centric sampling to acquire the k-space center with a longer echo time for improved phase measurements, and vary the sampling density in zero and two dimensions, respectively. Phantom experiments and a theoretical point spread function analysis were performed to investigate their performance. Variable density sampling in zero and two dimensions was also implemented in a non-EPI GRE pulse sequence for comparison. All subsampled data were reconstructed with a previously described temporally constrained reconstruction (TCR) algorithm. Results: The accuracy of each sampling strategy in measuring the temperature rise in the HIFU focal spot was measured in terms of the root-mean-square-error (RMSE) compared to fully sampled “truth.” For the schemes utilizing sequential sampling, the accuracy was found to improve with the dimensionality of the variable density sampling, giving values of 0.65 °C, 0.49 °C, and 0.35 °C for density variation in zero, one, and two dimensions, respectively. The schemes utilizing centric sampling were found to underestimate the temperature rise, with RMSE values of 1.05 °C and 1.31 °C, for variable density sampling in zero and two dimensions, respectively. Similar subsampling schemes with variable density sampling implemented in zero and two dimensions in a non-EPI GRE pulse sequence both resulted in accurate temperature measurements (RMSE of 0.70 °C and 0.63 °C, respectively). With sequential sampling in the described EPI implementation, temperature monitoring over a 192 × 144 × 135 mm3 FOV with a temporal resolution of 3.6 s was achieved, while keeping the RMSE compared to fully sampled “truth” below 0.35 °C. Conclusions: When segmented EPI readouts are used in conjunction with k-space subsampling for MR thermometry applications, sampling schemes with sequential sampling, with or without variable density sampling, obtain accurate phase and temperature measurements when using a TCR reconstruction algorithm. Improved temperature measurement accuracy can be achieved with variable density sampling. Centric sampling leads to phase bias, resulting in temperature underestimations. PMID:25186406

  8. Device-Independent Tests of Classical and Quantum Dimensions

    NASA Astrophysics Data System (ADS)

    Gallego, Rodrigo; Brunner, Nicolas; Hadley, Christopher; Acín, Antonio

    2010-12-01

    We address the problem of testing the dimensionality of classical and quantum systems in a “black-box” scenario. We develop a general formalism for tackling this problem. This allows us to derive lower bounds on the classical dimension necessary to reproduce given measurement data. Furthermore, we generalize the concept of quantum dimension witnesses to arbitrary quantum systems, allowing one to place a lower bound on the Hilbert space dimension necessary to reproduce certain data. Illustrating these ideas, we provide simple examples of classical and quantum dimension witnesses.

  9. Quantum mechanical derivation of the Wallis formula for π

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, Tamar, E-mail: tfriedma@ur.rochester.edu; Hagen, C. R., E-mail: hagen@pas.rochester.edu

    2015-11-15

    A famous pre-Newtonian formula for π is obtained directly from the variational approach to the spectrum of the hydrogen atom in spaces of arbitrary dimensions greater than one, including the physical three dimensions.

  10. Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Keyes, Gilbert

    1991-01-01

    Information is given in viewgraph form on Space Station Freedom. Topics covered include future evolution, man-tended capability, permanently manned capability, standard payload rack dimensions, the Crystals by Vapor Transport Experiment (CVTE), commercial space projects interfaces, and pricing policy.

  11. Adaptive vibrational configuration interaction (A-VCI): A posteriori error estimation to efficiently compute anharmonic IR spectra

    NASA Astrophysics Data System (ADS)

    Garnier, Romain; Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier

    2016-05-01

    A new variational algorithm called adaptive vibrational configuration interaction (A-VCI) intended for the resolution of the vibrational Schrödinger equation was developed. The main advantage of this approach is to efficiently reduce the dimension of the active space generated into the configuration interaction (CI) process. Here, we assume that the Hamiltonian writes as a sum of products of operators. This adaptive algorithm was developed with the use of three correlated conditions, i.e., a suitable starting space, a criterion for convergence, and a procedure to expand the approximate space. The velocity of the algorithm was increased with the use of a posteriori error estimator (residue) to select the most relevant direction to increase the space. Two examples have been selected for benchmark. In the case of H2CO, we mainly study the performance of A-VCI algorithm: comparison with the variation-perturbation method, choice of the initial space, and residual contributions. For CH3CN, we compare the A-VCI results with a computed reference spectrum using the same potential energy surface and for an active space reduced by about 90%.

  12. Adaptive vibrational configuration interaction (A-VCI): A posteriori error estimation to efficiently compute anharmonic IR spectra.

    PubMed

    Garnier, Romain; Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier

    2016-05-28

    A new variational algorithm called adaptive vibrational configuration interaction (A-VCI) intended for the resolution of the vibrational Schrödinger equation was developed. The main advantage of this approach is to efficiently reduce the dimension of the active space generated into the configuration interaction (CI) process. Here, we assume that the Hamiltonian writes as a sum of products of operators. This adaptive algorithm was developed with the use of three correlated conditions, i.e., a suitable starting space, a criterion for convergence, and a procedure to expand the approximate space. The velocity of the algorithm was increased with the use of a posteriori error estimator (residue) to select the most relevant direction to increase the space. Two examples have been selected for benchmark. In the case of H2CO, we mainly study the performance of A-VCI algorithm: comparison with the variation-perturbation method, choice of the initial space, and residual contributions. For CH3CN, we compare the A-VCI results with a computed reference spectrum using the same potential energy surface and for an active space reduced by about 90%.

  13. Origin of Everything and the 21 Dimensions of the Universe

    NASA Astrophysics Data System (ADS)

    Loev, Mark

    2009-03-01

    The Dimensions of the Universe correspond with the Dimensions of the human body. The emotion that is a positive for every dimension is Love. The negative emotion that effects each dimension are listed. All seven negative emotions effect Peace, Love and Happiness. 21st Dimension: Happiness Groin & Heart 20th Dimension: Love Groin & Heart 19th Dimension: Peace Groin & heart 18th Dimension: Imagination Wave Eyes Anger 17th Dimension: Z Wave / Closed Birth 16th Dimension: Electromagnetic Wave Ears Anger 15th Dimension: Universal Wave Skin Worry 14th Dimension: Lover Wave Blood Hate 13th Dimension: Disposal Wave Buttocks Fear 12th Dimension: Builder Wave Hands Hate 11th Dimension: Energy Wave Arms Fear 10th Dimension: Time Wave Brain Pessimism 9th Dimension: Gravity Wave Legs Fear 8th Dimension: Sweet Wave Pancreas Fear 7th Dimension: File Wave Left Lung Fear 6th Dimension: Breathing Wave Right Lung Fear 5th Dimension: Digestive Wave Stomach Fear 4th Dimension: Swab Wave Liver Guilt 3rd Dimension: Space Wave Face Sadness 2nd Dimension: Line Wave Mouth Revenge 1st Dimension: Dot Wave Nose Sadness The seven deadly sins correspond: Anger Hate Sadness Fear Worry Pessimism Revenge Note: Guilt is fear

  14. Relationship of the Cricothyroid Space with Vocal Range in Female Singers.

    PubMed

    Pullon, Beverley

    2017-01-01

    This study aims to investigate the relationship between the anterior cricothyroid (CT) space at rest with vocal range in female singers. Potential associations with and between voice categories, age, ethnicity, anthropometric indices, neck dimensions, laryngeal dimensions, vocal data along with habitual speaking fundamental frequency were also explored. This is a cohort study. Laryngeal dimensions anterior CT space and heights of the thyroid and cricoid cartilages were measured using ultrasound in 43 healthy, classically trained, female singers during quiet respiration. Voice categories (soprano and mezzo-soprano), age, ethnicity, weight, height, body mass index, neck circumference and length, anterior thyroid and cricoid cartilage heights, practice and performance vocal range, lowest and highest practice and performance notes along with habitual speaking fundamental frequency were collected. The main finding was that mezzo-sopranos have a significantly wider resting CT space than sopranos (11.6 mm versus 10.4 mm; P = 0.007). Mezzo-sopranos also had significantly lower "lowest and highest" performance notes than sopranos. There was no significant correlation between the magnitudes of the anterior CT space with vocal range. The participants with the narrowest and widest anterior CT space had similar vocal ranges. These results suggest that the CT space is not the major determinant of performance vocal range. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Handy elementary algebraic properties of the geometry of entanglement

    NASA Astrophysics Data System (ADS)

    Blair, Howard A.; Alsing, Paul M.

    2013-05-01

    The space of separable states of a quantum system is a hyperbolic surface in a high dimensional linear space, which we call the separation surface, within the exponentially high dimensional linear space containing the quantum states of an n component multipartite quantum system. A vector in the linear space is representable as an n-dimensional hypermatrix with respect to bases of the component linear spaces. A vector will be on the separation surface iff every determinant of every 2-dimensional, 2-by-2 submatrix of the hypermatrix vanishes. This highly rigid constraint can be tested merely in time asymptotically proportional to d, where d is the dimension of the state space of the system due to the extreme interdependence of the 2-by-2 submatrices. The constraint on 2-by-2 determinants entails an elementary closed formformula for a parametric characterization of the entire separation surface with d-1 parameters in the char- acterization. The state of a factor of a partially separable state can be calculated in time asymptotically proportional to the dimension of the state space of the component. If all components of the system have approximately the same dimension, the time complexity of calculating a component state as a function of the parameters is asymptotically pro- portional to the time required to sort the basis. Metric-based entanglement measures of pure states are characterized in terms of the separation hypersurface.

  16. The Bargmann-Wigner equations in spherical space

    NASA Astrophysics Data System (ADS)

    McKeon, D. G. C.; Sherry, T. N.

    2006-01-01

    The Bargmann-Wigner formalism is adapted to spherical surfaces embedded in three to eleven dimensions. This is demonstrated to generate wave equations in spherical space for a variety of antisymmetric tensor fields. Some of these equations are gauge invariant for particular values of the parameters characterizing them. For spheres embedded in three, four, and five dimensions, this gauge invariance can be generalized so as to become non-Abelian. This non-Abelian gauge invariance is shown to be a property of second-order models for two index antisymmetric tensor fields in any number of dimensions. The O(3) model is quantized and the two-point function is shown to vanish at the one-loop order.

  17. Internal Stresses Lead to Net Forces and Torques on Extended Elastic Bodies

    NASA Astrophysics Data System (ADS)

    Aharoni, Hillel; Kolinski, John M.; Moshe, Michael; Meirzada, Idan; Sharon, Eran

    2016-09-01

    A geometrically frustrated elastic body will develop residual stresses arising from the mismatch between the intrinsic geometry of the body and the geometry of the ambient space. We analyze these stresses for an ambient space with gradients in its intrinsic curvature, and show that residual stresses generate effective forces and torques on the center of mass of the body. We analytically calculate these forces in two dimensions, and experimentally demonstrate their action by the migration of a non-Euclidean gel disc in a curved Hele-Shaw cell. An extension of our analysis to higher dimensions shows that these forces are also generated in three dimensions, but are negligible compared to gravity.

  18. Magnetic Field Generation During the Collision of Narrow Plasma Clouds

    NASA Astrophysics Data System (ADS)

    Sakai, Jun-ichi; Kazimura, Yoshihiro; Haruki, Takayuki

    1999-06-01

    We investigate the dynamics of the collision of narrow plasma clouds,whose transverse dimension is on the order of the electron skin depth.A 2D3V (two dimensions in space and three dimensions in velocity space)particle-in-cell (PIC) collisionless relativistic code is used toshow the generation of a quasi-staticmagnetic field during the collision of narrow plasma clouds both inelectron-ion and electron-positron (pair) plasmas. The localizedstrong magnetic fluxes result in the generation of the charge separationwith complicated structures, which may be sources of electromagneticas well as Langmuir waves. We also present one applicationof this process, which occurs during coalescence of magnetic islandsin a current sheet of pair plasmas.

  19. Space-Time Crystal and Space-Time Group

    NASA Astrophysics Data System (ADS)

    Xu, Shenglong; Wu, Congjun

    2018-03-01

    Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D +1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1 +1 D ) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2 +1 D , nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D +1 )-dimensional space-time crystal.

  20. Space-Time Crystal and Space-Time Group.

    PubMed

    Xu, Shenglong; Wu, Congjun

    2018-03-02

    Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D+1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1+1D) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2+1D, nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D+1)-dimensional space-time crystal.

  1. Unitary Operators on the Document Space.

    ERIC Educational Resources Information Center

    Hoenkamp, Eduard

    2003-01-01

    Discusses latent semantic indexing (LSI) that would allow search engines to reduce the dimension of the document space by mapping it into a space spanned by conceptual indices. Topics include vector space models; singular value decomposition (SVD); unitary operators; the Haar transform; and new algorithms. (Author/LRW)

  2. The effects of context on multidimensional spatial cognitive models. Ph.D. Thesis - Arizona Univ.

    NASA Technical Reports Server (NTRS)

    Dupnick, E. G.

    1979-01-01

    Spatial cognitive models obtained by multidimensional scaling represent cognitive structure by defining alternatives as points in a coordinate space based on relevant dimensions such that interstimulus dissimilarities perceived by the individual correspond to distances between the respective alternatives. The dependence of spatial models on the context of the judgments required of the individual was investigated. Context, which is defined as a perceptual interpretation and cognitive understanding of a judgment situation, was analyzed and classified with respect to five characteristics: physical environment, social environment, task definition, individual perspective, and temporal setting. Four experiments designed to produce changes in the characteristics of context and to test the effects of these changes upon individual cognitive spaces are described with focus on experiment design, objectives, statistical analysis, results, and conclusions. The hypothesis is advanced that an individual can be characterized as having a master cognitive space for a set of alternatives. When the context changes, the individual appears to change the dimension weights to give a new spatial configuration. Factor analysis was used in the interpretation and labeling of cognitive space dimensions.

  3. Systems and Methods for Data Visualization Using Three-Dimensional Displays

    NASA Technical Reports Server (NTRS)

    Davidoff, Scott (Inventor); Djorgovski, Stanislav G. (Inventor); Estrada, Vicente (Inventor); Donalek, Ciro (Inventor)

    2017-01-01

    Data visualization systems and methods for generating 3D visualizations of a multidimensional data space are described. In one embodiment a 3D data visualization application directs a processing system to: load a set of multidimensional data points into a visualization table; create representations of a set of 3D objects corresponding to the set of data points; receive mappings of data dimensions to visualization attributes; determine the visualization attributes of the set of 3D objects based upon the selected mappings of data dimensions to 3D object attributes; update a visibility dimension in the visualization table for each of the plurality of 3D object to reflect the visibility of each 3D object based upon the selected mappings of data dimensions to visualization attributes; and interactively render 3D data visualizations of the 3D objects within the virtual space from viewpoints determined based upon received user input.

  4. Nonuniform dependence on initial data for compressible gas dynamics: The periodic Cauchy problem

    NASA Astrophysics Data System (ADS)

    Keyfitz, B. L.; Tığlay, F.

    2017-11-01

    We start with the classic result that the Cauchy problem for ideal compressible gas dynamics is locally well posed in time in the sense of Hadamard; there is a unique solution that depends continuously on initial data in Sobolev space Hs for s > d / 2 + 1 where d is the space dimension. We prove that the data to solution map for periodic data in two dimensions although continuous is not uniformly continuous.

  5. Phases of a stack of membranes in a large number of dimensions of configuration space

    NASA Astrophysics Data System (ADS)

    Borelli, M. E.; Kleinert, H.

    2001-05-01

    The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical temperature is determined as a function of the interlayer separation l.

  6. Dynamic fractals in spatial evolutionary games

    NASA Astrophysics Data System (ADS)

    Kolotev, Sergei; Malyutin, Aleksandr; Burovski, Evgeni; Krashakov, Sergei; Shchur, Lev

    2018-06-01

    We investigate critical properties of a spatial evolutionary game based on the Prisoner's Dilemma. Simulations demonstrate a jump in the component densities accompanied by drastic changes in average sizes of the component clusters. We argue that the cluster boundary is a random fractal. Our simulations are consistent with the fractal dimension of the boundary being equal to 2, and the cluster boundaries are hence asymptotically space filling as the system size increases.

  7. Twistor Geometry of Null Foliations in Complex Euclidean Space

    NASA Astrophysics Data System (ADS)

    Taghavi-Chabert, Arman

    2017-01-01

    We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface Q^n of dimension n ≥ 3, and its twistor space PT, defined to be the space of all linear subspaces of maximal dimension of Q^n. Viewing complex Euclidean space CE^n as a dense open subset of Q^n, we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on CE^n can be constructed in terms of complex submanifolds of PT. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing-Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison.

  8. Large structures and tethers working group

    NASA Technical Reports Server (NTRS)

    Murphy, G.; Garrett, H.; Samir, U.; Barnett, A.; Raitt, J.; Sullivan, J.; Katz, I.

    1986-01-01

    The Large Structures and Tethers Working Group sought to clarify the meaning of large structures and tethers as they related to space systems. Large was assumed to mean that the characteristic length of the structure was greater than one of such relevant plasma characteristics as ion gyroradius or debey length. Typically, anything greater than or equal to the Shuttle dimensions was considered large. It was agreed that most large space systems that the tether could be better categorized as extended length, area, or volume structures. The key environmental interactions were then identified in terms of these three categories. In the following Working Group summary, these categories and the related interactions are defined in detail. The emphasis is on how increases in each of the three spatial dimensions uniquely determine the interactions with the near-Earth space environment. Interactions with the environments around the other planets and the solar wind were assumed to be similar or capable of being extrapolated from the near-Earth results. It should be remembered in the following that the effects on large systems do not just affect specific technologies but will quite likely impact whole missions. Finally, the possible effects of large systems on the plasma environment, although only briefly discussed, were felt to be of potentially great concern.

  9. Anisotropic fractal media by vector calculus in non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  10. Are numbers, size and brightness equally efficient in orienting visual attention? Evidence from an eye-tracking study.

    PubMed

    Bulf, Hermann; Macchi Cassia, Viola; de Hevia, Maria Dolores

    2014-01-01

    A number of studies have shown strong relations between numbers and oriented spatial codes. For example, perceiving numbers causes spatial shifts of attention depending upon numbers' magnitude, in a way suggestive of a spatially oriented, mental representation of numbers. Here, we investigated whether this phenomenon extends to non-symbolic numbers, as well as to the processing of the continuous dimensions of size and brightness, exploring whether different quantitative dimensions are equally mapped onto space. After a numerical (symbolic Arabic digits or non-symbolic arrays of dots; Experiment 1) or a non-numerical cue (shapes of different size or brightness level; Experiment 2) was presented, participants' saccadic response to a target that could appear either on the left or the right side of the screen was registered using an automated eye-tracker system. Experiment 1 showed that, both in the case of Arabic digits and dot arrays, right targets were detected faster when preceded by large numbers, and left targets were detected faster when preceded by small numbers. Participants in Experiment 2 were faster at detecting right targets when cued by large-sized shapes and left targets when cued by small-sized shapes, whereas brightness cues did not modulate the detection of peripheral targets. These findings indicate that looking at a symbolic or a non-symbolic number induces attentional shifts to a peripheral region of space that is congruent with the numbers' relative position on a mental number line, and that a similar shift in visual attention is induced by looking at shapes of different size. More specifically, results suggest that, while the dimensions of number and size spontaneously map onto an oriented space, the dimension of brightness seems to be independent at a certain level of magnitude elaboration from the dimensions of spatial extent and number, indicating that not all continuous dimensions are equally mapped onto space.

  11. NLO cross sections in 4 dimensions without DREG

    NASA Astrophysics Data System (ADS)

    Hernández-Pinto, R. J.; Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G. F. R.

    2016-10-01

    In this review, we present a new method for computing physical cross sections at NLO accuracy in QCD without using the standard Dimensional Regularisation. The algorithm is based on the Loop-Tree Duality theorem, which allow us to obtain loop integrals as a sum of phase-space integrals; in this way, transforming loop integrals into phase-space integrals, we propose a method to merge virtual and real contributions in order to find observables at NLO in d = 4 space-time dimensions. In addition, the strategy described is used for computing the γ* → qq̅(g) process. A more detailed discussion related on this topic can be found in Ref [1].

  12. Asymptotical AdS space from nonlinear gravitational models with stabilized extra dimensions

    NASA Astrophysics Data System (ADS)

    Günther, U.; Moniz, P.; Zhuk, A.

    2002-08-01

    We consider nonlinear gravitational models with a multidimensional warped product geometry. Particular attention is payed to models with quadratic scalar curvature terms. It is shown that for certain parameter ranges, the extra dimensions are stabilized if the internal spaces have a negative constant curvature. In this case, the four-dimensional effective cosmological constant as well as the bulk cosmological constant become negative. As a consequence, the homogeneous and isotropic external space is asymptotically AdS4. The connection between the D-dimensional and the four-dimensional fundamental mass scales sets a restriction on the parameters of the considered nonlinear models.

  13. Dynamical analysis of Grover's search algorithm in arbitrarily high-dimensional search spaces

    NASA Astrophysics Data System (ADS)

    Jin, Wenliang

    2016-01-01

    We discuss at length the dynamical behavior of Grover's search algorithm for which all the Walsh-Hadamard transformations contained in this algorithm are exposed to their respective random perturbations inducing the augmentation of the dimension of the search space. We give the concise and general mathematical formulations for approximately characterizing the maximum success probabilities of finding a unique desired state in a large unsorted database and their corresponding numbers of Grover iterations, which are applicable to the search spaces of arbitrary dimension and are used to answer a salient open problem posed by Grover (Phys Rev Lett 80:4329-4332, 1998).

  14. Free-Lagrange methods for compressible hydrodynamics in two space dimensions

    NASA Astrophysics Data System (ADS)

    Crowley, W. E.

    1985-03-01

    Since 1970 a research and development program in Free-Lagrange methods has been active at Livermore. The initial steps were taken with incompressible flows for simplicity. Since then the effort has been concentrated on compressible flows with shocks in two space dimensions and time. In general, the line integral method has been used to evaluate derivatives and the artificial viscosity method has been used to deal with shocks. Basically, two Free-Lagrange formulations for compressible flows in two space dimensions and time have been tested and both will be described. In method one, all prognostic quantities were node centered and staggered in time. The artificial viscosity was zone centered. One mesh reconnection philosphy was that the mesh should be optimized so that nearest neighbors were connected together. Another was that vertex angles should tend toward equality. In method one, all mesh elements were triangles. In method two, both quadrilateral and triangular mesh elements are permitted. The mesh variables are staggered in space and time as suggested originally by Richtmyer and von Neumann. The mesh reconnection strategy is entirely different in method two. In contrast to the global strategy of nearest neighbors, we now have a more local strategy that reconnects in order to keep the integration time step above a user chosen threshold. An additional strategy reconnects in the vicinity of large relative fluid motions. Mesh reconnection consists of two parts: (1) the tools that permits nodes to be merged and quads to be split into triangles etc. and; (2) the strategy that dictates how and when to use the tools. Both tools and strategies change with time in a continuing effort to expand the capabilities of the method. New ideas are continually being tried and evaluated.

  15. Compacted dimensions and singular plasmonic surfaces

    NASA Astrophysics Data System (ADS)

    Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-01

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.

  16. Development of a miniature coaxial pulse tube cryocooler for a space-borne infrared detector system

    NASA Astrophysics Data System (ADS)

    Dang, H. Z.; Wang, L. B.; Wu, Y. N.; Yang, K. X.; Shen, W. B.

    2010-04-01

    A single-stage miniature coaxial pulse tube cryocooler prototype is developed to provide reliable low-noise cooling for an infrared detector system to be equipped in the future space mission. The challenging work is the exacting requirement on its dimensions due to the given miniature Dewar. The limited dimensions result in the insufficiency of the phaseshifting ability of the system when inertance tubes alone are employed. A larger filling pressure of 3.5 Mpa and higher operating frequency up to 70 Hz are adopted to increase the energy density, which compensates for the decrease in working gas volume due to the miniature structure, and realize a fast cool down process. A 1.5 kg dual opposed linear compressor based on flexure bearing and moving magnet technology is used to realize light weight, high efficiency and low contamination. The design and optimization are based on the theoretical CFD model developed by the analyses of thermodynamic behaviors of gas parcels in the oscillating flow. This paper describes the design approach and trade-offs. The cooler performance and characteristics are presented.

  17. Phase transitions in 3D gravity and fractal dimension

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Maguire, Shaun; Maloney, Alexander; Maxfield, Henry

    2018-05-01

    We show that for three dimensional gravity with higher genus boundary conditions, if the theory possesses a sufficiently light scalar, there is a second order phase transition where the scalar field condenses. This three dimensional version of the holographic superconducting phase transition occurs even though the pure gravity solutions are locally AdS3. This is in addition to the first order Hawking-Page-like phase transitions between different locally AdS3 handlebodies. This implies that the Rényi entropies of holographic CFTs will undergo phase transitions as the Rényi parameter is varied, as long as the theory possesses a scalar operator which is lighter than a certain critical dimension. We show that this critical dimension has an elegant mathematical interpretation as the Hausdorff dimension of the limit set of a quotient group of AdS3, and use this to compute it, analytically near the boundary of moduli space and numerically in the interior of moduli space. We compare this to a CFT computation generalizing recent work of Belin, Keller and Zadeh, bounding the critical dimension using higher genus conformal blocks, and find a surprisingly good match.

  18. Subleading soft theorem for multiple soft gravitons

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Subhroneel; Kashyap, Sitender Pratap; Sahoo, Biswajit; Sen, Ashoke; Verma, Mritunjay

    2017-12-01

    We derive the subleading soft graviton theorem in a generic quantum theory of gravity for arbitrary number of soft external gravitons and arbitrary number of finite energy external states carrying arbitrary mass and spin. Our results are valid to all orders in perturbation theory when the number of non-compact space-time dimensions is six or more, but only for tree amplitudes for five or less non-compact space-time dimensions due to enhanced contribution to loop amplitudes from the infrared region.

  19. Minimum Dimension of a Hilbert Space Needed to Generate a Quantum Correlation.

    PubMed

    Sikora, Jamie; Varvitsiotis, Antonios; Wei, Zhaohui

    2016-08-05

    Consider a two-party correlation that can be generated by performing local measurements on a bipartite quantum system. A question of fundamental importance is to understand how many resources, which we quantify by the dimension of the underlying quantum system, are needed to reproduce this correlation. In this Letter, we identify an easy-to-compute lower bound on the smallest Hilbert space dimension needed to generate a given two-party quantum correlation. We show that our bound is tight on many well-known correlations and discuss how it can rule out correlations of having a finite-dimensional quantum representation. We show that our bound is multiplicative under product correlations and also that it can witness the nonconvexity of certain restricted-dimensional quantum correlations.

  20. Emergent dimensions and branes from large-N confinement

    NASA Astrophysics Data System (ADS)

    Cherman, Aleksey; Poppitz, Erich

    2016-12-01

    N =1 S U (N ) super-Yang-Mills theory on R3×S1 is believed to have a smooth dependence on the circle size L . Making L small leads to calculable nonperturbative color confinement, mass gap, and string tensions. For finite N , the small-L low-energy dynamics is described by a three-dimensional effective theory. The large-N limit, however, reveals surprises: the infrared dual description is in terms of a theory with an emergent fourth dimension, curiously reminiscent of T-duality in string theory. Here, however, the emergent dimension is a lattice, with momenta related to the S1-winding of the gauge field holonomy, which takes values in ZN. Furthermore, the low-energy description is given by a nontrivial gapless theory, with a space-like z =2 Lifshitz scale invariance and operators that pick up anomalous dimensions as L is increased. Supersymmetry-breaking deformations leave the long-distance theory scale-invariant, but change the Lifshitz scaling exponent to z =1 , and lead to an emergent Lorentz symmetry at small L . Adding a small number of fundamental fermion fields leads to matter localized on three-dimensional branes in the emergent four-dimensional theory.

  1. Sampling strategies for subsampled segmented EPI PRF thermometry in MR guided high intensity focused ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odéen, Henrik, E-mail: h.odeen@gmail.com; Diakite, Mahamadou; Todd, Nick

    2014-09-15

    Purpose: To investigate k-space subsampling strategies to achieve fast, large field-of-view (FOV) temperature monitoring using segmented echo planar imaging (EPI) proton resonance frequency shift thermometry for MR guided high intensity focused ultrasound (MRgHIFU) applications. Methods: Five different k-space sampling approaches were investigated, varying sample spacing (equally vs nonequally spaced within the echo train), sampling density (variable sampling density in zero, one, and two dimensions), and utilizing sequential or centric sampling. Three of the schemes utilized sequential sampling with the sampling density varied in zero, one, and two dimensions, to investigate sampling the k-space center more frequently. Two of the schemesmore » utilized centric sampling to acquire the k-space center with a longer echo time for improved phase measurements, and vary the sampling density in zero and two dimensions, respectively. Phantom experiments and a theoretical point spread function analysis were performed to investigate their performance. Variable density sampling in zero and two dimensions was also implemented in a non-EPI GRE pulse sequence for comparison. All subsampled data were reconstructed with a previously described temporally constrained reconstruction (TCR) algorithm. Results: The accuracy of each sampling strategy in measuring the temperature rise in the HIFU focal spot was measured in terms of the root-mean-square-error (RMSE) compared to fully sampled “truth.” For the schemes utilizing sequential sampling, the accuracy was found to improve with the dimensionality of the variable density sampling, giving values of 0.65 °C, 0.49 °C, and 0.35 °C for density variation in zero, one, and two dimensions, respectively. The schemes utilizing centric sampling were found to underestimate the temperature rise, with RMSE values of 1.05 °C and 1.31 °C, for variable density sampling in zero and two dimensions, respectively. Similar subsampling schemes with variable density sampling implemented in zero and two dimensions in a non-EPI GRE pulse sequence both resulted in accurate temperature measurements (RMSE of 0.70 °C and 0.63 °C, respectively). With sequential sampling in the described EPI implementation, temperature monitoring over a 192 × 144 × 135 mm{sup 3} FOV with a temporal resolution of 3.6 s was achieved, while keeping the RMSE compared to fully sampled “truth” below 0.35 °C. Conclusions: When segmented EPI readouts are used in conjunction with k-space subsampling for MR thermometry applications, sampling schemes with sequential sampling, with or without variable density sampling, obtain accurate phase and temperature measurements when using a TCR reconstruction algorithm. Improved temperature measurement accuracy can be achieved with variable density sampling. Centric sampling leads to phase bias, resulting in temperature underestimations.« less

  2. Space Station: Leadership for the Future

    NASA Technical Reports Server (NTRS)

    Martin, Franklin D.; Finn, Terence T.

    1987-01-01

    No longer limited to occasional spectaculars, space has become an essential, almost commonplace dimension of national life. Among other things, space is an arena of competition with our allies and adversaries, a place of business, a field of research, and an avenue of cooperation with our allies. The space station will play a critical role in each of these endeavors. Perhaps the most significant feature of the space station, essential to its utility for science, commerce, and technology, is the permanent nature of its crew. The space station will build upon the tradition of employing new capabilities to explore further and question deeper, and by providing a permanent presence, the station should significantly increase the opportunities for conducting research in space. Economic productivity is, in part, a function of technical innovation. A major thrust of the station design effort is devoted to enhancing performance through advanced technology. The space station represents the commitment of the United States to a future in space. Perhaps most importantly, as recovery from the loss of Challenger and its crew continues, the space station symbolizes the national determination to remain undeterred by tragedy and to continue exploring the frontiers of space.

  3. The value of integrating policy people and space in research.

    PubMed

    Hecker, Louise; Birla, Ravi K

    2009-03-01

    In this article, we address several tangible and intangible factors, which are difficult to quantify and often overlooked yet are crucial for research success. We discuss three dimensions which encompass: (1) policy, (2) people, and (3) space. Policies, such as rules and regulations, define the culture of any research program/initiative. Governing rules and regulations defined within these policies are dictated by cultural values. Individuals who exhibit strong leadership, promote innovation, and exercise strategic planning often determine the governing policies. People are the most valuable asset available to any institution. Ensuring the professional growth (personal and scientific) and creating an environment which supports collaborative and collegial research through teamwork are factors that are important for individuals. Space, the physical work environment, is the third dimension of our model and is often an underutilized resource. In addition to the physical layout and design of the space, creating a positive work atmosphere which supports research initiatives is equally important and can create valuable momentum to research efforts. Collectively, these three dimensions (policy, people, and space) have a significant impact on the success of any research initiative. The primary objective of this article is to create awareness and emphasize the importance of implementing these variables within research initiatives in academic settings.

  4. Defining a Conceptual Topography of Word Concreteness: Clustering Properties of Emotion, Sensation, and Magnitude among 750 English Words

    PubMed Central

    Troche, Joshua; Crutch, Sebastian J.; Reilly, Jamie

    2017-01-01

    Cognitive science has a longstanding interest in the ways that people acquire and use abstract vs. concrete words (e.g., truth vs. piano). One dominant theory holds that abstract and concrete words are subserved by two parallel semantic systems. We recently proposed an alternative account of abstract-concrete word representation premised upon a unitary, high dimensional semantic space wherein word meaning is nested. We hypothesize that a range of cognitive and perceptual dimensions (e.g., emotion, time, space, color, size, visual form) bound this space, forming a conceptual topography. Here we report a normative study where we examined the clustering properties of a sample of English words (N = 750) spanning a spectrum of concreteness in a continuous manner from highly abstract to highly concrete. Participants (N = 328) rated each target word on a range of 14 cognitive dimensions (e.g., color, emotion, valence, polarity, motion, space). The dimensions reduced to three factors: Endogenous factor, Exogenous factor, and Magnitude factor. Concepts were plotted in a unified, multimodal space with concrete and abstract concepts along a continuous continuum. We discuss theoretical implications and practical applications of this dataset. These word norms are freely available for download and use at http://www.reilly-coglab.com/data/. PMID:29075224

  5. Defining a Conceptual Topography of Word Concreteness: Clustering Properties of Emotion, Sensation, and Magnitude among 750 English Words.

    PubMed

    Troche, Joshua; Crutch, Sebastian J; Reilly, Jamie

    2017-01-01

    Cognitive science has a longstanding interest in the ways that people acquire and use abstract vs. concrete words (e.g., truth vs. piano). One dominant theory holds that abstract and concrete words are subserved by two parallel semantic systems. We recently proposed an alternative account of abstract-concrete word representation premised upon a unitary, high dimensional semantic space wherein word meaning is nested. We hypothesize that a range of cognitive and perceptual dimensions (e.g., emotion, time, space, color, size, visual form) bound this space, forming a conceptual topography. Here we report a normative study where we examined the clustering properties of a sample of English words ( N = 750) spanning a spectrum of concreteness in a continuous manner from highly abstract to highly concrete. Participants ( N = 328) rated each target word on a range of 14 cognitive dimensions (e.g., color, emotion, valence, polarity, motion, space). The dimensions reduced to three factors: Endogenous factor, Exogenous factor, and Magnitude factor. Concepts were plotted in a unified, multimodal space with concrete and abstract concepts along a continuous continuum. We discuss theoretical implications and practical applications of this dataset. These word norms are freely available for download and use at http://www.reilly-coglab.com/data/.

  6. Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex.

    PubMed

    Sloas, David C; Zhuo, Ran; Xue, Hongbo; Chambers, Anna R; Kolaczyk, Eric; Polley, Daniel B; Sen, Kamal

    2016-01-01

    Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices.

  7. Gamut relativity: a new computational approach to brightness and lightness perception.

    PubMed

    Vladusich, Tony

    2013-01-09

    This article deconstructs the conventional theory that "brightness" and "lightness" constitute perceptual dimensions corresponding to the physical dimensions of luminance and reflectance, and builds in its place the theory that brightness and lightness correspond to computationally defined "modes," rather than dimensions, of perception. According to the theory, called gamut relativity, "blackness" and "whiteness" constitute the perceptual dimensions (forming a two-dimensional "blackness-whiteness" space) underlying achromatic color perception (black, white, and gray shades). These perceptual dimensions are postulated to be related to the neural activity levels in the ON and OFF channels of vision. The theory unifies and generalizes a number of extant concepts in the brightness and lightness literature, such as simultaneous contrast, anchoring, and scission, and quantitatively simulates several challenging perceptual phenomena, including the staircase Gelb effect and the effects of task instructions on achromatic color-matching behavior, all with a single free parameter. The theory also provides a new conception of achromatic color constancy in terms of the relative distances between points in blackness-whiteness space. The theory suggests a host of striking conclusions, the most important of which is that the perceptual dimensions of vision should be generically specified according to the computational properties of the brain, rather than in terms of "reified" physical dimensions. This new approach replaces the computational goal of estimating absolute physical quantities ("inverse optics") with the goal of computing object properties relatively.

  8. On supersymmetric AdS6 solutions in 10 and 11 dimensions

    NASA Astrophysics Data System (ADS)

    Gutowski, J.; Papadopoulos, G.

    2017-12-01

    We prove a non-existence theorem for smooth, supersymmetric, warped AdS 6 solutions with connected, compact without boundary internal space in D = 11 and (massive) IIA supergravities. In IIB supergravity we show that if such AdS 6 solutions exist, then the NSNS and RR 3-form fluxes must be linearly independent and certain spinor bilinears must be appropriately restricted. Moreover we demonstrate that the internal space admits an so(3) action which leaves all the fields invariant and for smooth solutions the principal orbits must have co-dimension two. We also describe the topology and geometry of internal spaces that admit such a so(3) action and show that there are no solutions for which the internal space has topology F × S 2, where F is an oriented surface.

  9. The effects of colours, shapes and boundaries of landscapes on perception, emotion and mentalising processes promoting health and well-being.

    PubMed

    Lengen, Charis

    2015-09-01

    Place has a special characteristic - a physical visual shape - that operates as an intensive visual idea. Drawing from the 'therapeutic landscape' concept (Gesler, 1992), this study focuses on the clients in a psychiatric clinic in Switzerland and how they experience place through a psychotherapeutic painting and autobiographical narration process. Based on an inductive qualitative approach, the narratives are structured in an open coding process orientated toward 'blue' and 'green' space, based on the space and place discourse of Relph (1976). Two dimensions of Relph's (1976) 'perceptual and existential' space exist in the narratives of the clients: firstly an individual dimension associated with perception and feelings, with meaning and symbolism, as well as with health and wellbeing; and secondly, a place-landscape dimension with diversification of colours, shapes and borders. In the interaction between individuals and place and landscape, a perceptional, emotional, mentalising process emerges that contributes meaningfully to health and well-being. Copyright © 2015. Published by Elsevier Ltd.

  10. The Many Dimensions of Program Management

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1992-01-01

    For the purposes of this paper, program refers to a collection of activities or projects which must be performed according to a plan or schedule. The Space Exploration Initiative within the National Aeronautics and Space Administration (NASA) is an example. Dimensionality refers to both the various perspectives of a program and to the components within that perspective. It is, thus, appropriate to think of dimensions of dimensionality. For example, one dimension or perspective of a program is the projects which perform the program. Within the project dimension, the individual projects are the components of that dimensionality. The number of projects defines the spatial dimensionality of the project dimension. Thus, each perspective or dimension has a dimensionality of its own. The structure and associated values of all the various perspectives of a program define the program. A project refers to the collection of activities required to conceive, sell, design, develop, evaluate, produce, operate, support, evolve, and retire a given system. A project thus effects the life cycle of given system. A project is, thus, the system to conceive, sell, design, develop, evaluate, produce, operate, support, evolve, and retire a system. A program, thus, effects the life cycle of the collection of projects required to effect the collection of systems required to implement the program.

  11. The rationale for fundamental research in space biology: Introduction and background

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W.; Krauss, Robert W.

    1993-01-01

    With the construction of Space Station Freedom, NASA will have available a new platform for experiments in space that promises many advantages over those already flown. Biologists are poised to take advantage of the greater space, the increased power, and especially the long duration of the station for a cascade of innovative experiments in fundamental science that are long overdue. The unique space environment will provide new dimensions for approaching some of the most challenging problems still facing modern biology. Solutions to basic questions about living systems, which may now be grown through many generations in space, will not only explain abnormalities already observed there, but will add to our understanding of how life functions on Earth. Much will be learned about evolution that has built us the way we are, but also about what it has in store for the Earth's species in the future. NASA must not lose this opportunity to contribute to the welfare of the peoples of the Earth while at the same time create knowledge that will enable human exploration of space in the decades ahead.

  12. Shape component analysis: structure-preserving dimension reduction on biological shape spaces.

    PubMed

    Lee, Hao-Chih; Liao, Tao; Zhang, Yongjie Jessica; Yang, Ge

    2016-03-01

    Quantitative shape analysis is required by a wide range of biological studies across diverse scales, ranging from molecules to cells and organisms. In particular, high-throughput and systems-level studies of biological structures and functions have started to produce large volumes of complex high-dimensional shape data. Analysis and understanding of high-dimensional biological shape data require dimension-reduction techniques. We have developed a technique for non-linear dimension reduction of 2D and 3D biological shape representations on their Riemannian spaces. A key feature of this technique is that it preserves distances between different shapes in an embedded low-dimensional shape space. We demonstrate an application of this technique by combining it with non-linear mean-shift clustering on the Riemannian spaces for unsupervised clustering of shapes of cellular organelles and proteins. Source code and data for reproducing results of this article are freely available at https://github.com/ccdlcmu/shape_component_analysis_Matlab The implementation was made in MATLAB and supported on MS Windows, Linux and Mac OS. geyang@andrew.cmu.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Compacted dimensions and singular plasmonic surfaces.

    PubMed

    Pendry, J B; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-17

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer. Copyright © 2017, American Association for the Advancement of Science.

  14. Higher dimensional Taub-NUT spaces and applications

    NASA Astrophysics Data System (ADS)

    Stelea, Cristian Ionut

    In the first part of this thesis we discuss classes of new exact NUT-charged solutions in four dimensions and higher, while in the remainder of the thesis we make a study of their properties and their possible applications. Specifically, in four dimensions we construct new families of axisymmetric vacuum solutions using a solution-generating technique based on the hidden SL(2,R) symmetry of the effective action. In particular, using the Schwarzschild solution as a seed we obtain the Zipoy-Voorhees generalisation of the Taub-NUT solution and of the Eguchi-Hanson soliton. Using the C-metric as a seed, we obtain and study the accelerating versions of all the above solutions. In higher dimensions we present new classes of NUT-charged spaces, generalising the previously known even-dimensional solutions to odd and even dimensions, as well as to spaces with multiple NUT-parameters. We also find the most general form of the odd-dimensional Eguchi-Hanson solitons. We use such solutions to investigate the thermodynamic properties of NUT-charged spaces in (A)dS backgrounds. These have been shown to yield counter-examples to some of the conjectures advanced in the still elusive dS/CFT paradigm (such as the maximal mass conjecture and Bousso's entropic N-bound). One important application of NUT-charged spaces is to construct higher dimensional generalisations of Kaluza-Klein magnetic monopoles, generalising the known 5-dimensional Kaluza-Klein soliton. Another interesting application involves a study of time-dependent higher-dimensional bubbles-of-nothing generated from NUT-charged solutions. We use them to test the AdS/CFT conjecture as well as to generate, by using stringy Hopf-dualities, new interesting time-dependent solutions in string theory. Finally, we construct and study new NUT-charged solutions in higher-dimensional Einstein-Maxwell theories, generalising the known Reissner-Nordstrom solutions.

  15. Anisotropic fractal media by vector calculus in non-integer dimensional space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less

  16. Neural encoding of large-scale three-dimensional space-properties and constraints.

    PubMed

    Jeffery, Kate J; Wilson, Jonathan J; Casali, Giulio; Hayman, Robin M

    2015-01-01

    How the brain represents represent large-scale, navigable space has been the topic of intensive investigation for several decades, resulting in the discovery that neurons in a complex network of cortical and subcortical brain regions co-operatively encode distance, direction, place, movement etc. using a variety of different sensory inputs. However, such studies have mainly been conducted in simple laboratory settings in which animals explore small, two-dimensional (i.e., flat) arenas. The real world, by contrast, is complex and three dimensional with hills, valleys, tunnels, branches, and-for species that can swim or fly-large volumetric spaces. Adding an additional dimension to space adds coding challenges, a primary reason for which is that several basic geometric properties are different in three dimensions. This article will explore the consequences of these challenges for the establishment of a functional three-dimensional metric map of space, one of which is that the brains of some species might have evolved to reduce the dimensionality of the representational space and thus sidestep some of these problems.

  17. Kids' Perceptions toward Children's Ward Healing Environments: A Case Study of Taiwan University Children's Hospital.

    PubMed

    Woo, Jeng-Chung; Lin, Yi-Ling

    2016-01-01

    This paper summarizes the opinions of experts who participated in designing the environment of a children's hospital and reports the results of a questionnaire survey conducted among hospital users. The grounded theory method was adopted to analyze 292 concepts, 79 open codes, 25 axial codes, and 4 selective codes; in addition, confirmatory factor analysis and reliability analysis were performed to identify elements for designing a healing environment in a children's hospital, and 21 elements from 4 dimensions, namely, emotions, space design, interpersonal interaction, and pleasant surroundings, were determined. Subsequently, this study examined the perceptions of 401 children at National Taiwan University Children's Hospital. The results revealed that, regarding the children's responses to the four dimensions and their overall perception, younger children accepted the healing environment to a significantly higher degree than did older children. The sex effect was significant for the space design dimension, and it was not significant for the other dimensions.

  18. Kids' Perceptions toward Children's Ward Healing Environments: A Case Study of Taiwan University Children's Hospital

    PubMed

    Woo, Jeng-Chung; Lin, Yi-Ling

    2016-01-01

    This paper summarizes the opinions of experts who participated in designing the environment of a children's hospital and reports the results of a questionnaire survey conducted among hospital users. The grounded theory method was adopted to analyze 292 concepts, 79 open codes, 25 axial codes, and 4 selective codes; in addition, confirmatory factor analysis and reliability analysis were performed to identify elements for designing a healing environment in a children's hospital, and 21 elements from 4 dimensions, namely, emotions, space design, interpersonal interaction, and pleasant surroundings, were determined. Subsequently, this study examined the perceptions of 401 children at National Taiwan University Children's Hospital. The results revealed that, regarding the children's responses to the four dimensions and their overall perception, younger children accepted the healing environment to a significantly higher degree than did older children. The sex effect was significant for the space design dimension, and it was not significant for the other dimensions. © 2016 J.-C. Woo and Y.-L. Lin.

  19. Anthropometric evaluation of the Creches children furniture in Turkey.

    PubMed

    Barli, Onder; Sari, Reyhan Midilli; Elmali, Derya; Aydintan, Erkan

    2006-12-01

    The dimensions of the living and working space and buildings, the types of material and different riggings should be designed to conform to the users' anthropometric measures. The first requirement to design on ergonomic system is to measure the human being who will work and live in that system. Because of this, anthropometric measures are the most frequently used ergonomic data during the design process. In this research paper, we attempt to organize a new data base of anthropometric data to use in the design of children's equipment and furniture used in crèches. A starting point for research on the proper dimensions of creche furniture is to investigate how the dimensions of furniture reflect the body dimensions and the functional needs of the children using furniture. The anthropometric data of 3, 4 and 5 year-old-children in crèches was used. We report the results of the measurements of 18 anthropometric characteristics of children which constitute a set of basic data for the design of functional spaces and furniture.

  20. Self-consistent one dimension in space and three dimension in velocity kinetic trajectory simulation model of magnetized plasma-wall transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalise, Roshan, E-mail: plasma.roshan@gmail.com; Khanal, Raju

    2015-11-15

    We have developed a self-consistent 1d3v (one dimension in space and three dimension in velocity) Kinetic Trajectory Simulation (KTS) model, which can be used for modeling various situations of interest and yields results of high accuracy. Exact ion trajectories are followed, to calculate along them the ion distribution function, assuming an arbitrary injection ion distribution. The electrons, on the other hand, are assumed to have a cut-off Maxwellian velocity distribution at injection and their density distribution is obtained analytically. Starting from an initial guess, the potential profile is iterated towards the final time-independent self-consistent state. We have used it tomore » study plasma sheath region formed in presence of an oblique magnetic field. Our results agree well with previous works from other models, and hence, we expect our 1d3v KTS model to provide a basis for the studying of all types of magnetized plasmas, yielding more accurate results.« less

  1. Spatiotemporal accessible solitons in fractional dimensions.

    PubMed

    Zhong, Wei-Ping; Belić, Milivoj R; Malomed, Boris A; Zhang, Yiqi; Huang, Tingwen

    2016-07-01

    We report solutions for solitons of the "accessible" type in globally nonlocal nonlinear media of fractional dimension (FD), viz., for self-trapped modes in the space of effective dimension 2

  2. Throat quantization of the Schwarzschild-Tangherlini(-AdS) black hole

    NASA Astrophysics Data System (ADS)

    Maeda, Hideki

    2018-01-01

    By the throat quantization pioneered by Louko and Mäkelä, we derive the mass and area/entropy spectra for the Schwarzschild-Tangherlini-type asymptotically flat or AdS vacuum black hole in arbitrary dimensions. Using the WKB approximation for black holes with large mass, we show that area/entropy is equally spaced for asymptotically flat black holes, while mass is equally spaced for asymptotically AdS black holes. Exact spectra can be obtained for toroidal AdS black holes in arbitrary dimensions including the three-dimensional BTZ black hole.

  3. Space proton transport in one dimension

    NASA Technical Reports Server (NTRS)

    Lamkin, S. L.; Khandelwal, G. S.; Shinn, J. L.; Wilson, J. W.

    1994-01-01

    An approximate evaluation procedure is derived for a second-order theory of coupled nucleon transport in one dimension. An analytical solution with a simplified interaction model is used to determine quadrature parameters to minimize truncation error. Effects of the improved method on transport solutions with the BRYNTRN data base are evaluated. Comparisons with Monte Carlo benchmarks are given. Using different shield materials, the computational procedure is used to study the physics of space protons. A transition effect occurs in tissue near the shield interface and is most important in shields of high atomic number.

  4. General relativity with small cosmological constant from spontaneous compactification of Lovelock theory in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canfora, Fabrizio; Willison, Steven; Giacomini, Alex

    2009-08-15

    It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effectmore » opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.« less

  5. Quantifying networks complexity from information geometry viewpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felice, Domenico, E-mail: domenico.felice@unicam.it; Mancini, Stefano; INFN-Sezione di Perugia, Via A. Pascoli, I-06123 Perugia

    We consider a Gaussian statistical model whose parameter space is given by the variances of random variables. Underlying this model we identify networks by interpreting random variables as sitting on vertices and their correlations as weighted edges among vertices. We then associate to the parameter space a statistical manifold endowed with a Riemannian metric structure (that of Fisher-Rao). Going on, in analogy with the microcanonical definition of entropy in Statistical Mechanics, we introduce an entropic measure of networks complexity. We prove that it is invariant under networks isomorphism. Above all, considering networks as simplicial complexes, we evaluate this entropy onmore » simplexes and find that it monotonically increases with their dimension.« less

  6. The Cauchy problem for space-time monopole equations in Sobolev spaces

    NASA Astrophysics Data System (ADS)

    Huh, Hyungjin; Yim, Jihyun

    2018-04-01

    We consider the initial value problem of space-time monopole equations in one space dimension with initial data in Sobolev space Hs. Observing null structures of the system, we prove local well-posedness in almost critical space. Unconditional uniqueness and global existence are proved for s ≥ 0. Moreover, we show that the H1 Sobolev norm grows at a rate of at most c exp(ct2).

  7. The Structure of Integral Dimensions: Contrasting Topological and Cartesian Representations

    ERIC Educational Resources Information Center

    Jones, Matt; Goldstone, Robert L.

    2013-01-01

    Diverse evidence shows that perceptually integral dimensions, such as those composing color, are represented holistically. However, the nature of these holistic representations is poorly understood. Extant theories, such as those founded on multidimensional scaling or general recognition theory, model integral stimulus spaces using a Cartesian…

  8. Dimensional discontinuity in quantum communication complexity at dimension seven

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Pawłowski, Marcin; Żukowski, Marek; Bourennane, Mohamed

    2017-02-01

    Entanglement-assisted classical communication and transmission of a quantum system are the two quantum resources for information processing. Many information tasks can be performed using either quantum resource. However, this equivalence is not always present since entanglement-assisted classical communication is sometimes known to be the better performing resource. Here, we show not only the opposite phenomenon, that there exist tasks for which transmission of a quantum system is a more powerful resource than entanglement-assisted classical communication, but also that such phenomena can have a surprisingly strong dependence on the dimension of Hilbert space. We introduce a family of communication complexity problems parametrized by the dimension of Hilbert space and study the performance of each quantum resource. Under an additional assumption of a linear strategy for the receiving party, we find that for low dimensions the two resources perform equally well, whereas for dimension seven and above the equivalence is suddenly broken and transmission of a quantum system becomes more powerful than entanglement-assisted classical communication. Moreover, we find that transmission of a quantum system may even outperform classical communication assisted by the stronger-than-quantum correlations obtained from the principle of macroscopic locality.

  9. Three FORTRAN programs for finite-difference solutions to binary diffusion in one and two phases with composition-and time-dependent diffusion coefficients

    USGS Publications Warehouse

    Sanford, R.F.

    1982-01-01

    Geological examples of binary diffusion are numerous. They are potential indicators of the duration and rates of geological processes. Analytical solutions to the diffusion equations generally do not allow for variable diffusion coefficients, changing boundary conditions, and impingement of diffusion fields. The three programs presented here are based on Crank-Nicholson finite-difference approximations, which can take into account these complicating factors. Program 1 describes the diffusion of a component into an initially homogeneous phase that has a constant surface composition. Specifically it is written for Fe-Mg exchange in olivine at oxygen fugacities appropriate for the lunar crust, but other components, phases, or fugacities may be substituted by changing the values of the diffusion coefficient. Program 2 simulates the growth of exsolution lamellae. Program 3 describes the growth of reaction rims. These two programs are written for pseudobinary Ca-(Mg, Fe) exchange in pyroxenes. In all three programs, the diffusion coefficients and boundary conditions can be varied systematically with time. To enable users to employ widely different numerical values for diffusion coefficients and diffusion distance, the grid spacing in the space dimension and the increment by which the grid spacing in the time dimension is increased at each time step are input constants that can be varied each time the programs are run to yield a solution of the desired accuracy. ?? 1982.

  10. Reshaping USAF Culture and Strategy: Lasting Themes and Emerging Trends

    DTIC Science & Technology

    2011-12-12

    operations are well-rooted in the air and space experience, near space concepts have struggled to develop the organizational 22 momentum ...space). Nevertheless, by July 2005, the near space concept had achieved sufficient momentum for General Lance Lord (then Commander of Air Force... Bernoulli ) the vertical dimension. Although operating at the upper reaches of the atmosphere, near space flight is bound by Bernoulian principles. The

  11. A Computational and Experimental Study of Resonators in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Ju, H.; Jones, Michael G.; Watson, Willie R.; Parrott, Tony L.

    2009-01-01

    In a previous work by the present authors, a computational and experimental investigation of the acoustic properties of two-dimensional slit resonators was carried out. The present paper reports the results of a study extending the previous work to three dimensions. This investigation has two basic objectives. The first is to validate the computed results from direct numerical simulations of the flow and acoustic fields of slit resonators in three dimensions by comparing with experimental measurements in a normal incidence impedance tube. The second objective is to study the flow physics of resonant liners responsible for sound wave dissipation. Extensive comparisons are provided between computed and measured acoustic liner properties with both discrete frequency and broadband sound sources. Good agreements are found over a wide range of frequencies and sound pressure levels. Direct numerical simulation confirms the previous finding in two dimensions that vortex shedding is the dominant dissipation mechanism at high sound pressure intensity. However, it is observed that the behavior of the shed vortices in three dimensions is quite different from those of two dimensions. In three dimensions, the shed vortices tend to evolve into ring (circular in plan form) vortices, even though the slit resonator opening from which the vortices are shed has an aspect ratio of 2.5. Under the excitation of discrete frequency sound, the shed vortices align themselves into two regularly spaced vortex trains moving away from the resonator opening in opposite directions. This is different from the chaotic shedding of vortices found in two-dimensional simulations. The effect of slit aspect ratio at a fixed porosity is briefly studied. For the range of liners considered in this investigation, it is found that the absorption coefficient of a liner increases when the open area of the single slit is subdivided into multiple, smaller slits.

  12. Attentional Factors in Conceptual Congruency

    ERIC Educational Resources Information Center

    Santiago, Julio; Ouellet, Marc; Roman, Antonio; Valenzuela, Javier

    2012-01-01

    Conceptual congruency effects are biases induced by an irrelevant conceptual dimension of a task (e.g., location in vertical space) on the processing of another, relevant dimension (e.g., judging words' emotional evaluation). Such effects are a central empirical pillar for recent views about how the mind/brain represents concepts. In the present…

  13. Anthropometry and Standards for Wheeled Mobility: An International Comparison

    ERIC Educational Resources Information Center

    Steinfeld, Edward; Maisel, Jordana; Feathers, David; D'Souza, Clive

    2010-01-01

    Space requirements for accommodating wheeled mobility devices and their users in the built environment are key components of standards for accessible design. These requirements typically include dimensions for clear floor areas, maneuvering clearances, seat and knee clearance heights, as well as some reference dimensions on wheeled mobility device…

  14. a New Method for Calculating Fractal Dimensions of Porous Media Based on Pore Size Distribution

    NASA Astrophysics Data System (ADS)

    Xia, Yuxuan; Cai, Jianchao; Wei, Wei; Hu, Xiangyun; Wang, Xin; Ge, Xinmin

    Fractal theory has been widely used in petrophysical properties of porous rocks over several decades and determination of fractal dimensions is always the focus of researches and applications by means of fractal-based methods. In this work, a new method for calculating pore space fractal dimension and tortuosity fractal dimension of porous media is derived based on fractal capillary model assumption. The presented work establishes relationship between fractal dimensions and pore size distribution, which can be directly used to calculate the fractal dimensions. The published pore size distribution data for eight sandstone samples are used to calculate the fractal dimensions and simultaneously compared with prediction results from analytical expression. In addition, the proposed fractal dimension method is also tested through Micro-CT images of three sandstone cores, and are compared with fractal dimensions by box-counting algorithm. The test results also prove a self-similar fractal range in sandstone when excluding smaller pores.

  15. The Representation of Three-Dimensional Space in Fish

    PubMed Central

    Burt de Perera, Theresa; Holbrook, Robert I.; Davis, Victoria

    2016-01-01

    In mammals, the so-called “seat of the cognitive map” is located in place cells within the hippocampus. Recent work suggests that the shape of place cell fields might be defined by the animals’ natural movement; in rats the fields appear to be laterally compressed (meaning that the spatial map of the animal is more highly resolved in the horizontal dimensions than in the vertical), whereas the place cell fields of bats are statistically spherical (which should result in a spatial map that is equally resolved in all three dimensions). It follows that navigational error should be equal in the horizontal and vertical dimensions in animals that travel freely through volumes, whereas in surface-bound animals would demonstrate greater vertical error. Here, we describe behavioral experiments on pelagic fish in which we investigated the way that fish encode three-dimensional space and we make inferences about the underlying processing. Our work suggests that fish, like mammals, have a higher order representation of space that assembles incoming sensory information into a neural unit that can be used to determine position and heading in three-dimensions. Further, our results are consistent with this representation being encoded isotropically, as would be expected for animals that move freely through volumes. Definitive evidence for spherical place fields in fish will not only reveal the neural correlates of space to be a deep seated vertebrate trait, but will also help address the questions of the degree to which environment spatial ecology has shaped cognitive processes and their underlying neural mechanisms. PMID:27014002

  16. SIC-POVMS and MUBS: Geometrical Relationships in Prime Dimension

    NASA Astrophysics Data System (ADS)

    Appleby, D. M.

    2009-03-01

    The paper concerns Weyl-Heisenberg covariant SIC-POVMs (symmetric informationally complete positive operator valued measures) and full sets of MUBs (mutually unbiased bases) in prime dimension. When represented as vectors in generalized Bloch space a SIC-POVM forms a d2-1 dimensional regular simplex (d being the Hilbert space dimension). By contrast, the generalized Bloch vectors representing a full set of MUBs form d+1 mutually orthogonal d-1 dimensional regular simplices. In this paper we show that, in the Weyl-Heisenberg case, there are some simple geometrical relationships between the single SIC-POVM simplex and the d+1 MUB simplices. We go on to give geometrical interpretations of the minimum uncertainty states introduced by Wootters and Sussman, and by Appleby, Dang and Fuchs, and of the fiduciality condition given by Appleby, Dang and Fuchs.

  17. Carbon Nanotube Tape Vibrating Gyroscope

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis Stephen (Inventor)

    2016-01-01

    A vibrating gyroscope includes a piezoelectric strip having length and width dimensions. The piezoelectric strip includes a piezoelectric material and carbon nanotubes (CNTs) substantially aligned and polled along the strip's length dimension. A spindle having an axis of rotation is coupled to the piezoelectric strip. The axis of rotation is parallel to the strip's width dimension. A first capacitance sensor is mechanically coupled to the spindle for rotation therewith. The first capacitance sensor is positioned at one of the strip's opposing ends and is spaced apart from one of the strip's opposing faces. A second capacitance sensor is mechanically coupled to the spindle for rotation therewith. The second capacitance sensor is positioned at another of the strip's opposing ends and is spaced apart from another of the strip's opposing faces. A voltage source applies an AC voltage to the piezoelectric strip.

  18. Solving regularly and singularly perturbed reaction-diffusion equations in three space dimensions

    NASA Astrophysics Data System (ADS)

    Moore, Peter K.

    2007-06-01

    In [P.K. Moore, Effects of basis selection and h-refinement on error estimator reliability and solution efficiency for higher-order methods in three space dimensions, Int. J. Numer. Anal. Mod. 3 (2006) 21-51] a fixed, high-order h-refinement finite element algorithm, Href, was introduced for solving reaction-diffusion equations in three space dimensions. In this paper Href is coupled with continuation creating an automatic method for solving regularly and singularly perturbed reaction-diffusion equations. The simple quasilinear Newton solver of Moore, (2006) is replaced by the nonlinear solver NITSOL [M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19 (1998) 302-318]. Good initial guesses for the nonlinear solver are obtained using continuation in the small parameter ɛ. Two strategies allow adaptive selection of ɛ. The first depends on the rate of convergence of the nonlinear solver and the second implements backtracking in ɛ. Finally a simple method is used to select the initial ɛ. Several examples illustrate the effectiveness of the algorithm.

  19. Unifying model for random matrix theory in arbitrary space dimensions

    NASA Astrophysics Data System (ADS)

    Cicuta, Giovanni M.; Krausser, Johannes; Milkus, Rico; Zaccone, Alessio

    2018-03-01

    A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension d , and for arbitrary values of the lattice coordination number Z , are shown and discussed. As a function of these two parameters (and their ratio Z /d ), the most studied models in random matrix theory (Erdos-Renyi graphs, effective medium, and replicas) can be reproduced in the various limits of block dimensionality d . Remarkably, the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is reproduced exactly in the limit of infinite size of the blocks, or d →∞ , which clarifies the physical meaning of space dimension in these models. We feel that the approximate results for d =3 provided by our method may have many potential applications in the future, from the vibrational spectrum of glasses and elastic networks to wave localization, disordered conductors, random resistor networks, and random walks.

  20. Late time acceleration of the 3-space in a higher dimensional steady state universe in dilaton gravity

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Dereli, Tekin

    2013-02-01

    We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.

  1. Light scattering Q-space analysis of irregularly shaped particles

    NASA Astrophysics Data System (ADS)

    Heinson, Yuli W.; Maughan, Justin B.; Heinson, William R.; Chakrabarti, Amitabha; Sorensen, Christopher M.

    2016-01-01

    We report Q-space analysis of light scattering phase function data for irregularly shaped dust particles and of theoretical model output to describe them. This analysis involves plotting the scattered intensity versus the magnitude of the scattering wave vector q = (4π/λ)sin(θ/2), where λ is the optical wavelength and θ is the scattering angle, on a double-logarithmic plot. In q-space all the particle shapes studied display a scattering pattern which includes a q-independent forward scattering regime; a crossover, Guinier regime when q is near the inverse size; a power law regime; and an enhanced backscattering regime. Power law exponents show a quasi-universal functionality with the internal coupling parameter ρ'. The absolute value of the exponents start from 4 when ρ' < 1, the diffraction limit, and decreases as ρ' increases until a constant 1.75 ± 0.25 when ρ' ≳ 10. The diffraction limit exponent implies that despite their irregular structures, all the particles studied have mass and surface scaling dimensions of Dm = 3 and Ds = 2, respectively. This is different from fractal aggregates that have a power law equal to the fractal dimension Df because Df = Dm = Ds < 3. Spheres have Dm = 3 and Ds = 2 but do not show a single power law nor the same functionality with ρ'. The results presented here imply that Q-space analysis can differentiate between spheres and these two types of irregularly shaped particles. Furthermore, they are applicable to analysis of the contribution of aerosol radiative forcing to climate change and of aerosol remote sensing data.

  2. Characterisation of soils under long-term crop cultivation without fertilisers: a case study in Japan.

    PubMed

    Nakatsuka, Hiroko; Tamura, Kenji

    2016-01-01

    Certain farms in Japan, namely unfertilised farms (UFs), have been able to maintain high productivity for over 40 years without applying fertilisers or composts. This study aimed to characterise the physicochemical, biological and micromorphological properties of soil in UFs compared with control farms in Eniwa and Nariita and to identify characteristics that are associated with crop productivity. In UFs, no plough pan was observed. The thickness of the effective soil depth (ESD) of UFs was greater than that of CFs. The concentrations of soil organic carbon, total nitrogen and nitrate-nitrogen in ESD of UFs were higher than those in ESD of CFs. Soil microstructure observations indicated the strong development of a granular microstructure with large amounts of void space and a high fractal dimension in both surface and subsoil horizons of UFs. Dry yield had a strong correlation with ESD thickness and fractal dimension of voids. Thus, the management of unfertilised cultivation promoted the development of soil aggregation in both A and B horizons. The increase in ESD, soil pore spaces and complexity with the development of subsoil structure improved the productivity of unfertilised cultivation.

  3. Coil Compression for Accelerated Imaging with Cartesian Sampling

    PubMed Central

    Zhang, Tao; Pauly, John M.; Vasanawala, Shreyas S.; Lustig, Michael

    2012-01-01

    MRI using receiver arrays with many coil elements can provide high signal-to-noise ratio and increase parallel imaging acceleration. At the same time, the growing number of elements results in larger datasets and more computation in the reconstruction. This is of particular concern in 3D acquisitions and in iterative reconstructions. Coil compression algorithms are effective in mitigating this problem by compressing data from many channels into fewer virtual coils. In Cartesian sampling there often are fully sampled k-space dimensions. In this work, a new coil compression technique for Cartesian sampling is presented that exploits the spatially varying coil sensitivities in these non-subsampled dimensions for better compression and computation reduction. Instead of directly compressing in k-space, coil compression is performed separately for each spatial location along the fully-sampled directions, followed by an additional alignment process that guarantees the smoothness of the virtual coil sensitivities. This important step provides compatibility with autocalibrating parallel imaging techniques. Its performance is not susceptible to artifacts caused by a tight imaging fieldof-view. High quality compression of in-vivo 3D data from a 32 channel pediatric coil into 6 virtual coils is demonstrated. PMID:22488589

  4. Implications of privacy needs and interpersonal distancing mechanisms for space station design

    NASA Technical Reports Server (NTRS)

    Harrison, Albert A.; Sommer, Robert; Struthers, Nancy; Hoyt, Kathleen

    1988-01-01

    Isolation, confinement, and the characteristics of microgravity will accentuate the need for privacy in the proposed NASA space station, yet limit the mechanism available for achieving it. This study proposes a quantitative model for understanding privacy, interpersonal distancing, and performance, and discusses the practical implications for Space Station design. A review of the relevant literature provided the basis for a database, definitions of physical and psychological distancing, loneliness, and crowding, and a quantitative model of situational privacy. The model defines situational privacy (the match between environment and task), and focuses on interpersonal contact along visual, auditory, olfactory, and tactile dimensions. It involves summing across pairs of crew members, contact dimensions, and time, yet also permits separate analyses of subsets of crew members and contact dimensions. The study concludes that performance will benefit when the type and level of contact afforded by the environment align with that required by the task. The key to achieving this is to design a flexible, definable, and redefinable interior environment that provides occupants with a wide array of options to meet their needs for solitude, limited social interaction, and open group activity. The report presents 49 recommendations in five categories to promote a wide range of privacy options despite the space station's volumetric limitations.

  5. Ambitwistor Strings in Four Dimensions

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Lipstein, Arthur E.; Mason, Lionel

    2014-08-01

    We develop ambitwistor string theories for four dimensions to obtain new formulas for tree-level gauge and gravity amplitudes with arbitrary amounts of supersymmetry. Ambitwistor space is the space of complex null geodesics in complexified Minkowski space, and in contrast to earlier ambitwistor strings, we use twistors rather than vectors to represent this space. Although superficially similar to the original twistor string theories of Witten, Berkovits, and Skinner, these theories differ in the assignment of world sheet spins of the fields, rely on both twistor and dual twistor representatives for the vertex operators, and use the ambitwistor procedure for calculating correlation functions. Our models are much more flexible, no longer requiring maximal supersymmetry, and the resulting formulas for amplitudes are simpler, having substantially reduced moduli. These are supported on the solutions to the scattering equations refined according to helicity and can be checked by comparison with corresponding formulas of Witten and of Cachazo and Skinner.

  6. Topology Change and the Unity of Space

    NASA Astrophysics Data System (ADS)

    Callender, Craig; Weingard, Robert

    Must space be a unity? This question, which exercised Aristotle, Descartes and Kant, is a specific instance of a more general one; namely, can the topology of physical space change with time? In this paper we show how the discussion of the unity of space has been altered but survives in contemporary research in theoretical physics. With a pedagogical review of the role played by the Euler characteristic in the mathematics of relativistic spacetimes, we explain how classical general relativity (modulo considerations about energy conditions) allows virtually unrestrained spatial topology change in four dimensions. We also survey the situation in many other dimensions of interest. However, topology change comes with a cost: a famous theorem by Robert Geroch shows that, for many interesting types of such change, transitions of spatial topology imply the existence of closed timelike curves or temporal non-orientability. Ways of living with this theorem and of evading it are discussed.

  7. Stereoscopic 3D Projections with MITAKA An Important Tool to Get People Interested in Astronomy and Space Science in Peru

    NASA Astrophysics Data System (ADS)

    Shiomi, Nemoto; Shoichi, Itoh; Hidehiko, Agata; Mario, Zegarra; Jose, Ishitsuka; Edwin, Choque; Adita, Quispe; Tsunehiko, Kato

    2014-02-01

    National Astronomical Observatory of Japan has developed space simulation software "Mitaka". By using Mitaka on two PCs and two projectors with polarizing filter, and look through polarized glasses, we can enjoy space travel in three dimensions. Any one can download Mitaka from anywhere in the world by Internet. But, it has been prepared only Japanese and English versions now. We improved a Mitaka Spanish version, and now we are making projections for local people. The experience of the universe in three dimensions is a very memorable for people, and it has become an opportunity to get interested in astronomy and space sciences. A 40 people capacity room, next o to our Planetarium, has been conditioned for 3D projections; also a portable system is available. Due to success of this new outreach system more 3D show rooms will be implemented within the country.

  8. Categorical dimensions of human odor descriptor space revealed by non-negative matrix factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chennubhotla, Chakra; Castro, Jason

    2013-01-01

    In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain un- clear. Here, we use non-negative matrix factorization (NMF) - a dimensionality reduction technique - to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor di- mensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner.more » We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures.« less

  9. An Experimental Study of Dependence of Optimum TBM Cutter Spacing on Pre-set Penetration Depth in Sandstone Fragmentation

    NASA Astrophysics Data System (ADS)

    Han, D. Y.; Cao, P.; Liu, J.; Zhu, J. B.

    2017-12-01

    Cutter spacing is an essential parameter in the TBM design. However, few efforts have been made to study the optimum cutter spacing incorporating penetration depth. To investigate the influence of pre-set penetration depth and cutter spacing on sandstone breakage and TBM performance, a series of sequential laboratory indentation tests were performed in a biaxial compression state. Effects of parameters including penetration force, penetration depth, chip mass, chip size distribution, groove volume, specific energy and maximum angle of lateral crack were investigated. Results show that the total mass of chips, the groove volume and the observed optimum cutter spacing increase with increasing pre-set penetration depth. It is also found that the total mass of chips could be an alternative means to determine optimum cutter spacing. In addition, analysis of chip size distribution suggests that the mass of large chips is dominated by both cutter spacing and pre-set penetration depth. After fractal dimension analysis, we found that cutter spacing and pre-set penetration depth have negligible influence on the formation of small chips and that small chips are formed due to squeezing of cutters and surface abrasion caused by shear failure. Analysis on specific energy indicates that the observed optimum spacing/penetration ratio is 10 for the sandstone, at which, the specific energy and the maximum angle of lateral cracks are smallest. The findings in this paper contribute to better understanding of the coupled effect of cutter spacing and pre-set penetration depth on TBM performance and rock breakage, and provide some guidelines for cutter arrangement.

  10. HZE particle shielding using confined magnetic fields. [high-energy heavy ions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1983-01-01

    The great rigidities characteristic of high energy heavy ion (HZE) particles are judged to preclude near term use of confined magnetic fields of reasonable dimensions and strengths for small spacecraft shielding on long duration manned missions. It is noted that a Mars mission-class shield, although effective against solar protons, would be useless for HZE particles unless the mass and size of the shield are increased by several orders of magnitude (to yield a shield comparable to those contemplated for permanent space stations).

  11. Array Technology for Terahertz Imaging

    NASA Technical Reports Server (NTRS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-01-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  12. A Huygens principle for diffusion and anomalous diffusion in spatially extended systems

    PubMed Central

    Gottwald, Georg A.; Melbourne, Ian

    2013-01-01

    We present a universal view on diffusive behavior in chaotic spatially extended systems for anisotropic and isotropic media. For anisotropic systems, strong chaos leads to diffusive behavior (Brownian motion with drift) and weak chaos leads to superdiffusive behavior (Lévy processes with drift). For isotropic systems, the drift term vanishes and strong chaos again leads to Brownian motion. We establish the existence of a nonlinear Huygens principle for weakly chaotic systems in isotropic media whereby the dynamics behaves diffusively in even space dimension and exhibits superdiffusive behavior in odd space dimensions. PMID:23653481

  13. Domain decomposition for a mixed finite element method in three dimensions

    USGS Publications Warehouse

    Cai, Z.; Parashkevov, R.R.; Russell, T.F.; Wilson, J.D.; Ye, X.

    2003-01-01

    We consider the solution of the discrete linear system resulting from a mixed finite element discretization applied to a second-order elliptic boundary value problem in three dimensions. Based on a decomposition of the velocity space, these equations can be reduced to a discrete elliptic problem by eliminating the pressure through the use of substructures of the domain. The practicality of the reduction relies on a local basis, presented here, for the divergence-free subspace of the velocity space. We consider additive and multiplicative domain decomposition methods for solving the reduced elliptic problem, and their uniform convergence is established.

  14. Nonlocal systems of balance laws in several space dimensions with applications to laser technology

    NASA Astrophysics Data System (ADS)

    Colombo, Rinaldo M.; Marcellini, Francesca

    2015-12-01

    For a class of systems of nonlinear and nonlocal balance laws in several space dimensions, we prove the local in time existence of solutions and their continuous dependence on the initial datum. The choice of this class is motivated by a new model devoted to the description of a metal plate being cut by a laser beam. Using realistic parameters, solutions to this model obtained through numerical integrations meet qualitative properties of real cuts. Moreover, the class of equations considered comprises a model describing the dynamics of solid particles along a conveyor belt.

  15. Portfolios and the market geometry

    NASA Astrophysics Data System (ADS)

    Eleutério, Samuel; Araújo, Tanya; Vilela Mendes, R.

    2014-09-01

    A geometric analysis of return time series, performed in the past, implied that most of the systematic information in the market is contained in a space of small dimension. Here we have explored subspaces of this space to find out the relative performance of portfolios formed from companies that have the largest projections in each one of the subspaces. As expected, it was found that the best performance portfolios are associated with some of the small eigenvalue subspaces and not to the dominant dimensions. This is found to occur in a systematic fashion over an extended period (1990-2008).

  16. A European Space for Education Looking for Its Public

    ERIC Educational Resources Information Center

    Wahlstrom, Ninni

    2010-01-01

    The open method of coordination (OMC) within the Lisbon strategy is discussed in terms of a European Space for Education and "programme ontology". The focus is on indicators and the European dimension, and how they "work" in the forming of contents and identities in this European Space for Education. The OMC is analyzed in…

  17. Multiple-output support vector machine regression with feature selection for arousal/valence space emotion assessment.

    PubMed

    Torres-Valencia, Cristian A; Álvarez, Mauricio A; Orozco-Gutiérrez, Alvaro A

    2014-01-01

    Human emotion recognition (HER) allows the assessment of an affective state of a subject. Until recently, such emotional states were described in terms of discrete emotions, like happiness or contempt. In order to cover a high range of emotions, researchers in the field have introduced different dimensional spaces for emotion description that allow the characterization of affective states in terms of several variables or dimensions that measure distinct aspects of the emotion. One of the most common of such dimensional spaces is the bidimensional Arousal/Valence space. To the best of our knowledge, all HER systems so far have modelled independently, the dimensions in these dimensional spaces. In this paper, we study the effect of modelling the output dimensions simultaneously and show experimentally the advantages in modeling them in this way. We consider a multimodal approach by including features from the Electroencephalogram and a few physiological signals. For modelling the multiple outputs, we employ a multiple output regressor based on support vector machines. We also include an stage of feature selection that is developed within an embedded approach known as Recursive Feature Elimination (RFE), proposed initially for SVM. The results show that several features can be eliminated using the multiple output support vector regressor with RFE without affecting the performance of the regressor. From the analysis of the features selected in smaller subsets via RFE, it can be observed that the signals that are more informative into the arousal and valence space discrimination are the EEG, Electrooculogram/Electromiogram (EOG/EMG) and the Galvanic Skin Response (GSR).

  18. Charged polymers in high dimensions

    NASA Technical Reports Server (NTRS)

    Kantor, Yacov

    1990-01-01

    A Monte Carlo study of charged polymers with either homogeneously distributed frozen charges or with mobile charges has been performed in four and five space dimensions. The results are consistent with the renormalization-group predictions and contradict the predictions of Flory-type theory. Introduction of charge mobility does not modify the behavior of the polymers.

  19. Shuttle passenger couch. [design and performance of engineering model

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Stephenson, M. L.

    1974-01-01

    Conceptual design and fabrication of a full scale shuttle passenger couch engineering model are reported. The model was utilized to verify anthropometric dimensions, reach dimensions, ingress/egress, couch operation, storage space, restraint locations, and crew acceptability. These data were then incorported in the design of the passenger couch verification model that underwent performance tests.

  20. BOX-COUNTING DIMENSION COMPUTED BY α-DENSE CURVES

    NASA Astrophysics Data System (ADS)

    García, G.; Mora, G.; Redtwitz, D. A.

    We introduce a method to reduce to the real case the calculus of the box-counting dimension of subsets of the unit cube In, n > 1. The procedure is based on the existence of special types of α-dense curves (a generalization of the space-filling curves) in In called δ-uniform curves.

  1. Re-Imagining Spaces, Collectivity, and the Political Dimension of Contemporary Art

    ERIC Educational Resources Information Center

    Peters, Clorinde

    2015-01-01

    In a neoliberal moment of cultural production marked by commodification and the dominance of economic values, it is necessary to investigate the cultural, social, and aesthetic value of art. By examining Herbert Marcuse's aesthetic dimension, this article seeks to locate the political and pedagogic potential both in the aesthetics and in the…

  2. Using "Flatland 2: Sphereland" to Help Teach Motion and Multiple Dimensions

    NASA Astrophysics Data System (ADS)

    Caplan, Seth; Johnson, Dano; Vondracek, Mark

    2015-01-01

    The 1884 book Flatland: A Romance of Many Dimensions,1 written by Edwin Abbott, has captured the interest of numerous generations, and has also been used in schools to help students learn and think about the concept of dimension in a creative, fun way. In 2007, a film was released called "Flatland: The Movie,"2 and over one million students have watched it worldwide, primarily in mathematics classes. Since then, a sequel to the "Flatland" movie was released in 2012, entitled "Flatland 2: Sphereland."3 A primary goal of this sequel is to expand the use of the movie beyond mathematics classes and into physics classes because a central premise to "Sphereland" is the notion of warped space. This latest movie provides an engaging and interesting visual way for students to think about both dimension and motion through warped space. In addition, basic motion concepts such as speed and acceleration can be studied by students in introductory physics classes, for instance, by using frame-by-frame analysis of various scenes in the movie.

  3. Border and surface tracing--theoretical foundations.

    PubMed

    Brimkov, Valentin E; Klette, Reinhard

    2008-04-01

    In this paper we define and study digital manifolds of arbitrary dimension, and provide (in particular)a general theoretical basis for curve or surface tracing in picture analysis. The studies involve properties such as one-dimensionality of digital curves and (n-1)-dimensionality of digital hypersurfaces that makes them discrete analogs of corresponding notions in continuous topology. The presented approach is fully based on the concept of adjacency relation and complements the concept of dimension as common in combinatorial topology. This work appears to be the first one on digital manifolds based ona graph-theoretical definition of dimension. In particular, in the n-dimensional digital space, a digital curve is a one-dimensional object and a digital hypersurface is an (n-1)-dimensional object, as it is in the case of curves and hypersurfaces in the Euclidean space. Relying on the obtained properties of digital hypersurfaces, we propose a uniform approach for studying good pairs defined by separations and obtain a classification of good pairs in arbitrary dimension. We also discuss possible applications of the presented definitions and results.

  4. Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions.

    PubMed

    Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V

    2017-07-05

    Neural circuits must transform new inputs into outputs without prematurely affecting downstream circuits while still maintaining other ongoing communication with these targets. We investigated how this isolation is achieved in the motor cortex when macaques received visual feedback signaling a movement perturbation. To overcome limitations in estimating the mapping from cortex to arm movements, we also conducted brain-machine interface (BMI) experiments where we could definitively identify neural firing patterns as output-null or output-potent. This revealed that perturbation-evoked responses were initially restricted to output-null patterns that cancelled out at the neural population code readout and only later entered output-potent neural dimensions. This mechanism was facilitated by the circuit's large null space and its ability to strongly modulate output-potent dimensions when generating corrective movements. These results show that the nervous system can temporarily isolate portions of a circuit's activity from its downstream targets by restricting this activity to the circuit's output-null neural dimensions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. How distinct is the coding of face identity and expression? Evidence for some common dimensions in face space.

    PubMed

    Rhodes, Gillian; Pond, Stephen; Burton, Nichola; Kloth, Nadine; Jeffery, Linda; Bell, Jason; Ewing, Louise; Calder, Andrew J; Palermo, Romina

    2015-09-01

    Traditional models of face perception emphasize distinct routes for processing face identity and expression. These models have been highly influential in guiding neural and behavioural research on the mechanisms of face perception. However, it is becoming clear that specialised brain areas for coding identity and expression may respond to both attributes and that identity and expression perception can interact. Here we use perceptual aftereffects to demonstrate the existence of dimensions in perceptual face space that code both identity and expression, further challenging the traditional view. Specifically, we find a significant positive association between face identity aftereffects and expression aftereffects, which dissociates from other face (gaze) and non-face (tilt) aftereffects. Importantly, individual variation in the adaptive calibration of these common dimensions significantly predicts ability to recognize both identity and expression. These results highlight the role of common dimensions in our ability to recognize identity and expression, and show why the high-level visual processing of these attributes is not entirely distinct. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Attentional focus affects how events are segmented and updated in narrative reading.

    PubMed

    Bailey, Heather R; Kurby, Christopher A; Sargent, Jesse Q; Zacks, Jeffrey M

    2017-08-01

    Readers generate situation models representing described events, but the nature of these representations may differ depending on the reading goals. We assessed whether instructions to pay attention to different situational dimensions affect how individuals structure their situation models (Exp. 1) and how they update these models when situations change (Exp. 2). In Experiment 1, participants read and segmented narrative texts into events. Some readers were oriented to pay specific attention to characters or space. Sentences containing character or spatial-location changes were perceived as event boundaries-particularly if the reader was oriented to characters or space, respectively. In Experiment 2, participants read narratives and responded to recognition probes throughout the texts. Readers who were oriented to the spatial dimension were more likely to update their situation models at spatial changes; all readers tracked the character dimension. The results from both experiments indicated that attention to individual situational dimensions influences how readers segment and update their situation models. More broadly, the results provide evidence for a global situation model updating mechanism that serves to set up new models at important narrative changes.

  7. Optimality of Thermal Expansion Bounds in Three Dimensions

    DOE PAGES

    Watts, Seth E.; Tortorelli, Daniel A.

    2015-02-20

    In this short note, we use topology optimization to design multi-phase isotropic three-dimensional composite materials with extremal combinations of isotropic thermal expansion and bulk modulus. In so doing, we provide evidence that the theoretical bounds for this combination of material properties are optimal. This has been shown in two dimensions, but not heretofore in three dimensions. Finally, we also show that restricting the design space by enforcing material symmetry by construction does not prevent one from obtaining extremal designs.

  8. Kaluza-Klein cosmology from five-dimensional Lovelock-Cartan theory

    NASA Astrophysics Data System (ADS)

    Castillo-Felisola, Oscar; Corral, Cristóbal; del Pino, Simón; Ramírez, Francisca

    2016-12-01

    We study the Kaluza-Klein dimensional reduction of the Lovelock-Cartan theory in five-dimensional spacetime, with a compact dimension of S1 topology. We find cosmological solutions of the Friedmann-Robertson-Walker class in the reduced spacetime. The torsion and the fields arising from the dimensional reduction induce a nonvanishing energy-momentum tensor in four dimensions. We find solutions describing expanding, contracting, and bouncing universes. The model shows a dynamical compactification of the extra dimension in some regions of the parameter space.

  9. Multistage Electromagnetic and Laser Launchers for Affordable, Rapid Access to Space

    DTIC Science & Technology

    2011-07-01

    control procedures. To accommodate this, after each gun build, bore gauges were used to accurately measure the bore dimensions , and the projectile...1. Operating Parameters Projectile Mass 5.4 g Bore Dimensions 17 mm × 17 mm Desired Muzzle Speed ~4.5 km/s (3.2m) ~7 km/s (7 m) Gun Length 3.2 m...for a range of ballistic trajectories of interest to the gun launch. The aeroshell dimensions were chosen as being typical for the launch mass

  10. Physics in space-time with scale-dependent metrics

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  11. Exploring the Birth and Evolution of the Universe: How Detectors Have Revolutionized Space Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H.

    2012-01-01

    The past century has seen tremendous advances in the capability of instruments used for astronomical imaging and spectroscopy. Capabilities of instruments have expanded in many dimensions; the scale of telescopes has grown tremendously, the wavelengths used for astronomy have grown from visible light to the full electromagnetic spectrum, extending from gamma rays to low frequency radio waves. Additional advances have been enabled by the availability of space facilities, which eliminate the effects of the earths atmosphere and magnetosphere, and allow cooling of instruments to avoid instrumental thermal radiation. Even with all these advances, the increase in capability of detection systems has produced truly revolutionary improvements in capability. Today, I will describe the advances in astronomical detection from the photographic plates of the early 20th century to the giant high efficiency focal planes being developed for modern space and ground based astronomical instrument. I will review the demanding performance requirements set by space astronomy, and show how the detector community has risen to the challenge in producing high performance detectors for the Hubble Space Telescope, the Spitzer Space Telescope, and the James Webb Space Telescope, now under development.

  12. Dimensional analysis of the endometrial cavity: how many dimensions should the ideal intrauterine device or system have?

    PubMed

    Goldstuck, Norman D

    2018-01-01

    The geometrical shape of the human uterus most closely approximates that of a prolate ellipsoid. The endometrial cavity itself is more likely to also have the shape of a prolate ellipsoid especially when the extension of the cervix is omitted. Using this information and known endometrial cavity volumes and lateral and vertical dimensions, it is possible to calculate the anteroposterior (AP) dimensions and get a complete evaluation of all possible dimensions of the endometrial cavity. These are singular observations and not part of any other study. The AP dimensions of the endometrial cavity of the uterus were calculated using the formula for the volume of the prolate ellipsoid to complete a three-dimensional picture of the endometrial cavity. Calculations confirm ultrasound imaging which shows large variations in cavity size and shape. Known cavity volumes and length and breadth measurements indicate that the AP diameter may vary from 6.29 to 38.2 mm. These measurements confirm the difficulty of getting a fixed-frame intrauterine device (IUD) to accommodate to a space of highly variable dimensions. This is especially true of three-dimension IUDs. A one-dimensional frameless IUD is most likely to be able to conform to this highly variable space and shape. The endometrial cavity may assume many varied prolate ellipsoid configurations where one or more measurements may be too small to accommodate standard IUDs. A one-dimensional device is most likely to be able to be accommodated by most uterine cavities as compared to two- and three-dimensional devices.

  13. Fractal analysis of polyferric chloride-humic acid (PFC-HA) flocs in different topological spaces.

    PubMed

    Wang, Yili; Lu, Jia; Baiyu, Du; Shi, Baoyou; Wang, Dongsheng

    2009-01-01

    The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) and PFC dosages, were calculated by effective density-maximum diameter, image analysis, and N2 absorption-desorption methods, respectively. The mass fractal dimensions (Df) of PFC-HA flocs were calculated by bi-logarithm relation of effective density with maximum diameter and Logan empirical equation. The Df value was more than 2.0 at initial pH of 7.0, which was 11% and 13% higher than those at pH 9.0 and 5.0, respectively, indicating the most compact flocs formed in flocculated HA water at initial pH of 7.0. The image analysis for those flocs indicates that after flocculating the HA water at initial pH greater than 7.0 with PFC flocculant, the fractal dimensions of D2 (logA vs. logdL) and D3 (logVsphere VS. logdL) of PFC-HA flocs decreased with the increase of PFC dosages, and PFC-HA flocs showed a gradually looser structure. At the optimum dosage of PFC, the D2 (logA vs. logdL) values of the flocs show 14%-43% difference with their corresponding Df, and they even had different tendency with the change of initial pH values. However, the D2 values of the flocs formed at three different initial pH in HA solution had a same tendency with the corresponding Dr. Based on fractal Frenkel-Halsey-Hill (FHH) adsorption and desorption equations, the pore surface fractal dimensions (Ds) for dried powders of PFC-HA flocs formed in HA water with initial pH 9.0 and 7.0 were all close to 2.9421, and the Ds values of flocs formed at initial pH 5.0 were less than 2.3746. It indicated that the pore surface fractal dimensions of PFC-HA flocs dried powder mainly show the irregularity from the mesopore-size distribution and marcopore-size distribution.

  14. Self-quartic interaction for a scalar field in an extended DFR noncommutative space-time

    NASA Astrophysics Data System (ADS)

    Abreu, Everton M. C.; Neves, M. J.

    2014-07-01

    The framework of Dopliche-Fredenhagen-Roberts (DFR) for a noncommutative (NC) space-time is considered as an alternative approach to study the NC space-time of the early Universe. Concerning this formalism, the NC constant parameter, θ, is promoted to coordinate of the space-time and consequently we can describe a field theory in a space-time with extra-dimensions. We will see that there is a canonical momentum associated with this new coordinate in which the effects of a new physics can emerge in the propagation of the fields along the extra-dimensions. The Fourier space of this framework is automatically extended by the addition of the new momenta components. The main concept that we would like to emphasize from the outset is that the formalism demonstrated here will not be constructed by introducing a NC parameter in the system, as usual. It will be generated naturally from an already NC space. We will review that when the components of the new momentum are zero, the (extended) DFR approach is reduced to the usual (canonical) NC case, in which θ is an antisymmetric constant matrix. In this work we will study a scalar field action with self-quartic interaction ϕ4⋆ defined in the DFR NC space-time. We will obtain the Feynman rules in the Fourier space for the scalar propagator and vertex of the model. With these rules we are able to build the radiative corrections to one loop order of the model propagator. The consequences of the NC scale, as well as the propagation of the field in extra-dimensions, will be analyzed in the ultraviolet divergences scenario. We will investigate about the actual possibility that this kμν conjugate momentum has the property of healing the combination of IR/UV divergences that emerges in this recently new NC spacetime quantum field theory.

  15. Entanglement entropy of black holes and anti-de Sitter space/conformal-field-theory correspondence.

    PubMed

    Solodukhin, Sergey N

    2006-11-17

    A recent proposal by Ryu and Takayanagi for a holographic interpretation of entanglement entropy in conformal field theories dual to supergravity on anti-de Sitter space is generalized to include entanglement entropy of black holes living on the boundary of anti-de Sitter space. The generalized proposal is verified in boundary dimensions d=2 and d=4 for both the uv-divergent and uv-finite terms. In dimension d=4 an expansion of entanglement entropy in terms of size L of the subsystem outside the black hole is considered. A new term in the entropy of dual strongly coupled conformal-field theory, which universally grows as L(2)lnL and is proportional to the value of the obstruction tensor at the black hole horizon, is predicted.

  16. A Comparative Study of Measuring Devices Used During Space Shuttle Processing for Inside Diameters

    NASA Technical Reports Server (NTRS)

    Rodriguez, Antonio

    2006-01-01

    During Space Shuttle processing, discrepancies between vehicle dimensions and per print dimensions determine if a part should be refurbished, replaced or accepted "as-is." The engineer's job is to address each discrepancy by choosing the most accurate procedure and tool available, sometimes with up to ten thousands of an inch tolerance. Four methods of measurement are commonly used at the Kennedy Space Center: 1) caliper, 2) mold impressions, 3) optical comparator, 4) dial bore gage. During a problem report evaluation, uncertainty arose between methods after measuring diameters with variations of up to 0.0004" inches. The results showed that computer based measuring devices are extremely accurate, but when human factor is involved in determining points of reference, the results may vary widely compared to more traditional methods. iv

  17. Online Distributed Learning Over Networks in RKH Spaces Using Random Fourier Features

    NASA Astrophysics Data System (ADS)

    Bouboulis, Pantelis; Chouvardas, Symeon; Theodoridis, Sergios

    2018-04-01

    We present a novel diffusion scheme for online kernel-based learning over networks. So far, a major drawback of any online learning algorithm, operating in a reproducing kernel Hilbert space (RKHS), is the need for updating a growing number of parameters as time iterations evolve. Besides complexity, this leads to an increased need of communication resources, in a distributed setting. In contrast, the proposed method approximates the solution as a fixed-size vector (of larger dimension than the input space) using Random Fourier Features. This paves the way to use standard linear combine-then-adapt techniques. To the best of our knowledge, this is the first time that a complete protocol for distributed online learning in RKHS is presented. Conditions for asymptotic convergence and boundness of the networkwise regret are also provided. The simulated tests illustrate the performance of the proposed scheme.

  18. Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Juday, Richard D.

    1991-01-01

    A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.

  19. Micro-Expression Recognition Using Color Spaces.

    PubMed

    Wang, Su-Jing; Yan, Wen-Jing; Li, Xiaobai; Zhao, Guoying; Zhou, Chun-Guang; Fu, Xiaolan; Yang, Minghao; Tao, Jianhua

    2015-12-01

    Micro-expressions are brief involuntary facial expressions that reveal genuine emotions and, thus, help detect lies. Because of their many promising applications, they have attracted the attention of researchers from various fields. Recent research reveals that two perceptual color spaces (CIELab and CIELuv) provide useful information for expression recognition. This paper is an extended version of our International Conference on Pattern Recognition paper, in which we propose a novel color space model, tensor independent color space (TICS), to help recognize micro-expressions. In this paper, we further show that CIELab and CIELuv are also helpful in recognizing micro-expressions, and we indicate why these three color spaces achieve better performance. A micro-expression color video clip is treated as a fourth-order tensor, i.e., a four-dimension array. The first two dimensions are the spatial information, the third is the temporal information, and the fourth is the color information. We transform the fourth dimension from RGB into TICS, in which the color components are as independent as possible. The combination of dynamic texture and independent color components achieves a higher accuracy than does that of RGB. In addition, we define a set of regions of interests (ROIs) based on the facial action coding system and calculated the dynamic texture histograms for each ROI. Experiments are conducted on two micro-expression databases, CASME and CASME 2, and the results show that the performances for TICS, CIELab, and CIELuv are better than those for RGB or gray.

  20. Fully Three-Dimensional Virtual-Reality System

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C.

    1994-01-01

    Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.

  1. Space, time, and the third dimension (model error)

    USGS Publications Warehouse

    Moss, Marshall E.

    1979-01-01

    The space-time tradeoff of hydrologic data collection (the ability to substitute spatial coverage for temporal extension of records or vice versa) is controlled jointly by the statistical properties of the phenomena that are being measured and by the model that is used to meld the information sources. The control exerted on the space-time tradeoff by the model and its accompanying errors has seldom been studied explicitly. The technique, known as Network Analyses for Regional Information (NARI), permits such a study of the regional regression model that is used to relate streamflow parameters to the physical and climatic characteristics of the drainage basin.The NARI technique shows that model improvement is a viable and sometimes necessary means of improving regional data collection systems. Model improvement provides an immediate increase in the accuracy of regional parameter estimation and also increases the information potential of future data collection. Model improvement, which can only be measured in a statistical sense, cannot be quantitatively estimated prior to its achievement; thus an attempt to upgrade a particular model entails a certain degree of risk on the part of the hydrologist.

  2. Variably-saturated groundwater modeling for optimizing managed aquifer recharge using trench infiltration

    USGS Publications Warehouse

    Heilweil, Victor M.; Benoit, Jerome; Healy, Richard W.

    2015-01-01

    Spreading-basin methods have resulted in more than 130 million cubic meters of recharge to the unconfined Navajo Sandstone of southern Utah in the past decade, but infiltration rates have slowed in recent years because of reduced hydraulic gradients and clogging. Trench infiltration is a promising alternative technique for increasing recharge and minimizing evaporation. This paper uses a variably saturated flow model to further investigate the relative importance of the following variables on rates of trench infiltration to unconfined aquifers: saturated hydraulic conductivity, trench spacing and dimensions, initial water-table depth, alternate wet/dry periods, and number of parallel trenches. Modeling results showed (1) increased infiltration with higher hydraulic conductivity, deeper initial water tables, and larger spacing between parallel trenches, (2) deeper or wider trenches do not substantially increase infiltration, (3) alternating wet/dry periods result in less overall infiltration than keeping the trenches continuously full, and (4) larger numbers of parallel trenches within a fixed area increases infiltration but with a diminishing effect as trench spacing becomes tighter. An empirical equation for estimating expected trench infiltration rates as a function of hydraulic conductivity and initial water-table depth was derived and can be used for evaluating feasibility of trench infiltration in other hydrogeologic settings

  3. Shape invariant potentials in higher dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhya, R., E-mail: saudhamini@yahoo.com; Sree Ranjani, S., E-mail: s.sreeranjani@gmail.com; Faculty of Science and Technology, ICFAI foundation for Higher Education,

    2015-08-15

    In this paper we investigate the shape invariance property of a potential in one dimension. We show that a simple ansatz allows us to reconstruct all the known shape invariant potentials in one dimension. This ansatz can be easily extended to arrive at a large class of new shape invariant potentials in arbitrary dimensions. A reformulation of the shape invariance property and possible generalizations are proposed. These may lead to an important extension of the shape invariance property to Hamiltonians that are related to standard potential problems via space time transformations, which are found useful in path integral formulation ofmore » quantum mechanics.« less

  4. Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II

    NASA Astrophysics Data System (ADS)

    Du, Yihong; Guo, Zongming

    We study the diffusive logistic equation with a free boundary in higher space dimensions and heterogeneous environment. Such a model may be used to describe the spreading of a new or invasive species, with the free boundary representing the expanding front. For simplicity, we assume that the environment and the solution are radially symmetric. In the special case of one space dimension and homogeneous environment, this free boundary problem was investigated in Du and Lin (2010) [10]. We prove that the spreading-vanishing dichotomy established in Du and Lin (2010) [10] still holds in the more general and ecologically realistic setting considered here. Moreover, when spreading occurs, we obtain best possible upper and lower bounds for the spreading speed of the expanding front. When the environment is asymptotically homogeneous at infinity, these two bounds coincide. Our results indicate that the asymptotic spreading speed determined by this model does not depend on the spatial dimension.

  5. Exploring children's face-space: a multidimensional scaling analysis of the mental representation of facial identity.

    PubMed

    Nishimura, Mayu; Maurer, Daphne; Gao, Xiaoqing

    2009-07-01

    We explored differences in the mental representation of facial identity between 8-year-olds and adults. The 8-year-olds and adults made similarity judgments of a homogeneous set of faces (individual hair cues removed) using an "odd-man-out" paradigm. Multidimensional scaling (MDS) analyses were performed to represent perceived similarity of faces in a multidimensional space. Five dimensions accounted optimally for the judgments of both children and adults, with similar local clustering of faces. However, the fit of the MDS solutions was better for adults, in part because children's responses were more variable. More children relied predominantly on a single dimension, namely eye color, whereas adults appeared to use multiple dimensions for each judgment. The pattern of findings suggests that children's mental representation of faces has a structure similar to that of adults but that children's judgments are influenced less consistently by that overall structure.

  6. Generalised Eisenhart lift of the Toda chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cariglia, Marco, E-mail: marco@iceb.ufop.br; Gibbons, Gary, E-mail: g.w.gibbons@damtp.cam.ac.uk

    The Toda chain of nearest neighbour interacting particles on a line can be described both in terms of geodesic motion on a manifold with one extra dimension, the Eisenhart lift, or in terms of geodesic motion in a symmetric space with several extra dimensions. We examine the relationship between these two realisations and discover that the symmetric space is a generalised, multi-particle Eisenhart lift of the original problem that reduces to the standard Eisenhart lift. Such generalised Eisenhart lift acts as an inverse Kaluza-Klein reduction, promoting coupling constants to momenta in higher dimension. In particular, isometries of the generalised liftmore » metric correspond to energy preserving transformations that mix coordinates and coupling constants. A by-product of the analysis is that the lift of the Toda Lax pair can be used to construct higher rank Killing tensors for both the standard and generalised lift metrics.« less

  7. Connecting physical and social dimensions of place attachment: What can we learn from attachment to urban recreational spaces?

    PubMed

    Madgin, Rebecca; Bradley, Lisa; Hastings, Annette

    2016-01-01

    This paper is concerned with the ways in which people form attachments to recreational spaces. More specifically it examines the relationship between recreational spaces associated with sporting activity in urban neighbourhoods and place attachment. The focus is on the ways in which changes to these spaces exposes the affective bonds between people and their surroundings. The paper applies a qualitative methodology, namely focus groups and photo elicitation, to the case study of Parkhead, a neighbourhood in the East End of Glasgow. Parkhead has historically been subjected to successive waves of redevelopment as a result of deindustrialization in the late twentieth century. More recently redevelopment associated with the 2014 Commonwealth Games involved further changes to neighbourhood recreational spaces, including refurbishing of existing sports facilities and building new ones. This paper reflects on the cumulative impacts of this redevelopment to conclude (a) that recreational sports spaces provoke multi-layered and complex attachments that are inextricably connected to both temporal and spatial narratives and (b) that research on neighbourhood recreational spaces can develop our understanding of the intricate relationship between the social and physical dimensions of place attachment.

  8. Educational program using four-dimensional presentation of space data and space-borne data with Dagik Earth

    NASA Astrophysics Data System (ADS)

    Saito, Akinori; Yoshida, Daiki; Odagi, Yoko; Takahashi, Midori; Tsugawa, Takuya; Kumano, Yoshisuke

    We developed an educational program of space science data and science data observed from the space using a digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system. The educational program using Dagik Earth has been carried out in classrooms of schools, science museums, and research institutes to show the scientific data of the earth and planets in an intuitive way. We are developing the hardware system, data contents, and education manuals in cooperation with teachers, museum staffs and scientists. The size of the globe used in this system is from 15cm to 2m in diameter. It is selected according to the environment of the presentation. The contents cover the space science, such as aurora and geomagnetic field, the earth science, such as global clouds and earthquakes, and planetary science. Several model class plans are ready to be used in high school and junior high school. In public outreach programs of universities, research institutes, and scientific meetings, special programs have been carried out. We are establishing a community to use and develop this program for the space science education.

  9. The Lyapunov dimension and its estimation via the Leonov method

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. V.

    2016-06-01

    Along with widely used numerical methods for estimating and computing the Lyapunov dimension there is an effective analytical approach, proposed by G.A. Leonov in 1991. The Leonov method is based on the direct Lyapunov method with special Lyapunov-like functions. The advantage of the method is that it allows one to estimate the Lyapunov dimension of invariant sets without localization of the set in the phase space and, in many cases, to get effectively an exact Lyapunov dimension formula. In this work the invariance of the Lyapunov dimension with respect to diffeomorphisms and its connection with the Leonov method are discussed. For discrete-time dynamical systems an analog of Leonov method is suggested. In a simple but rigorous way, here it is presented the connection between the Leonov method and the key related works: Kaplan and Yorke (the concept of the Lyapunov dimension, 1979), Douady and Oesterlé (upper bounds of the Hausdorff dimension via the Lyapunov dimension of maps, 1980), Constantin, Eden, Foiaş, and Temam (upper bounds of the Hausdorff dimension via the Lyapunov exponents and Lyapunov dimension of dynamical systems, 1985-90), and the numerical calculation of the Lyapunov exponents and dimension.

  10. Influence of consumers' cognitive style on results from projective mapping.

    PubMed

    Varela, Paula; Antúnez, Lucía; Berget, Ingunn; Oliveira, Denize; Christensen, Kasper; Vidal, Leticia; Naes, Tormod; Ares, Gastón

    2017-09-01

    Projective mapping (PM), one of the most holistic product profiling methods in approach, is increasingly being used to uncover consumers' perception of products and packages. Assessors rely on a process of synthesis for evaluating product information, which would determine the relative importance of the perceived characteristics they use for mapping them. Individual differences are expected, as participants are not instructed on the characteristics to consider for evaluating the degree of difference among samples, generating different perceptual spaces. Individual differences in cognitive style can affect synthesis processes and thus their perception of similarities and differences among samples. In this study, the influence of the cognitive style in the results of PM was explored. Two consumer studies were performed, one aimed at describing intrinsic sensory characteristics of chocolate flavoured milk and the other one looking into extrinsic (package only) of blueberry yogurts. Consumers completed the wholistic-analytic module of the extended Verbal Imagery Cognitive Styles Test & Extended Cognitive Style Analysis-Wholistic Analytic Test, to characterize their cognitive style. Differences between wholistic and analytic consumers in how they evaluated samples using projective mapping were found in both studies. Analytics separated the samples more in the PM perceptual space than wholistic consumers, showing more discriminating abilities. This may come from a deeper analysis of the samples, both from intrinsic and extrinsic point of views. From a sensory perspective (intrinsic), analytic consumers relied on more sensory characteristics, while wholistic mainly discriminated samples according to sweetness and bitterness/chocolate flavour. In the extrinsic study however, even if analytic consumers discriminated more between packs, they described the products using similar words in the descriptive step. One important recommendation coming from this study is the need to consider higher dimensions in the interpretation of projective mapping tasks, as the first dimensions could underestimate the complexity of the perceptual space; currently, most applications of PM consider two dimensions only, which may not uncover the perception of specific groups of consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. High Energy Scattering in the AdS/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Penedones, Joao

    2007-12-01

    This work explores the celebrated AdS/CFT correspondence in the regime of high energy scattering in Anti--de Sitter (AdS) spacetime. In particular, we develop the eikonal approximation to high energy scattering in AdS and explore its consequences for the dual Conformal Field Theory (CFT). Using position space Feynman rules, we rederive the eikonal approximation for high energy scattering in flat space. Following this intuitive position space perspective, we then generalize the eikonal approximation for high energy scattering in AdS and other spacetimes. Remarkably, we are able to resum, in terms of a generalized phase shift, ladder and cross ladder Witten diagrams associated to the exchange of an AdS spin j field, to all orders in the coupling constant. By the AdS/CFT correspondence, the eikonal amplitude in AdS is related to the four point function of CFT primary operators in the regime of large 't Hooft coupling, including all terms of the 1/N expansion. We then show that the eikonal amplitude determines the behavior of the CFT four point function for small values of the cross ratios in a Lorentzian regime and that this controls its high spin and dimension conformal partial wave decomposition. These results allow us to determine the anomalous dimension of high spin and dimension double trace primary operators, by relating it to the AdS eikonal phase shift. Finally we find that, at large energies and large impact parameters in AdS, the gravitational interaction dominates all other interactions, as in flat space. Therefore, the anomalous dimension of double trace operators, associated to graviton exchange in AdS, yields a universal prediction for CFT's with AdS gravitational duals.

  12. Structural changes in cross-border liabilities: A multidimensional approach

    NASA Astrophysics Data System (ADS)

    Araújo, Tanya; Spelta, Alessandro

    2014-01-01

    We study the international interbank market through a geometric analysis of empirical data. The geometric analysis of the time series of cross-country liabilities shows that the systematic information of the interbank international market is contained in a space of small dimension. Geometric spaces of financial relations across countries are developed, for which the space volume, multivariate skewness and multivariate kurtosis are computed. The behavior of these coefficients reveals an important modification acting in the financial linkages since 1997 and allows us to relate the shape of the geometric space that emerges in recent years to the globally turbulent period that has characterized financial systems since the late 1990s. Here we show that, besides a persistent decrease in the volume of the geometric space since 1997, the observation of a generalized increase in the values of the multivariate skewness and kurtosis sheds some light on the behavior of cross-border interdependencies during periods of financial crises. This was found to occur in such a systematic fashion, that these coefficients may be used as a proxy for systemic risk.

  13. Inside School Spaces: Rethinking the Hidden Dimension.

    ERIC Educational Resources Information Center

    Sitton, Thad

    1980-01-01

    Considers the spatial arrangements of public schools as culturally derived characteristics that reflect particular traditional expectations in regard to the learning process and teacher student interactions. Discusses fixed spatial arrangements as well as the territorial manipulation of school space by students. (GC)

  14. Improving the signal subtle feature extraction performance based on dual improved fractal box dimension eigenvectors

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Li, Jingchao; Han, Hui; Ying, Yulong

    2018-05-01

    Because of the limitations of the traditional fractal box-counting dimension algorithm in subtle feature extraction of radiation source signals, a dual improved generalized fractal box-counting dimension eigenvector algorithm is proposed. First, the radiation source signal was preprocessed, and a Hilbert transform was performed to obtain the instantaneous amplitude of the signal. Then, the improved fractal box-counting dimension of the signal instantaneous amplitude was extracted as the first eigenvector. At the same time, the improved fractal box-counting dimension of the signal without the Hilbert transform was extracted as the second eigenvector. Finally, the dual improved fractal box-counting dimension eigenvectors formed the multi-dimensional eigenvectors as signal subtle features, which were used for radiation source signal recognition by the grey relation algorithm. The experimental results show that, compared with the traditional fractal box-counting dimension algorithm and the single improved fractal box-counting dimension algorithm, the proposed dual improved fractal box-counting dimension algorithm can better extract the signal subtle distribution characteristics under different reconstruction phase space, and has a better recognition effect with good real-time performance.

  15. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this section, each space accessible to passengers or used by the crew on a regular basis, must have at... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... windows. (d) The number and dimensions of the means of escape from each space must be sufficient for rapid...

  16. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this section, each space accessible to passengers or used by the crew on a regular basis, must have at... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... windows. (d) The number and dimensions of the means of escape from each space must be sufficient for rapid...

  17. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this section, each space accessible to passengers or used by the crew on a regular basis, must have at... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... windows. (d) The number and dimensions of the means of escape from each space must be sufficient for rapid...

  18. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... this section, each space accessible to passengers or used by the crew on a regular basis, must have at... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... windows. (d) The number and dimensions of the means of escape from each space must be sufficient for rapid...

  19. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this section, each space accessible to passengers or used by the crew on a regular basis, must have at... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... windows. (d) The number and dimensions of the means of escape from each space must be sufficient for rapid...

  20. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this section, each space accessible to passengers or used by the crew on a regular basis, must have at... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... windows. (d) The number and dimensions of the means of escape from each space must be sufficient for rapid...

  1. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... this section, each space accessible to passengers or used by the crew on a regular basis, must have at... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... windows. (d) The number and dimensions of the means of escape from each space must be sufficient for rapid...

  2. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this section, each space accessible to passengers or used by the crew on a regular basis, must have at... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... windows. (d) The number and dimensions of the means of escape from each space must be sufficient for rapid...

  3. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this section, each space accessible to passengers or used by the crew on a regular basis, must have at... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... windows. (d) The number and dimensions of the means of escape from each space must be sufficient for rapid...

  4. Number of Siblings, Sibling Spacing, Sex, and Birth Order: Their Effects on Perceived Parent-Adolescent Relationships.

    ERIC Educational Resources Information Center

    Kidwell, Jeannie S.

    1981-01-01

    Examined the effect of the sibling structures of number and spacing, sex composition, and birth order on adolescents' perceptions of the power and support dimensions of parental behavior. Results suggest that research focusing on birth order must control for number of siblings, spacing, and sex composition of siblings. (Author)

  5. Custom Titanium Ridge Augmentation Matrix (CTRAM): A Case Report.

    PubMed

    Connors, Christopher A; Liacouras, Peter C; Grant, Gerald T

    2016-01-01

    This is a case report of a custom titanium ridge augmentation matrix (CTRAM). Using cone beam computed tomography (CBCT), a custom titanium space-maintaining device was developed. Alveolar ridges were virtually augmented, a matrix was virtually designed, and the CTRAM was additively manufactured with titanium (Ti6Al4V). Two cases are presented that resulted in sufficient increased horizontal bone volume with successful dental implant placement. The CTRAM design allows for preoperative planning for increasing alveolar ridge dimensions to support dental implants, reduces surgical time, and prevents the need for a second surgical site to gain sufficient alveolar ridge bone volume for dental implant therapy.

  6. Transatrial Intrapericardial Tricuspid Annuloplasty

    PubMed Central

    Rogers, Toby; Ratnayaka, Kanishka; Sonmez, Merdim; Franson, Dominique N.; Schenke, William H.; Mazal, Jonathan R.; Kocaturk, Ozgur; Chen, Marcus Y.; Faranesh, Anthony Z.; Lederman, Robert J.

    2015-01-01

    OBJECTIVES This study sought to demonstrate transcatheter deployment of a circumferential device within the pericardial space to modify tricuspid annular dimensions interactively and to reduce functional tricuspid regurgitation (TR) in swine. BACKGROUND Functional TR is common and is associated with increased morbidity and mortality. There are no reported transcatheter tricuspid valve repairs. We describe a transcatheter extracardiac tricuspid annuloplasty device positioned in the pericardial space and delivered by puncture through the right atrial appendage. We demonstrate acute and chronic feasibility in swine. METHODS Transatrial intrapericardial tricuspid annuloplasty (TRAIPTA) was performed in 16 Yorkshire swine, including 4 with functional TR. Invasive hemodynamics and cardiac magnetic resonance imaging (MRI) were performed at baseline, immediately after annuloplasty and at follow-up. RESULTS Pericardial access via a right atrial appendage puncture was uncomplicated. In 9 naïve animals, tricuspid septal-lateral and anteroposterior dimensions, the annular area and perimeter, were reduced by 49%, 31%, 59%, and 24% (p < 0.001), respectively. Tricuspid leaflet coaptation length was increased by 53% (p < 0.001). Tricuspid geometric changes were maintained after 9.7 days (range, 7 to 14 days). Small effusions (mean, 46 ml) were observed immediately post-procedure but resolved completely at follow-up. In 4 animals with functional TR, severity of regurgitation by intracardiac echocardiography was reduced. CONCLUSIONS Transatrial intrapericardial tricuspid annuloplasty is a transcatheter extracardiac tricuspid valve repair performed by exiting the heart from within via a transatrial puncture. The geometry of the tricuspid annulus can interactively be modified to reduce severity of functional TR in an animal model. PMID:25703872

  7. On the box-counting dimension of the potential singular set for suitable weak solutions to the 3D Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Wu, Gang

    2017-05-01

    In this paper, we are concerned with the upper box-counting dimension of the set of possible singular points in the space-time of suitable weak solutions to the 3D Navier-Stokes equations. By taking full advantage of the pressure \\Pi in terms of \

  8. Physics on the Smallest Scales: An Introduction to Minimal Length Phenomenology

    ERIC Educational Resources Information Center

    Sprenger, Martin; Nicolini, Piero; Bleicher, Marcus

    2012-01-01

    Many modern theories which try to unify gravity with the Standard Model of particle physics, such as e.g. string theory, propose two key modifications to the commonly known physical theories: the existence of additional space dimensions; the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide…

  9. Old Tails and New Trails in High Dimensions

    ERIC Educational Resources Information Center

    Halevy, Avner

    2013-01-01

    We discuss the motivation for dimension reduction in the context of the modern data revolution and introduce a key result in this field, the Johnson-Lindenstrauss flattening lemma. Then we leap into high-dimensional space for a glimpse of the phenomenon called concentration of measure, and use it to sketch a proof of the lemma. We end by tying…

  10. Dimension Reduction of Hyperspectral Data on Beowulf Clusters

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek

    2000-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operation. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold a great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, which is used widely in remote sensing, is the Principal Components Analysis (PCA). In light of the growing number of spectral channels of modern instruments, the paper reports on the development of a parallel PCA and its implementation on two Beowulf cluster configurations, on with fast Ethernet switch and the other is with a Myrinet interconnection.

  11. Category learning increases discriminability of relevant object dimensions in visual cortex.

    PubMed

    Folstein, Jonathan R; Palmeri, Thomas J; Gauthier, Isabel

    2013-04-01

    Learning to categorize objects can transform how they are perceived, causing relevant perceptual dimensions predictive of object category to become enhanced. For example, an expert mycologist might become attuned to species-specific patterns of spacing between mushroom gills but learn to ignore cap textures attributable to varying environmental conditions. These selective changes in perception can persist beyond the act of categorizing objects and influence our ability to discriminate between them. Using functional magnetic resonance imaging adaptation, we demonstrate that such category-specific perceptual enhancements are associated with changes in the neural discriminability of object representations in visual cortex. Regions within the anterior fusiform gyrus became more sensitive to small variations in shape that were relevant during prior category learning. In addition, extrastriate occipital areas showed heightened sensitivity to small variations in shape that spanned the category boundary. Visual representations in cortex, just like our perception, are sensitive to an object's history of categorization.

  12. On the frames of spaces of finite-dimensional Lie algebras of dimension at most 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbatsevich, V V

    2014-05-31

    In this paper, the frames of spaces of complex n-dimensional Lie algebras (that is, the intersections of all irreducible components of these spaces) are studied. A complete description of the frames and their projectivizations for n ≤ 6 is given. It is also proved that for n ≤ 6 the projectivizations of these spaces are simply connected. Bibliography: 7 titles.

  13. Ultrasonic Attenuation in Normal and Superconducting Indium.

    DTIC Science & Technology

    1980-05-22

    dimension x space coordinate, dislocation displacement dislocation displacement y space coordinate.1z space coordinate x ACKNOWLEDGMENTS The author...The driving force on the dislocation is given by: F=bO (2.7) In general, the dislocation displacement will be a function of three space coordinates...mm diameter, 50 Q impedance coaxial conductors 47 * made of stainless steel and teflon . The cavity button is soldered * directly to the rigid

  14. On deformation of complex continuum immersed in a plane space

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.

  15. Conformal field theories and compact curves in moduli spaces

    NASA Astrophysics Data System (ADS)

    Donagi, Ron; Morrison, David R.

    2018-05-01

    We show that there are many compact subsets of the moduli space M g of Riemann surfaces of genus g that do not intersect any symmetry locus. This has interesting implications for N=2 supersymmetric conformal field theories in four dimensions.

  16. Correlation Functions of σ Fields with Values in a Hyperbolic Space

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    It is shown that the functional integral for a σ field with values in the Poincare upper half-plane (and some other hyperbolic spaces) can be performed explicitly resulting in a conformal invariant noncanonical field theory in two dimensions.

  17. Analytical estimation of the correlation dimension of integer lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacasa, Lucas, E-mail: l.lacasa@qmul.ac.uk; Gómez-Gardeñes, Jesús, E-mail: gardenes@gmail.com; Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, Zaragoza

    2014-12-01

    Recently [L. Lacasa and J. Gómez-Gardeñes, Phys. Rev. Lett. 110, 168703 (2013)], a fractal dimension has been proposed to characterize the geometric structure of networks. This measure is an extension to graphs of the so called correlation dimension, originally proposed by Grassberger and Procaccia to describe the geometry of strange attractors in dissipative chaotic systems. The calculation of the correlation dimension of a graph is based on the local information retrieved from a random walker navigating the network. In this contribution, we study such quantity for some limiting synthetic spatial networks and obtain analytical results on agreement with the previouslymore » reported numerics. In particular, we show that up to first order, the correlation dimension β of integer lattices ℤ{sup d} coincides with the Haussdorf dimension of their coarsely equivalent Euclidean spaces, β = d.« less

  18. Thermodynamics of photons on fractals.

    PubMed

    Akkermans, Eric; Dunne, Gerald V; Teplyaev, Alexander

    2010-12-03

    A thermodynamical treatment of a massless scalar field (a photon) confined to a fractal spatial manifold leads to an equation of state relating pressure to internal energy, PV(s) = U/d(s), where d(s) is the spectral dimension and V(s) defines the "spectral volume." For regular manifolds, V(s) coincides with the usual geometric spatial volume, but on a fractal this is not necessarily the case. This is further evidence that on a fractal, momentum space can have a different dimension than position space. Our analysis also provides a natural definition of the vacuum (Casimir) energy of a fractal. We suggest ways that these unusual properties might be probed experimentally.

  19. Singular flow dynamics in three space dimensions driven by advection

    NASA Astrophysics Data System (ADS)

    Karimov, A. R.; Schamel, H.

    2002-03-01

    The initial value problem of an ideal, compressible fluid is investigated in three space dimensions (3D). Starting from a situation where the inertia terms dominate over the force terms in Euler's equation we explore by means of the Lagrangian flow description the basic flow properties. Special attention is drawn to the appearance of singularities in the flow pattern at finite time. Classes of initial velocity profiles giving rise to collapses of density and vorticity are found. This paper, hence, furnishes evidence of focused singularities for coherent structures obeying the 3D Euler equation and applies to potential as well as vortex flows.

  20. Efficient Parameter Searches for Colloidal Materials Design with Digital Alchemy

    NASA Astrophysics Data System (ADS)

    Dodd, Paul, M.; Geng, Yina; van Anders, Greg; Glotzer, Sharon C.

    Optimal colloidal materials design is challenging, even for high-throughput or genomic approaches, because the design space provided by modern colloid synthesis techniques can easily have dozens of dimensions. In this talk we present the methodology of an inverse approach we term ''digital alchemy'' to perform rapid searches of design-paramenter spaces with up to 188 dimensions that yield thermodynamically optimal colloid parameters for target crystal structures with up to 20 particles in a unit cell. The method relies only on fundamental principles of statistical mechanics and Metropolis Monte Carlo techniques, and yields particle attribute tolerances via analogues of familiar stress-strain relationships.

  1. The Weyl-Lanczos equations and the Lanczos wave equation in four dimensions as systems in involution

    NASA Astrophysics Data System (ADS)

    Dolan, P.; Gerber, A.

    2003-07-01

    The Weyl-Lanczos equations in four dimensions form a system in involution. We compute its Cartan characters explicitly and use Janet-Riquier theory to confirm the results in the case of all space-times with a diagonal metric tensor and for the plane wave limit of space-times. We write the Lanczos wave equation as an exterior differential system and, with assistance from Janet-Riquier theory, we compute its Cartan characters and find that it forms a system in involution. We compare these Cartan characters with those of the Weyl-Lanczos equations. All results hold for the real analytic case.

  2. Stability of the two-dimensional Fermi polaron

    NASA Astrophysics Data System (ADS)

    Griesemer, Marcel; Linden, Ulrich

    2018-02-01

    A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.

  3. Evaluation of a dimension-reduction-based statistical technique for Temperature, Water Vapour and Ozone retrievals from IASI radiances

    NASA Astrophysics Data System (ADS)

    Amato, Umberto; Antoniadis, Anestis; De Feis, Italia; Masiello, Guido; Matricardi, Marco; Serio, Carmine

    2009-03-01

    Remote sensing of atmosphere is changing rapidly thanks to the development of high spectral resolution infrared space-borne sensors. The aim is to provide more and more accurate information on the lower atmosphere, as requested by the World Meteorological Organization (WMO), to improve reliability and time span of weather forecasts plus Earth's monitoring. In this paper we show the results we have obtained on a set of Infrared Atmospheric Sounding Interferometer (IASI) observations using a new statistical strategy based on dimension reduction. Retrievals have been compared to time-space colocated ECMWF analysis for temperature, water vapor and ozone.

  4. High-Resolution Genuinely Multidimensional Solution of Conservation Laws by the Space-Time Conservation Element and Solution Element Method

    NASA Technical Reports Server (NTRS)

    Himansu, Ananda; Chang, Sin-Chung; Yu, Sheng-Tao; Wang, Xiao-Yen; Loh, Ching-Yuen; Jorgenson, Philip C. E.

    1999-01-01

    In this overview paper, we review the basic principles of the method of space-time conservation element and solution element for solving the conservation laws in one and two spatial dimensions. The present method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. In contrast to the modern upwind schemes, the approach here does not use the Riemann solver and the reconstruction procedure as the building blocks. The drawbacks of the upwind approach, such as the difficulty of rationally extending the 1D scalar approach to systems of equations and particularly to multiple dimensions is here contrasted with the uniformity and ease of generalization of the Conservation Element and Solution Element (CE/SE) 1D scalar schemes to systems of equations and to multiple spatial dimensions. The assured compatibility with the simplest type of unstructured meshes, and the uniquely simple nonreflecting boundary conditions of the present method are also discussed. The present approach has yielded high-resolution shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves, and shock/acoustic waves/vortices interactions. Moreover, since no directional splitting is employed, numerical resolution of two-dimensional calculations is comparable to that of the one-dimensional calculations. Some sample applications displaying the strengths and broad applicability of the CE/SE method are reviewed.

  5. Generalized essential energy space random walks to more effectively accelerate solute sampling in aqueous environment

    NASA Astrophysics Data System (ADS)

    Lv, Chao; Zheng, Lianqing; Yang, Wei

    2012-01-01

    Molecular dynamics sampling can be enhanced via the promoting of potential energy fluctuations, for instance, based on a Hamiltonian modified with the addition of a potential-energy-dependent biasing term. To overcome the diffusion sampling issue, which reveals the fact that enlargement of event-irrelevant energy fluctuations may abolish sampling efficiency, the essential energy space random walk (EESRW) approach was proposed earlier. To more effectively accelerate the sampling of solute conformations in aqueous environment, in the current work, we generalized the EESRW method to a two-dimension-EESRW (2D-EESRW) strategy. Specifically, the essential internal energy component of a focused region and the essential interaction energy component between the focused region and the environmental region are employed to define the two-dimensional essential energy space. This proposal is motivated by the general observation that in different conformational events, the two essential energy components have distinctive interplays. Model studies on the alanine dipeptide and the aspartate-arginine peptide demonstrate sampling improvement over the original one-dimension-EESRW strategy; with the same biasing level, the present generalization allows more effective acceleration of the sampling of conformational transitions in aqueous solution. The 2D-EESRW generalization is readily extended to higher dimension schemes and employed in more advanced enhanced-sampling schemes, such as the recent orthogonal space random walk method.

  6. Crystallization of beef heart cytochrome c oxidase

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shinya; Shinzawa, Kyoko; Tsukihara, Tomitake; Abe, Toshio; Caughey, Winslow S.

    1991-03-01

    The three-dimensional structure of cytochrome c oxidase, a complex (multimetal, multisubunit) membrane protein is critical to elucidation of the mechanism of the enzymic reactions and their control. Our recent developments in the crystallization of the enzyme isolated from beef hearts are presented. The crystals appeared more readily at higher protein concentration, lower ionic strength, higher detergent concentration (Brij-35) and lower temperature. Large crystals were obtained by changing one of these parameters to the crystallization point as slowly as possible, keeping the other parameters constant. Increasing the detergent concentration was the most successful method, producing green crystals of the resting oxidized form as hexagonal bipyramids with typical dimensions of 0.6 mm. The usual procedures for crystallization of water soluble proteins, such as increasing ionic strength by vapor diffusion, were not applicable for this enzyme. Crystals of the resting oxidized enzyme belong to a space group of P6 2 or P6 4 with cell dimensions, a = b = 208.7 Å and c = 282.3 Å. The Patterson function shows that the crystal exhibited a non-crystallographic two-fold axis parallel to the c-axis in the asymmetric unit.

  7. Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.

    2017-03-01

    We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997), 10.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ =4 -d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ . All calculations are performed in the leading one-loop approximation.

  8. Permeability-porosity relationships in sedimentary rocks

    USGS Publications Warehouse

    Nelson, Philip H.

    1994-01-01

    In many consolidated sandstone and carbonate formations, plots of core data show that the logarithm of permeability (k) is often linearly proportional to porosity (??). The slope, intercept, and degree of scatter of these log(k)-?? trends vary from formation to formation, and these variations are attributed to differences in initial grain size and sorting, diagenetic history, and compaction history. In unconsolidated sands, better sorting systematically increases both permeability and porosity. In sands and sandstones, an increase in gravel and coarse grain size content causes k to increase even while decreasing ??. Diagenetic minerals in the pore space of sandstones, such as cement and some clay types, tend to decrease log(k) proportionately as ?? decreases. Models to predict permeability from porosity and other measurable rock parameters fall into three classes based on either grain, surface area, or pore dimension considerations. (Models that directly incorporate well log measurements but have no particular theoretical underpinnings from a fourth class.) Grain-based models show permeability proportional to the square of grain size times porosity raised to (roughly) the fifth power, with grain sorting as an additional parameter. Surface-area models show permeability proportional to the inverse square of pore surface area times porosity raised to (roughly) the fourth power; measures of surface area include irreducible water saturation and nuclear magnetic resonance. Pore-dimension models show permeability proportional to the square of a pore dimension times porosity raised to a power of (roughly) two and produce curves of constant pore size that transgress the linear data trends on a log(k)-?? plot. The pore dimension is obtained from mercury injection measurements and is interpreted as the pore opening size of some interconnected fraction of the pore system. The linear log(k)-?? data trends cut the curves of constant pore size from the pore-dimension models, which shows that porosity reduction is always accompanied by a reduction in characteristic pore size. The high powers of porosity of the grain-based and surface-area models are required to compensate for the inclusion of the small end of the pore size spectrum.

  9. Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore; Scardicchio, A.; Zachary, Chase E.

    2008-11-01

    It is well known that one can map certain properties of random matrices, fermionic gases, and zeros of the Riemann zeta function to a unique point process on the real line \\mathbb {R} . Here we analytically provide exact generalizations of such a point process in d-dimensional Euclidean space \\mathbb {R}^d for any d, which are special cases of determinantal processes. In particular, we obtain the n-particle correlation functions for any n, which completely specify the point processes in \\mathbb {R}^d . We also demonstrate that spin-polarized fermionic systems in \\mathbb {R}^d have these same n-particle correlation functions in each dimension. The point processes for any d are shown to be hyperuniform, i.e., infinite wavelength density fluctuations vanish, and the structure factor (or power spectrum) S(k) has a non-analytic behavior at the origin given by S(k)~|k| (k \\rightarrow 0 ). The latter result implies that the pair correlation function g2(r) tends to unity for large pair distances with a decay rate that is controlled by the power law 1/rd+1, which is a well-known property of bosonic ground states and more recently has been shown to characterize maximally random jammed sphere packings. We graphically display one-and two-dimensional realizations of the point processes in order to vividly reveal their 'repulsive' nature. Indeed, we show that the point processes can be characterized by an effective 'hard core' diameter that grows like the square root of d. The nearest-neighbor distribution functions for these point processes are also evaluated and rigorously bounded. Among other results, this analysis reveals that the probability of finding a large spherical cavity of radius r in dimension d behaves like a Poisson point process but in dimension d+1, i.e., this probability is given by exp[-κ(d)rd+1] for large r and finite d, where κ(d) is a positive d-dependent constant. We also show that as d increases, the point process behaves effectively like a sphere packing with a coverage fraction of space that is no denser than 1/2d. This coverage fraction has a special significance in the study of sphere packings in high-dimensional Euclidean spaces.

  10. Reliability of high I/O high density CCGA interconnect electronic packages under extreme thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2012-03-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surfacemount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions.

  11. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    PubMed

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Kinetics of diffusion-controlled annihilation with sparse initial conditions

    DOE PAGES

    Ben-Naim, Eli; Krapivsky, Paul

    2016-12-16

    Here, we study diffusion-controlled single-species annihilation with sparse initial conditions. In this random process, particles undergo Brownian motion, and when two particles meet, both disappear. We also focus on sparse initial conditions where particles occupy a subspace of dimension δ that is embedded in a larger space of dimension d. Furthermore, we find that the co-dimension Δ = d - δ governs the behavior. All particles disappear when the co-dimension is sufficiently small, Δ ≤ 2; otherwise, a finite fraction of particles indefinitely survive. We establish the asymptotic behavior of the probability S(t) that a test particle survives until time t. When the subspace is a line, δ = 1, we find inverse logarithmic decay,more » $$S\\sim {(\\mathrm{ln}t)}^{-1}$$, in three dimensions, and a modified power-law decay, $$S\\sim (\\mathrm{ln}t){t}^{-1/2}$$, in two dimensions. In general, the survival probability decays algebraically when Δ < 2, and there is an inverse logarithmic decay at the critical co-dimension Δ = 2.« less

  13. Lagrange multiplier and Wess-Zumino variable as extra dimensions in the torus universe

    NASA Astrophysics Data System (ADS)

    Nejad, Salman Abarghouei; Dehghani, Mehdi; Monemzadeh, Majid

    2018-01-01

    We study the effect of the simplest geometry which is imposed via the topology of the universe by gauging non-relativistic particle model on torus and 3-torus with the help of symplectic formalism of constrained systems. Also, we obtain generators of gauge transformations for gauged models. Extracting corresponding Poisson structure of existed constraints, we show the effect of the shape of the universe on canonical structure of phase-spaces of models and suggest some phenomenology to prove the topology of the universe and probable non-commutative structure of the space. In addition, we show that the number of extra dimensions in the phase-spaces of gauged embedded models are exactly two. Moreover, in classical form, we talk over modification of Newton's second law in order to study the origin of the terms appeared in the gauged theory.

  14. Efficient level set methods for constructing wavefronts in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Tien

    2007-10-01

    Wavefront construction in geometrical optics has long faced the twin difficulties of dealing with multi-valued forms and resolution of wavefront surfaces. A recent change in viewpoint, however, has demonstrated that working in phase space on bicharacteristic strips using eulerian methods can bypass both difficulties. The level set method for interface dynamics makes a suitable choice for the eulerian method. Unfortunately, in three-dimensional space, the setting of interest for most practical applications, the advantages of this method are largely offset by a new problem: the high dimension of phase space. In this work, we present new types of level set algorithms that remove this obstacle and demonstrate their abilities to accurately construct wavefronts under high resolution. These results propel the level set method forward significantly as a competitive approach in geometrical optics under realistic conditions.

  15. Mechanical topological insulator in zero dimensions

    NASA Astrophysics Data System (ADS)

    Lera, Natalia; Alvarez, J. V.

    2018-04-01

    We study linear vibrational modes in finite isostatic Maxwell lattices, mechanical systems where the number of degrees of freedom matches the number of constraints. Recent progress in topological mechanics exploits the nontrivial topology of BDI class Hamiltonians in one dimenson and arising topological floppy modes at the edges. A finite frame, or zero-dimensional system, also exhibits a nonzero topological index according to the classification table. We construct mechanical insulating models in zero dimensions that complete the BDI classification in the available real space dimensions. We compute and interpret its nontrivial invariant Z2.

  16. Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.

    2018-03-01

    In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.

  17. Passive vs. Parachute System Architecture for Robotic Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Maddock, Robert W.; Henning, Allen B.; Samareh, Jamshid A.

    2016-01-01

    The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample return mission study phase to parametrically investigate any trade space of interest to determine the best entry vehicle design approach for that particular mission concept. In addition to the trade space dimensions often considered (e.g. entry conditions, payload size and mass, vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial for the vehicle to utilize a parachute system during descent/landing or to be fully passive (i.e. not use a parachute). In order to evaluate this trade space dimension, a simplified parachute system model has been developed based on inputs such as vehicle size/mass, payload size/mass and landing requirements. This model works in conjunction with analytical approximations of a mission trade space dataset provided by the MMEEV System Analysis for Planetary EDL (M-SAPE) tool to help quantify the differences between an active (with parachute) and a passive (no parachute) vehicle concept.

  18. High dimensional feature reduction via projection pursuit

    NASA Technical Reports Server (NTRS)

    Jimenez, Luis; Landgrebe, David

    1994-01-01

    The recent development of more sophisticated remote sensing systems enables the measurement of radiation in many more spectral intervals than previously possible. An example of that technology is the AVIRIS system, which collects image data in 220 bands. As a result of this, new algorithms must be developed in order to analyze the more complex data effectively. Data in a high dimensional space presents a substantial challenge, since intuitive concepts valid in a 2-3 dimensional space to not necessarily apply in higher dimensional spaces. For example, high dimensional space is mostly empty. This results from the concentration of data in the corners of hypercubes. Other examples may be cited. Such observations suggest the need to project data to a subspace of a much lower dimension on a problem specific basis in such a manner that information is not lost. Projection Pursuit is a technique that will accomplish such a goal. Since it processes data in lower dimensions, it should avoid many of the difficulties of high dimensional spaces. In this paper, we begin the investigation of some of the properties of Projection Pursuit for this purpose.

  19. Exact solutions of massive gravity in three dimensions

    NASA Astrophysics Data System (ADS)

    Chakhad, Mohamed

    In recent years, there has been an upsurge in interest in three-dimensional theories of gravity. In particular, two theories of massive gravity in three dimensions hold strong promise in the search for fully consistent theories of quantum gravity, an understanding of which will shed light on the problems of quantum gravity in four dimensions. One of these theories is the "old" third-order theory of topologically massive gravity (TMG) and the other one is a "new" fourth-order theory of massive gravity (NMG). Despite this increase in research activity, the problem of finding and classifying solutions of TMG and NMG remains a wide open area of research. In this thesis, we provide explicit new solutions of massive gravity in three dimensions and suggest future directions of research. These solutions belong to the Kundt class of spacetimes. A systematic analysis of the Kundt solutions with constant scalar polynomial curvature invariants provides a glimpse of the structure of the spaces of solutions of the two theories of massive gravity. We also find explicit solutions of topologically massive gravity whose scalar polynomial curvature invariants are not all constant, and these are the first such solutions. A number of properties of Kundt solutions of TMG and NMG, such as an identification of solutions which lie at the intersection of the full nonlinear and linearized theories, are also derived.

  20. String theory and aspects of higher dimensional gravity

    NASA Astrophysics Data System (ADS)

    Copsey, Keith

    2007-05-01

    String theory generically requires that there are more than the four dimensions easily observable. It has become clear in recent years that gravity in more than four dimensions presents qualitative new features and this thesis is dedicated to exploring some of these phenomena. I discuss the thermodynamics of new types of black holes with new types of charges and study aspects of the AdS-CFT correspondence dual to gravitational phenomena unique to higher dimensions. I further describe the construction of a broad new class of solutions in more than four dimensions containing dynamical minimal spheres ("bubbles of nothing") in asymptotically flat and AdS space without any asymptotic Kaluza-Klein direction.

  1. Unfolded equations for current interactions of 4d massless fields as a free system in mixed dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelfond, O. A., E-mail: gel@lpi.ru; Vasiliev, M. A., E-mail: vasiliev@lpi.ru

    2015-03-15

    Interactions of massless fields of all spins in four dimensions with currents of any spin are shown to result from a solution of the linear problem that describes a gluing between a rank-one (massless) system and a rank-two (current) system in the unfolded dynamics approach. Since the rank-two system is dual to a free rank-one higher-dimensional system that effectively describes conformal fields in six space-time dimensions, the constructed system can be interpreted as describing a mixture between linear conformal fields in four and six dimensions. An interpretation of the obtained results in the spirit of the AdS/CFT correspondence is discussed.

  2. On Row Rank Equal Column Rank

    ERIC Educational Resources Information Center

    Khalili, Parviz

    2009-01-01

    We will prove a well-known theorem in Linear Algebra, that is, for any "m x n" matrix the dimension of row space and column space are the same. The proof is based on the subject of "elementary matrices" and "reduced row-echelon" form of a matrix.

  3. Special Relativity

    NASA Astrophysics Data System (ADS)

    Dixon, W. G.

    1982-11-01

    Preface; 1. The physics of space and time; 2. Affine spaces in mathematics and physics; 3. Foundations of dynamics; 4. Relativistic simple fluids; 5. Electrodynamics of polarisable fluids; Appendix: Vector and dyadic notation in three dimensions; Publications referred to in the text; Summary and index of symbols and conventions; Subject index.

  4. Square Footage Requirements for Use in Developing the Local Facilities Plans and State Capital Outlay Applications for Funding.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta. Facilities Services Unit.

    This document presents the space requirements for Georgia's elementary, middle, and high schools. All square footage requirements are computed by using inside dimensions of a room; the square footage of support spaces in suites may be included when computing the square footage of the suite. Examples of support spaces include storage rooms,…

  5. Effect of initial planting spacing on wood properties of unthinned loblolly pine at age 21

    Treesearch

    Alexander III Clark; Lewis Jordan; Laurie Schimleck; Richard F. Daniels

    2008-01-01

    Young, fast growing, intensively managed plantation loblolly pine (Pinus taeda L.) contains a large proportion of juvenile wood that may not have the stiffness required to meet the design requirements for southern pine dimension lumber. An unthinned loblolly pine spacing study was sampled to determine the effect of initial spacing on wood stiffness,...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guiochon, Georges A; Shalliker, R. Andrew

    An algorithm was developed for 2DHPLC that automated the process of peak recognition, measuring their retention times, and then subsequently plotting the information in a two-dimensional retention plane. Following the recognition of peaks, the software then performed a series of statistical assessments of the separation performance, measuring for example, correlation between dimensions, peak capacity and the percentage of usage of the separation space. Peak recognition was achieved by interpreting the first and second derivatives of each respective one-dimensional chromatogram to determine the 1D retention times of each solute and then compiling these retention times for each respective fraction 'cut'. Duemore » to the nature of comprehensive 2DHPLC adjacent cut fractions may contain peaks common to more than one cut fraction. The algorithm determined which components were common in adjacent cuts and subsequently calculated the peak maximum profile by interpolating the space between adjacent peaks. This algorithm was applied to the analysis of a two-dimensional separation of an apple flesh extract separated in a first dimension comprising a cyano stationary phase and an aqueous/THF mobile phase as the first dimension and a second dimension comprising C18-Hydro with an aqueous/MeOH mobile phase. A total of 187 peaks were detected.« less

  7. Virtual reality and the unfolding of higher dimensions

    NASA Astrophysics Data System (ADS)

    Aguilera, Julieta C.

    2006-02-01

    As virtual/augmented reality evolves, the need for spaces that are responsive to structures independent from three dimensional spatial constraints, become apparent. The visual medium of computer graphics may also challenge these self imposed constraints. If one can get used to how projections affect 3D objects in two dimensions, it may also be possible to compose a situation in which to get used to the variations that occur while moving through higher dimensions. The presented application is an enveloping landscape of concave and convex forms, which are determined by the orientation and displacement of the user in relation to a grid made of tesseracts (cubes in four dimensions). The interface accepts input from tridimensional and four-dimensional transformations, and smoothly displays such interactions in real-time. The motion of the user becomes the graphic element whereas the higher dimensional grid references to his/her position relative to it. The user learns how motion inputs affect the grid, recognizing a correlation between the input and the transformations. Mapping information to complex grids in virtual reality is valuable for engineers, artists and users in general because navigation can be internalized like a dance pattern, and further engage us to maneuver space in order to know and experience.

  8. A scale-entropy diffusion equation to describe the multi-scale features of turbulent flames near a wall

    NASA Astrophysics Data System (ADS)

    Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.

    2008-12-01

    Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.

  9. Deep Pyriform Space: Anatomical Clarifications and Clinical Implications.

    PubMed

    Surek, Christopher K; Vargo, James; Lamb, Jerome

    2016-07-01

    The purpose of this study was to define the anatomical boundaries, transformation in the aging face, and clinical implications of the Ristow space. The authors propose a title of deep pyriform space for anatomical continuity. The deep pyriform space was dissected in 12 hemifacial fresh cadaver dissections. Specimens were divided into three separate groups. For group 1, dimensions were measured and plaster molds were fashioned to evaluate shape and contour. For group 2, the space was injected percutaneously with dyed hyaluronic acid to examine proximity relationships to adjacent structures. For group 3, the space was pneumatized to evaluate its cephalic extension. The average dimensions of the deep pyriform space are 1.1 × 0.9 cm. It is bounded medially by the depressor septi nasi and cradled laterally and superficially in a "half-moon" shape by the deep medial cheek fat and lip elevators. The angular artery courses on the roof of the space within a septum between the space and deep medial cheek fat. Pneumatization of the space traverses cephalic to the level of the tear trough ligament in a plane deep to the premaxillary space. The deep pyriform space is a midface cavity cradled by the pyriform aperture and deep medial cheek compartment. Bony recession of the maxilla with age predisposes this space for use as a potential area of deep volumization to support overlying cheek fat and draping lip elevators. The position of the angular artery in the roof of the space allows safe injection on the bone without concern for vascular injury.

  10. ACCELERATING MR PARAMETER MAPPING USING SPARSITY-PROMOTING REGULARIZATION IN PARAMETRIC DIMENSION

    PubMed Central

    Velikina, Julia V.; Alexander, Andrew L.; Samsonov, Alexey

    2013-01-01

    MR parameter mapping requires sampling along additional (parametric) dimension, which often limits its clinical appeal due to a several-fold increase in scan times compared to conventional anatomic imaging. Data undersampling combined with parallel imaging is an attractive way to reduce scan time in such applications. However, inherent SNR penalties of parallel MRI due to noise amplification often limit its utility even at moderate acceleration factors, requiring regularization by prior knowledge. In this work, we propose a novel regularization strategy, which utilizes smoothness of signal evolution in the parametric dimension within compressed sensing framework (p-CS) to provide accurate and precise estimation of parametric maps from undersampled data. The performance of the method was demonstrated with variable flip angle T1 mapping and compared favorably to two representative reconstruction approaches, image space-based total variation regularization and an analytical model-based reconstruction. The proposed p-CS regularization was found to provide efficient suppression of noise amplification and preservation of parameter mapping accuracy without explicit utilization of analytical signal models. The developed method may facilitate acceleration of quantitative MRI techniques that are not suitable to model-based reconstruction because of complex signal models or when signal deviations from the expected analytical model exist. PMID:23213053

  11. Microstructured block copolymer surfaces for control of microbe capture and aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Ryan R; Shubert, Katherine R; Morrell, Jennifer L.

    2014-01-01

    The capture and arrangement of surface-associated microbes is influenced by biochemical and physical properties of the substrate. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe capture. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line or square grid patterns with 5 m wide features and varied edge spacing. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates capturedmore » was dependent on the pattern dimensions. Line patterns with edge spacing of 5 m or less led to the capture of individual microbes with minimal formation of aggregates, while grid patterns with the same spacing also captured individual microbes with further reduction in aggregation. Both geometries allowed for increases in aggregate size distribution with increased in edge spacing. These engineered surfaces combine spatial confinement with affinity-based microbe capture based on exopolysaccharide content to control the degree of microbe aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.« less

  12. How accurately can the microcanonical ensemble describe small isolated quantum systems?

    NASA Astrophysics Data System (ADS)

    Ikeda, Tatsuhiko N.; Ueda, Masahito

    2015-08-01

    We numerically investigate quantum quenches of a nonintegrable hard-core Bose-Hubbard model to test the accuracy of the microcanonical ensemble in small isolated quantum systems. We show that, in a certain range of system size, the accuracy increases with the dimension of the Hilbert space D as 1 /D . We ascribe this rapid improvement to the absence of correlations between many-body energy eigenstates. Outside of that range, the accuracy is found to scale either as 1 /√{D } or algebraically with the system size.

  13. Analysis of a Real-Time Separation Assurance System with Integrated Time-in-Trail Spacing

    NASA Technical Reports Server (NTRS)

    Aweiss, Arwa S.; Farrahi, Amir H.; Lauderdale, Todd A.; Thipphavong, Adam S.; Lee, Chu H.

    2010-01-01

    This paper describes the implementation and analysis of an integrated ground-based separation assurance and time-based metering prototype system into the Center-TRACON Automation System. The integration of this new capability accommodates constraints in four-dimensions: position (x-y), altitude, and meter-fix crossing time. Experiments were conducted to evaluate the performance of the integrated system and its ability to handle traffic levels up to twice that of today. Results suggest that the integrated system reduces the number and magnitude of time-in-trail spacing violations. This benefit was achieved without adversely affecting the resolution success rate of the system. Also, the data suggest that the integrated system is relatively insensitive to an increase in traffic of twice the current levels.

  14. Landsat International Cooperators and Global Archive Consolidation

    USGS Publications Warehouse

    ,

    2016-04-07

    Landsat missions have always been an important component of U.S. foreign policy, as well as science and technology policy. The program’s longstanding network of International Cooperators (ICs), which operate numerous International Ground Stations (IGS) around the world, embodies the United States’ policy of peaceful use of outer space and the worldwide dissemination of civil space technology for public benefit. Thus, the ICs provide an essential dimension to the Landsat mission.In 2010, the Landsat Global Archive Consolidation (LGAC) effort began, with a goal to consolidate the Landsat data archives of all international ground stations, make the data more accessible to the global Landsat community, and significantly increase the frequency of observations over a given area of interest to improve scientific uses such as change detection and analysis.

  15. Transformation to equivalent dimensions—a new methodology to study earthquake clustering

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw

    2014-05-01

    A seismic event is represented by a point in a parameter space, quantified by the vector of parameter values. Studies of earthquake clustering involve considering distances between such points in multidimensional spaces. However, the metrics of earthquake parameters are different, hence the metric in a multidimensional parameter space cannot be readily defined. The present paper proposes a solution of this metric problem based on a concept of probabilistic equivalence of earthquake parameters. Under this concept the lengths of parameter intervals are equivalent if the probability for earthquakes to take values from either interval is the same. Earthquake clustering is studied in an equivalent rather than the original dimensions space, where the equivalent dimension (ED) of a parameter is its cumulative distribution function. All transformed parameters are of linear scale in [0, 1] interval and the distance between earthquakes represented by vectors in any ED space is Euclidean. The unknown, in general, cumulative distributions of earthquake parameters are estimated from earthquake catalogues by means of the model-free non-parametric kernel estimation method. Potential of the transformation to EDs is illustrated by two examples of use: to find hierarchically closest neighbours in time-space and to assess temporal variations of earthquake clustering in a specific 4-D phase space.

  16. Space ALIVE!: A Multimedia-Enhanced Collaborative Learning Environment.

    ERIC Educational Resources Information Center

    Looi, Chee-Kit; Ang, D.

    2000-01-01

    Discusses online text-based collaborative learning environments such as Multi-User Dimensions (MUDs) and Object-Oriented MUDs (MOOs) and describes a multimedia-enhanced, Web-based MOO (WOO) called SpaceALIVE! that was the subject of a pilot project with Singapore secondary school students. (Contains 15 references.) (LRW)

  17. EXPLORING ENVIRONMENTAL DATA IN A HIGHLY IMMERSIVE VIRTUAL REALITY ENVIRONMENT

    EPA Science Inventory

    Geography inherently fills a 3D space and yet we struggle with displaying geography using, primaarily, 2D display devices. Virtual environments offer a more realistically-dimensioned display space and this is being realized in the expanding area of research on 3D Geographic Infor...

  18. Cultivating Research Pedagogies with Adolescents: Created Spaces, Engaged Participation, and Embodied Inquiry

    ERIC Educational Resources Information Center

    Wissman, Kelly K.; Staples, Jeanine M.; Vasudevan, Lalitha; Nichols, Rachel E.

    2015-01-01

    This paper conceptualizes an approach to adolescent literacies research we call "research pedagogies." This approach recognizes the pedagogical features of the research process and includes three dimensions: created spaces, engaged participation, and embodied inquiry. By drawing upon and sometimes recasting foundational anthropological…

  19. 14 CFR 73.3 - Special use airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Special use airspace. 73.3 Section 73.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE... defined dimensions identified by an area on the surface of the earth wherein activities must be confined...

  20. Embodiment, Virtual Space, Temporality and Interpersonal Relations in Online Writing

    ERIC Educational Resources Information Center

    Adams, Catherine; van Manen, Max

    2006-01-01

    In this paper we discuss how online seminar participants experience dimensions of embodiment, virtual space, interpersonal relations, and temporality; and how interacting through reading-writing, by means of online technologies, creates conditions, situations, and actions of pedagogical influence and relational affectivities. We investigate what…

  1. Lack of conformity between Indian classroom furniture and student dimensions: proposed future seat/table dimensions.

    PubMed

    Savanur, C S; Altekar, C R; De, A

    2007-10-01

    Children spend one-quarter of a day in school. Of this, 60-80% of time is spent in the classroom. Classroom features, such as workspace and personal space play an important role in children's growth and performance as this age marks the period of anatomical, physiological and psychological developments. Since the classroom is an influential part of a student's life the present study focused on classroom furniture in relation to students' workspace and personal space requirements and standards and was conducted in five schools at Mumbai, India. Dimensions of 104 items of furniture (chairs and desks) were measured as were 42 anthropometric dimensions of 225 students from grade six to grade nine (age: 10-14 years). Questionnaire responses of 292 students regarding the perceived adequacy of their classroom furniture were collected. Results indicated that the seat and desk heights (450 mm, 757 mm respectively) were higher than the comparable students' anthropometric dimensions and that of the recommendations of Bureau of Indian Standards (BIS) (340 + 3 mm, 380 + 3 mm seat-heights, 580 + 3 mm 640 + 3 mm desk-heights) as well as Time-Saver Standards (TSS) (381.0 mm seat-height and 660.4 mm desk-height). The depth of the seats and the desks (299 mm, 319 mm, respectively) were less than comparable students' anthropometric dimensions and the recommendations of BIS (IS 4837: 1990). Students reported discomfort in shoulder, wrist, knee and ankle regions. Based on the students' anthropometric data, proposed future designs with fixed table-heights and adjustable seat-heights along with footrests were identified.

  2. Neutronic reactor thermal shield

    DOEpatents

    Lowe, Paul E.

    1976-06-15

    1. The combination with a plurality of parallel horizontal members arranged in horizontal and vertical rows, the spacing of the members in all horizontal rows being equal throughout, the spacing of the members in all vertical rows being equal throughout; of a shield for a nuclear reactor comprising two layers of rectangular blocks through which the members pass generally perpendicularly to the layers, each block in each layer having for one of the members an opening equally spaced from vertical sides of the block and located closer to the top of the block than the bottom thereof, whereby gravity tends to make each block rotate about the associated member to a position in which the vertical sides of the block are truly vertical, the openings in all the blocks of one layer having one equal spacing from the tops of the blocks, the openings in all the blocks of the other layer having one equal spacing from the tops of the blocks, which spacing is different from the corresponding spacing in the said one layer, all the blocks of both layers having the same vertical dimension or length, the blocks of both layers consisting of relatively wide blocks and relatively narrow blocks, all the narrow blocks having the same horizontal dimension or width which is less than the horizontal dimension or width of the wide blocks, which is the same throughout, each layer consisting of vertical rows of narrow blocks and wide blocks alternating with one another, each vertical row of narrow blocks of each layer being covered by a vertical row of wide blocks of the other layer which wide blocks receive the same vertical row of members as the said each vertical row of narrow blocks, whereby the rectangular perimeters of each block of each layer is completely out of register with that of each block in the other layer.

  3. Application of Hyperspectral Techniques to Monitoring and Management of Invasive Plant Species Infestation

    DTIC Science & Technology

    2008-01-01

    the sensor is a data cloud in multi- dimensional space with each band generating an axis of dimension. When the data cloud is viewed in two or three...endmember of interest is not a true endmember in the data space . A ) B) Figure 8: Linear mixture models. A ) two- dimensional ...multi- dimensional space . A classifier is a computer algorithm that takes

  4. Application of Hyperspectal Techniques to Monitoring & Management of Invasive Plant Species Infestation

    DTIC Science & Technology

    2008-01-09

    The image data as acquired from the sensor is a data cloud in multi- dimensional space with each band generating an axis of dimension. When the data... The color of a material is defined by the direction of its unit vector in n- dimensional spectral space . The length of the vector relates only to how...to n- dimensional space . SAM determines the similarity

  5. Explaining Gibbsean phase space to second year students

    NASA Astrophysics Data System (ADS)

    Vesely, Franz J.

    2005-03-01

    A new approach to teaching introductory statistical physics is presented. We recommend making extensive use of the fact that even systems with a very few degrees of freedom may display chaotic behaviour. This permits a didactic 'bottom-up' approach, starting out with toy systems whose phase space may be depicted on a screen or blackboard, then proceeding to ever higher dimensions in Gibbsean phase space.

  6. Discrete mathematical physics and particle modeling

    NASA Astrophysics Data System (ADS)

    Greenspan, D.

    The theory and application of the arithmetic approach to the foundations of both Newtonian and special relativistic mechanics are explored. Using only arithmetic, a reformulation of the Newtonian approach is given for: gravity; particle modeling of solids, liquids, and gases; conservative modeling of laminar and turbulent fluid flow, heat conduction, and elastic vibration; and nonconservative modeling of heat convection, shock-wave generation, the liquid drop problem, porous flow, the interface motion of a melting solid, soap films, string vibrations, and solitons. An arithmetic reformulation of special relativistic mechanics is given for theory in one space dimension, relativistic harmonic oscillation, and theory in three space dimensions. A speculative quantum mechanical model of vibrations in the water molecule is also discussed.

  7. Tracking fronts in solutions of the shallow-water equations

    NASA Astrophysics Data System (ADS)

    Bennett, Andrew F.; Cummins, Patrick F.

    1988-02-01

    A front-tracking algorithm of Chern et al. (1986) is tested on the shallow-water equations, using the Parrett and Cullen (1984) and Williams and Hori (1970) initial state, consisting of smooth finite amplitude waves depending on one space dimension alone. At high resolution the solution is almost indistinguishable from that obtained with the Glimm algorithm. The latter is known to converge to the true frontal solution, but is 20 times less efficient at the same resolution. The solutions obtained using the front-tracking algorithm at 8 times coarser resolution are quite acceptable, indicating a very substantial gain in efficiency, which encourages application in realistic ocean models possessing two or three space dimensions.

  8. On the Structure of {L^∞}-Entropy Solutions to Scalar Conservation Laws in One-Space Dimension

    NASA Astrophysics Data System (ADS)

    Bianchini, S.; Marconi, E.

    2017-10-01

    We prove that if u is the entropy solution to a scalar conservation law in one space dimension, then the entropy dissipation is a measure concentrated on countably many Lipschitz curves. This result is a consequence of a detailed analysis of the structure of the characteristics. In particular, the characteristic curves are segments outside a countably 1-rectifiable set and the left and right traces of the solution exist in a C 0-sense up to the degeneracy due to the segments where {f''=0}. We prove also that the initial data is taken in a suitably strong sense and we give some examples which show that these results are sharp.

  9. Renormalization group equations and the Lifshitz point in noncommutative Landau-Ginsburg theory

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hong; Wu, Yong-Shi

    2002-02-01

    A one-loop renormalization group (RG) analysis is performed for noncommutative Landau-Ginsburg theory in an arbitrary dimension. We adopt a modern version of the Wilsonian RG approach, in which a shell integration in momentum space bypasses the potential IR singularities due to UV-IR mixing. The momentum-dependent trigonometric factors in interaction vertices, characteristic of noncommutative geometry, are marginal under RG transformations, and their marginality is preserved at one loop. A negative Θ-dependent anomalous dimension is discovered as a novel effect of the UV-IR mixing. We also found a noncommutative Wilson-Fisher (NCWF) fixed point in less than four dimensions. At large noncommutativity, a momentum space instability is induced by quantum fluctuations, and a consequential first-order phase transition is identified together with a Lifshitz point in the phase diagram. In the vicinity of the Lifshitz point, we introduce two critical exponents νm and βk, whose values are determined to be 1/4 and 1/2, respectively, at mean-field level.

  10. Lattice gas simulations of dynamical geometry in two dimensions.

    PubMed

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  11. Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification.

    PubMed

    Wang, Yin; Li, Rudong; Zhou, Yuhua; Ling, Zongxin; Guo, Xiaokui; Xie, Lu; Liu, Lei

    2016-01-01

    Text data of 16S rRNA are informative for classifications of microbiota-associated diseases. However, the raw text data need to be systematically processed so that features for classification can be defined/extracted; moreover, the high-dimension feature spaces generated by the text data also pose an additional difficulty. Here we present a Phylogenetic Tree-Based Motif Finding algorithm (PMF) to analyze 16S rRNA text data. By integrating phylogenetic rules and other statistical indexes for classification, we can effectively reduce the dimension of the large feature spaces generated by the text datasets. Using the retrieved motifs in combination with common classification methods, we can discriminate different samples of both pneumonia and dental caries better than other existing methods. We extend the phylogenetic approaches to perform supervised learning on microbiota text data to discriminate the pathological states for pneumonia and dental caries. The results have shown that PMF may enhance the efficiency and reliability in analyzing high-dimension text data.

  12. Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism

    NASA Astrophysics Data System (ADS)

    Trugenberger, Carlo A.

    2015-12-01

    Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.

  13. Gauge and integrable theories in loop spaces

    NASA Astrophysics Data System (ADS)

    Ferreira, L. A.; Luchini, G.

    2012-05-01

    We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1+1) dimensions, Chern-Simons theories in (2+1) dimensions, and non-abelian gauge theories in (2+1) and (3+1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3+1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations.

  14. Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks.

    PubMed

    Di Ieva, Antonio; Matula, Christian; Grizzi, Fabio; Grabner, Günther; Trattnig, Siegfried; Tschabitscher, Manfred

    2012-01-01

    The need for new and objective indexes for the neuroradiologic follow-up of brain tumors and for monitoring the effects of antiangiogenic strategies in vivo led us to perform a technical study on four patients who received computerized analysis of tumor-associated vasculature with ultra-high-field (7 T) magnetic resonance imaging (MRI). The image analysis involved the application of susceptibility weighted imaging (SWI) to evaluate vascular structures. Four patients affected by recurrent malignant brain tumors were enrolled in the present study. After the first 7-T SWI MRI procedure, the patients underwent antiangiogenic treatment with bevacizumab. The imaging was repeated every 2 weeks for a period of 4 weeks. The SWI patterns visualized in the three MRI temporal sequences were analyzed by means of a computer-aided fractal-based method to objectively quantify their geometric complexity. In two clinically deteriorating patients we found an increase of the geometric complexity of the space-filling properties of the SWI patterns over time despite the antiangiogenic treatment. In one patient, who showed improvement with the therapy, the fractal dimension of the intratumoral structure decreased, whereas in the fourth patient, no differences were found. The qualitative changes of the intratumoral SWI patterns during a period of 4 weeks were quantified with the fractal dimension. Because SWI patterns are also related to the presence of vascular structures, the quantification of their space-filling properties with fractal dimension seemed to be a valid tool for the in vivo neuroradiologic follow-up of brain tumors. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. An investigation of the cratering-induced motions occurring during the formation of bowl-shaped craters. [using high explosive charges as the cratering source

    NASA Technical Reports Server (NTRS)

    Piekutowski, A. J.

    1980-01-01

    The effects of the dynamic processes which occur during crater formation were examined using small hemispherical high-explosive charges detonated in a tank which had one wall constructed of a thick piece of clear plexiglas. Crater formation and the motions of numerous tracer particles installed in the cratering medium at the medium-wall interface were viewed through the wall of this quarter-space tank and recorded with high-speed cameras. Subsequent study and analysis of particle motions and events recorded on the film provide data needed to develop a time-sequence description of the formation of a bowl-shaped crater. Tables show the dimensions of craters produced in a quarter-space tank compared with dimensions of craters produced in normal half-space tanks. Crater growth rate summaries are also tabulated.

  16. Standard 4D gravity on a brane in six-dimensional flux compactifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloso, Marco; Sorbo, Lorenzo; Tasinato, Gianmassimo

    We consider a six-dimensional space-time, in which two of the dimensions are compactified by a flux. Matter can be localized on a codimension one brane coupled to the bulk gauge field and wrapped around an axis of symmetry of the internal space. By studying the linear perturbations around this background, we show that the gravitational interaction between sources on the brane is described by Einstein 4D gravity at large distances. Our model provides a consistent setup for the study of gravity in the rugby (or football) compactification, without having to deal with the complications of a deltalike, codimension two brane.more » To our knowledge, this is the first complete study of gravity in a realistic brane model with two extra dimensions, in which the mechanism of stabilization of the extra space is fully taken into account.« less

  17. The bifurcations of nearly flat origami

    NASA Astrophysics Data System (ADS)

    Santangelo, Christian

    Self-folding origami structures provide one means of fabricating complex, three-dimensional structures from a flat, two-dimensional sheet. Self-folding origami structures have been fabricated on scales ranging from macroscopic to microscopic and can have quite complicated structures with hundreds of folds arranged in complex patterns. I will describe our efforts to understand the mechanics and energetics of self-folding origami structures. Though the dimension of the configuration space of an origami structure scales with the size of the boundary and not with the number of vertices in the interior of the structure, a typical origami structure is also floppy in the sense that there are many possible ways to assign fold angles consistently. I will discuss our theoretical progress in understanding the geometry of the configuration space of origami. For random origami, the number of possible bifurcations grows surprisingly quickly even when the dimension of the configuration space is small. EFRI ODISSEI-1240441, DMR-0846582.

  18. Bootstrapping conformal field theories with the extremal functional method.

    PubMed

    El-Showk, Sheer; Paulos, Miguel F

    2013-12-13

    The existence of a positive linear functional acting on the space of (differences between) conformal blocks has been shown to rule out regions in the parameter space of conformal field theories (CFTs). We argue that at the boundary of the allowed region the extremal functional contains, in principle, enough information to determine the dimensions and operator product expansion (OPE) coefficients of an infinite number of operators appearing in the correlator under analysis. Based on this idea we develop the extremal functional method (EFM), a numerical procedure for deriving the spectrum and OPE coefficients of CFTs lying on the boundary (of solution space). We test the EFM by using it to rederive the low lying spectrum and OPE coefficients of the two-dimensional Ising model based solely on the dimension of a single scalar quasiprimary--no Virasoro algebra required. Our work serves as a benchmark for applications to more interesting, less known CFTs in the near future.

  19. Individualized Instruction in Science, Earth-Space Project, Self-Directed Activities.

    ERIC Educational Resources Information Center

    Kuczma, R. M.

    As a supplement to Learning Activity Packages (LAP) of the earth-space project, this manual presents self-directed activities especially designed for individualized instruction. Besides an introduction to LAP characteristics, sets of instructions are given in connection with the metric system, the earth's dimensions, indirect evidence for atomic…

  20. Ocean Thermal Feature Recognition, Discrimination and Tracking Using Infrared Satellite Imagery

    DTIC Science & Technology

    1991-06-01

    rejected if the temperature in the mapped area exceeds classification criteria ............................... 17 viii 2.6 Ideal feature space mapping from...in seconds, and 1P is the side dimension of the pixel in meters. Figure 2.6: Ideal feature space mapping from pattern tile - search tile comparison. 20

  1. "Outlines" of History: Measured Spaces and Kinesthetics.

    ERIC Educational Resources Information Center

    Morris, Ronald V.

    2000-01-01

    Presents lessons for fourth-grade students in which they create outlines, a measured space that matches with the dimensions of a thing or place from the past. Uses kinesthetics for topics, such as: setting sail for Jamestown (Virginian) in 1606, building a log cabin in 1816, and homesteading in 1830. (CMK)

  2. [Establishment of animal model of temporomandibular joint synovitis and its histological investigation].

    PubMed

    Chen, Cai-Yun; Ding, Yin; Liu, Ya-Jing; Zhang, Ya-Bo

    2010-02-01

    To establish a stable animal model of temporomandibular joint (TMJ) synovitis. Sixteen 6-week-old male SD rats were classified into four groups, control group, occlusal dimension increase group, masseter resection group, occlusal dimension increase group and masseter resection group. The rats in the occlusal dimension increase group were adhered composite resin to their maxillary molars in order to increase the occlusal vertical dimension when they were 9-week-old. The rats in the masseter resection group were cut off their bilateral masseter muscles when they were 6-week-old. In the occlusal dimension increase group and masseter resection group, rats' bilateral masseter muscles were resected and occlusal vertical dimension was increased. All rats were sacrificed at their 10 weeks old. TMJ samples were prepared for histology to evaluate the animal model. The control group showed non-inflammatory changes. The occlusal dimension increase group and the masseter resection group showed vascular dilation and synovial lining proliferation, but there were no statistically significant differences between the two groups (P > 0.05). Compared to the two disposed groups, the occlusal dimension increase group and masseter resection group showed significant inflammatory changes (P < 0.05), including synovial lining proliferation, vascular dilation and fibrin deposit. The animal model of TMJ synovitis created in the present investigation could simulate the real pathological features of synovitis in vivo, and this animal model showed the obvious merits of high stability and reproduction.

  3. Counting conformal correlators

    NASA Astrophysics Data System (ADS)

    Kravchuk, Petr; Simmons-Duffin, David

    2018-02-01

    We introduce simple group-theoretic techniques for classifying conformallyinvariant tensor structures. With them, we classify tensor structures of general n-point functions of non-conserved operators, and n ≥ 4-point functions of general conserved currents, with or without permutation symmetries, and in any spacetime dimension d. Our techniques are useful for bootstrap applications. The rules we derive simultaneously count tensor structures for flat-space scattering amplitudes in d + 1 dimensions.

  4. Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images.

    PubMed

    Thorne, M; Salt, A N; DeMott, J E; Henson, M M; Henson, O W; Gewalt, S L

    1999-10-01

    To establish the dimensions and volumes of the cochlear fluid spaces. Fluid space volumes, lengths, and cross-sectional areas were derived for the cochleas from six species: human, guinea pig, bat, rat, mouse, and gerbil. Three-dimensional reconstructions of the fluid spaces were made from magnetic resonance microscopy (MRM) images. Consecutive serial slices composed of isotropic voxels (25 microm3) representing the entire volume of fixed, isolated cochleas were obtained. The boundaries delineating the fluid spaces, including Reissner's membrane, were resolved for all specimens, except for the human, in which Reissner's membrane was not consistently resolved. Three-dimensional reconstructions of the endolymphatic and perilymphatic fluid spaces were generated. Fluid space length and variation of cross-sectional area with distance were derived by an algorithm that followed the midpoint of the space along the length of the spiral. The total volume of each fluid space was derived from a voxel count for each specimen. Length, volume, and cross-sectional areas are provided for six species. In all cases, the length of the endolymphatic fluid space was consistently longer than that of either perilymphatic scala, primarily as a result of a greater radius of curvature. For guinea pig specimens, the measured volumes of the fluid spaces were considerably lower than those suggested by previous reports based on histological data. The quantification of cochlear fluid spaces provided by this study will enable the more accurate calculation of drug and other solute movements in fluids of the inner ear during experimental or clinical manipulations.

  5. Topological Band Theory for Non-Hermitian Hamiltonians

    NASA Astrophysics Data System (ADS)

    Shen, Huitao; Zhen, Bo; Fu, Liang

    2018-04-01

    We develop the topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex. After generalizing the notion of gapped band structures to the non-Hermitian case, we classify "gapped" bands in one and two dimensions by explicitly finding their topological invariants. We find nontrivial generalizations of the Chern number in two dimensions, and a new classification in one dimension, whose topology is determined by the energy dispersion rather than the energy eigenstates. We then study the bulk-edge correspondence and the topological phase transition in two dimensions. Different from the Hermitian case, the transition generically involves an extended intermediate phase with complex-energy band degeneracies at isolated "exceptional points" in momentum space. We also systematically classify all types of band degeneracies.

  6. Expression of Genes Involved in Drosophila Wing Morphogenesis and Vein Patterning Are Altered by Spaceflight

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2015-01-01

    Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.

  7. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 4: Conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. In the first step of this task, a methodology was developed to ensure that all relevant design dimensions were addressed, and that all feasible designs could be considered. The development effort yielded the following method for generating and comparing designs in task 4: (1) Extract SCS system requirements (functions) from the system specification; (2) Develop design evaluation criteria; (3) Identify system architectural dimensions relevant to SCS system designs; (4) Develop conceptual designs based on the system requirements and architectural dimensions identified in step 1 and step 3 above; (5) Evaluate the designs with respect to the design evaluation criteria developed in step 2 above. The results of the method detailed in the above 5 steps are discussed. The results of the task 4 work provide the set of designs which two or three candidate designs are to be selected by MSFC as input to task 5-refine SCS conceptual designs. The designs selected for refinement will be developed to a lower level of detail, and further analyses will be done to begin to determine the size and speed of the components required to implement these designs.

  8. Systematic dimensionality reduction for continuous-time quantum walks of interacting fermions

    NASA Astrophysics Data System (ADS)

    Izaac, J. A.; Wang, J. B.

    2017-09-01

    To extend the continuous-time quantum walk (CTQW) to simulate P distinguishable particles on a graph G composed of N vertices, the Hamiltonian of the system is expanded to act on an NP-dimensional Hilbert space, in effect, simulating the multiparticle CTQW on graph G via a single-particle CTQW propagating on the Cartesian graph product G□P. The properties of the Cartesian graph product have been well studied, and classical simulation of multiparticle CTQWs are common in the literature. However, the above approach is generally applied as is when simulating indistinguishable particles, with the particle statistics then applied to the propagated NP state vector to determine walker probabilities. We address the following question: How can we modify the underlying graph structure G□P in order to simulate multiple interacting fermionic CTQWs with a reduction in the size of the state space? In this paper, we present an algorithm for systematically removing "redundant" and forbidden quantum states from consideration, which provides a significant reduction in the effective dimension of the Hilbert space of the fermionic CTQW. As a result, as the number of interacting fermions in the system increases, the classical computational resources required no longer increases exponentially for fixed N .

  9. Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.

    PubMed

    Palkowski, Marek; Bielecki, Wlodzimierz

    2018-01-15

    RNA folding is an ongoing compute-intensive task of bioinformatics. Parallelization and improving code locality for this kind of algorithms is one of the most relevant areas in computational biology. Fortunately, RNA secondary structure approaches, such as Nussinov's recurrence, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. This allows us to apply powerful polyhedral compilation techniques based on the transitive closure of dependence graphs to generate parallel tiled code implementing Nussinov's RNA folding. Such techniques are within the iteration space slicing framework - the transitive dependences are applied to the statement instances of interest to produce valid tiles. The main problem at generating parallel tiled code is defining a proper tile size and tile dimension which impact parallelism degree and code locality. To choose the best tile size and tile dimension, we first construct parallel parametric tiled code (parameters are variables defining tile size). With this purpose, we first generate two nonparametric tiled codes with different fixed tile sizes but with the same code structure and then derive a general affine model, which describes all integer factors available in expressions of those codes. Using this model and known integer factors present in the mentioned expressions (they define the left-hand side of the model), we find unknown integers in this model for each integer factor available in the same fixed tiled code position and replace in this code expressions, including integer factors, with those including parameters. Then we use this parallel parametric tiled code to implement the well-known tile size selection (TSS) technique, which allows us to discover in a given search space the best tile size and tile dimension maximizing target code performance. For a given search space, the presented approach allows us to choose the best tile size and tile dimension in parallel tiled code implementing Nussinov's RNA folding. Experimental results, received on modern Intel multi-core processors, demonstrate that this code outperforms known closely related implementations when the length of RNA strands is bigger than 2500.

  10. Pusher syndrome--a frequent but little-known disturbance of body orientation perception.

    PubMed

    Karnath, Hans-Otto

    2007-04-01

    Disturbances of body orientation perception after brain lesions may specifically relate to only one dimension of space. Stroke patients with "pusher syndrome" suffer from a severe misperception of their body's orientation in the coronal (roll) plane. They experience their body as oriented 'upright' when it is in fact markedly tilted to one side. The patients use the unaffected arm or leg to actively push away from the un-paralyzed side and resist any attempt to passively correct their tilted body posture. Although pusher patients are unable to correctly determine when their own body is oriented in an upright, vertical position, they seem to have no significant difficulty in determining the orientation of the surrounding visual world in relation to their own body. Pusher syndrome is a distinctive clinical disorder occurring characteristically after unilateral left or right brain lesions in the posterior thalamus and -less frequently- in the insula and postcentral gyrus. These structures thus seem to constitute crucial neural substrates controlling human (upright) body orientation in the coronal (roll) plane. A further disturbance of body orientation that predominantly affects a single dimension of space, namely the transverse (yaw) plane, is observed in stroke patients with spatial neglect. Apparently, our brain has evolved separate neural subsystems for perceiving and controlling body orientation in different dimensions of space.

  11. Notes on quantitative structure-properties relationships (QSPR) (1): A discussion on a QSPR dimensionality paradox (QSPR DP) and its quantum resolution.

    PubMed

    Carbó-Dorca, Ramon; Gallegos, Ana; Sánchez, Angel J

    2009-05-01

    Classical quantitative structure-properties relationship (QSPR) statistical techniques unavoidably present an inherent paradoxical computational context. They rely on the definition of a Gram matrix in descriptor spaces, which is used afterwards to reduce the original dimension via several possible kinds of algebraic manipulations. From there, effective models for the computation of unknown properties of known molecular structures are obtained. However, the reduced descriptor dimension causes linear dependence within the set of discrete vector molecular representations, leading to positive semi-definite Gram matrices in molecular spaces. To resolve this QSPR dimensionality paradox (QSPR DP) here is proposed to adopt as starting point the quantum QSPR (QQSPR) computational framework perspective, where density functions act as infinite dimensional descriptors. The fundamental QQSPR equation, deduced from employing quantum expectation value numerical evaluation, can be approximately solved in order to obtain models exempt of the QSPR DP. The substitution of the quantum similarity matrix by an empirical Gram matrix in molecular spaces, build up with the original non manipulated discrete molecular descriptor vectors, permits to obtain classical QSPR models with the same characteristics as in QQSPR, that is: possessing a certain degree of causality and explicitly independent of the descriptor dimension. 2008 Wiley Periodicals, Inc.

  12. The ABC of stereotypes about groups: Agency/socioeconomic success, conservative-progressive beliefs, and communion.

    PubMed

    Koch, Alex; Imhoff, Roland; Dotsch, Ron; Unkelbach, Christian; Alves, Hans

    2016-05-01

    Previous research argued that stereotypes differ primarily on the 2 dimensions of warmth/communion and competence/agency. We identify an empirical gap in support for this notion. The theoretical model constrains stereotypes a priori to these 2 dimensions; without this constraint, participants might spontaneously employ other relevant dimensions. We fill this gap by complementing the existing theory-driven approaches with a data-driven approach that allows an estimation of the spontaneously employed dimensions of stereotyping. Seven studies (total N = 4,451) show that people organize social groups primarily based on their agency/socioeconomic success (A), and as a second dimension, based on their conservative-progressive beliefs (B). Communion (C) is not found as a dimension by its own, but rather as an emergent quality in the two-dimensional space of A and B, resulting in a 2D ABC model of stereotype content about social groups. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. A real negative selection algorithm with evolutionary preference for anomaly detection

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Chen, Wen; Li, Tao

    2017-04-01

    Traditional real negative selection algorithms (RNSAs) adopt the estimated coverage (c0) as the algorithm termination threshold, and generate detectors randomly. With increasing dimensions, the data samples could reside in the low-dimensional subspace, so that the traditional detectors cannot effectively distinguish these samples. Furthermore, in high-dimensional feature space, c0 cannot exactly reflect the detectors set coverage rate for the nonself space, and it could lead the algorithm to be terminated unexpectedly when the number of detectors is insufficient. These shortcomings make the traditional RNSAs to perform poorly in high-dimensional feature space. Based upon "evolutionary preference" theory in immunology, this paper presents a real negative selection algorithm with evolutionary preference (RNSAP). RNSAP utilizes the "unknown nonself space", "low-dimensional target subspace" and "known nonself feature" as the evolutionary preference to guide the generation of detectors, thus ensuring the detectors can cover the nonself space more effectively. Besides, RNSAP uses redundancy to replace c0 as the termination threshold, in this way RNSAP can generate adequate detectors under a proper convergence rate. The theoretical analysis and experimental result demonstrate that, compared to the classical RNSA (V-detector), RNSAP can achieve a higher detection rate, but with less detectors and computing cost.

  14. Dorsal raphe nucleus of brain in the rats flown in space inflight and postflight alteration of structure

    NASA Astrophysics Data System (ADS)

    Krasnov, I.

    The structure of brain dorsal raphe nucleus (DRN) was studied in the rats flown in space aboard Space Shuttle "Columbia" (STS-58, SLS-2 program) and dissected on day 13 of the mission ("inflight" rats) and in 5-6 hours after finishing 14-day flight ("postflight" rats). The brain of "inflight" rats were excised after decapitation, sectioned sagitally halves of brain were fixed by immersion in 2,5 % glutaraldehyde in 0.1 M cacodylate buffer pH 7.3 at 4°C and kept in the flight at 4°C. After landing the brain frontal 0.5 mm sections from DRN area were osmificated and embedded in araldite at NASA ARC. The brains of "postflight": and control rats were underwent to the same procedure. Electronmicroscopical analysis, computer morphometry and glial cell count were performed at Moscow. In DRN neuropil of "inflight" rats the most part of axo-dendritic synapses were surrounded by glia cell processes and had decreased electron density of pre- and postsynaptic membrane and pronounced diminution of synaptic vesicle amount while dendrites were characterized by decrease in matrix electron density and microtubule quantity that in total indicates the decline of afferent flow reaching DRN neurons in microgravity. In DRN neurons of "inflight" rats all mitochondria were characterized by evenly increased dimensions, decreased matrix electron density, small amount of short and far- between located cristae and enlarged intermembrane and intercristae spaces, that in total points out low level of coupling of oxidation to phosphorilation, decrease in energy supply of neuron. Amount of ribosome in cytoplasm was significantly decreased indicating lower lever of biosynthetic processes. The last is supported by diminished dimensions of neuronal body, nucleus and nucleolus (place of r RNA synthesis), cross section area of that were reduced in DRN neurons of "inflight" rats by 18.8 % (p < 0.01), 11.1 % and 26.6 % (p <0,005) correspondingly. Ultrastructure and dimensions of intracellular structures in DRN of "postflight" rats were not differ significantly fo rm analogous parameters of "inflight" rats. The results of study point out the decrease in mircrogravity in functional activity of DRN - main serotoniner gic center of brain and in combination with the data (Krasnov et. A.; 1998; Krasnov, Dyachkova, 2000) about inflight alteration in locus coeruleus - main noradrenergic center allow to propose the mechanism of decline of growth hormone secretion in mammals during space flight.

  15. Chromatic Dimensions Earthy, Watery, Airy, and Fiery.

    PubMed

    Albertazzi, Liliana; Koenderink, Jan J; van Doorn, Andrea

    2015-01-01

    In our study, for a small number of antonyms, we investigate whether they are cross-modally or ideaesthetically related to the space of colors. We analyze the affinities of seven antonyms (cold-hot, dull-radiant, dead-vivid, soft-hard, transparent-chalky, dry-wet, and acid-treacly) and their intermediate connotations (cool-warm, matt-shiny, numb-lively, mellow-firm, semi-transparent-opaque, semi-dry-moist, and sour-sweet) as a function of color. We find that some antonyms relate to chromatic dimensions, others to achromatic ones. The cold-hot antonym proves to be the most salient dimension. The dry-wet dimension coincides with the cold-hot dimension, with dry corresponding to hot and wet to cold. The acid-treacly dimension proves to be transversal to the cold-hot dimension; hence, the pairs mutually span the chromatic domain. The cold-hot and acid-treacly antonyms perhaps recall Hering's opponent color system. The dull-radiant, transparent-chalky, and dead-vivid pairs depend little upon chromaticity. Of all seven antonyms, only the soft-hard one turns out to be independent of the chromatic structure. © The Author(s) 2015.

  16. Anthropometric Accommodation in Space Suit Design

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Thaxton, Sherry

    2007-01-01

    Design requirements for next generation hardware are in process at NASA. Anthropometry requirements are given in terms of minimum and maximum sizes for critical dimensions that hardware must accommodate. These dimensions drive vehicle design and suit design, and implicitly have an effect on crew selection and participation. At this stage in the process, stakeholders such as cockpit and suit designers were asked to provide lists of dimensions that will be critical for their design. In addition, they were asked to provide technically feasible minimum and maximum ranges for these dimensions. Using an adjusted 1988 Anthropometric Survey of U.S. Army (ANSUR) database to represent a future astronaut population, the accommodation ranges provided by the suit critical dimensions were calculated. This project involved participation from the Anthropometry and Biomechanics facility (ABF) as well as suit designers, with suit designers providing expertise about feasible hardware dimensions and the ABF providing accommodation analysis. The initial analysis provided the suit design team with the accommodation levels associated with the critical dimensions provided early in the study. Additional outcomes will include a comparison of principal components analysis as an alternate method for anthropometric analysis.

  17. Binding space and time through action

    PubMed Central

    Binetti, N.; Hagura, N.; Fadipe, C.; Tomassini, A.; Walsh, V.; Bestmann, S.

    2015-01-01

    Space and time are intimately coupled dimensions in the human brain. Several lines of evidence suggest that space and time are processed by a shared analogue magnitude system. It has been proposed that actions are instrumental in establishing this shared magnitude system. Here we provide evidence in support of this hypothesis, by showing that the interaction between space and time is enhanced when magnitude information is acquired through action. Participants observed increases or decreases in the height of a visual bar (spatial magnitude) while judging whether a simultaneously presented sequence of acoustic tones had accelerated or decelerated (temporal magnitude). In one condition (Action), participants directly controlled the changes in bar height with a hand grip device, whereas in the other (No Action), changes in bar height were externally controlled but matched the spatial/temporal profile of the Action condition. The sign of changes in bar height biased the perceived rate of the tone sequences, where increases in bar height produced apparent increases in tone rate. This effect was amplified when the visual bar was actively controlled in the Action condition, and the strength of the interaction was scaled by the magnitude of the action. Subsequent experiments ruled out that this was simply explained by attentional factors, and additionally showed that a monotonic mapping is also required between grip force and bar height in order to bias the perception of the tones. These data provide support for an instrumental role of action in interfacing spatial and temporal quantities in the brain. PMID:25808892

  18. Streamflow variability and classification using false nearest neighbor method

    NASA Astrophysics Data System (ADS)

    Vignesh, R.; Jothiprakash, V.; Sivakumar, B.

    2015-12-01

    Understanding regional streamflow dynamics and patterns continues to be a challenging problem. The present study introduces the false nearest neighbor (FNN) algorithm, a nonlinear dynamic-based method, to examine the spatial variability of streamflow over a region. The FNN method is a dimensionality-based approach, where the dimension of the time series represents its variability. The method uses phase space reconstruction and nearest neighbor concepts, and identifies false neighbors in the reconstructed phase space. The FNN method is applied to monthly streamflow data monitored over a period of 53 years (1950-2002) in an extensive network of 639 stations in the contiguous United States (US). Since selection of delay time in phase space reconstruction may influence the FNN outcomes, analysis is carried out for five different delay time values: monthly, seasonal, and annual separation of data as well as delay time values obtained using autocorrelation function (ACF) and average mutual information (AMI) methods. The FNN dimensions for the 639 streamflow series are generally identified to range from 4 to 12 (with very few exceptional cases), indicating a wide range of variability in the dynamics of streamflow across the contiguous US. However, the FNN dimensions for a majority of the streamflow series are found to be low (less than or equal to 6), suggesting low level of complexity in streamflow dynamics in most of the individual stations and over many sub-regions. The FNN dimension estimates also reveal that streamflow dynamics in the western parts of the US (including far west, northwestern, and southwestern parts) generally exhibit much greater variability compared to that in the eastern parts of the US (including far east, northeastern, and southeastern parts), although there are also differences among 'pockets' within these regions. These results are useful for identification of appropriate model complexity at individual stations, patterns across regions and sub-regions, interpolation and extrapolation of data, and catchment classification. An attempt is also made to relate the FNN dimensions with catchment characteristics and streamflow statistical properties.

  19. Modeling Nonstationarity in Space and Time

    PubMed Central

    2017-01-01

    Summary We propose to model a spatio-temporal random field that has nonstationary covariance structure in both space and time domains by applying the concept of the dimension expansion method in Bornn et al. (2012). Simulations are conducted for both separable and nonseparable space-time covariance models, and the model is also illustrated with a streamflow dataset. Both simulation and data analyses show that modeling nonstationarity in both space and time can improve the predictive performance over stationary covariance models or models that are nonstationary in space but stationary in time. PMID:28134977

  20. Modeling nonstationarity in space and time.

    PubMed

    Shand, Lyndsay; Li, Bo

    2017-09-01

    We propose to model a spatio-temporal random field that has nonstationary covariance structure in both space and time domains by applying the concept of the dimension expansion method in Bornn et al. (2012). Simulations are conducted for both separable and nonseparable space-time covariance models, and the model is also illustrated with a streamflow dataset. Both simulation and data analyses show that modeling nonstationarity in both space and time can improve the predictive performance over stationary covariance models or models that are nonstationary in space but stationary in time. © 2017, The International Biometric Society.

  1. Trading spaces: building three-dimensional nets from two-dimensional tilings

    PubMed Central

    Castle, Toen; Evans, Myfanwy E.; Hyde, Stephen T.; Ramsden, Stuart; Robins, Vanessa

    2012-01-01

    We construct some examples of finite and infinite crystalline three-dimensional nets derived from symmetric reticulations of homogeneous two-dimensional spaces: elliptic (S2), Euclidean (E2) and hyperbolic (H2) space. Those reticulations are edges and vertices of simple spherical, planar and hyperbolic tilings. We show that various projections of the simplest symmetric tilings of those spaces into three-dimensional Euclidean space lead to topologically and geometrically complex patterns, including multiple interwoven nets and tangled nets that are otherwise difficult to generate ab initio in three dimensions. PMID:24098839

  2. Small instanton transitions for M5 fractions

    NASA Astrophysics Data System (ADS)

    Mekareeya, Noppadol; Ohmori, Kantaro; Shimizu, Hiroyuki; Tomasiello, Alessandro

    2017-10-01

    M5-branes on an ADE singularity are described by certain six-dimensional "conformal matter" superconformal field theories. Their Higgs moduli spaces contain information about various dynamical processes for the M5s; however, they are not directly accessible due to the lack of a Lagrangian formulation. Using anomaly matching, we compute their dimensions. The result implies that M5 fractions can recombine in several different ways, where the M5s are leaving behind frozen versions of the singularity. The anomaly polynomial gives hints about the nature of the freezing. We also check the Higgs dimension formula by comparing it with various existing conjectures for the CFTs one obtains by torus compactifications down to four and three dimensions. Aided by our results, we also extend those conjectures to compactifications of theories not previously considered. These involve class S theories with twisted punctures in four dimensions, and affine-Dynkin-shaped quivers in three dimensions.

  3. A dissociation between attention and selection

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Folk, C. L.

    2001-01-01

    It is widely assumed that the allocatian of spatial attention results in the "selection" of attended objects or regions of space. That is, once a stimulus is attended, all its feature dimensions are processed irrespective of their relevance to behavioral goals. This assumption is based in part on experiments showing significant interference for attended stimuli when the response to an irrelevant dimension conflicts with the response to the relevant dimension (e.g., the Stroop effect). Here we show that such interference is not due to attending per se. In two spatial cuing experiments, we found that it was possible to restrict processing of attended stimuli to task-relevant dimensions. This new evidence supports two novel conclusions: (a) Selection involves more than the focusing of attention per se: and (b) task expectations play a key role in detertnining the depth of processing of the elementary feature dimensions of attended stimuli.

  4. Anomalous dimensions of spinning operators from conformal symmetry

    NASA Astrophysics Data System (ADS)

    Gliozzi, Ferdinando

    2018-01-01

    We compute, to the first non-trivial order in the ɛ-expansion of a perturbed scalar field theory, the anomalous dimensions of an infinite class of primary operators with arbitrary spin ℓ = 0, 1, . . . , including as a particular case the weakly broken higher-spin currents, using only constraints from conformal symmetry. Following the bootstrap philosophy, no reference is made to any Lagrangian, equations of motion or coupling constants. Even the space dimensions d are left free. The interaction is implicitly turned on through the local operators by letting them acquire anomalous dimensions. When matching certain four-point and five-point functions with the corresponding quantities of the free field theory in the ɛ → 0 limit, no free parameter remains. It turns out that only the expected discrete d values are permitted and the ensuing anomalous dimensions reproduce known results for the weakly broken higher-spin currents and provide new results for the other spinning operators.

  5. Dry etch challenges for CD shrinkage in memory process

    NASA Astrophysics Data System (ADS)

    Matsushita, Takaya; Matsumoto, Takanori; Mukai, Hidefumi; Kyoh, Suigen; Hashimoto, Kohji

    2015-03-01

    Line pattern collapse attracts attention as a new problem of the L&S formation in sub-20nm H.P feature. Line pattern collapse that occurs in a slight non-uniformity of adjacent CD (Critical dimension) space using double patterning process has been studied with focus on micro-loading effect in Si etching. Bias RF pulsing plasma etching process using low duty cycle helped increase of selectivity Si to SiO2. In addition to the effect of Bias RF pulsing process, the thin mask obtained from improvement of selectivity has greatly suppressed micro-loading in Si etching. However it was found that micro-loading effect worsen again in sub-20nm space width. It has been confirmed that by using cycle etch process to remove deposition with CFx based etching micro-loading effect could be suppressed. Finally, Si etching process condition using combination of results above could provide finer line and space without "line pattern collapse" in sub-20nm.

  6. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction

    NASA Astrophysics Data System (ADS)

    Cui, Tiangang; Marzouk, Youssef; Willcox, Karen

    2016-06-01

    Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.

  7. On the representation theory of the Bondi-Metzner-Sachs group and its variants in three space-time dimensions

    NASA Astrophysics Data System (ADS)

    Melas, Evangelos

    2017-07-01

    The original Bondi-Metzner-Sachs (BMS) group B is the common asymptotic symmetry group of all asymptotically flat Lorentzian radiating 4-dim space-times. As such, B is the best candidate for the universal symmetry group of General Relativity (G.R.). In 1973, with this motivation, McCarthy classified all relativistic B-invariant systems in terms of strongly continuous irreducible unitary representations (IRS) of B. Here we introduce the analogue B(2, 1) of the BMS group B in 3 space-time dimensions. B(2, 1) itself admits thirty-four analogues both real in all signatures and in complex space-times. In order to find the IRS of both B(2, 1) and its analogues, we need to extend Wigner-Mackey's theory of induced representations. The necessary extension is described and is reduced to the solution of three problems. These problems are solved in the case where B(2, 1) and its analogues are equipped with the Hilbert topology. The extended theory is necessary in order to construct the IRS of both B and its analogues in any number d of space-time dimensions, d ≥3 , and also in order to construct the IRS of their supersymmetric counterparts. We use the extended theory to obtain the necessary data in order to construct the IRS of B(2, 1). The main results of the representation theory are as follows: The IRS are induced from "little groups" which are compact. The finite "little groups" are cyclic groups of even order. The inducing construction is exhaustive notwithstanding the fact that B(2, 1) is not locally compact in the employed Hilbert topology.

  8. Exploring the interconnections between gender, health and nature.

    PubMed

    MacBride-Stewart, S; Gong, Y; Antell, J

    2016-12-01

    Public health has recognized that nature is good for health but there are calls for a review of its gendered aspects. This review attempts to develop and explore a broad analytical theme - the differing interconnections between gender, health and nature. The paper summarizes the interconnections that have been subject to extensive academic enquiry between gender and health, health and space, and gender and space. A combination of key terms including place; gender; health; outdoor space; green space; natural environment; national parks; femininity; masculinity; recreation; physical activity; sustainability; ecofeminism; feminism; environmental degradation; and environmental justice were used to search the electronic databases Sociological Abstracts, Web of Science and Scopus to identify relevant articles. We took two approaches for this review to provide an overview and analysis of the range of research in the field, and to present a framework of research that is an analysis of the intersection of gender, health and nature. Four dimensions are distinguished: (1) evaluations of health benefits and 'toxicities' of nature; (2) dimensions and qualities of nature/space; (3) environmental justice including accessibility, availability and usability; and (4) identification of boundaries (symbolic/material) that construct differential relationships between nature, gender and health. This paper offers an understanding of how environmental and social conditions may differentially shape the health of women and men. The dimensions direct analytical attention to the diverse linkages that constitute overlapping and inseparable domains of knowledge and practice, to identify complex interconnections between gender, health and nature. This review therefore analyses assumptions about the health benefits of nature, and its risks, for gender from an in-depth, analytical perspective that can be used to inform policy. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehghani, M.H.; Department of Physics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1; Perimeter Institute for Theoretical Physics, 35 Caroline Street North, Waterloo, Ontario

    We investigate the existence of Taub-NUT (Newman-Unti-Tamburino) and Taub-bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in d dimensions. We find that for all nonextremal NUT solutions of Einstein gravity having no curvature singularity at r=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter {alpha} goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield nonextremal NUT solutions to Einstein gravity having a curvature singularity at r=N in the limit {alpha}{yields}0. Indeed, we have nonextreme NUT solutions in 2+2k dimensions withmore » nontrivial fibration only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a two-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two-dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.« less

  10. The organization of conspecific face space in nonhuman primates

    PubMed Central

    Parr, Lisa A.; Taubert, Jessica; Little, Anthony C.; Hancock, Peter J. B.

    2013-01-01

    Humans and chimpanzees demonstrate numerous cognitive specializations for processing faces, but comparative studies with monkeys suggest that these may be the result of recent evolutionary adaptations. The present study utilized the novel approach of face space, a powerful theoretical framework used to understand the representation of face identity in humans, to further explore species differences in face processing. According to the theory, faces are represented by vectors in a multidimensional space, the centre of which is defined by an average face. Each dimension codes features important for describing a face’s identity, and vector length codes the feature’s distinctiveness. Chimpanzees and rhesus monkeys discriminated male and female conspecifics’ faces, rated by humans for their distinctiveness, using a computerized task. Multidimensional scaling analyses showed that the organization of face space was similar between humans and chimpanzees. Distinctive faces had the longest vectors and were the easiest for chimpanzees to discriminate. In contrast, distinctiveness did not correlate with the performance of rhesus monkeys. The feature dimensions for each species’ face space were visualized and described using morphing techniques. These results confirm species differences in the perceptual representation of conspecific faces, which are discussed within an evolutionary framework. PMID:22670823

  11. Target intersection probabilities for parallel-line and continuous-grid types of search

    USGS Publications Warehouse

    McCammon, R.B.

    1977-01-01

    The expressions for calculating the probability of intersection of hidden targets of different sizes and shapes for parallel-line and continuous-grid types of search can be formulated by vsing the concept of conditional probability. When the prior probability of the orientation of a widden target is represented by a uniform distribution, the calculated posterior probabilities are identical with the results obtained by the classic methods of probability. For hidden targets of different sizes and shapes, the following generalizations about the probability of intersection can be made: (1) to a first approximation, the probability of intersection of a hidden target is proportional to the ratio of the greatest dimension of the target (viewed in plane projection) to the minimum line spacing of the search pattern; (2) the shape of the hidden target does not greatly affect the probability of the intersection when the largest dimension of the target is small relative to the minimum spacing of the search pattern, (3) the probability of intersecting a target twice for a particular type of search can be used as a lower bound if there is an element of uncertainty of detection for a particular type of tool; (4) the geometry of the search pattern becomes more critical when the largest dimension of the target equals or exceeds the minimum spacing of the search pattern; (5) for elongate targets, the probability of intersection is greater for parallel-line search than for an equivalent continuous square-grid search when the largest dimension of the target is less than the minimum spacing of the search pattern, whereas the opposite is true when the largest dimension exceeds the minimum spacing; (6) the probability of intersection for nonorthogonal continuous-grid search patterns is not greatly different from the probability of intersection for the equivalent orthogonal continuous-grid pattern when the orientation of the target is unknown. The probability of intersection for an elliptically shaped target can be approximated by treating the ellipse as intermediate between a circle and a line. A search conducted along a continuous rectangular grid can be represented as intermediate between a search along parallel lines and along a continuous square grid. On this basis, an upper and lower bound for the probability of intersection of an elliptically shaped target for a continuous rectangular grid can be calculated. Charts have been constructed that permit the values for these probabilities to be obtained graphically. The use of conditional probability allows the explorationist greater flexibility in considering alternate search strategies for locating hidden targets. ?? 1977 Plenum Publishing Corp.

  12. [The emotional characteristics of the sounding word].

    PubMed

    Videneeva, N M; Khludova, O O; Vartanov, A V

    2000-01-01

    The four-dimensional spherical emotional space has been obtained by multi-dimensional scaling of subjective differences between the emotional expressions in sound samples (the words "Yes" and "No" pronounced in different emotional conditions). Euclidean space axes are interpreted as the following neural mechanisms. The first two dimensions are related with the estimation of a sign of emotional condition: the dimension 1--pleasant/unpleasant, useful or not, the dimension 2--an extent of information certainty. The third and the fourth axes are associated with the incentive. The dimension 3 encodes active (anger) or passive (fear) defensive reaction, and the dimension 4 corresponds to achievement. Three angles of four-dimensional hypersphere: the one between the axes 1 and 2, the second between the axes 3 and 4, the third between these two planes determine subjectively experienced emotion characteristics such as described by Vundt emotion modality (pleasure-unpleaure), excitation-quietness-suppression, and tension-relaxation, respectively. Thus, the first and the second angles regulate the modality of ten basic emotions: five emotions determined by a situation and five emotions determined by personal activity. In case of another system of angular parameters (three angles between the axes 4 and 1, 3 and 2, and the angle between the respective planes), another system of emotion classification, which is usually described in the studies of facial expressions (Shlosberg's and Izmaĭlov's circular system) and semantics (Osgood) can be realized: emotion modality or sign (regulates 6 basic emotions), emotion activity or brightness (excitation-rest) and emotion saturation (strength of emotion expression).

  13. The three-body problem with short-range interactions

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Fedorov, D. V.; Jensen, A. S.; Garrido, E.

    2001-06-01

    The quantum mechanical three-body problem is studied for general short-range interactions. We work in coordinate space to facilitate accurate computations of weakly bound and spatially extended systems. Hyperspherical coordinates are used in both the interpretation and as an integral part of the numerical method. Universal properties and model independence are discussed throughout the report. We present an overview of the hyperspherical adiabatic Faddeev equations. The wave function is expanded on hyperspherical angular eigenfunctions which in turn are found numerically using the Faddeev equations. We generalize the formalism to any dimension of space d greater or equal to two. We present two numerical techniques for solving the Faddeev equations on the hypersphere. These techniques are effective for short and intermediate/large distances including use for hard core repulsive potentials. We study the asymptotic limit of large hyperradius and derive the analytic behaviour of the angular eigenvalues and eigenfunctions. We discuss four applications of the general method. We first analyze the Efimov and Thomas effects for arbitrary angular momenta and for arbitrary dimensions d. Second we apply the method to extract the general behaviour of weakly bound three-body systems in two dimensions. Third we illustrate the method in three dimensions by structure computations of Borromean halo nuclei, the hypertriton and helium molecules. Fourth we investigate in three dimensions three-body continuum properties of Borromean halo nuclei and recombination reactions of helium atoms as an example of direct relevance for the stability of Bose-Einstein condensates.

  14. Similarity-dissimilarity plot for visualization of high dimensional data in biomedical pattern classification.

    PubMed

    Arif, Muhammad

    2012-06-01

    In pattern classification problems, feature extraction is an important step. Quality of features in discriminating different classes plays an important role in pattern classification problems. In real life, pattern classification may require high dimensional feature space and it is impossible to visualize the feature space if the dimension of feature space is greater than four. In this paper, we have proposed a Similarity-Dissimilarity plot which can project high dimensional space to a two dimensional space while retaining important characteristics required to assess the discrimination quality of the features. Similarity-dissimilarity plot can reveal information about the amount of overlap of features of different classes. Separable data points of different classes will also be visible on the plot which can be classified correctly using appropriate classifier. Hence, approximate classification accuracy can be predicted. Moreover, it is possible to know about whom class the misclassified data points will be confused by the classifier. Outlier data points can also be located on the similarity-dissimilarity plot. Various examples of synthetic data are used to highlight important characteristics of the proposed plot. Some real life examples from biomedical data are also used for the analysis. The proposed plot is independent of number of dimensions of the feature space.

  15. Actualizing Flexible National Security Space Systems

    DTIC Science & Technology

    2011-01-01

    single launch vehicle is a decision unique to small satellites that adds an extra dimension to the launch risk calculation. While bundling...following a launch failure. The ability to bundle multiple payloads on a single launch vehicle is a decision unique to small satellites that adds an extra ... dimension to the launch risk calculation. While bundling multiple small satellites on a single launch vehicle spreads the initial launch cost across

  16. No more CKY two-forms in the NHEK

    NASA Astrophysics Data System (ADS)

    Mitsuka, Yoshihiro; Moutsopoulos, George

    2012-02-01

    We show that in the near-horizon limit of a Kerr-NUT-AdS black hole, the space of conformal Killing-Yano two-forms does not enhance and remains of dimension 2. The same holds for an analogous polar limit in the case of extremal NUT charge. We also derive the conformal Killing-Yano p-form equation for any background in an arbitrary dimension in the form of parallel transport.

  17. Research on Green Manufacturing Innovation Based on Resource Environment Protection

    NASA Astrophysics Data System (ADS)

    Jie, Xu

    2017-11-01

    Green manufacturing is a trend of manufacturing industry in the future, and is of great significance to resource protection and environmental protection. This paper first studies the green manufacturing innovation system, and then decomposes the green manufacturing innovation dimensions, and constructs the green manufacturing innovation dimension space. Finally, from the view of resource protection and environmental protection, this paper explores the path of green manufacturing innovation.

  18. Relativistic quantum thermodynamics of ideal gases in two dimensions.

    PubMed

    Blas, H; Pimentel, B M; Tomazelli, J L

    1999-11-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  19. New variables for classical and quantum gravity in all dimensions: I. Hamiltonian analysis

    NASA Astrophysics Data System (ADS)

    Bodendorfer, N.; Thiemann, T.; Thurn, A.

    2013-02-01

    Loop quantum gravity (LQG) relies heavily on a connection formulation of general relativity such that (1) the connection Poisson commutes with itself and (2) the corresponding gauge group is compact. This can be achieved starting from the Palatini or Holst action when imposing the time gauge. Unfortunately, this method is restricted to D + 1 = 4 spacetime dimensions. However, interesting string theories and supergravity theories require higher dimensions and it would therefore be desirable to have higher dimensional supergravity loop quantizations at one’s disposal in order to compare these approaches. In this series of papers we take first steps toward this goal. The present first paper develops a classical canonical platform for a higher dimensional connection formulation of the purely gravitational sector. The new ingredient is a different extension of the ADM phase space than the one used in LQG which does not require the time gauge and which generalizes to any dimension D > 1. The result is a Yang-Mills theory phase space subject to Gauß, spatial diffeomorphism and Hamiltonian constraint as well as one additional constraint, called the simplicity constraint. The structure group can be chosen to be SO(1, D) or SO(D + 1) and the latter choice is preferred for purposes of quantization.

  20. Peak picking and the assessment of separation performance in two-dimensional high performance liquid chromatography.

    PubMed

    Stevenson, Paul G; Mnatsakanyan, Mariam; Guiochon, Georges; Shalliker, R Andrew

    2010-07-01

    An algorithm was developed for 2DHPLC that automated the process of peak recognition, measuring their retention times, and then subsequently plotting the information in a two-dimensional retention plane. Following the recognition of peaks, the software then performed a series of statistical assessments of the separation performance, measuring for example, correlation between dimensions, peak capacity and the percentage of usage of the separation space. Peak recognition was achieved by interpreting the first and second derivatives of each respective one-dimensional chromatogram to determine the 1D retention times of each solute and then compiling these retention times for each respective fraction 'cut'. Due to the nature of comprehensive 2DHPLC adjacent cut fractions may contain peaks common to more than one cut fraction. The algorithm determined which components were common in adjacent cuts and subsequently calculated the peak maximum profile by interpolating the space between adjacent peaks. This algorithm was applied to the analysis of a two-dimensional separation of an apple flesh extract separated in a first dimension comprising a cyano stationary phase and an aqueous/THF mobile phase as the first dimension and a second dimension comprising C18-Hydro with an aqueous/MeOH mobile phase. A total of 187 peaks were detected.

  1. Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hao; Gu, Bao-Min; Wang, Yong-Qiang

    The future gravitational wave (GW) observations of compact binaries and their possible electromagnetic counterparts may be used to probe the nature of the extra dimension. It is widely accepted that gravitons and photons are the only two completely confirmed objects that can travel along null geodesics in our four-dimensional space-time. However, if there exist extra dimensions and only GWs can propagate freely in the bulk, the causal propagations of GWs and electromagnetic waves (EMWs) are in general different. In this paper, we study null geodesics of GWs and EMWs in a five-dimensional anti-de Sitter space-time in the presence of themore » curvature of the universe. We show that for general cases the horizon radius of GW is longer than EMW within equal time. Taking the GW150914 event detected by the Advanced Laser Interferometer Gravitational-Wave Observatory and the X-ray event detected by the Fermi Gamma-ray Burst Monitor as an example, we study how the curvature k and the constant curvature radius l affect the horizon radii of GW and EMW in the de Sitter and Einstein-de Sitter models of the universe. This provides an alternative method for probing extra dimension through future GW observations of compact binaries and their electromagnetic counterparts.« less

  2. Considering Decision Variable Diversity in Multi-Objective Optimization: Application in Hydrologic Model Calibration

    NASA Astrophysics Data System (ADS)

    Sahraei, S.; Asadzadeh, M.

    2017-12-01

    Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.

  3. What If We Lived in Flatland?

    ERIC Educational Resources Information Center

    Anderson, Rick; Princko, Jamie A.

    2011-01-01

    The authors wanted their students to consider mathematical notions of space and dimension, which are typically not part of the middle school curriculum. They developed a two-week lesson that was drawn from the curriculum unit "Exploring the Shape of Space" (Weeks 2001). They began by considering implications of living in a two-dimensional…

  4. Dimensions of Learning: Community College Students and Their Perceptions of Learning Spaces

    ERIC Educational Resources Information Center

    Bowers, Hugh Hawes, III

    2016-01-01

    Classrooms, both by design and by accident, have been used to teach and reinforce certain ethics and ideologies. Examining the actual structures of a classroom one can recognize forces often hidden or considered background revealing how students and instructors together are culturally bound by educational spaces. Considerable research exists that…

  5. Restricted Freedom: Negotiating Same-Sex Identifications in the Residential Spaces of a South African University

    ERIC Educational Resources Information Center

    Msibi, Thabo; Jagessar, Valenshia

    2015-01-01

    International higher education research focused on students who claim same-sex identifications in university residential spaces has tended to prioritise the "gay as victim" discourse, often leading to the pathologising of same-sex identification. While there is emerging research seeking to challenge this dimension of scholarship by…

  6. A computer search for asteroid families

    NASA Technical Reports Server (NTRS)

    Lindblad, Bertil A.

    1992-01-01

    The improved proper elements of 4100 numbered asteroids have been searched for clusterings in a, e, i space using a computer technique based on the D-criterion. A list of 14 dynamical families each with more than 15 members is presented. Quantitative measurements of the density and dimensions in phase space of each family are presented.

  7. Baryon acoustic oscillations in 2D. II. Redshift-space halo clustering in N-body simulations

    NASA Astrophysics Data System (ADS)

    Nishimichi, Takahiro; Taruya, Atsushi

    2011-08-01

    We measure the halo power spectrum in redshift space from cosmological N-body simulations, and test the analytical models of redshift distortions particularly focusing on the scales of baryon acoustic oscillations. Remarkably, the measured halo power spectrum in redshift space exhibits a large-scale enhancement in amplitude relative to the real-space clustering, and the effect becomes significant for the massive or highly biased halo samples. These findings cannot be simply explained by the so-called streaming model frequently used in the literature. By contrast, a physically motivated perturbation theory model developed in the previous paper reproduces the halo power spectrum very well, and the model combining a simple linear scale-dependent bias can accurately characterize the clustering anisotropies of halos in two dimensions, i.e., line-of-sight and its perpendicular directions. The results highlight the significance of nonlinear coupling between density and velocity fields associated with two competing effects of redshift distortions, i.e., Kaiser and Finger-of-God effects, and a proper account of this effect would be important in accurately characterizing the baryon acoustic oscillations in two dimensions.

  8. Extended spin symmetry and the standard model

    NASA Astrophysics Data System (ADS)

    Besprosvany, J.; Romero, R.

    2010-12-01

    We review unification ideas and explain the spin-extended model in this context. Its consideration is also motivated by the standard-model puzzles. With the aim of constructing a common description of discrete degrees of freedom, as spin and gauge quantum numbers, the model departs from q-bits and generalized Hilbert spaces. Physical requirements reduce the space to one that is represented by matrices. The classification of the representations is performed through Clifford algebras, with its generators associated with Lorentz and scalar symmetries. We study a reduced space with up to two spinor elements within a matrix direct product. At given dimension, the demand that Lorentz symmetry be maintained, determines the scalar symmetries, which connect to vector-and-chiral gauge-interacting fields; we review the standard-model information in each dimension. We obtain fermions and bosons, with matter fields in the fundamental representation, radiation fields in the adjoint, and scalar particles with the Higgs quantum numbers. We relate the fields' representation in such spaces to the quantum-field-theory one, and the Lagrangian. The model provides a coupling-constant definition.

  9. Incommensurate crystallography without additional dimensions.

    PubMed

    Kocian, Philippe

    2013-07-01

    It is shown that the Euclidean group of translations, when treated as a Lie group, generates translations not only in Euclidean space but on any space, curved or not. Translations are then not necessarily vectors (straight lines); they can be any curve compatible with the parameterization of the considered space. In particular, attention is drawn to the fact that one and only one finite and free module of the Lie algebra of the group of translations can generate both modulated and non-modulated lattices, the modulated character being given only by the parameterization of the space in which the lattice is generated. Moreover, it is shown that the diffraction pattern of a structure is directly linked to the action of that free and finite module. In the Fourier transform of a whole structure, the Fourier transform of the electron density of one unit cell (i.e. the structure factor) appears concretely, whether the structure is modulated or not. Thus, there exists a neat separation: the geometrical aspect on the one hand and the action of the group on the other, without requiring additional dimensions.

  10. An Open-Source Auto-Calibration Routine Supporting the Stormwater Management Model

    NASA Astrophysics Data System (ADS)

    Tiernan, E. D.; Hodges, B. R.

    2017-12-01

    The stormwater management model (SWMM) is a clustered model that relies on subcatchment-averaged parameter assignments to correctly capture catchment stormwater runoff behavior. Model calibration is considered a critical step for SWMM performance, an arduous task that most stormwater management designers undertake manually. This research presents an open-source, automated calibration routine that increases the efficiency and accuracy of the model calibration process. The routine makes use of a preliminary sensitivity analysis to reduce the dimensions of the parameter space, at which point a multi-objective function, genetic algorithm (modified Non-dominated Sorting Genetic Algorithm II) determines the Pareto front for the objective functions within the parameter space. The solutions on this Pareto front represent the optimized parameter value sets for the catchment behavior that could not have been reasonably obtained through manual calibration.

  11. A pictorial study of an invariant torus in phase space of four dimensions.

    NASA Technical Reports Server (NTRS)

    Baxter, R.; Eiserike, H.; Stokes, A.

    1972-01-01

    An investigation was conducted with the aid of a computer graphics device at Goddard Space Flight Center to study the behavior of the invariant manifolds of a particular fourth-order equation, as a parameter in the equation is varied over the interval from 0 to 1. The equation consists of two coupled Van der Pol equations. For a small parameter value, the manifold is an asymptotically stable torus, where the flow on the torus is simply a rotation. As the value of the parameter is increased, the only thing that changes is the nature of the flow on the torus, which itself persists throughout the parameter variation. It is shown that ultimately the four periodic cycles which appear play a more significant part in the phase profile of the system than does the torus itself.

  12. Radiation effects in advanced microelectronics technologies

    NASA Astrophysics Data System (ADS)

    Johnston, A. H.

    1998-06-01

    The pace of device scaling has increased rapidly in recent years. Experimental CMOS devices have been produced with feature sizes below 0.1 /spl mu/m, demonstrating that devices with feature sizes between 0.1 and 0.25 /spl mu/m will likely be available in mainstream technologies after the year 2000. This paper discusses how the anticipated changes in device dimensions and design are likely to affect their radiation response in space environments. Traditional problems, such as total dose effects, SEU and latchup are discussed, along with new phenomena. The latter include hard errors from heavy ions (microdose and gate-rupture errors), and complex failure modes related to advanced circuit architecture. The main focus of the paper is on commercial devices, which are displacing hardened device technologies in many space applications. However, the impact of device scaling on hardened devices is also discussed.

  13. Mathematics of Quantization and Quantum Fields

    NASA Astrophysics Data System (ADS)

    Dereziński, Jan; Gérard, Christian

    2013-03-01

    Preface; 1. Vector spaces; 2. Operators in Hilbert spaces; 3. Tensor algebras; 4. Analysis in L2(Rd); 5. Measures; 6. Algebras; 7. Anti-symmetric calculus; 8. Canonical commutation relations; 9. CCR on Fock spaces; 10. Symplectic invariance of CCR in finite dimensions; 11. Symplectic invariance of the CCR on Fock spaces; 12. Canonical anti-commutation relations; 13. CAR on Fock spaces; 14. Orthogonal invariance of CAR algebras; 15. Clifford relations; 16. Orthogonal invariance of the CAR on Fock spaces; 17. Quasi-free states; 18. Dynamics of quantum fields; 19. Quantum fields on space-time; 20. Diagrammatics; 21. Euclidean approach for bosons; 22. Interacting bosonic fields; Subject index; Symbols index.

  14. Texture segmentation of non-cooperative spacecrafts images based on wavelet and fractal dimension

    NASA Astrophysics Data System (ADS)

    Wu, Kanzhi; Yue, Xiaokui

    2011-06-01

    With the increase of on-orbit manipulations and space conflictions, missions such as tracking and capturing the target spacecrafts are aroused. Unlike cooperative spacecrafts, fixing beacons or any other marks on the targets is impossible. Due to the unknown shape and geometry features of non-cooperative spacecraft, in order to localize the target and obtain the latitude, we need to segment the target image and recognize the target from the background. The data and errors during the following procedures such as feature extraction and matching can also be reduced. Multi-resolution analysis of wavelet theory reflects human beings' recognition towards images from low resolution to high resolution. In addition, spacecraft is the only man-made object in the image compared to the natural background and the differences will be certainly observed between the fractal dimensions of target and background. Combined wavelet transform and fractal dimension, in this paper, we proposed a new segmentation algorithm for the images which contains complicated background such as the universe and planet surfaces. At first, Daubechies wavelet basis is applied to decompose the image in both x axis and y axis, thus obtain four sub-images. Then, calculate the fractal dimensions in four sub-images using different methods; after analyzed the results of fractal dimensions in sub-images, we choose Differential Box Counting in low resolution image as the principle to segment the texture which has the greatest divergences between different sub-images. This paper also presents the results of experiments by using the algorithm above. It is demonstrated that an accurate texture segmentation result can be obtained using the proposed technique.

  15. Principal semantic components of language and the measurement of meaning.

    PubMed

    Samsonovich, Alexei V; Samsonovic, Alexei V; Ascoli, Giorgio A

    2010-06-11

    Metric systems for semantics, or semantic cognitive maps, are allocations of words or other representations in a metric space based on their meaning. Existing methods for semantic mapping, such as Latent Semantic Analysis and Latent Dirichlet Allocation, are based on paradigms involving dissimilarity metrics. They typically do not take into account relations of antonymy and yield a large number of domain-specific semantic dimensions. Here, using a novel self-organization approach, we construct a low-dimensional, context-independent semantic map of natural language that represents simultaneously synonymy and antonymy. Emergent semantics of the map principal components are clearly identifiable: the first three correspond to the meanings of "good/bad" (valence), "calm/excited" (arousal), and "open/closed" (freedom), respectively. The semantic map is sufficiently robust to allow the automated extraction of synonyms and antonyms not originally in the dictionaries used to construct the map and to predict connotation from their coordinates. The map geometric characteristics include a limited number ( approximately 4) of statistically significant dimensions, a bimodal distribution of the first component, increasing kurtosis of subsequent (unimodal) components, and a U-shaped maximum-spread planar projection. Both the semantic content and the main geometric features of the map are consistent between dictionaries (Microsoft Word and Princeton's WordNet), among Western languages (English, French, German, and Spanish), and with previously established psychometric measures. By defining the semantics of its dimensions, the constructed map provides a foundational metric system for the quantitative analysis of word meaning. Language can be viewed as a cumulative product of human experiences. Therefore, the extracted principal semantic dimensions may be useful to characterize the general semantic dimensions of the content of mental states. This is a fundamental step toward a universal metric system for semantics of human experiences, which is necessary for developing a rigorous science of the mind.

  16. General solution of a cosmological model induced from higher dimensions using a kinematical constraint

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Dereli, Tekin; Katırcı, Nihan; Sheftel, Mikhail B.

    2015-05-01

    In a recent study Akarsu and Dereli (Gen. Relativ. Gravit. 45:1211, 2013) discussed the dynamical reduction of a higher dimensional cosmological model which is augmented by a kinematical constraint characterized by a single real parameter, correlating and controlling the expansion of both the external (physical) and internal spaces. In that paper explicit solutions were found only for the case of three dimensional internal space (). Here we derive a general solution of the system using Lie group symmetry properties, in parametric form for arbitrary number of internal dimensions. We also investigate the dynamical reduction of the model as a function of cosmic time for various values of and generate parametric plots to discuss cosmologically relevant results.

  17. Effects of the time dimension and presentation on incidental memory.

    PubMed

    Toyota, Hiroshi

    2009-08-01

    Undergraduates were presented targets on two occasions, and each time they were asked to choose one of two alternatives (past or future) associated with the targets in the orienting task, followed by an unexpected free recall. For the pleasant targets, the spaced presentation led to a better recall than the massed presentation for both past and future time. However, for unpleasant targets, the spacing effect was found in recall of targets associated with the past but the effect was not observed in recall of targets associated with the future. These results were interpreted as indicating that the quantity and the quality of the episodes associated with the targets were processed differently as a function of emotional attribute and time dimension.

  18. On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions.

    PubMed

    Gerencsér, Máté; Jentzen, Arnulf; Salimova, Diyora

    2017-11-01

    In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14 , 1477-1500 (doi:10.4310/CMS.2016.v14.n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ∈{4,5,…}, there exist d -dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two ( d =2) and three ( d =3) space dimensions.

  19. A fully 3D approach for metal artifact reduction in computed tomography.

    PubMed

    Kratz, Barbel; Weyers, Imke; Buzug, Thorsten M

    2012-11-01

    In computed tomography imaging metal objects in the region of interest introduce inconsistencies during data acquisition. Reconstructing these data leads to an image in spatial domain including star-shaped or stripe-like artifacts. In order to enhance the quality of the resulting image the influence of the metal objects can be reduced. Here, a metal artifact reduction (MAR) approach is proposed that is based on a recomputation of the inconsistent projection data using a fully three-dimensional Fourier-based interpolation. The success of the projection space restoration depends sensitively on a sensible continuation of neighboring structures into the recomputed area. Fortunately, structural information of the entire data is inherently included in the Fourier space of the data. This can be used for a reasonable recomputation of the inconsistent projection data. The key step of the proposed MAR strategy is the recomputation of the inconsistent projection data based on an interpolation using nonequispaced fast Fourier transforms (NFFT). The NFFT interpolation can be applied in arbitrary dimension. The approach overcomes the problem of adequate neighborhood definitions on irregular grids, since this is inherently given through the usage of higher dimensional Fourier transforms. Here, applications up to the third interpolation dimension are presented and validated. Furthermore, prior knowledge may be included by an appropriate damping of the transform during the interpolation step. This MAR method is applicable on each angular view of a detector row, on two-dimensional projection data as well as on three-dimensional projection data, e.g., a set of sequential acquisitions at different spatial positions, projection data of a spiral acquisition, or cone-beam projection data. Results of the novel MAR scheme based on one-, two-, and three-dimensional NFFT interpolations are presented. All results are compared in projection data space and spatial domain with the well-known one-dimensional linear interpolation strategy. In conclusion, it is recommended to include as much spatial information into the recomputation step as possible. This is realized by increasing the dimension of the NFFT. The resulting image quality can be enhanced considerably.

  20. Pattern classification using an olfactory model with PCA feature selection in electronic noses: study and application.

    PubMed

    Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao

    2012-01-01

    Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6~8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3~5 pattern classes considering the trade-off between time consumption and classification rate.

  1. Fractal dimension, walk dimension and conductivity exponent of karst networks around Tulum.

    NASA Astrophysics Data System (ADS)

    Hendrick, Martin; Renard, Philippe

    2016-06-01

    Understanding the complex structure of karst networks is a challenge. In this work, we characterize the fractal properties of some of the largest coastal karst network systems in the world. They are located near the town of Tulum (Quintana Roo, Mexico). Their fractal dimension d_f, conductivity exponent ˜{μ} and walk dimension d_w are estimated using real space renormalization and numerical simulations. We obtain the following values for these exponents: d_f≈ 1.5, d_w≈ 2.4, ˜{μ}≈ 0.9. We observe that the Einstein relation holds for these structures ˜{μ} ≈ -d_f + d_w. These results indicate that coastal karst networks can be considered as critical systems and this provides some foundations to model them within this framework.

  2. Fragmentation scaling of percolation clusters in two and three dimensions: Large-cell Monte Carlo RG approach

    NASA Astrophysics Data System (ADS)

    Cheon, M.; Chang, I.

    1999-04-01

    The scaling behavior for a binary fragmentation of critical percolation clusters is investigated by a large-cell Monte Carlo real-space renormalization group method in two and three dimensions. We obtain accurate values of critical exponents λ and phi describing the scaling of fragmentation rate and the distribution of fragments' masses produced by a binary fragmentation. Our results for λ and phi show that the fragmentation rate is proportional to the size of mother cluster, and the scaling relation σ = 1 + λ - phi conjectured by Edwards et al. to be valid for all dimensions is satisfied in two and three dimensions, where σ is the crossover exponent of the average cluster number in percolation theory, which excludes the other scaling relations.

  3. Can Ultrasound Accurately Assess Ischiofemoral Space Dimensions? A Validation Study.

    PubMed

    Finnoff, Jonathan T; Johnson, Adam C; Hollman, John H

    2017-04-01

    Ischiofemoral impingement is a potential cause of hip and buttock pain. It is evaluated commonly with magnetic resonance imaging (MRI). To our knowledge, no study previously has evaluated the ability of ultrasound to measure the ischiofemoral space (IFS) dimensions reliably. To determine whether ultrasound could accurately measure the IFS dimensions when compared with the gold standard imaging modality of MRI. A methods comparison study. Sports medicine center within a tertiary-care institution. A total of 5 male and 5 female asymptomatic adult subjects (age mean = 29.2 years, range = 23-35 years; body mass index mean = 23.5, range = 19.5-26.6) were recruited to participate in the study. Subjects were secured in a prone position on a MRI table with their hips in a neutral position. Their IFS dimensions were then acquired in a randomized order using diagnostic ultrasound and MRI. The main outcome measurements were the IFS dimensions acquired with ultrasound and MRI. The mean IFS dimensions measured with ultrasound was 29.5 mm (standard deviation [SD] 4.99 mm, standard error mean 1.12 mm), whereas those obtained with MRI were 28.25 mm (SD 5.91 mm, standard error mean 1.32 mm). The mean difference between the ultrasound and MRI measurements was 1.25 mm, which was not statistically significant (SD 3.71 mm, standard error mean 3.71 mm, 95% confidence interval -0.49 mm to 2.98 mm, t 19 = 1.506, P = .15). The Bland-Altman analysis indicated that the 95% limits of agreement between the 2 measurement was -6.0 to 8.5 mm, indicating that there was no systematic bias between the ultrasound and MRI measurements. Our findings suggest that the IFS measurements obtained with ultrasound are very similar to those obtained with MRI. Therefore, when evaluating individuals with suspected ischiofemoral impingement, one could consider using ultrasound to measure their IFS dimensions. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  4. Phonetic Encoding of Coda Voicing Contrast under Different Focus Conditions in L1 vs. L2 English.

    PubMed

    Choi, Jiyoun; Kim, Sahayng; Cho, Taehong

    2016-01-01

    This study investigated how coda voicing contrast in English would be phonetically encoded in the temporal vs. spectral dimension of the preceding vowel (in vowel duration vs. F1/F2) by Korean L2 speakers of English, and how their L2 phonetic encoding pattern would be compared to that of native English speakers. Crucially, these questions were explored by taking into account the phonetics-prosody interface, testing effects of prominence by comparing target segments in three focus conditions (phonological focus, lexical focus, and no focus). Results showed that Korean speakers utilized the temporal dimension (vowel duration) to encode coda voicing contrast, but failed to use the spectral dimension (F1/F2), reflecting their native language experience-i.e., with a more sparsely populated vowel space in Korean, they are less sensitive to small changes in the spectral dimension, and hence fine-grained spectral cues in English are not readily accessible. Results also showed that along the temporal dimension, both the L1 and L2 speakers hyperarticulated coda voicing contrast under prominence (when phonologically or lexically focused), but hypoarticulated it in the non-prominent condition. This indicates that low-level phonetic realization and high-order information structure interact in a communicatively efficient way, regardless of the speakers' native language background. The Korean speakers, however, used the temporal phonetic space differently from the way the native speakers did, especially showing less reduction in the no focus condition. This was also attributable to their native language experience-i.e., the Korean speakers' use of temporal dimension is constrained in a way that is not detrimental to the preservation of coda voicing contrast, given that they failed to add additional cues along the spectral dimension. The results imply that the L2 phonetic system can be more fully illuminated through an investigation of the phonetics-prosody interface in connection with the L2 speakers' native language experience.

  5. Further Development and Validation of the Affordances in the Home Environment for Motor Development-Infant Scale (AHEMD-IS).

    PubMed

    Caçola, Priscila M; Gabbard, Carl; Montebelo, Maria I L; Santos, Denise C C

    2015-06-01

    Affordances in the home environment may play a significant role in infant motor development. The purpose of this study was to further develop and validate the Affordances in the Home Environment for Motor Development-Infant Scale (AHEMD-IS), an inventory that measures the quantity and quality of motor affordances in the home. A cross-sectional study was conducted to evaluate criteria for content validity, reliability, internal consistency, floor and ceiling effects, and interpretability of the instrument. A pilot version of the inventory with 5 dimensions was used for expert panel analysis and administered to parents of infants (N=419). Data were analyzed with Cronbach alpha, intraclass correlation coefficients (ICCs), ceiling and floor effects, and item and dimension interpretability analyses for creation of a scoring system with descriptive categories for each dimension and total score. Average agreement among the expert panel was 95% across all evaluation criteria. Cronbach alpha values with the 41-item scale ranged between .639 and .824 for the separate dimensions, with a total value of .824 (95% confidence interval [95% CI]=.781, .862). The ICC values were .990 for interrater reliability and .949 for intrarater reliability. There was a ceiling effect on 3 questions for the Inside Space dimension and on 3 questions for the Variety of Stimulation dimension. These results demonstrated the need for reduction in total items (from 41 to 35) and the combination of space dimensions. After removal of questions, internal consistency was .766 (95% CI=.729, .800) for total score. Overall assessment categories were created as: less than adequate, moderately adequate, adequate, and excellent. The inventory does not determine specific use (time, frequency) of affordances in the home, and it does not account for infants' out-of-home activities. The AHEMD-IS is a reliable and valid instrument to assess affordances in the home environment that promote infant motor development. © 2015 American Physical Therapy Association.

  6. Phonetic Encoding of Coda Voicing Contrast under Different Focus Conditions in L1 vs. L2 English

    PubMed Central

    Choi, Jiyoun; Kim, Sahayng; Cho, Taehong

    2016-01-01

    This study investigated how coda voicing contrast in English would be phonetically encoded in the temporal vs. spectral dimension of the preceding vowel (in vowel duration vs. F1/F2) by Korean L2 speakers of English, and how their L2 phonetic encoding pattern would be compared to that of native English speakers. Crucially, these questions were explored by taking into account the phonetics-prosody interface, testing effects of prominence by comparing target segments in three focus conditions (phonological focus, lexical focus, and no focus). Results showed that Korean speakers utilized the temporal dimension (vowel duration) to encode coda voicing contrast, but failed to use the spectral dimension (F1/F2), reflecting their native language experience—i.e., with a more sparsely populated vowel space in Korean, they are less sensitive to small changes in the spectral dimension, and hence fine-grained spectral cues in English are not readily accessible. Results also showed that along the temporal dimension, both the L1 and L2 speakers hyperarticulated coda voicing contrast under prominence (when phonologically or lexically focused), but hypoarticulated it in the non-prominent condition. This indicates that low-level phonetic realization and high-order information structure interact in a communicatively efficient way, regardless of the speakers’ native language background. The Korean speakers, however, used the temporal phonetic space differently from the way the native speakers did, especially showing less reduction in the no focus condition. This was also attributable to their native language experience—i.e., the Korean speakers’ use of temporal dimension is constrained in a way that is not detrimental to the preservation of coda voicing contrast, given that they failed to add additional cues along the spectral dimension. The results imply that the L2 phonetic system can be more fully illuminated through an investigation of the phonetics-prosody interface in connection with the L2 speakers’ native language experience. PMID:27242571

  7. Assessing patterns of spatial behavior in health studies: their socio-demographic determinants and associations with transportation modes (the RECORD Cohort Study).

    PubMed

    Perchoux, Camille; Kestens, Yan; Thomas, Frédérique; Van Hulst, Andraea; Thierry, Benoit; Chaix, Basile

    2014-10-01

    Prior epidemiological studies have mainly focused on local residential neighborhoods to assess environmental exposures. However, individual spatial behavior may modify residential neighborhood influences, with weaker health effects expected for mobile populations. By examining individual patterns of daily mobility and associated socio-demographic profiles and transportation modes, this article seeks to develop innovative methods to account for daily mobility in health studies. We used data from the RECORD Cohort Study collected in 2011-2012 in the Paris metropolitan area, France. A sample of 2062 individuals was investigated. Participants' perceived residential neighborhood boundaries and regular activity locations were geocoded using the VERITAS application. Twenty-four indicators were created to qualify individual space-time patterns, using spatial analysis methods and a geographic information system. Three domains of indicators were considered: lifestyle indicators, indicators related to the geometry of the activity space, and indicators related to the importance of the residential neighborhood in the overall activity space. Principal component analysis was used to identify main dimensions of spatial behavior. Multilevel linear regression was used to determine which individual characteristics were associated with each spatial behavior dimension. The factor analysis generated five dimensions of spatial behavior: importance of the residential neighborhood in the activity space, volume of activities, and size, eccentricity, and specialization of the activity space. Age, socioeconomic status, and location of the household in the region were the main predictors of daily mobility patterns. Activity spaces of small sizes centered on the residential neighborhood and implying a large volume of activities were associated with walking and/or biking as a transportation mode. Examination of patterns of spatial behavior by individual socio-demographic characteristics and in relation to transportation modes is useful to identify populations with specific mobility/accessibility needs and has implications for investigating transportation-related physical activity and assessing environmental exposures and their effects on health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Application of an Elongated Kelvin Model to Space Shuttle Foams

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.

    2008-01-01

    Spray-on foam insulation is applied to the exterior of the Space Shuttle s External Tank to limit propellant boil-off and to prevent ice formation. The Space Shuttle foams are rigid closed-cell polyurethane foams. The two foams used most extensively on the Space Shuttle External Tank are BX-265 and NCFI24-124. Since the catastrophic loss of the Space Shuttle Columbia, numerous studies have been conducted to mitigate the likelihood and the severity of foam shedding during the Shuttle s ascent to space. Due to the foaming and rising process, the foam microstructures are elongated in the rise direction. As a result, these two foams exhibit a non-isotropic mechanical behavior. In this paper, a detailed microstructural characterization of the two foams is presented. The key features of the foam cells are summarized and the average cell dimensions in the two foams are compared. Experimental studies to measure the room temperature mechanical response of the two foams in the two principal material directions (parallel to the rise and perpendicular to the rise) are also reported. The measured elastic modulus, proportional limit stress, ultimate tensile stress and the Poisson s ratios for the two foams are compared. The generalized elongated Kelvin foam model previously developed by the authors is reviewed and the equations which result from this model are presented. The resulting equations show that the ratio of the elastic modulus in the rise direction to that in the perpendicular-to-rise direction as well as the ratio of the strengths in the two material directions is only a function of the microstructural dimensions. Using the measured microstructural dimensions and the measured stiffness ratio, the foam tensile strength ratio and Poisson s ratios are predicted for both foams. The predicted tensile strength ratio is in close agreement with the measured strength ratios for both BX-265 and NCFI24-124. The comparison between the predicted Poisson s ratios and the measured values is not as favorable.

  9. Generalization of the photo process window and its application to OPC test pattern design

    NASA Astrophysics Data System (ADS)

    Eisenmann, Hans; Peter, Kai; Strojwas, Andrzej J.

    2003-07-01

    From the early development phase up to the production phase, test pattern play a key role for microlithography. The requirement for test pattern is to represent the design well and to cover the space of all process conditions, e.g. to investigate the full process window and all other process parameters. This paper shows that the current state-of-the-art test pattern do not address these requirements sufficiently and makes suggestions for a better selection of test pattern. We present a new methodology to analyze an existing layout (e.g. logic library, test pattern or full chip) for critical layout situations which does not need precise process data. We call this method "process space decomposition", because it is aimed at decomposing the process impact to a layout feature into a sum of single independent contributions, the dimensions of the process space. This is a generalization of the classical process window, which examines defocus and exposure dependency of given test pattern, e.g. CD value of dense and isolated lines. In our process space we additionally define the dimensions resist effects, etch effects, mask error and misalignment, which describe the deviation of the printed silicon pattern from its target. We further extend it by the pattern space using a product based layout (library, full chip or synthetic test pattern). The criticality of pattern is defined by their deviation due to aerial image, their sensitivity to the respective dimension or several combinations of these. By exploring the process space for a given design, the method allows to find the most critical patterns independent of specific process parameters. The paper provides examples for different applications of the method: (1) selection of design oriented test pattern for lithography development (2) test pattern reduction in process characterization (3) verification/optimization of printability and performance of post processing procedures (like OPC) (4) creation of a sensitive process monitor.

  10. Health promoting outdoor environments--associations between green space, and health, health-related quality of life and stress based on a Danish national representative survey.

    PubMed

    Stigsdotter, Ulrika K; Ekholm, Ola; Schipperijn, Jasper; Toftager, Mette; Kamper-Jørgensen, Finn; Randrup, Thomas B

    2010-06-01

    To investigate the associations between green space and health, health-related quality of life and stress, respectively. Data were derived from the 2005 Danish Health Interview Survey and are based on a region-stratified random sample of 21,832 adults. Data were collected via face-to-face interviews followed by a self-administered questionnaire, including the SF-36, which measures eight dimensions of health and the Perceived Stress Scale, which measures self-reported stress. A total of 11,238 respondents completed the interview and returned the questionnaire. Multiple logistic regression analyses were performed to investigate the association between distance to green space and self-perceived stress. Danes living more than 1 km away from the nearest green space report poorer health and health-related quality of life, i.e. lower mean scores on all eight SF-36 dimensions of health than respondents living closer. Respondents living more than 1 km away from a green space have 1.42 higher odds of experiencing stress than do respondents living less than 300 m from a green space. Respondents not reporting stress are more likely to visit a green space than are respondents reporting stress. Reasons for visiting green spaces differ significantly depending on whether or not respondents experience stress. Respondents reporting stress are likely to use green spaces to reduce stress. An association between distance to a green space and health and health-related quality of life was found. Further, the results indicate awareness among Danes that green spaces may be of importance in managing stress and that green spaces may play an important role as health-promoting environments.

  11. Improving the Accessibility and Use of NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Tisdale, Matthew; Tisdale, Brian

    2015-01-01

    Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) multidimensional tropospheric and atmospheric chemistry data products are stored in HDF4, HDF5 or NetCDF format, which traditionally have been difficult to analyze and visualize with geospatial tools. With the rising demand from the diverse end-user communities for geospatial tools to handle multidimensional products, several applications, such as ArcGIS, have refined their software. Many geospatial applications now have new functionalities that enable the end user to: Store, serve, and perform analysis on each individual variable, its time dimension, and vertical dimension. Use NetCDF, GRIB, and HDF raster data formats across applications directly. Publish output within REST image services or WMS for time and space enabled web application development. During this webinar, participants will learn how to leverage geospatial applications such as ArcGIS, OPeNDAP and ncWMS in the production of Earth science information, and in increasing data accessibility and usability.

  12. Time Dependent Tomography of the Solar Corona in Three Spatial Dimensions

    NASA Astrophysics Data System (ADS)

    Butala, M. D.; Frazin, R. A.; Kamalabadi, F.

    2006-12-01

    The combination of the soon to be launched STEREO mission with SOHO will provide scientists with three simultaneous space-borne views of the Sun. The increase in available measurements will reduce the data acquisition time necessary to obtain 3D coronal electron density (N_e) estimates from coronagraph images using a technique called solar rotational tomography (SRT). However, the data acquisition period will still be long enough for the corona to dynamically evolve, requiring time dependent solar tomography. The Kalman filter (KF) would seem to be an ideal computational method for time dependent SRT. Unfortunately, the KF scales poorly with problem size and is, as a result, inapplicable. A Monte Carlo approximation to the KF called the localized ensemble Kalman filter was developed for massive applications and has the promise of making the time dependent estimation of the 3D coronal N_e possible. We present simulations showing that this method will make time dependent tomography in three spatial dimensions computationally feasible.

  13. Enhanced lithium-ion storage and hydrogen evolution reaction catalysis of MoS2/graphene nanoribbons hybrids with loose interlaced three-dimension structure

    NASA Astrophysics Data System (ADS)

    Wu, Xuan; Fan, Zihan; Ling, Xiaolun; Wu, Shuting; Chen, Xin; Hu, Xiaolin; Zhuang, Naifeng; Chen, Jianzhong

    2018-06-01

    Molybdenum disulfide hybridized with graphene nanoribbon (MoS2/GNR) was prepared by mild method. MoS2/GNR hybrids interlace loosely into a three-dimension structure. GNR hybridization can improve the dispersity of MoS2, reduce the grain size of MoS2 to 3-6 nm, increase the specific surface area, and broaden the interlamellar spacing of MoS2 (002) plane to 0.67-0.73 nm, which facilitates the transportation of Li+ ions for lithium-ion battery. MoS2/GNR hybrids have better cyclic durability, higher specific discharge capacity, and superior rate performance than MoS2. The electrocatalytic activity in hydrogen evolution reaction shows that MoS2/GNR hybrids have the lower overpotential and the larger current density with a negligible current loss after 2000 cycles. Hybridizing with GNRs enhances both the lithium-ion electrochemical storage and the electrocatalytic activity of MoS2. [Figure not available: see fulltext.

  14. Collaborative Sharing of Multidimensional Space-time Data Using HydroShare

    NASA Astrophysics Data System (ADS)

    Gan, T.; Tarboton, D. G.; Horsburgh, J. S.; Dash, P. K.; Idaszak, R.; Yi, H.; Blanton, B.

    2015-12-01

    HydroShare is a collaborative environment being developed for sharing hydrological data and models. It includes capability to upload data in many formats as resources that can be shared. The HydroShare data model for resources uses a specific format for the representation of each type of data and specifies metadata common to all resource types as well as metadata unique to specific resource types. The Network Common Data Form (NetCDF) was chosen as the format for multidimensional space-time data in HydroShare. NetCDF is widely used in hydrological and other geoscience modeling because it contains self-describing metadata and supports the creation of array-oriented datasets that may include three spatial dimensions, a time dimension and other user defined dimensions. For example, NetCDF may be used to represent precipitation or surface air temperature fields that have two dimensions in space and one dimension in time. This presentation will illustrate how NetCDF files are used in HydroShare. When a NetCDF file is loaded into HydroShare, header information is extracted using the "ncdump" utility. Python functions developed for the Django web framework on which HydroShare is based, extract science metadata present in the NetCDF file, saving the user from having to enter it. Where the file follows Climate Forecast (CF) convention and Attribute Convention for Dataset Discovery (ACDD) standards, metadata is thus automatically populated. Users also have the ability to add metadata to the resource that may not have been present in the original NetCDF file. HydroShare's metadata editing functionality then writes this science metadata back into the NetCDF file to maintain consistency between the science metadata in HydroShare and the metadata in the NetCDF file. This further helps researchers easily add metadata information following the CF and ACDD conventions. Additional data inspection and subsetting functions were developed, taking advantage of Python and command line libraries for working with NetCDF files. We describe the design and implementation of these features and illustrate how NetCDF files from a modeling application may be curated in HydroShare and thus enhance reproducibility of the associated research. We also discuss future development planned for multidimensional space-time data in HydroShare.

  15. Process Control in Production-Worthy Plasma Doping Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winder, Edmund J.; Fang Ziwei; Arevalo, Edwin

    2006-11-13

    As the semiconductor industry continues to scale devices of smaller dimensions and improved performance, many ion implantation processes require lower energy and higher doses. Achieving these high doses (in some cases {approx}1x1016 ions/cm2) at low energies (<3 keV) while maintaining throughput is increasingly challenging for traditional beamline implant tools because of space-charge effects that limit achievable beam density at low energies. Plasma doping is recognized as a technology which can overcome this problem. In this paper, we highlight the technology available to achieve process control for all implant parameters associated with modem semiconductor manufacturing.

  16. Relationships between body dimensions, body weight, age, gender, breed and echocardiographic dimensions in young endurance horses.

    PubMed

    Trachsel, D S; Giraudet, A; Maso, D; Hervé, G; Hauri, D D; Barrey, E; Robert, C

    2016-10-10

    The heart's physiological adaptation to aerobic training leads to an increase in heart chamber size, and is referred to as the Athlete's heart. However, heart dimensions are also related to body weight (BWT), body size, growth and (in some species) breed. There are few published data on the relationships between heart dimensions and growth or aerobic training in Arabian and Arabian-related endurance horses. Therefore the objective of the present study was to describe the influence of body dimensions (body length (BL), thoracic circumference (TC), withers height (WH)), BWT, age, gender, breed (purebred Arabians, part-bred Arabians, Anglo-Arabians, and Others) and the initiation of endurance training on echocardiographic measurements in competition-fit endurance horses aged 4 to 6 years. Most left atrial (LA) and left ventricular (LV) dimensions increased with age, whereas LA and LV functional indices did not. Although there was no gender difference for LV dimensions, females had larger LA dimensions. In terms of breed, Anglo-Arabians had the largest LV dimensions. Regression models indicated that the included explanatory factors had a weak influence on heart dimensions. Age, body dimensions, breed and gender showed the most consistent influence on LA dimensions, whereas BWT, breed and kilometres covered in competition showed the most consistent influence on LV dimensions. The increase in echocardiographic dimensions with age indicates on-going growth in our population of 4 to 6 year-old horses. We also observed small changes associated with the initiation of endurance training. Morphometric dimensions had a greater influence on LA dimensions, whereas LV dimensions were also influenced (albeit weakly) by parameters associated with exercise intensity. These results may therefore reflect early adaptations linked to the initiation of endurance training.

  17. Fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes.

    PubMed

    Amaya, N; Irfan, M; Zervas, G; Nejabati, R; Simeonidou, D; Sakaguchi, J; Klaus, W; Puttnam, B J; Miyazawa, T; Awaji, Y; Wada, N; Henning, I

    2013-04-08

    We present the first elastic, space division multiplexing, and multi-granular network based on two 7-core MCF links and four programmable optical nodes able to switch traffic utilising the space, frequency and time dimensions with over 6000-fold bandwidth granularity. Results show good end-to-end performance on all channels with power penalties between 0.75 dB and 3.7 dB.

  18. Urban Space Explorer: A Visual Analytics System for Urban Planning.

    PubMed

    Karduni, Alireza; Cho, Isaac; Wessel, Ginette; Ribarsky, William; Sauda, Eric; Dou, Wenwen

    2017-01-01

    Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.

  19. Noninvasive measures of brain edema predict outcome in pediatric cerebral malaria.

    PubMed

    Kampondeni, Samuel D; Birbeck, Gretchen L; Seydel, Karl B; Beare, Nicholas A; Glover, Simon J; Hammond, Colleen A; Chilingulo, Cowles A; Taylor, Terrie E; Potchen, Michael J

    2018-01-01

    Increased brain volume (BV) and subsequent herniation are strongly associated with death in pediatric cerebral malaria (PCM), a leading killer of children in developing countries. Accurate noninvasive measures of BV are needed for optimal clinical trial design. Our objectives were to examine the performance of six different magnetic resonance imaging (MRI) BV quantification measures for predicting mortality in PCM and to review the advantages and disadvantages of each method. Receiver operator characteristics were generated from BV measures of MRIs of children admitted to an ongoing research project with PCM between 2009 and 2014. Fatal cases were matched to the next available survivor. A total of 78 MRIs of children aged 5 months to 13 years (mean 4.0 years), of which 45% were males, were included. Areas under the curve (AUC) with 95% confidence interval on measures from the initial MRIs were: Radiologist-derived score = 0.69 (0.58-0.79; P = 0.0037); prepontine cistern anteroposterior (AP) dimension = 0.70 (0.56-0.78; P = 0.0133); SamKam ratio [Rt. parietal lobe height/(prepontine AP dimension + fourth ventricle AP dimension)] = 0.74 (0.63-0.83; P = 0.0002); and global cerebrospinal fluid (CSF) space ascertained by ClearCanvas = 0.67 (0.55-0.77; P = 0.0137). For patients with serial MRIs ( n = 37), the day 2 global CSF space AUC was 0.87 (0.71-0.96; P < 0.001) and the recovery factor (CSF volume day 2/CSF volume day 1) was 0.91 (0.76-0.98; P < 0.0001). Poor prognosis is associated with radiologist score of ≥7; prepontine cistern dimension ≤3 mm; cisternal CSF volume ≤7.5 ml; SamKam ratio ≥6.5; and recovery factor ≤0.75. All noninvasive measures of BV performed well in predicting death and providing a proxy measure for brain volume. Initial MRI assessment may inform future clinical trials for subject selection, risk adjustment, or stratification. Measures of temporal change may be used to stage PCM.

  20. The massive soft anomalous dimension matrix at two loops

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Sterman, George; Sung, Ilmo

    2009-05-01

    We study two-loop anomalous dimension matrices in QCD and related gauge theories for products of Wilson lines coupled at a point. We verify by an analysis in Euclidean space that the contributions to these matrices from diagrams that link three massive Wilson lines do not vanish in general. We show, however, that for two-to-two processes the two-loop anomalous dimension matrix is diagonal in the same color-exchange basis as the one-loop matrix for arbitrary masses at absolute threshold and for scattering at 90 degrees in the center of mass. This result is important for applications of threshold resummation in heavy quark production.

  1. Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves

    NASA Astrophysics Data System (ADS)

    Kartalov, Emil P.; Scherer, Axel; Quake, Stephen R.; Taylor, Clive R.; Anderson, W. French

    2007-03-01

    A systematic experimental study and theoretical modeling of the device physics of polydimethylsiloxane "pushdown" microfluidic valves are presented. The phase space is charted by 1587 dimension combinations and encompasses 45-295μm lateral dimensions, 16-39μm membrane thickness, and 1-28psi closing pressure. Three linear models are developed and tested against the empirical data, and then combined into a fourth-power-polynomial superposition. The experimentally validated final model offers a useful quantitative prediction for a valve's properties as a function of its dimensions. Typical valves (80-150μm width) are shown to behave like thin springs.

  2. Correlation between thermal parameters, structures, dendritic spacing and corrosion behavior of Zn Al alloys with columnar to equiaxed transition

    NASA Astrophysics Data System (ADS)

    Ares, A. E.; Gassa, L. M.; Gueijman, S. F.; Schvezov, C. E.

    2008-04-01

    The columnar to equiaxed transition (CET) has been examined for many years and the significance of CET has been treated in several articles. Experimental observations in different alloy systems have shown that the position of the transition is dependent on parameters like cooling rate, velocity of the liquidus and solidus fronts, local solidification time, temperature gradients and recalescence. The dendritic structure in alloys results in microsegregation of solute species which affects significantly the mechanical properties of the material. The main parameters characterizing the microstructure and the length range of microsegregation is the spacing which is classified as primary, secondary and tertiary. Properties like mechanical resistance and ductility are influenced by the dimensions and continuity of the primary branches, while the secondary and tertiary branches permit the isolation of interdendritic phases which can deteriorate the mechanical behavior of the material. Since the morphology and dimensions of the dendritic structure is related to the solidification parameters mentioned above, for each type of alloy it is essential to correlate dimensions and solidification conditions in order to control the structure. The objective of the present research consists on studying the influence of solidification thermal parameters with the type of structure (columnar, equiaxial or with the CET); and with grain size and dendritic spacing (primary and secondary) in Zn-Al (ZA) alloys (Zn—4 wt%Al, Zn—16 wt%Al and Zn—27 wt%Al, weight percent). Also, correlate the thermal parameters, type of structure, grain size and dendritic spacing with the corrosion resistance of these alloys.

  3. Dose measurements in space by the Hungarian Pille TLD system.

    PubMed

    Apathy, I; Deme, S; Feher, I; Akatov, Y A; Reitz, G; Arkhanguelski, V V

    2002-10-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 microGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised. c2002 Elsevier Science Ltd. All rights reserved.

  4. Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Christoph; Noé, Frank

    2018-06-01

    Inspired by the success of deep learning techniques in the physical and chemical sciences, we apply a modification of an autoencoder type deep neural network to the task of dimension reduction of molecular dynamics data. We can show that our time-lagged autoencoder reliably finds low-dimensional embeddings for high-dimensional feature spaces which capture the slow dynamics of the underlying stochastic processes—beyond the capabilities of linear dimension reduction techniques.

  5. Baryon currents in QCD with compact dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucini, B.; Patella, A.; Istituto Nazionale Fisica Nucleare Sezione di Pisa, Largo Pontecorvo 3, 56126 Pisa

    2007-06-15

    On a compact space with nontrivial cycles, for sufficiently small values of the radii of the compact dimensions, SU(N) gauge theories coupled with fermions in the fundamental representation spontaneously break charge conjugation, time reversal, and parity. We show at one loop in perturbation theory that a physical signature for this phenomenon is a nonzero baryonic current wrapping around the compact directions. The persistence of this current beyond the perturbative regime is checked by lattice simulations.

  6. Rotating black holes in higher dimensions with a cosmological constant.

    PubMed

    Gibbons, G W; Lü, H; Page, Don N; Pope, C N

    2004-10-22

    We present the metric for a rotating black hole with a cosmological constant and with arbitrary angular momenta in all higher dimensions. The metric is given in both Kerr-Schild and the Boyer-Lindquist form. In the Euclidean-signature case, we also obtain smooth compact Einstein spaces on associated S(D-2) bundles over S2, infinitely many for each odd D>/=5. Applications to string theory and M-theory are indicated.

  7. Aspects of mutually unbiased bases in odd-prime-power dimensions

    NASA Astrophysics Data System (ADS)

    Chaturvedi, S.

    2002-04-01

    We rephrase the Wootters-Fields construction [W. K. Wootters and B. C. Fields, Ann. Phys. 191, 363 (1989)] of a full set of mutually unbiased bases in a complex vector space of dimensions N=pr, where p is an odd prime, in terms of the character vectors of the cyclic group G of order p. This form may be useful in explicitly writing down mutually unbiased bases for N=pr.

  8. Nonlinear Filtering in High Dimension

    DTIC Science & Technology

    2014-06-02

    portion of this thesis deals with controlling the distance between conditional distributions in high dimension, we present a few elementary lemmas that...ergodicity. 14 Chapter 2 Preliminaries This chapter is devoted to introducing some elementary concepts and facts in prob- ability theory that will be...measurable space (E,E) to R̄ := [−∞,+∞], or a subset of it, is E-measurable it if is measurable relative to E and the Borel σ- algebra on R̄. We write

  9. Spatial dimensions of the electron diffusion region in anti-parallel magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Nakamura, Takuma; Nakamura, Rumi; Haseagwa, Hiroshi

    2016-03-01

    Spatial dimensions of the detailed structures of the electron diffusion region in anti-parallel magnetic reconnection were analyzed based on two-dimensional fully kinetic particle-in-cell simulations. The electron diffusion region in this study is defined as the region where the positive reconnection electric field is sustained by the electron inertial and non-gyrotropic pressure components. Past kinetic studies demonstrated that the dimensions of the whole electron diffusion region and the inner non-gyrotropic region are scaled by the electron inertial length de and the width of the electron meandering motion, respectively. In this study, we successfully obtained more precise scalings of the dimensions of these two regions than the previous studies by performing simulations with sufficiently small grid spacing (1/16-1/8 de) and a sufficient number of particles (800 particles cell-1 on average) under different conditions changing the ion-to-electron mass ratio, the background density and the electron βe (temperature). The obtained scalings are adequately supported by some theories considering spatial variations of field and plasma parameters within the diffusion region. In the reconnection inflow direction, the dimensions of both regions are proportional to de based on the background density. Both dimensions also depend on βe based on the background values, but the dependence in the inner region ( ˜ 0.375th power) is larger than the whole region (0.125th power) reflecting the orbits of meandering and accelerated electrons within the inner region. In the outflow direction, almost only the non-gyrotropic component sustains the positive reconnection electric field. The dimension of this single-scale diffusion region is proportional to the ion-electron hybrid inertial length (dide)1/2 based on the background density and weakly depends on the background βe with the 0.25th power. These firm scalings allow us to predict observable dimensions in real space which are indeed in reasonable agreement with past in situ spacecraft observations in the Earth's magnetotail and have important implications for future observations with higher resolutions such as the NASA Magnetospheric Multiscale (MMS) mission.

  10. Some remarks on the current status of the control theory of single space dimension hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Russell, D. L.

    1983-01-01

    Various aspects of the control theory of hyperbolic systems, including controllability, stabilization, control canonical form theory, etc., are reviewed. To allow a unified and not excessively technical treatment, attention is restricted to the case of a single space variable. A newly developed procedure of canonical augmentation is discussed.

  11. Interface control document between the NASA Goddard Space Flight Center (GSFC) and Department of Interior EROS Data Center (EDC) for LANDSAT-D. Thematic mapper high resolution 241 mm film

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The 241 mm photographic product produced by the Goddard Space Flight Center Data Management System for LANDSAT-D is described. Film type and format, image dimensions, frame ID, gray scale, resolution patterns, registration marks, etc. are addressed.

  12. (Dis)Orientation and Spatial Sense: Topological Thinking in the Middle Grades

    ERIC Educational Resources Information Center

    de Freitas, Elizabeth; McCarthy, MaryJean

    2014-01-01

    In this paper, we focus on topological approaches to space and we argue that experiences with topology allow middle school students to develop a more robust understanding of orientation and dimension. We frame our argument in terms of the phenomenological literature on perception and corporeal space. We discuss findings from a quasi-experimental…

  13. Diameter Growth 0f a Slash Pine Spacing Study Five Years After Being Thinned to a Constant Stand Density Index

    Treesearch

    Jamie C. Schexnayder; Thomas J. Dean; V. Clark Baldwin

    2002-01-01

    Abstract - In 1994, a 17-year old, slash pine (Pinus elliottii var. elliottii) spacing study was thinned to evaluate the influence of prethinning stand conditions on diameter growth after thinning. Diameter growth and crown dimensions measured just prior to thinning showed that diameter growth was positively...

  14. One-loop tests of supersymmetric gauge theories on spheres

    DOE PAGES

    Minahan, Joseph A.; Naseer, Usman

    2017-07-14

    Here, we show that a recently conjectured form for perturbative supersymmetric partition functions on spheres of general dimension d is consistent with the at space limit of 6-dimensional N = 1 super Yang-Mills. We also show that the partition functions for N = 1 8- and 9-dimensional theories are consistent with their known at space limits.

  15. Visualizing surface area and volumes of lumens in 3 dimensions using images from histological sections

    USDA-ARS?s Scientific Manuscript database

    Visualizing areas of tissue that are occupied by air or liquid can provide a unique perspective on the relationships between various spaces within the tissue. The portal tracts of liver tissue are an example of such a space since the liver contains several vessels and ducts in various patterns of i...

  16. Multichannel Poisson denoising and deconvolution on the sphere: application to the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Schmitt, J.; Starck, J. L.; Casandjian, J. M.; Fadili, J.; Grenier, I.

    2012-10-01

    A multiscale representation-based denoising method for spherical data contaminated with Poisson noise, the multiscale variance stabilizing transform on the sphere (MS-VSTS), has been previously proposed. This paper first extends this MS-VSTS to spherical two and one dimensions data (2D-1D), where the two first dimensions are longitude and latitude, and the third dimension is a meaningful physical index such as energy or time. We then introduce a novel multichannel deconvolution built upon the 2D-1D MS-VSTS, which allows us to get rid of both the noise and the blur introduced by the point spread function (PSF) in each energy (or time) band. The method is applied to simulated data from the Large Area Telescope (LAT), the main instrument of the Fermi Gamma-ray Space Telescope, which detects high energy gamma-rays in a very wide energy range (from 20 MeV to more than 300 GeV), and whose PSF is strongly energy-dependent (from about 3.5 at 100 MeV to less than 0.1 at 10 GeV).

  17. Existence and construction of Galilean invariant z ≠2 theories

    NASA Astrophysics Data System (ADS)

    Grinstein, Benjamín; Pal, Sridip

    2018-06-01

    We prove a no-go theorem for the construction of a Galilean boost invariant and z ≠2 anisotropic scale invariant field theory with a finite dimensional basis of fields. Two point correlators in such theories, we show, grow unboundedly with spatial separation. Correlators of theories with an infinite dimensional basis of fields, for example, labeled by a continuous parameter, do not necessarily exhibit this bad behavior. Hence, such theories behave effectively as if in one extra dimension. Embedding the symmetry algebra into the conformal algebra of one higher dimension also reveals the existence of an internal continuous parameter. Consideration of isometries shows that the nonrelativistic holographic picture assumes a canonical form, where the bulk gravitational theory lives in a space-time with one extra dimension. This can be contrasted with the original proposal by Balasubramanian and McGreevy, and by Son, where the metric of a (d +2 )-dimensional space-time is proposed to be dual of a d -dimensional field theory. We provide explicit examples of theories living at fixed point with anisotropic scaling exponent z =2/ℓ ℓ+1 , ℓ∈Z .

  18. Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.H.; Ellis, J.R.; Montague, S.

    1997-03-01

    One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing.more » In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.« less

  19. Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Youngsoo; Carlberg, Kevin Thomas

    Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over allmore » space and time in a weighted ℓ 2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.« less

  20. Systemic Darwinism

    PubMed Central

    Winther, Rasmus Grønfeldt

    2008-01-01

    Darwin's 19th century evolutionary theory of descent with modification through natural selection opened up a multidimensional and integrative conceptual space for biology. We explore three dimensions of this space: explanatory pattern, levels of selection, and degree of difference among units of the same type. Each dimension is defined by a respective pair of poles: law and narrative explanation, organismic and hierarchical selection, and variational and essentialist thinking. As a consequence of conceptual debates in the 20th century biological sciences, the poles of each pair came to be seen as mutually exclusive opposites. A significant amount of 21st century research focuses on systems (e.g., genomic, cellular, organismic, and ecological/global). Systemic Darwinism is emerging in this context. It follows a “compositional paradigm” according to which complex systems and their hierarchical networks of parts are the focus of biological investigation. Through the investigation of systems, Systemic Darwinism promises to reintegrate each dimension of Darwin's original logical space. Moreover, this ideally and potentially unified theory of biological ontology coordinates and integrates a plurality of mathematical biological theories (e.g., self-organization/structure, cladistics/history, and evolutionary genetics/function). Integrative Systemic Darwinism requires communal articulation from a plurality of perspectives. Although it is more general than these, it draws on previous advances in Systems Theory, Systems Biology, and Hierarchy Theory. Systemic Darwinism would greatly further bioengineering research and would provide a significantly deeper and more critical understanding of biological reality. PMID:18697926

  1. Visuospatial biases in preschool children: Evidence from line bisection in three-dimensional space.

    PubMed

    Patro, Katarzyna; Nuerk, Hans-Christoph; Brugger, Peter

    2018-04-09

    Spatial attention in adults is characterized by systematic asymmetries across all three spatial dimensions. These asymmetries are evident when participants bisect horizontal, vertical, or radial lines and misplace their midpoints to the left, the top, or far from the body, respectively. However, bisection errors are rarely examined during early childhood. In this study, we examined the development of spatial-attentional asymmetries in three-dimensional (3D) space by asking preschool children (aged 3-6 years) to bisect horizontal, vertical, and radial lines. Children erred to the left with horizontal lines and to the top with vertical lines, consistent with the pattern reported in adults. These biases got stronger with age and were absent in the youngest preschoolers. However, by controlling for a possible failure in hitting the line, we observed an additional unpredicted pattern: Children's pointing systematically deviated away from the line to an empty space on its left side (for vertical and radial lines) or above it (for horizontal lines). Notably, this task-irrelevant deviation was pronounced in children as young as 3 or 4 years. We conclude that asymmetries in spatial-attentional functions should be measured not only in task-relevant dimensions but also in task-irrelevant dimensions because the latter may reveal biases in very young children not typically observed in task-relevant measures. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Systemic darwinism.

    PubMed

    Winther, Rasmus Grønfeldt

    2008-08-19

    Darwin's 19th century evolutionary theory of descent with modification through natural selection opened up a multidimensional and integrative conceptual space for biology. We explore three dimensions of this space: explanatory pattern, levels of selection, and degree of difference among units of the same type. Each dimension is defined by a respective pair of poles: law and narrative explanation, organismic and hierarchical selection, and variational and essentialist thinking. As a consequence of conceptual debates in the 20th century biological sciences, the poles of each pair came to be seen as mutually exclusive opposites. A significant amount of 21st century research focuses on systems (e.g., genomic, cellular, organismic, and ecological/global). Systemic Darwinism is emerging in this context. It follows a "compositional paradigm" according to which complex systems and their hierarchical networks of parts are the focus of biological investigation. Through the investigation of systems, Systemic Darwinism promises to reintegrate each dimension of Darwin's original logical space. Moreover, this ideally and potentially unified theory of biological ontology coordinates and integrates a plurality of mathematical biological theories (e.g., self-organization/structure, cladistics/history, and evolutionary genetics/function). Integrative Systemic Darwinism requires communal articulation from a plurality of perspectives. Although it is more general than these, it draws on previous advances in Systems Theory, Systems Biology, and Hierarchy Theory. Systemic Darwinism would greatly further bioengineering research and would provide a significantly deeper and more critical understanding of biological reality.

  3. Power Scaling of the Mainland Shoreline of the Atlantic Coast of the United States

    NASA Astrophysics Data System (ADS)

    Vasko, E.; Barton, C. C.; Geise, G. R.; Rizki, M. M.

    2017-12-01

    The fractal dimension of the mainland shoreline of the Atlantic coast of the United Stated from Maine to Homestead, FL has been measured in 1000 km increments using the box-counting method. The shoreline analyzed is the NOAA Medium Resolution Shoreline (https://shoreline.noaa.gov/data/datasheets/medres.html). The shoreline was reconstituted into sequentially numbered X-Y coordinate points in UTM Zone 18N which are spaced 50 meters apart, as measured continuously along the shoreline. We created a MATLAB computer code to measure the fractal dimension by box counting while "walking" along the shoreline. The range of box sizes is 0.7 to 450 km. The fractal dimension ranges from 1.0 to1.5 along the mainland shoreline of the Atlantic coast. The fractal dimension is compared with beach particle sizes (bedrock outcrop, cobbles, pebbles, sand, clay), tidal range, rate of sea level rise, rate and direction of vertical crustal movement, and wave energy, looking for correlation with the measured fractal dimensions. The results show a correlation between high fractal dimensions (1.3 - 1.4) and tectonically emergent coasts, and low fractal dimensions (1.0 - 1.2) along submergent and stable coastal regions. Fractal dimension averages 1.3 along shorelines with shoreline protection structures such as seawalls, jetties, and groins.

  4. The effects of variation of an irrelevant dimension on same-different visual judgments.

    PubMed

    Ballesteros, S; Manga, D

    1996-06-01

    In a series of experiments observers judged whether two visual tachistoscopically presented shapes were the same or different in a relevant dimension, and had to ignore the graded variation on an irrelevant dimension that appeared concurrently with the relevant dimension. Experimental results from judgments in orientation, size and brightness failed to support the normalization hypothesis. The hypothesis predicts a monotonous increase in RTs with the increasing degree of disparity in the irrelevant dimension in same as well as in different comparisons. The results were interpreted in terms of the type of dimensions used to construct the shapes. It was suggested that with separable stimulus dimensions normalization would not be necessary. However, interference might appear when the stimuli to be compared were generated from a combination of more integral dimensions.

  5. Accelerated Dimension-Independent Adaptive Metropolis

    DOE PAGES

    Chen, Yuxin; Keyes, David E.; Law, Kody J.; ...

    2016-10-27

    This work describes improvements from algorithmic and architectural means to black-box Bayesian inference over high-dimensional parameter spaces. The well-known adaptive Metropolis (AM) algorithm [33] is extended herein to scale asymptotically uniformly with respect to the underlying parameter dimension for Gaussian targets, by respecting the variance of the target. The resulting algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional (with dimension d 1000) targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justimore » ed a posteriori). Asymptotically in dimension, this GPU implementation exhibits a factor of four improvement versus a competitive CPU-based Intel MKL parallel version alone. Strong scaling to concurrent chains is exhibited, through a combination of longer time per sample batch (weak scaling) and yet fewer necessary samples to convergence. The algorithm performance is illustrated on several Gaussian and non-Gaussian target examples, in which the dimension may be in excess of one thousand.« less

  6. Accelerated Dimension-Independent Adaptive Metropolis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuxin; Keyes, David E.; Law, Kody J.

    This work describes improvements from algorithmic and architectural means to black-box Bayesian inference over high-dimensional parameter spaces. The well-known adaptive Metropolis (AM) algorithm [33] is extended herein to scale asymptotically uniformly with respect to the underlying parameter dimension for Gaussian targets, by respecting the variance of the target. The resulting algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional (with dimension d 1000) targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justimore » ed a posteriori). Asymptotically in dimension, this GPU implementation exhibits a factor of four improvement versus a competitive CPU-based Intel MKL parallel version alone. Strong scaling to concurrent chains is exhibited, through a combination of longer time per sample batch (weak scaling) and yet fewer necessary samples to convergence. The algorithm performance is illustrated on several Gaussian and non-Gaussian target examples, in which the dimension may be in excess of one thousand.« less

  7. Confined energy distribution for charged particle beams

    DOEpatents

    Jason, Andrew J.; Blind, Barbara

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  8. Multigrid methods with space–time concurrency

    DOE PAGES

    Falgout, R. D.; Friedhoff, S.; Kolev, Tz. V.; ...

    2017-10-06

    Here, we consider the comparison of multigrid methods for parabolic partial differential equations that allow space–time concurrency. With current trends in computer architectures leading towards systems with more, but not faster, processors, space–time concurrency is crucial for speeding up time-integration simulations. In contrast, traditional time-integration techniques impose serious limitations on parallel performance due to the sequential nature of the time-stepping approach, allowing spatial concurrency only. This paper considers the three basic options of multigrid algorithms on space–time grids that allow parallelism in space and time: coarsening in space and time, semicoarsening in the spatial dimensions, and semicoarsening in the temporalmore » dimension. We develop parallel software and performance models to study the three methods at scales of up to 16K cores and introduce an extension of one of them for handling multistep time integration. We then discuss advantages and disadvantages of the different approaches and their benefit compared to traditional space-parallel algorithms with sequential time stepping on modern architectures.« less

  9. The Nature of Infinity in Quantum Field Calculations

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2011-05-01

    In many textbooks on Quantum Field Theory it has been noted that an infinity is taken a circle and the flux is calculated from the A field in that manner. There are of course many such examples of this sort of calculation using infinity as a circle. This author would like to point out that if the three dimensions of space are curved and the one dimension of time is not, in say a four space, infinity is the horizon, which is not a circle but rather a sphere; as long as space-time is curved uniformly, smoothly and has positive curvature. This author believes the math may be in error, since maps of the CMBR seem to indicate a ``Swiss-Cheese'' type of topology, wherein the Sphere at infinity (the Horizon of the Universe), has holes in it that can readily be seen. This author believes that these irregularities most certainly have a calculable effect on QED, QCD and Quantum Field Theory.

  10. A discrete classical space-time could require 6 extra-dimensions

    NASA Astrophysics Data System (ADS)

    Guillemant, Philippe; Medale, Marc; Abid, Cherifa

    2018-01-01

    We consider a discrete space-time in which conservation laws are computed in such a way that the density of information is kept bounded. We use a 2D billiard as a toy model to compute the uncertainty propagation in ball positions after every shock and the corresponding loss of phase information. Our main result is the computation of a critical time step above which billiard calculations are no longer deterministic, meaning that a multiverse of distinct billiard histories begins to appear, caused by the lack of information. Then, we highlight unexpected properties of this critical time step and the subsequent exponential evolution of the number of histories with time, to observe that after certain duration all billiard states could become possible final states, independent of initial conditions. We conclude that if our space-time is really a discrete one, one would need to introduce extra-dimensions in order to provide supplementary constraints that specify which history should be played.

  11. Multigrid methods with space–time concurrency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falgout, R. D.; Friedhoff, S.; Kolev, Tz. V.

    Here, we consider the comparison of multigrid methods for parabolic partial differential equations that allow space–time concurrency. With current trends in computer architectures leading towards systems with more, but not faster, processors, space–time concurrency is crucial for speeding up time-integration simulations. In contrast, traditional time-integration techniques impose serious limitations on parallel performance due to the sequential nature of the time-stepping approach, allowing spatial concurrency only. This paper considers the three basic options of multigrid algorithms on space–time grids that allow parallelism in space and time: coarsening in space and time, semicoarsening in the spatial dimensions, and semicoarsening in the temporalmore » dimension. We develop parallel software and performance models to study the three methods at scales of up to 16K cores and introduce an extension of one of them for handling multistep time integration. We then discuss advantages and disadvantages of the different approaches and their benefit compared to traditional space-parallel algorithms with sequential time stepping on modern architectures.« less

  12. Eye movements during mental time travel follow a diagonal line.

    PubMed

    Hartmann, Matthias; Martarelli, Corinna S; Mast, Fred W; Stocker, Kurt

    2014-11-01

    Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Wigner functions from the two-dimensional wavelet group.

    PubMed

    Ali, S T; Krasowska, A E; Murenzi, R

    2000-12-01

    Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.

  14. Elasticity of fractal materials using the continuum model with non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-01-01

    Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.

  15. Out of the Blue and Into the Black: Creation of the United States Space Force.

    DTIC Science & Technology

    1998-03-01

    organizational diagnosis as a theorem for strategic change. An autopsy of related research and literature was conducted in order to establish justification for a separate service to advance space power for the nation. The first dimension examined is the medium of space. Defining the medium, along with such areas as airpower and space power establishes a factual foundation from which to launch the idea of a separate service. Reasoning for and against a separate service is presented, including application of the Organizational Diagnosis to the Air

  16. Communications between intraretinal and subretinal space on optical coherence tomography of neurosensory retinal detachment in diabetic macular edema

    PubMed Central

    Gupta, Aditi; Raman, Rajiv; Mohana, KP; Kulothungan, Vaitheeswaran; Sharma, Tarun

    2013-01-01

    Background: The pathogenesis of development and progression of neurosensory retinal detachment (NSD) in diabetic macular edema (DME) is not yet fully understood. The purpose of this study is to describe the spectral domain optical coherence tomography (SD-OCT) morphological characteristics of NSD associated with DME in the form of outer retinal communications and to assess the correlation between the size of communications and various factors. Materials and Methods: This was an observational retrospective nonconsecutive case series in a tertiary care eye institute. We imaged NSD and outer retinal communications in 17 eyes of 16 patients having NSD associated with DME using SD-OCT. We measured manually the size of the outer openings of these communications and studied its correlation with various factors. Statistical analysis (correlation test) was performed using the Statistical Package for Social Sciences (SPSS) software (version 14.0). The main outcome measures were correlation of the size of communications with dimensions of NSD, presence of subretinal hyper-reflective dots, and best-corrected visual acuity (BCVA). Results: The communications were seen as focal defects of the outer layers of elevated retina. With increasing size of communication, there was increase in height of NSD (r = 0.701, P = 0.002), horizontal diameter of NSD (r = 0.695, P = 0.002), and the number of hyper-reflective dots in the subretinal space (r = 0.729, P = 0.002). The minimum angle of resolution (logMAR) BCVA increased with the increasing size of communications (r = 0.827, P < 0.0001). Conclusions: Outer retinal communications between intra and subretinal space were noted in eyes having NSD associated with DME. The size of communications correlated positively with the size of NSD and subretinal detachment space hyper-reflective dots, and inversely with BCVA. PMID:24379554

  17. Communications between intraretinal and subretinal space on optical coherence tomography of neurosensory retinal detachment in diabetic macular edema.

    PubMed

    Gupta, Aditi; Raman, Rajiv; Mohana, Kp; Kulothungan, Vaitheeswaran; Sharma, Tarun

    2013-09-01

    The pathogenesis of development and progression of neurosensory retinal detachment (NSD) in diabetic macular edema (DME) is not yet fully understood. The purpose of this study is to describe the spectral domain optical coherence tomography (SD-OCT) morphological characteristics of NSD associated with DME in the form of outer retinal communications and to assess the correlation between the size of communications and various factors. This was an observational retrospective nonconsecutive case series in a tertiary care eye institute. We imaged NSD and outer retinal communications in 17 eyes of 16 patients having NSD associated with DME using SD-OCT. We measured manually the size of the outer openings of these communications and studied its correlation with various factors. Statistical analysis (correlation test) was performed using the Statistical Package for Social Sciences (SPSS) software (version 14.0). The main outcome measures were correlation of the size of communications with dimensions of NSD, presence of subretinal hyper-reflective dots, and best-corrected visual acuity (BCVA). The communications were seen as focal defects of the outer layers of elevated retina. With increasing size of communication, there was increase in height of NSD (r = 0.701, P = 0.002), horizontal diameter of NSD (r = 0.695, P = 0.002), and the number of hyper-reflective dots in the subretinal space (r = 0.729, P = 0.002). The minimum angle of resolution (logMAR) BCVA increased with the increasing size of communications (r = 0.827, P < 0.0001). Outer retinal communications between intra and subretinal space were noted in eyes having NSD associated with DME. The size of communications correlated positively with the size of NSD and subretinal detachment space hyper-reflective dots, and inversely with BCVA.

  18. Symmetries, supersymmetries and cohomologies in gauge theories

    NASA Astrophysics Data System (ADS)

    Bǎbǎlîc, Elena-Mirela

    2009-12-01

    The main subjects approached in the thesis are the following: a) the derivation of the interactions in two space-time dimensions in a particular class of topological BF models; b) the construction of the couplings in D ≥ 5 dimensions between one massless tensor field with the mixed symmetry (3, 1) and one with the mixed symmetry of the Riemann tensor; c) the evaluation of the existence of interactions in D ≥ 5 dimensions between two different collections of massless tensor fields with the mixed symmetries (3, 1) and (2, 2); d) the analysis of the relation between the BRST charges obtained in the pure-spinor formalism, respectively in the κ-symmetric one for the supermembrane in eleven dimensions. Our procedure for the first three subjects is based on solving the equations that describe the deformation of the solution to the master equation by means of specific cohomological techniques, while for the fourth one we will use techniques specific to the BRST Hamiltonian approach in order to write the BRST charge. The interactions are obtained under the following hypotheses: locality, Lorentz covariance, Poincare invariance, analyticity of the deformations, and preservation of the number of derivatives on each field. The first three assumptions imply that the interacting theory is local in space-time, Lorentz covariant and Poincare invariant. The analyticity of the deformations refers to the fact that the deformed solution to the master equation is analytical in the coupling constant and reduces to the original solution in the free limit. The conservation of the number of derivatives on each field with respect to the free theory means here that the following two requirements are simultaneously satisfied: (i) the derivative order of the equations of motion on each field is the same for the free and respectively for the interacting theory; (ii) the maximum number of derivatives in the interaction vertices is equal to two, i.e. the maximum number of derivatives from the free Lagrangian. The main results of the thesis are: interactions in two space-time dimensions for a particular class of BF models; interactions between one massless tensor field with the mixed symmetry (3, 1) and one with the mixed symmetry of the Riemann tensor; interactions between collections of massless tensor fields with the mixed symmetries (3, 1) and (2, 2); relating the kappa-symmetric and pure-spinor versions of the supermembrane in eleven dimensions.

  19. Reactive scattering with row-orthonormal hyperspherical coordinates. 4. Four-dimensional-space Wigner rotation function for pentaatomic systems.

    PubMed

    Kuppermann, Aron

    2011-05-14

    The row-orthonormal hyperspherical coordinate (ROHC) approach to calculating state-to-state reaction cross sections and bound state levels of N-atom systems requires the use of angular momentum tensors and Wigner rotation functions in a space of dimension N - 1. The properties of those tensors and functions are discussed for arbitrary N and determined for N = 5 in terms of the 6 Euler angles involved in 4-dimensional space.

  20. KSC-06pd1153

    NASA Image and Video Library

    2006-06-16

    KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., technicians check the STEREO spacecraft "B" is secure on the stand. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket on July 22. Photo credit: NASA/George Shelton

Top